

A Multimodal Interaction System for Navigation

Dennis Hofs, Rieks op den Akker, Anton Nijholt & Hendri Hondorp
Centre of Telematics and Information Technology
University of Twente, Enschede, the Netherlands
{infrieks,anijholt}@cs.utwente.nl

1 Introduction

To help users find their way in a virtual theatre
we developed a navigation agent. In natural lan-
guage dialogue the agent assists users looking for
the location of an object or room, and it shows
routes between locations. The speech-based dia-
logue system allows users to ask questions such
as “Where is the coffee bar?” and “How do I get
to the great hall?” The agent has a map and can
mark locations and routes; users can click on lo-
cations and ask questions about them.

In an earlier version (Luin et al., 2001) no un-
derlying dialogue model was used. Now we have
a generic architecture and dialogue model allow-
ing multimodal interactions, including reference
modelling and backward/ forward looking tags to
determine and model dialogue structure.

The architecture of the system can be con-
ceived as a box containing a dialogue manager
(DM) and world knowledge, to be connected
with input and output processors. The processors
can be plugged into different dialogue systems.
E.g., our speech processor and generator have
been used with some adjustments for both a
navigation agent and a tutor agent application.
The implementation supports streaming at the
recording side as well as the playback side to de-
crease the delay between user utterances and sys-
tem responses. The architecture enables the user
to interrupt when the system is speaking.

2 The Multimodal Dialogue Manager

Speech input is sequentially processed by the
dialogue act determiner (that selects a dialogue
act), the parser, the reference resolver and the

action stack. The dialogue management module
itself is not implemented as a system of asyn-
chronous distributed agents: there is a strict logi-
cal order in the execution of the updates of
dialogue information, the selection of goals and
the execution of actions after the system has re-
ceived user input. The mouse input reaches the
DM through a map, which is a visual 2D repre-
sentation of the world (the virtual theatre). The
user can point at objects or locations on the map
and the world notifies the DM of these events.

In our dialogue and action management mod-
ule we allow mixed-initiative dialogues and sev-
eral types of subdialogues. An Action stack
stores the system’s actions that are planned and a
subdialogue stack keeps track of the current dia-
logue structure. All dialogue acts are also kept in
a history list to be retrieved for later use.

The input queue of the DM receives the user’s
utterances in the form of lists of possible acts.
The relation between word sequences and acts is
specified in the grammar for the speech recog-
niser. A dialogue act contains the original sen-
tence and a forward and backward tag, based on
the DAMSL scheme. In addition, a dialogue act
may have a domain-specific argument.

When the DM gets a list of acts from the input
queue, it passes it to the dialogue act determiner
together with the history. Information in the his-
tory that the dialogue act determiner uses, are the
forward tags of the last utterance in the current
subdialogue and the last utterance in the underly-
ing subdialogue, if present. For every possible
forward tag, the dialogue act determiner holds an
ordered list of preferred backward tags that can
follow it. The dialogue act determiner selects the
preferred dialogue act and returns it to the DM.

Our dialogue act determiner also helps to de-
termine the dialogue structure with respect to
subdialogues. If the user could end the current
subdialogue – that is if the last dialogue act in the
underlying dialogue was performed by the sys-
tem and the user started the current subdialogue –
the dialogue act determiner will always try to end
the current subdialogue by connecting the user’s
dialogue act to the underlying dialogue.

3 Parser and Reference Resolver

The DM can start processing the selected dia-
logue act. It starts with parsing the phrases that
occur in parameters in the dialogue act’s argu-
ment. The feature structure that is obtained is
stored together with the original parameters in
the dialogue act. The next step is to bind the pa-
rameter to a real object in the navigation agent’s
world. That is where the reference resolver
comes in. The reference resolver is used for all
references to objects in the world. References can
be made by the user or the system, by talking
about objects or by pointing at them. The refer-
ence resolution algorithm is a modified version
of Lappin and Leass's algorithm that assigns
weights to references, based on a set of salience
factors. Although language used in the dialogue
system is rather simple, compared to complex
structures in written texts, resolving referring
expressions in multimodal interaction is far from
trivial. The modification makes the algorithm
suitable for multimodal dialogues. For details of
the adapted algorithm see (Hofs et al, 2003).

After resolving references, the set of objects
found is added to the parameter in the dialogue
act where the reference occurred. So now we
have a dialogue act that consists of a forward tag,
a backward tag and an argument. The parameters
in the argument have a value that was taken di-
rectly from the recognition result as well as a fea-
ture structure received from the parser and a set
of objects received from the reference resolver.

4 Dialogue and Action Stacks

The history contains all dialogue acts that oc-
curred during the dialogue. Besides the user’s
dialogue acts, it also contains the system’s dia-
logue acts. A subdialogue stack is used for the
currently running subdialogues. The action stack
contains the actions that the system still needs to

execute, but the stack also creates those actions,
when it is provided with the user’s dialogue acts
after the parameters have been parsed and refer-
ences were resolved. Actions are specified in
templates and are part of the action stack.

When the action stack receives a user dialogue
act, it will try to find an action template with
matching forward tag and argument. It creates
actions based on the action names in the template
and it extracts the action arguments from the
user’s dialogue act. The new actions are put on
top of the stack and when it is the system’s turn,
it will take an action and execute it. If a dialogue
act is performed within the action, the reference
resolver’s dialogue model should be updated and
the dialogue act should be added to the history.
Like a user dialogue act, a system act consists of
a forward tag and backward tag. It does not have
an argument. Instead it contains the action within
which the act was performed.

5 Conclusions

We presented a generic dialogue model for spo-
ken multimodal interaction. One of our applica-
tions, discussed here, is a navigation agent that
helps users to find their way in a virtual envi-
ronment. The system uses Dutch speech recogni-
tion and synthesis models. References to objects
in the environment can be made by user or sys-
tem. The resolution algorithm is a multimodal
version of the well-known Lappin and Leass’s
algorithm. Backward and forward-looking tags
according to the DAMSL scheme are used to
model the dialogue structure. Until now we used
our system to implement a navigation agent in a
virtual environment and, using the speech archi-
tecture module, a tutor agent. In progress is an
application where we integrate speech and hap-
tics in a virtual nurse education environment.

References
D. Hofs, R. od Akker & A. Nijholt. A Generic Archi-

tecture and Dialogue Model for Multimodal Inter-
action. Nordic MUMIN Workshop, Denmark, 2003.

S. Lappin & H. Leass. An algorithm for pronominal
anaphora resolution. Computational Linguistics,
20(4):535-561, 1994.

J. van Luin, A. Nijholt & R. op den Akker. Natural
Language Navigation Support in Virtual Reality.
ICAV3D Workshop Greece, 2001, 263-266.

