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Abstract

This dissertation deals with the robustness problem of deep linguistic
processing. Hand-crafted deep linguistic grammars provide precise
modeling of human languages, but are deficient in their capability of
handling ill-formed or extra-grammatical inputs. In this dissertation,
we argue that with a series of robust processing techniques, improved
coverage can be achieved without sacrificing efficiency or specificity
of deep linguistic processing.

An overview of the robustness problem in state-of-the-art deep lin-
guistic processing systems reveals that insufficient lexicon and over-
restricted constructions are the major sources for the lack of robust-
ness. Targeting both, several robust processing techniques are pro-
posed as add-on modules to the existing deep processing systems.

For the lexicon, we propose a deep lexical acquisition model to
achieve automatic online detection and acquisition of missing lexical
entries. The model is further extended for acquiring multiword ex-
pressions which are syntactically and/or semantically idiosyncratic.
The evaluation shows that our lexical acquisition results significantly
improved grammar coverage without noticeable degradation in accu-
racy.

For the constructions, we propose the partial parsing strategy to
maximally recover the intermediate results when the full analysis is
not available. Partial parse selection models are proposed and eval-
uated. Experiment results show that the fragment semantic outputs
recovered from the partial parses are of good quality and high value
for practical usage. Also, the efficiency issues are carefully addressed
with new extensions to the existing efficient processing algorithms.
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Zusammenfassung

Diese Dissertation befasst sich mit dem Robustheitsproblem tiefer
Sprachverarbeitungssysteme. Manuell erstellte tiefe Grammatiken lie-
fern eine präzise Modellierung menschlicher Sprache, sind aber un-
zureichend hinsichtlich ihrer Möglichkeiten, falsch aufgebaute oder
zusätzliche grammatische Eingaben zu verarbeiten. In dieser Disser-
tation werden wir zeigen, dass eine verbesserte Abdeckung mit einer
Reihe von robusten Verarbeitungstechniken erreicht werden kann, oh-
ne dabei die Effizienz oder auch die Exaktheit tiefer Sprachverarbei-
tung zu opfern.

Ein Überblick über das Robustheitsproblem bei aktuellen Sprach-
verarbeitungssystemen zeigt, dass sowohl ein unzureichendes Lexi-
kon als auch zu restriktive Konstruktionen die Hauptursachen für
mangelnde Robustheit darstellen. Es werden einige robuste Verarbei-
tungstechniken als Zusatzmodule für die bestehenden tiefen Verarbei-
tungssysteme vorgeschlagen, die bei diese beiden Ursachen ansetzen.

Hinsichtlich des Lexikons schlagen wir ein tiefes lexikalisches Ak-
quisitionsmodell vor, um eine automatische Onlineerkennung und -
akquisition fehlender lexikalischer Einträge zu erreichen. Außerdem
wird das Modell um eine Akquisitionsfunktion für Multiwortausdrücke
erweitert, die syntaktisch und/oder semantisch idiosynkratisch sind.
Die Auswertung zeigt, dass unsere lexikalische Akquisition eine we-
sentlich verbesserte Grammatikabdeckung ohne erkennbaren Genau-
igkeitsverlust erreicht.

Für die Konstruktionen schlagen wir die partielle Parsingstrategie
vor, um die Zwischenergebnisse möglichst umfassend wiederherzustel-
len, wenn eine vollständige Analyse nicht verfügbar ist. Es werden
partielle Parse-Selektionsmodelle vorgestellt und bewertet. Versuch-
sergebnisse zeigen, dass die fragmentierten semantischen Ausgaben,
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die über die partiellen Parse wiederhergestellt worden sind, eine ho-
he Qualität und einen hohen Gebrauchswert aufweisen. Auch werden
Effizienzfragen detailliert mittels neuer Erweiterungen zu den beste-
henden effizienten Verarbeitungssystemen betrachtet.
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1 Introduction

I show you doubt, to prove that faith exists.

— Robert Browning (1812 - 1889)

The ideas in this dissertation grew out of my experience with gram-
mar development and my attempts at building applications based on
such grammars. My first experience with deep linguistic grammars
was during a short visit to Saarbrücken before I started my PhD
studies. Back then, I was not familiar with large scale linguistically
motivated grammars, and was instantly fascinated by how linguis-
tic studies can be formally described and implemented, and the po-
tential applications of such promising language resources. Soon I
decided to move to Saarbrücken to pursue a PhD degree working
on deep linguistic processing. I started by taking on an ambitious
attempt to implement a HPSG grammar for Mandarin Chinese us-
ing the DELPH-IN resources. This was partly because there was no
large scale HPSG grammar for Chinese at that time, but another more
practical reason was to familiarize myself with the deep processing
tools. After struggling through months of frustration, I managed to
construct a sketch of a small grammar that covers the basic construc-
tions. By then I realized that writing a grammar of reasonable size
would probably take years, if not decades, particularly because there
is a lack of systematic theoretical study of HPSG for Chinese specific
language phenomena. In a retrospect at this point, I found myself to
be nowhere near my initial intention of building a language resource
that can be useful for applications. The doubt led to a quick retreat.
Losing certainty about deep linguistic processing in general, I looked
for comfort from existing large grammars. It did not take me long to
realize that even with the largest grammars that represent the state
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2 1. Introduction

of the art grammar engineering results, various problems exist when
one tries to use them in real applications. It is not just a coincidence
that deep linguistic processing has been a disfavored approach for a
long time. The most prominent problem among others is a lack of ro-
bustness. It occurred to me that it would be a more interesting topic
for me to search for solutions to this problem. Following this thread,
I have been working on robust deep processing techniques since that
time, and most of the work made its way into this dissertation.

This dissertation describes a series of techniques that lead towards
robust deep linguistic processing. In this chapter, I will define the
concept of deep linguistic processing, followed by an overview of the
state of the art deep linguistic processing platforms, as well as the
main challenges it is faced with. Finally, the structure of the disser-
tation is outlined at the end of the chapter.

1.1 Deep Linguistic Processing
Deep linguistic processing (DLP), or deep processing, is concerned
with natural language processing approaches that aim at modeling
the complexity of natural languages in rich linguistic representations.
Such approaches are related to either a particular linguistic theory
(e.g., CCG, HPSG, LFG, TAG, Prague School), or a more general frame-
work which draws on theoretical and descriptive linguistics. Tradi-
tionally, deep linguistic processing has been concerned with grammar
development for parsing and generation, with many deep processing
systems using the same grammar for both directions. Being grammar
centric, the studies of deep linguistic processing mainly focus on two
questions:

• How to develop linguistically motivated deep grammars?

• How to effectively utilize the knowledge in the given deep gram-
mars to achieve the application tasks?

The first question leads to a whole sub-field of study in grammar
engineering, while the second question is closely related to process-
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ing techniques not limited to the deep processing community (i.e.,
parsing, generation, etc.).

1.1.1 Grammar

Grammar is the study of rules governing the use of language. Sys-
tematic studies of grammars started thousands of years ago and the
methodology has been constantly evolving over the time. Since the
1950s, a new branch of language study named computational linguis-
tics, has emerged as a new field and opened up several novel ways
of grammar study. Among them, the approach to describe natural
language with formal grammars has been widely attended, with both
fruitful success and miserable setbacks.

Formal grammar is an abstract structure that describes a formal
language precisely. Though doubts as to whether formal grammar
is capable of describing human languages have always been around,
it has never impeded the ambitious attempts of building large-scale
formal grammars for various human languages. Some of the earlier
approaches managed to achieve reasonable coverage and/or accuracy
on sub-languages for specific applications. More recent approaches
aim at both broad coverage and high accuracy of languages without
domain constraints, for both parsing and generation tasks.

While the development of grammars were taking place, researchers
soon realized that the growth of the grammars heavily depends on
the description language of the grammar, the formalism framework.
The quest for a better, more powerful, while computationally af-
fordable framework soon branched into various grammar formalisms.
The choice of different grammar formalisms leads to the later blos-
som of various linguistic theories: transformational-generative gram-
mar (TGG), categorial grammar (CG), dependency grammar (DG), tree-
adjoining grammar (TAG), lexical functional grammar (LFG), general-
ized phrase structure grammar (GPSG), head-driven phrase structure
grammar (HPSG), just to name a few of them.

Despite the differences among different frameworks, grammar de-
velopment is almost always a painstaking task. Especially when aim-
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ing for both broad-coverage and high precision, it usually takes years
(if not decades) before the grammar can reach a reasonable size. Also,
due to the strong cohesion in language phenomena, a slight change
of the grammar in one aspect might result in dramatic changes in
other corners. This makes it hard to modularize the task of gram-
mar development. Large grammars are typically written by very few
linguists continuously over decades. Distributed parallel grammar
development is very difficult in practice, if possible, at all. Neverthe-
less, the continuous work on grammar engineering has seen fruitful
outcomes in recent years. Details about the latest achievements in
grammar engineering will be discussed in Section 1.2.

It is worth noting that another relatively new approach of grammar
development has emerged in recent years. Instead of hand-crafting
the grammar, the approach extracts or induces the grammar from
annotated corpora (i.e., treebanks) with much less human interven-
tion. In such an approach, the main effort shifts to the creation of
large amounts of annotated data. This is achieved by either set-
ting up a good annotation guideline and employing multiple human
annotators, or semi-automatically converting the existing treebanks
into annotations that are compatible with the underlying grammar
framework and include richer linguistic information. The grammars
created by such methods usually take shorter development time and
the performance of the grammar can be fine-tuned by either expand-
ing the treebank or by improving the extraction algorithm. The main
problem with this approach is that the grammars are usually less ac-
curate from two aspects.

First, the “depth” of the grammar is largely dependent on the
annotation. Asking human annotators to label detailed linguistic
information on the treebank is very difficult, and will inevitably lead
to low inter-annotator agreement. The semi-automatic conversion
approach requires the existence of multiple linguistic resources, and
their inter-compatibility.

Second, the treebank induced grammars usually overgenerate mas-
sively. It is typically the case that only grammatically well-formed
sentences are annotated in the treebank. Therefore, the induced
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grammar does not have a strict sense of grammaticality. And the
resulting grammar produces a huge amount of analyses per input,
not all of which are correct. For parsing tasks, the correct analysis
is selected by a parse disambiguation model. But such grammars are
less suitable for generation tasks.

In this dissertation, we focus on the deep linguistic processing tech-
niques that rely on hand-crafted deep grammars, simply because they
are such distinct grammar resources that provide accurate modeling
of human languages.

1.1.2 Processing

Given a grammar, either hand-crafted or treebank induced, it requires
extra processing techniques to utilize the encoded linguistic knowl-
edge. Typically, there are two types of tasks in which the grammar
is used: parsing and generation.

The parsing task is concerned with converting natural language
strings to linguistically annotated outputs. In deep linguistic pars-
ing, the output contains not only basic syntactic information, but
often semantic analysis, as well. The exact output annotation varies
a lot depending on the framework, but they normally share the prop-
erties of exploring a huge solution space. This requires various effi-
cient processing techniques to facilitate the search for (either exact
or approximate) best results.

In the generation task, the processing goes in the opposite direc-
tion. The output of the processing is the natural language utterances,
while the input is the abstract (semantic) representation of the mean-
ing. Similar efficiency and specificity challenges exist for generation
tasks, but now the disambiguation model needs to select the best
natural language utterances.

It should be noted that the processing techniques in use for a spe-
cific task are largely dependent on the characteristics of the grammar.
For grammars aiming at high precision, the coverage is usually low,
hence robust processing techniques are necessary. For grammars aim-
ing at broad-coverage, overgeneration is often a problem, therefore
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a more sophisticated disambiguation step is of higher importance.
For grammars that aim at both, a mixture of different techniques is
needed to achieve a balanced performance. It should also be noted
that, even with the same grammar, when used in different applica-
tion tasks, different configurations of the processing modules should
be used to achieve optimal functionality.

1.1.3 “Deep” vs. “Shallow”

The term “deep linguistic processing” intends to differentiate the
strongly linguistic theory-driven processing techniques we have dis-
cussed from those approaches which are less linguistically driven. The
latter class of approaches are referred to as “shallow” processing tech-
niques, for they usually concentrate on specific language phenomena
or application tasks without thoroughly modeling of the language.
By this definition, processing techniques like part of speech tagging,
named entity recognition, and phrase chunking all belong to “shal-
low” processing.

However, it should be pointed out that there is no absolute bound-
ary between deep and shallow processing techniques. Rather, the
terms “deep” and “shallow” should be taken in a relative sense. Even
within the well-acknowledged deep processing communities, some
frameworks provide more detailed analyses than others.

Also, the shallow processing techniques do not need to be separated
from deep linguistic processing. In many cases, they can complement
each other and combine together to achieve better application per-
formance. Such combination is called hybrid natural language pro-
cessing (Uszkoreit, 2002; Callmeier et al., 2004). But this is beyond
the focus of this dissertation.
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1.2 State of the Art Deep Linguistic
Processing

1.2.1 Grammar Development

Deep linguistic processing is not a new invention. As mentioned in
the previous section, the defining feature of deep linguistic processing
is its grammar centric approach. Hand-crafted grammars are com-
plex rule systems developed over decades and encode rich knowledge
about the usage of the language. As the results of enduring efforts in
grammar engineering, some of the large scale grammars have grown
to contain thorough coverage of various linguistic phenomena. While
most of the initial attempts in grammar development usually focus
on English, more recent progress has taken much broader steps to
aim at multilingual grammar engineering. Several projects have initi-
ated collaborative efforts that involve researchers from different insti-
tutes around the world who develop grammars for different languages
within the same linguistic frameworks using the same development
environment.

One of the earlier projects along this line is the LS-GRAM project
(Schmidt et al., 1996). Funded by the EU-Commission under LRE
(Linguistic Research and Engineering), the LS-GRAM project (Jan-
uary 1994 – July 1996) was concerned with the development of gram-
matical resources for nine European languages: Danish, Dutch, En-
glish, French, German, Greek, Italian, Portuguese, and Spanish. The
development was carried out in the framework of the Advanced Lan-
guage Engineering Platform (ALEP). However, the grammars achieved
very limited coverage.

The Parallel Grammar Project (ParGram, Butt et al. (2002)), aim-
ing at multiple grammar development within the linguistic framework
of Lexical Functional Grammar (LFG), started in 1994 with three lan-
guages: English, French, and German. After more than a decade of
development, several of the grammars have grown into broad cov-
erage precision grammars. More than a dozen languages have been
added to the project, while great effort has been made to keep the
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parallelism among the grammars. The development platform of the
project, XLE, includes a parser, a generator and a general purpose
rewriting system.

With a similar spirit to the ParGram project, the Matrix gram-
mar was developed within the context of the DELPH-IN community.
DELPH-IN stands for deep linguistic processing with HPSG– initiative,
which is a collaborative community with researchers from over a
dozen institutions around the world who are working on the imple-
mentation and application of linguistic grammars within the frame-
work of Head-Driven Phrase Structure Grammar (HPSG) and the Min-
imal Recursion Semantics (MRS).

Over the years, several key software components have been de-
veloped to facilitate grammar engineering and application. The LKB

system is a sophisticated grammar engineering environment that sup-
ports grammar development using typed feature structures. Combin-
ing with [incr tsdb()] (the competence and performance profiling
system), they can be used for treebanking, training and testing sta-
tistical models, etc. PET is an efficient HPSG parser that is compatible
with the grammars developed with the LKB system. Implemented in
C/C++ with various efficient parsing algorithms, the PET parser is
of industrial strength and capable of delivering deep linguistic pro-
cessing techniques to real applications.

Apart from the processing software components, the grammar re-
sources in DELPH-IN are also growing. The Matrix project is a frame-
work for the development of broad-coverage precision grammars for
diverse languages in the linguistic framework of HPSG using DELPH-IN

software repositories. Initially enlightened by experience with three
large scale HPSG grammars developed during the Verbmobil project
(i.e., ERG for English, JaCY for Japanese, GG for German), the project
aims to build a skeleton grammar that extracts the components that
are common across these grammars. Such a grammar helps accelerate
the development of new HPSG grammars for other languages. It also
helps achieve better parallelism between existing grammars. More
recently, the Matrix grammar has allowed customization via a web
interface. By answering a series of questions regarding the character-
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istics of the target language (i.e., word order, negation, coordination,
etc.), a customized Matrix grammar is automatically generated. Un-
der the umbrella of Matrix, grammars for about 10 languages are
under development. While the new grammars are reaching moder-
ate coverage, the three initial grammars have continued to grow after
the Verbmobil project, and all reached thorough coverage of basic
language phenomena with comparable size. These grammars have
since been used in various applications, e.g., machine translation,
automatic email response, information extraction, etc.

As mentioned in the previous section, a different approach to gram-
mar development in recent years is based on grammar induction from
annotated corpora. These studies have generated interesting linguis-
tic resources (typically in the form of converted and/or enriched an-
notations from existing treebanks), but were usually limited to a
very small number of languages (typically for English only). The
most recent noteworthy work includes the extracted LTAGs from Penn
Treebanks (Xia et al., 2001); the CCGbank and derived grammars, a
translation of the Penn Treebank into a corpus of Combinatory Cate-
gorial Grammar derivations paired with word-word dependencies that
approximate the underlying predicate-argument structure (Hocken-
maier and Steedman, 2005; Hockenmaier, 2006); and the HPSG tree-
bank and induced grammar from Tokyo University, a translation of
the Penn Treebank into HPSG derivations with predicate-argument
structures (Miyao et al., 2004).

For the reasons described in the previous section, this dissertation
focuses on deep linguistic processing with hand-crafted grammars.
More specifically, we use the DELPH-IN resources for most of the
experiments in this dissertation. But many of the discussions and
conclusions should generalize to other frameworks, as well.

1.2.2 The “Trinity” in Deep Linguistic Processing

Given the long existence and promising appearance of deep linguistic
processing, it is surprising to realize that, in practice, DLP has been
a disfavored approach in real applications for a long time. The ex-
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perience of past attempts in using deep processing techniques shows
that the situation is not completely unjustified. Generally, there are
three major challenges in the universe of deep linguistic processing:
efficiency, specificity, and coverage.

The efficiency problem concerns the computational complexity of
deep linguistic processing systems. Due to the need for thorough
modeling of the language, rich mathematical formalisms are nor-
mally required. Being more expressive, such formalisms are normally
poor in terms of computational tractability. For instance, the time
complexity of parsing with unification-based grammars is exponen-
tial to the input length. Even if the formalism maintains good the-
oretical computational complexity, large-scale grammars almost in-
evitably encounter a huge search space. Fortunately, the problem has
been dampened by many new efficient processing techniques. Also,
Moore’s Law indicates a bright future for deep processing systems
with the help of better computer hardware.

The specificity problem is concerned with the preciseness of deep
linguistic processing systems. Due to the ambiguous nature of human
languages, hand-crafted deep grammars are usually capable of pro-
ducing a large number of analyses according to linguistic principles.
Linguistically sound analyses are not all equally plausible or interest-
ing. Therefore, extra mechanisms are required to model preferences
among grammar analyses. Such disambiguation models work with
either heuristic preference rules, or statistical ranking models trained
on disambiguated grammar outputs. The latter approach has been
widely adopted in recent development, and is the de facto standard
technique to solve the specificity problem within many frameworks.

The coverage problem concerns the completeness of the grammar
description relative to language use. This is the most serious chal-
lenge for the deep processing systems to date. While the state of the
art broad-coverage precision grammars cover most of the frequent
language phenomena, Zipf’s law indicates that there are still many
uncovered phenomena (e.g., infrequent words, multiword expressions,
etc.) in the long tail of the skewed distribution. Also, the static rule
systems are not able to account for the evolution of the language. Al-
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though continuous grammar development can lead to improvement
of the coverage, full coverage can only be achieved with extra mech-
anisms.

All of the three problems have been studied for a long time. While
improvements have been seen in the first two problems, the coverage
problem is significantly lagging behind. In this dissertation, I will
investigate a closely related but much more general problem of deep
linguistic processing: robustness. Its relation to the aforementioned
three problems (especially the coverage problem) will be discussed in
general in the next chapter, and in detail throughout the rest of the
dissertation. The objective is to develop a series of robust processing
techniques that will bring the state of the art deep linguistic process-
ing to a new stage where balanced efficiency, specificity and coverage
are achieved.

1.3 Structure of the Dissertation
This dissertation discusses a group of new techniques related to ro-
bust deep linguistic processing. The discussions and experiments are
mostly made within the existing HPSG grammar framework, but can
be applicable to various similar frameworks, as well.

Chapter 2 gives a brief overview of the robustness problem with
natural language processing systems. A case study of the robust-
ness and coverage of a broad-coverage accurate HPSG grammar is pre-
sented.

Chapter 3 presents the techniques to improve the robustness of
the deep lexicon by acquiring the lexical information using statistical
machine learning methods. The training corpus can be generated
automatically with the grammar. Several techniques to improve the
performance are also presented and evaluated.

Chapter 4 expands the discussion of extending the lexicon by mov-
ing forward to acquire widely existing but poorly covered linguistic
phenomena: multiword expressions. By adapting a similar classifi-
cation model, in combination with some validation techniques, the
grammar performance improves further.
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Chapter 5 goes on to investigate the correlation between the lex-
icon and grammar performance. By simulating deep lexical acquisi-
tion results at various precision and recall levels, both the accuracy
and the coverage of the grammars are evaluated. The results on two
grammars of comparable size for different languages leads to the con-
clusion that a recall-heavy interpretation of the lexical acquisition
results should be preferred.

Having discussed the lexical aspect in details, Chapter 6 moves
on to improve robustness in grammar construction. Robust partial
parsing is proposed and the related statistical disambiguation models
are presented. Also the efficiency concerns are discussed in detail.

Chapter 7 concludes by reviewing the robustness techniques dis-
cussed in the dissertation, and outlines some areas of future research
potential.



2 Robustness: General

The amount of noise which anyone can bear undis-
turbed stands in inverse proportion to his mental capacity.

— Arthur Schopenhauer (1788 - 1860)

2.1 Overview
Generally, robustness is the quality of being able to withstand stresses,
pressures, or changes in procedure or circumstance. A system, organ-
ism or design may be said to be “robust” if it is capable of coping
well with (sometimes unpredictable) variations in its operating envi-
ronment with minimal damage, alteration or loss of functionality.

For natural language processing systems, robustness is usually de-
fined as the capability of handling unexpected inputs.1 This is an
especially important issue when the input to the system is produced
by humans, and transferred through various noisy channels. There-
fore, the input basically contains two types of variance: it is either
produced by a human speaker, or introduced by the communication
channel. Both of them can be considered as noise from the perspec-
tive that they somehow impede the system from capturing the true
meaning which is meant to be conveyed behind the message.

The noise introduced by communication channels is usually re-
lated to the technical limitation of specific media or technology. For
instance, in speech text processing, transcription errors (either in-
troduced by human transcribers or by speech recognition systems)
are inevitable. Also, the punctuation information is usually missing

1Other constraints (time, hardware, etc.) are also considered as aspects of measuring
robustness, but are not the focus in this dissertation.

13
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from transcribed speech texts, hence making them different to nor-
mal written texts. Therefore, the systems handling such inputs need
to tolerate both of these kinds of errors. A similar type of noise also
occurs with written texts; for instance, OCR errors in scanned docu-
ments. From the viewpoint of computational linguistics, these types
of noise need to be properly handled by collaborative research and en-
gineering efforts with various other sub-fields (e.g., speech processing,
optical character recognition, etc.).

Unlike the communication channel noise, the other major type of
noise is produced by humans. Such noise comprises different phe-
nomena which influence the proper understanding of the language.
These phenomena are either not sufficiently covered by conventional
linguistic study or lack implementation in specific language resources
(e.g., deep linguistic grammars).

The noise generated by humans (called errors in some cases) is
usually the combined effect of various competence or performance
factors. For instance, misspelling, disfluency, and grammatical er-
rors are common types of noise produced by new language learners.
However, under specific circumstances, e.g., under time pressure or
when tired, speakers with sufficient knowledge about the language
may produce similar types of noise, as well.

Another factor that adds complexity to natural language process-
ing is the evolution of the language. Languages change over time.
New linguistic phenomena emerge, while outdated ones perish. More
noticeable is the change in the lexicon: new words are created every-
day, while old ones slowly fade out. Nowadays, the changing pace is
accelerated even more by modern information technologies and glob-
alization, so that new words (either newly created, or adopted from
foreign languages) can be distributed at incredible speed.

Since natural languages are such open-end systems, it is difficult
to define a clear boundary beyond which the variance should be con-
sidered as noise. Nonetheless, it is amazing to see that humans are
extremely robust to dramatic variance in language use: slight un-
grammaticality in spoken language does not impede effective commu-
nication among human speakers; new words can be picked up after
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just seeing them in use only few times, etc.

In contrast to human adaptivity to the variance of language use,
existing natural language processing systems typically lack such ro-
bustness. In precision grammar-based deep linguistic processing, the
central language resource (i.e., the grammar) is usually formulated as
a symbolic rule system which is not especially capable of tolerating
such variance in at least two aspects.

First, it is not designed to handle language evolution. State of the
art grammar frameworks are formulated on well-defined mathemat-
ical formalisms. However, they are typically designed for describing
static language phenomena. Whenever a new language phenomenon
emerges, new changes must be made to the existing grammar. Occa-
sionally, the new phenomenon does not fit in the design of the gram-
mar. Then the evolutionary change in the language may lead to a
revolutionary change of the grammar. Although lately there has been
a lot of research efforts on better design of grammar frameworks that
keep highly generalized linguistic principles apart from specific lan-
guage phenomena to allow modularized design of the grammar (see
Bender et al., 2002), generally it is still very difficult to guarantee
the modularity and extensibility of the grammar with the formalism
currently in use.

Second, widely adopted grammar frameworks are not designed for
graded grammaticality. Shallow grammars and treebank induced
grammars usually make no grammaticality judgment, at all. Such
grammars are different from precision grammars in that they are not
capable of accurately modeling the language. Therefore, they may
perform well in some specific tasks (i.e., parsing) and fail in others
(i.e., generation). Precision grammars generally achieve better accu-
racy by deliberately restricting the constraints, and produce analyses
for grammatical sentences only. However, current frameworks usu-
ally imply a binary grammaticality. The boundary of grammaticality
is rather arbitrarily set by the grammar writer. Also, there is an
asymmetry between the treatment of grammatical and ungrammat-
ical sentences: grammatical sentences receive one or more detailed
analyses; ungrammatical sentences are dropped to the ground. Vari-
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ous studies have shown that human speakers usually make a graded
judgment of grammaticality (cf. Keller, 2000). Ungrammatical sen-
tences are partial processed by human speakers depending on their
grammaticality level.

Both of these points indicate that the current grammar frameworks
lack the power to properly model the variance in language use as hu-
mans do. This directly leads to a lack of robustness in precision
grammar-based natural language processing systems. While more
advanced formalisms are desirable in future study, it is still largely
unclear how long until a really promising framework emerges that
can properly address these problems while remaining implementable.
On the practical side, huge efforts have been invested in the develop-
ment of various language resources (grammars, treebanks, processing
software) using current frameworks since the mid-1990s. Although
limited by their underlying formalisms, these language resources are
still of great value.

In this dissertation, we aim at improving the robustness of precision
grammar-based deep linguistic processing systems by incorporating
a series of novel robust processing techniques. Without changing the
base formalism, our techniques work as extra modules upon the exist-
ing framework, and significantly improve the grammar performance
in a robust deep linguistic processing scenario.

2.2 Robustness and Coverage
The robustness problem is closely related to several performance as-
pects of a deep linguistic processing system. For instance, in some
systems, unpredicted input might result to an exhaustive search over
the entire solution space, which leads to inefficiency (see Section 6.4
for one example of such a problem and its solution). On the other
hand, robust processing can also lead to a specificity challenge. For
instance, the extension of the lexicon leads to greater lexical ambigu-
ity, and potentially larger numbers of analyses per sentence.

The other, more directly related, performance aspect of deep lin-
guistic processing system is coverage. In the traditional definition,
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the coverage of a deep linguistic processing system is the proportion
of inputs which i) are well-formed, and ii) receive at least one correct
analysis from the grammar. While similar to the definition of robust-
ness, the prerequisite that the input must be well-formed makes the
concept of coverage slightly different.

On a closer look, it can be easily realized that the exact meaning
of coverage is crucially decided by how well-formedness is defined. In
many cases, it is not related to the actual regularity of the input, but
rather defined according to application tasks. For instance, a gram-
mar designed for situated dialog systems may consider newspaper
texts not well-formed, even though the latter normally have better
grammaticality and fluency.

For broad-coverage precision grammars, the coverage is usually
measured over a set of carefully chosen test items. The well-formedness
is marked (as binary decisions) by grammar writers. Strictly speak-
ing, such coverage tests do not reflect the true robustness of the
grammar. High coverage does not automatically imply good robust-
ness.

In this dissertation, we try to use a different measure of coverage in
an attempt to properly reflect the robustness of the grammar with the
same measure. Rather than relying on a carefully selected test set and
manually assigned well-formedness, we rely on large balanced corpora
with trusted grammaticality. More specifically, we use the British
National Corpus (BNC; Burnard (2000)) for a coverage test of the
English Resource Grammar (ERG; Flickinger (2002)). A large number
of sentences were selected to create a sub-corpus from the written
component of the BNC. The coverage is defined as the proportion
of sentences that received at least one reading. Since the BNC is a
carefully chosen collection of data with substantial variation while
still maintaining good balance, the coverage number is representative
of the robustness of the grammar when faced with real running texts.
In the next section, we will start with a case study of a coverage test
of the ERG with BNC.
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2.3 Case Study

This dissertation aims at robust deep linguistic processing with pre-
cision grammars. As a starting point, in this section we show a case
study of the robustness of a large scale HPSG grammar for English
which represents the state of the art grammar engineering outcomes.

The LinGO English Resource Grammar (ERG; Flickinger (2002)) is
a broad-coverage, linguistically precise HPSG-based grammar of En-
glish. Initially started in 1994, the grammar has undergone con-
tinuous development for over a decade, with about 18 person-years
of work (as of summer 2007). Since its first application in the Verb-
mobil spoken language machine translation project, the grammar has
grown to a precision grammar with reasonably good coverage over un-
seen running texts. The grammar is now semantically grounded in
Minimal Recursion Semantics (MRS; Copestake et al. (1999)). It is
developed with the LKB system, and can also be used with the PET

parser. The jun-04 version of the ERG contains 23.6K lines of code in
TDL2 (excluding the lexicon) with about 5K lines of comments. The
lexicon contains 12,347 lexical entries, categorized into 728 leaf lexi-
cal types. There are in total over 3.5K types defined in the grammar,
and about 110 construction rules.

Baldwin et al. (2004) reported an evaluation of the English Re-
source Grammar with a set of 20K sentences randomly selected from
the BNC, where both coverage and accuracy of the grammar were
analyzed. Of the utterances with full lexical span (at least one lex-
ical entry exists for each token in the input), the causes of parsing
failure are classified into six categories: missing lexical entries, miss-
ing constructions, preprocessor errors, fragments, parser failures, and
garbage strings.

As mentioned in the last section, to obtain a reliable test set that
properly reflects the variations in language use, we need to build
from BNC a large sub-corpus. Considering that the recent grammar

2TDL (Krieger and Schäfer, 1994), standing for Type Description Language, is the for-
malism foundation based on which several grammar engineering/processing platforms
using typed feature structures (including PAGE, LKB, PET, SProUT) are built.
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development is aimed at written text processing, we use the written
component of the BNC corpus to extract the sub-corpus. More specif-
ically, we used the following heuristic rules to collect the utterances
for the sub-corpus:

1. The utterance must have a proper final punctuation (i.e., full
stop, question mark, exclamation, etc.), so that the utterance
is more likely to match the “well-formed” utterances covered
by the grammar;

2. The utterance must not contain non-ASCII characters, so that
non-English (sub)utterances or foreign words are not involved;

3. The utterance must not contain more than 20 words, so that the
huge amount of data can be deeply processed within reasonable
time.

It should be noted that the third requirement is specified from the
engineering point of view. Due to the large number of utterances
in the corpus, and the exponential complexity (relative to the input
length) of unification-based parsing, we select the upper-bound limit
of 20 words for our sub-corpus. Empirically, we have found that
our current parser handles short utterances fairly efficiently, with an
average speed of 1 utterance a second, and a much lower median
speed of around 0.2 seconds per utterance. For longer sentences, the
parser throughput drops significantly. By setting the 20-word limit
(as well as other constraints), we obtain a sub-corpus with a total of
1.8M utterances. Using PCs with 3GHz CPUs, we are able to parse
the entire sub-corpus within 4∼5 CPU days.

It is true that there is a strong empirical correlation between the
input utterance length and the grammar coverage: the coverage drops
with the increase in the utterance length. Therefore, setting a upper
bound length limit on the utterance introduces a bias on the absolute
figure of the coverage. But in hope that the same data set provides a
relative measure for different versions of the grammar, the coverage
numbers should be comparable, and reflect the robustness differences
between versions.
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Using the jun-04 version of the ERG, we parse the entire BNC sub-
corpus with the PET parser. Since we are not interested in the exact
outcome of the analysis, we run the parser in the recognizer mode, i.e.,
checking whether the input utterance has at least one analysis. In this
mode, the parser does not need to extract any reading from the parse
forest. When using subsumption-based local ambiguity packing, the
packed parse forest can be created in practically polynomial time.

As the outcome of the parser, we have one of the following 4 states
for each input utterance:

• P means that the utterance receives at least one full analysis

• L means that the utterance contains at least one lexical gap
(input tokens that that do not correspond to any existing lexical
entry in the lexicon of the grammar)

• N means that the utterance contains no lexical gap but still
receives no parse

• E for all other cases (e.g., parser crash, timeout or out-of-
memory errors)

The overall coverage of the grammar CALL is estimated as the pro-
portion of utterances in the BNC sub-corpus that is marked as P by
the parser. The relative coverage with no lexical gap CNG is defined
as |P |
|P |+|N | to separate the construction coverage from the lexical cov-

erage. The full lexical span rate RFLS is defined as |P |+|N |
|P |+|N |+|L| , which

crudely shows the lexical coverage of the grammar.3 The results are
summarized in Table 2.1.

From the results we see that this specific version of ERG contains
at least one lexical gap for about 70% of the utterances, setting a
miserable upper bound for grammar coverage. This is essentially
consistent to the results obtained by Baldwin et al. (2004) (where 32%

3It should be noted that the missing lexical entries do not necessarily lead to lexical
gap(s) during parsing. Details about lexical gap and lexical coverage is discussed in
Section 3.3.
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|P | |N | |L| |E| RFLS CALL CNG
ERG (jan-04) 301,503 239,272 1,260,404 96 30.02% 16.74% 55.75%

Table 2.1: Coverage test result of ERG (jun-04) on the BNC sub-corpus

of the utterances from their test set are lexical gap free). The 55.75%
no-gap coverage shows that even without lexical gaps, the grammar
still suffers from a high parsing failures ratio. Baldwin et al. (2004)
reported that 40% out of these no-gap parsing failures are caused by
missing lexical entries, while 39% are related to missing constructions.
We manually evaluated a small subset of the parsing failures from our
BNC sub-corpus, and observed a slightly higher proportion of the two
error types, both at around 46% of all the no-gap failures. We see the
difference as a result of using the aforementioned selection criteria to
create our BNC sub-corpus, so that the proportion of garbage strings
and parser failures reduced significantly.

Both our experiment and that of Baldwin et al. (2004) arrive at the
conclusion that the major robustness barriers for the ERG grammar
(and possibly other grammar resources of a similar kind and scale) are
from two aspects. First, current static manually compiled lexicons
of the grammars are far from sufficient. Second, even with a perfect
lexicon, extra robust processing mechanisms are required to handle
variations in the construction.

2.4 General Approach

The purpose of robust deep linguistic processing is to ensure that
appropriate and meaningful structures are assigned to the input ut-
terances. The processing should preserve the accuracy of the analy-
ses, meaning that the robust output should be well supported by the
linguistic resource and underlying theory. Also, the outcome of the
robust processing should maintain detailed linguistic information, so
that it can still be differentiated from shallow processing outputs.

As mentioned in Chapter 1, there has been quite a lot of previous
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work on robust processing. For instance, some of the approaches
devise various recovery strategies from errors and modify the in-
puts (Lyon, 1974; Aho et al., 1986; Lehman, 1989; Hipp, 1992; Weng,
1993; Rosé and Lavie, 1997), while others try to extend grammar
frameworks that allow the recording and measuring of the grammat-
icality of the inputs (Fouvry, 2003b).

In order to improve the robustness of the existing grammar re-
sources, in this dissertation we take an evolutionary approach to de-
velop a sequence of robust processing techniques that can be applied
to many deep linguistic processing systems as incremental add-on
modules.

To start with, we will first look at techniques to automatically
acquire linguistic lexical knowledge in Chapter 3, followed by an ex-
tension to acquire multiword expressions in Chapter 4. The relation
between the lexicon and the grammar performance is discussed in
Chapter 5. In Chapter 6, a partial deep parsing strategy is proposed
to handle missing constructions.



3 Deep Lexical Acquisition

Order and simplification are the first steps toward mas-
tery of a subject — the actual enemy is the unknown.

— Thomas Mann, “The Magic Mountain, 1924”

Deep linguistic processing delivers fine-grained syntactic and se-
mantic analyses which are desirable for advanced NLP applications.
However, the limited coverage poses a major barrier. This chapter
will discuss automatic deep lexical acquisition techniques which can
effectively enhance lexical coverage.

3.1 Motivation

This dissertation is about robust processing techniques with preci-
sion deep grammars. As shown in the previous chapter, the lack of
robustness and coverage in deep processing techniques is a combined
effect of multiple factors. The lack of lexical coverage is one of the
major stumbling blocks for deep processing to achieve broad coverage
and high robustness.

Take the coverage test result of ERG (jun-04) on BNC, for example.
The grammar has at least one lexical gap on 70% of the inputs.
The lexical coverage is much lower than the grammar construction
coverage (since the same grammar achieves 56% coverage on sentences
without a lexical gap). In the traditional pipeline processing model,
whenever a lexical gap is found in the input sequence, the processing
is aborted. Obviously, this is a weak link in deep processing in terms
of robustness. For deep processing, the detailed linguistic information
must be provided by the lexical entries. Manually compiling a large

23
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scale deep lexicon is a time consuming task. Also, the static lexicon
inevitably becomes insufficient due to the evolution of the language.
Moreover, in real applications, the noisy inputs are also a robustness
challenge for the deep lexicon. A typical type of noise in written
text comes from misspellings. Misspelled words are surely beyond
the coverage of the lexicon. Whether they can be treated properly is
crucial for deep processing in applications.

All these issues indicate the need for (semi-)automatic ways of
acquiring lexical information.

3.2 The Lexicon

Lexicon has always been playing a significant role, not just in deep
processing, but generally in the entire study of human languages.
This is simply because, no matter how complicated and divergent
they may be, human languages are all built on some basic units which
carry meanings and phonetic values. Without the knowledge of such
basic units, language processing is literally impossible. The inventory
or knowledge base of these language units is called lexicon, and has
played an important role in the study of human languages.

There is no definite answer to the question of what specific infor-
mation should be encoded into the lexicon, and this is far beyond
the scope of this dissertation. Rather, here I will restrict the discus-
sion about the lexicon to the scope of deep processing with precision
grammars, i.e., the DELPH-IN HPSGs.

3.2.1 Lexicon: A Functional View

Deep grammars are usually composed of two main components: i) a
lexicon with information about words, and ii) a rule system (usually
referred to as grammar, too, but in a more restricted sense) that
incorporates the word information into processing.

Different approaches see different boundaries between the lexicon
and the rule system. In some highly lexicalized formalisms like LTAG
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and various CGs, the rule system is extremely simplified and ab-
stracted, so that almost all the knowledge about the language goes
into the lexicon.

Here we are more interested in seeing the relation between different
grammar components and robustness. Therefore, in this dissertation,
we will restrict the discussion on the formalisms and grammars to
the points where the distinction between grammar rules and lexicon
is apparent. More specifically, the lexicon L in this discussion is
essentially a function which maps each lexeme wi ∈ W to a subset of
abstract symbols A = {a1, a2, . . . , am} :

L : W → P(A). (3.1)

It is with this set of abstract symbols that the information about
the lexemes is recorded. The polymorphic nature of lexemes is cap-
tured by mapping a single word/lexeme onto multiple abstract sym-
bols. The remaining part of the grammar, namely the grammar rules,
generalizes the generative machinery as well as various linguistic re-
strictions of the language. The rules interact directly with the ab-
stract symbols, not the words, to keep the generality of the linguistic
principles. Despite the different formalisms, the information encoded
in such an abstract symbol set is usually atomic, meaning that infor-
mation encoded is self-sustaining. More details will be discussed in
Section 3.2.2. In such a view, the role of the lexicon in the grammar
is essentially the “joint” between the list of words/lexemes and the
rule system.

It should be noted here, that the functional view of the lexicon
here is mainly aimed at the parsing tasks where the inputs are words
and the outputs are analytical structures. However, this view does
not conflict with other applications of the grammar. For example,
in generation tasks, the inputs are semantic representations and the
outputs are word sequences. In such cases, the lexicon serves as an-
other function which maps from the semantic units (i.e., predicates)
si ∈ S to sets of words/lexemes wi ∈ W :

L′ : S → P(W ). (3.2)
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The two mappings of the lexicon also enable us to separate the
syntactic and semantic layers. Mapping L mainly deals with the
syntactic restrictions of the word, while L′ maps the concept units
to words. Although L′ is also potentially interesting, especially for
the study of lexical semantics, this dissertation focuses more on the
syntactic processing and its relation to the lexicon. If not mentioned
otherwise, the mapping L will be used as the default definition of
lexicon hereafter.

3.2.2 Atomic Lexical Types

As mentioned earlier, the grammar rules interact directly with a set of
abstract symbols, instead of concrete words/lexemes, and the lexicon
creates the correspondence between words/lexemes and the abstract
symbols. Therefore the abstract symbols must carry the complete
lexical information, so that the syntactic characteristics of different
words can be properly differentiated and handled.

It has been well studied that lexical information for human lan-
guage is knowledge-rich. Different formalisms have developed differ-
ent methods for knowledge representation of lexical information. For
example, in HPSG, the feature structure in Figure 3.1 will be used as
a brief description of the lexical information carried by the proper
name “Mary”.

The lexical information encoded in this structure includes the word
category, word stem/lexeme, valency information, person, number,
gender, and also semantic constraints. In principle, such structures
can be used to encode the lexicon, since they provide all the infor-
mation. However, the direct encoding approach is not an optimal
way either from the theoretical or the practical point of view. From
the theoretical point of view, linguistic generality will be sacrificed in
such an approach. The abstract symbol set is the vocabulary of the
grammar rules. If the linguistic information is specified completely at
the lexical entry level, then it will be difficult to generalize the linguis-
tic phenomena over groups of words, and the role of word category
becomes less significant. Practically, this approach is not optimal
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Figure 3.1: Lexical information for “Mary” in a Typed Feature Struc-
ture
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either, for the lexicographer must provide the complete description
for each lexical entry, even though a large part of such information is
shared among many different words.

Therefore there is always some level of abstraction for the con-
struction of the lexicon. Again, we take HPSG as an example. The
lexicon in HPSG is usually organized into a type hierarchy, which is
a multiple inheritance system. The super-types contain fewer con-
straints and are more general. The sub-types monotonically inherit
all the constraints from their parents, and optionally introduce some
extra constraints, therefore become more specific. The inheritance
type system allows multi-layers of encapsulation of lexical informa-
tion. For the completeness of lexical description, usually only the
leaf types are assigned for each lexical entry. The leaf types are those
maximum types on the hierarchy which do not have any sub-types.

With the type system, the actual lexical entries look like the fol-
lowing1:

dog_n1 := n_-_c_le &

[ STEM < "dog" >,

SYNSEM [ LKEYS.KEYREL.PRED "_dog_n_1_rel",

PHON.ONSET con ] ].

dog_v1 := v_np_le &

[ STEM < "dog" >,

SYNSEM [ LKEYS.KEYREL.PRED "_dog_v_1_rel",

PHON.ONSET con ] ].

blue_a1 := aj_-_i_le &

[ STEM < "blue" >,

SYNSEM [ LKEYS.KEYREL.PRED "_blue_a_1_rel",

PHON.ONSET con ] ].

blue_n1 := n_-_mc-col_le &

[ STEM < "blue" >,

1Examples are taken from the ERG (nov-06).
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SYNSEM [ LKEYS.KEYREL.PRED "_blue_n_1_rel",

PHON.ONSET con ] ].

give_in_v1 := v_p_le &

[ STEM < "give" >,

SYNSEM [ LKEYS [ --COMPKEY _in_p_sel_rel,

KEYREL.PRED "_give_v_in_rel" ],

PHON.ONSET con ] ].

give_up_v1 := v_p-np_le &

[ STEM < "give" >,

SYNSEM [ LKEYS [ --COMPKEY _up_p_sel_rel,

KEYREL.PRED "_give_v_up_rel" ],

PHON.ONSET con ] ].

The entries listed above are separated by blank lines. At the be-
ginning of each entry, the name of the lexical entry is given (i.e.,
“dog n1”, “dog v1”, . . . ). Then a unique leaf lexical type assigned
to the entry (i.e., “n - c le”, “v np le”, etc.). The rest of the entry
defines some extra feature constraints. This part of information is
largely word-specific, i.e., the “stem” of the word and the seman-
tic relation it introduces. The mapping from lexemes to the possi-
ble feature structures is straightforward and efficient. It also allows
a word/lexeme mapping to different feature structures via multiple
lexical entries with the same “stem” feature. The different linguis-
tic behaviours (even if subtle) can be captured by the corresponding
lexical types.

A closer look at the type hierarchy helps clear up more of the
mystery of the lexical types. Figure 3.2 is a small fragment of the
ERG lexical type hierarchy2. The types above are the more general
types (super-types), while the types below are the more specific types
(sub-types). The types at the bottom of the hierarchy are called “le”

2This fragment of lexical type hierarchy is taken from the ERG (jun-04). The naming
of the lexical types has undergone significant change since then. Also, the complete
lexical type hierarchy is much more complex with lots of multiple inheritance.
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types (because they have names which end with “le”). These are the
leaf lexical types that will be assigned to lexical entries.

n_intr_lex_entry

basic_noun_word

basic_n_proper_lexentnoun_noninfl_word

n_proper_le

n_mass_le n_proper_lexentbasic_intr_noun_word

basic_intr_lex_entry

n_intr_le 

n_ppof_meas_le

n_intr_nosort_le

Figure 3.2: A fragment of the ERG lexical type hierarchy for nouns

Among many interesting features of a hierarchical lexicon, the leaf
lexical types provide two important characteristics that are crucial
for this discussion.

The first important characteristic is that the “le” types are max-
imum types, therefore carry almost a complete description of the
lexical information. The complete description would, in addition, in-
clude the word specific information like the “stem” and the semantic
relation. Also, in some cases, the “le” types require extra feature
constraints to complete the description. For example, for the verb
particle constructions, the “le” type “v p le” acquires the particle
information via the value of attribute “––COMPKEY”. Such an ex-
ception can be addressed by compiling out all the possible values of
such attributes as sub-types. Large grammar engineering results have
shown that the possible values for such attributes on the “le” types
are usually limited. The resulting types will have the full specification
of the lexical information.

The other important characteristic is independence. There is no di-
rect interaction between the lexical types. The design and application
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of “le” are not directed affected by other types.

To make the discussion a little more general, we will use the term
atomic lexical types henceforth to refer to any of the abstract symbols
which encapsulate the lexical information and have the above two
characteristics.

Typical large scale deep grammars usually have rather complete
sets of atomic lexical types. The problem of lack of lexical coverage
is normally caused by insufficient mapping from lexemes to the appro-
priate atomic lexical types, rather than missing atomic lexical types.3

Therefore, the task of lexical acquisition is to assign the appropriate
types for the words or lexemes and create the lexical entries.

The task of lexical acquisition is especially important and difficult
for deep grammars. The grammars heavily rely on fine grained word
categories and detailed lexical information. This leads to a large set of
possible atomic lexical types. If the lexical information is missing, the
robustness and coverage of the deep processing will be hurt directly.

Manual compilation of broad-coverage lexicons for deep grammars
is a time consuming task. It has been estimated that for a large HPSG

like the English Resource Grammar (ERG; Flickinger (2000)) with
over 800 leaf lexical types, a skilled lexicographer can create about
50 entries per hour. For a middle size lexicon of 30,000 entries, this
will take about 15 person-weeks for initial creation, and much longer
for validation.

The lexicographers must be familiar with the interaction between
atomic lexical types and the grammar rules. They also need to be
able to discriminate the subtle difference between different lexical
types. Therefore, in many cases, the manual creation of a high qual-
ity lexicons for deep grammars is done by the grammar developers
themselves, and occasionally also people who are familiar with the
internal structure of the grammar under the close supervision of the
grammar developers. Thus, large scale distributed annotation is dif-
ficult in practice.

Moreover, as the deep grammars themselves are constantly under

3Although difficult to prove, the claim is justified (at least for grammars like ERG)
through the case study of manual lexical extension reported in Section 3.2.3.
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evolution, the set of atomic lexical types may also change, making
the migration of the lexicon a non-trivial task. Last but not least,
there is no guarantee on the quality (i.e., in terms of coverage and
accuracy) of the manually compiled lexicon. If the process of deep
lexical acquisition can be automated, a lot of manual effort will be
saved.

3.2.3 A Case Study of Manual Lexical Extension

To demonstrate the amount of work required for manual lexical ex-
tension, a case study of manual lexical extension has been carried out.
The objective of the task was to extend the lexical coverage of the
LinGO English Resource Grammar (ERG) for a web-derived corpus
on tourism in Shanghai.4

Before the lexical extension, the grammar has full lexical coverage
for about 20% of the strings in the corpus, out of which 55% receive
a parse. In other words, only 11% of the strings in the corpus are
successfully parsed. The lexical coverage is significantly lower than
the BNC road-testing because there are a lot of transliterated Chinese
proper names and idioms.

The manual extension of the lexicon consists essentially of:

1. Discovering new word use/multiword expressions;

2. Mapping the new words to one of the leaf lexical types in the
ERG lexical hierarchy.

The extension is done only for unknown words. Words already in
the lexicon but with missing entries are not considered. The manually
extended lexicon contains 1,575 new entries. Most of them are nouns,
adjectives and adverbs. The distribution of new noun entries over
different lexical types are shown in Table 3.1.

4The corpus contains 1,600 strings of texts on tourism in Shanghai, written in English
and mostly by non-native English speakers. Average sentence length is 18 words.
The corpus is analogous to the Rondane corpus built by Becky Neil for the LOGON
project (Oepen et al., 2004) in Norway.
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Lexical Types Number of Entries

n proper le 831
n intr le 386
n mass le 94

n mass ppcomp le 49
n ppof meas le 6
n proper city le 5

n plur le 4
n ppof le 3

n proper abb le 2

Table 3.1: Distribution of noun entries in a manually extended lexicon

It is clear that the distribution of different new word types is ex-
tremely uneven, with proper names more likely to be missing in open
text processing.

Using the extended lexicon, the ERG is able to parse about 53% of
the strings in the corpus, 4.8 times more than before. This confirms
that lexicon extension is indeed an important aspect towards broad
coverage deep processing.

The case study also shows that manual extension is time consum-
ing. It takes an annotator about five workdays to read through the
corpus and decide the lexical types of the new words with the aid
of some scripts. Double checking of the lexicon requires even more
effort. A large subset of this manually extended lexicon has been
incorporated into a recent official ERG release (since version apr-05).

The remainder of the chapter is dedicated to the technical details
of automated deep lexical acquisition.

3.3 Lexical Error Detection

3.3.1 Grammar Errors and Lexical Errors

Generally speaking, the inadequacy of deep grammar for process-
ing tasks (either parsing or generation) is due to grammar errors.
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Roughly, the errors can be classified into two categories: overgener-
ating errors and undergenerating errors.

As the name suggests, the overgenerating errors will lead to un-
supported (usually inappropriate) analyses, and reduce the accuracy
of the grammar. The undergenerating errors will make the grammar
not be able to cover some of the “correct” analyses, therefore reduce
the coverage and robustness of the grammar.

The errors with the deep lexicon can be accordingly classified into
two categories as well. When a lexical entry is missing from the
lexicon, it will prevent sentences containing the corresponding use of
the word/lexeme from being either parsed or generated, thus leading
to undergeneration.

On the other hand, when an erroneous lexical entry enters the lexi-
con, it will potentially allow erroneous analyses to be generated by the
grammar, which leads to overgeneration. In some cases, the damage
caused by an erroneous lexical entry can be even worse. Introducing
erroneous entries on frequent words or with functional lexical types
may also lead to significant degrading of the processing efficiency. I
will come back to this point later in Chapter 5.

It should be noted that the effect of missing lexical entries on the
grammar coverage is non-linear. Some simple calculations might help
to clarify this point. Suppose the average sentence length is n words.
And the average entry missing rate for each word instance is ple. Then
on average there will be 1 − (1 − ple)n of the sentences which fail to
produce the correct reading because of the missing lexical entry(s).
It is clear that the coverage will change exponentially in relation to
the lexical coverage. A more detailed analysis of the relation be-
tween lexicon quality and grammar performance will be discussed in
Chapter 5.

For the purpose of robust processing, we want to start with a rel-
ative small but accurate core lexicon in order to: i) overcome the
lexical gaps by automatically detecting the words/lexemes which do
not have proper lexical entries in the core lexicon; ii) generate new
lexical entries for these word/lexemes by assigning appropriate atomic
lexical types to them, while avoiding generating harmful erroneous



3.3 Lexical Error Detection 35

entries.

3.3.2 Lexical Gaps

The first step of automated deep lexical acquisition is to discover a
list of words/lexemes which are missing lexical entries. At a first
glance, this might seem to be an easy task. Naively we can use the
words/lexemes from a large raw text set and check their availability
in the lexicon. Whenever a word/lexeme has no corresponding entry
in the lexicon, new entries need to be acquired for it. This easy
technology can be even reinforced by morphological analysis over the
lexemes.

Let us take the DELPH-IN processing architecture as an example.
For the parsing task, the input sequence first goes through a prepro-
cessing module, which is a finite state automaton-based rule system
that tokenizes the input sequence and filters out the noise. Then
these tokens (also called input items) are fed into the lexical parser.
The lexical rules are applied to these input tokens (usually for mor-
phological analysis), and the appropriate lexical entries are activated
according to the result of the lexical analysis (i.e., via the matching
of “stem” attribute). Activated lexical entries, combined with the
information from the input items, instantiate the lexical items on the
parsing chart. And the (non-lexical) grammatical parsing starts af-
ter the lexical parser has created all the lexical items on the parsing
chart.

Whenever there is an input item that does not have any corre-
sponding lexical entry, the lexical parser fails to create any lexical
item for it. This finally leads to a lexical gap which means an inter-
val on the parsing chart upon which there is no lexical item created.
Therefore the existence of lexical gaps is a direct indication of missing
lexical entries for the input token(s) within the gap.
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3.3.3 Error Mining

Detection of lexical gaps is an easy yet efficient way of locating un-
known words. However, there are other cases when the word/lexeme
does have one or more entries in the lexicon, but none of these en-
tries are good/correct for the specific context. The existing entry
might fill in the lexical gaps, but is not able to provide correct lexical
information in the later parsing stages.

Such a lexical error is much harder to detect, even for human lex-
icographers. It is often the case, that without enough data showing
variation in the use of the word, the human lexicographer tends to
lose some less frequent usage of the words. What a human lexicogra-
pher usually does in order to avoid such a mistake is to consult with
large corpora and see whether there are uncovered usages of the given
word.

For the automated lexical acquisition, we apply a similar idea of
discovering lexical errors with large corpora. The technique we use
is called “error mining” (van Noord, 2004). It has been introduced
and successfully used in the development of the Dutch Alpino deep
parsing system (Bouma et al., 2001).

The basic idea behind “error mining” is to test the grammar per-
formance over large corpora. The performance change over different
input combinations is used as an indication of “error”.

More specifically, the “error mining” techniques proposed by van
Noord (2004) define the concept of parsability as the following:

R(wi . . . wj) =
C(wi . . . wj, OK)

C(wi . . . wj)
(3.3)

where C(wi . . . wj) is the number of sentences in which the n-gram
wi . . . wj occurs, and C(wi . . . wj, OK) is the number of sentences with
a successful parse which contains the n-gram. Since the length of the
n-gram can be arbitrary, a longer sequence wh . . . wi . . . wj . . . wk is
only considered when its parsability is lower than the parsability of
each of its sub-sequences:

R(wh . . . wi . . . wj . . . wk) < R(wi . . . wj) (3.4)
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.

If the parsability of a given n-gram is significantly lower than oth-
ers, it means that the grammar is more likely to fail in analyzing
the sentences containing the n-gram. It is a clear indication that
the grammar is having difficulty handling the n-gram. And probably
there are grammar errors related to the n-gram.

When applied to the development of the parsing systems, this tech-
nique is very general and efficient in finding different types of gram-
mar errors. As reported by van Noord (2004), it helped to efficiently
discover various errors for the Alpino system, including errors in tok-
enization, mistakes in lexicon, incomplete lexical descriptions, frozen
expressions with idiosyncratic syntax, incomplete grammar descrip-
tion, etc. However, van Noord (2004) did not provide more insights
on any systematic ways of analyzing low parsability n-grams. The n-
grams were investigated and classified manually. Therefore the entire
process of error discovery is not fully automatic.

In order to investigate the applicability of error mining in missing
lexical entry detection, experiments on the English Resource Gram-
mar with the British National Corpus were carried out. With the
same environment setup as the coverage test in the previous chap-
ter, we calculated the parsability for the n-grams (with a minimum
frequency of 5) in the data set from BNC with arbitrary n. All the
n-grams with parsability lower than 0.1 were recorded for further in-
vestigation. For the English Resource Grammar version jan-06, 3826
low parsability n-grams were recorded. Among them, 34% are uni-
grams, 48% are bi-grams, and the rest are trigrams or above (see
Table 3.2).

# %

Unigram 1287 34%
Bigram 1852 48%

Trigram+ 687 18%

Table 3.2: Distribution of low parsability n-grams (R < 0.1) discov-
ered by error mining with ERG (jan-06) and BNC.
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After consulting with the grammar developers, we found that most
of the uni-grams are directly related to their missing lexical entries.
Therefore, with some simple filtering heuristics, we are able to get a
candidate list of words that need lexical extension, together with the
contexts in which they currently failed to parse.

It should be noted here that there are cases where a missing lexical
entry is related to n-grams with n > 1. This is typical for the missing
entries for multiword expressions. We will leave the detailed discus-
sion of how to detect and acquire MWE entries for the next chapter.

3.4 Acquiring Lexical Entries

With a list of candidate words (and their context) for lexical exten-
sion, the next step of deep lexical acquisition is to generate appropri-
ate entries for the candidate words.

3.4.1 Related Work

In recent years, some approaches have been developed to automat-
ically acquire new lexical entries in linguistic grammars. Such ap-
proaches can be broadly categorized as either symbolic or statistical.

Symbolic Approaches

The symbolic approach assumes that the words which are missing
lexical entries are known beforehand. As proposed by Erbach (1990),
there are three different stages of processing:

1. The sentence with the unknown word is parsed. There are no
special requirements for the parsing algorithm, but the lexical
look-up procedure needs to be modified.

2. Based on the syntactic structure of the parse, information about
the unknown word can be extracted.
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3. The information obtained in step 2 may be too fully specified
for a lexical entry. Therefore a filter is applied to it to create a
new lexical entry.

In constraint-based parsing, the first step is achieved by using so-
called underspecified lexical entries, which provide fewer (or no) con-
straints. Such underspecified lexical entries act like a place-holder,
and allow the full parse to be constructed. When the parse is cre-
ated, various lexical information can be gathered from the constraints
applied to it by the grammar rules.

To give an example of how this might work, consider the sentence
“kangaroo jumps” with “kangaroo” assumed to be unknown to the
grammar lexicon. An underspecified lexical entry is used for “kanga-
roo”, which only contains the “stem” information:

[
stem

〈
”kangaroo”

〉]
.

The underspecified entry will unify with the grammar rule, and lead
to a successful analysis of the sentence as shown in Figure 3.3, where
the sub-feature-structure 1 is shared between the lexical item of “kan-
garoo” and the subject of the sentence. According to the agreement
constraints, the person and number features of the subject are iden-
tical to the verb via the structure sharing 2 and 3 . Therefore, the
lexical information of third person singular is propagated backward
into the lexical entry for “kangaroo”.

The main difficulty with such an approach concerns the third step.
As Erbach (1990) pointed out, the resulting lexical entry might be
too specific based on the single observation of the unknown word. For
example, the specific case information of the nouns is not appropriate
for the lexical entries as it will disable the use of the lexical entry for
the same noun with different cases. Therefore, extra generalization
on the resulting entries is required. What Erbach (1990) did not point
out is that the approach may also overgeneralize, if the given context
does not provide enough lexical information for the unknown word,
i.e., the selectional restrictions of verbs and adjectives, predicative
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stem
〈
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〉

head

verb
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person 2 3rd

num 3 sg

]

subj 1
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non-head-dtr 1
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〈
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Figure 3.3: The attribute-value matrix of the parsed sentence with
the underspecified lexical entry for the unknown word
“kangaroo”

vs. attributive usage of adjectives, case and form of PP arguments,
valence class of verbs, etc.

Based on the same idea, Barg and Walther (1998) took an incre-
mental approach to handling unknown words in HPSG. They assigned
revisable information to one of two classes, namely specializable or
generalizable. This revisable information would be used to determine
which lexical information should be gathered or generalized for the
lexical entry. However, Barg and Walther (1998) only provided a
working example of the idea. No empirical results were shown. Also,
extra modification to the grammar would be required to provide the
revisable information.

Fouvry (2003a) followed a similar idea, with more implementa-
tion concerns about the technical details. A small scale experimenta-
tion was carried out with the LKB and ERG. Although the mechanism
worked promisingly on short sentences, the underspecified lexical en-
tries with fewer constraints allow more grammar rules to be applied
while parsing, which makes them computationally intractable. It gets
even more complicated when two unknown words occur next to each
other, potentially allowing almost any constituent to be constructed.
Some more experiments have also been carried out with some modi-
fication to the grammar rules to reduce the ambiguity. No concrete
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results have been presented relating to the improvement in grammar
performance, either for parsing or for generation.

Statistical Approaches

One of the main reasons that the symbolic approach failed to materi-
alize in applicable techniques for lexical acquisition is that the lexical
information was drawn from very little data. This makes the method
vulnerable to errors introduced by not seeing representative contexts.
The ultimate purpose of lexical acquisition is to enhance the cover-
age/robustness of deep processing. Its applicability is doubtful if the
method lacks robustness itself.

The data-driven approach of handling unknown words has been
widely used in part-of-speech (PoS) tagging tasks (see Brill, 1994;
Ratnaparkhi, 1996; Brants, 2000). Brill’s tagger begins by tagging
unknown words as proper nouns if capitalized, common nouns if not.
Then the tagger learns various transformational rules by training on
a tagged corpus. It applies these rules to unknown words to tag
them with the appropriate part-of-speech information. Ratnaparkhi
(1996)’s MXPOST encodes the affixes of the unknown words as fea-
tures and uses them in the maximum entropy scoring model. The
TnT tagger uses the conditional probabilities of the tags given a suffix
string of the word in the smoothing formula. Theoretically, the task
of part-of-speech tagging is very similar to lexical acquisition in our
functional view of the lexicon. Unknown words are assigned to dif-
ferent categories. The main difference is that the number of possible
word categories in PoS tagging is much smaller as compared to the
atomic lexical types in deep grammars. Also the PoS tagger typically
assigns every word in the input sequence a tag, while in deep lexical
acquisition only the missing words are used for acquiring new entries.

Thede and Harper (1997) reported an empirical approach towards
unknown lexical analysis using morphological and syntactic informa-
tion. The experiment result on the TIMIT corpus showed that the
parser performance was greatly enhanced. However, the work was
done for a shallow parser with very limited number of word classes.
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The applicability to lexicalist deep grammars with lots of lexical types
is unknown.

Baldwin (2005a) took a data-driven approach to automated lexical
acquisition for deep grammars. Focused on generalizing the method
of deriving deep lexical acquisition models on various secondary lan-
guage resources, Baldwin (2005a) used a large set of binary classifiers
to predict whether a given unknown word is of a particular lexical
type. This data-driven approach is grammar independent and can be
scaled up for large grammars. Evaluation was via type precision, type
recall, type F-measure, and token accuracy. And the results showed
that when different evaluation metrics are used, different conclusions
can be drawn from the data.

van de Cruys (2006) took a similar approach over the Dutch Alpino

grammar (Bouma et al., 2001). Specifically, he proposed a method
for lexical acquisition as an extension to automatic parser error de-
tection, based on large amounts of raw text (see van Noord, 2004).
A maximum entropy classifier is trained to select the correct lexi-
cal categories. The method was evaluated using type precision, type
recall and type F-measure. The results show that both morphologi-
cal information and the parse selection models help to improve the
performance of the classifier. However, these numbers fail to give
us any insight into the impact of lexical acquisition on the parser
performance.

3.4.2 Lexical Acquisition as a Classification Task

In this dissertation, I will also follow the statistical approach and
draw on large amounts of linguistically annotated data to help the
acquisition of lexical knowledge. However, ideas from symbolic ap-
proaches, i.e., underspecification in lexical entries as mentioned in the
previous section, are also borrowed.

Specifically, the statistical model we want to build should be able
to assign atomic lexical types to the given candidate words. The
first design issue we are concerned with here is how many new lexical
entries should be created for a given candidate word. The model
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should be able to allow multiple entries for the same word as a word
can potentially have multiple readings or uses.

Baldwin (2005a) used a set of binary classifiers each one corre-
sponding to a specific atomic lexical type. These classifiers decide in-
dependently for each candidate word whether it can combine with the
corresponding lexical type to make a new lexical entry or not. This
design does allow acquisition of multiple entries per word. A potential
problem is that the classifiers are independent of each other, there-
fore for a given candidate word, either none or many lexical entries
will be generated. This is an interesting feature, as it might allow us
to further investigate the completeness of the atomic lexical types.
However, this is not desirable when the robustness of the parser is
concerned. Suppose an online robust processing scenario. When the
grammar encounters and detects an unknown (or misspelled) word in
the input sequence, the lexical type prediction model will be invoked
to create new lexical entries for the word. For this specific context,
not all the readings and uses are either predictable or useful. And
there should be exactly one entry which will allow the grammar to
generate the correct/intended reading (under the assumption that
there is no intended lexical ambiguity). In this dissertation, the de-
sign of the statistical lexical acquisition model aims at maximizing
the robustness of the deep processing.

Although deep processing is capable of generating thousands of
valid readings per sentence, normally only one of them is really meant
by the speaker. The “true” reading corresponds to one lexical entry
for the unknown word given the context. Hence our statistical model
generates one new lexical entry for each instance of the candidate
words. This entry will be temporarily active during the processing of
the sentence, for the specific input token(s). If necessary, these lexical
entries can be merged later and added permanently to the lexicon.
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3.4.3 Predictor Based on General Purpose PoS

Taggers

As mentioned earlier, the task of lexical type prediction is essentially
similar to the task of part-of-speech tagging. To start with a simple
model, we will build a prediction model out of a general purpose PoS

tagger.

A typical PoS tagger assigns a (unique or ambiguous) part-of-speech
tag to each token in the input. We use the lexical types as the
tagset and train the tagger on the Deep Linguistic Resource (DLR).
Whenever there are unknown words in the input string, we tag the
sequence with the tagger and use the output lexical type to create
new lexical entries for unknown words.

State-of-the-art PoS taggers can normally achieve precision above
95%, given a large training corpus. Performance of different tagging
models differs slightly. We used a HMM -based tagger (TnT; Brants
(2000)) and a ME -based tagger (MXPOST; Ratnaparkhi (1996)) in our
experiments.

TnT is a HMM -based trigram tagger. The tags t1, t2, . . . , tT for a
given sequence of words w1, w2, . . . , wT are generated by calculating:

argmax
t1...tT

[
T∏

i=1

P (ti|ti−1, ti−2)P (wi|ti)
]
P (tT+1|tT ) (3.5)

where t−1, t0 and tT+1 are beginning-of-sequence and ending-of-sequence
markers. The transition and output probabilities are estimated from
a tagged corpus. Maximum likelihood probabilities P̂ from relative
frequencies are calculated as:

Unigrams : P̂ (t3) = f(t3)
N

Bigrams : P̂ (t3|t2) = f(t2,t3)
f(t2)

Trigrams : P̂ (t3|t1, t2) = f(t1,t2,t3)
f(t1,t2)

Lexical : P̂ (w3|t3) = f(w3,t3)
f(t3)

(3.6)

TnT also includes a linear interpolation smoothing paradigm and
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a suffix analysis based unknown words handling. For inflected lan-
guages like English and German, it works accurately and efficiently.
MXPOST is a Maximum Entropy model based PoS tagger. The prob-

ability model p is defined over the context and tags H× T as:

p(h, t) = πµ

k∏
j=1

α
fj(h,t)
j (3.7)

where π is a normalization constant, µ, α1, . . . , αk are model param-
eters, and f1, f2, . . . , fk are features such that fj(h, t) ∈ 0, 1.

Given a sequence of words w1, w2, . . . , wn and tags t1, t2, . . . , tn, the
likelihood of the model p is:

L(p) =
n∏
i=1

p(hi, ti) =
n∏
i=1

πµ
k∏
j=1

α
fj(hi,ti)
j (3.8)

It can be shown that when the observed feature expectation Ẽfj
equals the model’s feature expectation Efj,

Efj = Ẽfj ≈
n∑

i=1

p̃(hi)p(ti|hi)fj(hi, ti), 1 ≤ j ≤ k (3.9)

it uniquely maximizes the entropy

H(p) = −
∑

h∈H,t∈T
p(h, t) log p(h, t) (3.10)

and uniquely maximizes the likelihood L(p). The model parameters
are obtained with Generalized Iterative Scaling (Darroch and Ratcliff,
1972).

Then the best tag sequence is found by a beam search using the
conditional tag probability

p(t|h) =
p(h, t)∑
t′∈T p(h, t′)

(3.11)

and assuming tag sequence probability as

P (t1 . . . tn|w1 . . . wn) =
n∏
i=1

p(ti|hi) (3.12)
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With these tagging models, we can train the taggers that assign
leaf lexical types to all the words. But only the types assigned to
unknown words are used to generate new entries.

To evaluate how the size of a tagset might influence the prediction
precision, a comparison is carried out on the ERG with a different
tagset (see Section 3.4.7).

3.4.4 Maximum Entropy-Based Classification
Model

A potential problem with the general purpose PoS tagger based model
is that the tagger tags every word in the input sequence and tries to
maximize the overall probability. For the purpose of lexical type
prediction, this is neither necessary nor optimal as we only want the
prediction output for specific candidate words.

Another problem is that the general purpose PoS taggers are usu-
ally designed to handle a relatively small number of PoS tags. In
our prediction model, the set of possible atomic lexical types is much
larger.

Therefore, we further turn to a more general statistical model.
Formally, the model takes as input the context of the candidate word
c (including the candidate word w itself), and outputs an atomic
lexical type t ∈ T . The conditional log-linear probability model is
defined as:

pΛ(t|c) =
exp

∑m
j=1 λjfj(t, c)∑

t′∈T exp
∑m

j=1 λjfj(t
′, c)

(3.13)

where f1, . . . , fm are called “features”, and Λ = λ1, . . . , λm are the
parameters. For a given context c, pΛ(t|c) is a proper probability
model for all the possible atomic lexical types t ∈ T .

Given a set of training data as pairs of context and type (c1, t1),
. . . , (cn, tn), the parameters Λ = λ1, . . . , λm are chosen to maximize
the (pseudo-)log-likelihood of the training data (according to Johnson
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et al. (1999) and Malouf (2002)):

L(Λ) =
n∑

i=1

p̃(ci, ti) log(pΛ(ti|ci)) (3.14)

where p̃(ci, ti) denotes the observed probability of (ci, ti) in the train-
ing data.

For each context c, we calculate the conditional probability for each
possible atomic lexical type, and the type with the highest conditional
probability will be selected. Henceforth, I will refer to this maximum
entropy based model as the lexical type prediction model, or simply
as the lexical type predictor.

3.4.5 Feature Selection

A feature in a maximum entropy model refers to a binary function.
In NLP it typically expresses a co-occurrence relation between some-
thing in linguistic context and a particular prediction. For our lexical
type prediction model, the features take the form of fi(t, c) where t
is a potential prediction type and c is the context for the prediction
(i.e., the word itself, its adjacent words, modifier/modified entity,
. . . ). For example, the following feature holds value 1 for all the
noun predictions when the candidate word that has suffix “–tion”:

fj(t, c) =

{
1 t = noun and word(c) = “ ∗ tion′′
0 otherwise

(3.15)

It should be noted that the number of features in a maximum en-
tropy model is usually very large (typically hundreds of thousands).
These features are created with feature templates. Good feature tem-
plates allow the creation of the most salient features and improve the
model performance significantly.

In this dissertation, the selection of feature templates are based
on the experiment results with the English Resource Grammar. Al-
though the framework of the lexical type prediction is generally ap-
plicable to all languages, the detailed designs of feature templates are
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language specific. Therefore the discussion in the rest of this section
should be considered as a specific application of the general model
we have proposed so far.

Also, the feature selection is mainly concerned with the extractable
features either from the input string, or the grammar related resource.
Therefore the resulting features have minimum dependency on other
language resources which are not always available for different lan-
guages (see Section 3.4.8 for more discussion).

Morphological Features

Morphological information is very helpful for determining the word
category, even for lightly inflected languages like English. The study
of part-of-speech tagging has shown that for English, the simple mor-
phology handling with affix strings is very effective. Without going
into a detailed morphological analysis for specific languages, I will
also take the same approach. Furthermore, other morphological in-
formation (e.g., capitalization) is also taken into account.

Surface and Syntactic Context Features

The morphological features only concern the candidate word itself,
not the context in which the word is used5. In order to take this into
account, we need to gather extra information from the context. This
includes the adjacent words, their corresponding atomic lexical types
(assigned by the grammar, or NULL if it is not in the lexicon).

Preferably we should also include the features that can provide
a better description of the syntactic context information, e.g., the
head word, dependent relations, etc. However, since the sentence
cannot be parsed due to the absence of the correct lexical entry, such
information is not directly accessible. Since we intend to design the
model as independent of extra language resources as possible, two
simplified syntactic feature templates are used. When the sentence

5Note that the context here has a more strict sense to the definition of c in Section 3.4.4.
c includes the candidate word, therefore embraces the morphological features, as well.
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fails to parse, we retain the predominant left/right adjacent edges of
the chart and use the corresponding grammar rule name as features.

For completeness, the feature templates discussed so far are listed
in Table 3.3.

Morphological Features
PREFIXi 1 ≤ i ≤ 4 The i-character prefix of the word.
SUFFIXi 1 ≤ i ≤ 4 The i-character suffix of the word.
CAPTAL true if the word is capitalized, false oth-

erwise.
DIGIT true if the word contains digit (0-9), false

otherwise.
HYPHEN true if the word contains hyphen (-), false

otherwise.

Syntactic Features
LWORDi i ∈ {1, 2} The i-th word to the left of current word.
RWORDi i ∈ {1, 2} The i-th word to the right of current

word.
LLEXTYPEi i ∈ {1, 2} The lexical type of the i-th word to the

left of current word.
RLEXTYPEi i ∈ {1, 2} The lexical type of the i-th word to the

right of current word.
LEDGE The predominant left adjacent edge.
REDGE The predominant right adjacent edge.

Table 3.3: Features groups

3.4.6 Incorporating Parse Disambiguation Results

As mentioned before, deep lexical types normally encode complicated
constraints that only make sense when they work together with the
grammar rules, and some subtle differences between lexical types do
not show statistical significance in a corpus of limited size. Hence the
feedback from later stages of deep processing is very important for
predicting the lexical types for unknown words.
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By incorporating the adjacent parsing edges as features, we some-
how break the pipeline model of the processing. However, these fea-
tures might help only when the candidate word is not the head of
the phrase. Otherwise, the full parse disintegrates into small frag-
ments, and the partial parsing results will not be able to provide
discriminative information for the prediction model. An alternative
way of breaking the pipeline model is to help the parser to generate
full parses in the first place, and let the parsing result show which
lexical entry is good.

In order to help the parser generate a full parse of the sentence,
we feed the newly generated lexical entries directly into the parser.
Instead of generating only one entry for each occurrence of the un-
known word, we pass on top n most likely lexical entries. With these
new entries, the sentence will receive one or more parses (assuming
the sentence is grammatical and covered by the grammar). From
the parsing results, a best parse is selected with the disambiguation
model proposed by Toutanova et al. (2002), and the corresponding
lexical entry is taken as the final result of lexical extension.

Within this processing model, the incorrect types will be ruled
out if they are not compatible with the syntactic context. Also the
infrequent readings of the unknown word will be dispreferred by the
disambiguation model.

3.4.7 Experiments

To evaluate the effectiveness of our models, several experiments have
been carried out for the English Resource Grammar (ERG) in combina-
tion with the Redwoods treebank (Oepen et al., 2002). We have used
version jun-04 of the grammar with the 5th growths of the Redwoods.6

The jun-04 version of the ERG defines in total 741 leaf lexical types,
of which 709 are actually used (have at least one lexical entry) in its

6Several parts of the experiment have been repeated on later releases of the grammar
and the treebank. The new results conform to the conclusion we derived from this
version of the grammar and treebank. For completeness and to avoid confusion, only
the results obtained from jun-04 version of the ERG and the 5th growth of the Redwoods
are presented in this chapter without further notation.
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lexicon with 12,347 entries. A large number of these lexical types are
closed categories whose lexical entries should already be complete in
the grammar. It is obvious that missing lexical entries, in most cases,
should be in open categories. The major open categories are verbs,
nouns, adjectives and adverbs. In the ERG, the number of leaf lexical
types under these general categories are listed in Table 3.4.

General Cat. Leaf Lex Types Num.

verb 261
noun 177

adjective 78
adverb 53

Table 3.4: Number of leaf lexical types under major open categories
in ERG

Even for the open categories, the distribution of existing lexical
entries over different lexical types varies significantly. Table 3.5 lists
the top 10 lexical types with the maximum number of entries in the
ERG lexicon.

Leaf Lexical Type Num. of Entries

n intr le 1742
n proper le 1463

adj intrans le 1386
v np trans le 732

n ppof le 728
adv int vp le 390

v np* trans le 342
n mass count le 292
v particle np le 242

n mass le 226

Table 3.5: Number of entries for top-10 leaf lexical types in ERG

The top 10 verbal types account for about 75% of the verbal entries.
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For noun the figure is about 95% and 90% for adjectives. Presumably,
this means that automated lexical extension for nouns will be easier.
This is plausible because verbal lexical entries normally require more
detailed subcategorization information.

For the evaluation, we used all the sentences with at least one pre-
ferred reading (reading generated by the grammar and proved to be
correct by the human annotator) from the Redwoods Treebank. This
gave us about 16.5K sentences and 122K tokens/words. All the ex-
periments were done with 10-fold cross validation: the data were split
into 10 partitions; each time 9 partitions were used as training data,
and the remaining 1 for testing. For each fold, all the lexical entries
which did not occur in the training set were assumed to be “missing”
from the lexicon. The predictors predicted the atomic lexical type for
each instance of a “missing” lexical entry (called testing instances).
The corresponding treebanked entries were used as the gold standard.
The token accuracy of the predictor on the test set is defined as the
proportion of the correctly predicted atomic lexical types out of the
total number of the testing instances.

For comparison, we have built a näıve baseline system that always
assigns a majority type to each unknown according to the PoS tag.
More specifically, we tagged the input sentence with a small Penn
Treebank-like PoS tag-set. Then the PoS tag was mapped to a most
popular lexical type for that PoS.7 Table 3.6 lists part of the map-
pings.

PoS Majority Lexical Type

noun n intr le
verb v np trans le
adj. adj intrans le
adv. adv int vp le

Table 3.6: Part of the PoS tags to lexical types mapping for ERG

Again for comparison, we have built another two simple predic-
tion models with two popular general-purpose PoS taggers, TnT and

7This is similar to the built-in unknown word handling mechanism of the PET system.
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MXPOST. TnT is a HMM-based trigram tagger while MXPOST is based
on a maximum entropy model. We have trained the tagging models
by using all the atomic lexical types as the tagset. The taggers tag
the whole sentence, but only the output tags for the testing instances
are taken in order to generate the lexical entries.

The result shows that the performance of the two taggers is very
close. To evaluate how the size of a tagset might influence the predic-
tion precision, another smaller tagset is used for comparison. Accord-
ing to the ERG lexicon, 350 leaf lexical types have no more than one
entry, and 611 types have fewer than 10 entries. The top 30 types
cover more than 75% of the entries. So in the smaller tagset, we
use the top 20 most frequent open atomic lexical types and another
30 general PoS tags. All infrequent lexical types will be replaced by
general PoS tags. For example, “adj wh le” and “adj poss le” will
be replaced by “adj”; “v to trans le” and “v pred intrans le” will be
replaced by “v”.

The tagger is trained with the smaller tagset likewise, but the top n
possible tags are generated for each unknown word. The first atomic
lexical type (non-general PoS) on the output list is chosen as the
predictor’s output. The experiment results will be reported below.

Figure 3.4 depicts the learning curves of the taggers with the differ-
ent tagsets. The tagger with the smaller tagset slightly outperforms
the tagger with the large tagset (approximately 1%). However, its
learning curve is already getting flat. The tagger with the larger
tagset is likely to match up if more training data is available.

The maximum entropy based model is tested both with and with-
out using adjacent parsing edges as features. To incorporate the
disambiguation results, our predictor generates 3 entries for each un-
known word and stores them as temporary entries into the LexDB.
The parse disambiguation model we used was proposed by Toutanova
et al. (2002). It is essentially a maximum entropy based ranking
model. Given an input sentence s with possible analyses t1 . . . tk, the
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Figure 3.4: Learning curves of TnT with different tagsets

conditional probability for analysis ti is given by:

P (ti|s) =
exp

∑m
j=1 fj(ti)λj∑k

i′=1 exp
∑m

j=1 fj(ti′)λj
(3.16)

where f1 . . . fm are the features and λ1 . . . λm are the corresponding
parameters. When ranking parses,

∑m
j=1 fj(ti)λj is the indicator of

“goodness”. Drawing on the discriminative nature of the ME models,
various feature types can be incorporated into the model.

The token accuracies of the different prediction models are shown
in Table 3.7.

The baseline model achieves token accuracy of around 30%. This
means that the task of unknown word type prediction for deep gram-
mars is non-trivial. The general-purpose PoS tagger-based models
perform quite well, outperforming the baseline by 10%. As a confir-
mation to Elworthy (1995)’s claim, a huge tagset does not imply that
tagging will be very difficult. Our ME-based model significantly out-
performs the tagger-based models by another 10%. This is a strong
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Model Token Accuracy

Baseline 30.7%
TnT 40.4%
MXPOST 40.2%
ME(-LREDGE) 50.0%
ME(+LREDGE) 50.5%
ME(-LREDGE)+ disambi. result 61.3%

Table 3.7: Token accuracy of lexical type prediction models (+/-
LREDGE means with or without adjacent parsing edge
features)

indication of our model’s advantages.

By incorporating simple syntactic information into the ME-based
model, we get extra accuracy gain of less than 1%, which is not
salient. The computational cost of obtaining such features is high, as
well.

By incorporating the disambiguation results, the accuracy of the
model is boosted by another 10%. The computational overhead is
proportional to the number of candidate entries added for each un-
known word. However, in most cases, introducing lexical entries with
incorrect types will end up into parsing failure and can be efficiently
detected by quick checking. In such cases the slowdown is acceptable.

In general, we have achieved up to 60% precision of unknown word
type prediction for the ERG in these experiments. Given the complex-
ity of the grammar and the huge number of possible lexical types,
these results are satisfying. Also, in the real cases of grammar adapta-
tion for new domains, a large portion of unknowns are proper names.
This means that the precision might get even higher in real applica-
tions. A test with a small text collection with real unknown words
8 shows that the token accuracy can easily go above 80% with the

8We used a text set named rondane for training and hike for testing. Both of them
are made available by the LOGON project. rondane contains 1424 sentences in formal
written English about tourism in the Norwegian mountain area, with an average
sentence length of 16 words; hike contains 320 sentences about outdoor hiking in
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basic ME model without adjacent edge features.

It should also be mentioned that some of these experiments were
also carried out for the Dutch Alpino Grammar (Bouma et al., 2001),
and similar results were obtained. These results have been later
reconfirmed independently by van de Cruys (2006), which roughly
reimplemented a similar approach, with some fine tuning on feature
selection. This shows that our method may be grammar and platform
independent.

3.4.8 In Vitro vs. In Vivo

Baldwin (2005b) introduced the concept of in vitro and in vivo ap-
proaches to deep lexical acquisition. In vitro methods use a secondary
lexical resource to model lexical similarity, whereas in vivo methods
use some component of the target deep language resource for which
there is an attempt to learn new lexical items to model lexical simi-
larity.

According to the definition, our approach is a strict in vivo ap-
proach. We try to avoid using any feature in our ME-based model
that cannot be derived without a secondary language resource. The
deep grammar and the corresponding treebank are the only resources
required for training/applying the model. And these treebanks are so-
called dynamic treebanks, meaning that they can be (semi-)automatically
updated when the grammar is updated, making them essentially a
by-product of the grammar development.

The in vivo approach has advantages over in vitro models in that
there is a minimum dependency on the availability of other language
resources. Even if the secondary language resources are available, it
is unclear whether they can provide the necessary and compatible
lexical information for the deep language resource.

The potential advantage of the in vitro approach is that for ma-
jor languages, there are usually more secondary language resources.
Although the resources are not built specifically for deep processing,

Norway with an average sentence length of 14.3 words. Both contain a lot of unknowns
like location names, transliterations, etc.
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based on the same language, they can still provide lexical informa-
tion, even though indirectly.

For purposes of comparison, another experiment was done to build
a lexical acquisition model using the in vitro approach. More specif-
ically, the new model extended the deep lexicon of the ERG using
WordNet (version 2.0) as secondary language resource. Statistics
shows that above 90% of the synsets in WordNet share at least one
lexical type among all included words. By assuming that seman-
tic similarity also entails syntactic similarity (Levin, 1993), for each
candidate word/lexeme we first

1. use WordNet to construct the “semantic neighbors” (all syn-
onyms, direct hyponyms, direct hypernyms) for the given word/lexeme;

2. take a majority vote across the atomic lexical types of the se-
mantic neighbors.

This approach bootstrapped the deep lexicon from a different lex-
icon resource. This is essentially a similar model to that proposed
by Baldwin (2005a). However, noticing the difference in the size
of the deep lexicons (12,347 entries) and WordNet (152,059 unique
strings/words and 115,424 synsets), this model performed poorly in
reality because of insufficient votes from the “semantic neighbors”.
As an extension to this model, we built another improved model by:

1. extending the “semantic neighbors” (by including indirect hy-
ponyms and hypernyms with distance of two); there the votes
were weighted by their semantic distance to the candidate words
(the smaller the distance, the larger the weight);

2. combining the majority type base-line system described earlier
as fallback if the vote was less than a threshold.

The performance of the original model (Baldwin05 ) and the weighted
voting model with threshold controlled fall-back (WVT ) were eval-
uated with the type F-score of the resulting lexicon relating to the
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Figure 3.5: Performance of different models on WordNet-based deep
lexicon bootstrapping

gold-standard lexicon. The results are shown in Figure 3.5, together
with the majority type baseline (MT ) described earlier.

It is clear that the Baldwin05 model performs significantly worse
than the baseline model MT on all the word categories. This shows
that the different lexicon resources cannot be easily converted. In
this specific case, WordNet is developed as a semantic lexical ontol-
ogy, while the deep grammar lexicon is more focused on syntactic
behaviors of different word categories.

With the weighted voting model of the threshold controlled fall-
back model WVT, the overall performance goes slightly above the
majority type baseline. Admitted that with the combination of po-
tentially large amounts of secondary language resources, the in vitro
approach towards deep lexical acquisition can be promising, too, us-
ing extra language resources to enhance the robustness of deep pro-
cessing is beyond the interest of this dissertation.
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3.5 Summary
In this chapter, we discussed in detail approaches of automatically
improving the lexical coverage of deep grammars. A relational view
of the deep lexicon has been presented. Based on that, we have de-
fined the atomic lexical types. It has been shown that manual lexical
extension is neither efficient nor sufficient for the purpose of robust
deep processing. Therefore we propose a two step deep lexical ac-
quisition model. The first step detects the candidate words which
are missing lexical entries, either via lexical gaps, or by error min-
ing. In the second step, we propose a statistical approach of deep
lexical acquisition as a classification task. Several models are pro-
posed and evaluated with the English Resource Grammar and the
Redwoods Treebank. In combination with parser output and disam-
biguation results, the token accuracy of the model goes above 60%.
Furthermore, the relation of in vivo and in vitro approaches are also
discussed.

The proposed methods improve the coverage of the grammar, and
may also be used to enhance the robustness of deep processing in pars-
ing tasks with noisy inputs. As mentioned in the previous chapter,
lexicon coverage accounts for about 41% of the failed-to-parse cases in
the BNC coverage test. Some of the research outcomes have been used
in improving the English Resource Grammar and the method is to be
generally applied to other grammars, platforms, or even formalisms.

In the next chapter, we will continue the discussion of improv-
ing lexical coverage and robustness for multiword expressions. The
relation between the lexicon and the grammar performance will be
discussed in Chapter 5.
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4 Acquiring Multiword
Expressions

Our expression and our words never coincide, which is
why the animals don’t understand us.

— Malcolm de Chazal (1902 - 1981)

In the previous chapter, we presented techniques to automatically
acquire new lexical entries for the purpose of robust deep processing.
Two main steps have been involved: i) the detection of words with
missing lexical entries; ii) the classification and assignment of lexical
types. So far we have assumed that each missing lexical entry corre-
sponds to a single word, so that if the mapping from the lexeme to the
lexical type is determined, the word will be handled correctly by the
grammar. However, further complications do exist in real language
usage. It has been observed in many languages that a certain group
of words can be used together (with a certain degree of variation)
in idiosyncratic ways. Despite the different nature of such phenom-
ena, they are usually referred to as Multiword Expressions (MWEs), in
general.

In the context of robust deep processing, multiword expressions
also present a serious challenge. It has been estimated that the num-
ber of MWEs in a speaker’s lexicon is of the same order of magnitude
as the number of single words (Jackendoff, 1997). Also, the lack of
method to systematically handle different MWEs makes them “a pain
in the neck” for NLP (Sag et al., 2002).

In this chapter, we will show that the techniques developed in
Chapter 3 can be adapted to handle MWEs. First, we will have a
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brief overview of multiword expressions in Section 4.1. Then the tech-
niques to detect the boundaries of MWEs are introduced in Section 4.2.
The MWE candidates are further validated with statistical measures
described in Section 4.3, followed by two different approaches of ac-
quiring new lexical entries for MWEs in Section 4.4. Further discussion
is given in Section 4.5.

4.1 Multiword Expressions
The term Multiword Expressions has been used to describe expres-
sions for which the syntactic or semantic properties of the whole ex-
pression cannot be derived from its parts (Sag et al., 2002), including
a large number of related but distinct phenomena, such as phrasal
verbs (e.g., come along), nominal compounds (e.g., frying pan), in-
stitutionalized phrases (e.g., bread and butter), and many others.

Jackendoff (1997) estimates the number of MWEs in a speaker’s lexi-
con to be comparable to the number of single words. This is reflected
in several existing grammars and lexical resources, where almost half
of the entries are multiword expressions. However, due to their het-
erogeneous characteristics, MWEs present a tough challenge for both
linguistic and computational work (Sag et al., 2002). For instance,
some MWEs are fixed, and do not present internal variation, such as
ad hoc, while others allow different degrees of internal variability and
modification, such as spill the beans (spill several/musical/mountains
of beans).

In terms of semantics, some MWEs are more opaque in their meaning
(e.g., to kick the bucket as to die), while others have more transparent
meanings that can be inferred from the words in the MWE (e.g., eat
up, where the particle up adds a completive sense to eat).

Sag et al. (2002) discuss two main approaches commonly employed
in NLP for treating MWEs: the words-with-spaces approach models an
MWE as a single lexical entry, where the words of the MWE are sepa-
rated by spaces. It can adequately capture fixed MWEs like by and
large. A compositional approach treats MWEs by general and compo-
sitional methods of linguistic analysis, being able to capture more
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syntactically flexible MWEs, like spill the beans, which cannot be sat-
isfactorily captured by a words-with-spaces approach, since it would
require lexical entries to be added for all the possible variations of
the MWE (e.g., spill/spills/spilling some/these/. . . beans). Therefore,
to provide a unified account for the detection of these distinct but
related phenomena is a real challenge for NLP systems.

4.2 Detecting MWE Candidates
Similar to the lexical acquisition for single words, the multiword ex-
pressions must be first detected before they can be properly handled
in deep grammar. However discovering the boundary of MWEs is diffi-
cult due to their heterogeneous characteristics. For example, in the
verb-particle constructions (e.g., eat . . . up), the object occurs in be-
tween the verb and the particle, but it is not part of the MWE and
allows a high level of variation.

Instead of discovering the exact MWEs in one step, we take an ap-
proximation step at the beginning in order to locate a consecutive
sequence of words (also called an n-gram) which is part of the multi-
word expression that cannot be handled by the grammar.

Recall that in Section 3.3.3 we proposed to use an error mining
technique to detect missing lexical entries. The intuition is that the
parsing failure gives a good indication of the grammar errors. In
Chapter 3, we have shown that the low parsability unigrams have
strong correlation to the missing lexical entries for single words. How-
ever, the unigrams only account for about 1/3 of the low parsability
n-grams (see Table 3.2). There is a large proportion of bigrams and
trigrams, as well. With a closer look at these n-grams with larger n,
we found that many of them, especially trigrams and above, are re-
lated to the lack of proper handling of MWEs in the grammar. Table 4.1
lists some of the low parsability n-grams with n ≥ 3.

The list is potentially interesting, for many of them are directly re-
lated to multiword expressions. For example, “by and large”, “points
of view” and “foot the bill” are good candidates of MWEs by them-
selves, which are missing from the lexicon of the ERG. However, there
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N-gram Count Parsability

the burden of 49 0.000
by and large 37 0.000

face of it 34 0.000
frame of mind 23 0.000
points of view 20 0.000

hair and a 17 0.000
the to infinitive 15 0.000

let alone a 12 0.000
foot the bill 10 0.000

of alcohol and 8 0.000
a great many 44 0.083
glance up at 33 0.083

for and against 21 0.086

Table 4.1: Examples 3+grams from the results of error mining with
ERG (jan-06) and BNC

are also non-MWE n-grams like “of alcohol and”, which correspond to
other types of error of the grammar. Moreover, some of the n-grams
are related to missing MWEs, but also include other words which should
not be considered part of the MWE. For instance, “let alone a” in Ta-
ble 4.1 is related to the MWE“let alone”, while the extra “a” in the
n-gram indicates the collocation of the MWE with a nominal object.

The complication indicates that an extra validation step is required
before the true MWE can be correctly captured. In this work, we call
the resulting 3+grams (n-grams with n ≥ 3) of error mining the MWE

raw candidates. The validation methods presented in the following
section are based on this candidate list.

4.3 MWE Candidate Validation

In order to discriminate the n-grams which represent good MWE candi-
dates from erroneous ones, a series of validation steps are introduced.

First, with the MWE candidates obtained from the error mining re-
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sults, some heuristic rules are used as filters in order to discard the
obvious non-MWEs, following Bouma and Villada (2002). For example,
those n-grams which contain one or more acronyms, names, or dates
are not taken into further consideration.

For the remaining list of MWE candidates, we use further statistical
measures for validation. Similar approaches have been reported by
Pearce (2002) for collocations, and Zhang et al. (2006) for MWEs, in
general. Different resources are used to gather the frequency of the
n-grams and their variants. Besides large corpora like the BNC, many
researchers have recently started using the web as an extremely large
corpus, since, as pointed out by Grefenstette (1999), the Web is the
largest data set available for NLP (Grefenstette, 1999; Keller et al.,
2002; Kilgarriff and Grefenstette, 2003; Villavicencio, 2005). For in-
stance, Grefenstette (1999) employs the Web to do example-based
machine translation of compounds from French into English. The
method he employs would suffer considerably from data sparseness,
if it were to rely only on corpus data. So for compounds that are
sparse in the BNC, he also obtains frequencies from the Web. The
scale of the Web can help minimize the problem of data sparseness,
which is especially acute for MWEs. Villavicencio (2005) uses the Web
to find evidence to verify automatically generated verb-particle con-
structions.

Different statistical measures are available for the validation step.
Here we only list some of the measures.

• Mutual Information (MI): is a useful quantity that measures
the mutual dependence of multiple random variables. For a
trigram with words w1w2w3, Mutual Information is calculated
as:

MI =
∑

a,b,c

n(abc)

N
log2

[
n(abc)

n∅(abc)

]
(4.1)

where a corresponds either to the word w1 or to ¬w1 (all but
the word w1) and so on. n(abc) is the number of trigrams abc in
the corpus, n∅(abc) = n(a)n(b)n(c)/N 2 is the predicted number
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from the null hypothesis, n(a) is the number of unigrams a, and
N the number of words in the corpus.

• χ2 test: is a standard statistical hypothesis test for indepen-
dence between a group of variables. A χ2 distribution with
degrees of freedom k is defined in Equation 4.2. When each xi
corresponds to a word in the candidate n-gram, the test shows
whether their occurrences are correlated or a random assembly.

χ2 =
(x1 − µ1)

2

σ2
1

+
(x2 − µ2)

2

σ2
2

+ · · ·+ (xk − µk)2

σ2
k

(4.2)

• Permutation Probability (PP): is used by Zhang et al. (2006)
as a statistical measure for the ordering of the n-gram. For a
given n-gram, there are at most n! total permutations (or fewer,
if there are duplicated words). Suppose there are m different n-
grams as the result of permuting the original n-gram, we define
the permutation probability of the ith n-gram Pi as the ratio of
the frequency count of the n-gram against the frequency count
of the consecutive n words in any ordering.

• Permutation Entropy (PE): is also used by Zhang et al. (2006)
and Villavicencio et al. (2007) as another statistical measure
for the ordering of the n-gram. Based on the definition of per-
mutation probability, the permutation entropy is defined as fol-
lowing:

PE = − 1

logm

m∑

k=1

Pi logPi (4.3)

All of the above statistical measures can be obtained with either a
static corpus (i.e., BNC) or the WWW. The technologies to access such
huge amounts of data are far beyond the topic of this dissertation. In
our work, we rely on the Web search engines to get a rough estimation
of the frequencies of the given n-gram on web pages. Two different
web search engines are used: Google and Yahoo.
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We validated some of the low parsability n-grams from the error-
mining results of the ERG (jan-06) using the permutation entropy and
probability measures. Some example results are listed in Table 4.2.

MWE HITS PE PP (%)

the burden of 36,600,000 0.366 79.4
and cost effective 34,400,000 0.372 70.7
the likes of 34,400,000 0.163 93.1
but also in 27,100,000 0.038 98.9
to bring together 25,700,000 0.086 96.6
points of view 24,500,000 0.017 99.6
and the more 23,700,000 0.512 61.5
with and without 23,100,000 0.074 97.4
can do for 22,300,000 0.003 99.9
taking into account the 22,100,000 0.009 99.6
but what about 21,000,000 0.045 98.7
the ultimate in 17,400,000 0.199 90.0
stand by and 1,350,000 0.399 65.5
discharged from hospital 553,000 0.001 99.9
shock of it 92,300 0.541 44.6
was woken by 91,400 0.001 99.9
telephone rang and 43,700 0.026 99.2
glanced across at 36,900 0.003 99.9
the citizens charter 22,900 0.070 97.9
from of government 706 0.345 0.1
the to infinitive 561 0.445 1.4

Table 4.2: Examples of the statistical validation results. HITS are
the number of matching web pages reported by Google;
PE are the permutation entropies; PP are the permutation
probabilities

We see that the HITS is a good measure to eliminate the unlikely
MWEs. High PP and low PE usually correspond to better MWE can-
didates. However, the two measures should be considered together
to make a more reliable judgment. The basic hypothesis we make
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here is that the good MWE candidates are not random permutations
of the words in the n-gram. A more detailed evaluation of different
statistical measures in terms of discovering genuine MWEs have been
reported by Villavicencio et al. (2007).

4.4 Acquiring Lexical Entries for MWEs
Recognition of the MWEs is just the first step. To handle them properly
in deep processing requires more sophisticated techniques than those
we have developed so far. Nevertheless, it is the key to the robustness
problem considering the widespread use of MWEs. Also the techniques
should be as automatic as possible. Given the heterogeneous nature
of different MWEs, systematic treatment of the different phenomena
is difficult, if possible at all. In this section, we will present two
alternative approaches from the practical grammar engineering points
of view, aiming at maximal robustness without much loss in grammar
accuracy.

4.4.1 Words-with-Spaces Approach

The näıve, yet robust approach of handling MWEs is to treat the n-
grams as single words. The only difference is that they may contain
spaces. Obviously such simplification suffers from a serious limita-
tion of its own (which we will discuss in details in Section 4.4.2).
Nonetheless, this approach is widely in use in grammar engineering.
For instance, from the 23K lexical entries in the ERG (jan-06) lexicon,
more than 1.7K (7.5%) entries correspond to words with more than
one tokens. In fact, for some types of MWEs which allow minimal vari-
ation (i.e., fixed expressions like ad hoc), the words-with-spaces ap-
proach suffices. For semi-fixed expressions, like compound nominals
and proper names, appropriate morphological handling is necessary.
But for syntactically flexible MWEs, like verb-particle constructions,
this approach is less adequate. Even though less accurate, the words-
with-spaces approach can in most cases encapsulate the difficult MWEs
into small lexical units, and avoid the in-depth analysis within the
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n-gram. The resulting analysis will suffer a decrease in accuracy, but
with much better coverage in the meantime.

With minimum modification to our lexical type prediction model,
the MWE entries can be acquired from large corpora automatically. In
Zhang et al. (2006), we reported that with the ERG (jan-06) error-
mining results, 311 n-grams were validated as good MWE candidates.
Then 6,246 sentences were extracted from the fragment of the BNC

corpus (cf., Section 3.3.3) which contained at least one of the n-grams.
The lexical type prediction model trained on the Redwoods treebank
was used to predict the lexical type for each occurrence of the n-
grams. However, not all the predictions were accepted for generating
new lexical entries. Only those predictions which occurred over a
minimum threshold (5 in this case) were accepted.

For the ERG (jan-06), we obtained 373 new “words-with-spaces” lex-
ical entries. The grammar coverage on the 6,246 sentences before and
after adding these entries presented a significant difference. Details
are given in Table 4.3.

item # +entry # parsed # analysis φ coverage %

-MWE 6246 – 268 209.76 4.3%
+MWE 6246 373 1168 137.14 18.7%

Table 4.3: ERG coverage on “difficult” sentences before and after
adding “word-with-spaces” MWE lexical entries

4.4.2 Compositional Approach

Despite the significant improvement in coverage, the accuracy of the
grammar was not investigated for the “words-with-spaces” approach
in Zhang et al. (2006).

As Sag et al. (2002) pointed out, such an approach has several
major limitations. First, the approach suffers from a flexibility prob-
lem. For example, Sag et al. (2002) pointed out that a parser which
lacks sufficient knowledge of verb-particle constructions might cor-
rectly assign look up the tower two interpretations (“glance up at the
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tower” vs. “consult a reference book about the tower”), but fail to
treat the subtly different look the tower up as unambiguous (“consult
a reference book . . . ” interpretation only). For highly variable MWEs
with such or other kinds of flexibility, the linguistic precision will
not be fully captured in the words-with-spaces approach. Moreover,
this simple approach also suffers from a lexical proliferation problem.
For example, light verb constructions often come in families, e.g.,
take a walk, take a hike, take a trip, take a flight, . . . . Listing each
such expression results in considerable loss of generality and lack of
prediction.

A closer look at the MWEs not properly handled by the grammar
reveals that only a small proportion of them can be handled appro-
priately by the “words-with-spaces” approach of Zhang et al. (2006).
Simply adding new lexical entries for all MWEs can be a workaround for
enhancing the parser coverage, but the quality of the parser output
is clearly linguistically less adequate.

On the other hand, we also find that a large proportion of MWEs
that cannot be correctly handled by the grammar can be covered
properly in a compositional way by adding one lexical entry for the
head (governing) word of the MWE. For example, the expression foot
the bill will be correctly handled with a standard head-complement
rule, if there is a transitive verb reading for the word foot in the
lexicon. Some other examples are: to put forward, the good of, in
combination with, . . . , where lexical extension to the words in bold
will allow the grammar to cover the MWEs. In this section, we focus on
the constructional approach for the acquisition of new lexical entries
for the head words of the MWEs.1

It is arguable that such an approach may lead to some poten-
tial grammar overgeneration, as there is no selectional restriction ex-
pressed in the new lexical entry. However, as far as the parsing task
is concerned, such overgeneration is not likely to reduce the accuracy
of the grammar significantly as we will show through a thorough

1The combination of the “words-with-spaces” approach with the constructional ap-
proach we propose here is an interesting topic that we want to investigate in future
research.
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evaluation.

With a similar setting to the one described in Section 4.4.1, we did
two more acquisition experiments with two lists of candidate MWEs.
The first list (L-I henceforth) contains 200 randomly selected MWEs
from the high permutation entropy, high WWW HITS n-grams. The sec-
ond list (L-II henceforth) is selected with a more thorough validation
step by combining three statistical measures: the mutual information
(MI), χ2 test, and permutation probability (PP). The candidate MWEs
are ranked according to all these measures, and the top 30 MWEs with
the highest average rankings are selected into the second list. The
difference with Section 4.4.1 is that these evaluations are done on a
slightly more recent version of the ERG ( jul-06)2.

With both lists of MWEs, the following steps are taken to find the
head word with heuristics:

• the n-grams are PoS tagged with an automatic tagger;

• finite verbs in the n-grams are extracted as head words;

• nouns are also extracted if there is no verb in the n-gram.

Occasionally, tagger errors might introduce wrong head words. How-
ever, the lexical type predictor of Zhang and Kordoni (2006) that we
used in our experiments did not generate interesting new entries for
them in the subsequent steps. As a result, we obtained 52 head words
for L-I and 20 for L-II.

With the two lists of MWEs, we extracted two sub-corpora from
the BNC, with each sentence containing at least one of the MWEs in the
corresponding lists. The sub-corpora contain 2,463 sentences and 674
sentences, respectively. The lexical acquisition technique described
by Zhang and Kordoni (2006) was used with these sub-corpora in
order to acquire new lexical entries for the head words. The lexical

2The major difference between the ERG version jan-06 and jul-06 is the size of the
lexicon. jul-06 shows much better overall coverage on the BNC, largely due to the
semi-automatic lexical extension. But no significant change in the grammar accuracy
is observed.
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acquisition model was trained with the Redwoods treebank, following
the techniques presented in Chapter 3.

The lexical prediction model predicted the most plausible lexical
type in that context for each occurrence of the head words. Only
those predictions that occurred 5 times or more were taken into con-
sideration for the generation of the new lexical entries. As a result,
we obtained 50 new lexical entries for L-I and 21 for L-II.

These new lexical entries were later merged into the ERG lexicon.
To evaluate the grammar performance with and without these new
lexical entries, we

1. parsed the sub-corpora with and without new lexical entries
and compared the grammar coverage;

2. inspected the parser output manually and evaluated the gram-
mar accuracy.

In parsing the sub-corpora, we used the PET parser (Callmeier,
2001). For the manual evaluation of the parser output, we used the
treebanking tools of the [incr tsdb()] system (Oepen, 2001).

Table 4.4 shows that for L-I the grammar coverage improved sig-
nificantly (from 4.3% to 16.7%) with the acquired lexical entries for
the head words of the MWEs. With a more carefully validated list L-

II, the coverage improvement is even more noticeable (over 15%, see
Table 4.5). These improvements in coverage are largely comparable
to the result we observed in the “words-with-space” approach (from
4.3% to 18.7%). Also, we discovered that with a more carefully fil-
tered list of candidates, the average analysis number drops when new
lexical entries are added, somehow indicating that those new entries
do not lead to terribly more readings with higher lexical ambiguity.

Comparing the numbers of the new lexical entries added, we no-
ticed that the compositional approach achieved comparable coverage
improvement with fewer new lexical entries. This suggests that the
lexical entries acquired in our experiment are of much higher linguis-
tic generality.

To evaluate the grammar accuracy, we manually checked some of
the parser outputs from each sub-corpus after the lexical extension.
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item # +entry # parsed # analysis φ coverage %

-MWE 2463 – 107 127.88 4.3%
+MWE 2463 52 412 178.33 16.7%

Table 4.4: ERG coverage with and without lexical acquisition for the
head words of L-I MWEs (compositional)

item # +entry # parsed # analysis φ coverage %

-MWE 674 – 48 335.08 7.1%
+MWE 674 21 153 285.01 22.7%

Table 4.5: ERG coverage with and without lexical acquisition for the
head words of L-II MWEs (compositional)

A sentence was marked as “accepted”, if one of the analyses was
correct, otherwise it was marked as “rejected”. The results are listed
in Table 4.6.

lists sentence # accepted # %

L-I 100 81 81.0%
L-II 153 124 81.0%

Table 4.6: ERG accuracy after lexical acquisition for the head words
of MWEs

Baldwin et al. (2004) reported earlier that, for BNC data, about
83% of the sentences covered by the ERG have a correct parse. In our
evaluation, we observed very similar accuracies. We also found that
the disambiguation model as described by Toutanova et al. (2002)
performed reasonably well, and the best analysis is ranked among
top-5 for 66% of the cases, and top-10 for 75%.

All of these results indicate that our approach for lexical acquisition
of head words of MWEs achieves a significant improvement in grammar
coverage without damaging the grammar accuracy. Optionally, the
grammar developers can check the validity of the lexical entries before
they are added into the lexicon. This semi-automatic procedure can
largely reduce the manual work of grammar writers.
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4.5 Discussion
Multiword expressions are a class of heterogeneous language phe-
nomena which are prevalent in use, but lack systematic treatment. In
this dissertation, we started from a grammar engineering perspective,
aiming at the maximal robustness of deep processing. Comparing to
the other studies of multiword expressions, we see that our approach
has the following advantages:

• It is highly automatic. With various statistical measures over
large corpora, as well as learning mechanisms, the entire process
requires minimal human intervention.

• It is not phenomenon specific. Our methods provide a prac-
tical solution to effectively handle different types of MWEs in a
consistent way. Although fine-grained classification of different
MWE phenomena can be helpful in improving the performance
on specific types of MWEs, our approach is much more general.

• It is not language specific. Our approach does not rely on any
language specific presumption. Therefore, the methods can be
easily adapted to work for different languages and grammars.

4.6 Summary
In this chapter, we have described techniques to automatically dis-
cover and handle multiword expressions from the grammar engineer-
ing perspective for maximal robustness. The error mining results pro-
vide us with MWE candidates in the form of low parsability n-grams.
The statistical analyses on large corpora (BNC and WWW) help discrimi-
nate good candidates from noise. With good MWE candidates, we take
either the “words-with-spaces” or the compositional approach in or-
der to generate new lexical entries. Through a series of experiments
we have shown that both methods are able to improve the grammar
coverage significantly, while the compositional approach is also able
to maintain the grammar accuracy.



5 Evaluation Metrics for
Deep Lexical Acquisition

Our deepest fear is not that we are inadequate. Our
deepest fear is that we are powerful beyond measure. It
is our Light, not our Darkness, that most frightens us.

— Marianne Williamson, “Return to Love, 1992”

In the previous two chapters, we have discussed techniques for im-
proving the lexicon coverage and robustness. The ultimate goal is to
help boost deep grammar coverage and robustness in deep process-
ing. The evaluation presented in the previous chapters shows that
the techniques developed so far deliver promising performance on the
module level. However, it is still unclear how the lexicon precision
and recall may be related to the grammar performance. In this chap-
ter, a series of experiments are reported in an attempt to unveil the
correlation between precision and recall, on the one hand, and deep
grammar performance, on the other.

5.1 The “Goodness” of Deep Lexical
Acquisition

As mentioned earlier in Section 3.3.1, there are two types of lexical
errors: i) a lexical entry is missing from the lexicon; ii) an erro-
neous entry enters the lexicon. The first type of error normally leads
to undergeneration of the grammar, while the latter usually causes
overgeneration.

75
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Without considering the interaction with the grammar performance,
the quality of the lexicon can be measured with standard precision
and recall metrics. The precision is usually defined as the proportion
of the correct entries among all the entries in the lexicon. The recall
is defined as the proportion of correct entries in the lexicon among
all the correct entries for the language (which are not necessarily in
the lexicon).

However, in evaluating a lexicon, such definitions are difficult to
follow. On the one hand, the “correctness” of the existing lexical en-
tries is difficult to judge. Also, it heavily depends on the grammatical
analysis. Therefore the precision of the lexicon is, at best, a subjec-
tive measurement. On the other hand, the measurement of recall is
even more difficult, as there is no direct way to properly estimate
how many lexical entries are missing from the lexicon.

Therefore, precision and recall are usually defined relative to a gold
standard lexicon (denoted by L). The gold standard lexicon is usually
built manually, therefore contains very few erroneous entries. Also, it
must cover most of the lexical usage for a specific corpus. Therefore
the recall of the lexicon for this specific corpus is also high. For a
given lexicon L′ as a set of lexical entries, it can be partitioned into
two subsets:

L′ = G ∪ E (G ∩ E = φ) (5.1)

where G is the set of the entries that also belong to the gold standard
lexicon L:

G = {g ∈ L′|g ∈ L} (5.2)

and E is the set of the entries that do not occur in L, and are con-
sidered to be errors:

E = {e ∈ L′|e /∈ L} (5.3)

.
The precision P and recall R of the lexicon L′ relative to gold

standard lexicon L are defined as:

P =
|G|
|L′| (5.4)
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R =
|G|
|L| (5.5)

.
The relative precision and recall more or less reflect the similarity

of the lexicon to the gold standard. However, their limitations are
very obvious.

First, the availability of the so-called gold standard lexicon is ques-
tionable. The starting motivation of deep lexical acquisition is to help
build the lexicon. The imperfection of the “gold” lexicon renders the
similarity based evaluation less reliable. Any entry in the “gold” lex-
icon is taken for granted as correct. Any entry that is not in the
“gold” lexicon is considered to be an erroneous entry.

One way to balance this bias is to restrict the evaluation on a sub-
language, bounded with a corpus. A high quality “gold” sub-lexicon
can be extracted from an existing larger lexicon. This sub-lexicon
satisfies the following two conditions:

• All the lexical usage in the corpus is included in the sub-lexicon;

• All the entries in the sub-lexicon correspond to at least one
usage (instance) in the corpus.

If the deep lexical acquisition models are built and evaluated on
this corpus using the relative precision and recall to the “gold” sub-
lexicon, and if the corpus is well balanced and representative of the
entire language, the evaluation results can be indicative of the true
precision and recall of the model.

If the above question is still amendable, the following question is
even more crucial. Suppose the relative precision and recall of the
lexicon reflects its true precision and recall, it is still largely unclear
how these figures are related to the grammar performance. Simple
conjecture will be that the erroneous lexical entries lead to overgen-
eration of the grammar, and therefore making the parser outcome
less precise. On the other hand, missing lexical entries lead to under-
generation of the grammar, hence hurting the coverage of the parser.
Therefore, the precision of the lexicon should correspond to the accu-
racy of the grammar (in parsing tasks), while lexicon recall is related
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to the coverage. Unfortunately, in practice the interaction between
the lexicon and the grammar is much more subtle. For example, be-
sides the overgenerating effect, erroneous lexical entries might also
cause parser failure (e.g., triggering recursive unary rules, exhaust-
ing parser memory by higher lexical ambiguities, etc.). On the other
hand, the undergenerating effect of different missing lexical entries
varies, depending on their frequency in the text corpus. A more
frequent missing entry has a much larger effect on the grammar cov-
erage. This correlation is not directly reflected by the recall of the
lexicon, either.

In summary, the precision and recall based evaluations of the lexi-
con are neither reliable by themselves, nor indicative about the gram-
mar performance.

Then what about the token accuracy based evaluation used in
Chapter 3? By working with a lexically annotated corpus, the to-
ken accuracy takes the lexical entry frequency into account. Also,
by assuming that frequent words are already in the lexicon, the to-
ken accuracy is only measured for infrequent words, hence the risk of
running into high lexical ambiguity and abnormal grammar behav-
ior gets reduced. However, there is still no direct correlation to the
grammar performance.

Despite all the difficulties, a good evaluation metric is crucial for
the development of deep lexical acquisition. Different measurement
will eventually lead to different design. Eventually we hope to maxi-
mally improve the overall average performance of the grammar. There-
fore, a thorough investigation of how the lexicon performance corre-
lates to the grammar performance should be done.

5.2 Experimental Setup
In this chapter, we are going to unveil the correlation between the
lexicon performance and grammar performance via a set of experi-
ments with large scale deep grammars, together with corresponding
treebanks. The basic idea is to randomly introduce lexical errors to
a “gold” sub-lexicon in order to simulate the results of deep lexi-
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cal acquisition at different (relative) precision and recall levels. The
resulting lexicons are then used with the grammar for processing
the treebank again. More specifically, in this chapter we focus on
the grammar performance in parsing tasks1. Therefore the grammar
performance is evaluated by parser coverage and accuracy. In this
section, the experiment setup is described in detail.

5.2.1 Resources

Grammars

For this experiment, two large scale HPSGs are used: the English Re-
source Grammar (ERG; Flickinger (2000)) and the JaCY (Siegel and
Bender, 2002) for Japanese. Both of them aim at broad coverage
of the respective languages with high accuracy. They are developed
using the DELPH-IN infrastructure, and can be used with the same
processing tools (i.e., LKB, PET, [incr tsdb()]). Besides the vari-
ous similarities of the two grammars, they also represent interesting
differences. The two languages belong to different language families.
English has more strict word order, while Japanese allows for more
freedom in the word order. The ERG we used in this experiment is
the jan-06 version of the grammar, which contains about 23K lexi-
con entries and more than 800 leaf lexical types. The November 2005
version of JaCY is used, which contains a 48K lexicon and more than
300 leaf lexical types.

Treebanks

To test the grammar coverage and accuracy, we use two treebanks:
Redwoods (Oepen et al., 2002) for English and Hinoki (Bond et al.,
2004) for Japanese. These treebanks are so-called dynamic treebanks,
which means that they can be (semi-) automatically updated when
the grammar is updated. This feature is especially useful when we

1In generation, we tend to have a semantic representation as input, which is linked
to pre-existing lexical entries. Hence, lexical acquisition has no direct impact on
generation.
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want to evaluate the grammar performance with different lexicon
configurations.

With conventional treebanks, our experiment is difficult (if not
impossible) to perform as the static trees in the treebank cannot be
easily synchronized to the evolution of the grammar, meaning that we
cannot regenerate gold-standard parse trees relative to a given lexicon
(especially when for reduced recall, there is no guarantee that we will
be able to produce all of the parses in the 100% recall gold-standard).
As a result, it is extremely difficult to faithfully update the statistical
models.

The Redwoods treebank we use is the 6th growth, which is synchro-
nized with the jan-06 version of the ERG. It contains about 41K test
items in total.

The Hinoki treebank we use is updated for the November 2005
version of the JaCY grammar. The “Rei” section we use in our ex-
periment contains 45K test items in total.

5.2.2 Lexicon Generation

To simulate deep lexical acquisition results at various levels of pre-
cision and recall, a random lexicon generator is used. In order to
generate a new lexicon with specific precision and recall, the gen-
erator randomly retains a portion of the gold-standard lexicon, and
generates a pre-determined number of erroneous lexical entries.

More specifically, for each grammar we first extract a subset of
the lexical entries from the lexicon, each of which has at least one
occurrence in the treebank. These subsets of lexical entries are con-
sidered to be the gold-standard sub-lexicons (7,156 entries for the ERG,
27,308 entries for JaCY)2. The simulated lexicons will be generated
at different precision and recall levels relative to these gold-standard
sub-lexicons.

2The size of the gold-standard sub-lexicons differ significantly mainly due to the different
vocabulary in use in different treebanks. The Hinoki “Rei” section is based on the
dictionary example sentences, while the Redwoods is based on relatively simple dialogs
(i.e., travel planning, appointment arrangement, email correspondence, etc.).
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Given the gold-standard lexicon L, the target precision P and re-
call R, a new lexicon L′ is created, which is composed of two disjoint
subsets: the retained part of the gold-standard lexicon G, and the er-
roneous entries E. According to the definitions of precision and recall:

P =
|G|
|L′| (5.6)

R =
|G|
|L| (5.7)

and the fact that:
|L′| = |G|+ |E| (5.8)

we get:

|G| = |L| ·R (5.9)

|E| = |L| ·R · ( 1

P
− 1) (5.10)

To retain a specific number of entries from the gold-standard lexi-
con, we randomly select |G| entries based on the combined probabilis-
tic distribution of the corresponding lexeme and lexical types.3 We
obtain the probabilistic distribution of lexemes from large corpora
(BNC for English and Mainichi Shimbun [1991-2000] for Japanese),
and the distribution of lexical types from the corresponding tree-
banks. For each lexical entry e(l, t) in the gold-standard lexicon with
lexeme l and lexical type t, the combined probability is:

p(e(l, t)) =
CL(l) · CT (t)∑

e′(l′,t′)∈LCL(l′) · CT (t′)
(5.11)

where CL(l) and CT (t) are the frequency counts of lexeme l and lexical
type t in corresponding corpora and treebanks.

The erroneous entries are generated in the same way among all
possible combinations of lexemes and lexical types. The difference is
that only open category types and less frequent lexemes are used for

3For simplicity, we assume mutual independence of the lexemes and lexical types.
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generating new entries (e.g., we would not expect to learn a new lex-
ical item for the lexeme the or the lexical type d - the le in English).
This also avoids abnormal grammar behavior that would be caused
by having erroneous closed category entries.

In our experiment, we consider lexical types with more than a
predefined number of lexical entries (20 for the ERG, 50 for JaCY) in
the gold-standard lexicon to be open-class lexical types; the upper-
bound threshold on token frequency is set to 1000 for English and
537 for Japanese, i.e., lexemes which occur more frequently than this
are excluded from lexical acquisition under the assumption that the
grammar developers will have attained full coverage of lexical items
for them.

For each grammar, we then generate 9 different lexicons at varying
precision and recall levels, namely 60%, 80%, and 100%.

0.6 0.8 1.0
P \ R

C E A C E A C E A

0.6 4294 2862 7156 5725 3817 9542 7156 4771 11927

0.8 4294 1073 5367 5725 1431 7156 7156 1789 8945

1.0 4294 0 4294 5725 0 5725 7156 0 7156

Table 5.1: Different lexicon configurations for the ERG with the num-
ber of correct (C), erroneous (E) and combined (A) entries
at each level of precision (P) and recall (R)

0.6 0.8 1.0
P \ R

C E A C E A C E A

0.6 16385 10923 27308 21846 14564 36410 27308 18205 45513

0.8 16385 4096 20481 21846 5462 27308 27308 6827 34135

1.0 16385 0 16385 21846 0 21846 27308 0 27308

Table 5.2: Different lexicon configurations for the JaCY with the num-
ber of correct (C), erroneous (E) and combined (A) entries
at each level of precision (P) and recall (R)



5.2 Experimental Setup 83

5.2.3 Parser Coverage

Coverage is an important grammar performance measurement, and
indicates the proportion of inputs for which a correct analysis has
been obtained. In parsing tasks, the parser coverage is the proportion
of inputs for which a correct parse is reported, judged relative to the
gold-standard parse data in the treebanks.

In this experiment, we adopt a weak definition of coverage as “ob-
taining at least one spanning tree”. The reason for this is that we
want to obtain an estimate for novel data (for which we do not have
gold-standard parse data) from the relative number of strings for
which we can expect to be able to produce at least one spanning
parse. This weak definition of coverage actually provides an upper
bound estimate of coverage in the strict sense, and spares us the effort
to manually evaluate the correctness of the parses. Past evaluations
(e.g., Baldwin et al. (2004)) have shown that the grammars we are
dealing with are relatively precise. Based on this, we claim that our
results for parse coverage provide a reasonable estimate indication of
parse coverage in the strict sense of the word.

In principle, coverage will only decrease when the lexicon recall
goes down, as adding erroneous entries should not invalidate the ex-
isting analyses. However, in practice, the introduction of erroneous
entries increases lexical ambiguity dramatically, readily causing the
parser to run out of memory. Moreover, some grammars use recursive
unary rules which are triggered by specific lexical types. Here again,
erroneous lexical entries can lead to “fail to parse” errors.

Given this, we run the coverage tests for the two grammars over
the corresponding treebanks: Redwoods and Hinoki. The maximum
number of passive edges is set to 10K for the parser. We used [incr

tsdb()] (Oepen, 2001) to handle the different lexicon configurations
and data sets, and PET (Callmeier, 2000) for parsing.

5.2.4 Parser Accuracy

Another important measurement of grammar performance is accu-
racy. Depending on the ambiguity level of the input, the number of
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analyses can vary from zero to tens of thousands. Not all the analy-
ses are interesting for the applications, suggesting the need for some
means of selecting the most probable analysis among them.

In the PET parser, this is done with a parse disambiguation model
proposed by (Toutanova et al., 2002). Please refer to Section 3.4.7
for a brief description of the model. In combination with the dy-
namic treebanks where the analyses are (semi-)automatically disam-
biguated, the models can be easily re-trained when the grammar is
modified.

In this experiment, the parser accuracy indicates the proportion of
inputs for which we are able to accurately select the correct parse.

For each lexicon configuration, after the coverage test, we do an
automatic treebank update, and train/evaluate the ME-based parse
disambiguation models with 5-fold cross validation. Since we are only
interested in the difference between different lexicon configurations,
we use the simple PCFG-S model of Toutanova et al. (2002), which
incorporates PCFG-style local tree branching features from the deriva-
tion tree of the parse. The accuracy of the disambiguation model is
calculated by a top analysis exact matching (i.e., a ranking is only
considered correct if the top ranked analysis matches the gold stan-
dard preferred reading in the treebank).

All the Hinoki Rei noun sections (about 25K items) were used in
the accuracy evaluation for JaCY. However, due to technical limita-
tions, only the JH sections (about 6K items) of the Redwoods Tree-
bank were used for training and testing the disambiguation models
for the ERG.

5.3 Experiment Results
The experiment has consumed a considerable amount of computa-
tional resources. For each lexicon configuration of a given grammar,
we need to i) process (parse) all the items in the treebank, ii) com-
pare the resulting trees with the gold-standard trees and update the
treebank, and iii) retrain the disambiguation models over 5 folds of
cross validation. Given the two grammars with 9 configurations each,
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the entire experiment has taken over 1 CPU month and about 120GB
of disk space.

The coverage results are shown in Table 5.3 and Table 5.4 for JaCY
and the ERG, respectively. It is worth noting that even with the
lexicons at 100% precision and recall levels, there is no guarantee of
100% coverage on the treebank data. As the contents of the Redwoods
and Hinoki treebanks have been determined independently of the
respective grammars, rather than the grammars being induced from
the treebanks, for instance, they both still contain significant numbers
of strings for which the grammar cannot produce a correct analysis.
As expected, we see a significant increase in grammar coverage when
the lexicon recall goes up. This increase is more significant for the
ERG than JaCY, mainly because the JaCY lexicon is about twice as
large as the ERG lexicon; thus, due to the Zipfian distribution of the
lexical entries, the most frequent entries are still in the lexicons even
with low recall.

When the lexicon recall is fixed, the grammar coverage does not
change significantly at different levels of lexicon precision. The cov-
erage of low precision lexicons is usually slightly higher, as erroneous
entries have a chance of accidentally generating a spanning parse.
Recall that we are not evaluating the correctness of such parses at
this stage.

It is clear that the increase in lexicon recall boosts the grammar
coverage, as we would expect. The precision of the lexicon does
not have a large influence on coverage. This result confirms that
with DLA (where we hope to enhance lexical coverage relative to a
given corpus/domain), the coverage of the grammar can be enhanced
significantly.

P \ R 0.6 0.8 1.0

0.6 44.56% 66.88% 75.51%
0.8 42.18% 65.82% 75.86%
1.0 40.45% 66.19% 76.15%

Table 5.3: Parser coverage of JaCY with different lexicons
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P \ R 0.6 0.8 1.0

0.6 27.86% 39.17% 79.66%
0.8 27.06% 37.42% 79.57%
1.0 26.34% 37.18% 79.33%

Table 5.4: Parser coverage of the ERG with different lexicons

The accuracy results are obtained with 5-fold cross validation, as
shown in Table 5.5 and Table 5.6 for JaCY and the ERG, respectively.
When the lexicon recall goes up, we observe a small but steady de-
crease in the accuracy of the disambiguation models, for both JaCY

and ERG. This is generally a side effect of change in coverage: as the
grammar coverage goes up, the parse trees become more diverse, and
are hence harder to discriminate.

P-R #ptree fold1 fold2 fold3 fold4 fold5 Avg.

060-060 13269 63.70% 62.72% 61.56% 63.77% 61.52% 62.65%
060-080 19800 60.11% 61.05% 61.00% 58.95% 61.73% 60.57%
060-100 22361 59.75% 61.05% 59.33% 58.46% 59.45% 59.61%
080-060 14701 62.50% 62.93% 62.85% 63.97% 64.13% 63.27%
080-080 23184 61.10% 61.29% 61.53% 61.16% 59.76% 60.97%
080-100 27111 58.78% 59.63% 60.48% 60.80% 60.52% 60.04%
100-060 15696 63.24% 64.35% 64.76% 62.98% 64.22% 63.91%
100-080 26859 59.76% 61.57% 62.76% 61.50% 61.76% 61.47%
100-100 31870 61.27% 61.48% 59.29% 59.96% 60.42% 60.48%

Table 5.5: Accuracy of the disambiguation models for JaCY with dif-
ferent lexicons

When the recall is fixed and the precision of the lexicon goes up,
we observe a very small accuracy gain for JaCY (around 0.5% for each
20% increase in precision). This shows that the grammar accuracy
gain is limited as the precision of the lexicon increases, i.e., that the
disambiguation model is remarkably robust to the effects of noise.

It should be noted that for the ERG we failed to observe any ac-
curacy gain at all with a more precise lexicon. This is partly due to
the limited size of the updated treebanks. For the lexicon configu-
ration 060 − 060, we obtained only 737 preferred readings/trees to
train/test the disambiguation model over. The 5-fold cross validation
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P-R #ptree fold1 fold2 fold3 fold4 fold5 Avg.

060-060 737 69.23% 79.80% 65.43% 69.80% 71.29% 71.11%
060-080 1093 58.94% 63.95% 62.16% 70.81% 63.83% 63.94%
060-100 3416 61.24% 59.38% 63.18% 61.43% 59.40% 60.92%
080-060 742 71.26% 69.14% 72.63% 67.78% 69.57% 70.07%
080-080 1282 57.31% 63.74% 59.47% 59.65% 68.86% 61.81%
080-100 3842 58.14% 57.28% 62.31% 58.67% 58.85% 59.05%
100-060 778 68.82% 77.66% 65.85% 63.04% 73.40% 69.76%
100-080 1440 54.00% 61.08% 63.68% 63.46% 60.73% 60.59%
100-100 4689 54.25% 57.79% 59.11% 57.57% 56.41% 57.03%

Table 5.6: Accuracy of the disambiguation models for ERG with dif-
ferent lexicons

results vary within a margin of 10%, which means that the models
are still not converging. However, the result does confirm that there
is no significant gain in grammar accuracy with a higher precision
lexicon.

Finally, we combine the coverage and accuracy scores into a single
F-measure (β = 1) value. The results are shown in Table 5.7, Ta-
ble 5.8 and Figure 5.1. Again we see that the difference in lexicon
recall has a more significant impact on the overall grammar perfor-
mance than precision.

P \ R 0.6 0.8 1.0

0.6 52.08% 63.57% 66.62%
0.8 50.62% 63.30% 67.03%
1.0 49.54% 63.74% 67.42%

Table 5.7: Grammar performance (F-score) of JaCY with different
lexicons
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P \ R 0.6 0.8 1.0

0.6 40.03% 48.58% 69.04%
0.8 39.04% 46.62% 67.79%
1.0 38.24% 46.08% 66.35%

Table 5.8: Grammar performance (F-score) of ERG with different lex-
icons
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Figure 5.1: Grammar performance (F-score) with different lexicons



5.4 Discussion 89

5.4 Discussion

5.4.1 Is F-Measure a Good Metric for DLA
Evaluation?

As mentioned in earlier chapters, a number of relevant earlier works
(Baldwin, 2005a; van de Cruys, 2006) have evaluated DLA results
via the unweighted F-score (relative to type precision and recall).
This implicitly assumes that the precision and recall of the lexicon
are equally important. However, this is clearly not the case as we
can see in the results of the grammar performance. For example, the
lexicon configurations 060− 100 and 100− 060 of ERG (i.e., 60% pre-
cision, 100% recall vs. 100% precision, 60% recall, respectively) have
the same unweighted F-scores, but their corresponding overall gram-
mar performance (parser F-score) differs by up to 17%. Therefore,
a recall-heavy interpretation of the lexicon performance is preferable
from the grammar performance point of view.

In relation to the design of our DLA model, the preference in favor
of recall can be realized by allowing the lexical predictor to generate
larger number of entries for each instance of a candidate word.

5.4.2 Does Precision Matter?

The most interesting finding in our experiment is that the precision
of the deep lexicon does not appear to have a significant impact on
grammar accuracy. This is contrary to the earlier predominant belief
that deep lexicons should be as accurate as possible. This belief is
derived mainly from observation of grammars with relatively small
lexicons. In such small lexicons, the closed-class lexical entries and
frequent entries (which comprise the “core” of the lexicon) make up
a large proportion of lexical entries. Hence, any loss in precision
means a significant degradation of the “core” lexicon, which leads
to performance loss of the grammar. For example, we find that the
inclusion of one or two erroneous entries for frequent closed-class
lexical type words (such as the, or of in English, for instance) may
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easily “break” the parser.

However, in state-of-the-art broad-coverage deep grammars such as
JaCY and ERG, the lexicons are much larger. They usually have more
or less similar “cores” to the smaller lexicons, but with many more
open-class lexical entries and less frequent entries, which compose
the “peripheral” parts of the lexicons. In our experiment, we found
that more than 95% of the lexical entries belong to the top 5% of
the open-class lexical types. The bigger the lexicon is, the larger the
proportion of lexical entries that belongs to the “peripheral” lexicon.

In our experiment, we have only changed the “peripheral” lexicon
by creating/removing lexical entries for less frequent lexemes and
open-class lexical types, leaving the “core” lexicon intact. Therefore,
a more accurate interpretation of the experimental results is that the
precision of the open type and less frequent lexical entries does not
have a large impact on the grammar performance, but their recall
has a crucial effect on grammar coverage.

The consequence of this finding is that the balance between preci-
sion and recall in the deep lexicon should be decided by their impact
on the task to which the grammar is applied. In research on auto-
mated DLA, the motivation is to enhance the robustness/coverage of
the grammars. This work shows that grammar performance is very
robust over the inevitable errors introduced by the DLA, and that
more emphasis should be placed on recall.

Again, caution should be exercised here. We do not mean that by
blindly adding lexical entries without worrying about their correct-
ness, the performance of the grammar will be monotonically enhanced
– there will almost certainly be a point at which noise in the lexi-
con swamps the parse chart and/or leads to unacceptable levels of
spurious ambiguity. Also, the balance between precision and recall
of the lexicon will depend on various expectations of the grammari-
ans/lexicographers, i.e., the linguistic precision and generality, which
is beyond the scope of this chapter.

As a final word of warning, the absolute grammar performance
change that a given level of lexicon type precision and recall brings
about will obviously depend on the grammar. In looking across two
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grammars from two very different languages, we are confident of the
robustness of our results (at least for grammars of the same ilk) and
the conclusions that we have drawn from them. For any novel gram-
mar and/or formalism, however, the performance change should ide-
ally be quantified through a set of experiments with different lexicon
configurations, based on the procedure outlined here. Based on this,
it should be possible to find the optimal balance between the different
lexicon evaluation metrics.

5.4.3 Other Measurements for Grammar
Performance

In this experiment, we have measured the grammar performance on
two aspects: the parser coverage and parser accuracy. Although these
are the most important performance measurements when the pars-
ing task is concerned, there are other measurements which we have
not investigated in this experiment. Parser efficiency is one of such
measurements.

Unlike the context-free parsing which has a polynomial time solu-
tion, the constraint-based parsing problem is essentially NP-complete.
Without extra techniques, the lexicon precision will have a direct im-
pact on the parser performance. The less precise the lexicon is, the
more entries that will be activated during the parsing. Although
we have shown that the grammar rules have fairly good ability of
preventing erroneous entries entering the final parsing results, higher
lexical ambiguity involves more computation at local level. And occa-
sionally, the erroneous entries trigger recursive unary rules, and lead
to performance breakdown.

There has been other research (cf., van Noord, 2006) pointing out
that the impact of high lexical ambiguity on parser efficiency can be
largely diminished with an HMM PoS tagger trained on the parser
output. The tagger helps select relevant lexical entries so that the
improbable erroneous entries are not used for parsing. It has been
shown that such techniques are able to greatly reduce lexical ambi-
guity without an observable decrease in parsing accuracy. A more
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recent study (Matsuzaki et al., 2007) also showed that supertagging
techniques can be used to significantly improve efficiency without
compromising accuracy.

Both of these can be connected to our study, and lead to a confi-
dent conclusion that the efficiency drawback of having higher lexical
ambiguity can be largely controlled by extra preprocessing mecha-
nism.

5.4.4 Generalization to Other Formalisms

Our experiment was carried out with DELPH-IN HPSG grammars. How-
ever, the conclusion we have reached can presumably be applied
to other similar implementation platforms or even formalisms. Of
course, extra experiments need to be carried out to verify this claim,
which is far beyond the scope of this dissertation.

It should also be noted that in arriving at this conclusion, we as-
sume that there is a clear distinction between the grammar and the
lexicon. This applies to formalisms like HPSG, LFG, etc. This is differ-
ent to strictly lexicalized formalisms like LTAG and CCG, where essen-
tially all linguistic description resides in individual lexical entries in
the lexicon. The manually compiled grammars in our experiment are
also intrinsically different to grammars automatically induced from
treebanks (e.g., those used in the Charniak parser (Charniak, 2000)
or the various CCG parsers (Hockenmaier, 2006)). These differences
sharply distinguish our work from previous research on the interac-
tion between lexical acquisition and parse performance.

5.5 Summary
In this chapter, we have investigated the relationship between evalu-
ation metrics for deep lexical acquisition and grammar performance.
With simulated lexical acquisition results for two large scale HPSGs,
we measured their effect on grammar performance in parser coverage
and parser accuracy. The results show that traditional DLA evalu-
ation based on F-measure is not reflective of grammar performance.
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The precision of the lexicon appears to have minimal impact on gram-
mar accuracy, and therefore recall should be emphasized more greatly
in the design of deep lexical acquisition techniques.
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6 Efficient Partial Parsing

Better be ignorant of a matter than half know it.

— Publilius Syrus (∼100 BC), Maxims

We have spent chapters discussing techniques which can help im-
prove the robustness of deep processing on the lexicon side. This is
motivated by findings indicating that a large proportion of lack of cov-
erage errors are related to the incompleteness of the lexicon. Most
of the modern deep grammars are very much lexicalized, meaning
that the grammar contains relatively few highly generalized linguis-
tic principles and a massive amount of detailed variations are instan-
tiated in the lexicon. While the general linguistic rules are usually
well attested, the lexicon receives less harsh validation, making them
vulnerable to errors when faced with free texts.

The assumption that general linguistic principles are more reliable
is based on the hypothesis that all inputs are well-formed grammat-
ical sentences, as the deep grammars we study here rely on strict
binary grammaticality judgments. When the input contains mildly
ungrammatical sentences, it can sometimes escape the generality of
the linguistic rules. In this chapter, we will discuss a more general ap-
proach to achieve better robustness with deep grammars. Section 6.1
discusses the desirable partiality in deep processing. Section 6.2 pro-
poses the partial parse selection models which help maximally recover
intermediate results from a failed parse. Section 6.4 further discusses
the efficiency concerns about different partial parse selection mod-
els, followed by Section 6.5 with in-depth discussion of the design
and evaluation of the selective unpacking algorithm in the context of
efficient partial parsing.

95
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6.1 Partiality in Deep Processing

6.1.1 Why Do We Need Partiality?

Being a highly complicated symbolic rule system, a deep grammar
makes unambiguous grammaticality judgments on its inputs. While
each grammatical sentence receives one or more detailed analyses
with rich linguistic information, there is an extreme inequality on the
ungrammatical sentences: no results are available for sentences which
receive no full analysis.

The strict grammaticality judgment is a desirable feature, for it
allows for more precise modeling of the language. In fact, this is
one of the fundamental differences between precision grammars and
treebank grammars. With this feature, the grammar is not only
suitable for parsing, but for other applications, like text generation
(from semantics) or grammar checking, as well.

However, an accurate modeling of the language also brings other
consequences to the robustness problem. For traditional precision
grammars which make binary grammaticality judgments, there are
two aspects of problems.

On the one hand, the binary grammaticality judgment does not ac-
curately reflect the acceptability of inputs. Various psycholinguistic
studies have shown that humans usually take a gradient grammatical-
ity judgment. Also, human speakers/writers do produce ungrammat-
ical sentences due to various competence and performance reasons.
Given the context and common knowledge between the speakers (or
writers/readers), this is not really a big problem for human/human
communication. However, in deep processing the lack of flexibility in
grammaticality judgment leads to serious difficulties due to the lack
of extra-linguistic knowledge.

On the other hand, no analyses are given for ungrammatical sen-
tences, at all. This is obviously against the cognitive nature of hu-
man/human interaction. Although the grammaticality level does
influence the efficiency of communication, humans behave quite ro-
bustly to grammar errors. When grounded in a conversation scenario,
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most of the mildly ungrammatical sentences can be comprehended
without problem.

Both of the aspects indicate that with conventional deep process-
ing based on precision grammars it is difficult to achieve high levels
of robustness. While adopting the gradient grammaticality in deep
grammars probably entails major change in the fundamental formal-
ism, we hope to maximally recover the most plausible and useful
partial analyses from failed parses with the deep grammar largely
intact.

There are three major questions to be answered in this thread of
thinking. How is the partiality represented? What type of partiality
is desirable? How can good partiality be retrieved efficiently? We
will go through the first question in the context of bottom-up chart
parsing, and leave the rest to the following sections.

6.1.2 Partiality in Bottom-Up Chart Parsing

Among various parsing algorithms, the chart parser is one of the most
well studied and widely used parsers. The algorithm involves a data
structure named “chart” to record the intermediate searching goals.
With the chart, the algorithm eliminates backtracking and prevents
a combinatorial explosion. If used together with a priority queue
(usually called agenda), the searching progress can be guided with a
priority score, and achieves n-best parsing. Various variants of the
chart parsing algorithm exist. For example, Earley (1970) avoids du-
plication of parse items by maintaining pointers to alternative deriva-
tions in association with the item. The algorithm is usually used for
parsing with context-free grammars, but can be extended for other
grammar formalisms, as well.

For constraint-based formalisms (e.g., HPSG, LFG), the bottom-up
chart parser works essentially unchanged, only that the items on the
chart correspond to more informative data structures. For HPSG, each
item on the parsing chart corresponds to a typed feature structure.
For efficiency considerations, the TFSes are not stored as are on the
chart, but they can be reconstructed on request.
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When the grammar has one or more full analyses of the input, there
will be at least one passive edge on the chart which spans the entire
input. And the corresponding TFS satisfies specific root constraints
set by the grammar.

When the grammar has no full analysis for the input, the parser
terminates when there are no more new items which can be derived.
At this stage, all the intermediate analyses are recorded on the chart
as passive edges. If properly selected, these intermediate results pro-
vide rich linguistic information. Especially, due to the use of com-
binational semantics, the semantic fragments for the corresponding
chart items can also be recovered. In this dissertation, we use the
passive chart items/edges to represent the partial analyses. More
specifically, we use the term Partial Parse to describe a set of passive
parsing edges whose spans (beginning and ending positions) are non-
overlapping between each other, and together they cover the entire
input sequence (i.e., no skipped input tokens).

In a graph view, the intermediate results of a chart parser can
be described as a directed graph, where all positions between input
tokens/words are vertices, and all the passive edges derived during
parsing are the directed graph arcs. Obviously such a graph is acyclic
and therefore topologically sorted. A partial parse is then a path from
the source vertex (the beginning position of the input) to the terminal
vertex (the end position of the input).

Suppose the parsing chart consists of the edges shown in Figure 6.1,
there are in total 4 possible partial parses: {a, b, c, d}, {a, b, f}, {a, e, d}
and {a, g}.

1w 2w 3w 4w
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Figure 6.1: Graph representation of intermediate chart parsing re-
sults

Note that each passive edge is a sub-structure licensed by the gram-
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mar. A derivation tree or TFS can be reconstructed for it, if required.
This definition of partial parse is effectively similar to the view of
partial analyses in Kasper et al. (1999).

It should also be noted that the partial parses can be defined in
other ways if using different parsing algorithms. For instance, in
head-corner or left-corner parsers, the spine trees can be taken as
basic units to represent partialities, as well. But in this dissertation,
we restrict ourselves to the representation of very simple local analysis
units.

6.2 Partial Parse Selection
Having defined the partial parse in the previous section, we move on
to the more challenging question: which partiality is desirable?

Due to the ambiguous nature of human language, a large amount
of partial parses exist for a given input. For deep linguistic pro-
cessing, a high level of local ambiguity means there are even more
partial parses due to the combinatorial explosion. For example, in
HPSG parsing with the ERG grammar, there are usually tens to hun-
dreds thousands of passive edges for inputs of moderate length (i.e.,
around 15 words). Different measures can be used to decide which
one of them is preferable. For instance, various heuristics metrics are
normally used, including the size (number of passive edges) of the
partial parse, the size of the longest spanning edge, or a heuristically
weighted path length of the partial parse, etc. More sophisticated
approaches involve scoring the partial parses with a trainable statis-
tical model. We will use the term partial parse selection for the task
of selecting the most plausible partial parse from all the possible ones
with the pool of passive edges on the parsing chart.

In this section, we will go through several partial selection models,
with either pure heuristic rules, or statistical disambiguation models.

It should be noted that only linguistic plausibility is concerned in
this context of discussion. We do not deny that in real applications,
the domain specific knowledge also influences the preference of the
selection, similar to its influence on the full parse selection. These
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can be hopefully also handled by adapting the parse selection models
to domain specific data.

6.2.1 Longest Edge

One of the simplest and most commonly used criteria in selecting the
best partial parse is to prefer the partial parses which contain an edge
that covers the largest fragment of the input. For example, under such
a criterion, the best partial parse in Figure 6.1 will be {a, g}, since
edge g has the largest span. The logic behind this criterion is that
such largest fragments should preserve the most interesting linguistic
analysis of the input. As added incentive, finding the longest edge
does not involve much search.

The limitations of such an approach are obvious. There is no guar-
antee that the longest edge will be significantly better than shorter
edges, or that it will even correspond to a valid constituent. More-
over, when there are multiple edges with the same length (which is
often the case in parsing), the criterion does not suffice for the choice
of the best partial parse.

6.2.2 Minimum Number of Fragments

Another intuitive criterion is to prefer the partial analysis which has
a minimum number of non-overlapping passive edges. Using this
criterion with Figure 6.1, the best partial parse will still be {a, g}, as
it comprises a minimum of two passive edges. The intuition behind
is that when the full analysis is not available, the input should be
broken into as a small number of fragments as possible.

The problem with this criterion is similar to the longest edge ap-
proach: on the one hand, there is no guarantee that the minimum
number of edges makes the partial parse more plausible; on the other
hand, it does not fully discriminate the partial parses with the same
number of passive edges.
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6.2.3 Shortest Path

Kasper et al. (1999) proposed an alternative solution to the problem.
If the preference of each edge as a part of the partial parse can be
quantitatively decided as a weight of the edge (with smaller weights
assigned to better candidates), then the problem of finding the best
partial parse is to find the shortest path from the start vertex to the
end vertex. Since the graph is completely connected (by the lexical
edges spanning all the input tokens) and topologically sorted, such a
path always exists. The discovery of such a path can be done in linear
time (O(|V |+ |E|)) with the DAG-shortest-path algorithm (Cormen
et al., 1990). Though not explicitly pointed out by Kasper et al.
(1999), such an algorithm allows the weights of the edges to be of
any real value (no assumption of positive weights) as long as the
graph is a Directed Acyclic Graph (DAG).

Kasper et al. (1999) did point out that the weights of the edges
can be assigned by an estimation function. For example, the im-
plementation of the algorithm in PET preferred phrasal edges over
lexical edges. Other types of edges are not allowed in the partial
parse. Suppose that we assign weight 1 to phrasal edges, 2 to lexical
edges, and inf to all other edges. Then for the graph in Figure 6.2,
the best partial parses are {e, g} and {f, g}, both of which have the
path length of 2. It should be noted that such an approach does not
always favor the paths with the longest edges (i.e., path {h, d} is not
preferred in the given example).

1w 2w 3w 4w
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Figure 6.2: Shortest path partial parses with heuristically assigned
edge weights

However, Kasper et al. (1999) did not provide any sophisticated
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estimation functions based on the shortest path approach. Using the
heuristic weight described above, usually thousands of different paths
are found with the same weight. Kasper et al. (1999) rely on another
scoring function in order to re-rank the partial parses. Although dif-
ferent requirements for the scoring function are discussed, no further
details have been defined.

Nevertheless, the shortest path approach and its variants are widely
in use in many robust deep parsing systems. For instance, Riezler
et al. (2002) use the fewest chunk method to choose the best fragment
analyses for sentences without full analysis. The well-formed maximal
projections (e.g., VP, NP, PP) are preferred over other grammatical
categories. With this partial parse selection method, the grammar
achieves full coverage on unseen data. A similar approach is also used
by van Noord et al. (1999).

The approach performs reasonably well in practice. And some eval-
uations have been presented showing the overall parser performance
given the shortest path selection (or a similar heuristic weight based
approach) in the aforementioned studies. However, we find that the
story about the partial parse selection method is somewhat short.
In particular, it is not clear whether there are better models which,
though less studied, will significantly outperform the current simple
approaches. Moreover, there is a lack of systematic comparative stud-
ies of the partial parse selection model in a convincing way to show
whether there is a significant performance difference among different
models.

6.2.4 Alternative Estimation Functions

Generally speaking, the weights of the edges in the shortest path ap-
proach represent the quality of the local analyses and their likelihood
of appearing in the analysis of the entire input.

This is an interesting parallel to the parse selection models for
the full analyses, where a goodness score is usually assigned to the
full analysis. As mentioned in earlier chapters already, the parse
disambiguation model described by Toutanova et al. (2002) uses a
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maximum entropy approach to model the conditional probability of
a parse for a given input sequence P (t|w). Similar approaches have
also been reported by Abney (1997); Johnson et al. (1999); Riezler
et al. (2002); Malouf and van Noord (2004).

The main difference is that we want to rank the intermediate pars-
ing results rather than full analyses here. There are usually some
well-formedness constraints given by the grammar (e.g., root con-
ditions) which must be satisfied by the maximal projections to be
licensed as full analyses. But for intermediate results, there are no
such constraints. On the one hand, this allows maximal robustness,
for all the local analyses are available on the parsing chart without
constraints from larger contexts. On the other hand, this also raises
the difficulty of fully discriminating the ambiguities, for a much larger
number of possible intermediate results need to be ranked.

Formally, for a given partial parse Φ =< t1, . . . , tk >, δ =< ω1, . . . , ωk >
is a segmentation of the input sequence so that each local analysis
ti ∈ Φ corresponds to a sub-string ωi ∈ δ of the input sequence
ω. Therefore, the probability of the partial parse Φ given an input
sequence ω is:

P (Φ|ω) = P (δ|ω) · P (Φ|δ) (6.1)

With the assumption that P (ti|ωi) are mutually independent for dif-
ferent i, we can derive:

P (Φ|ω) ≈ P (δ|ω) ·
k∏
i=1

P (ti|ωi) (6.2)

Therefore, the log-probability will be

logP (Φ|ω) ≈ logP (δ|ω) +
k∑

i=1

logP (ti|ωi) (6.3)

Equation 6.3 indicates that the log-probability of a partial parse
for a given input is the sum of the log-probability of local analy-
ses for the sub-strings, with an additional component − logP (δ|ω)
representing the conditional log-probability of the segmentation. If
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we use − logP (ti|ωi) as the weight for each local analysis, then the
DAG shortest path algorithm will quickly find the partial parse that
maximizes logP (Φ|ω)− logP (δ|ω).

The probability P (ti|ωi) can be modeled in a similar way to the
maximum entropy based full parse selection models:

P (ti|ωi) =
exp

∑n
j=1 λjfj(ti, ωi)∑

t′∈T exp
∑n

j=1 λjfj(t
′, ωi)

(6.4)

where T is the set of all possible structures that can be assigned to
ωi, f1 . . . fn are the features and λ1 . . . λn are the parameters. The
parameters can be efficiently estimated from a treebank, as shown
by Malouf (2002). The only difference from the full parse selection
model is that here intermediate results are used to generate events
for training the model (i.e., the intermediate nodes are used as pos-
itive events, if they occur on one of the active trees, or as negative
events, if not). Since there is a huge number of intermediate results
available, we only randomly select a part of them as training data.
This is essentially similar to the approach of Osborne (2000), where
there is an infeasibly large number of training events, only part of
which is used in the estimation step. The exact features used in the
log-linear model can significantly influence the disambiguation accu-
racy. However, this is beyond the scope of this discussion. In this
experiment we used the same features as those used in the PCFG-S

model of Toutanova et al. (2002) (i.e., depth-1 derivation trees).
With the n-gram language models trained on a large corpus, we

can derive the probability of input sequence P (ω), as well as all the
sub-sequences in the segmentations P (ωi). To estimate the condi-
tional probabilities of the segmentations, we first use the following
estimation to derive the unconditioned probabilities.

P̂ (δ) =
k∏
i=1

P (ωi) (6.5)

The estimation of the conditional probability can be derived by
normalizing the unconditioned probabilities over all the possible seg-
mentations for the input:
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P̂ (δ|ω) =
P̂ (δ)∑

δ′∈∆ P̂ (δ′)
(6.6)

where ∆ indicates the set of all possible segmentations. A closer look
easily reveals that P̂ (δ|ω) is solely determined by how independent
the occurrences of word groups are around each segmentation point.
Considering a bi-gram language model, the segmentation probability
is changed by a factor of P (wi)·P (wi+1)

P (wi,wi+1) from the language model prob-

ability of the input sequence P (ω) for each segmentation point at i.
Intuitively, a good (plausible and probable) segmentation should sep-
arate the input sequence at points where the joint probabilities are
lower than the product of individual probabilities. This indicates that
the words around the segmentation points are less correlated. Also,
note that since P̂ (δ|ω) will be normalized, the computation of the
language model probability for the input sequence is not necessary.
Computational-wise, the worst case time complexity of computing
P̂ (δ|ω) for all segmentations is O(|∆| · |ω|). |∆| can be potentially
large, for each position between words can be considered as a segmen-
tation point, leading to a total number of different segmentations up
to 2|ω|−1. Fortunately, in practice not all of them are licensed by the
grammar.

Unfortunately, the shortest path algorithm itself is not able to di-
rectly find the maximized P (Φ|ω), for each passive edge can occur
in different segmentations, making the assignment of P (δ|ω) to edges
difficult. Fully searching all the paths can be computationally ex-
pensive when there are a lot of different segmentations. In order
to achieve a balance between accuracy and efficiency, two different
approximation approaches are taken.

One way is to assume that the component logP (δ|ω) in Equa-
tion 6.3 has less significant effect on the quality of the partial parse.
If this is valid, then we can simply use − logP (ti|ωi) as edge weights,
and use the shortest path algorithm to obtain the best Φ. This will
be referred to as model I.

An alternative way is to first retrieve several “good” δ with rela-
tively high P (δ|ω), and then select the best edges ti that maximize
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P (ti|ωi) for each ωi in δ. We call this approach the model II.
How well these strategies work will be evaluated in Section 6.3.

Other strategies or more sophisticated searching algorithms (e.g., the
genetic algorithm) can also be used, but we will leave that to future
research. It is even possible to do a complete search for a global opti-
mal partial parse, though with even higher (potentially exponential)
computational complexity.

6.3 Evaluation of Partial Parse Selection
Models

The evaluation of partial parses is not as easy as the evaluation of full
parses. For full parsers, there are generally two ways of evaluation.
For parsers that are trained on a treebank using an automatically ex-
tracted grammar, an unseen set of manually annotated data is used
as the test set. The parser output on the test set is compared to the
gold standard annotation, either with the widely used PARSEVAL1

measurement, or with more annotation-neutral dependency relations.
The evaluation procedure is largely automated. The annotation qual-
ity plays a dominating role in such evaluation. When the analysis of
a specific language phenomenon needs to be changed, the treebank
annotation needs to be updated accordingly. It is, to say the least,
difficult and time consuming for manually annotated treebanks.

For parsers based on manually compiled precision grammars, more
human judgment is involved in the evaluation. Unlike the tree-
bank induced grammars, the precision grammar based parsing out-
put does not conform to the existing treebank annotation. More-
over, the analysis can change dramatically with the evolution of the
grammar. Therefore, the PARSEVAL metrics are not practical for
manually compiled precision grammars. More annotation-neutral

1The PARSEVAL metric counts the proportion of bracketings which group the same
sequences of words in both the gold standard trees and the parser output. Early
versions of the PARSEVAL metric ignored the question whether matching sequences
were labelled the same way in both trees (aka. unlabelled PARSEVAL), but more
refined versions have subsequently taken this into account (aka. labelled PARSEVAL).
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evaluation methods (e.g., dependency relation-based evaluation) are
plausible. However, extra effort is needed to convert the outputs,
if the precision grammar uses a different representation. For the
DELPH-IN grammars, we use the (Robust) Miminum Recursion Se-
mantics ((R)MRS; Copestake et al. (1999); Copestake (2006)) for se-
mantic output. The conversion from MRS to dependency structure is,
though possible, less well-studied.

Instead of relying on pre-annotated gold standard treebanks, the
evaluation of manually compiled DELPH-IN precision grammars is ac-
complished by so called dynamic treebanks. With the evolution of
the grammar, the treebank, as the parsing output from the gram-
mar, changes over time (Oepen et al., 2002). The grammar writer
needs to update the treebank by inspecting the parses generated by
the grammar and either “accepts” or “rejects” the new analyses. And
the performance change of the grammar/parser is evaluated upon the
updated treebank: the coverage is the proportion of grammatical sen-
tences which receive at least one correct analysis; the overgeneration
is the proportion of ungrammatical sentences which receive at least
one analysis, etc. However, the size of the dynamic treebanks is usu-
ally relatively small, for the burden of updating the entire treebank
after each grammar change is non-trivial. Also, the fixed set of test
items make the test non-blind. After several iterations, the grammar
can be specifically tuned for the test set, either intentionally or un-
intentionally. Therefore, only the first round of treebanking can be
regarded as an unbiased evaluation. In the evaluation of parser accu-
racy, the performance of the statistical disambiguation model should
also be considered together with the grammar performance.

However, the evaluation becomes more difficult for partial parsing.
In order to evaluate the partial parsing results for manually compiled
grammars, the criterion for acceptable analyses becomes less evident.
And most current treebanking tools are not designed for annotating
partial analyses. Large-scale manually annotated treebanks do have
the annotation for sentences that deep grammars are not able to fully
analyze. But the annotation difference in other language resources
makes the comparison less straightforward. More complication is
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involved with the platform and resources used in this experiment.
For instance, the transformation of incomplete RMRS fragments into
other representations is largely an open question.

In this section, we use both manual and automatic evaluation meth-
ods on the partial parsing results. Different processing resources are
used to help the evaluation from the syntactic, as well as the seman-
tic point of view. Some of the results have been reported earlier by
Zhang et al. (2007a), as well.

6.3.1 Syntactic Evaluation

In order to evaluate the quality of the syntactic structures of the
partial parses, we implemented the partial parse models described
in the previous section in the PET parser. The nov-06 version of
the ERG is used for the experiment. As test set, we used a subset
of sentences from the Wall Street Journal Section 22 from the Penn
Treebank. The subset contains 143 sentences which i) do not receive
any full analysis licensed by the grammar, and ii) do not contain
lexical gaps (input tokens for which the grammar cannot create any
lexical edge). The first criterion allows us to investigate the potential
of our partial parsing mechanism, while the second criterion avoids
the complication with the coverage loss due to an incomplete lexicon.
Although, the techniques developed in previous sections can largely
improve the lexical coverage and provide us with a larger test set, we
would like to carefully separate the different aspects of robustness in
this study. The average sentence length in this test set is 24 words.

Due to the inconsistency of the tokenization, bracketing and branch-
ing between the Penn Treebank annotation and the handling in ERG2,
we manually checked the partial parse derivation trees. Each output
is marked as one of the three cases: GBL (good labelled bracketing)
if both the bracketing and the labeling of the partial parse derivation

2In the Penn Treebank, most of the punctuations are treated as separate tokens/words,
while in the ERG most of them are treated as affixes. ERG analyses are strictly either
unary or binary, while the Penn Treebank branchings are much more flexible (i.e.,
flat construction for less agreed upon analyses).
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trees are good (with no more than two brackets crossing or four false
labellings); GB (good unlabelled bracketing) if the bracketings of the
derivation trees are good (with no more than two brackets crossing),
but the labeling is bad (with more than four false labellings); or E
(erroneous), if otherwise.

The manual evaluation results are listed in Table 6.1. The test
set is processed with two models presented in Section 6.2 (M-I for
model I, M-II for model II ). For comparison, we also evaluate for
the approach using the shortest path with heuristic weights (denoted
by SP). In case there are more than one path found with the same
weight, only the first one is recorded and evaluated.

GBL GB E
# % # % # %

SP 55 38.5% 64 44.8% 24 16.8%
M-I 61 42.7% 46 32.2% 36 25.2%
M-II 74 51.7% 50 35.0% 19 13.3%

Table 6.1: Syntactic evaluation results for different partial parse se-
lection models

The results show that the näıve shortest path approach based on
the heuristic weights works pretty well at predicting the bracketing
(with 83.3% of the partial parses having less than two brackets cross-
ing). But, when the labeling is also evaluated, it is worse than model
I, and even more significantly outperformed by model II.

6.3.2 Semantic Evaluation

Evaluation of the syntactic structure only reflects the partial parse
quality from some aspects. In order to get a more thorough com-
parison between different selection models, we look at the semantic
output generated from the partial parses.

The same set of 143 sentences from the Wall Street Journal Sec-
tion 22 of the Penn Treebank is used. The RMRS semantic repre-
sentations are generated from the partial parses with different selec-
tion models. To compare, we used RASP 2 (Briscoe et al., 2006), a



110 6. Efficient Partial Parsing

domain-independent robust parsing system for English. According to
Briscoe and Carroll (2006), the parser achieves a fairly good accuracy
of around 80%. The reasons why we choose RASP for the evaluation
are: i) RASP has reasonable coverage and accuracy; ii) its output can
be converted into RMRS representation with the LKB system. Since
there is no large scale (R)MRS treebank with sentences not covered
by the DELPH-IN precision grammars, we hope to use the RASP’s
RMRS output as a standalone annotation to help the evaluation of the
different partial parse selection models. However, we do not claim
that the RASP output is the “gold standard” from any aspect. In
fact, a shortest path algorithm similar to ours is used in the system
to achieve maximal robustness. The output from RASP is used as ref-
erence to help us compare whether there is a significant performance
difference between our partial parse selection models. But none of the
following results should be taken as an absolute quantitative measure.

In future research, we do see an emerging need for a platform inde-
pendent standard evaluation for deep linguistic processing systems.
For both deep and shallow parsing systems, we have seen that in re-
cent years more and more researchers have expressed a similar opinion
in different ways (e.g., Carroll, 1998; Carroll et al., 2002). More re-
cently, we have also seen that for the shallow parsing community, de-
pendency structure based evaluation is becoming a de facto standard
(Buchholz and Marsi, 2006). Some of the deep processing systems can
produce compatible dependency structures, which allow cross plat-
form evaluation. However, due to its limitation in expression power,
fine grain linguistic description of subtle meanings is not always avail-
able. For the deep processing systems which adopt richer semantic
representations (e.g., (R)MRS), conversion to dependency structures
is a workaround, rather than an optimal solution. One possible direc-
tion is to explore the methods to convert from dependency structures
into (R)MRS, and use (R)MRS as the basis for evaluation. It is also
necessary to create a larger gold standard (R)MRS treebank which
is manually corrected and independent from other specific language
resources. Also, the development of SEM-I (stands for semantic in-
terface) for DELPH-IN deep grammars is an initial step in such an
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direction, where the clearly defined semantic output will largely fa-
cilitate the platform independent parser evaluation.

Back to our evaluation, in order to compare the RMRS from the
RASP and the partial parse selection models, we used the similarity
measurement proposed by Dridan and Bond (2006). The comparison
outputs a distance value between two different RMRSs. We normalized
the distance value to be between 0 and 1. For each selection model,
the average RMRS distance from the RASP output is listed in Table 6.2.

RMRS Dist.(φ)

SP 0.674
M-I 0.330
M-II 0.296

Table 6.2: RMRS distance to RASP outputs

Again, we see that the outputs of model II achieve the highest
similarity when compared to the RASP output. With some manual
validation, we do confirm that the different similarity does imply a
significant difference in the quality of the output RMRS. The shortest
path with heuristic weights yielded very poor semantic similarity.
The main reason is that not every edge with the same span generates
the same semantics. Therefore, although the SP receives reasonable
bracketing accuracy, it has less idea of the goodness of different edges
with the same span. By incorporating P (ti|ωi) in the scoring model,
models I and II can produce RMRSs with much higher quality.

6.4 Efficiency Concerns

In earlier chapters, we mentioned that there are three main aspects
of deep processing which attract most of the research interests: ro-
bustness/coverage, specificity and efficiency. While this dissertation
is mainly about robustness and coverage, the specificity problem is
also discussed. For instance, the partial parse selection models dis-
cussed earlier in the chapter deal with the ambiguity of intermediate
parsing results, and help select the most probable partial analyses.
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The efficiency problem, as the other element from the trinity, will be
discussed in this and the next section.

Over the last decades, the efficiency of deep parsing techniques
has been significantly improved and matured to the degree that deep
processing of large corpora with moderate personal computers is be-
coming practical. Unlike shallow processing, deep processing usually
involves formalisms with stronger representation power, and larger
searching space. To cope with the complex data structures (e.g.,
TFSes) more efficiently, various techniques have been developed. For
instance, in unification-based parsing, the most time consuming op-
erations are feature structure unifications and copies. The quasi-
destructive graph unifications algorithm described by Tomabechi (1991)
is based on the simple, yet important insight that not all the unifica-
tions succeed. By eliminating copying for unsuccessful unifications,
the algorithm is often seen as the most efficient unification algorithm
for natural language processing today.

Another useful efficient processing technique for unification-based
processing is called “quick-check” (Malouf et al., 2000). It reduces
the time spent on unifications by starting on the feature paths which
fail most often. This technique requires training on a corpus to obtain
the statistical failure frequency for different feature paths, and it is
most effective when the unification failure rate is high.

Large TFSes also present a storage difficulty. In fact, not all the
TFSes should necessarily be stored in memory throughout the parsing
process. Therefore, a commonly used strategy is to only store the
basic information of the parsing edge (i.e., the start and end position,
type, parents and daughters). The feature structures are not stored
on the chart, and only reconstructed on request.

Another aspect of efficient processing is concerned with the han-
dling of local ambiguities. The searching involved in natural language
processing is rooted to the fact that languages are ambiguous. Es-
pecially when looked at under the microscope, each sub-string can
receive a large number of different analyses without looking at the
larger context in which it is used. In bottom up chart parsing, such
ambiguous local readings will be generated and kept on the chart. For
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deep processing, such local ambiguities are necessary in order to help
discriminate the subtle different readings. However, this also leads
to the inefficiency of storing redundant information and repeatedly
searching over them. To deal with this problem, the ambiguity pack-
ing mechanisms are used. This makes parsing a two-phase operation.
During the first phase, the local ambiguities are grouped together in a
packed representation, and the parse forest is created efficiently. The
second phase decomposes the packed representations and retrieves
the parsing results. In constraint-based parsing, a technique called
retro-active subsumption base packing has been introduced to achieve
high packing ratio (Oepen and Carroll, 2000).

In relation to our partial parsing approach, the ambiguity pack-
ing mechanism is especially intriguing. In normal parsing, top down
predictions (e.g., the entire input sequence to be analyzed as specific
category) can be used to narrow the search space. But in our partial
parsing, no constraints are presumed, and a pure bottom-up approach
must be used. For large grammars, this means a huge amount of pas-
sive edges on the parsing chart. Without ambiguity packing, the
parser will run out of storage space quickly with the increase of input
length.

In fact, all of the efficient processing techniques mentioned above
(as well as many others) have been implemented in the PET parser.
But it was not clear until recently how to efficiently recover the best
readings from the packed representation. This technique is known
as “selective unpacking”, and will be discussed in detail in the next
section.

6.5 Selective Unpacking

6.5.1 Ambiguity Packing

Oepen and Carroll (2000) introduced an efficient ambiguity packing
algorithm for unification-based processing systems. The motivation
is that the equivalence based packing mechanism is ineffective for sys-
tems using formalisms like (typed) feature structures. In practice, the
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chance of two (typed) feature structures being identical is very small.
They might share most of the information, but still exhibit minor
differences. Therefore, equivalence based ambiguity packing, though
very useful in CFG parsing, requires refinement when faced with TFSes.
The subsumption relation between TFSes provides a good substitute
for the equivalency. TFS A subsumes B when B contains more con-
straints (and is more specific) than A. Whenever a unification suc-
ceeds with B, it will also succeed with A. In subsumption-based
ambiguity packing, more specific edges are packed into more general
ones. This helps reduce the number of unifications during the parse
forest creation phase. Oepen and Carroll (2000) also provided an
efficient bi-directional subsumption check algorithm with linear-time
complexity. Therefore, not only new edges are packed into existing
more general edges. Old edges will be also packed into newly cre-
ated ones if the subsumption holds. This allows for maximal packing
ratio. The empirical results reported by Oepen and Carroll (2000)
show that the packing mechanism largely reduced the memory usage
and parsing time. Especially during the parse forest creation phase,
the average parsing time increases with the sentence length in a nice
linear fashion.

6.5.2 Selective Unpacking Procedure

In Oepen and Carroll (2000), the unpacking phase of the parser was
not discussed in details. It was pointed out that since more specific
feature structures are packed, further unification is necessary during
the unpacking phase to validate its compatibility with other siblings
of the grammar rule. When unpacking exhaustively, it can be done by
recursively checking all the combinations in the cross-multiplication
of all the unpacked daughters of a given edge. But empirical results
show (both by Oepen and Carroll (2000) and in our practice) that
the unpacking time grows exponentially with the length of the input.

Carroll and Oepen (2005) presented an algorithm to selectively
unpack the best readings according to the maximum entropy score
assigned by the disambiguation model. The algorithm was originally
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proposed in the context of efficient chart-based text generation. But
it is applicable to efficient parsing, as well.

Two key notions introduced in the selective unpacking procedure
are the concepts of i) decomposing an edge locally into candidate ways
of instantiating it and of ii) nested contexts of ‘horizontal’ search
for ranked hypotheses (i.e., uninstantiated edges) about candidate
sub-trees. Figure 6.3 is an example from Carroll and Oepen (2005),
showing the packed parse forest and the decompositions.
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〈

2 3
〉
|
〈

4 3
〉

2 →
〈

5 6
〉
|
〈

5 7
〉
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8 6
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|
〈

8 7
〉
|
〈

9 6
〉
|
〈

9 7
〉

6 →
〈

10
〉
|
〈

11
〉

Figure 6.3: Sample forest and sub-node decompositions

The ovals in the forest (on the left) indicate packing of edges un-
der subsumption, i.e., edges 4 , 7 , 9 , and 11 are not in the chart
proper. During unpacking, there will be multiple ways of instanti-
ating a chart edge, each obtained from cross-multiplying alternate
daughter sequences locally. The elements of this cross-product we
call decomposition, and they are pivotal points both for stochastic
scoring and dynamic programming in selective unpacking. The ta-
ble on the right shows all non-leaf decompositions for our example
packed forest: given two ways of decomposing 6 , there will be three
candidate ways of instantiating 2 and six for 4 , respectively, for a
total of nine full trees.

Carroll and Oepen (2005) assume a context size of no more than
depth one. Given a decomposition, i.e., a vector of candidate daugh-
ters to a token construction, an index vector < i0 . . . in > serves
to keep track of ‘vertical’ search among daughter hypotheses, where
each index ij denotes the i-th hypothesis of the daughter at position
j. Hypotheses are associated with ME scores and ordered within
each nested context by means of a local agenda (stored in the orig-
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inal representative edge). Given the additive nature of ME scores
on complete derivations, it can be guaranteed that larger derivations
including an edge e as a sub-constituent on the fringe of their local
context of optimization will use the best instantiation of e in their
own best instantiation. The second-best larger instantiation, in turn,
will be obtained from moving to the second-best hypothesis for one
of the elements in the (right-hand side of the) decomposition. There-
fore, nested local optimizations result in a top-down, exact n -best
search through the generation forest, and matching the ‘depth’ of
local decompositions to the maximum required ME feature context
effectively prevents exhaustive cross-multiplication of packed nodes.

The core of the algorithm is a top-down search with dynamic pro-
gramming, described as pseudo-code in Figure 6.4.

The entry procedure selectively-unpack-edge() controls the enumer-
ation of the top n best instantiated realizations for a result edge
from a packed forest. The main procedure hypothesize-edge() controls
the nested search for the nth best realization (hypothesis) of a given
edge without instantiating it. The set of the decompositions for the
edge will be initialized on the first call and put onto the agenda
(see lines 11 − 17). Furthermore, the procedure retrieves the cur-
rent next-best hypothesis from the agenda (line 18), generates new
hypotheses by advancing the daughter indices (while skipping over
configurations seen earlier) and calling itself recursively for each new
index (line 19− 27), and, finally, arranges for the resulting hypothe-
sis to be cached for later invocations on the same edge and i values
(line 28). An auxiliary procedure decompose-edge() performs local
cross-multiplication as shown in the examples in Figure 6.3. Another
utility function not shown in the pseudo-code is advance-indices(), a
‘driver’ routine searching for alternate instantiations of the daugh-
ter edges, e.g., advance-indices(〈0 2 1〉) → {〈1 2 1〉 〈0 3 1〉 〈0 2 2〉}. Fi-
nally, instantiate-hypothesis() is the function that actually builds result
trees, replaying the unifications of constructions from the grammar
(as identified by chart edges) with the feature structures of daughter
constituents.

Note that there is no feature structure unifications or copies in-
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1 procedure selectively-unpack-edge(edge ,n) ≡
2 results← 〈 〉; i← 0;
3 do
4 hypothesis← hypothesize-edge(edge , i); i← i + 1;
5 if (new← instantiate-hypothesis(hypothesis)) then
6 n← n − 1; results← results ⊕ 〈new〉;
7 while (hypothesis and n ≥ 1)
8 return results;

9 procedure hypothesize-edge(edge , i) ≡
10 if (edge.hypotheses[i]) return edge.hypotheses[i];
11 if (i = 0) then
12 for each (decomposition in decompose-edge(edge)) do
13 daughters← 〈 〉; indices← 〈 〉
14 for each (edge in decomposition.rhs) do
15 daughters← daughters ⊕ 〈hypothesize-edge(edge, 0)〉;
16 indices← indices ⊕ 〈0〉;
17 new-hypothesis(edge, decomposition, daughters, indices);
18 if (hypothesis← edge.agenda.pop()) then
19 for each (indices in advance-indices(hypothesis.indices)) do
20 if (indices ∈ hypothesis.decomposition.indices) then continue
21 daughters← 〈 〉;
22 for each (edge in hypothesis.decomposition.rhs) each (i in indices) do
23 daughter← hypothesize-edge(edge, i);
24 if (not daughter) then daughters← 〈 〉; break
25 daughters← daughters ⊕ 〈daughter〉;
26 if (daughters) then
27 new-hypothesis(edge, hypothesis.decomposition, daughters, indices)
28 edge.hypotheses[i]← hypothesis;
29 return hypothesis;

30 procedure new-hypothesis(edge ,decomposition ,daughters , indices) ≡
31 hypothesis← new hypothesis(decomposition, daughters, indices);
32 edge.agenda.insert(score-hypothesis(hypothesis), hypothesis);
33 decomposition.indices← decomposition.indices ∪ {indices};

Figure 6.4: Selective unpacking procedure
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volved in the procedure hypothesize-edge(); those computationally ex-
pensive operations are only involved in routine instantiate-hypothesis(),
and performed as late as possible on top ranked hypotheses only.

Unlike the beam search based n-best forest read-out procedure pro-
posed by Malouf and van Noord (2004), Carroll and Oepen (2005)
are able to find the exact n-best readings while avoiding exhaustive
cross-multiplication of packed nodes.

6.5.3 Feature Context Extension

The main problem with Carroll and Oepen (2005)’s selective unpack-
ing algorithm is that its search context is limited to the local trees of
depth one. However, some of the ME model features used in the cur-
rent system require a larger context to be observed. In Table 6.3, we
list some examples of the features used in our disambiguation model.
The Type column indicates the template corresponding to each sam-
ple feature. Type 1 is for the CFG style local branching features.
Type 2 is similar to type 1, only that only one of the daughters of the
branching is listed. The integer that starts each feature of type 1 or
2 indicates the degree of grandparenting. Type 3 is for the lexical n-
gram features, with the first integer indicating the size. The symbols
4 and C denote the root of the tree and left periphery of the yield,
respectively.

Using contexts of trees with depth one, only those features of type
1 and 2 with grandparenting level 0 can be computed. Although the
authors claimed that the extension to larger context is straightfor-
ward, no concrete solution was given in the paper.

Both Toutanova et al. (2005) and our own experiments (described
later in the section) suggest that properties of larger contexts and es-
pecially grandparenting can greatly improve parse selection accuracy.
The following paragraphs outline how to generalize the basic selec-
tive unpacking procedure, while retaining its key properties: exact
n-best enumeration with minimal search. This work has been partly
reported earlier in Zhang et al. (2007b), as well.

Our generalization of the algorithm distinguishes between ‘upward’
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Type Sample Features

1 〈0 subjh hspec third sg fin verb〉
1 〈1 4 subjh hspec third sg fin verb〉
1 〈0 hspec det the le sing noun〉
1 〈1 subjh hspec det the le sing noun〉
1 〈2 4 subjh hspec det the le sing noun〉
2 〈0 subjh third sg fin verb〉
2 〈0 subjh hspce〉
2 〈1 subjh hspec det the le〉
2 〈1 subjh hspec sing noun〉
3 〈1 n intr le dog〉
3 〈2 det the le n intr le dog〉
3 〈3 C det the le n intr le dog〉

Table 6.3: Examples of structural features

contexts, with grandparenting with dominating nodes as a represen-
tative feature type, and ‘downward’ extensions, which we discuss for
the example of lexical n-gram features (type 3 features in Table 6.3).

A näıve approach to selective unpacking with grandparenting might
be extending the cross-multiplication of local ambiguity to trees of
more than depth one. However, with multiple levels of grandpar-
enting this approach would greatly increase the combinatorics to be
explored, and it would pose the puzzle of overlapping local contexts
of optimization. Choices made among the alternates for one packed
node would interact with other ambiguity contexts in their internal
nodes, rather than merely at the leaves of their decompositions. How-
ever, it is sufficient to keep the depth of decompositions to minimal
sub-trees and rather contextualize each decomposition as a whole.
Assuming our sample forest and set of decompositions from Fig-
ure 6.3, let 〈1 4〉 : 6→〈10〉 denote the decomposition of node 6
in the context of 4 and 1 as its immediate parents. When descend-
ing through the forest, hypothesize-edge() can, without significant extra
cost, maintain a vector ~P = 〈pn . . . p0〉 of parents of the current node,
for n-level grandparenting. For each packed node, the bookkeeping
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elements of the graph search procedure need to be contextualized
on ~P , viz. (a) the edge-local priority queue, (b) the record of index
vectors hypothesized already, and (c) the cache of previous instan-
tiations. Assuming each is stored in an associative array, then all
references to edge.agenda in the original procedure can be replaced
by edge.agenda[~P ], and likewise for other slots. With these exten-
sions in place, the original control structure of nested, on-demand
creation of hypotheses and dynamic programming of partial results
can be retained, and for each packed node with multiple parents (6 in
our sample forest) there will be parallel, contextualized partitions of
optimization. Thus, extra combinatorics introduced in this general-
ized procedure are confined to only such nodes, which (intuitively at
least) appear to establish the lower bound of added search needed—
while keeping the algorithm non-approximative. Empirical data on
the degradation of the procedure in growing levels of grandparenting
and the number of n-best results to be extracted from the forest is
to be shown later in the section.

Finally, we turn to enlarged feature contexts that capture informa-
tion from nodes below the elements of a local decomposition. Con-
sider the example of feature type 3 in Table 6.3, n-grams (of various
size) over properties of the yield of the parse tree. For now we only
consider lexical bi-grams. For an edge e dominating a sub-string of
n words 〈wi . . . wi+n−1〉 there will be n − 1 bi-grams internal to e,
and two bi-grams that interact with wi−1 and wi+n—which will be
determined by the left- and right-adjacent edges to e in a complete
tree. The internal bi-grams are unproblematic, and we can assume
that ME weights corresponding to these features have been included
in the sum of weights associated to e. Seeing that e may occur in
multiple trees, with different sister edges, the selective unpacking pro-
cedure has to take this variation into account when evaluating local
contexts of optimization.

Let xey denote an edge e, with x and y as the lexical types of
its leftmost and rightmost daughters, respectively. Returning to our
sample forest, assume lexicalizations β 10β and γ 11γ (each spanning
only one word), with β 6= γ. Obviously, when decomposing 4 as



6.5 Selective Unpacking 121

〈8 6〉, its ME score, in turn, will depend on the choice made in
the expansion of 6 : the sequences 〈α8α β 6β〉 and 〈α8α γ 6γ〉 will dif-
fer in (at least) the scores associated with the bi-grams 〈αβ〉 vs.
〈α γ〉. Accordingly, when evaluating candidate decompositions of 4 ,
the number of hypotheses that need to be considered is doubled; as
an immediate consequence, there can be up to eight distinct lexi-
calized variants for the decomposition 1→〈4 3〉 further up in the
tree. It may look as if combinatorics will cross-multiply throughout
the tree—in the worst case returning us to an exponential number
of hypotheses—but this is fortunately not the case: regarding the
external bi-grams of 1 , node 6 no longer participates in its left- or
rightmost periphery, so variation internal to 6 is not a multiplicative
factor at this level. This is essentially the observation of Langkilde
(2000), and her bottom-up factoring of n-gram computation is easily
incorporated into our top-down selective unpacking control structure.
At the point where hypothesize-edge() invokes itself recursively (line 23
in Figure 6.4), its return value is now a set of lexicalized alternates,
and the hypothesis creation (in line 26) can take into account the local
cross-product of all such alternation. Including additional properties
from non-local sub-trees (for example higher-order n-grams and head
lexicalization) is a straightforward extension of this scheme, replacing
our per-edge left- and rightmost periphery symbols with a general-
ized vector of externally relevant, internal properties. In addition
to traditional (head) lexicalization as we have just discussed it, such
extended ‘downward’ properties on decompositions—percolated from
daughters to mothers and cross-multiplied as appropriate—could in-
clude metrics of constituent weight too, for example in order to enable
the ME model to prefer “balanced” coordination structures.

However, given that Toutanova et al. (2005) obtain only marginally
improved parse selection accuracy from the inclusion of n-gram (and
other lexical) ME features, we have left the implementation of lexi-
calization and empirical evaluation for future work.
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6.5.4 Instantiation Failure Caching and
Propagation

As we pointed out earlier, during the unpacking phase, unification is
only replayed in instantiate-hypothesis() on the top-level hypotheses. It
is only at this step that inconsistencies in the local combinatorics are
discovered. However, such a discovery can be used to improve the
unpacking routine by (a) avoiding further unification on hypotheses
that have already failed to instantiate, (b) avoiding creating new hy-
potheses based on failed sub-hypotheses. This requires some changes
to the routines instantiate-hypothesis() and hypothesize-edge(), as well as
an extra boolean marker for each hypothesis.

The extended instantiate-hypothesis() starts by checking whether the
hypothesis is already marked as failed. If it is not marked so, the
routine recursively instantiates all sub-hypotheses. Any failure will
again lead to instant return. Otherwise, unification is used to create
a new edge from the outcome of the sub-hypothesis instantiations. If
this unification fails, the current hypothesis is marked. Moreover, all
its ancestor hypotheses are also marked (by recursively following the
pointers to the direct parent hypotheses) as they are also guaranteed
to fail.

Correspondingly, hypothesize-edge() needs to check the instantiation
failure marker to avoid returning hypotheses that are guaranteed to
fail. If a hypothesis coming out of the agenda is already marked as
failed, it will be used to create new hypotheses (with advance-indices()),
but dropped afterward. Subsequent hypotheses will be popped from
the agenda until either a hypothesis that is not marked as failed is
returned, or the agenda is empty.

Moreover, hypothesize-edge() also needs to avoid creating new hy-
potheses based on failed sub-hypotheses. When a failed sub-hypothesis
is found, the creation of the new hypothesis is skipped. But the
index vector ~I may not be simply discarded. Otherwise hypothe-
ses based on advance-indices(~I) will not be reachable in the search.
On the other hand, simply adding every advance-indices(~I) on to the
pending creation list is not efficient either in the case where multiple
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sub-hypotheses fail.

To solve the problem, we compute a failure vector ~F = 〈f0 . . . fn〉,
where fj is 1 when the sub-hypothesis at position j is known as
failed, and 0 otherwise. If a sub-hypothesis at position j fails, then
all the index vectors having value ij at position j must also fail.

By putting the result of ~I + ~F on the pending creation list, we can
safely skip the failed rows of sub-hypotheses, while not losing the
reachability of the others. As an example, suppose we have a ternary
index vector 〈3 1 2〉 for which a new hypothesis is to be created. By
checking the instantiation failure marker of the sub-hypotheses, we
find that the first and the third sub-hypotheses are already marked.
The failure recording vector will then be 〈1 0 1〉. By putting 〈4 1 3〉 =
〈3 1 2〉+ 〈1 0 1〉 on to the pending hypothesis creation list, the failed
sub-hypotheses are skipped.

For completeness, we give the pseudo-code of the extended algo-
rithm with support for arbitrary levels of grandparenting features and
instantiation failure caching in Figure 6.5.

The main difference to the original algorithm is that we added an
extra parameter path to the procedure hypothesize-edge() to discrimi-
nate different grandparenting context. Multiple agendas are used to
control the search of the next-best hypothesis under different grand-
parents. Whenever a new hypothesis is created, it is put onto all the
agendas. Its score under different grandparenting context will be cal-
culated, as well. Whenever a new grandparenting context (path) is
found, all the existing hypotheses will be reevaluated under the new
context and added to the newly created agenda. The vector failed-
dtrs is used to skip the known failed hypotheses. Also the failure
propagation function propagate-failure() is also outlined in pseudo-code.
It requires that each hypothesis keeps a list of back pointers to its
parent hypotheses.

6.5.5 Evaluation

To evaluate the performance of the selective unpacking algorithm,
we carried out a series of empirical evaluations with the ERG and GG
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1 procedure selectively-unpack-edge(edge ,n) ≡
2 return selectively-unpack-edge(edge, 〈4〉, n);

3 procedure selectively-unpack-edge(edge ,path ,n) ≡
4 results← 〈 〉; i← 0;
5 do
6 hypothesis← hypothesize-edge(edge ,path , i); i← i + 1;
7 if (new← instantiate-hypothesis(hypothesis)) then
8 n← n − 1; results← results ⊕ 〈new〉;
9 while (hypothesis and n ≥ 1);

10 return results;

11 procedure new-hypothesis(edge ,decomposition ,daughters , indices) ≡
12 hypothesis← new hypothesis(decomposition, daughters, indices);
13 edge.all-hypotheses← edge.all-hypotheses ⊕ 〈hypothesis〉;
14 for each (path inedge.paths) do
15 edge.agenda[path].insert(score-hypothesis(path, hypothesis), hypothesis);
16 decomposition.indices← decomposition.indices ∪ {indices};

17 procedure propagate-failure(hypothesis) ≡
18 hypothesis.inst-failed← true;
19 for each (hypo-parent in hypothesis.parents) do
20 propagate-failure(hypo-parent);

Figure 6.5: Extended selective unpacking procedure with support for
arbitrary levels of grandparenting features and instantia-
tion failure caching



6.5 Selective Unpacking 125

21 procedure hypothesize-edge(edge ,path , i) ≡
22 if (path not in edge.paths)
23 for each (hypo in edge.all-hypotheses) do
24 edge.ageanda[path].insert(score-hypothesis(path, hypo), hypo);
25 paths← paths ⊕ 〈path〉;
26 else if (i < |edge.hypotheses(path)|)
27 return edge.hypotheses(path)[i];
28 if (i = 0 and |paths| = 1) then
29 for each (decomposition in decompose-edge(edge)) do
30 daughters← 〈 〉; indices← 〈 〉;
31 for each (dedge in decomposition.rhs) do
32 daughters← daughters ⊕ 〈hypothesize-edge(dedge, path ⊕ 〈edge〉, 0)〉;
33 indices← indices ⊕ 〈0〉;
34 new-hypothesis(edge, decomposition, daughters, indices);
35 while (hypothesis← edge.agenda[path].pop() and i ≥ |edge.hypotheses(path)|)
36 adv-indices← advance-indices(hypothesis.indices);
37 for each (indices in adv-indices) do
38 if (indices ∈ hypothesis.decomposition.indices) then continue;
39 daughters← 〈 〉; failed-dtrs← 〈 〉;
40 for each (dedge in hypothesis.decomposition.rhs) each (i in indices) do
41 daughter← hypothesize-edge(dedge, path ⊕ 〈edge〉, i);
42 if (not daughter) then daughters← 〈 〉; break;
43 if (daughter.inst-failed) then failed-dtrs← failed-dtrs ⊕ 〈1〉;
44 else failed-dtrs← failed-dtrs ⊕ 〈0〉;
45 daughters← daughters ⊕ 〈daughter〉;
46 if (daughters) then
47 if (failed-dtrs = ~0) then
48 new-hypothesis(edge, hypothesis.decomposition, daughters, indices);
49 else adv-indices← adv-indices ⊕ 〈indices + failed-dtrs〉;
50 if (i < |edge.hypotheses(path)|) then return edge.hypotheses(path)[i];
51 else return null;

Figure 6.5 (continued)

(Müller and Kasper, 2000; Crysmann, 2003, 2005), in combination
with a modified version of the PET parser. [incr tsdb()] profiling
system is used in combination with the PET parser and the aforemen-
tioned grammars to achieve fine-grained performance analyses with
different configurations of the packing/unpacking algorithms. When
running the ERG we used as our test set the JH4 section of the LOGON
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treebank3, which contains 1,603 items with an average sentence length
of 14.6 words. The remaining LOGON treebank (of around 8,000 items)
was used for training the various ME parse disambiguation models.
For the experiment with the GG, we designated a 2,825 item portion of
the DFKI Verbmobil treebank4 for our tests, and trained ME models
on the remaining 10,000 utterances. At only 7.4 words, the average
sentence length is much shorter in the Verbmobil data.
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Figure 6.6: Parsing times for different configurations using the ERG,
in all three cases searching for up to ten results, without
the use of grandparenting.

We ran seven different configurations of the parser with different
search strategies and (un-)packing mechanisms:

• Agenda driven greedy n-best parsing using the ME score with-
out grandparenting features; no local ambiguity packing;

• Local ambiguity packing with exhaustive unpacking, without
grandparenting features;

3The treebank consists of several booklets of edited, instructional texts on back-
country activities in Norway. The data is available from the LOGON web site at
‘http://www.emmtee.net’.

4The data in this treebank is taken from transcribed appointment scheduling dialogs;
see ‘http://gg.dfki.de/’ for further information on GG and its treebank.
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• Local ambiguity packing and selective unpacking for n-best
parsing, with 0 through 4 levels of grandparenting (GP) fea-
tures.

As a side-effect of differences in efficiency, some configurations
could not complete parsing all sentences given reasonable memory
constraints (which we set at a limit of 100k passive edges or 300 sec-
onds processing time per item). The overall coverage and processing
time of different configurations on JH4 are given in Table 6.4.

Configuration GP Coverage Time (s)

greedy best-first 0 91.6% 3889

exhaustive unpacking 0 84.5% 4673

selective unpacking

0 94.3% 2245
1 94.3% 2529
2 94.3% 3964
3 94.2% 3199
4 94.2% 3502

Table 6.4: Coverage on the ERG for different configurations, with
fixed resource consumption limits (of 100k passive edges
or 300 seconds). In all cases, up to ten ‘best’ results were
searched, and Coverage shows the percentage of inputs
that succeed to parse within the available resource. Time
shows the end-to-end processing time for each batch.

The correlation between processing time and coverage is interest-
ing. However, it makes the efficiency comparison difficult as the
parser behavior is not clearly defined when the memory limit is ex-
ceeded. To circumvent this problem, in the following experiments
we average only over those 1362 utterances from JH4 that complete
parsing within the resource limit in all seven configurations. Nev-
ertheless, it must be noted that this restriction potentially reduces
efficiency differences among configurations, as some of the more chal-
lenging inputs (which typically lead to the largest differences) are
excluded.
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Figure 6.7: Mean times for selective unpacking of all test items for
n-best parsing with the ERG, for varying n and grandpar-
enting (GP) levels

Figure 6.6 compares the processing time of different configurations.
The difference is much more significant for longer sentences (i.e., with
more than 15 words). If the parser unpacks exhaustively, the time
for unpacking grows with the sentence length at a quickly increasing
rate. In such cases, the efficiency gain with ambiguity packing in
the parsing phase is mostly lost in the unpacking phase. The graph
shows that greedy best-first parsing without packing outperforms ex-
haustive unpacking for sentences of less than 25 words. With sen-
tences longer than 25 words, the packing mechanism helps the parser
overtake greedy best-first parsing, although the exhaustive unpacking
time also grows fast.

With the selective unpacking algorithm presented earlier in the sec-
tion, unpacking time is reduced, and grows only slowly as sentence
length increases. Unpacking up to ten results, when contrasted with
the timings for forest creation (i.e., the first parsing phase) in Fig-
ure 6.6, adds a near-negligible extra cost to the total time required
for both phases. Moreover, Figure 6.7 shows that with selective un-
packing, as n is increased, unpacking time grows roughly linearly for
all levels of grandparenting (albeit always with an initial delay in
unpacking the first result).

Table 6.6 summarizes a number of internal parser measurements
using the ERG with different packing/unpacking settings. Besides the
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Configuration Exact Match Top Ten

random choice 11.34 43.06
no grandparenting 52.52 68.38
greedy best-first 51.79 69.48

grandparenting[1] 56.83 85.33
grandparenting[2] 56.55 84.14
grandparenting[3] 56.37 84.14
grandparenting[4] 56.28 84.51

Table 6.5: Parse selection accuracy for various levels of grandparent-
ing. The exact match column shows the percentage of
cases in which the correct tree, according to the treebank,
was ranked highest by the model; conversely, the top ten
column indicates how often the correct tree was among the
ten top-ranking results.

difference in processing time, we also see a significant difference in
“space” between exhaustive and selective unpacking. Also, the differ-
ence in “unifications” and “copies” indicates that with our selective
unpacking algorithm, these expensive operations on typed feature
structures are significantly reduced.

In return for increased processing time (and marginal loss in cover-
age) when using grandparenting features, Table 6.5 shows some large
improvements in parse selection accuracy (although the picture is less
clear-cut at higher-order levels of grandparenting5). A balance point
between efficiency and accuracy can be made according to application
needs.

Finally, we compare the processing time of the selective unpacking
algorithm with and without instantiation failure caching and prop-
agation. The empirical results for GG are summarized in Table 6.7,

5The models were trained using the open-source TADM package (Malouf, 2002), using
default hyper-parameters for all configurations, viz. a convergence threshold of 10−8,
a variance of the prior of 10−4, and a frequency cut-off of 5. It is likely that further
optimization of hyper-parameters for individual configurations would moderately im-
prove model performance, especially for higher-order grandparenting levels with large
numbers of features.
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showing clearly that the technique reduced unnecessary hypotheses
and instantiation failures. The design philosophy of the ERG and GG

differ. During the first, forest creation phase, GG suppresses a number
of features (in the HPSG sense, not the ME sense) that can actually
constrain the combinatorics of edges. This move makes the packed
forest more compact, but it implies that unification failures will be
more frequent during unpacking. In a sense, GG thus moves part of the
search for globally consistent derivations into the second phase, and
it is possible for the forest to contain ‘result’ trees that ultimately
turn out to be incoherent. Dynamic programming of instantiation
failures makes this approach tractable, while retaining the general
breadth-first characteristic of the selective unpacking regime.

The efficient n-best unpacking algorithm allows us to selectively
investigate a large number of passive edges in a packed representation
without exhaustively unpacking everything. Both models (I and II)
we proposed in the previous section heavily depend on the use of the
selective unpacking algorithm.

6.5.6 Discussion

The n-best unpacking algorithm we have described in this section
is closely related to a number of other works in the field of efficient
parsing algorithms.

The closest approach to ours is Huang and Chiang (2005), where
a series of increasingly efficient algorithms for unpacking n-best re-
sults from a weighted hyper-graph representing a parse forest are pre-
sented. While their final algorithm is essentially equivalent to ours,
we see the main difference in that our work is specifically designed
for unification-based parsing. Therefore, avoiding computationally
expensive unification operations becomes the first priority in our de-
sign. Also, we specifically discussed the different localities of the
features used in the parse ranking models, while Huang and Chiang
(2005) did not provide any insight on this aspect. More generally,
both works turn out to be reformulations of an approach originally
described by Jiménez and Marzal (2000), although expressed there
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only for grammars in Chomsky Normal Form.

In relation to the feature localities of ME models on packed forest,
our approach considered both upward (grandparenting features) and
downward (lexical n-gram features) extension. Previous work has
either assumed properties that are restricted to the minimal parse
fragments (i.e., sub-trees of depth one) that make up the packing
representation (Geman and Johnson, 2002), or has taken a more re-
laxed approach by allowing non-local features but without addressing
the problem of how to efficiently extract the top-ranked trees from a
packed forest (Miyao and Tsujii, 2002).

Another interesting related, though different approach is that of
Malouf and van Noord (2004). In their system (Alpino Dutch parser),
a left-corner parser is used. The local ambiguities are packed into
groups of so-called “left corner spines”, which hold larger pieces of
information than the passive edges in bottom-up chart parsers. In or-
der to recover the best readings from the packed parse forest, a beam
search is used to achieve high efficiency. However, the procedure does
not guarantee exact n-best results as we do in our approach. On the
other hand, the beam search approach potentially has lower compu-
tational complexity, and can be practically useful for handling very
long parser inputs.

When parsing with context free grammars, a (single) parse can
be retrieved from a parse forest in time linear in the length of the
input string (Billot and Lang, 1989). However, when parsing with
a unification-based grammar and packing under features structure
subsumption, the cross-product of some local ambiguities may not
be globally consistent. In principle, when parsing with a pathological
grammar with a high rate of failure (as we observed with GG), extract-
ing a single consistent parse from the forest could take exponential
time (see Lang (1994) for a discussion of this issue with respect to In-
dexed Grammars). In our approach, the instantiation failure caching
and propagation mechanism helps reduce the effect dramatically. As
future research, we think that combining a ‘controlled’ beam-search
with variable beam width limited by the interval of score adjustment
can be of great interest.
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6.6 Summary
In this chapter, we presented partial parsing models for robust deep
linguistic processing. Based on bottom-up chart parsing, we defined
a partial parse as a path connected with passive edges on the parsing
chart from the source vertex (the beginning position of the input) to
the terminal vertex (the end position of the input). Several partial
parse selection models have been presented and evaluated. Also the
efficiency problem of partial parsing has been discussed in detail.
Specifically, the selective unpacking algorithm has been incorporated,
extended and thoroughly evaluated.



7 Conclusion

It is of interest to note that while some dolphins are
reported to have learned English – – up to fifty words used
in correct context – – no human being has been reported
to have learned dolphinese.

— Carl Sagan (1934 - 1996)

7.1 Summary
In this dissertation, we have presented a series of robust deep pro-
cessing techniques as add-on modules to existing platforms. Without
any significant change to the architecture, the existing grammar re-
sources work with the robust processing modules to achieve better
performance. From lexical acquisition to MWE acquisition, to partial
parsing, these techniques, though simple and standalone, together
serve the same purpose to maximally utilize the linguistic knowledge
encoded in the deep grammars. And the experiment results show they
bring a significant performance boost to the existing deep processing
systems.

Deep grammars are precious linguistic resources. Some previous ro-
bust processing proposals rely on the re-formalization of the linguistic
frameworks which entails the reconstruction of the deep grammars.
This has been proved to be a very difficult task. Instead, in this disser-
tation we have demonstrated that better robustness can be achieved
by various small processing techniques. In doing so, we have released
the burden of bearing robustness in mind from grammar writers, and
let them focus on the description of the canonical use of the language.
However, we do not deny the insufficiency of current linguistic frame-
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works (e.g., the incapability to model graded grammaticality in many
of the current linguistic frameworks). Until a new promising frame-
work emerges, the most practical way is to exploit the underutilized
existing grammar resources.

Another important feature of the techniques proposed in this dis-
sertation is that most of the robust components are independent of
external language resources. Most of the components require the deep
grammar, the treebank as manually disambiguated grammar output,
and optionally a large unannotated corpus. The grammar is the core
of deep linguistic processing. The treebank is usually a by-product of
grammar development. It serves as preferred grammar output, and
helps to build empirical prediction models to simulate the analyses
licensed by the grammar. The unannotated corpora are neutral to
specific linguistic frameworks, and are available for relatively low cost
in different languages. They are used for discovering of insufficient ro-
bustness and the validation of the robust processing outcome. Such
an in vivo approach enables us to adapt the techniques to various
different languages, provided the three basic resources are available.

7.2 “Trinity” Revisited
At the beginning of the dissertation (in Section 1.2.2) I said that there
are three major challenges for the deep linguistic processing, namely
the problem of efficiency, specificity, and coverage. The robust pro-
cessing techniques introduced in this dissertation have significantly
improved the coverage of the grammar. Meanwhile, the efficiency and
specificity challenges reemerge regularly. For instance, after extend-
ing the deep lexicon, higher lexical ambiguity can potentially lead
to larger number of analyses and longer processing time. In partial
parsing, the huge number of intermediate parsing results needs to be
disambiguated accurately and efficiently. A group of new research
topics are raised in those seemingly solved problems in deep linguis-
tic processing, including but not limited to ambiguity packing and
unpacking, parse filtering, parse disambiguation, etc. Predictably,
these factors will continue to be closely involved in future develop-
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ment. A balanced treatment of the three will be crucial for better
deep linguistic processing.

7.3 Future Research
Of course, there are many more open questions regarding the robust-
ness of deep linguistic processing than those I have covered in this
dissertation. Here I will list some of them that fit into our short-term
future research agenda.

This dissertation focused on deep processing with hand-crafted
grammars. In recent development of deep linguistic processing, the
treebank-induced grammars are attracting more and more atten-
tion. Having their advantage in having faster development cycle and
broader coverage, the treebank-induced grammars are deficient in be-
ing less accurate than hand-crafted grammars. An interesting direc-
tion of research would be to investigate the possibility of combining
the two approaches. For instance, the treebanks created with hand-
crafted grammars provide detailed analyses that are normally not
available from manually annotated corpora. Therefore, a grammar
induced from such treebanks can potentially bear benefits from both
approaches to grammar engineering.

In this dissertation we followed the in vivo approach in building
robust processing techniques. This is intended to keep the generality
of the approach, and be as least dependent on external resources as
possible. However, for a specific language, extra linguistic resources
can potentially bring extra robustness to the deep processing. The
idea is similar to so-called hybrid language processing where different
NLP components are able to communicate with each other using a
shared protocol (e.g., RMRS). The insufficiency of the deep grammar
can be compensated by other components when necessary.

Another more general topic that urgently requires further investi-
gation is the evaluation of deep linguistic processing systems. While
shallow language processing systems are typically evaluated by com-
paring outputs to pre-annotated gold-standard data, it is almost im-
possible to annotate deep linguistic information while maintaining
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framework independence. Therefore, deep processing communities
find it extremely difficult to compare results with each other. Any
new development in cross-platform evaluation will be very helpful for
deep linguistic processing in general.

7.4 Closing Words
Despite the magnificent advancement in deep linguistic processing
during the past few years, we still see that the techniques remain
underutilized at the time I am closing this dissertation. While the
intrinsic problems of deep linguistic processing are being solved, it
seems that convincing results through solid applications are still miss-
ing. The motivation of using deep analysis is not yet self-evident to
the NLP application researchers. Hopefully this will change when the
need for more advanced applications emerges. For instance, in recent
development of machine translation, people have come to agree that
syntactic analysis is necessary for higher quality translations.

At a recent workshop titled “Deep Linguistic Processing” at ACL
2007, Prague, a group of researchers from different deep processing
communities came together to discuss the existing problems and fu-
ture direction of DLP. This is a wonderful initial step of many to
come. With strong faith and patience, I believe the era for deep
linguistic processing is just ahead of us.
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