
Contents

0 Introduction 1
0.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
0.2 Goals of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
0.3 Overview of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 4

1 Linguistic Deduction 7
1.1 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.1 Constraint Language . . . . . . . . . . . . . . . . . . . . . . 10
1.1.2 Definite Clauses . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Linguistic Deduction Algorithms . . . . . . . . . . . . . . . . . . . 16
1.2.1 Relationship between NLP and Logic Programming . . . . 16
1.2.2 Alternatives to Prolog’s Search Strategy . . . . . . . . . . . 18
1.2.3 Direction of Processing . . . . . . . . . . . . . . . . . . . . 19
1.2.4 Selection Function . . . . . . . . . . . . . . . . . . . . . . . 24
1.2.5 Memoing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.2.6 Constraints in Linguistic Deduction . . . . . . . . . . . . . 35
1.2.7 Search Strategy . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.2.8 Bidirectional NLP Algorithms . . . . . . . . . . . . . . . . . 40

1.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2 From Principle-Based Grammars to Rule-Based Grammars 43
2.1 Principle-Based Versus Rule-Based Grammars . . . . . . . . . . . . 43
2.2 Partial Deduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2.1 Partial Deduction Example: DCG . . . . . . . . . . . . . . 46
2.2.2 Partial Deduction Applied to GB . . . . . . . . . . . . . . . 50

2.3 HPSG as a Principle-Based Grammar . . . . . . . . . . . . . . . . 56
2.3.1 Formalisations of HPSG . . . . . . . . . . . . . . . . . . . . 56
2.3.2 Principles of HPSG . . . . . . . . . . . . . . . . . . . . . . . 61
2.3.3 Conclusion on HPSG principles . . . . . . . . . . . . . . . . 70

2.4 Partial Deduction Applied to HPSG . . . . . . . . . . . . . . . . . 71
2.4.1 PD Experiment 1: Binary Branching HPSG . . . . . . . . . 72

i



ii CONTENTS

2.4.2 PD Experiment 2: comp-dtrs as a List-Valued Feature . . 76
2.5 Lexical Rule Expansion as Partial Deduction . . . . . . . . . . . . 80
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3 Bottom-Up Earley Deduction 85
3.1 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.1.1 Lookup (Scanning) . . . . . . . . . . . . . . . . . . . . . . . 87
3.1.2 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.1.3 Best-First Search . . . . . . . . . . . . . . . . . . . . . . . . 92
3.1.4 Goal Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.2 Earley Deduction for Discontinuous Constituency . . . . . . . . . . 95
3.2.1 Johnson’s Combine Operator . . . . . . . . . . . . . . . . . 96
3.2.2 Head-Wrapping . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.2.3 Sequence Union . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.2.4 Necessity for Tabulation . . . . . . . . . . . . . . . . . . . . 99
3.2.5 Inadequacy of Top-Down Earley Deduction . . . . . . . . . 100
3.2.6 Guides versus Indexing . . . . . . . . . . . . . . . . . . . . 100

3.3 Application to Generation . . . . . . . . . . . . . . . . . . . . . . . 103
3.3.1 Semantically Monotonic Grammars . . . . . . . . . . . . . . 103
3.3.2 Semantically Non-Monotonic Grammars . . . . . . . . . . . 106
3.3.3 Conclusion on Generation . . . . . . . . . . . . . . . . . . . 108

3.4 Properties of the Algorithm . . . . . . . . . . . . . . . . . . . . . . 109
3.4.1 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.4.2 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . 110
3.4.3 Complexity and Termination . . . . . . . . . . . . . . . . . 113

3.5 Incrementality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.5.2 Left-Right Incrementality . . . . . . . . . . . . . . . . . . . 116
3.5.3 “Full” Incrementality . . . . . . . . . . . . . . . . . . . . . 117
3.5.4 Incremental Addition of Non-Unit Clauses . . . . . . . . . . 123

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4 Preference-Driven Linguistic Deduction 125
4.1 Preferences and Best-First Processing . . . . . . . . . . . . . . . . 125

4.1.1 Models of Preference for Constraint-Based Grammars . . . 128
4.1.2 A Model of Preference . . . . . . . . . . . . . . . . . . . . . 133
4.1.3 Preferences and best-first processing . . . . . . . . . . . . . 137
4.1.4 Word Order . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.1.5 Application to Disambiguation . . . . . . . . . . . . . . . . 148
4.1.6 Application to Generation . . . . . . . . . . . . . . . . . . . 151
4.1.7 Determination of Preference Values . . . . . . . . . . . . . . 153

4.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153



CONTENTS iii

5 Implementation 155
5.1 Sorted Feature Terms: ProFIT . . . . . . . . . . . . . . . . . . . . 158

5.1.1 The ProFIT Language . . . . . . . . . . . . . . . . . . . . . 158
5.1.2 From ProFIT Terms to Prolog Terms . . . . . . . . . . . . 165
5.1.3 ProFIT Implementation . . . . . . . . . . . . . . . . . . . . 166

5.2 Extensions of the Constraint Language . . . . . . . . . . . . . . . . 168
5.2.1 Set Descriptions and Set Constraints . . . . . . . . . . . . . 168
5.2.2 Guarded Constraints . . . . . . . . . . . . . . . . . . . . . . 168
5.2.3 Linear Precedence Constraints . . . . . . . . . . . . . . . . 170
5.2.4 Interaction between Constraint Handling and Tabulation . 171

5.3 The Generalised Linguistic Deduction (GeLD) System . . . . . . . 172
5.3.1 Control Information . . . . . . . . . . . . . . . . . . . . . . 172
5.3.2 Coroutining . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
5.3.3 Preference Values . . . . . . . . . . . . . . . . . . . . . . . . 177
5.3.4 Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
5.3.5 Partial Deduction . . . . . . . . . . . . . . . . . . . . . . . 179

5.4 The Deduction Engine . . . . . . . . . . . . . . . . . . . . . . . . . 181
5.4.1 Top-down processing . . . . . . . . . . . . . . . . . . . . . . 182
5.4.2 Head-Driven Processing . . . . . . . . . . . . . . . . . . . . 183
5.4.3 Chart-Based Algorithms . . . . . . . . . . . . . . . . . . . . 183
5.4.4 Prolog Call . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

5.5 Best-First Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
5.6 Performance of the System . . . . . . . . . . . . . . . . . . . . . . 186
5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
5.8 Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6 Conclusion and Future Research 189
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
6.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Appendix 193

A Programs with Control Information 195
A.1 Partial deduction for DCG . . . . . . . . . . . . . . . . . . . . . . . 195
A.2 Partial deduction for GB . . . . . . . . . . . . . . . . . . . . . . . . 196

B Performance of the Algorithms 199
B.1 Compilation to Prolog Terms . . . . . . . . . . . . . . . . . . . . . 199
B.2 Partial Deduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
B.3 Bottom-Up Earley Deduction . . . . . . . . . . . . . . . . . . . . . 204



iv CONTENTS

C Prolog Code of the Deduction Algorithms 207
C.1 Prolog goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
C.2 Top-down goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
C.3 Head-driven Processing . . . . . . . . . . . . . . . . . . . . . . . . 209
C.4 Top-down Earley Deduction . . . . . . . . . . . . . . . . . . . . . . 210
C.5 Bottom-Up Earley Deduction . . . . . . . . . . . . . . . . . . . . . 210
C.6 Shared Code for Bottom-Up and Top-Down Earley Deduction . . . 211
C.7 Handling of Items . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

D GeLD Interface Specification 215
D.1 Proving Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
D.2 Loading Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
D.3 Inspection of Clauses and Items . . . . . . . . . . . . . . . . . . . . 216

Bibliography 216



ACKNOWLEDGEMENTS v

Acknowledgements

I am very grateful to my supervisors Hans Uszkoreit and Henry Thompson, who
worked through several versions of this thesis, and provided fruitful criticism,
discussion and support.

Special thanks to Suresh Manandhar, who read a draft of this thesis and pro-
vided useful comments, taught me a lot about constraints, and worked out the
formal foundations and implemented the constraint solvers for the extended con-
straint language used in this thesis (set constraints, LP constraints and guarded
constraints).

Four anonymous reviewers of the Journal of Logic Programming provided very
detailed and constructive criticism of some of the work presented here; their com-
ments were very helpful in pointing this work in the right direction.

During the work on this thesis, I was financially supported by

• German Research Center for Artificial Intelligence (DFKI)

• Cray Systems, Luxembourg through a consulting contract

• Deutsche Forschungsgemeinschaft (DFG) through project N3 Bidirectional
Linguistic Deduction (BiLD) in the Special Research Division (Sonder-
forschungsbereich 314) “Artificial Intelligence - Knowledge-Based Systems.”

• The Commission of the European Communities through project LRE-61-061
Reusable Grammatical Resources in the programme “Linguistic Research and
Engineering” (LRE).

• Universität des Saarlandes, FR 8.7 Computerlinguistik

• IBM Deutschland GmbH through the project lilog

I benefitted very much from exchanges with the following research centres:

• The Human Communication Research Centre at the University of Edin-
burgh, where I spent six weeks in 1994 and three weeks in 1995.

• The Austrian Research Institute for Artificial Intelligence where I spent one
month in the summer of 1995.

I would like to thank the people who helped me with this thesis by provid-
ing ideas, criticism, inspiration and support, and β-testing the software: Tania
Avgustinova, Sergio Balari, Thorsten Brants, Christian Braun, Chris Brew, Bob
Carpenter, Jo Calder, Matt Crocker, Luca Dini, Jochen Dörre, Hannes Fischer,
Ralph Flassig, Dale Gerdemann, James Hannigan, Corinna Johanns, Reinhard
Karger, Martin Kay, Tibor Kiss, Tatjana Klajic, Andrea Kowalski, Brigitte Krenn,



vi ACKNOWLEDGEMENTS

Uli Krieger, Holger Maier, Suresh Manandhar, Johannes Matiasek, Detmar Meur-
ers, Sebastian Millies, Drew Moshier, Klaus Netter, Günter Neumann, Gertjan
van Noord, Stephan Oepen, Karel Oliva, Hannes Pirker, Gerrit Rentier, Herbert
Ruessink, Ivan Sag, Christer Samuelsson, Werner Saurer, Wojciech Skut, Craig
Thiersch, Harald Trost, Mats Wirén.

Some results presented in this thesis have been published before. The descrip-
tion of the extension of the feature constraint language is adapted from the paper
Extending Unification Formalisms [Erbach et al., 1995b]. Section 3.1 is based
on my COLING-94 paper Bottom-Up Earley Deduction [Erbach, 1994a], chap-
ter 4 makes use of material from my paper Preference Values in Typed Feature
Structures [Erbach, 1993b] and my CLAUS report Towards a Theory of Degrees
of Grammaticality [Erbach, 1993a], section 5.1 is based on my EACL-95 paper
ProFIT: Prolog with Features, Inheritance and Templates [Erbach, 1994c].

I benefitted from the comments I received when presenting parts of this work
at these conferences, and also from presentations to the following audiences: lilog
project workshop (Bad Herrenalb), Polish Academy of Sciences (Warsaw), IBM
T.J. Watson Research Center (Yorktown Heights), workshop “Coping with Am-
biguity in Typed Feature Formalisms” (ECAI, Vienna), Human Communication
Research Centre (University of Edinburgh), International Conference on Mathe-
matical Linguistics (Tarragona), HPSG workshop (Columbus, OH), Spring School
in Language and Logic (Tbilisi), KONVENS (Vienna), ALEP User Group meeting
(Luxembourg), RGR project workshop (South Queensferry), Swedish Institute for
Computer Science (Kista), workshop “Constraint-Based Formalisms and Grammar
Writing” (LLI Summer School, Barcelona), the Tbilisi Symposium in Language,
Logic and Computation, and various seminars in Saarbrücken.



Chapter 0

Introduction

0.1 Motivation

This thesis is concerned with processing models for declarative grammar for-
malisms. Compared to their procedural predecessors, in which there was hardly a
separation between a grammar and the programs that were used to analyse and
generate sentences, declarative grammar formalisms enjoy the following advan-
tages:

• A declarative formalism can be given a precise formal semantics, which makes
it possible to give formal proofs of properties of the formalism.

• The processing (analysis or generation) result does not depend on the order
of processing. This allows optimisations of the processing algorithm or the
use of compilation techniques.

• Bidirectionality (use of the same grammar for analysis and generation) be-
comes possible; it is not necessary to write separate grammars and programs
for analysis and generation.

A declarative grammar is a set of statements (expressed in a logical language)
about a (natural) language.

The logical language used to express declarative grammars is referred to as
a grammar formalism, and the set of statements expressed in such a formalism
as a grammatical theory. In some systems, the formalism allows only certain
types of statements to be expressed, so that the formalism constrains the form of
grammatical theories that can be expressed in it.1

1The relationship between grammar formalism, grammatical theory and grammar of a lan-
guage is discussed in [Pereira and Shieber, 1984; Shieber, 1988a].

1



2 CHAPTER 0. INTRODUCTION

Various declarative grammatical theories have been developed in the past
decade and a half, the most prominent being

• Functional Unification Grammar (fug) [Kay, 1984],

• Definite Clause Grammar (dcg) [Pereira and Warren, 1980],

• Lexical-Functional Grammar (lfg) [Kaplan and Bresnan, 1982],

• Generalized Phrase Structure Grammar (gpsg) [Gazdar et al., 1985],

• Head-Driven Phrase Structure Grammar (hpsg) [Pollard and Sag, 1987;
Pollard and Sag, 1994],

• Categorial Grammar in its various forms [Ajdukiewicz, 1935; Oehrle et al.,
1988],

• Tree Adjoining Grammar (tag) [Joshi et al., 1975; Joshi and Vijay-Shanker,
1985],

• Government and Binding Theory (gb) [Chomsky, 1981].

We will concentrate on Definite Clause Grammars and hpsg in the following,
as they are very clear examples of linguistic theories expressed in very general
formalisms, without blurring the distinction between formalism and theory.2

The inception of hpsg marks a turning point in the field of computational
linguistics. Prior to hpsg, computational models of natural language were all
rule-based; there were grammar rules that described syntactic constructions and
the constraints associated with them. Prior formalisms such as gpsg are explic-
itly based on context-free grammar rules, over which generalisations could be ex-
pressed by means of meta-rules and feature instantiation principles. Government
and Binding theory is principle-based, but not really intended as a formalism for
computational linguistics.

It was hpsg that finally brought principle-based grammars into natural lan-
guage processing. Ever since, there have been two “camps” in the area of syntactic
processing.

On the one hand, there are those who build on previous work in parsing tech-
nology and extend this to unification-based and constraint-based formalisms, but
rely on rule-based grammars, and often on a “context-free backbone,” i.e., concate-
nation as the only operation for the combination of constituents. Their approach
to grammar development is to write rules that do respect the principles of hpsg.

On the other hand, there are those who reject the writing of rules and base
inference directly on the principles of the grammar. In this tradition, principles

2Note that dcg does not make any claims about natural language, but is a general string
processing formalism, whereas hpsg does make claims about natural languages by formulating
principles, rule schemata etc. in a general-purpose constraint language.
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are generally stated as implications on types, and processing algorithms are based
on type inference. These approaches are well suited for grammars that do not rely
on a context-free backbone, but unfortunately they are quite inefficient in general.

The motivation of the work described here is to reconcile these two camps by
showing that the gap between principle-based and rule-based grammars is not as
wide as it is sometimes claimed to be; in fact, there is a continuous spectrum be-
tween purely rule-based approaches to grammar such as context-free grammars and
principle-based approaches such as Government-Binding theory. We will bridge
the gap by showing that principle-based grammars can be transformed into rule-
based grammars by means of partial deduction techniques that are well-known
from logic programming.

Once this is done, many of the useful techniques developed for rule-based gram-
mars with a context-free backbone (especially in the area of chart parsing) can be
generalised to principle-based grammars.

A context-free backbone, even though convenient for many parsing algorithms,
may be too strong a restriction for the adequate description of many languages.
Bottom-up algorithms (or algorithms that combine bottom-up structure building
with top-down prediction such as the head-corner algorithms) have proved suitable
for grammars without a context-free backbone. This is why a bottom-up chart-
based approach will be pursued and improved upon in this thesis.

Processing hpsg and other principle-based grammars constitutes the premier
motivation for this thesis. Additional motivation comes from linguistic engineering
— the quest for systems that process natural language to perform useful tasks such
as querying a database or acquiring knowledge from texts. Because of its inherent
incrementality, Earley deduction is a favourable computation model for linguistic
engineering tasks.

Obviously, incremental processing of spoken or typed input is a benefit of this
algorithm. A bit less obvious is the fact that an augmentation enables a chart-
based algorithm to handle destructive changes in the input (e.g., deletion or change
of words in a word processor) quite naturally.

Moreover, the incrementality can be exploited for best-first search, since less
preferred computation steps can be delayed, and — if necessary — be performed
later incrementally. Processing ill-formed input is an application for which best-
first search is crucial, since the less restrictive grammar rules, which allow for ill-
formed structures, would otherwise lead to a combinatory explosion of the search
space.

0.2 Goals of the Thesis

The goal of the thesis is to present a model of syntactic processing that

• is applicable to principle-based grammars,
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• can handle string operations beyond concatenation,

• is usable for parsing and generation (bidirectional),

• is efficient enough to be useful for applications,

• supports incremental processing,

• allows the exploitation of preference values for best-first processing.

Our approach divides this goal into two subgoals: first we tackle the problem of
principle-based grammars by showing that they can be transformed into rule-based
grammars, and secondly, we develop a processing algorithm for the resulting rule-
based grammar, namely a bottom-up version of Earley deduction, which allows
us to integrate work done in bottom-up chart parsing with work from the area of
NLP as deduction.

The crucial step in bottom-up processing is to select the initial clauses from
which the processing starts, e.g., lexical lookup. Unless this selection of clauses
is suitably restricted, a lot of useless computation is performed which cannot
contribute to a solution for a given goal.

Our processing model extends the indexing scheme for chart parsers (which
encodes to the start and end positions of continuous constituents) to discontinuous
constituents, and to semantic indexing for generation.

We show that our algorithm is usable for incremental NLP in which the input
becomes successively further instantiated. Following work on “full incrementality”
by Wirén in a chart parsing framework, we can augment our algorithm to keep
track of dependencies between lemmata in order to handle destructive changes of
the input.

The algorithm supports best-first processing. In order to make this notion
of “goodness” explicit, we augment the clauses of the grammar with preference
values which can be interpreted as probabilities. We fix a control strategy which
guarantees that the best solution is always enumerated first.

0.3 Overview of the Thesis

Chapter 1 presents the theoretical and formal foundations and establishes the ter-
minology and formalism to be used throughout the thesis. A feature constraint
language with sorts is introduced and extended with set constraints, linear prece-
dence constraints and guarded constraints. We review linguistic deduction algo-
rithms in the tradition of logic grammars (dcg) and constraint-based grammars,
and discuss the dimensions in which these algorithms can be varied (direction of
processing, selection function, memoing, constraint handling, search strategy).

Chapter 2 reviews the difference between principle-based and rule-based gram-
mars, and presents an algorithm for transforming the former into the latter.
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Principle-based grammars capture linguistic generalisations, but are not ideally
suited for efficient processing because of the amount of computation needed for
computing the structures described by the principles. Rule-based grammars, on
the other hand, describe these structures directly. In this chapter, we show how
this computation can be performed at the time when a grammar is compiled by
making use of partial deduction. As a result, a principle-based grammar is trans-
formed into a rule-based one for which efficient processing algorithms exist and
are further developed in chapter 3. As an illustration of the technique, partial
deduction is applied to turn a small principle-based gb fragment into a rule-based
grammar.

The larger part of the chapter is concerned with an application of partial de-
duction to hpsg. We contrast our formalisation of hpsg as definite clauses with
alternative formalisations which make use of type constraints, show the equiva-
lence of the formalisations, and argue that ours is preferable because it allows the
straightforward application of (Constraint) Logic Programming techniques, and
stands to benefit directly from progress in logic programming.

Chapter 3 presents Bottom-Up Earley Deduction,3 a tabular bottom-up de-
duction algorithm that is related to bottom-up chart parsers in the same way that
(top-down) Earley Deduction is related to Earley’s context-free parsing algorithm
or to top-down chart parsers. We argue that a bottom-up algorithm is advan-
tageous for lexicalised grammars, for discontinuous constituency, for incremental
processing, and for best-first search.

We discuss handling discontinuous constituency and string operations other
than concatenation. We review previously proposed algorithms for handling gram-
mars which employ such operations, especially head-driven parsing and generation,
and show how the new algorithm can be used for such grammars.

We discuss the use of the bottom-up Earley deduction algorithm for generation,
show how it is applicable to semantically non-monotonic grammars, and compare
it with other algorithms that can be used bidirectionally for both parsing and
generation.

The properties of the new algorithm (correctness, completeness, complexity
and termination) are discussed.

We show that the algorithm enjoys a property of incrementality which makes it
very useful for practical NLP systems. In this context, incrementality means that
addition of a new lemma (item) to the set of initial and derived lemmata causes
all computation relevant to this new lemma to be performed by combining it with
the old lemmata.

The incrementality property can of course be used for the classic problem of

3Bottom-Up Earley Deduction may be seen as a self-contradictory name if it is believed that
the top-down direction is one of the defining characteristics of Earley Deduction. We do not
think so. Quite to the contrary, we find that the flexibility to be usable in the bottom-up and the
top-down direction, and with different search strategies (depth-, breadth-, best-first) is a major
advantage of the Earley Deduction approach.
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incremental NLP: processing a portion of the input as soon as it is received. We
also consider the case where the input is destructively changed, and present an
algorithm for updating the chart in case of destructive changes.

In Chapter 4, the incremental nature of the Bottom-Up Earley deduction algo-
rithm is exploited for best-first search by delaying the addition of less promising
lemmata. This is possible because in an incremental algorithm it does not matter
at what point in the overall computation a lemma is added. In order to formalise
how good or promising a lemma is, we introduce the notion of a preference value.
Preference values can be regarded as probabilities, and we discuss how preference
values for grammars could be obtained.

The partial deduction system, and the deduction algorithms described in the
thesis, along with a typed feature structure system, have been implemented in
Prolog as a flexible, yet efficient framework for experimenting with linguistic de-
duction strategies. The implementation is described in chapter 5.

The final chapter 6 summarises the results presented in the thesis and outlines
directions for future work.



Chapter 1

Linguistic Deduction

This chapter covers the formal and theoretical foundations on which the work
described in this thesis is built, in particular the logic grammar framework, and
parsing and generation algorithms for logic grammars. The reader is expected to
have a working knowledge of formal language theory, first-order logic, (constraint)
logic programming and logic grammars, sorted feature structures, and unification-
based grammar formalisms.1

We view linguistic processing (generation and parsing) as a process of deduc-
tion, i.e., proving theorems about signs of a natural language. This view allows us
to make use of results in theorem proving, and in particular in the field of logic
programming, for the design of NLP algorithms. The theories about which we
want to prove theorems are natural language grammars: sets of statements about
NL signs expressed in a suitable logical language.

The logical language (or grammar formalism) that will be used is definite
clauses together with a constraint language. Our grammatical formalism shares
many properties with the “powerful grammar formalism” of van Noord [van No-
ord, 1993] which is defined as in instance of Höhfeld and Smolka’s Constraint Logic
Programming schema [Höhfeld and Smolka, 1988]. The difference is that we use a
more powerful constraint language (see section 1.1).

General-purpose theorem proving methods are not necessarily applicable for
useful NLP applications because they may be too inefficient. Therefore we in-
vestigate specialised instances of general algorithms that are well adapted to the

1The following works provide excellent introductions to these areas. Formal Language
Theory: [Hopcroft and Ullman, 1979; Partee et al., 1990]; First Order Logic: [Partee et
al., 1990; Fitting, 1990]; (Constraint) Logic Programming: [Lloyd, 1984; Robinson, 1992;
Sterling and Shapiro, 1986; O’Keefe, 1990; Höhfeld and Smolka, 1988]; Logic Grammars:
[Pereira and Shieber, 1987; Shieber et al., 1994]; (Sorted) Feature Structures [Johnson, 1988;
Smolka, 1992; Uszkoreit, 1988; Carpenter, 1992] Unification-based grammar formalisms:
[Shieber, 1986; Sells, 1985; Abeillé, 1993; Pollard and Sag, 1994]

7
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structure of the linguistic theories about which we want to prove theorems. In
particular, we will see that most well-known parsing and generation algorithms
for natural language can be regarded as instances of deduction algorithms.

We adopt a sign-based view of natural language. Under this perspective, a
language is not seen as a set of strings (as it would be in formal language theory),
but as a set of meaning-string associations. This view is crucial since we are
interested not only in determining whether or not a string is in the language, but
primarily in determining which string can be used to express a given meaning
(generation) and vice versa which meaning if conveyed by a given string (parsing).

We take a grammar of a natural language to be a recursively defined relation
between strings and their meanings, with the elements of the relation being lin-
guistic signs. A sign has features (or attributes) for the string with which it is
expressed (in Saussure’s terms: the signifiant) and for its meaning potential (the
signifié). The signifiant is in spoken language a phonetic form2 and in written
language a sequence of characters; and the signifié is generally represented as a
logical form in formal linguistics, i.e., as a formula of first-order logic, property
theory, or situation theory, or a discourse representation structure of drt, λ-drt
or whatever logical framework is considered adequate for the treatment of natural
language semantics.

Linguistic deduction involves proving that a given underspecified structure is
indeed a sign of the language defined by the grammar. In general, there are many
ways in which a sign can be underspecified. The prototypical ways in which a sign
will be underspecified in NLP are the following.

1. The string feature is instantiated, but not the logical form feature. This case
is generally called analysis or parsing.

2. The logical form feature is instantiated, but not the feature for the string
with which it is expressed. This case is called synthesis or generation.3

The following queries (in Prolog notation) correspond to generation and pars-
ing, respectively. We take sign/2 to be a two-place relation between strings
(represented as lists) and logical forms (represented as first-order terms).

If the same algorithm can be used for both parsing and generation, we speak
of bidirectional linguistic deduction.

There are other linguistic processing tasks, when (parts of) the grammar
and/or the lexicon are unknown, which involve inferring (clauses of) the program
from examples. Since these are not examples of deduction, but rather abduction
or induction, we shall not discuss them in this thesis.

2For reasons of simplicity, we represent phonetic form by its graphemic representation in
written language.

3Natural language generation is generally seen to consist of two stages: a strategic (what-to-
say, discourse planning) and a tactical (how-to-say) component. When we speak of generation
in this thesis, we refer to the latter.
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generation: ?- sign(STRING,call up(john,friends)).
parsing: ?- sign(〈john,calls,friends,up〉,LF).

Figure 1.1: Parsing and generation as linguistic deduction

In the following section, we present the grammar formalism that we use to
define linguistic theories, and turn to linguistic deduction algorithms afterwards.

1.1 Formalism

In this thesis, we will use a highly expressive grammar formalism, extending the
formalism defined by van Noord [van Noord, 1993, p. 27]. Van Noord’s formalism
has the following properties.

• The formalism consists of definite clauses, as in Prolog; instead of first-order
terms, the data structures of the formalism are feature structures.

• The formalism does not assume that concatenation is the sole string-
combining operation (in contrast to FUG, DCG, PATR II, LFG, GPSG
and UCG).

• The formalism is defined in an abstract framework, which facilitates the ex-
tendibility of the techniques [developed in his thesis] to other (more powerful)
constraint languages.

The formalism we use here differs in two respects that have to do with our
interest in processing principle-based grammars (such as hpsg).

1. We do use a more powerful constraint language, which includes sorted feature
terms, finite domains, and set descriptions and set constraints, linear prece-
dence constraints and guarded constraints in addition to first-order terms.
Sorted terms and set descriptions are included because they are key ingredi-
ents of hpsg grammars, and finite domains are needed because because they
allow a reduction of otherwise unmotivated non-determinism.

2. We allow relational dependencies between arbitrary feature values, not just
as relations between strings like van Noord’s string operations beyond con-
catenation (cf. section 1.1.2).
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1.1.1 Constraint Language

In this section, we introduce the constraint language which we will use throughout
this thesis.4

1.1.1.1 Sorted Feature Terms

Our conception of sorted feature terms is based on Carpenter’s Logic of Typed
Feature Structures5 from which it differs only in one respect: in our system, the
sort hierarchy is not required to be a bounded complete partial order. As a conse-
quence, a feature structure can be described by two or more different sorts which
do not have a common subsort; and two different sorts can have several common
subsorts, even though they do not have a unique most general common subsort.
In this respect, our constraint language is similar to the cuf formalism [Dörre and
Dorna, 1993]. More details about our sorted feature term language can be found
in [Erbach, 1994b; Erbach, 1994c] and in section 5.1.

We follow the distinction between feature terms as syntactic objects and feature
structures which are the abstract mathematical objects described by the feature
terms. The feature term language consists of five different kinds of sorted feature
terms (SFT):

• A constraint that the described feature structure must be subsumed (sym-
bolised by the “smaller than” sign <) by a given sort (<Sort); e.g. the
structure described by the term <phrasal_sign must be subsumed by the
sort phrasal sign.

• A feature constraint (F!SFT), which constrains the value of the feature F of
the described feature structure to be subsumed by the structure described by
SFT. For example, the feature constraint subcat! <elist denotes a struc-
ture whose subcat-value is an empty list.

• A Prolog term. Besides sort constraints, Prolog terms are the only other
way to “bottom out”. Prolog terms can be either variables, atoms, or com-
pound terms. This arrangement makes it possible to take advantage of the

4This constraint language was developed in the project “The Reusability of Grammatical
Resources”, and is the joint work of Suresh Manandhar, Wojciech Skut and the author. It is
described more fully in [Manandhar, 1994; Manandhar, 1995; Erbach et al., 1994a; Erbach et al.,
1994b; Erbach et al., 1995b].

5We prefer to speak of sorted feature structures since the usage of the term type in logic
programming and computational linguistics is ambiguous: For Carpenter, a type denotes a subset
of the domain (for example the type sign, for which the features phon, synsem, qstore and
retrieved are appropriate); for other authors like Emele and Zajac [Emele and Zajac, 1990;
Zajac, 1992], a type can be a complex recursively defined relation (e.g., the type append/2 or
sign of english/1). To avoid terminological confusion, we follow the usage established in CLP (cf.
[Dörre and Seiffert, 1991; Äıt-Kaci and Podelski, 1991]) and the recent hpsg literature [Pollard
and Sag, 1994], and use the term sort for symbols that denote a subset of the domain, and
relation or predicate for defined relations.
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SFT := <Sort Term of a sort Sort
| Feature!SFT Feature-Value pair
| PROLOGTERM Any Prolog term
| SFT & SFT Conjunction of terms
| SFT or SFT Disjunction

Figure 1.2: Syntax of sorted feature terms

term language (e.g. cyclic terms) and constraint language (e.g. inequal-
ity constraints) of the Prolog system underlying the implementation of our
constraint language. The use of normal first-order Prolog terms in the fea-
ture term constraint language constitutes no problem, since an n-ary Prolog
with functor F term can be regarded as a notational convention for a sorted
feature structure of the sort F , for which the features arg1 . . .argn are
appropriate, and which has no sortal restrictions for the features.6

• A conjunction of terms (SFT1 & SFT2), which constrains the described struc-
ture to be subsumed by both SFT1 and SFT2, i.e., the set of described struc-
tures is the intersection of the structures described by SFT1 and SFT2.

• A disjunction of terms (SFT1 or SFT2), which constrains the described
structure to be subsumed by either SFT1 or SFT2, i.e., the set of described
structures is the union of the structures described by SFT1 and SFT2.

The syntax of the sorted feature term language is summarised in figure 1.2. In
later chapters, we will alternatively make use of the more readable notation for
sorted feature terms as attribute-value matrices.

1.1.1.2 Finite Domains

Finite domains provide a way of handling certain subclasses of disjunctions in logic
programs without the creation of choice points. Finite domains are disjunctions
with a finite set of possible values. Finite domains have been introduced for
the logic programming language chip [van Hentenryck and Dincbas, 1986; van
Hentenryck, 1989]; they can also be expressed by more powerful sort inheritance
hierarchies in languages such as cuf or life.

A finite domain variable is a variable that can only take on one of a fixed finite
(and reasonably small) set of values. A description can constrain the value of the
variable to be any subset of this set. When two finite domain variables are unified,

6In the implementation, we actually go in the opposite direction, and compile sorted feature
terms into a Prolog term representation (cf. section 5.1).
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the resulting value’s constraint is the intersection of the possible values for both
variables. The unification fails if the intersection is empty.

Finite domains are useful for providing efficient processing for many cases of
disjunction that arise in NLP without the need for computationally expensive
treatments of disjunction, such as distributed disjunctions.7

The following is the syntax for defining finite domains:

Name fin dom [Val1.1, . . . ,Val1.n] * . . . * [Valm.1, . . . ,Valm.l]. (1.1)

The following example defines a finite domain which contains all possible com-
binations of the agreement features person, number and gender.

agr fin dom [first,second,third] * [sg,pl] * [masc,fem,neut]. (1.2)

The resulting finite domain consists of 3*2*3 = 18 values, all possible combinations
of one person, number and gender value. Subsets of this finite domain can be
described by making use of the logical connectives ∧ (conjunction), ∨ (disjunction),
and ¬ (negation), e.g., ¬(third ∧ sg).

1.1.1.3 Inequations

In addition to equality constraints between sorted feature structures, we allow
also inequality constraints. Inequality has been introduced in CLP with Prolog ii
[Colmerauer, 1982; Giannesini et al., 1985], and is supported by all modern logic
programming languages.

1.1.1.4 Set Descriptions and Set Constraints

In hpsg [Pollard and Sag, 1994], sets are used for the nonlocal features slash, rel
and que, for quantifier storage qstore, for the context feature background, for
conjuncts in a coordination structure, for restrictions on semantic indices; and in
other hpsg proposals also for features such as subcat. Since we have a strong
interest in handling hpsg grammars, which make heavy use of sets, we allow
set constraints in our formalism, following Manandhar’s attributive logic of set
descriptions [Manandhar, 1994]. The set descriptions and set constraints shown
in figure 1.3 are allowed in definite clauses.

Disjoint union is not available in the logic, but it can be defined as follows by
employing set disjointness and set union operations:

x ] y =def disjoint(x, y) u (x ∪ y) (1.3)

7(cf. [Eisele and Dörre, 1990; Böttcher, 1993; Maxwell III and Kaplan, 1991; Matiasek, 1993;
Trost, 1993])
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Set Constraint Meaning Syntax for variable X
empty set X is the empty set { }
element E is an element of X exist(E)
set description X contains the elements

E1 . . .En (but they need
not be disjoint)

{E1, . . . , En}

fixed cardinality set X contains the disjoint {E1, . . . , En}=
elements E1 . . .En

subset X is a subset of Y subset(Y)
union X is the union of Y and Z Y ∪ Z
intersection X is the intersection Y ∩ Z

of Y and Z
disjointness X is disjoint from Y disjoint(Y)

Figure 1.3: Syntax of set constraints

1.1.1.5 Linear Precedence Constraints

Linear precedence constraints have various uses in linguistic descriptions. Their
most obvious use is the modelling of word order phenomena. Other uses are in
natural language semantics in the description of temporal precedence relations and
of underspecified quantifier scope.

In figure 1.4 we describe the syntax of the linear precedence constraints sup-
ported by our implementation; for the formal semantics, refer to [Manandhar,
1995].

1.1.1.6 Guarded Constraints

Guarded constraints are used in logic programming to delay a constraint if not
enough information is available for its deterministic execution. Such situations
arise frequently in natural language processing when the same grammar is used
bidirectionally for parsing and generation.

Therefore, it is a natural move to include guarded constraints into grammar for-
malisms. Our constraint language for guarded constraints supports the following
general purpose syntax:

case( [ condition1 ⇒ choice1,
. . .
conditionn ⇒ choicen

])
else choicen+1

(1.4)

Each of the choicei can be any term or another guarded constraint. Each of
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LP Constraint Meaning Syntax for variable X
precedence X precedes Y precedes(Y)
precedence equals X precedes or precedes equals(Y)

is equal to Y
first daughter X precedes all other fst daughter(Y)

elements of domain Y
domain precedence (every element of) dom precedes(Y)

domain X precedes
(every element of)
domain Y

guard on precedence if X precedes Y then if precedes(Y)
X is unified with S, then S
otherwise else T
X is unified with T

Figure 1.4: Syntax of linear precedence

the conditioni (also known as guard) is restricted to one of the following forms (the
variables ∃x1, . . . , xn stand for existentially quantified variables). Our constraint
language is restricted to what is known as flat guards since no embedding is allowed
in the guard (condition) part. However, this restricted language appears to be
sufficient for linguistic applications.

condition −→ ∃x1, . . . , xn feature term
| ∃x1, . . . , xn exists(feature term)
| precedes(x, y)

(1.5)

Guarded constraints can be thought of as conditional constraints whose execu-
tion depends on the presence of other constraints. The action choicei is executed
if the current set of constraints entail the guard conditioni. The action choicen+1

is executed if the current set of constraints disentail the all the guards condition1

through conditionn. If the current set of constraints neither entail nor disentail
conditioni then the execution is blocked until more information is available.

The constraint solving machinery needed for implementing guards on feature
constraints has been worked out in [Smolka and Treinen, 1994] and [Äıt-Kaci and
Podelski, 1994]. Our constraint language extends this to permit guards on set-
memberships and guards on precedence constraints.

1.1.2 Definite Clauses

A program (or grammar) consists of definite clauses, which define relations, and
associated constraints. A definite clause (or Horn clause) is an implication whose
conclusion is a (relational) atom, and whose antecedent is a (possibly empty)
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conjunction of (relational) atoms.8 The general form of a definite clause is shown
in (1.6). When talking about definite clauses, we use uppercase roman letters (A,
B, C . . . ) as meta-variables for atoms, uppercase Greek (Γ, ∆, Θ . . . ) letters as
meta-variables for sequences of atoms, and lowercase Greek letters (σ, τ , φ . . . )
for constraints (e.g., substitutions), and sequences of lowercase Greek letters for
the merging of the respective constraints, i.e., most general unifiers. ← is used as
the implication symbol.

Each clause is associated with a constraint expressed in the constraint lan-
guage given in the preceding section. Grammars are regarded as constraint logic
programs, whose declarative and procedural semantics follows the constraint logic
programming schema of Höhfeld and Smolka [Höhfeld and Smolka, 1988]. When
it is necessary to mention the constraint of a clause explicitly, we write it in front
of the clause as in (1.6).

σ(C ← A1 ∧ . . . ∧An) (1.6)

Occasionally, we omit the constraint associated with a definite clause in our
notation.

C ← A1 ∧ . . .∧An (1.7)

When we talk about definite clauses in general, which can be interpreted by
any proof procedure for logic programs, we use the above notation, but when we
talk about about Prolog clauses (which are intended to be executed by Prolog
directly), we use Prolog notation with the :- connective.

Since grammars are generally regarded as logic programs in this thesis, we don’t
introduce any special notation for grammar rules. We place no special restrictions
on the form of the constraint logic programs used to express grammars, unlike
van Noord, who restricts grammars “to consist of definite clauses defining only
one unary relation” [van Noord, 1993, p. 43] (the relation sign/1), and argues
that all other relations can be compiled away by partial deduction techniques. In
addition to the relation sign/1, van Noord introduces one additional relation cp/2
(construct phonology), which makes the combination of the phonological values of
the daughters in a rule explicit, especially in cases where it is not restricted to
concatenation.

sign(M)← sign(D1) ∧ sign(D2) ∧ cp(M, 〈D1, D2〉). (1.8)

8We use the term atom here as it is used in the logic programming literature to mean a
relation symbol and its arguments — not to be confused with an atomic value in a Prolog term
or feature term: a term which has no arguments or features. In the logic programming literature,
a definite clause is often equivalently formalised as a disjunction (C ∨ ¬A1 ∨ . . . ∨ ¬An) with
at most one positive (non-negated) literal, and the proof procedure is described as a refutation
proof.
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In this thesis, we will not make these restrictions, but allow grammars to consist
of definite clauses defining arbitrary relations. This allows us to express principle-
based grammars directly. In chapter 2 we will examine van Noord’s claim that
all relations except the sign/1 and the cp/2 relation can be compiled away by
partial deduction techniques.

To summarise, our formalism gives the expressive power of a definite clause
language, augmented with an extended constraint language (with sorted feature
terms, finite domains, inequations and set descriptions).

1.2 Linguistic Deduction Algorithms

Once the grammar formalism is fixed, a deduction strategy must be selected. In
this section, we will review previous work in linguistic deduction and outline the
dimensions in which different algorithms can differ. In chapter 3, we present a
new model (bottom-up Earley Deduction), which combines the useful properties
of various algorithms presented in this section.

1.2.1 Relationship between NLP and Logic Programming

Logic-based grammars have always enjoyed a very close relationship to logic pro-
gramming; in fact the very beginnings of logic programming (Colmerauer’s Q-
systems [Colmerauer, 1970]) have been motivated by natural language processing.
Definite Clause Grammars [Pereira and Warren, 1980] have been an integral part
of standard (Edinburgh) Prolog ever since its first implementation [Clocksin and
Mellish, 1981; Bowen et al., 1982].

There is a duality between (constraint-based) grammars and (constraint) logic
programs: a definite clause grammar is at the same time a logic program.

This duality has the effect that the same collection of clauses can be regarded
as a program or as a grammar. Whenever the distinction is not crucial, we will use
whatever term best fits the current context. In order to avoid confusion between
grammar rules and program rules, we will always refer to the former as “rules”,
and to the latter as “(non-unit) clauses”. The left-hand side of a grammar rule will
sometimes also be referred to as “mother (node)”, (taking the view of a grammar
rule as a local tree) and the categories on the right-hand side will also be referred
to as “daughters.” In linguistics, the head is a daughter in a local tree that shares
certain syntactic or semantic features with the mother. In logic programming, the
head of a clause is the consequent of a conditional (i.e., the positive literal in a
Horn clause). In order to avoid terminological confusion, we will use the term head
in its linguistic sense, and always refer to the head in the logic programming sense
as “consequent” of a clause.9

9It is not only possible to view a grammar as a logic program, but conversely, a logic program
can be treated as a grammar [Deransart and Ma luszyński, 1993], and many well-known parsing



1.2. LINGUISTIC DEDUCTION ALGORITHMS 17

Together with a proof procedure for logic programs, a definite clause grammar
becomes a parser or a generator for natural language.10 For example, Prolog’s
standard proof procedure applied to a definite clause grammar yields a recursive
descent (left-to-right, depth first) parser or generator. The deductive approach to
NLP is not geared towards parsing or generation, but is inherently non-directional.
However, from this general insight, it was still a long way towards algorithms
that are really usable for both parsing and generation. Among other causes (see
section 1.2.8), this is due to the fact that Prolog’s proof strategy applied directly
to dcgs has several serious drawbacks:

• Non-termination for left-recursive grammars.

• Duplication of deduction steps in different branches of the search tree.

• No support for incremental processing.

• Termination problems in case of generation.

Before we review alternative proof procedures, we briefly discuss the impor-
tance of difference lists for the efficient processing of dcgs.

Difference Lists

We want to point out that dcgs together with Prolog’s proof strategy are only
practically usable11 because of their use of difference lists for representing strings.
Note that dcg uses only concatenation as the basic operation for combining
strings. Using Prolog’s usual predicate append/3 for concatenation would lead
to serious efficiency problems for dcg. Consider the following rule

s(S) :- np(NP), vp(VP), append(NP,VP,S). (1.9)

Whatever order of goals is chosen, there is an efficiency problem. If the call to
append/3 is not the first goal, Prolog will generate (potentially infinitely many)
NP’s ad libitum; and if the call to append/3 is the first goal, then a given input
string of length n can be split n + 1 ways. In case of generation, the converse
holds: if the call to append/3 comes first, it can generate strings ad libitum.

algorithms for context-free or unification grammars can be used as proof procedures for logic
programs (e.g. Earley deduction as a proof procedure for logic programs based on Earley’s
context-free parsing algorithm).

10In chapter 2.2.1 we use the compilation of dcgs into recursive descent and into left-corner
parsers as illustrations of the partial deduction technique.

11Even though unmodified dcgs are not widely used for NLP because of the mentioned prob-
lems, they enjoy widespread use among logic programmers as a general string processing mech-
anism, and as data structures for threading information through programs. See [Pereira and
Shieber, 1987, p. 168 ff.] for some nice examples of parsing algorithms written as dcgs.
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Using difference lists, however, the call to append/3 is replaced by a concate-
nation constraint that is enforced at any time by instantiation of variables.12 The
following rule (1.10) is the encoding of rule (1.9) in difference list format. Note
that we represent difference lists by a pair of variables connected with the functor
-/2.

s(S0-S) :- np(S0-S1), vp(S1-S). (1.10)

The problem of defining a data structure that exhibits at least some of the
advantages of difference lists will come up for grammars that are not limited to
concatenation as the sole operation for combining strings (see section 3.2.6).

1.2.2 Alternatives to Prolog’s Search Strategy

Various alternatives to Prolog’s top-down, depth-first search strategy have been
investigated in logic programming and in NLP. They differ from Prolog’s strategy
along several dimensions:

Direction of processing: The extremes are pure top-down (backward chaining),
and pure bottom-up processing (forward chaining); directed (mixed) meth-
ods combine the goal-directedness of top-down processing with the data-
driven aspect of bottom-up processing.

Selection function: Choice of the next goal to process from the antecedent of
a clause. This can either be fixed in advance (e.g., the leftmost goal or a
goal that shares essential variables with the consequent13) or dynamically
depending on the instantiation of variables (coroutining).

Memoing: The question of memoing concerns the extent to which solutions to
goals are stored and re-used either at compile time or at runtime. Tech-
niques to be considered under this heading are partial deduction,14 abstract
interpretation, explanation-based learning, well-formed substring tables, and
tabulated deduction (Earley deduction).

Constraints: This topic concerns the choice of an appropriate constraint lan-
guage, and the question how constraints should be evaluated, especially the
question whether constraints should be checked as soon as possible or de-
layed. Constraint solving can play a more or less central role for an NLP
algorithm — up to the extent where the algorithm consists almost exclusively
of constraint solving steps.

12Äıt-Kaci (p.c.) pointed out that the use of variable bindings in logic programming languages
constitutes an efficient representation of partial solutions of equality constraints.

13We use the term consequent here for the head of a clause in the logic programming sense.
In the context of NLP, we wish to reserve the term head for the syntactic or semantic head of a
phrase(cf. page 16).

14Partial deduction is also referred to as partial evaluation or partial execution (cf. chapter 2).
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Search Strategy: The extremes in this spectrum are pure depth-first and
breadth-first search. In between these extremes, there are a number of
heuristically guided search strategies, for which the choice of a heuristic
is an important consideration.

Shieber et al. [Shieber et al., 1994] have formulated various parsing algorithms
as deduction algorithms. In this system, an algorithm is specified explicitly by
stating a set of inference rules. The inference rules are applied by a bottom-up
proof procedure. However, their formalisation makes crucial use of string positions
in the representation of items, and is therefore useful for the case of parsing, but
not immediately for generation.

In a similar vein, Sikkel [Sikkel, 1994a; Sikkel, 1994b; Sikkel, 1994c] defines the
notion of parsing schemata, which allow a uniform description of different parsing
algorithms, thereby exhibiting similarities and differences between the algorithms.
It should be noted that Sikkel’s work is only concerned with context-free grammars,
although it can be generalised to constraint-based grammars.

In the remainder of this chapter, we will discuss previous work that has been
done on linguistic deduction algorithms by making particular choices in the above
dimensions, and motivate the choices we make.

1.2.3 Direction of Processing

The issue with direction of processing in a deduction algorithm is whether the
algorithm is driven by the goal to be proved (top-down, or backward chaining) or
by the available input data (bottom-up, or forward chaining).

In logic programming, in general, top-down deduction is preferred for reasons of
efficiency. Top-down processing is used in Prolog and logic programming languages
derived from it, and in Earley deduction [Pereira and Warren, 1983]. Bottom-up
processing suffers from the problem that it is not very goal-directed, and that it is
in general hard to select the clauses that should be used as input to the bottom-up
process, so that lots of clauses can be derived that are irrelevant to a proof of a
given goal.

For NLP, however, bottom-up parsing is often preferred; this is possible because
it is easy to select the clauses that should be used as input for a given goal.
Normally, they should be the lexical entries of the words which occur in the input
string to be parsed and the rules of the grammar.

There are useful alternatives that combine the benefits of top-down and
bottom-up search. These are directed (mixed) methods that combine top-down
and bottom-up processing. Wirén has performed a comparison of “rule invocation
strategies” for chart parsers [Wirén, 1987], which comes to the conclusion that
directed strategies are most efficient for context-free chart parsing.

Among the directed methods, we will discuss left-corner parsing (for gram-
mars based on concatenation), semantic-head-driven generation, and head-corner
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parsing (for grammars which make use of more powerful string operations than
concatenation) below.

1.2.3.1 Left-Corner Parsing

Left-corner parsing starts from a given goal (to parse a string), and selects a lexical
entry (a unit clause) for the leftmost word in the string (the left corner). This
clause starts the bottom-up processing: if the selected unit clause is already a
solution to the original goal, the algorithm returns the solution, otherwise the
algorithm looks for a non-unit clause in which the selected unit clause is the first
goal.15 If the remaining goals in the non-unit clause can be proven in the same
fashion, the consequent of the clause becomes the next input to the bottom-up
process. This process is repeated until a solution to the original goal is found. The
Prolog implementation of the algorithm is shown in figure 1.5.16

In logic-programming-based NLP, this algorithm has been employed in the
BUP compilation scheme for definite-clause grammars [Matsumoto et al., 1983].
BUP compiles a dcg into a left-corner parser for the same grammar.

The performance of the algorithm can be improved further by making use of
a reachability relation. Clauses that serve as input of the bottom-up process are
only used if they are reachable from the current goal as the transitive closure of
the “leftmost-daughter” relation. For context-free phrase structure grammars, this
reachability relation can be precompiled for a given program and serves to reduce
the search space during processing.

While a left-corner strategy is useful for parsing dcgs, it is less useful for gener-
ation (where the syntactic category of the left corner may not yet be instantiated
when it is processed) or for parsing languages with discontinuous constituency
with grammars which use string operations beyond concatenation (where the left-
most word of the string is not in general reachable from the goal by following the
transitive closure of leftmost goals of clauses whose consequent matches the goal).

1.2.3.2 Semantic-Head Driven Generation

The Semantic-Head Driven Generation Algorithm [Shieber et al., 1990; van Noord,
1993] performs surface generation in an analogous fashion to the left-corner parser.
Instead of the left corner relation, the algorithm uses the semantic-head relation.

15In verbal descriptions of non-deterministic algorithms, we often take the liberty of using
deterministic formulations, and do not explicitly mention that alternative choices can be explored
by backtracking.

16In the documentation of Prolog procedures, we use the traditional notation for the expected
instantiation of arguments: + for (input) arguments that should be instantiated, − for (output)
arguments for which instantiation is not expected, and ? for arguments whose instantiation does
not matter. Difference lists are encoded by a pair of variables connected with the functor -/2.
The angle brackets (〈and 〉) are used in list notation instead of the usual Prolog square brackets
to avoid confusion with the square bracket notation for feature structures.



1.2. LINGUISTIC DEDUCTION ALGORITHMS 21

% parse(?GoalCategory,+InputDiffList)

parse(GoalCat,S0-S) :-

leaf(LexCat,S0-S1),

bu step(LexCat,GoalCat,S1-S).

% bu step(+CurrentCategory,?GoalCategory,+InputDiffList)

bu step(GoalCat,GoalCat,S-S).

bu step(Small,GoalCat,S0-S) :-

rule(Cat,〈Small|Rest 〉),
parse rhs(Rest,S0-S1),

bu step(Cat,GoalCat,S1-S).

% parse rhs(+ListOfCategories,+InputDiffList)

parse rhs(〈Cat|Cats 〉,S0-S) :-

parse(Cat,S0-S1),

parse rhs(Cats,S1-S).

parse rhs(〈 〉,S-S).

Figure 1.5: Left corner parsing algorithm in Prolog

The semantic head of a rule is defined to be the daughter whose semantics is iden-
tical with the semantics of the mother (or stands in an easily computable relation
with the semantics of the mother for grammars that do not handle construction
of logical forms by simple equality constraints). Rules that do have a semantic
head are called chain rules, and rules that don’t have a semantic head are called
non-chain rules. The computation proceeds by starting the bottom-up process
by selecting and proving a non-chain rule (often a lexical entry) whose mother’s
semantics is identical with the semantics of the goal. The mother M of this rule
becomes input to the bottom-up process by selecting a chain rule R whose seman-
tic head has identical semantics as M , and then generating the other daughters of
the rule in the same fashion. If the mother node of the chain rule R matches the
original goal, the process terminates; otherwise the mother of R becomes the new
input to the bottom-up process.

We give the semantic-head driven algorithm as a Prolog program (cited
from [Shieber et al., 1990; van Noord, 1993]). For this algorithm, chain
rules are represented as chain rule(Head,LHS,RHS), and non-chain rules as
non chain rule(LHS,RHS). The procedure connect/2 performs the bottom-up
step. Nodes are represented by node(Cat,DLin,DLout), where Cat is a term
representing syntactic and semantic information, the pair of variables DLin and
DLout is a difference list representing the generated string. node semantics/2 is
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a relation between a node and its semantic content, and chained nodes/2 is a
‘reachability relation’, which is used to test whether one node can be the semantic
head of another.

Semantic-head driven generation is easily applicable to grammars that make
use of more powerful operations for combining strings. In this case the operation
merely constrains the possible surface word orders.

Van Noord discusses possible extensions of the semantic-head driven genera-
tion algorithm such as extending the prediction step to take into account syntactic
information in addition to semantic information, using memoing to improve per-
formance, and delaying lexical choice. The compilation of a grammar and the
generation algorithm above into a more efficient executable Prolog program is
described in [Block, 1991].

1.2.3.3 Head-Corner Parsing

Left-corner parsing only makes sense for grammars which use concatenation as
the only operation for combining strings. For grammars with discontinuous con-
stituents that use more powerful string operations, “head-corner parsing” has been
proposed. Before discussing this algorithm, we first show why top-down parsing
would be extremely inefficient for such grammars.

We have already noted in section 1.2.1 that top-down processing would be
inefficient even for grammars based on concatenation unless difference lists are
used. For grammars based on more powerful string operations, the efficiency of
top-down processing is even worse because the “reverse” application of these string
operations is very non-deterministic, and a huge search space would results from
this.

For instance, the sequence union operation (cf. section 3.2.3) applied in reverse
to divide an input string with n words has 2n solutions; so for an input string of
only 10 words, there are 1024 different solutions.

In order to overcome these problems, head corner parsing applies a mixed
bottom-up and top-down strategy similar to that employed by left-corner parsers
and head-driven generators. The head-corner parser uses a notion of syntactic
head. The syntactic head of a local tree shares certain syntactic features with its
mother. Parsing starts by selecting a lexical entry for a word in the input string
which can be a syntactic head of the goal category. Unlike the selection of the
leftmost word of the input string in case of left-corner parsing, this step is not
deterministic for head-corner parsers.

Under a backtracking proof strategy (as in Prolog), the non-determinism in
selecting the lexical item which starts the bottom-up process has the effect that
any deduction results based on a wrong selection are lost after backtracking and
cannot be recovered. This problem has been tackled by making use of memoing
(cf. section 1.2.5), i.e., maintaining well-formed substring tables for constituents
built up from wrong guesses [Bouma and van Noord, 1993].
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gen(Cat,String) :- generate(node(Cat,String,〈 〉)).

generate(Root) :-

applicable non chain rule(Root,Pivot,RHS),

generate rhs(RHS),

connect(Pivot,Root).

generate rhs(〈 〉).
generate rhs(〈H|T 〉) :-

generate(H),

generate rhs(T).

connect(Pivot,Root) :-

applicable chain rule(Pivot,LHS,Root,RHS),

generate rhs(RHS),

connect(LHS,Rule).

connect(Pivot,Root) :-

unify(Pivot,Root).

applicable non chain rule(Root,Pivot,RHS) :-

node semantics(Root,Sem),

node semantics(Pivot,Sem),

non chain rule(LHS,RHS),

unify(Pivot,LHS),

chained nodes(Pivot,Root).

applicable chain rule(Pivot,Parent,Root,RHS) :-

chain rule(Parent,RHS,SemHead),

unify(Pivot,SemHead),

chained nodes(Parent,Root).

Figure 1.6: Semantic-head driven generation algorithm in Prolog
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Since the operation of a head-driven algorithm depends on the presence of the
head element in order to start the bottom-up process, the algorithm is not well
suited to incremental processing of natural language, i.e., processing every piece
of the input as soon as it is perceived. Incremental processing is characteristic of
human NL processing, and is a desirable property for NL understanding systems
that should operate in real time without any noticeable delays caused by linguistic
processing.

1.2.4 Selection Function

The selection function of Prolog is to choose leftmost goal in the sequence of goals
that still must be proven. This selection function has been changed or improved
for various purposes.

One optimisation concerns reordering of goals to ensure that they every goal is
sufficiently instantiated when it is called, in order to guarantee that it has only a
small number of solutions and avoid non-termination or very large search spaces.
This is for example the approach taken in the Essential Arguments Algorithm
[Strzalkowski, 1991], where an off-line re-ordering at compile time is used.

The processing model for the grammar formalism cuf uses a deterministic
subgoal reduction strategy [Dörre and Dorna, 1993]. This strategy attempts to
reduce the search space by preferring goals which can be resolved deterministically.
While this is an attractive strategy because it restricts the size of the search space
and frees the grammar developer from having to specify an order to goals, it incurs
a certain inefficiency in processing by the need to determine which goals can be
reduced deterministically at every step of the computation.

Another way to achieve a similar effect dynamically is by delaying goals in
which certain variables are not (yet) instantiated. Prolog ii and Sicstus Prolog
realise this delaying of goals through their selection function: choose the leftmost
unblocked goal. A goal is blocked until a condition attached to it is satisfied. In
Prolog ii the condition can be that a particular variable becomes instantiated —
the goal is said to be frozen until the variable is instantiated. In Sicstus Prolog,
the condition can be that a particular variable is either instantiated, or instanti-
ated to a ground term, or known to be equal or different from another variable.
Conjunctions and disjunctions of these conditions are possible.

Neumann’s uniform tabular algorithm UTA has a dynamic selection function
that chooses the first goal in which one of the essential arguments (string or logical
form) is instantiated [Neumann, 1994b]. This can be handled with the blocking
mechanism of Sicstus Prolog.

For top-down processing, the choice of a selection function is of crucial im-
portance because of the way information flows between different goals. If a goal
is not specified enough, it may generate an infinite number of solutions without
ever enumerating the correct one. Therefore, it is crucial to execute those goals
first whose solutions instantiate variables in other goals. Generally, the optimal
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ordering of goals will be different for parsing and for generation. Bidirectional
algorithms will either use two different goal orderings for parsing and generation,
or do the goal ordering via a dynamic selection function.

For bottom-up processing, the choice of the selection function is not so crucial
because the situation where solutions to an underspecified goal can be enumerated
without control does not arise. Nonetheless, the choice of the selection function
can bring performance benefits since it may in general be more efficient in NLP
to look for arguments that match a given functor than for functors that match a
given argument.

Like in head-driven processing, this selection need not be done dynamically,
but can be fixed at compile time. In the following chapters, we assume that this
selection has been done by ordering of the goals in a clause, and will not mention
the issue any further.

Problems in which no optimal ordering of goals can be found occur for example
in the case of empty heads for head-driven processing. However, if there are
more powerful operations than concatenation for the combination of strings (cf.
section 3.2), then it is not necessary to make use of empty heads.

For auxiliary goals such as the concatenation of lists etc., which depend on the
instantiation of variables, we allow to delay them by coroutining, i.e., they are
blocked until the specified conditions (instantiation or equality of variables) are
satisfied. At runtime, we use the same selection function as Sicstus Prolog, namely
choosing the leftmost unblocked goal (cf. section 1.2.6.3).

1.2.5 Memoing

The purpose of memoing (or memoisation or tabulation) techniques is to avoid
duplication of computation. This is achieved by storing solutions of goals, so that
they can be looked up when the same goal (or an instance of it) needs to be proved
again.

Memoing techniques are well-known in different areas of programming [Michie,
1968]. In NL parsing, memoing is realised by the use of well-formed substring
tables, and in chart parsing. Norvig presents memoing techniques for LISP pro-
gramming [Norvig, 1992; Norvig, 1991], and points out that “one can achieve [the
results of chart parsers] by augmenting a simple parser with memoisation” [Norvig,
1992, p. 679]. Johnson has improved Norvig’s algorithm to handle grammars with
left-recursion [Johnson, in press]. In the field of logic programming, there is a
well-known memoing technique called Earley deduction or OLDT17 resolution. In
this section, we will first review chart parsing, and then discuss Earley deduction.

17The abbreviation expands to Ordered selection strategy with Linear resolution for Definite
clauses with Tabling.
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1.2.5.1 Chart Parsing

Earley’s algorithm [Earley, 1970] is a tabular parsing algorithm for general context-
free grammars. Earley’s algorithm is important because memoing reduces the ex-
ponential complexity of backtracking parsers to polynomial complexity; the com-
plexity of Earley’s algorithm with respect to the length of the input string is
O(n3).18

It has soon been recognised that Earley’s algorithm allows of significant varia-
tion; these variations are generally referred to with the generic term chart parsing,
which Kay [Kay, 1980] describes as an algorithm schema which can be turned into
several different algorithms if by varying it along the following dimensions:19

• Direction of processing (cf. section 1.2.3)

• Search strategy (cf. section 1.2.7).

In the following, we will briefly review the data structures (items) used in chart
parsers, and the inference rules for combining these data structures. Chart items
are pairs 〈Grammar Rule,Position〉. GrammarRule is a pair 〈LHS,RHS〉 of a non-
terminal symbol of the grammar (LHS), and a sequence of non-terminal symbols
(RHS), and Position is a pair 〈Begin,End〉 that encodes the starting and ending
position of the item in the input string. We generally write the pair 〈LHS,RHS 〉 in
the following notation: LHS→ RHS. The sequence of categories in RHS is divided
into two parts by a dot, where the portion to the right of the dot is the sequence
of non-terminals that must still be found. We call the sequence of categories after
the dot the remainder. In (1.11), we show the notation for an item which spans
string positions 0 to 5, covers an NP, and would be an S if a VP were found to its
right.

〈S → NP.VP, 〈0, 5〉〉 (1.11)

The meaning of an item is that the substring spanning Position would be
a constituent of category LHS, if the sequence of categories after the dot (the
remainder) were found at a position to its right.20

Two types of items are distinguished:
18Other early approaches to tabular parsing are Kay’s powerful parser [Kay, 1967] and Kaplan’s

general syntactic processor [Kaplan, 1973].
19A fine example of a flexible and modular chart parsing system which allows both kinds

of variation, and provides interfaces to various grammar formalisms is the MCHART system
[Thompson, 1983].

20Other formalisations as triples 〈LHS, RHS, Position〉 or 〈Grammar Rule, Begin, End〉,
quadruples 〈LHS, RHS, Begin, End〉, or quintuples 〈LHS,Found,To-Find,Begin,End 〉 have also
been used. We prefer the current formalisation because it allows a uniform presentation of chart
parsing and Earley deduction. It is not strictly necessary to include the categories of RHS that
have already been found as we do in the dotted rule notation because the categories which have
been found do not play any role in the algorithm.
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• If the remainder is empty, the item is a passive item.

• If the remainder is non-empty, the item is an active item.

There are three rules in Earley’s algorithm:

1. Prediction

2. Completion (Fundamental rule)

3. Scanning

The most important operation in chart parsing is combining active and pas-
sive items according to the completion rule, or “fundamental rule.”21 In the
following, A, B, C . . . are positions, T1 . . . are terminal symbols, N1 . . . non-
terminal symbols, and α, β . . . are sequences of non-terminals. An active item
A = 〈N1 → α.N2 β, 〈A,B〉〉 and a passive item P = 〈N2′ → γ., 〈B,C〉〉 can be
combined if N2 = N2′. The item resulting from the combination has the category
of N1, remainder β, and position 〈A,C〉. This rule is also applicable if Prolog
terms or feature structures are used instead of atomic non-terminal symbols. In
this case, we require that N2 and N2′ be unifiable (cf. section 1.2.5.2. We can
state this completion rule for the combination of items in the format of an inference
rule (1.12).

〈N1 → α . N2 β,〈A,B〉〉
〈N2 → γ .,〈B,C〉〉

〈N1 → α N2 . β,〈A,C〉〉 (1.12)

Prediction and scanning are not really inference rules, but they serve the pur-
pose of selecting grammar rules and lexical items that should be turned into items,
to which the completion rule can be applied.

The prediction rule selects grammar rules to be added to the chart as items.
If an item I is added to the chart whose remainder starts with category C, then
C is predicted at the end position of item I, if such a prediction has not already
been made. Predicting an item at position P means that for every rule C → R in
the grammar whose left-hand side is category C, an item 〈C → R,〈P,P〉〉 is added
to the chart, written as a pseudo-inference rule in (1.13).

〈N1 → α . N2 β,〈Begin,End〉〉
N2→ γ

〈N2 → .γ,〈End,End〉〉 (1.13)

Scanning serves the purpose of selecting lexical entries that should be turned
into chart items. The scanning step can is given as a pseudo-inference rule in (1.14).

21This rule is also referred to as the reduction rule in the literature on Earley deduction.
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〈N1 → α . N2 β,〈B,n-1〉〉
T is the nth word in the input string and there is a rule N2→ T

〈N2 → T .,〈n-1,n〉〉 (1.14)

The algorithm consists of applying the completion (1.12), prediction (1.13), and
scanning (1.14) rules until a solution has been found or no more rule is applicable.22

The order in which the rules are to be applied can be freely chosen, so that chart
parsing is an algorithm schema rather than an algorithm. It is this flexibility
that makes chart parsing a favourable framework for experimenting with different
search strategies, and for incremental processing.

Bottom-up chart parsing makes use of the same completion rule, but there is
no prediction rule,23 and the scanning rule does not depend on the presence of an
item. It is easy to see that bottom-up chart parsing is less goal-directed than the
top-down variant. If bottom-up chart parsing has been widely used in spite of this
drawback, this is the case for the following reasons:

• Applications where it is not known in advance which goal category should
be recognised.

• Grammars which make use of highly underspecified rules, so that prediction
does not help much to improve performance.

• Applications such as speech recognition or processing ill-formed input where
the emphasis is on making use of the available input data.

In section 1.2.5.4 on Earley Deduction, both the fundamental rule and the
indexing scheme will be generalised.

These methods constitute the state of the art in processing context-free gram-
mars. They are also applicable to unification-based grammars such as dcgs, as
discussed in the following.

1.2.5.2 Chart Parsing for Unification-Based Grammars

In order to use chart parsing with unification-based grammars (such as DCG,
LFG, PATR), special care must be taken at those steps in the algorithm where
it is checked that the same item is not added twice to the chart, and that the
same prediction is not made twice. In the case of context-free grammars, a simple
equality test is enough. In case of unification-based grammars, it must be checked

22Of course, the same rule should never be applied twice to the same pair of items, or pair of
item and word or rule.

23We could say that every grammar rule A → B is turned into a chart item 〈A → B,〈P,P〉〉
which is present at every string position P. In actual implementations, the operation of the
completion rule would be modified to allow it to access grammar rules.
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that there is no item present in the chart that entails the item that is about to be
added.24

For prediction, it is not enough to check that no subsuming prediction has
been made before because there can be a sequence of predictions none of which
subsume each other, as for example by the following grammar rule and the goal
category s(〈 〉).

s(L) → s(〈a|L 〉) (1.15)

In order to avoid such prediction loops, Shieber has introduced the notion of
restriction, which instantiates terms to be predicted only to a certain depth, so that
eventually terms will subsume each other [Shieber, 1985]. Samuelsson proposed
an alternative to restriction in the form of anti-unification [Samuelsson, 1994b].

The notion of restriction can also be used to avoid having to check for con-
straint entailment instead of simply subsumption of terms. This can be done by
defining the restrictor in such a way that it does not only eliminate equality con-
straints over feature structures beyond a certain path length, but also other types
of constraints. In this way prediction loops are still avoided, as well as the possibly
computationally expensive check for constraint entailment.

Unlike the normal top-down, depth-first strategy of Prolog, chart parsing does
not suffer from the problem of left recursion, and avoids duplication of computa-
tions on backtracking. A potential drawback is the amount of copying involved
when storing items, and the cost associated with the subsumption check that is
needed to avoid redundant items and non-terminating predictions.

1.2.5.3 Subsumption Checking

In Earley deduction (and in unification-based chart parsing), a subsumption check
is used to ensure that an item is not added to the chart if an item that subsumes
it is already present in the chart. If a derived clause is subsumed, “the derivation
step is said to be blocked” [Pereira and Warren, 1983, p. 139]. We have already
seen that this subsumption check — together with the restriction technique known
from unification-based chart parsing — avoids prediction loops.25 However, the
question is whether the subsumption check must also be applied to items that do
not arise from prediction, but from completion. It would be desirable to leave the
subsumption check out in these cases because of its adverse effect on performance.

First, we note that different items in the chart have different derivations. This
follows from the fact that the same item is never added twice by prediction due
to subsumption checking, and that the completion rule only applies to items that

24In general, it is necessary to check entailment, of which subsumption is a special case when
the constraint language consists only of (first-order or feature) terms.

25For this case, it suffices to keep track of selected literals that have been used extensively to
generate prediction steps, and exclude their use as candidates for further prediction steps, as
Pereira and Warren (p. 142) point out.
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are freshly added to the chart and hence never combines the same two items more
than once.

If the same item arises more than once from different derivations, we have a case
of spurious ambiguity. The most inefficient way of dealing with it is by performing
the subsumption check. If the subsumption check is left out, the situation with
respect to spurious ambiguity is the same as for Prolog’s top-down backtracking
search strategy.

Preferred ways of dealing with spurious ambiguity are

• defining a canonical derivation among the different derivations that lead
to the same result, and suppressing all other derivations (cf. the work by
Pareschi [Pareschi and Steedman, 1987] for a canonical derivation for Com-
binatory Categorial Grammar), or

• changing linguistic analyses so that they no longer give rise to spurious am-
biguities (cf. the analysis of partial verb phrase fronting in German by
Nerbonne [Nerbonne, 1994], which improves upon alternative analyses by
eliminating spurious ambiguities.).

Note also that grammatical theories like hpsg encode the derivation in the
features structures themselves through the daughters feature. Such an encoding
defeats the very purpose of subsumption checking since it will always fail for items
with different derivations.

We conclude that the subsumption check can safely be left out for items arising
from the completion step for grammars that do not exhibit spurious ambiguities or
for grammars that encode the derivation in the feature structures (since it would
always fail in this case).

Subsumption checking for items arising from completion would only be needed
for grammars which contain spurious ambiguities, and for which no canonical
derivation has been defined.

1.2.5.4 Earley Deduction

In this section, we present Earley Deduction, the linguistic deduction framework
which provides the basis for incremental and robust processing of natural language.
Earley deduction is a proof strategy for logic programs that terminates on a larger
class of programs26 than Prolog’s SLD resolution proof procedure, and whose basic
idea is derived from Earley’s context-free parsing algorithm [Earley, 1970].

Earley deduction is a very attractive framework for natural language processing
because it has the following properties and applications.

26It is known that Earley deduction terminates for all datalog programs, i.e., logic programs
that do not make use of function symbols, which are relevant for the field of deductive databases,
but not for NL grammars. For a discussion of termination properties, cf. section 3.4.3.
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• Memoisation and reuse of partial results.

• Incremental processing by addition of new items.

• Hypothetical reasoning by keeping track of dependencies between items.

• Best-first search by means of an agenda.

Warren has recognised that a chart parser for dcg also constitutes a proof
procedure for definite clause programs [Warren, 1975]. The earliest published
description of the algorithm is found in [Pereira and Warren, 1983].

In order to view chart parsing as parsing as deduction, we make the relation
between a category and string explicit, like in going from context-free grammar
rules to DCG format. For example, the application of the fundamental rule in
(1.16) can be changed to the one in rule (1.17) which makes strings and the append
relation explicit, or rule (1.18) which makes use of difference lists. Note that we
use grammar rule notation (with the operator→) in the chart parsing case (1.16),
whereas we use definite clause notation (with the operator←) in the case of Earley
deduction ((1.17) and (1.18)).

〈S→ .NP VP, 〈0, 0〉〉
〈NP→ α., 〈0, 1〉〉

〈S → NP . VP, 〈0, 1〉〉
(1.16)

〈s(X) ← np(A) ∧ vp(B) ∧ append(A,B,X), 〈0, 0〉〉
〈np(〈 john 〉)←, 〈0, 1〉〉

〈s(X) ← vp(B) ∧ append(〈 john 〉,B,X), 〈0, 1〉〉
(1.17)

〈s(A-C) ← np(A-B) ∧ vp(B-C),〈0, 0〉 〉
〈np(〈 john|X 〉-X) ←,〈0, 1〉 〉

〈s(〈 john|B〉-C) ← vp(B-C),〈0, 1〉 〉
(1.18)

Here it is clear to see that the fundamental rule of chart parsing is an inference
rule. Also note that if strings and the append relation are made explicit, the use
of the position is not needed any more to rule out any invalid deductions, but
only to exclude irrelevant deductions that would not contribute to the analysis of
the sentence to be parsed. Without position, any constituents in the chart can
be combined, so that all grammatical permutations of the input string would be
produced in the process. In fact, if there is no prohibition against using any item
more than once in a derivation, an infinite number of grammatical constituents
can be produced that do not contribute to an analysis of the input string.27

27This is only true if lexical signs are not instantiated with the input string for a given parse.
If the difference list in the lexical entry for john were instantiated with the input string (i.e. for
an analysis of the string john walks slowly it would be instantiated as np(〈 john,walks,slowly 〉-
〈walks,slowly 〉), no redundant derivations could be produced. However, such instantiation of
lexical entries with the input string prevents their reuse in a fully incremental computation,
which deals with changes in the input string (cf. section 3.5).
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So, while encoding of the position is not necessary to exclude invalid deductions,
it serves as an indexing scheme that helps to avoid irrelevant deductions.

The terminology we use follows closely the established terminology from chart
parsing.

Chart: In this work, the term “chart” is used for a collection of items. Items
are clauses (lemmata) plus additional information (index etc.). The chart
consists of a subset of (instances of) the program clauses, and of derived
clauses.

Item: An item is a clause plus additional information, e.g., an index. The subject
of indices will be discussed below in section 3.1.2

In Earley deduction, there are only two inference rules: the prediction rule
(rule (1.19), called instantiation in [Pereira and Warren, 1983]) and the completion
rule (rule (1.20), called reduction); the scanning rule is not needed since scanning
in the Earley parser only serves the purpose of reading the next word in the input
string. Lexical lookup in case of Earley deduction is merely a prediction of a unit
clause.

Since Earley deduction is a general proof procedure for logic programs, there
is not necessarily an input string. If there is one, it is encoded in the query.

In the instantiation rule (1.19), A, B and B′ are atoms,28 Γ is a (possibly
empty) sequence of atoms, and σ is the merged constraint (most general unifier)
of B and B′. In the completion rule (1.20), X, G and G′ are atoms, Ω is a (possibly
empty) sequence of atoms, and σ is the merged constraint (most general unifier)
of G and G′. The leftmost atom in the body of a non-unit clause is always the
selected goal.

A← B
B′ ← Γ
σ(B ← Γ)

(1.19)

X ← G ∧ Ω
G′ ←

σ(X ← Ω)
(1.20)

The algorithm for Earley deduction for a goal G can be stated very simply:

1. Predict the goal G.29

28We use the term atom here as it is used in the logic programming literature to mean a
relation symbol and its arguments — not to be confused with an atomic value in a Prolog term
or feature term: a term which has no arguments or features.

29Technically, this proceeds by adding an item 〈ans(V(G))← G〉 to the chart and applying
the prediction inference rule to it. V(X) is a sequence consisting of the free variables in X. A
solution is found when the chart contains a passive item 〈ans( )〉.
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2. Apply the prediction and the completion rules to the items in the chart until
either a solution is found or no more rules are applicable, and add the result
of the inference as an item to the chart.

Of course the inference rules is applied only once to each pair of items. If the
result of an inference step (prediction or completion) is already subsumed by an
item in the chart, then it is said to be blocked and not added to the chart.

The algorithm for Earley deduction is given in figure 1.7.

1.2.5.5 Recent Developments in Earley Deduction

Recently, there has been a lot of interest in Earley deduction with applications to
parsing and generation. We summarise the most important developments in the
following.

Chart-based methods have been used for formalisation of parsing with the
Lambek calculus by Esther König [König, 1990]. The important contribution of
this work is the introduction and discharge of assumptions in the Lambek calculus
for the treatment of long-distance dependencies at the level of the formalism,
instead of using threading techniques.

Dörre addresses the problem of coroutining in Earley deduction, i.e., goals
which depend on each others’ partial solutions, and introduces the notion of bun-
dled goals which are treated as if they were one goal [Dörre, 1993]. In addition
Dörre is also concerned with the question that not all goals are best treated by
Earley deduction, and distinguishes trigger goals which are treated by Earley de-
duction (i.e. lead to predictions) and other goals which are treated by a normal
top-down proof.

The same problem of coroutining — with applications to gb parsing — has
been addressed by Mark Johnson [Johnson, 1993], [Johnson and Dörre, 1995].

Den presents a method for cost-based abduction, which is an instance of Earley
deduction which utilises an agenda in order to choose derivations which make use
of assumptions with minimal cost [Den, 1994].

Earley deduction has also been rediscovered in logic programming and extended
to handle negation by Beckstein and Kim [Beckstein and Kim, 1991]. It is closely
related to OLDT resolution, which is the basic deduction engine of XSB Prolog,
developed by D.H. Warren [Warren, 1989; Warren, 1992]. Deduction procedures
very similar to Earley deduction have also been used in the area of deductive
databases [Bancilhon and et al., 1986; Ramakrishnan, 1991].

Earley deduction has also been used for generation and for bidirectional algo-
rithms that combine parsing and generation within one system (cf. section 1.2.8).

All of the methods presented above (with the exception of deductive databases)
operate top-down; an approach which has several drawbacks:

1. In grammars which use more powerful string operations than concatenation,
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procedure prove(Goal):
– predict(Goal)
– consume-agenda
– for any item G

– return mgu(Goal,G) as solution if it exists

procedure add item I to agenda
– compute the priority of I
– if there is no item I′ in the chart or the agenda such that I′ subsumes I

then agenda := agenda ∪ {I}
else agenda := agenda

procedure consume-agenda
– while agenda is not empty

– remove item I with highest priority from agenda
– add item I to chart

procedure predict G
– for all rules G′ ← Γ

– if σ = mgu(G,G′) exists
then add item σ(G′ ← Γ) to agenda

procedure add item C to chart
– chart := chart ∪ {C}
– if C is a unit clause

– for all items H ← G ∧ Ω
– if σ = mgu(C,G) exists

then add item σ(H ← Ω) to agenda
– if C = H ← G ∧ Ω is a non-unit clause

– for all items G′ ←
– if σ = mgu(G,G′) exists

then add item σ(H ← Ω) to agenda
– predict G

Figure 1.7: Algorithm for best-first Earley deduction



1.2. LINGUISTIC DEDUCTION ALGORITHMS 35

there is increased non-determinism in the prediction step (cf. section 3.2),
which can result in an explosion of the search space.

2. Incremental parsing is not readily supported for grammars with more pow-
erful string operations.

3. Subsumption checking is needed to avoid prediction loops.

4. Preference information for heuristic guidance of the search is more frequently
available in the bottom-up direction.

In order to overcome these problems, we shall present a bottom-up Earley
deduction algorithm in chapter 3.

1.2.6 Constraints in Linguistic Deduction

Almost all contemporary grammatical formalisms can be characterised as
constraint-based. The two interesting questions are what types of constraints
they use, and how and when constraints are processed. This section provides a
brief overview of these issues and gives pointers to the relevant literature.

1.2.6.1 Types of Constraints

Constraint Logic Programming was introduced by Jaffar and Lassez [Jaffar and
Lassez, 1987], and has been generalised in Höhfeld and Smolka’s constraint logic
programming scheme [Höhfeld and Smolka, 1988], which allows to treat various
constraint-based grammar formalisms in a unified framework. The framework has
been applied to natural language grammar formalisms in [Smolka, 1992], [Frisch,
1993] and [Crouch, 1994].

The constraints allowed in Prolog, and in grammar formalisms based on Pro-
log such as dcg, are equality constraints between first order terms. Merging of
constraints is performed by unification of first-order terms, and the unifying sub-
stitution is the merged constraint. Constraint entailment in the case of Prolog is
subsumption of terms.

In most work on constraint-based grammars, first-order terms as data struc-
tures have been replaced by feature structures. Early developments in this direction
are Functional Unification Grammar [Kay, 1979; Kay, 1984; Kay, 1985], Lexical-
Functional Grammar [Kaplan and Bresnan, 1982], the patr-ii formalism [Shieber
et al., 1983], and the work on the formal foundations [Kasper and Rounds, 1986;
Rounds and Kasper, 1986; Johnson, 1988; Backofen and Smolka, 1995]. Current
systems make use of sorted feature structures whose formal foundations have been
worked out by Smolka [Smolka, 1988] and Carpenter [Carpenter, 1992]. Examples
are Head-Driven Phrase Structure Grammar (hpsg) [Pollard and Sag, 1987; Pol-
lard and Sag, 1994], most current grammar formalisms (STUF [Bouma et al., 1988;
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Dörre and Seiffert, 1991], CUF [Dörre and Eisele, 1991; Dörre and Dorna, 1993],
ALE [Carpenter, 1993a; Carpenter, 1993c; Carpenter and Penn, 1994], ALEP [Al-
shawi et al., 1991; BIM-SEMA, 1993; Meylemans, 1994], ProFIT [Erbach, 1995],
TDL [Krieger and Schäfer, 1994], TFS [Zajac, 1992] and others), and CLP lan-
guages such as LIFE [Äıt-Kaci, 1991] or Oz [Smolka et al., 1995].

Cyclic terms have first been introduced in Prolog ii [Colmerauer, 1982] as
rational trees, and are allowed in most current grammar formalisms and logic
programming languages. Prolog ii also introduced inequality constraints (dif/2),
which are allowed in most current formalisms.

A wide variety of other types of constraints for different kinds of applications
(e.g., linear equations) have been introduced in various CLP languages. A number
of these are important for linguistic applications, most notably:

Finite Domains: Finite domains [van Hentenryck, 1989] have been introduced in
the CLP language chip. A finite domain allows handling simple disjunctions
without the creation of choice points. A finite domain variable can have a
fixed finite set of possible values. When two finite domain variables are
unified, the result is the intersection of their possible values, and fails if the
intersection is empty.

Set Descriptions: Set descriptions and set constraints are widely used in linguis-
tic descriptions, but have only recently been formalised and introduced in
grammatical formalisms by Pollard and Moshier [Pollard and Moshier, 1990;
Moshier and Pollard, 1994], by Carpenter [Carpenter, 1993b] and by Man-
andhar [Manandhar, 1993; Manandhar, 1994].

Linear Precedence Constraints: Linear precedence constraints have various
uses in linguistic descriptions. Their most obvious use is the modelling of
word order phenomena. Other uses are in natural language semantics in the
description of temporal precedence relations and of underspecified quantifier
scope. The logical foundations and a constraint solving algorithm for linear
precedence constraints have been worked out by Manandhar [Manandhar,
1995].

Guarded Constraints: Guarded constraints are constraints whose execution is
delayed until the precondition for their applicability is satisfied. Guarded
Constraints can be used to attach goals to variables, and have been used in
NLP in the implementation of hpsg principles and to integrate morphological
constraints into an hpsg [Matiasek, 1994a; Trost and Matiasek, 1994]. They
are also used in the CLG(n) Constraint Logic Grammar framework [Balari
et al., 1990; Damas et al., 1991; Damas and Varile, 1992].

Tree Constraints Tree constraints extend linear precedence constraints by
adding constraints on dominance, and permit the underspecified representa-
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tion of trees through tree descriptions. A complete first-order axiomatisation
for tree descriptions has been worked out in [Backofen et al., 1995].

Boolean Logic: Prolog iii [Colmerauer, 1987] introduces a solver for boolean
constraints. This is put to a linguistic use by Lehner [Lehner, 1993; Lehner,
1994] who uses them to achieve the same effect as finite domains.

In the following, we will abstract away from the particular types of constraints,
and talk about constraints quite generally, whether they are just equality con-
straints between first-order terms, or a more powerful constraint language.

1.2.6.2 Order of Constraint Checking

The previous discussion has only been concerned with the types of constraints for
definite clauses, but left open the question at what point in a proof the constraints
are checked, or assumed that they are checked immediately at every inference step,
as in Prolog and its successors. It has also left open the question in which order
different constraints should be checked.

Checking constraints immediately has the advantage of detecting failure as soon
as possible. The drawback is that constraint checking may be computationally
expensive, and redundant if the particular branch of the search fails anyway due
to constraints that are cheaper to check.

A case study for this has been done in the framework of lfg, where con-
straints are divided into phrasal (c-structure) and functional (f-structure) con-
straints [Maxwell and Kaplan, 1993]. The experience has shown that processing
is most efficient if phrasal constraints are evaluated first, and all functional con-
straints delayed — provided that some pieces of information are moved from the
f-structure into the c-structure. Similar experiences have been made in the lilog
project, where all the constraints that build up logical forms have been delayed.

Since this tradeoff between early failure and the cost of constraint checking is
highly dependent on the particular grammar and on the efficiency of the constraint
checking algorithms, we will not pursue the question further in this thesis, but just
note that selective delaying of constraints can be applied as a means to fine-tune
the performance of a system.

In the actual implementation, we have chosen to check constraints as soon as
possible and to minimise the cost of checking equality constraints between sorted
feature structures by compiling them into Prolog terms, and using Prolog’s built-in
term unification (cf. chapter 5).

Uszkoreit [Uszkoreit, 1991] proposes another model which makes use of sta-
tistical information for controlling the order of constraint checking in order to
optimise performance. Conjuncts are given priority if they have a high failure
potential, and disjuncts if they have a high success potential. The reason is that
a conjunction fails if one of its conjuncts fails, and a disjunction is satisfied if one
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of the disjuncts is satisfied. Since this model applies internally to the constraint
solver, it can easily be added to the processing algorithms proposed in this thesis.

1.2.6.3 Coroutining

Coroutining is an important technique to provide for the handling of complex con-
straints such as relational dependencies (e.g., concatenation constraints). Corou-
tining ensures that these constraints are only checked when certain variables are
sufficiently instantiated to guarantee termination. This is important in cases where
no good ordering of the goals in a clause can be found, especially when it is not
known in advance which arguments of a predicate are its input and its output
arguments.

Coroutining was introduced in Prolog ii with the freeze/2 construct, which
allows to delay a goal until a variable becomes instantiated. In Sicstus Prolog, the
condition can be that a particular variable is either instantiated, or instantiated
to a ground term, or known to be equal to or different from another variable.
Conjunctions and disjunctions of these conditions are possible.

In life [Äıt-Kaci and Podelski, 1991], coroutining is achieved by treating func-
tions as passive constraints, i.e., functional expressions in a ψ-term are only eval-
uated when their arguments become sufficiently instantiated to determine sub-
sumption of the arguments specified in the function’s definition. Otherwise the
function residuates, i.e., waits for further instantiation [Smolka, 1993].

The most general form of coroutining is known in logic programming lan-
guages under the name of guarded rules or guarded constraints, where the execu-
tion of a rule is delayed until the specified conditions for execution (the guard)
are satisfied (by the instantiation of variables) [Äıt-Kaci and Podelski, 1994;
Smolka and Treinen, 1994].

Pfahringer and Matiasek make use of constraint logic programming for parsing
of hpsg grammars.30 In their approach, the principles of hpsg are attached as
constraints to variables, and are checked when these variables become instantiated
by unification. Only a few relations serve as generators of structures, to which
then the principles will apply to filter out the ill-formed ones. In this algorithm,
processing consists almost entirely of constraint checking.

Their algorithm is implemented with a Prolog extension known as attributed
variables, which allow user-defined unification and the attachment of arbitrary
constraints to logic variables [Holzbaur, 1992; Pfahringer, 1992]. Attributed vari-
ables are a generalisation of metaterms known from logic programming systems
such as Eclipse.

30[Matiasek, 1993; Matiasek and Heinz, 1993; Pfahringer and Matiasek, 1992; Matiasek, 1994a;
Matiasek, 1994b]
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1.2.7 Search Strategy

The space of possible search strategies is delimited by pure depth-first search at
one end, and breadth-first search at the other.

Breadth-first search is a useful search strategy because it is guaranteed to find
all solutions. However, it has a high computational cost compared to depth-first
search. Breadth-first search is useful for applications where the search can be
terminated after one solution has been found, since — unlike depth-first search —
it is guaranteed to find that solution. Its usefulness for linguistic deduction is very
limited because in general the purpose of linguistic deduction is to enumerate all
solutions to a given query (all analyses in case of parsing, or all paraphrases in case
of generation). In cases where all solutions need to be enumerated, breadth-first
search brings no advantage because it runs into the same termination problems
as depth-first search because there is no way to know when all solutions have
been found, so the search may go on indefinitely. The same kind of termination
problems can arise if no solutions exist.

Depth-first search, on the other hand, can be much more efficient, and is there-
fore often chosen as a search strategy for NLP.

In the framework of Earley deduction, it is easily possible to perform depth-
first search, breadth-first search or any mixture between the two. This property
is pointed out in [Kay, 1980] who refers to chart parsing as an algorithm schema,
which is turned into an algorithm by choosing a rule invocation strategy (top-
down, bottom-up or directed) and a search strategy. Kay introduces an agenda as
a data structure for the implementation of a search strategy. An agenda is a set of
pending parsing tasks (addition of items to the chart), which are ordered according
to a priority. Many chart parsing systems make use of an agenda for implementing
a search strategy. The question of search strategies has been explored in a system
for experimenting with parsing strategies that allows the definition of strategies
through assigning priorities to parsing tasks (combinations of active and passive
items) [Erbach, 1991a; Erbach, 1991b], based on properties of the items such as
length of the constituent, grammatical category, probability of the rule etc. The
problem with the system is that assigning priorities to parsing tasks on the basis
of such superficial properties of the items does not give any real advantage in
practice. In chapter 4, we define a notion of preference value that can be used as
a better basis for assignment of priorities.

Uszkoreit [Uszkoreit, 1991] also proposes a model that mixes depth-first and
breadth-first search. In this model, numeric preference values (chosen from a
predefined interval) are associated with disjuncts of a disjunction. Whenever a
disjunction is processed, all disjuncts whose preference is above a certain threshold
value are processed in parallel, and for those below the threshold, a choice point is
created which will be used on backtracking. Purely breadth-first search is enforced
by setting the threshold to the minimal preference value, and purely depth-first
search is the threshold is the maximal preference value.
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At the current state of the art, the algorithms for implementing different
search strategies are well-known, but good criteria for assigning priorities to non-
deterministic choices are still an area of active research.

1.2.8 Bidirectional NLP Algorithms

An NLP algorithm is bidirectional if it can be used for both parsing and generation.
Bidirectional algorithms can be classified along the following two dimensions into
four classes [Neumann, 1994b].

1. Does the system use the same grammar for both directions?

2. Is the same process used for both directions?

The approach we take in this thesis uses both the same algorithm and the same
process for parsing and generation.

The Essential Arguments Algorithm makes a definite clause grammar usable for
both parsing and generation by transforming it into two different logic programs —
one for each direction [Strzalkowski, 1991]. The algorithm is based on re-ordering
of goals at compile time (the transformation stage) in order to ensure that variables
are sufficiently instantiated when a goal is called to guarantee termination.

The head-driven algorithms discussed in section 1.2.3 are bidirectional in the
sense that they can be used for both parsing and generation.

1.2.8.1 Algorithms Based on Charts

Shieber [Shieber, 1988b] and Gerdemann [Gerdemann, 1991] have proposed algo-
rithms that use Earley deduction for both parsing and generation in a bidirectional
setting; the first truly uniform bidirectional algorithm in which parsing and gener-
ation can be interleaved has been presented in Neumann’s dissertation [Neumann,
1994b].

Kay has developed a bottom-up chart-based generator, which makes use of
semantic indexing [Kay, 1993].

Hashida presents a framework in which parsing and generation are processes
which emerge from one underlying algorithm [Hashida, 1994]. Hashida combines
chart-based methods with an activation network that controls the instantiation and
reduction process. A direct comparison with Earley deduction is made complicated
by the facts that Hashida uses a very non-standard notation which is not always
easily relatable to the standard formulations, and that his formalism is under
constant development, currently in order to replace the activation network with a
probabilistic processing regime.
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1.3 Conclusion

To conclude this chapter, we summarise our preferred choices in the five areas
discussed above where linguistic deduction algorithms can be varied.

Direction of processing: A bottom-up algorithm is preferred because of its po-
tential for data-driven and robust linguistic deduction. Wherever possible,
a directed algorithm that combines the benefits of bottom-up and top-down
processing should be chosen.

Selection function: The choice of a selection function is not really the focus of
this thesis. For simplicity, we assume that the goals of a clause have already
been ordered, and always use the first unblocked goal.

Memoing: We choose memoing in the form of Earley deduction, which has all
the advantages that chart parsing has for NL parsing, and is especially well
suited for search strategies such as best-first processing.

Constraints: We use the constraint language defined in section 1.1.1 and check
all constraints immediately.

Search Strategy: We choose to employ a best-first search strategy, based on a
probabilistic preference model elaborated in section 4.1.

Before presenting a processing model that instantiates these choices in chapter 3
(bottom-up Earley deduction), we will detour and show in chapter 2 how principle-
based grammars such as GB and hpsg can be brought into a rule-based form that
can be processed efficiently by the proposed deduction system.
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Chapter 2

From Principle-Based
Grammars to Rule-Based
Grammars

2.1 Principle-Based Versus Rule-Based Gram-

mars

This chapter is concerned with the claim that there are two different kinds of
grammatical theories: rule-based grammars in which rules describe how grammat-
ical constituents are constructed and principle-based grammars in which universal
principles constrain the possible constituents.

First, we define more precisely what is meant by principle-based and rule-based
grammar.

Principle-based grammar A set of (universal or language-specific) principles
must hold of all constituents described by a grammar. A few very general
rules may exist for forming the objects to which the principles are applied.
The prime example for this kind of approach is Government-Binding Theory
(gb) [Chomsky, 1981; Chomsky, 1986; Chomsky, 1993].

Rule-based grammar Every constituent must instantiate one rule of the gram-
mar. Examples of rule based grammatical theories/formalisms are lfg, dcg,
and patr.

A reason for the move from rule-based to principle-based grammars is the
desire to provide a theory of language that exhibits explanatory adequacy, not just
observational adequacy (accounting for the observed data) or descriptive adequacy

43
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(assignment of the right structural descriptions to sentences). Principle-based
grammars achieve explanatory adequacy by showing that a large variety of phrase
structures can be predicted from the interaction of a smaller number of general
principles.

Government-Binding Theory is the best example of a principle-based syntactic
theory, but the use of general principles also plays an increasing role in grammar
theories arising from the tradition of phrase structure grammars. Generalised
Phrase Structure Grammar (gpsg) [Gazdar et al., 1985] uses phrase structure
rules which are augmented with principles such as the Head Feature Principle. In
Head-Driven Phrase Structure Grammar (hpsg) [Pollard and Sag, 1987; Pollard
and Sag, 1994] phrase structure rules are largely abandoned, and the grammar
rests on the lexicon, and on principles which constrain the possible structures.

A big advantage of the principle-based approach is the compactness of the
representation of linguistic knowledge. To obtain the effect of k principles with
nj degrees of freedom, which can be stated in O(n1 + n2 . . .+ nk) lines of code, a
rule-based approach has to use O(n1 ∗ n2 . . . ∗ nk) rules (cf. [Berwick, 1991]).

While it is possible to process principle-based grammars directly in a type
inference system such as cuf or tfs, such direct processing suffers from serious
efficiency problems, due to the fact that many inference steps must be performed
at runtime. In order to overcome these efficiency problems, many implementations
of hpsg grammars often use rule-based formalisms such as ale or alep, and take
one of the following approaches to the handling of principles:

• the grammar rules are written in such a way that they respect the principles
of the grammar, or

• the principles are added to the grammar rules as procedural attachments.

The first approach has the disadvantage that the compactness of the gram-
matical specification permitted by principle-based formalisms is lost. The second
approach has the disadvantage that it increases the amount of processing needed
at runtime because the principles often have disjunctive formulations for different
types of structure.

We will present a formalism which permits a principle-based statement of the
grammar, and uses program transformation techniques (partial deduction) in order
to derive a rule-based grammar. This happens by specialising the principles of
the grammar to particular phrase types and eliminating as much disjunction as
possible at this stage. In the most extreme case, this step can transform the
grammar into its disjunctive normal form (DNF), but in practice DNF is often
either undesirable or impossible. It may be undesirable when it leads to a very
large number of phrase structure rules, and impossible when it would lead to an
infinite number of rules because of the use of recursively defined relations (such
as append/3) in the principles of the grammar. Therefore, the outcome of the



2.2. PARTIAL DEDUCTION 45

program transformation is a grammar with a number of phrase structure rules
to which some constraints and goals are attached which cannot be reduced at
compile time1 because they need to be instantiated during the processing to allow
a terminating (and often deterministic) computation.

The converse operation, transformation of rule-based grammars to principle-
based ones, may not be possible because there may be no commonalities between
the rules, i.e. no generalisations about these rules that could be expressed by prin-
ciples. Even if there are commonalities, their detection is beyond the capabilities
of today’s grammar learning systems.

In the following sections, we will use examples from gb and hpsg to illustrate
the transformation of a principle-based grammar into a rule-based grammar by
means of partial deduction techniques.

Since pure principle-based and pure rule-based grammars are not strict oppo-
sites, but rather the endpoints on a continuum, we will investigate what practical
gain in terms of runtime efficiency can be achieved by transforming a grammar
that is closer to the principle-based end of the scale into one that is near the rule-
based end. As the starting point for this investigation, we use a grammar of hpsg
that was originally encoded in the ale formalism.

2.2 Partial Deduction

Partial deduction is a program transformation technique for logic programs that
takes one logic program as input and returns an equivalent logic program in which
some of the goals are replaced by their expansions, i.e., the antecedent of a clause
whose consequent matches the goal. Partial deduction is sometimes also referred
to as partial execution or partial evaluation. We prefer the term partial deduction
in order to emphasise that it is a deduction step and as such it can have more than
one solution. It can be used to perform certain deduction steps at compile time, in
order to arrive at a larger program that can be executed more efficiently because
it requires less deduction at runtime.2 The inference rule for partial deduction (a
resolution step) is shown in rule (2.1); σ is the merged constraint of B and B′ (in
case of Prolog the unifying substitution). The inference rule can apply recursively
to its own output, so that termination cannot be guaranteed in the general case.

1By compile time, we mean the step of loading a logic program or declarative grammar and
transforming it to an internal representation. By runtime we mean the step when the internal
representation is executed or interpreted to prove goals (in particular to parse and generate
sentences).

2For Logic Programming, partial deduction fills the role that is filled by macros in other pro-
gramming languages. Partial deduction is a basic tool for logic programmers, and has been de-
scribed in an overview article by D.H. Warren [Warren, 1992]. Partial deduction in Prolog systems
can be done at compile time by defining clauses for term expansion/2, or for goal expansion/2

in Sicstus Prolog 3.1.
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A← Γ B ∆
B′ ← Θ

σ(A← Γ Θ ∆)
(2.1)

In order to apply partial deduction for program transformation, a decision
must be made which goals B are to be replaced by their expansions. In order
of increasing generality, there are three possibilities for making this decision: (1)
annotating individual goals to be expanded, (2) stating that goals which satisfy
certain conditions (e.g., those with a particular functor) are expanded, and (3)
providing a mechanism which decides automatically which goals can be expanded
without running into termination problems. We prefer to make use of the second
option in order to retain some control over the partial deduction process, and
allow the first option for specialised cases (cf. section 5.3.1.2 for a description of
the implementation).

In NLP, partial deduction has been employed to compile a parser and a gram-
mar, into an efficient executable parsing algorithm for that particular grammar.
Likewise, a generator and a grammar can be compiled into an efficient executable
generation algorithm. This is done by performing the partial deduction step on
the clauses that make calls to the rules of the grammar or the lexicon. In [Pereira
and Shieber, 1987, pp. 172-185], examples for compilation of dcg and parsers (as
interpreters) into top-down and left-corner parsers are given.

2.2.1 Partial Deduction Example: DCG

As a simple illustration of partial deduction, we show how to transform a top-
down parser and a (definite clause) grammar into an executable program. The
relation concat/3 is defined by means of difference lists to avoid unneeded non-
determinism (cf. page 17).

All predicates except parse/2 are expanded at compile time by partial de-
duction. The output of applying partial deduction to the program (parser and
grammar) in figure 2.1 is the equivalent program shown in figure 2.2, which con-
sists only of clauses for parse/2.3

Note that partial deduction can suffer from the same problems with termina-
tion and infinite sets of solutions as Prolog’s top-down deduction strategy, since
the inference rule for partial deduction is nothing but a resolution step that is
performed at compile time.

The solutions to this problem are the same as in practical Prolog programming:
ordering goals in such a way that the solutions of one goal ensure that the next

3Of course the resulting program can still be optimised to make use of the fact that Prolog
indexes clauses by functor; instead of clauses of the form parse(Category,String), indexing
is exploited by making the category the main functor and flattening the term: for example
parse(np(...),S0-S) should be represented more efficiently as np(...,S0,S).



2.2. PARTIAL DEDUCTION 47

% The top-down parser

parse(Cat,String) ←
word list(Word,String) ∧
word(Cat,Word).

parse(Cat,String) ←
rule(Cat,RHS) ∧
parse rhs(RHS,String).

parse rhs(〈Cat1|Cats 〉,String) ←
concat(Prefix,Rest,String) ∧
parse(Cat1,Prefix) ∧
parse rhs(Cats,Rest).

parse rhs(〈 〉,Elist) ←
empty list(Elist).

% Auxiliary predicates

concat(A-B,B-C,A-C).

word list(Word,〈Word|R 〉-R).

empty list(A-A).

% The grammar

rule(s,〈np(Num,Pers),vp(Num,Pers) 〉).
rule(np(Num,3),〈det(Num),n(Num) 〉).
rule(np(Num,Pers),〈pron(Num,Pers) 〉).
rule(vp(Num,Pers),〈vi(Num,Pers) 〉).
rule(vp(Num,Pers),〈vt(Num,Pers),np( , ) 〉).

% The lexicon

word(pron(sg,third),she).

word(pron(pl,first),we).

word(det(sg),a).

word(det( ),the).

word(n(sg),house).

word(n(pl),carpenters).

word(vi(sg,third),burns).

word(vt(pl, ),build).

Figure 2.1: Grammar and top-down parser as input to partial deduction
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parse(s,A-B) ←
parse(np(C,D),A-E) ∧
parse(vp(C,D),E-B).

parse(np(A,3),B-C) ←
parse(det(A),B-D) ∧
parse(n(A),D-C).

parse(np(A,B),C-D) ←
parse(pron(A,B),C-D).

parse(vp(A,B),C-D) ←
parse(vi(A,B),C-D).

parse(vp(A,B),C-D) ←
parse(vt(A,B),C-E) ∧
parse(np(F,G),E-D).

parse(pron(sg,third),〈 she|A 〉-A).

parse(pron(pl,first),〈we|A 〉-A).

parse(det(sg),〈a|A 〉-A).

parse(det(A),〈 the|B 〉-B).

parse(n(sg),〈house|A 〉-A).

parse(n(pl),〈carpenters|A 〉-A).

parse(vi(sg,third),〈burns|A 〉-A).

parse(vt(pl,A),〈build|B 〉-B).

Figure 2.2: Output of partial deduction on grammar and top-down parser
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goal is properly instantiated.
In the example, this problem arises in case of the recursively defined predicate

parse rhs/2. Partial deduction applied to parse rhs/2 gives an infinite number
of solutions unless the first argument is instantiated with a proper list.4

As the next example (figure 2.3), we apply partial deduction to a left-corner
parser and the same grammar and lexicon as above to obtain a specialised left-
corner parser for the grammar. The list manipulation predicates empty list/1,
word list/2 and concat/3 are defined as in the previous example (figure 2.1).
This time all predicates except word/2 and lc/3 are expanded by partial de-
duction.

parse(GoalCat,String) ←
word list(Word,WordList) ∧
concat(WordList,RestList,String) ∧
word(LexCat,Word) ∧
lc(LexCat,GoalCat,RestList).

lc(Cat,Cat,String) ←
empty list(String).

lc(SubCat,GoalCat,String) ←
rule(Cat,〈SubCat|Rest 〉) ∧
concat(Prefix,Suffix,String) ∧
parse rhs(Rest,Prefix) ∧
lc(Cat,GoalCat,Suffix).

parse rhs(〈Cat1|Cats 〉,String) ←
concat(Prefix,Rest,String) ∧
parse(Cat1,Prefix) ∧
parse rhs(Cats,Rest).

parse rhs(〈 〉,Elist) ←
empty list(Elist).

Figure 2.3: Left-corner parser as input to partial deduction

The output of the partial deduction procedure, which is a left-corner parser
specialised for the same grammar, is shown in figure 2.4.

A similar exercise could be performed for other algorithms (such as a shift-
reduce parser or a semantic-head driven generator), but the two above examples

4A list is proper iff either it is the empty list, or it consists of a first element and a rest, and
the rest is a proper list.
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parse(A,〈B|C 〉-D) ←
word(E,B) ∧
lc(E,A,C-D).

lc(A,A,B-B).

lc(np(A,B),C,D-E)←
parse(vp(A,B),D-F) ∧
lc(s,C,F-E).

lc(det(A),B,C-D)←
parse(n(A),C-E) ∧
lc(np(A,3),B,E-D).

lc(pron(A,B),C,D-E) ←
lc(np(A,B),C,D-E).

lc(vi(A,B),C,D-E)←
lc(vp(A,B),C,D-E).

lc(vt(A,B),C,D-E)←
parse(np(F,G),D-H) ∧
lc(vp(A,B),C,H-E).

Figure 2.4: Output of partial deduction applied to grammar and left-corner parser

should suffice to illustrate the basic idea of partial deduction. We turn there-
fore now to the central subject of this chapter, namely the application of partial
deduction in order to derive rule-based grammars from principle-based ones.

2.2.2 Partial Deduction Applied to GB

Government-and-Binding (gb) Theory [Chomsky, 1981] is a prime example of a
principle-based grammar. Unfortunately, there is no standard formalisation of gb.
We will use a small example from a paper by Crocker and Lewin, in which they
claim that principle-based grammars are fundamentally different from rule-based
grammars. The following quotation summarises their position [Crocker and Lewin,
1992, p. 508].

While deductive parsing techniques are well-understood for traditional
rule-based grammars, they are rather more elusive for current principle-
based or constraint-based grammars. [...] we argue that a major source
of difficulty arises from a fundamental difference in the way such gram-
mars should be axiomatised: While rule-based grammars typically con-
sist of a set of sufficient structure-generating axioms, principle-based
grammars are more naturally expressed as a set of necessary ‘structure-
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I. Two sets of nodes:

(a) The set T of all terminals.

(b) The set NT of all non-terminals.

II. The set B of branches:

(a) if X, Y, ZεNT , then [XY Z] εB

(b) if XεNT , Y εT , then [XY ] εB

(c) there is nothing else εB

III. The set PB of proper branches:

(a) αεPB iff αεB, and

(b) α meets all necessary conditions in [figure 2.6].

IV. The set Tr of well-formed trees:

(a) if α = [XY ] εPB, then αεTr

(b) if At, BtεTr and [XAB] εPB, then Xt = [XAtBt] εTr.

Figure 2.5: Fundamental definitions of Crocker and Lewin’s GB specification

licencing’ conditions which in essence rule out ill-formed structures
rather than generating new ones.

The specification in figure 2.5 and the gb principles in figure 2.6 are taken
from Crocker and Lewin’s paper (page 511) where they are contrasted with a rule-
based grammar covering the same tiny language fragment. It serves as an example
for illustrating the difference between principle-based and rule-based grammars.
We will use it as a basis for compilation from a principle-based grammar into a
rule-based grammar by making use of partial deduction techniques.

In figure 2.7 we translate the fundamental definitions (from figure 2.5) to defi-
nite clauses, and in figure 2.8 the principles and lexicon (from figure 2.6). These
definite clauses form the basis of the partial deduction exercise. Note that the
example makes use of finite domains to encode underspecification of bar levels;
the corresponding finite domain consists of the values 0, 1 and 2. If such a finite
domain encoding were not used, we would end up with a larger number of rules
in which the bar levels are fully specified.
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X-theory:
(a) [XiY jZk] → X = Z, i=j=2, k ≤ 1, Y is-spec-of X or

X = Y, j = 0, k = 2, 1 ≤ i ≤ 2.
(b) [Xn Word]→ cat(Word,X), 2 ≥ n ≥ 0.

Case Filter:
(c) [ZXN2] → is-a-case-assigner(X).

θ-Criterion
(d) [ZX0Y 2] → θ-marks(X0 , Y 2).

Lexicon/Parameters
(e) cat(‘the’,D).
(f) cat(‘film’,N).
(e) cat(‘saw’,V).
(h) is-a-case-assigner(V).
(i) θ-marks(V 0, N2).
(j) D is-spec-of N.

Figure 2.6: Crocker and Lewin’s specification of GB principles and lexicon

The partial deduction proceeds by expanding all goals except
proper branch/1.5

The output of our partial deduction system (cf. section 5.3) is shown as definite
clauses in figure 2.10. Written in more conventional grammar rule notation, these
proper branches are shown below in the ruleset (2.2) as five grammar rules (two
phrasal rules and three lexical entries).

N2 → D2N (0∨1)

V (1∨2) → V 0N2

N → [film]
D → [the]
V → [saw]

(2.2)

The application of the gb principles greatly reduces the number of possible
rules. When the definition for branch/1 if expanded without recourse to principles,
there are 36 possible results, most of which are in violation of the principles of gb.

5Partial deduction is applied to reduce all calls to the predicates branch/1, theta marks/2,

is a case assigner/1, cat/2, x bar theory/1, theta criterion/1,

case filter/1, is spec of/2, branch/1, conditions/1, word to list/2, and concat/3.
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top > 〈node 〉.
node intro 〈cat,bar,string 〉.
bar fin dom 〈0,1,2 〉.

non terminal(n).

non terminal(d).

non terminal(v).

terminal(the).

terminal(film).

terminal(saw).

branch


〈

cat: M
string: SM


,


cat: L

string: SL


,


cat: R

string: SR


〉

←
non terminal(M) ∧
non terminal(L) ∧
non terminal(R) ∧
concat(SL,SR,SM).

branch


〈

cat: M
string: S


, D

〉
←

non terminal(M) ∧
terminal(D) ∧
word to list(D,S).

proper branch(X) ←
branch(X) ∧
conditions(X).

conditions(X) ←
x bar theory(X) ∧
case filter(X) ∧
theta criterion(X).

Figure 2.7: Fundamental definitions of GB as a logic program
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x bar theory




〈
cat: X

bar: 2


,


cat: Y

bar: 2


,


cat: Z

bar: K



〉

←
K = 0 or 1 ∧ X = Z ∧ is spec of(Y,X).

x bar theory


〈

cat: X
bar: I


,


cat: Y

bar: 0


,


cat: Z

bar: 2


〉

←
I = 1 or 2 ∧ X = Y.

x bar theory


〈

cat: Cat
bar: Bar


, Word

〉
←

cat(Word,Cat) ∧ Bar = 0 or 1 or 2.

case filter


〈

, X,


cat: n

bar: 2


〉

←
is a case assigner(X).

case filter




〈
, X,


cat: n

bar: 0 ∨ 1



〉

.

case filter(〈 ,X,cat:Cat 〉) ← dif(Cat,n).

case filter(〈 , 〉).
theta criterion(〈 , X&bar:0, Y&bar:2 〉) ← theta marks(X,Y).

theta criterion(〈 ,bar:(1 or 2),bar:(0 or 1) 〉).
theta criterion(〈 , 〉).

cat(the,d).

cat(film,n).

cat(saw,v).

is a case assigner(cat:v).

theta marks





cat: v

bar: 0


,


cat: n

bar: 2




.

is spec of(d,n).

Figure 2.8: GB principles and lexicon as logic program
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concat(A-B,B-C,A-C).

word to list(Word,〈Word|R 〉-R).

rec(Node) :-

proper branch(〈Node, 〉).
rec(Node) :-

proper branch(〈Node, LeftDtr, RightDtr 〉) ∧
rec(LeftDtr) ∧
rec(RightDtr).

Figure 2.9: Auxiliary predicates for gb parsing

proper branch




〈


cat: n
bar: 2
string: A-C


,




cat: d
bar: 2
string: A-B


,




cat: n
bar: 0 ∨ 1
string: B-C



〉

.

proper branch




〈


cat: v
bar: 2 ∨ 1
string: A-C


,




cat: v
bar: 0
string: A-B


,




cat: n
bar: 2
string: B-C



〉

.

proper branch


〈

cat: n
string: 〈film|A 〉-A


, f ilm

〉
.

proper branch


〈

cat: d
string: 〈 the|A 〉-A


, the

〉
.

proper branch




〈
cat: v

string: 〈 saw|A 〉-A


, saw

〉
.

Figure 2.10: Output of partial deduction applied to gb (as logic program)
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If these were used to enumerate possible analysis trees for a given sentence, the
result would be a vast number of trees. The application of partial deduction can
reduce this number significantly already at compile time.

This small example of partial deduction demonstrates clearly that it is possible
to compile a principle-based grammar into a rule-based grammar. The resulting
rule-based grammar is of course redundant and does not capture generalisations
that can be expressed in the principle-based format.

Other approaches to principle-based gb-parsing in [Berwick et al., 1991] (e.g.,
[Fong, 1991; Johnson, 1991; Stabler, 1990] employ a covering phrase structure
grammar to build up structures, and use the principles to rule out any invalid
derivations.

We turn our attention now to Head-Driven Phrase Structure Grammar (hpsg),
argue that it is a principle-based grammar according to the definition given above
and show how partial deduction can be used in order to transform a larger hpsg
grammar into a rule-based grammar to which the standard parsing and generation
algorithms can be applied.

2.3 HPSG as a Principle-Based Grammar

hpsg has been labelled an information-based grammatical theory [Pollard and Sag,
1987], a characterisation which emphasises the fact that hpsg is concerned with
providing a theory how language is used to convey information, rather than just
characterising the set of well-formed sentences. More interesting for our purposes
is the characterisation of hpsg as a constraint-based theory of language. The
characterisation of a theory as constraint-based is orthogonal to the distinction
rule-based versus principle-based. Both rule-based and principle-based theories
can be based on constraints: in the former case the constraints apply only to
one rule, whereas in the latter case the constraints are principles that apply to
every structure that is allowed by the grammar. In that sense, we would call
hpsg a principle-based and a constraint-based theory, whereas lfg or dcg are
rule-based and constraint-based. Context-free grammars are rule-based but not
constraint-based, whereas it is hard to conceive of a grammatical formalism that
is principle-based, but not constraint-based in the widest sense.

Since this thesis will be exclusively concerned with constraint-based grammars
(cf. section 1.2.6), it is the principle-based versus rule-based distinction that really
matters.

2.3.1 Formalisations of HPSG

In this section, we review the formalisation of hpsg given in the two hpsg books
([Pollard and Sag, 1987; Pollard and Sag, 1994]), give a formalisation of hpsg as
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definite clauses in the spirit of work done in the stuf and cuf formalisms, and
show the equivalence of the two formalisations.

Pollard and Sag [Pollard and Sag, 1987, p. 44] give the following formalisation
of HPSG (P1 . . .Pn are universal principles, Pn+1 . . .Pn+m are language-specific
principles, L1 . . . Lp are lexical signs of a language, and R1 . . .Rq its grammar
rules).

English = P1 ∧ . . . ∧ Pn+m ∧ (L1 ∨ . . . ∨ Lp ∨R1 ∨ . . .∨Rq) (2.3)

In later hpsg work, the disjunction of lexical entries and rule schemata is
made into the ID Principle, which states that “every headed phrase must satisfy
exactly one of the ID schemata” [Pollard and Sag, 1994, p. 38].

In one tradition of processing models for hpsg based on type deduction, (2.3)
is treated as a constraint on the sort sign. The basic idea in this approach is that
every feature structure of sort sign must satisfy all principles of the grammar and
exactly one of the ID schemata or a lexical entry. In this approach, there is a
distinction between sorts and types. Sorts are the defined in the usual sense, but
types can be complex properties, such as the type sign of english.

Linguistic processing in this approach proceeds as type deduction. Examples
are the Typed Feature Structure system TFS [Zajac, 1992; Emele and Zajac, 1990],
and to a certain extent ale [Carpenter, 1993a].6

In this thesis, we will use a different formalisation of hpsg that is closer to
mainstream logic programming, namely we will represent an hpsg by definite
clauses. The primary motivation for this is the fact that we want to apply program
transformation techniques known from logic programming to hpsg in order to turn
it from a principle-based into a rule-based one, for which more efficient processing
algorithms are known to exist.

In order to arrive at a definite clause formalisation of (2.3), we interpret the
equality sign (=) as logical equivalence, and, the connectives as conjunction and
disjunction, and the principles, lexical entries and rules as one-place predicates.
The resulting formula of first-order logic is shown in (2.4).

∀x[sign of english(x)↔
P1(x) ∧ . . . ∧ Pn+m(x) ∧
(L1(x) ∨ . . . ∨ Lp(x) ∨ R1(x) ∨ . . . ∨Rq(x))]

(2.4)

Logic programming is based on a closed-world assumption, i.e., everything that
is not provable from a logic program is false (negation by failure). Consequently, if
a proposition P is implied by a number of assumptions A1 . . .An, then the truth
of P under the closed world assumption also implies the truth of A1 ∧ . . . ∧ An

6For a thorough discussion of the issues involved in defining typed feature formalisms for
hpsg, see [Meurers, 1994; Götz and Meurers, 1995].
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[Lloyd, 1984, p. 74] [Shepherdson, 1984]. So, if we see our hpsg example in a logic
programming context, the biconditional (2.4) can be substituted by a Horn clause
with a simple conditional (2.5).

∀x[sign of english(x)←
P1(x) ∧ . . . ∧ Pn+m(x) ∧
(L1(x) ∨ . . . ∨ Lp(x) ∨R1(x) ∨ . . . ∨Rq(x))]

(2.5)

What is still missing from this formulation is the fact that any substructures of
X which are of the sort sign must also satisfy the predicate sign of english/1.
Due to the appropriateness specification of hpsg, structures of sort sign can only
occur as values of the features head-dtr, adjunct-dtr, marker-dtr, filler-
dtr and as elements of the list that is the value of complement-dtrs. Since
these features are referenced by the rule schemata, we replace each goal involving
a rule schema by a conjunction of the rule schema and a number of goals that
require that each of the daughters must themselves be signs. Instead of the goal
Ri(x), we use the conjunction

Ri(x) ∧ sign of english(y1) ∧ . . . ∧ sign of english(yn)

where the yi are the feature structures of sort sign that appear explicitly in x.
In order to transform this into Horn clauses, we expand the formula to disjunc-

tive normal form, and make a Horn clause of each disjunct, as shown in figure 2.11.
The current version of hpsg [Pollard and Sag, 1994] differs slightly from the

one given above: the disjunction of the rule schemata R1 . . . Rq is replaced by a
new principle, the ID Principle. Since the content of the ID Principle is exactly
the disjunction of the rule schemata R1 . . .Rq, partial deduction applied to the ID
Principle provides the step from the specification in (2.5) to the one in figure 2.11.7

Our formalisation of hpsg as definite clauses follows the tradition established
in work with formalisms such as stuf [Dörre and Seiffert, 1991] and cuf [Dörre
and Dorna, 1993].8

What remains is a formalisation of the principles. In [Pollard and Sag, 1987]
principles are formulated as conditional feature structures. We treat these as
logical conditionals of the form A → B, which is equivalent to ¬A ∨ B. Take
for example the head feature principle, given in [Pollard and Sag, 1987] as the
conditional feature structure (2.6).

7Similarly for the disjunction of lexical entries.
8Note that cuf uses a functional notation which represents an n-place relation as an (n− 1)-

place expression. One of the arguments of the relation is designated as the “result”. If the element
of a set is chosen as the “result,” the relation member would be defined by the clauses member(〈X|
L 〉) ⇒ X and member(〈X|L 〉) ⇒ member(L). In case of a relation such as sign, it is not clear
what the “result” should be. An obvious choice is taking the daughter nodes as arguments, and
the mother node as “result.” Note that recursion is hidden in the arguments in a (simplified)
definition such as sign(head dtr:(HD&sign)&(comp dtr:(CD&sign))⇒ principles(HD,CD).
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∀x[sign of english(x)←
P1(x) ∧ . . . ∧ Pn+m(x) ∧
L1(x)]

...
∀x[sign of english(x)←

P1(x) ∧ . . . ∧ Pn+m(x) ∧
Lp(x)]

∀x[sign of english(x)←
P1(x) ∧ . . . ∧ Pn+m(x) ∧
R1(x) ∧
sign of english(y1) ∧ . . . ∧ sign of english(yn)]

...
∀x[sign of english(x)←

P1(x) ∧ . . . ∧ Pn+m(x) ∧
Rp(x) ∧
sign of english(y1) ∧ . . . ∧ sign of english(yn)]

Figure 2.11: HPSG as definite clauses
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phrasal sign[ ]⇒


syn:loc:head: X

dtrs:head dtr:syn:loc:head: X


 (2.6)

We transform this to two clauses:

head feature principle(¬phrasal sign[ ]).

head feature principle




phrasal sign


syn:loc:head: X

dtrs:head dtr:syn:loc:head: X




. (2.7)

Given that we apply the predicate head feature principle only to feature
structures of sort sign, we can replace the negated sort phrasal sign by the sort
lexical sign, since it is equivalent to sign & ¬ phrasal sign. The resulting formula-
tion of the head feature principle as a definite clause is given in (2.8).

head feature principle(lexical sign[ ]).

head feature principle




phrasal sign


syn:loc:head: X

dtrs:head dtr:syn:loc:head: X




. (2.8)

It is this formulation as definite clauses to which partial deduction techniques
will be applied below. The purpose of partial deduction is to resolve goals which
involve checking of principles, in order to arrive at a rule format in (2.9), where Γ
is a sequence of goals that cannot be reduced by partial deduction.

sign(M)← sign(D1) ∧ sign(D2) ∧ Γ. (2.9)

Our objective is for Γ to turn out to be no more than the cp/2 relation, in which
case we have arrived at the rule format (1.8) proposed by van Noord [van Noord,
1993], repeated below as rule (2.10). This is a desirable effect because efficient
processing algorithms are known for rules in this format. As already mentioned
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in chapter 1, van Noord restricts grammars “to consist of definite clauses defining
only one unary relation” [van Noord, 1993, p. 43] (the relation sign/1), and argues
that all other relations can be compiled away by partial deduction techniques. In
addition to the relation sign/1, van Noord introduces an additional relation cp/2
(construct phonology), which makes the combination of the phonological values
of the daughters in a rule explicit, especially in cases where it is not restricted to
concatenation.

sign(M)← sign(D1) ∧ sign(D2) ∧ cp(M, 〈D1, D2〉). (2.10)

Before reporting on the outcome of partial deduction experiments on two ver-
sions of hpsg, we will enumerate the principles of hpsg, and discuss their proper-
ties with respect to partial deduction in the following section.

2.3.2 Principles of HPSG

The formulations of the principles given are based on the sort hierarchy and the
principles in [Pollard and Sag, 1994].

In the following discussion of principles, we concentrate on headed structures,
which have been the focus of attention in the hpsg literature. The case of lexical
signs will not be mentioned explicitly for those principles that only apply to phrases
and are therefore vacuously true of lexical signs. Those principles that are seen
as constraints on lexical entries can be used to perform a consistency check on
the lexicon at the step when the lexicon is expanded by means of lexical rules (cf.
section 2.5).

For each principle, we repeat its definition in the hpsg book, and a discuss its
properties with respect to partial deduction.

When discussing partial deduction of each principle, we will do so by dis-
tinguishing different cases for the different subsorts of headed structures (head-
complement, head-adjunct, head-marker, and head-filler structures). Since these
subsorts are mutually incompatible, they cannot co-occur in one grammar rule in
the output of the partial deduction procedure. The effect of partial deduction is
to distribute some of the disjunctions found in the principles of hpsg onto differ-
ent instances of grammar rules, with the exception of infinite disjunctions arising
from recursively defined relations, and some other disjunctions which are better
processed at runtime in order to avoid an explosion of the rule set. The latter can
be handled by treating them as guarded constraints, which wait until the input is
sufficiently instantiated to allow a deterministic execution of the constraint.
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2.3.2.1 Head Feature Principle

In a headed phrase, the values of synsem|local|category|
head and daughters|head-daughter|synsem|local|category|
head are token-identical.
(p. 34)

Properties. The Head Feature Principle is deterministic (for all headed
phrases). It can be compiled into a feature term and be unified with all rule
schemata of hpsg. There is no need to retain this principle as a goal for process-
ing at runtime.

2.3.2.2 Subcategorisation Principle

In a headed phrase, the list value of daughters|head-daughter|
synsem|local|category|subcat is the concatenation of the list
value of synsem|local|category|subcat with the list consisting
of the synsem values (in order) of the elements of the list value of
daughters|complement-daughters.
(p. 34)

Properties. The Subcategorisation Principle is more problematic than the Head
Feature Principle. It is applicable to all subsorts of headed phrases, even to those
that do not have complement daughters, such as head-adjunct structures, head-
marker structures and head-filler structures. This is due to the fact that all headed
phrases in HPSG have a complement-daughters (comp-dtrs) list, even if they
don’t have any complement daughters. In this case, the comp-dtrs list is empty.

The Subcategorisation Principle makes use of the (recursively defined) con-
catenation predicate, and implicitly of a predicate that relates a list of signs to a
list of the synsem values of these signs. Both of these cannot be reduced by means
of partial deduction unless the length of the list is known in advance.

We will look at two approaches for dealing with this problem. In the
first approach (cf. section 2.4.1), the appropriateness specification for the sort
constituent-structure (the value of the feature daughters) is changed in such
a way that the feature comp-dtr(s) is only appropriate for head-complement
structures, but not for head-adjunct, head-filler and head-marker structures. In
addition, the value of the feature comp-dtr is of sort sign instead of list(sign).
The result is a binary branching reformulation of hpsg.

In the second approach (cf. section 2.4.2), we retain the appropriateness spec-
ification of hpsg, but make use of lexical information about the maximal length
of subcat lists in order to allow a terminating partial deduction involving the list-
processing predicates that occur in the definition of the Subcategorisation Princi-
ple.
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2.3.2.3 ID Principle

Every headed phrase must satisfy exactly one of the ID schemata.
(p. 37)

Schema 1 (head-complement structure)

The synsem|local|category|subcat value is 〈 〉, and the daugh-
ters value is an object of sort head-comp-struc whose head-
daughter value is a phrase whose synsem|nonlocal|to-bind|slash
value is { }, and whose complement-daughters value is a list of
length one.
(p. 38)

Schema 2 (head-complement structure)

The synsem|local|category|subcat value is a list of length one,
and the daughters value is an object of sort head-comp-struc whose
head-daughter value is a word.
(p. 39)

Schema 3 (head-complement structure)

The synsem|local|category|subcat value is 〈 〉, and the daugh-
ters value is an object of sort head-comp-struc whose head-
daughter value is a word.
(p. 40)

Schema 4 (head-marker structure)

The daughters value is an object of sort head-marker-struc whose
head-daughter|synsem|nonlocal|to-bind|slash value is { }, and
whose marker-daughter|synsem|local|category|head value is
of sort marker.
(p. 46)

Schema 5 (head-adjunct structure)

The daughters value is an object of sort head-adjunct-struc whose
head-daughter|synsem value is token-identical to its adjunct-
daughter|synsem|local|category|head|mod value and whose
head-daughter|synsem|nonlocal|to-bind|slash value is { }.
(p. 56)
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Schema 6 (head-filler structure)

The daughters value is an object of sort head-filler-struc whose
head-daughter|synsem|local|category value satisfies the de-
scription [head verb [vform finite, subcat 〈 〉]], whose head-
daughter|synsem|nonlocal|inherited|slash value contains an el-
ement token-identical to the filler-daughter|synsem|local value
and whose head-daughter|synsem|nonlocal|to-bind|slash value
contains only that element.
(p. 164)

Properties. The ID Principle brings all the rule schemata of hpsg together in
one disjunctive formulation.

In our exercise for compiling out the principles of hpsg into a set of phrase
structure rules, the ID schemata 2 and 3 are problematic because they specify a
(potentially) infinite number of phrase structure rules due to the fact that there
is no upper bound on the length of the comp-daughters list. This problem is
shared with the Subcategorisation Principle. Both of the approaches for solving
the problems with the Subcat Principle will also reduce the number of phrase
structure rules allowed by the schemata to a finite set.

With the first approach (binary branching), there is no longer a potentially
infinite set of daughters, but this set can be generated by repeated application
of one binary branching phrase structure rule. In section 2.4.1, an alternative
formulation of schemata 1, 2 and 3 will be presented.

With the second approach (limiting the length of subcat lists based on lex-
ical information), the length of the complement-daughters list will also be
finite. Hence, only a finite subset of the potentially infinite rule set allowed by the
schemata 2 and 3 needs to be generated.

2.3.2.4 Marking Principle

In a headed phrase, the marking value is token-identical with that of
the marker-daughter if any, and with that of the head-daughter
otherwise.
(p. 45n)

Properties. This principle has two cases: one for head-marker structures, and
one for all other headed structures. Since these give rise to different phrase struc-
ture rules anyhow, the two cases of the principle can be integrated by means of
partial deduction into the appropriate phrase structure rules, and need not be
retained as a goal to be called at runtime.
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2.3.2.5 Spec Principle

In a headed phrase whose non-head daughter (either the marker-
daughter or complement-daughters|first has a synsem|local|
category|head value of sort functional, the spec value of that
value must be token-identical with the phrase’s daughters|head-
daughter|synsem value.
(p. 51)

Properties. The Spec Principle applies to head-marker structures and head-
complement structures, and is true for all other clause types.9 The Spec Principle
has two subclauses for head-complement structures: one for the case where the
first complement daughter is substantive (in which case the principle imposes no
constraints) , and other other case where it is functional. The same is true for
marker structures and the marker daughter. The principle is true for all other
kinds of headed structures.

Partial deduction of this principle gives rise to different instances: it requires
coindexing of the spec value and the head daughter’s synsem value for head-
marker structures and for head-complement structures which involve a functional
category as complement, and is true for all other typed of structures.

2.3.2.6 Semantics Principle

The Semantics Principle is made up of three principles, the Content Principle,
the Quantifier Inheritance Principle, and the Scope Principle (pp. 322/323). The
principles make use of the notion of semantic head, which is defined as follows.

The semantic head of a headed phrase is

(1) the adjunct daughter in a head-adjunct structure,

(2) the head daughter otherwise.

Properties. This definition has two disjuncts: one for head-adjunct structures,
and one for all other structures. This will lead to a duplication of all other clauses
which make reference to the definition of semantic head. Since our constraint lan-
guage does not support negation, the two disjuncts are expanded into four: one for

9Note that the clauses that define the Spec Principle are themselves acyclic, but can lead to
the creation of cyclic structures if a head daughter subcategorises the specifier, i.e., if when the
Spec Principle is unified with the Subcat Principle. Such cyclic structures are supported by most
current feature logics (feature structures are no longer required to be directed acyclic graphs) and
do not pose any practical problems because state-of-the-art logic programming or typed feature
languages can handle cyclic terms. Prolog appears very old-fashioned in this respect because it
can handle cyclic terms at runtime, but cannot print them out.
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head-adjunct structures, and three for the other phrase types (head-complement,
head-marker and head-filler structures).

Content Principle

In a headed phrase,
(Case 1) if the semantic head’s content value is of sort psoa, then its
nucleus is token-identical to the nucleus of the mother;
(Case 2) otherwise, the content of the semantic head is token-
identical to the content of the mother.

Properties. The Content Principle has two clauses, one for content values of
sort psoa, and one for the other sorts (nom-obj and quant). In this case, three
clauses result. Since each of these makes use of the definition of semantic head,
partial deduction of this clause, will lead to twelve clauses, and amounts to an
expansion to disjunctive normal form.

As an alternative, one could consider using guarded constraints to delay the
execution of the content principle until the content value is instantiated to one
of the three subsorts of content.

Quantifier Inheritance Principle

In a headed phrase, the retrieved value is a list whose set of elements
forms a subset of the union of the qstores of the daughters, and is
non-empty only if the content of the semantic head is of sort psoa;
and the qstore value is the relative complement of the retrieved
value.
(p. 322/323)

Properties. The Quantifier Inheritance Principle can only be processed effi-
ciently by making use of set constraints. Just having a subset constraint instead
of enumerating the different subsets at each point prevents the growth of the search
space that would be the consequence of a naive implementation of this principle.

In addition, a procedure for collecting the elements of a set (subset of the union
of the qstores) is needed, and its execution must be delayed (guarded constraint)
to prevent the undesired enumeration of the possible subsets.

Scope Principle

In a headed phrase whose semantic head is of sort psoa, the quants
value is the concatenation of the retrieved value with the quants
value of the semantic head.
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Properties. Like the Content Principle, the Scope Principle distinguishes be-
tween phrases whose semantic head is of sort psoa, and phrases in which it has
another sort (and imposes no constraints at all because there are no quantifiers
involved). In order to prevent termination problems with the concatenation proce-
dure, the execution of this principle should be delayed until the retrieved value
has become instantiated via the Quantifier Inheritance Principle.

2.3.2.7 Raising Principle

Let e be a lexical entry whose subcat list l contains an element X not
specified as expletive. Then X is lexically assigned no semantic role in
the content of e if and only if l also contains a (nonsubject) Y[subcat
〈x〉].
(p. 117)

Properties. Since the Raising Principle “should be interpreted as a constraint
on lexical entries,” there is no need to make use of it during parsing or generation,
but it should be enforced for every lexical entry listed in its base form in the lexicon
or generated by the application of lexical rules (cf. section 2.5).

2.3.2.8 Nonlocal Feature Principle

In a headed phrase, for each nonlocal feature f = slash, que, or
rel, the value of synsem|local|inherited|f is the set difference of
the union of the values on all the daughters and the value of synsem|
nonlocal|to-bind|f on the head-daughter.
(p. 164)

Properties. The Nonlocal Feature principle makes use of the notion of set dif-
ference, which cannot be implemented in a monotonic feature logic. Therefore, we
reformulate the principle by making use of the notion of disjoint union:

In a headed phrase, for each nonlocal feature f = slash, que, or rel,
the union of the values on all the daughters is the disjoint union of
synsem|local|inherited|f and of synsem|nonlocal|to-bind|f on
the head-daughter.

This principle can be directly expressed in our constraint language by making
use of the set constraints.
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2.3.2.9 Incomplete Constituent Constraint

[inher|slash empty-set] <
complement[inher|slash nonempty-set]
(p. 190/193)

Properties. This linear precedence (LP) rule can be expressed with the combi-
nation of linear precedence constraints and guarded constraints.

2.3.2.10 Singleton Rel Constraint (parochial)

For any sign, the synsem|nonlocal|inherited|rel value is a set of
cardinality at most one.
(p. 211)

Properties. This constraint can be expressed by making use of guarded con-
straints and the fixed cardinality set constraints. The formalisation needs to make
use of a disjunction between the empty set and a set of cardinality one.10

2.3.2.11 Relative Uniqueness Principle (parochial)

For any phrase, a member of the set value of synsem|nonlocal|
inherited|rel may belong to the value of that same path on at most
one daughter.
(p. 212)

Properties. Unless the constraint language allows to quantify over different
daughters, this constraint can only be expressed by means of a disjunctive for-
mulation in which a member of the synsem|nonlocal|inherited|rel is non-
deterministically coindexed with the value of the same path on any daughter and
declared to be disjoint with the same path on the other daughters.

2.3.2.12 Clausal Rel Prohibition

For any synsem object, if the local|category|head value is verb
and the local|category|subcat value is 〈 〉, then the nonlocal|
inherited|rel value must be { }.
(p. 220)

10Alternatively, it can be expressed with a forall constraint with a variable as a value, which
fails only if a set has two or more distinct members.
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Properties. This constraint applies to all schemata except schema 2 (where the
subcat list is not empty). For schemata 1 and 3, the subcat value is always
empty, so that the requirement that the rel set be empty can be instantiated on
those instances where the head-daughter is verbal. For the verbal instances of the
other rule schemata, this principle is best implemented by means of a guarded
constraint with a guard on the subcat list being empty, and a consequent on rel
being the empty set.

2.3.2.13 Control Theory

If the soa-arg value of a control-qfpsoa is token-identical with the
content value of a local object whose category|subcat value is a
list of length one, then the member of that list is (1) reflexive, and
(2) coindexed with the influenced (respectively, committor, ex-
periencer) value of the control-qfpsoa if the latter is of sort influence
(respectively, commitment, orientation).
(p. 302)

Properties. The above definition is best modelled by a guarded constraint, but
expansion to disjunctive normal form would also be a possibility.

2.3.2.14 Quantifier Binding Condition

Let x be a quantifier, with restindex|index value y on the quants
list of a psoa z, and p a path in z whose value is y. Let the address
of x in z be quants|q|first. Then p must have a prefix of one of the
following three forms:
(1) quants|q|first|restindex|restriction;
(2) quants|q|rest; or
(3) nucleus.
(p. 327)

Properties. This principle makes use of a variable q over paths, and universally
quantifies over this variable. This is beyond the expressiveness of our constraint
language.

2.3.2.15 Principle of Contextual Consistency

The context|background value of a given phrase is the union of
the context|background values of the daughters.
(p. 333)
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Properties. This principle can be expressed with the set union constraint of our
constraint language.

2.3.2.16 Constituent Order Principle

The current version of hpsg [Pollard and Sag, 1994] does not mention the con-
stituent order principle. This is clearly an omission since the current set of princi-
ples does not specify how the phon value of a phrasal sign is derived from the phon
values of its daughters. In [Pollard and Sag, 1987], there was a specification of the
constituent order principle, which made reference to a function order-constituents,
which was not further specified.

For a language like English, it is possible to get away with a simple version
of the Constituent Order Principle, which only makes use of concatenation and
can be specialised for each rule schema (subjects, markers, and fillers precede
their heads; heads precede non-subject complements; and adjuncts specify their
direction of combination lexically).

In this case, the concatenation can be implemented by means of difference
lists, and partial deduction of the Constituent Order Principle leaves no goals to
be processed at runtime.

For a language such as German, more elaborate operations are needed in the
statement of the Constituent Order Principle, such as the domain union mechanism
proposed by Reape (cf. section 3.2).

Since these operations are normally recursively defined and non-deterministic,
they cannot be reduced at compile time, and partial deduction of a more serious
version of the Constituent Order Principle will leave some goals that must be
processed at runtime, which are given as the relation cp/2 in rule (1.8) on page
15.

2.3.2.17 Binding Theory

Although we will not discuss the Binding Theory in detail, we see no principled
reason why the HPSG Binding Theory could not be expressed with the constraint
language introduced in chapter 1. The notion of o-command, which relies on the
obliqueness hierarchy, can be modelled with the linear precedence constraints, and
equality and inequality constraints are sufficient for expressing the notions o-bound
and o-free.

2.3.3 Conclusion on HPSG principles

A expressive constraint language making use of set constraints, linear precedence
constraints, and guarded constraints is necessary and sufficient to express most
principles of hpsg. A less expressive constraint language is not enough because
hpsg makes heavy use of sets and constraints and operations on them. The use of
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guarded constraints is appropriate when the applicability of a principle depends
on the instantiation of certain features.11 There are only very few principles that
are not expressible, among them the Coordination Principle, which makes use of a
subsumption constraint, and the Quantifier Binding Condition which universally
quantifies over a variable over paths.12

Partial deduction is applied to hpsg by making use of the definition of a sign
as given in figure 2.11, and selectively replacing the calls to the principles by the
antecedents of the clauses defining the principles. If the antecedent of a clause
is non-empty, it may contain other goals that are replaced by the bodies defining
these clauses and so on. However, certain recursively defined clauses are not
expanded because their expansion would not terminate. Among these are the call
to append/3 in the Subcat Principle, and the recursive calls to sign/1 in the
definition of a phrasal sign.

The outcome of the partial deduction exercise presented in the following section
is thus a (more or less) large number of phrase structure rules, each of which has
incorporates the appropriate disjunct of each principle, and has possibly some
goals for recursively defined procedures such as append/3 plus a number of set
constraints, linear precedence constraints and guarded constraints derived from
the principles.

2.4 Partial Deduction Applied to HPSG

In this section, we apply partial deduction to a declarative, principle-based speci-
fication of hpsg in order to derive a rule-based grammar from it.

In implementing the hpsg grammar, we have made use of the hpsg grammar
developed for ale by Gerald Penn (henceforth referred to as the ale grammar).
The sort definitions and appropriateness specification were taken over with a few
modifications. The format for grammar rules and principles, however, differs signif-
icantly from the ale grammar. Since ale can only process rule-based grammars,
the ale grammar takes grammar rules as basic and treats the principles as pro-
cedural attachments to the rules (introduced by the goal> keyword). In the ale
grammar, all principles are listed separately for each rule. This can cause a loss
of efficiency for the following reasons: As discussed in the previous section, most
principles of hpsg have a disjunctive formulation, and only one of the disjuncts
is applicable to each grammar rule. In the ale implementation, the disjunctions
in the principles lead to choice points which must be eliminated at runtime. In

11In a less expressive constraint language such as ale, sets must be simulated by lists, and
non-declarative control (the cut) is needed for the implementation of set operations. In section
2.4.2, we will report on our experiences with applying partial deduction to an hpsg grammar
implemented in ale.

12In both of these cases, Pollard and Sag acknowledge that the formalisation of these principles
is still problematic; in case of the Quantifier Binding Condition they hint at an alternativeanalysis
on the level of semantic interpretation.
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our implementation, we overcome this problem by performing partial deduction
of the principles already at compile time, so that any incompatible disjuncts are
eliminated and need not be resolved at runtime.

We describe two experiments making use of partial deduction in order to turn
a principle-based into a rule-based one. As discussed above, hpsg makes use of
rule schemata (schemata 1 and 3) that correspond to an infinite number of phrase
structure rules, so that a straightforward application of partial deduction tech-
niques will not terminate. We will compare two approaches towards this problem.
The first approach (section 2.4.1) is a reformulation of hpsg theory making use
of binary branching structures, which has been proposed in Categorial Grammar
analyses, and suggested for hpsg analyses of German. The second approach (sec-
tion 2.4.2) sticks with the original analysis, but makes use of the fact that the
number of daughters in a local tree is bounded by the length of subcat lists of
lexical entries. The partial deduction technique is extended by making use of in-
formation about the possible classes of lexical entries (and the lengths of their
subcat lists) to ensure that the output of the partial deduction step is a finite
number of rules.

In both partial deduction experiments, the goals which occur in the definition
of a phrasal sign are replaced by the bodies of the clauses which define these goals.
In addition, some principles will be specified as guarded constraints.

2.4.1 PD Experiment 1: Binary Branching HPSG

In this partial deduction experiment, we start out from a declarative definition of
an hpsg sign that has the following format.

sign(X) ←
lexical sign(X).

sign(X) ←
phrasal sign(X).

We pay special attention to the principles which apply to phrasal signs, and
only little attention to lexical entries and lexical rules, which are dealt with in
section 2.5. A phrasal sign is specified by listing all the principles that it must
satisfy as goals (figure 2.12); including the ID Principle, which comprises the rule
schemata, and a new goal (recursion driver/1, cf. figure 2.13), which enforces
the constraint that all daughters of every phrasal sign must themselves also be
signs of hpsg. Normally, this constraint is implicit in the notation of grammar
rules, and is enforced by the respective parsing or generation algorithm. Since our
goal in chapter 3 is to use a deductive approach and to abstract away from par-
ticular parsing or generation algorithms, we need to make this constraint explicit.
Our grammar also differs from the ale grammar by making constituent order ex-
plicit through a call to the constituent order principle. In the ale grammar, the



2.4. PARTIAL DEDUCTION APPLIED TO HPSG 73

combination of phon values is restricted to concatenation, but this is not made
explicit because it is implicit in the grammar rule notation.

phrasal sign(X) ←
id principle(X) ∧
head feature principle(X) ∧
subcat principle(X) ∧
marking principle(X) ∧
recursion driver(X) ∧
spec principle(X) ∧
nonlocal feature principle(X) ∧
trace principle(X) ∧
subject condition(X) ∧
weak coordination principle(X) ∧
singleton rel constraint(X) ∧
relative uniqueness principle(X) ∧
clausal rel prohibition(X) ∧
binding theory(X) ∧
control theory(X) ∧
semantics principle(X) ∧
quantifier binding condition(X) ∧
principle of contextual consistency(X) ∧
constituent order principle(X).

Figure 2.12: Definition of a phrasal sign of HPSG

2.4.1.1 Modifications to HPSG

The use of a binary branching version of hpsg is not only motivated by the desire
to allow an easier compilation into a rule-based grammar, but there is linguistic
evidence that binary branching structures are more adequate for the description
of many languages.13

In order to implement a binary branching version of hpsg, the appropriateness
specification for the feature comp-dtr(s) needs to be changed. Its value need no
longer be a list of signs, but just a structure of sort sign. Only four principles need
modification for a binary branching version of hpsg: the ID Principle, the Subcat
Principle, the Spec Principle and the Constituent Order Principle.

13We cannot discuss this question in detail here. See for example Uszkoreit’s work on complex
fronting in German [Uszkoreit, 1987a], various other analysis of German word order [Netter, 1992;
Oliva, 1992], and a number of Categorial Grammar analyses.
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recursion driver(X) ←
head daughter(X,HD) ∧
other daughter(X,OD) ∧
sign(HD) ∧
sign(OD).

head daughter(dtrs:head dtr:HD, HD).

other daughter(dtrs:comp dtr:OD, OD).

other daughter(dtrs:adjunct dtr:OD, OD).

other daughter(dtrs:marker dtr:OD, OD).

other daughter(dtrs:filler dtr:OD, OD).

Figure 2.13: Definition the recursion driver

ID Principle

The only schemata which are affected are the schemata 1 to 3, which apply to head-
complement structures. These three schemata differ only in the number of elements
they take from the head daughter’s subcat list, and the number of elements on
the mother’s subcat list. Since linear order is not encoded in the schemata, but
in the Constituent Order Principle, there is no difference between schemata 1, 2,
and 3 if binary branching structures are assumed, in which there is exactly one
complement daughter.14 The three schemata fall together into one, which does
not impose any constraints on the possible head-complement structures.

Revised Schema 123

An object whose daughters value is of sort head-comp-struc.

With this modification, hpsg has taken the final step away from rule schemata.
There is only one schema for each subsort of headed-structure, so that the schemata
do not generate possible structures, but only constrain the possible instances of
the sort to which they apply. It can be argued that schemata 4, 5, and 6 would
equally well qualify as principles because they specify universal constraints on
all head-marker structures, head-adjunct-structures, and head-filler structures, re-
spectively. The binary branching version can therefore be regarded as a “hpsg
without rule schemata.”

14The only other difference between schema 1 in comparison to schemata 2 and 3 is that the
head daughter is phrasal in the former, and lexical in the latter. Since this is the only difference,
the schemata can be replaced by one schema in which a disjunction (lexical ∨ phrasal) is specified,
or equivalently the sort sign.
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Subcat Principle

The Subcat Principle can be simplified if the value of complement-daughters
is a sign instead of a list of signs:

In a head-complement structure, the synsem|local|cat|subcat value
of the head daughter is the concatenation of the synsem|local|cat|
subcat value of the mother and the singleton list containing the
synsem value of the complement daughter.

Spec Principle

Only one small modification is needed for the Spec Principle: the path
complement-daughters|first must be replaced by complement-daughter.

Constituent Order Principle

The COP enforces the order of heads and complements, markers and fillers. The
relative order of heads and subjects, heads and non-subject complements, head
and markers, and heads and fillers can be fixed by the Constituent Order Prin-
ciple (for English). For adjuncts, there is no fixed order. Therefore, functors
must lexically specify their direction of application, as in Categorial Unification
Grammar [Uszkoreit, 1986], and the COP will enforce this lexical specification.

All other principles of hpsg can be taken over unmodified.

2.4.1.2 Outcome of Partial Deduction Experiment 1

In this experiment, we used partial deduction to transform a declaratively specified
principle-based hpsg into a rule-based grammar. Several rule-based grammars
with a different number of rules were produced as the output. In the most extreme
case, when partial deduction is applied at every possible point, the grammar is
transformed to its disjunctive normal form with up to a hundred rules, and in the
other extreme, where partial deduction is only applied to the ID principle, the
resulting grammar has only four highly schematic rules each of which contains a
call to the remaining principles as a goal.

In practice, the grammar which is best suited for efficient processing lies be-
tween the two extremes of disjunctive normal form and only schematic rules. If
the rules are too schematic, there are too many goals that must be executed at
runtime, and if the rules are too specialised, a loss of efficiency will result due to
the large number of rules that must be matched and due to the fact that rules will
have a prefix15 in common, so that the processing becomes less deterministic for
left-to-right processing strategies.

15Two rules are said to have a common prefix if their right-hand sides start with the same
non-empty sequence of non-terminal symbols. For example the rules [S → V NP PP] and
[S → V NP NP ] have the common prefix V NP.
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Partial deduction is a method which allows to produce different kinds of rule-
based grammars very easily from a principle-based specification, and to evaluate
their efficiency with respect to a given processing model. The following section
describes an experiment in which partial deduction has been used to optimise a
given grammar for a bottom-up chart parser.

2.4.2 PD Experiment 2: comp-dtrs as a List-Valued Fea-
ture

In the preceding section, we have assumed for ease of exposition and for linguistic
reasons, that the value of the feature comp-dtrs is of sort sign, and not, as in
the hpsg book, a list of signs. A list as the value of comp-dtrs makes the partial
deduction procedure somewhat more complicated since many of the principles
need to include calls to recursively defined auxiliary predicates that handle the
comp-dtrs list. Since the schemata 1 and 3 specify an infinite number of phrase-
structure rules, a straightforward application of the partial deduction technique is
not possible for this case because its output would be an infinite number of rules.

This experiment was based on the ale grammar. Although the ale grammar
is a rule-based grammar, it is still interesting to apply partial deduction techniques
to it. The reason is that the rules of the grammar are highly schematic (only six
rules), and check all principles of the grammar after application of the rule as
procedural attachments. The purpose of the experiment is to find out whether
partial deduction can bring any additional performance benefits for a grammar
that has already been written with processing performance in mind (as evidenced
by the use of cuts to make procedures deterministic and by the carefully chosen
order of the goals).

The outcome of the partial deduction experiment is a grammar that has more
rules than the original one, and calls to principles have been replaced by goals
which appear in the definitions of the principles and cannot be expanded because
they would have an infinite number of solutions unless they are instantiated by the
daughters of the rule, or because they make use of extra-logical control constructs
like the cut that would not give the correct results when expanded by the partial
deduction process.16 While some of these cuts serve as conditional (if-then-else)
operators, and can be replaced by a larger number of clauses (which explicitly enu-
merate the alternatives in the else-part, other cuts are more problematic because
they serve to instantiate uninstantiated variables to a default value (for example
uninstantiated set values are instantiated to the empty set). In figure 2.14, we
summarise the status of the different principles of the ale grammar and indicate
for the declaratively specified principles whether they are deterministic, and if not
how many different cases they have.

16The cut is the only non-declarative control construct provided in ale 2.0. It has been imple-
mented in ale because it was believed to be necessary for the efficiency of syntactic processing.
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A large number of procedures using the cut have to do with the handling of
sets, which are implemented in ale by using list-like structures (with the fea-
tures element and elements). The situation can be greatly improved if these
procedures are replaced by set constraints (cf. section 1.1.1.4).

Principle declarative deterministic
Head Feature Principle yes yes
Inv-minus Principle no —
Subcat Principle yes no (∞)
Marking Principle yes yes
Spec Principle yes no (2)
Semantics Principle no —
Universal Trace Principle no —
Parochial Trace Principle no —
Subject Condition no —
Nonlocal Feature Principle no —
Single Rel Constraint yes no (2)
Clausal Rel Prohibition yes no (7)
Relative Uniqueness Principle no —
Conx Consistency Principle no —
Deictic-cindices Principle yes yes

Figure 2.14: Use of non-declarative control in the ale grammar

The input grammar (the original ale grammar) consists of six rule schemata.
Attached to each schema are up to 15 goals (principles). Each principle can be
defined by several clauses which can make calls to other goals. The input grammar
has nine rules, and calls to 85 principles (9.4 per rule).

Several grammars were produced as output of the partial deduction process.
They differ in several respects. In one case, only the deterministic principles have
been expanded by partial deduction, in another case only the principles which
have finite expansions.

In a further experiment, we examined the grammar and lexicon to determine
that the maximal length of a subcat list and hence the maximum number of
complement daughters in a rule is three. This information has been made use of
to ensure that the subcat principle and the predicates which treat a sequence of
categories have only a finite number of expansions. The resulting output grammars
have between 9 and 69 rules.

One clause of the input grammar (schema 3) for this experiment is given in
figure 2.15. It is Schema 3 of hpsg. Schema 3 is one of the principles which are
problematic because they specify an infinite number of phrase structure rules. In
order to overcome this problem, the first goal of the clause has been added as
additional knowledge about the grammar (the maximal number of daughters) in
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order to ensure termination of the partial deduction procedure. Partial deduction
has been applied to the goals subcat principle/3, synsems to signs/2, and
signs/1, but not sign/1 which is reserved for processing at runtime.17

The somewhat non-standard, but logically correct specification of the re-
lation append/3 was chosen to give a unique result in cases where the sec-
ond argument is the empty list, which will arise for the rule schemata
4, 5, and 6. In this case the result is append(X,〈 〉,X) instead of the
infinite disjunction which would result from the usual textbook definition
and cause termination problems: append(〈 〉,〈 〉,〈 〉); append(〈A 〉,〈 〉,〈A 〉);
append(〈A,B 〉,〈 〉,〈A,B 〉); append(〈A,B,C 〉,〈 〉,〈A,B,C 〉); ...

sign(Mother & subcat:(Subcat&〈 〉) ) ←
(Comp Dtr Synsems = 〈 〉 or 〈 , 〉 or 〈 , , 〉) ∧
sign(Head Daughter & subcat: HD Subcat) ∧
synsems to signs(Comp Dtr Synsems,Comp Dtrs) ∧
signs(Comp Dtrs) ∧
subcat principle(Subcat,Comp Dtrs,HD Subcat) ∧
... other principles

subcat principle(Subcat,Comp Dtrs,HD Subcat) ←
append(Subcat,Comp Dtr Synsems,HD Subcat).

append(〈H|T1 〉,〈H2|T2 〉,〈H|T 〉) ←
append(T1,〈H2|T2〉,T).

append(〈 〉,〈H|T 〉,〈H|T 〉).
append(X,〈 〉,X).

signs(〈 〉).
signs(〈Dtr|Dtrs 〉) ←

sign(Dtr) ∧
signs(Dtrs).

Figure 2.15: Schema 3 as input to partial deduction

In figure 2.16, the output of partial deduction applied to schema 3 is shown.
The outcome are three clauses, which can be chosen deterministically if the length
of the subcat list of the head daughter is known, which is generally the case (with

17The original grammar had already performed partial deduction by hand, and instantiated
the effect of the subcat principle on the rule schemata 2 and 3, so that the call to the subcat
principle was redundant. For partial deduction of the subcat principle to make any sense at all,
these instantiations were removed from the rules.
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the exception of cases of argument inheritance).

rule(Mother & subcat:〈 〉) ←
sign(Head Daughter & subcat: 〈HD Subcat 〉) ∧
sign(synsem:HD Subcat) ∧
... other principles

rule(Mother & subcat:〈 〉) ←
sign(Head Daughter & subcat: 〈Subj,Obj 〉) ∧
sign(synsem:Subj) ∧
sign(synsem:Obj) ∧
... other principles

rule(Mother & subcat:〈 〉) ←
sign(Head Daughter & subcat: 〈Subj,Obj,Obj2 〉) ∧
sign(synsem:Subj) ∧
sign(synsem:Obj) ∧
sign(synsem:Obj2) ∧
... other principles

Figure 2.16: Schema 3 as output of partial deduction

The resulting output grammar has 13 rules, and 108 calls to principles (8.3 per
rule).

2.4.2.1 Performance of the Compiled Grammar

In order to compare the performance of the grammar with and without the appli-
cation of partial deduction, both grammars were processed by a bottom-up chart
parser similar to the one used in ale. The runtimes obtained with the original
ale grammar and with the grammar after partial deduction are summarised in
appendix B.2. The grammar was tested with twelve sentences which varied in
length between two and 21 words. The runtimes with the grammar to which
partial deduction has been applied were between 23.8 and 67.5 percent of the run-
times for the grammar without partial deduction. On average, the runtime with
partial deduction was less than half (46.4 percent) of the runtime without partial
deduction,, which included an explicit call to the subcat principle.18

Further experiments to reduce the runtime by performing partial deduction on
other principles as well did not bring any real performance benefits. This is due
to a number of reasons. First of all, the ale grammar did not allow extensive

18This partial deduction step was already encoded redundantly in the ale grammar.
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application of partial deduction due to its heavy use of non-declarative program-
ming. Secondly, the goals attached to each clause in the ale grammar are already
optimised for processing since they are ordered in such a way that they can al-
most always be executed deterministically. If there is no non-determinism, then
partial deduction can bring little performance benefit because Prolog is very good
at dealing with deterministic procedures efficiently.

In some cases, the larger number of rules produced by the partial deduction
process even led to a decrease in performance, which is due to the fact that too
large a number of rules leads to increased non-determinism. This is the case
when the rules expand out disjunctive possibilities among which a choice can
only be made after a number of constituents or goals of the rule have already
been processed. This is to be expected since an excessive application of partial
deduction expands the grammar to its disjunctive normal form. In order for partial
deduction to improve performance, it must be applied selectively and judiciously.
Partial deduction yields better results when applied to real declaratively specified
principle-based grammars.

A grammar making full use of the extended constraint language with set con-
straints, guarded constraints and linear precedence constraints, which implements
Reape’s hpsg analysis of German word order ([Reape, 1994], cf. section 3.2.3)
has been implemented by making use of partial deduction.19 In this grammar,
all the principles were declaratively specified (as templates, which have expres-
sive power equivalent to definite clauses without recursive definitions). Partial
deduction was performed by template expansion. Due to the use of the extended
constraint language, the number of rules in the output could be kept small (only
two rules) because the non-determinism was not expanded out, but was encoded in
constraints which wait until they are sufficiently instantiated for their execution.
The output of the partial deduction in this case was a small number of rules, to
which no goals are attached, but a quite large number of constraints which could
not be solved at compile time. This grammar was used with a head corner parser
and a semantic-head driven generator.

2.5 Lexical Rule Expansion as Partial Deduction

hpsg makes use of a mechanism of lexical rules to permit a compact and principle-
based representation of the lexicon. Only the base forms of the lexical entries must
be listed, and all other forms are derived by means of lexical rules. For applications
in which the lexicon is small enough that the use of a full-form lexicon is feasible,
it is desirable to expand the lexicon already at compile time to avoid computation
of lexical rules at runtime. The expansion of lexical rules to derive a full-form
lexicon can be realised as a partial deduction operation.

19This work was done by Wojciech Skut in the project LRE-61-061 “Reusability of Grammat-
ical Resources”.
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lexical sign(FD & phon:Word) ←
lex(Word0,Fd0) ∧
lex rule expansion(Word0,Fd0,Word,Fd).

lex rule expansion(Word,Fd,Word,Fd).

lex rule expansion(WordIn,FdIn,WordOut,FdOut) ←
lexical rule(WordIn,FdIn,Word1,Fd1) ∧
lex rule expansion(Word1,Fd1,WordOut,FdOut).

Figure 2.17: Lexical rule expansion

We assume that the lexicon is represented as pairs of a word form and a feature
description. Further, we assume that lexical rules are implemented as a predicate
that relates a word form w1 with the corresponding feature description f1 to a
word form w2 with feature description f2. Lexical rules can apply to the output
of other lexical rules, but no infinite chains of lexical rule application are possible.
The last assumption is important because it ensures the termination of the partial
deduction procedure.20 The definition of the hpsg lexicon is given in figure 2.17.

Partial deduction is used to expand the goals of the predicates lex/2,
lexical rule/4 and lex rule expansion/4. This procedure has been success-
fully used to expand the lexicon and the lexical rules for the ale grammar, which
contains lexical rules for 3rd person singular present tense finite verb forms, other
finite verb forms, passive formation, it-extraposition, and subject extraction.

2.6 Conclusion

We have successfully shown the application of partial deduction for turning a
principle-based grammar into a rule-based grammar. Since it is in general not
possible to expand recursively defined goals and still ensure termination of the
partial deduction procedure, the resulting grammar rules will be associated with
some goals.

The partial deduction methodology can be applied to various degrees. If it
is applied to the fullest, the resulting set of grammar rules is the disjunctive
normal form of the grammar, and if it is applied only sparingly, the resulting
set of grammar rules will be highly underspecified and contain a large number of
goals which must be processed at runtime. Both extremes are undesirable because

20In general, this property cannot be guaranteed, as Carpenter’s complexity analysis of the
lexical rule system of hpsg shows [Carpenter, 1991].
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they lead to inefficiency in processing. In case of a large rule set, the inefficiency
arises due to the number of rules that must be matched at various processing
steps and due to the fact that rules share a prefix of their right-hand sides. In the
case of schematic rules, the inefficiency arises from the fact that rules often can
be applied, and are then ruled out after processing of the principles attached as
goals.

The optimal set of rules may differ for different parsing and generation algo-
rithms. Partial deduction provides a convenient method for generating different
rule sets through a selective application of partial deduction. These different rule
sets are then evaluated with respect to their efficiency. An advantage of this
methodology is that the grammar writer can concentrate on a declarative state-
ment of the principles of the grammar, and a grammar for processing can be
generated from the declarative grammatical specification by means of a judicious
application of partial deduction.21

In our experience partial deduction turned out to be a very useful tool to
control the expansion of a principle-based grammar to a more or less rule-based
one. The decision whether and how far to expand one principle could be done with
a simple control annotation in the grammar and did not require any rewriting (cf.
section 5.3.5). Generating a new instance of the grammar was just a matter of a
few minutes, and permitted the experimentation with and performance evaluation
of a rather large number of grammar instances in a relatively short time (two
afternoons).

Partial deduction can be applied for other tasks as well, for example for the
lexicalisation of a grammar by instantiating the head daughters of rule schemata
with lexical entries. A technique similar to partial deduction has been employed
in order to compile hpsg grammars into lexicalised tag grammars [Kasper et al.,
1995]. tag is a good target for such a compilation because efficient parsing and
generation algorithms are known for tag, and because tag offers the possibility
to combine non-contiguous strings with the adjunction operation.

In the case where the output of the partial deduction still contains goals to be
called, the question arises what is the best ordering of these goals. This can be a
problem if goals coming from different principles need to be interleaved, as in the
case, where the subcat list of the head daughter (a list of synsem values) must
be transformed into a list of signs, which are then to be parsed or generated. In
our experiment with the ale grammar (cf. section 2.4.2), the problem did not
arise because the goals had already been ordered.

However, instead of the goal ordering by hand, it would be possible to make
use of methods to determine the ordering of goals at compile time [Strzalkowski,
1991] at dynamically at runtime as in the CUF system [Dörre and Dorna, 1993].

21Of course, the grammar writer has to worry about efficiency through the choice of appropriate
data structures, avoidance of spurious ambiguities, etc. The partial deduction methodology only
frees the grammar writer from having to worry about the optimal number of rules.
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However, a strategy which delays goals until some of their variables are suffi-
ciently instantiated to guarantee deterministic execution (guarded constraints) is
computationally simpler than attempts at goal reordering, and is well supported
by modern constraint logic programming languages. An example of this CLP ap-
proach is the extended constraint language used in this thesis, which has been used
to implement a grammar whose rules were associated only with (a large number
of) constraints, and only goals for sign/1 and cp/2, after partial deduction was
applied to it.

Our experiment with the ale grammar has shown that it is possible to apply
partial deduction to different kinds of grammatical formalisms. The ale grammar
consists of grammar rules with procedural attachments. In order to apply partial
deduction to it, we defined a translation procedure from the ale rule format to
our definite clause language, and applied partial deduction to the definite clause
specification. The output of the partial deduction was translated back to the ale
rule format. Such a kind of translation is possible for other kinds of formalisms as
well, and allows the use of partial deduction to optimise a grammar, in combination
with specialised parsing or generation algorithms which require a particular rule
format.

A technique closely related to Partial Deduction is Explanation-Based Learn-
ing, which has been employed in NLP to pack sequences of frequently occurring
deduction steps into a single step [Samuelsson, 1994a; Neumann, 1994a]. The
practical difference between partial deduction as used in this work and EBL is
that partial deduction is applied to programs to produce new programs as output
without any regard to the actually occurring input to these programs. EBL, on the
other hand, only remembers deduction steps that have actually been performed
in response to a query. The relationship between partial deduction and EBL is
discussed in [van Harmelen and Bundy, 1988].

However, EBL does not guarantee completeness because only (generalisations
of) those structures that have actually occurred in the training set are present in
the compiled grammar that is the output of the EBL procedure. If a structure has
not occurred in the input, it will not occur in the output. This does not have a
very bad effect on the performance on the algorithm since all frequently occurring
structures will be covered if the training set is large enough and carefully chosen.
A fallback to the grammar that was the input to EBL is not possible since the
increase in performance rests on the fact that the search is reduced by only making
use of the output structures.

EBL and partial deduction have different applications: EBL is an algorithm
which operates at the level of performance whereas partial deduction operates at
the level of competence. It is of course possible to use EBL to further speed up
the processing (of frequently occurring subparts) of the rule-based grammars that
are the output of the partial deduction algorithm described in this chapter.

Further performance benefits may be gained by applying techniques from LR
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parsing in order to transform the rule-based grammar to shift and reduce tables by
merging rules which have a prefix of the list of daughters in common. The applica-
bility of these techniques for unification-based grammars has been demonstrated by
Samuelsson for parsing [Samuelsson, 1994a] and for generation [Samuelsson, 1995b;
Samuelsson, 1995a].



Chapter 3

Bottom-Up Earley
Deduction

Given the close relationship between chart parsing and Earley deduction, it is nat-
ural to assume that much of the useful work that was done in the field of chart
parsing can be generalised to the Earley deduction framework. In this chapter, one
such generalisation will be presented: bottom-up Earley deduction as a generali-
sation of bottom-up chart parsing algorithms that have been successfully applied
in numerous NLP systems based on unification and constraint-based grammars.

The Earley deduction algorithm and its extensions that we presented in chap-
ter 1 operate top-down (backward chaining), like Earley’s algorithm. The interest
has naturally focussed on top-down methods because they are at least to a certain
degree goal-directed.

We find bottom-up methods advantageous for the following reasons:

Incrementality: Portions of an input string can be analysed as soon as they are
perceived (or parts of the output can be generated as soon as the what-to-
say component has decided to verbalise them), even for grammars where one
cannot assume that the left-corner has been predicted before it is scanned.

Data-Driven Processing: Top-down algorithms are not well suited for process-
ing grammatical theories like Categorial Grammar or hpsg that would only
allow very general predictions because they make use of general schemata in-
stead of construction-specific rules. For these grammars data-driven bottom-
up processing is more appropriate. The same is true for large-coverage rule-
based grammars which lead to the creation of very many predictions.

Subsumption Checking: Since the bottom-up algorithm does not have a predic-

85
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tion step, there is no need for the costly operation of subsumption checking.1

Search Strategy: In the case where lexical entries have been associated with
preference information, this information can be exploited to guide the heuris-
tic search.

Bottom-up processing has the disadvantage that it allows a lot of correct, but
irrelevant deduction steps. We want to remedy this situation by making a strict
selection of items that are initially added to the chart for a bottom-up proof, and
by associating each item with one or several indices. Each index represents some
aspect of the information of the item, for example relating to its phon value or its
semantic content.

3.1 The Algorithm

Earley deduction [Pereira and Warren, 1983] is a general proof procedure for def-
inite clause programs. The bottom-up variant we present here differs from the
top-down variant primarily in the choice of inference rules.

The instantiation (prediction) rule of top-down Earley deduction is not needed
in bottom-up Earley deduction, because there is no prediction. There is only one
inference rule, namely the completion rule (3.1).2 In rule (3.1), X, G and G′ are
atoms,3 Ω is a (possibly empty) sequence of atoms, and σ is the merged constraint
(most general unifier) of G and G′. The leftmost atom in the body of a non-unit
clause is always the selected goal.

X ← G ∧ Ω
G′ ←

σ(X ← Ω)
(3.1)

In principle, this rule can be applied to any pair of unit clauses and non-unit
clauses of the program to derive any consequences of the program. In order to
reduce this search space and achieve a more goal-directed behaviour, the rule is not
applied to any pair of clauses, but clauses are only selected if they can contribute
to a proof of the goal. The set of selected clauses is called the chart.4 The selection
of clauses is guided by a scanning step (section 3.1.1) and by indexing of clauses
(section 3.1.2).

1Depending on the grammar, subsumption checking may still be needed to filter out spurious
ambiguities.

2This rule is called reduction in [Pereira and Warren, 1983], and is also referred to as the
fundamental rule in the literature on chart parsing.

3We use the term atom here as it is used in the logic programming literature to mean a
relation symbol and its arguments — not to be confused with an atomic value in a Prolog term
or feature term: a term which has no arguments or features.

4The chart differs from the state of [Pereira and Warren, 1983] in that clauses in the chart
are indexed (cf. section 3.1.2).
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3.1.1 Lookup (Scanning)

The purpose of the scanning step, which corresponds to lexical lookup in chart
parsers, is to look up base cases of recursive definitions to serve as a starting point
for bottom-up processing. The scanning step selects clauses that can appear as
leaves in the proof tree for a given goal G.

Consider the simple definition of an hpsg in figure 3.1, with the recursive
definition of the predicate sign/1.

sign(X) ← phrasal sign(X).

sign(X) ← lexical sign(X).

phrasal sign


X&


dtrs:


head dtr: HD

comp dtr: CD






←

sign(HD) ∧
sign(CD) ∧
principles(X,HD,CD).

principles(X,HD,CD) ←
constituent order principle(X,HD,CD) ∧
head feature principle(X,HD) ∧
. . .

constituent order principle(phon:X Ph, phon:HD Ph, phon:CD Ph) ←
cp(CD Ph,〈HD Ph,X Ph〉).

Figure 3.1: Simple definition of HPSG

The predicate sign/1 is defined recursively, and the base case is the predicate
lexical sign/1. But, clearly it is not restrictive enough to find only the predicate
name of the base case for a given goal. The base cases must also be instantiated in
order to find those that are useful for proving a given goal. In the case of parsing,
the lookup of base cases (lexical items) will depend on the words that are present
in the input string. This is implied by the first goal of the predicate principles/3,
the constituent order principle, which determines how the phon value of a
constituent is constructed from the phon values of its daughters. In general, we
assume that the constituent order principle makes use of a linear and non-erasing
operation for combining strings.5 If this is the case, then all the words contained

5There is an obvious connection to the Linear Context-Free Rewriting Systems (LCFRS)
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in the phon value of the goal can have their lexical items selected as unit clauses
to start bottom-up processing. In addition, all empty elements specified in the
grammar must be added as unit clauses as well.

For generation, an analogous condition on logical forms has been proposed by
Shieber [Shieber, 1988b] as the “semantic monotonicity condition,” which requires
that the logical form of every base case must subsume some portion of the goal’s
logical form (cf. section 3.3).

Base case lookup must be defined specifically for different grammatical theories
and directions of processing by the predicate lookup/2, whose first argument is
the goal and whose second argument is the selected base case. The clause given
in figure 3.2 defines the lookup relation for parsing with hpsg. This clause does
lexical lookup by finding every word in the input string, looking up its lexical
entry, and constructing a lexical sign for this word that can serve as the basis for
bottom-up processing.

% lookup(+Goal,-BaseCase)

lookup


sign(phon:PhonList), lexical sign





phon: 〈Word 〉

synsem: Synsem







←

member(Word,PhonList) ∧
lexicon(Word,Synsem).

Figure 3.2: Lookup relation for hpsg parsing

Note that the base case clauses can become further instantiated in this step.
If concatenation (of difference lists) is used as the operation on strings, then each
base case clause can be instantiated with the string that follows it. This avoids
combination of items that are not adjacent in the input string.

lookup


sign(phon:PhonList), lexical sign





phon: 〈Word|A 〉-A

synsem: Synsem







←

append( ,〈Word|A 〉,PhonList) ∧
lexicon(Word,Synsem).

Figure 3.3: Lookup relation for hpsg parsing

In bottom-up Earley deduction, the first step towards proving a goal is perform

[Vijay-Shanker et al., 1987; Weir, 1988].
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lookup for the goal, and to add all the resulting (unit) clauses to the chart. Also,
all non-unit clauses of the program, which can appear as internal nodes in the
proof tree of the goal, are added to the chart.6

The scanning step achieves a certain degree of goal-directedness for bottom-up
algorithms because only those clauses which can appear as leaves in the proof tree
of the goal are added to the chart.

3.1.2 Indexing

An item in normal context-free chart parsing can be regarded as a pair 〈R,S〉
consisting of a (dotted) rule R and the substring S that the item covers (a pair of
starting and ending position). The fundamental rule of chart parsing makes use
of these string positions to ensure that only adjacent substrings are combined and
that the result is the concatenation of the substrings.

In grammar formalisms like dcg or hpsg, the complex nonterminals have an
argument or a feature (phon) that represents the covered substring explicitly.
The combination of the substrings is explicit in the rules of the grammar. As a
consequence, Earley deduction does not need to make use of string positions for
its clauses, as Pereira and Warren [Pereira and Warren, 1983] point out.

For example, to describe the NP a program that halts in the sentence Every
professor writes a program that halts sometimes, a normal chart parser would have
to represent this as a pair of the category np(sg) and the string position 〈3,7〉. In
Earley deduction based on Definite Clause Grammars, an explicit representation
of the string positions is not needed because the covered string is explicit in the
representation of the clause and with the use of difference lists its distance from
the end of the string is also uniquely identified:

np(sg,〈writes,a,program,that,halts,sometimes〉-〈sometimes〉)

Moreover, the use of string positions known from chart parsing is too inflex-
ible because it allows only concatenation of adjacent contiguous substrings. In
linguistic theory, the interest has shifted from phrase structure rules that combine
adjacent and contiguous constituents to principle-based approaches to grammar
that state general well-formedness conditions instead of describing particular con-
structions (e.g. hpsg), and make use of operations on strings that go beyond
concatenation (cf. section 3.2).

The string positions known from chart parsing are also inadequate for gen-
eration, as pointed out by Shieber [Shieber, 1988b] in whose generator all items
go from position 0 to 0 so that any item can be combined with any item (cf.
section 3.3).

6Some more restrictive criteria for adding non-unit clauses to the chart would be preferable
in order to restrict the search space.
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However, the string positions are useful as an indexing of the items so that
it can be easily detected whether their combination can contribute to a proof of
the goal. This is especially important for a bottom-up algorithm which is not
goal-directed like top-down processing. Without indexing, there are too many
combinations of items which are useless for a proof of the goal, in fact there may
be infinitely many items so that termination problems can arise.

For example, in a grammar formalism that uses an order-monotonic operation
such as sequence union for the combination of strings, a combination of items
would be useless which results in a sign in which the words are not in the same
order as in the input string [van Noord, 1993].

We generalise the indexing scheme from chart parsing in order to allow different
operations for the combination of strings. Indexing improves efficiency by detecting
combinations that would fail anyway and by avoiding combinations of items that
are useless for a proof of the goal.

We define an item as a pair of a clause Cl and an index Idx, written as 〈Cl,Idx〉.
Below, we give some examples of possible indexing schemes. Other indexing

schemes can be defined if they are needed to optimise the search for a particular
grammatical theory.

1. Non-reuse of Items: This is useful for generation where no part of the goal’s
logical form should be verbalised more than once in a derivation, or for
LCFRS, where no word of the input string can be used twice in a proof. The
operation for combining strings must be non-erasing, so that the words in
the string of a mother node are always a superset of words in the strings of
the daughter nodes (cf. section 3.2).

2. Discontinuous constituency: This indexing scheme is useful for grammars
which make use of order-monotonic string operations more powerful than
concatenation, such as head wrapping or sequence union.

3. Non-directional adjacent combination: This indexing scheme is used if
only adjacent constituents can be combined, but the order of combination
is not prescribed (e.g. non-directional basic categorial grammars) or in
which the order is lexically specified by a functor (e.g., Categorial Unifi-
cation Grammars [Uszkoreit, 1986; Calder et al., 1988]).

4. Directional adjacent combination: This is used for grammars with a
“context-free backbone.” This is exactly the indexing by the starting and
ending position known from chart parsers.

5. Free combination: Allows an item to be used several times in a proof, for
example for the non-unit clauses of the program, which would be represented
as items of the form 〈X ← G1 ∧ . . .∧Gn, free〉.
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Figure 3.4 summarises the properties of these five combination schemes. Index
1 (I1) is the index associated with the non-unit clause, Index 2 (I2) is associated
with the unit clause, and I1 ? I2 is the result of combining the indices.

In case 2 (“discontinuous constituency”), the indices X and Y consist of a
set of string positions, and the operation � is the union of these string positions,
provided that no two string positions from X and Y do overlap.

Index 1 Index 2 Result Note
I1 I2 I1 ? I2

1. Non-Reuse X Y X ∪ Y X ∩ Y = ∅
2. Discontinuous X Y X � Y X � Y = X ∪ Y if

∀x ∈ X∀y ∈ Y
[end(x) ≤ start(y)∨
end(y) ≤ start(x)]

3. Non-directional 〈X,Y〉 〈Y,Z〉 〈X,Z〉 concrete syntax
〈Y,Z〉 〈X,Y〉 〈X,Z〉 for 〈A,B〉: A + B

4. Traditional 〈X,Y〉 〈Y,Z〉 〈X,Z〉 concrete syntax
for 〈A,B〉: A− B

5. Free X ‘free’ X
‘free’ X X

Figure 3.4: Overview of indexing schemes for bottom-up Earley deduction

In rule (3.2), the completion rule is augmented to handle indices. X?Y denotes
the combination of the indices X and Y .

〈X ← G ∧ Ω, I1〉
〈G′ ←, I2〉

〈σ(X ← Ω), I1 ? I2〉 (3.2)

With the use of indices, the lookup relation becomes a relation between goals
and items. The specification of the lookup relation in figure 3.5 provides indexing
according to string positions as in a chart parser (usable for combination schemes
2, 3, and 4).7 The algorithm for best-first bottom-up Earley deduction is given in
figure 3.6.

Of course, there can be more than one index for each item. For example,
the uniform tabular algorithm UTA uses a double indexing (according to string
position and to semantic content) in order to be able to use the same items for
both parsing and generation [Neumann, 1994b].

In section 3.2, we shall apply these indexing schemes to grammars with dis-
continuous constituency.

7The auxiliary predicate nth member/4 is a version of the Prolog predicate member/2 that
returns the position of an element in the list (as start and end positions).
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lookup


sign(phon:Phon), item


lexical sign





phon: 〈Word 〉

synsem: Synsem




, B-E




←

nth member(Word,B,E,Phon) ∧
lexicon(Word,Synsem).

nth member(X,0,1,〈X| 〉).
nth member(X,N1,N2,〈 |R 〉) ←

nth member(X,N0,N1,R) ∧
N2 is N1 + 1.

Figure 3.5: Lookup as a relation between query and items

3.1.3 Best-First Search

For practical NL applications, it is desirable to have a best-first search strategy,
which follows the most promising paths in the search space first, and finds preferred
solutions before the less preferred ones. There are often situations where the
criteria to guide the search are available only for the base cases, for example

• weighted word hypotheses from a speech recogniser,

• readings for ambiguous words with probabilities, possibly assigned by a
stochastic tagger (cf. [Brew, 1993]),

• hypotheses for correction of string errors which should be delayed [Erbach,
1993a].

In section 4.1, we associate goals and clauses with preference values that are
intended to model the degree of confidence that a particular solution is the ‘correct’
one. Unit clauses are associated with a numerical preference value, and non-unit
clauses with a formula that determines how its preference value is computed from
the preference values of the goals in the body of the clause. Preference values can
(but need not) be interpreted as probabilities.

The preference values are the basis for giving priorities to items. For unit
clauses, the priority is identified with the preference value. For non-unit clauses,
where the preference formula may contain uninstantiated variables, the priority is
estimated by substituting a value for the free variables (cf. section 4.1).8

8There are also other methods for assigning priorities to items, for example on the basis of
surface properties like the length of the covered string, but they have turned out not to be of
great use in practice.
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procedure prove(Goal):
– initialize-agenda(Goal)
– consume-agenda
– for any item 〈G,I〉

– return mgu(Goal,G) as solution if it exists

procedure initialize-agenda(Goal):
– for every unit clause UC in lookup(Goal,UC )

– create the index I for UC
– add item 〈UC, I〉 to agenda

– for every non-unit program clause H ← Body
– add item 〈H ← Body,free〉 to agenda

procedure add item I to agenda
– compute the priority of I
– agenda := agenda ∪ {I}

procedure consume-agenda
– while agenda is not empty

– remove item I with highest priority from agenda
– add item I to chart

procedure add item 〈C, I1〉 to chart
– chart := chart ∪ {〈C, I1〉}
– if C is a unit clause

– for all items 〈H ← G ∧ Ω, I2〉
– if I = I2 ? I1 exists

and σ = mgu(C,G) exists
then add item 〈σ(H ← Ω), I〉 to agenda

– if C = H ← G ∧ Ω is a non-unit clause
– for all items 〈G′ ←, I2〉

– if I = I1 ? I2 exists
and σ = mgu(G,G′) exists
then add item 〈σ(H ← Ω), I〉 to agenda

Figure 3.6: Algorithm for bottom-up best-first Earley deduction
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The implementation of best-first search does not combine new items with the
chart immediately, but makes use of an agenda [Kay, 1980], on which new items
are stored in order of descending priority.

3.1.4 Goal Types

In constraint-based grammars there are some predicates that are not adequately
dealt with by bottom-up Earley deduction, for example the Head Feature Princi-
ple and the Subcategorisation Principle of hpsg. As we have argued in chapter 2,
the Head Feature Principle just unifies two variables, so that it can be executed at
compile time and need not be called as a goal at runtime. The Subcategorisation
Principle involves an operation on lists (append/3 or insert/3 in different for-
malisations) that does not need bottom-up processing, but can better be evaluated
by top-down resolution if its arguments are sufficiently instantiated. Creating and
managing items for these proofs is too much of a computational overhead, and,
moreover, a proof may not terminate in the bottom-up case because infinitely
many consequences may be derived from the base case of a recursively defined
relation.

In order to deal with such goals, we combine Earley Deduction with other proof
procedures in the implementation (cf. section 5.3). Dörre [Dörre, 1993] proposes
a system with two goal types, namely trigger goals, which lead to the creation of
items and other goals which don’t. Although our system has more goal types, we
just use a similar binary distinction for the purposes of this chapter. We divide
the goal types into waiting goals and provable goals (cf. figure 5.9 on page 175).
Provable goals can be proved by their own deduction engine, whereas waiting
goals are not actively proved, but combined with passive items by means of the
completion rule of Earley Deduction.

Whenever a unit clause is combined with a non-unit clause all goals up to the
first waiting goal of the resulting clause are proved according to their goal type,
and then a new clause is added whose selected goal is the first waiting goal.

In the following inference rule for clauses with mixed goal types, Ξ is a (possibly
empty) sequence of goals without any waiting goals, and Ω is a (possibly empty)
sequence of goals starting with a waiting goal. σ is the most general unifier of
G and G′, and the substitution τ is the solution which results from proving the
sequence of goals Ξ.

〈X ← G ∧ Ξ ∧ Ω, I1〉
〈G′←, I2〉

〈τσ(X ← Ω), I1 ? I2〉 (3.3)

A description of the different goal types, and the implementation of their in-
ference rules can be found in section 5.4.
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procedure add item 〈C, I1〉 to chart
– chart := chart ∪ {〈C, I1〉}
– if C is a unit clause

– for all items 〈H ← G ∧ Ξ ∧Ω, I2〉
– if I = I2 ? I1 exists

and σ = mgu(C,G) exists
and goals Ξ are provable with solution τ
then add item 〈τσ(H ← Ω), I〉 to agenda

– if C = H ← G ∧ Ξ ∧ Ω is a non-unit clause
– for all items 〈G′ ←, I2〉

– if I = I1 ? I2 exists
and σ = mgu(G,G′) exists
and goals Ξ are provable with solution τ
then add item 〈τσ(H ← Ω), I〉 to agenda

Figure 3.7: Procedure add-item for bottom-up Earley deduction with different goal
types

Figure 3.7 shows the procedure add-item augmented for the handling of goals
with different goal types.

The algorithm is parameterised with respect to the relation lookup/2 and the
choice of the indexing scheme, which are specific for different grammatical theories
and directions of processing.

3.2 Earley Deduction for Discontinuous Con-
stituency

Many implemented formalisms rely on a context-free backbone, e.g., DCG, PATR,
(old) STUF, ALE, ALEP etc. In LFG, the context-free backbone is even part of
the grammatical theory as a separate level of representation called c-structure.
If a context-free backbone is used, the operation used on strings is that of con-
catenation. Earley deduction applied to grammars with a context-free backbone
yields the same algorithm as the corresponding chart parser applied to the these
grammars.

Recent analyses have used more powerful operations than concatenation (ad-
joining, head-wrapping, sequence union, etc.). These operations allow very elegant
analyses of word order facts, but require modification of parsing algorithms.

Sections 3.2.1 through 3.2.3 present several linguistic frameworks which make
use of non-concatenative operations for the combination of strings, and introduce
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the operations used.9

In general, the rules in grammars which make use of these more powerful string
operations have the following form [van Noord, 1993, p. 43]. The relation cp/2
makes the combination of strings explicit.

sign(M) ← sign(D1) ∧ sign(D2) ∧ cp(M, 〈D1, D2〉). (3.4)

In section 3.2.5, we will show that top-down Earley deduction is not very
well suited for these kinds of grammars because of the non-determinism in the
prediction step. It is these cases where bottom-up Earley deduction presents the
greatest advantages.

3.2.1 Johnson’s Combine Operator

Johnson proposes an extension of dcg in order to analyse the Australian free
word-order language Guugu Yimidhirr. In ordinary DCG, a category is associated
with a pair of string positions indicating which portion of a string a constituent
covers. Johnson proposes to associate constituents with sets of such pairs, so that
a constituent covers a set of continuous substrings of the string. In the sentence
1 of Guugu Yimidhirr, the discontinuous constituent ‘Yarraga-aga-mu-n . . . biiba-
ngun’ (boy’s father) is associated with the set of string positions {〈0,1〉,〈3,4〉}.

(1) Yarraga-aga-mu-n gudaa dunda-y biiba-ngun
boy-GEN-mu-ERG dog-ABS hit-PAST father-ERG
The boy’s father hit the dog

Johnson notes that such expressions can be represented as bit vectors. In a
grammar rule, the sets of locations of the daughters of the rule are combined
to construct the set of locations associated with the mother node. The predi-
cate combines(s1, s2, s) is true iff s is equal to the (bit-wise) union of s1 and s2,
and the (bit-wise) intersection of s1 and s2 is null (i.e. s1 and s2 must be non-
overlapping locations). Grammars which use only this predicate are permutation-
closed. Guugu Yimidhirr is said to be permutation-closed [Haviland, 1979], with
the exception of possessive-noun constructions (in which the possessive is identi-
fied by position rather than by inflectional markings), for which Johnson proposes
a concatenative rule.

The implementation of this kind of grammar in the framework of bottom-up
Earley deduction is straightforward.

Johnson’s combine operation is directly implemented in the indexing scheme 2.
This indexing scheme performs exactly the same combination of non-overlapping
string positions as Johnson’s combine operation.

9These presentation in these sections is partly based on the description of these operations in
[van Noord, 1993, pp. 103 – 119]
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The lookup step will add all lexical entries of all words in the input string.
Since the combine operation is non-erasing, no other lexical entries must be added
to the chart. All empty categories and grammar rules must also be present in the
chart.

3.2.2 Head-Wrapping

Pollard defines a grammatical formalism called Head Grammar [Pollard, 1984] that
is slightly more powerful than context-free grammars.10 The formalism makes use
of a head wrapping operation for combining strings. In Head Grammars, strings
contain a distinguished element, the head. Such headed strings are a pair of an
ordinary string and a pointer to the head. For example, the string w1w2w3w4

with head w3 is represented as 〈w1w2w3w4,3〉. String operations take n headed
strings as arguments and return a headed string. A simple example is an operation
(labelled LC1 by Pollard) which takes two headed strings and concatenates the
first to the left of the second and makes the head of the first string the head of
the combined string.

LC1(〈σ,i〉, 〈τ ,j〉) = 〈στ ,i〉 (3.5)

RL2 is an operation more powerful than concatenation, in which the second
argument is ‘wrapped’ around the first.

RL2(〈σ,j〉, 〈t1 . . . tn,i〉) = 〈t1 . . . tiσti+1 . . . tn,i〉 (3.6)

This ‘head wrapping’ operation is used in a rule for English auxiliary inversion,
which analyses the string Must Kim go as derived from the noun phrase Kim and
the (discontinuous) verb phrase must go with head must.

S[+INV ]→ RL2(NP, V P [+AUX]) (3.7)

Another example are the analyses of the sentences (2) and (3), in which easy
to please is one (discontinuous) constituent.

(2) Kim is very easy to please

(3) Kim is a very easy person to please

Pollard also presents a wrapping analysis of Dutch cross-serial dependencies,
which van Noord adapts as input for his head-corner parser.

In order to apply bottom-up Earley deduction to this grammar, we can make
use of the usual operation for lookup which adds lexical entries for all the words

10The languages generated by Head Grammars belong to the class of mildly context-sensitive
languages, which can be parsed in time O(n6), where n is the number of words in the input string.
Other members of this class are Tree Adjoining Grammars and Linear Indexed Grammars. It
has been argued that all natural languages are in the class of mildly context-sensitive languages.
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in the input string as items to the chart, since head wrapping is a non-erasing
operation.

We choose indexing scheme 2, which combines non-overlapping string positions.
It would be tempting to make use of an indexing scheme which is more specialised
for headed strings, but this is problematic because it is not known in advance which
of the several operations for combining strings will be used, and which element
will be the head of the resulting string.

3.2.3 Sequence Union

Mike Reape has developed an analysis of clause union and verb raising phenomena
in German that makes use of a powerful string operation called sequence union
[Reape, 1990; Reape, 1993a; Reape, 1993b; Reape, 1994]. A similar analysis has
been proposed by Dowty [Dowty, 1993].

The sequence union of two sequences X and Y is a sequence Z which contains
all the elements from X and Y, and in which the order of the elements of X and
the order of the elements of Y is preserved. Sequence union is a non-deterministic
operation: the sequence union of the two sequences 〈a,b〉 and 〈c,d〉 is any of the
following:

〈a,b,c,d〉
〈a,c,b,d〉
〈a,c,d,b〉
〈c,a,b,d〉
〈c,a,d,b〉
〈c,d,a,b〉

In our extended constraint language [Manandhar, 1995], which permits un-
derspecified representation of linear order, the sequence union operation can be
applied deterministically, and the output is a set of elements which are associated
with a set of ordering constraints.

Reape applies sequence union to word order domains in hpsg grammars for
German and Dutch. In the rules, the word order domain of the mother is defined
in terms of the word order domains of its daughters. In normal rules, the order
domain of the mother consists just of the order domains of the daughters. In
specific cases such as clause union, the word order domain of the mother consists
of the elements of the order domains of the daughters. The German sentence (4)
illustrates a case of domain union.

(4) . . . esi ihmj jemandk zu leseni versprochenj hatk

. . . it him someone to read promised has

. . . someone had promised him to read it
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Reape has presented generalisations of various parsing algorithms (top-down,
left-corner, (tabular) shift-reduce, CKY) for discontinuous constituency [Reape,
1991]. However, Reape’s algorithms are not really specialised for the case of se-
quence union, but cover the very general case of permutation-closed languages, so
that they would be more adequate for Johnson’s combine operation introduced in
section 3.2.1.

For grammars with sequence union, the lookup step for bottom-up Earley
deduction is the same as for other grammar formalisms which make use of non-
erasing operations for combining strings. Indexing scheme 2 will also be used
for grammars with sequence union, as it is the indexing scheme appropriate for
grammars which allow non-erasing string operations other than concatenation.

The same lookup relation and indexing schema can also be applied to Tree
Adjoining Grammars [Vijay-Shanker et al., 1987; Joshi et al., 1975; Joshi and
Vijay-Shanker, 1985]. Van Noord has applied head-driven methods (head-corner
parsing and semantic-head-driven generation) to Tree Adjoining Grammars [van
Noord, 1993].

Having discussed a number of grammar formalisms which make use of string
operations more powerful than concatenation, and shown that they can be handled
by means of bottom-up Earley deduction, we now address the question whether
bottom-up Earley deduction presents any advantages over other algorithms such
as head-corner parsing or top-down Earley deduction.

3.2.4 Necessity for Tabulation

We have already seen that head-driven processing is a uniform bidirectional algo-
rithm, but that it can suffer from efficiency problems and is not very well suited
to incremental processing. The efficiency problems stem from the increased non-
determinism of the selection of the head element of the phrase, for which there
are many more choices than for selection of a lexical entry for the left corner of
a string. Any consequences derived from a wrong choice at this step are lost af-
ter backtracking. Bouma and van Noord have shown that this problem can be
overcome by augmenting a head-driven algorithm with tabulation (well-formed
substring tables) [Bouma and van Noord, 1993]. Tabulation also provides a par-
tial solution for the problem of incrementality because an item can be assumed to
be the head element, and any wrongly computed consequences of this assumption
can be re-used as subproofs of a derivation based on a correct choice of the head
element.

As it turns out that tabulation is needed anyhow, the next logical step is to
investigate the application of Earley deduction methods to the problem.
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3.2.5 Inadequacy of Top-Down Earley Deduction

Neumann [Neumann, 1994b] has shown that top-down Earley deduction is a useful
framework for efficient incremental analysis for grammars based on concatenation,
but he does not consider grammars based on more powerful string operations. It
is easy to see that top-down methods run into problems with more powerful string
operations due to the increased non-determinism of the prediction step. Remember
the general format of a grammar rule (3.8) as assumed in [van Noord, 1993], and
(ideally) produced as the output of the partial deduction algorithm presented in
chapter 2.

sign(M) ← sign(D1) ∧ sign(D2) ∧ cp(M, 〈D1, D2〉). (3.8)

The prediction step looks up clauses for the selected goal of an active item.
The obvious problem is which of the goals in the body of the clause to select for
the prediction step. We will see that there is no choice of a goal that leads to
satisfactory results. There are two possible cases: either one of the sign/1 goals
is predicted, or the cp/2 goal. Prediction for one of the sign/1 goals will not be
constrained at all since the phon feature in the goal will not be instantiated. As
soon as lexical items are predicted and added as passive items, an infinite number
of items can be result through the repeated application of the reduction rule. If the
cp/2 goal is chosen, the algorithm will terminate, but since the the cp/2 goal has
a very large number of solutions, it will still lead to efficiency problems through
an unnecessarily large number of subsequent predictions for the sign/1 goals.

For instance, the sequence union operation (cf. section 3.2.3) applied in reverse
to divide an input string with n words has 2n solutions; so for an input string of
only 10 words, there are 1024 different solutions.

The attentive reader will not have failed to notice the similarity of this argu-
ment with the one that demonstrated the necessity of handling concatenation by
encoding concatenation constraints through difference lists (cf. page 17).

Since we conclude that tabulation is needed and that top-down processing is
inadequate, the logical choice is to apply bottom-up Earley deduction for grammars
with more powerful string operations.

3.2.6 Guides versus Indexing

This section will review the notion of a guide [Dymetman et al., 1990a; Martinović,
1994] that is used in left-corner and head-corner processing in order to constrain
the possible bottom-up inference steps, and discuss its relationship to the use of
indexing in bottom-up Earley deduction.

Guides in head-driven algorithms ensure termination for parsing and generation
by requiring that “the processing of a lexical entry consumes some amount of a
guide; the guide used for parsing is a list of words remaining to be analysed, while
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the guide for generation is a list of the semantics of constituents waiting to be
generated” [Dymetman et al., 1990b].

The use of difference lists in processing of dcg can be regarded as an example
of the use of guides. When a difference list representation is used, the remaining
words of the input string to be processed are immediately available after a word
has been processed.

Of course, using guides to ensure termination presupposes that a grammar
fulfill syntactic and/or semantic monotonicity requirements. For the phonological
string, the monotonicity requirement is that the operation for combining strings be
linear and non-erasing.11 For semantics, a semantic monotonicity requirement has
been proposed, which requires that the logical forms of the immediate constituents
of a phrase be part of the logical form of the phrase itself.12

The representation of guides for parsing can be different for different operations
for combining strings. For grammars based on concatenation, the remaining string
must be represented in the guide. For head-driven grammars, the remaining strings
to the right and to the left of the head must be represented, and for permutation-
closed languages, it is enough to represent the remaining words, but abstract away
from their linear order.13

The concept of guides is not directly applicable to bottom-up Earley deduction
because the state of a guide at a particular point of the computation represents
how much of the input has been consumed at that point. In bottom-up Earley
deduction, the same item will be used again for different derivations, in which
different parts of the input will have been processed. Therefore, the representation
of items must fulfill the following requirements:

• The representation of each item must exhibit which portion of the input is
consumed by that item.

Moreover, the representation must ensure

• that no portion of the input is consumed twice, and

• that no lexical entries are consumed whose phonology or semantics is not
part of the input.

In context-free chart parsing, such a representation exists in the form of the
string positions that are part of each item. The string position associated with
each item represents the part of the input string that is consumed by that item.

11For a discussion of these properties, see [Vijay-Shanker et al., 1987] and [Weir, 1988].
12However, the requirement of semantic monotonicity is too strong to account for non-

compositional phenomena in natural languages, such as idiomaticity. This point is further elab-
orated in section 3.3.2.

13Van Noord proposes a representation of guides with the bag datatype [van Noord, 1993,
p.148], as defined in the Quintus Prolog library bag.pl by O’Keefe.
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The combination of indices mirrors concatenation of the phon values represented
by the indices. If the input string is also represented as a difference list in the
clause part of the item, then the string position serves as a redundant index to
that information.

This kind of indexing is generalised to handle operations for combining strings
other than concatenation, and to handle composition of logical forms for genera-
tion.

Indexing and combination of indices serve the same purpose as guides, namely
to avoid useless deduction steps and to ensure termination. While in left-corner or
head-driven processing, the parts of the guide are consumed one by one, the lookup
step turns them all at once into items. The second purpose of guides, making sure
each part of the guide is consumed only once, is ensured by the operations for the
combination of indices. The last purpose to which guides can be put, namely to
ensure that only the parts of the guide are consumed, is guaranteed by the fact
that only those lexical signs added by the lookup relation can be used as input to
the deduction process.

It is important to note that the information represented in the index of an
item could be redundantly added to the clause part of the item. For example,
the clause part of an item in context-free chart parsing could carry information
about the part of the input string that it covers, about the part of the input string
that follows it and the part of the input string that precedes it. Similarly, for
a permutation-closed language, the clause part can have information about the
part of the input string that it covers and the part that is not covered by it. For
generation, the clause part of an item can carry information about the part of
the semantic content it covers and the part that still has to be generated. The
clauses for combining constituents would then have to be augmented to handle this
part of the information structure appropriately. This amounts to instantiating the
original program clauses further for a particular parsing or generation problem.14

This possibility is important for the following argument which claims that the
information represented in the index part of an item subsumes the information
represented by the clause part, so that the signs denoted by the index part are a
superset of the signs denoted by the clause part. The indexing of a clause is an
abstraction over the information in the clause.15

[[index(C)]] ⊇ [[C]] (3.9)

The next requirement is that the operation Ri for combining two indices
index(C1) and index(C2) be constructed in such a way that the information rep-
resented by the resulting index index(C3) subsume the information of the clause

14See for example the presentation of dcg parsing in [Pereira and Warren, 1980], where the
input string is represented as part of the program.

15We choose to ascribe denotations to indices directly. Alternatively, we could define a mapping
from indices to sets of clauses, and use the denotation of the clause set.
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C3 that results from the combination of clauses C1 and C2 by the corresponding
operation R.

In (3.10), this property is given in terms of subsumption, and in (3.11) in terms
of denotations.

Ri(index(C1), index(C2)) w R(C1, C2) (3.10)

[[Ri(index(C1), index(C2))]] ⊇ [[R(C1, C2)]] (3.11)

This property becomes important later to show that indexing does not affect
completeness because any combination of items that fails due to the failure to
combine the indices would have failed anyway due to the impossibility to combine
the corresponding clauses (cf. section 3.4.2).

In a practical implementation, one can of course leave the information repre-
sented by the index out of the clause in which case it is the index that serves as
the instantiation of an item to a particular parsing or generation problem. This
is why information about the covered string can be represented only by the index
in case of context-free chart parsing. In this case, the index does not only provide
redundant information. Leaving out this information is also a precondition for the
re-use of items in the case where the input query is changed destructively (cf. the
description of the fully incremental algorithm in section 3.5).

3.3 Application to Generation

An important characteristic of the linguistic deduction approach is its inherent
bidirectionality, i.e., its application to both parsing and generation. Examples
of bidirectional algorithms are head-driven approaches (head-corner parsing and
semantic-head driven generation) [van Noord, 1993] and the uniform tabular algo-
rithm for top-down Earley deduction, which uses the same algorithm, but different
indexing for parsing and generation [Neumann, 1994b]. In this section, we will in-
vestigate how the bottom-up Earley deduction algorithm can be used for the task
of generation.

3.3.1 Semantically Monotonic Grammars

We start out with the case of semantically monotonic grammars. A grammar is
called semantically monotonic if the logical forms of all the constituents of a phrase
are part of the logical form of the phrase. In this sense, semantic monotonicity it
strongly related to the non-erasing property of the operations for the combination
of strings.

Shieber has proposed a uniform architecture for parsing and generation based
on Earley deduction [Shieber, 1988b]. The parsing instance of this architecture is
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defined as usual. The generation instance abandons the indexing of items according
to the string position, and adds all items for lexical entries at a single position (e.g.
〈0,0〉). An additional filter ensures that only those items are added to the chart
that can contribute semantically to the goal meaning. Under the assumption of
semantic monotonicity, this means that “the meaning associated with the item
must subsume some portion of the goal meaning” [p. 617]. This criterion is
related to the use of a reachability relation in directed approaches to parsing,
which combine bottom-up and top-down processing.

Kay [Kay, 1993] has presented a chart-based bottom-up generator which can
be regarded as an instance of the bottom-up Earley deduction algorithm presented
here. The generator performs a lookup step which adds those lexical entries as
items to the chart whose semantics is a component of the logical form to be
generated. The indexing is improved compared to Shieber’s generator by making
use of the semantics of the items, so that application of the completion rule is only
attempted for pairs of active and passive items that can be combined semantically.
Like Shieber’s uniform parsing and generation algorithm, this generator is only
suited for semantically monotonic grammars. This restriction stems from the
way in which lookup is performed, namely by a structural decomposition of the
input logical form. In case of semantically monotonic grammars, such structural
decomposition accurately reflects the compositional functions used in a grammar
to build up semantic representations of phrases from the semantic representations
of their constituents.

Lookup for generation. Lookup proceeds by decomposition of a logical form
into its components. The component of a logical form LF is either

• the logical form LF itself, or

• a component of an argument of the logical form LF (or a component of the
value of a thematic-role feature, such as agent or patient).

Figure 3.8 shows a possible logical form for the sentence The old professor per-
suades a young student to buy many expensive books, and a list of the components
of this logical form.

If a logical form contains quantifiers, these must be taken into account in the
decomposition procedure. Consider the logical form for the unmarked reading the
sentence Every man loves a woman.

∀X[man(X) ⊃ ∃Y woman(Y ) ∧ love(X, Y )]

This logical form should has the following components:
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LF: persuade(def(old(professor(
Y ∧ indef(young(student(Y))),
buy(Y,many(expensive(book(Z)))))

Components: persuade( , , )
def( )
old( )
professor( )
indef( )
young( )
student( )
buy( , )
many( )
expensive( )
book( )

Figure 3.8: A logical form and its components

∀XA ⊃ B
man( )
∃Y A ∧B
woman( )
love( , )

This decomposition can be achieved by the following decomposition rules,
which take into account the structure of quantified expressions. The decompo-
sition of a logical form consisting of functor and arguments is a special case given
in the last line. The decomposition rules are applied recursively to the components.

Formula Components
∀XA ⊃ B universal quantifier,A,B
∃Y A ∧B existential quantifier, A, B
A ∧B conjunction, A, B
f(Arg1 , . . . , Argn) f(Arg1 , . . . , Argn), Arg1, . . . , Argn

Lookup for a goal with logical form LF proceeds by adding an item to the
chart for each clause of the grammar whose consequent matches a component of
the logical form LF. Semantically empty lexical items must also be added to the
chart.
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Since a given logical form LF has only finitely many components, and there
are only finitely many clauses in the program, only a finite number of items are
added at this step (in the worst case the number of components of LF times the
number of program clauses).

Note that this specification of the lookup relation restricts the introduction of
non-chain rules to those that are actually needed for proving a given query. Only
those non-chain rules are added whose consequent matches a component of the
logical form. By this definition, all chain rules are added since their consequent
will match any logical form because a chain rule simply states that its mother
node’s (consequent’s) logical form is the same as that of the head daughter, but
does not make any restrictions on the content of the logical form. This restriction
of the introduction of non-chain rules improves upon Kay’s generator, where all
grammar rules are present in the chart.

Indexing for Generation. Indexing must make sure that only items are com-
bined which can contribute to a proof of the goal. For generation, we index the
items according to the components of the input logical form (which can for example
be achieved by giving each component a unique identifier).

For the combination of indices, we use the indexing scheme 1 (non-reuse of
items) which ensures that no constituents are built in which the same component
of the logical form of the input is used more than once. Termination is ensured
because only finitely many derivations are possible without re-use of items (cf.
section 3.4.3).

However, this method for indexing is not restrictive enough because it allows
constituents to be constructed with a logical form that is not a component of the
input. In order to improve the efficiency of the generator, an additional filtering
step, as proposed in [Shieber, 1988a] must be added which prevents such items
from being added to the chart.

3.3.2 Semantically Non-Monotonic Grammars

The method described above for doing lookup by a structural decomposition of
the logical form is not applicable to grammars which contain semantically non-
monotonic constructions, such as idiomatic expressions. By semantically non-
monotonic constructions, we mean constructions in which logical forms are built
up in such a way that constituents may contain logical forms which do not occur as
components of the logical forms of the constituents that dominate them, i.e., these
constructions don’t enjoy a “non-erasing” property. Semantically non-monotonic
constructions present a problem because the lookup step must produce items whose
logical form is not a component of the logical form of the input. We will therefore
propose an alternative lookup step for grammars containing semantically non-
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monotonic constructions.16

A classic example of a semantically non-monotonic construction is the idiom
kick the bucket. We assume a lexicalisation of such constructions [van der Linden,
1993; Abeillé, 1994; Erbach and Krenn, 1994], so that the information about the
idiom is represented in the lexical entry of its head word kick, whose schematic
lexical entry is shown in (3.12).

lex


kick,


lf: die(Subj)

subcat: 〈Subj,[lf:def(bucket)] 〉




. (3.12)

Both semantic-head driven generation (SHDG) and Neumann’s uniform tabu-
lar algorithm (UTA) use a head-driven strategy in order to deal with this problem.
In SHDG, the semantic head of a phrase is given a special status by the compilation
of grammars into chain rules and non-chain rules, and in the UTA the head-driven
behaviour results from the choice of the selection function for the generation case:
process (predict) that goal first in which the logical form feature is instantiated,
which is typically the semantic head.

When these head-driven algorithms need to generate a sign with a given logical
form, they first generate the head daughter, and then recursively the other daugh-
ters. When the logical form die(john) needs to be generated, the head daughter
will be the lexical entry for kick (the bucket), which instantiates the subject daugh-
ter to a nominative NP with the logical form john and the object daughter to an
accusative NP with the logical form def(bucket).17

Lookup for generation with semantically non-monotonic grammars. In
order to define a lookup step for semantically non-monotonic grammars, a simple
structural decomposition of the input logical form is not enough. Instead, the rules
and lexical entries of the grammar must be used for deciding which items should
be added during the lookup step.

The lookup step can be formulated in a straightforward fashion similar to the
head-driven algorithms by instantiating the consequent of a non-chain rule (i.e.,
the mother) with a goal, and performing lookup recursively on the goals in the
antecedent of the clause (i.e., the daughters). In the case of chain rules, the

16In general, generation for semantically non-monotonic grammars cannot be guaranteed be-
cause the compositional functions for constructing logical forms can be arbitrarily complex
[Zadrozny, 1992]. Therefore, we will concentrate on some typical instances of non-monotonic
rules that occur in real grammars.

17It would be possible to emulate a head-driven algorithm within our algorithm by selecting a
matching non-chain rule during the lookup step, and proving the goals of the antecedent of the
non-chain rule by any proof procedure, e.g. bottom-up Earley deduction. The consequent of the
non-chain rule would then be added as an item to the chart. Since this algorithm does not differ
in any interesting way from semantic-head driven generation augmented with memoing, we will
not pursue it any further.
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lookup(lf:love(X,Y), Lex ) :- lex(Lex&phon:〈 love 〉).
lookup(lf:love(X,Y), Clause ) :- lookup(lf:X,Clause).

lookup(lf:love(X,Y), Clause ) :- lookup(lf:Y,Clause).

lookup(lf:die(X), Lex ) :- lex


Lex&


phon: 〈kick 〉

lf: die( )




.

lookup(lf:die(X), Clause ) :- lookup(lf:X,Clause).

lookup(lf:die(X), Clause ) :- lookup(lf:def(bucket),Clause).

Figure 3.9: Precompiled lookup relation for semantically non-monotonic grammars

consequent is instantiated with the goal, the head daughter with a lexical entry,
and then the lookup is performed recursively on the other daughters.

In terms of implementation, this step is not straightforward because it involves
a lot of search, and may return the same solution more than once. In order to
overcome these problem, it would be necessary to compile the lookup step into a
table through which can be used to perform the lookup at runtime.18 The clauses
in figure 3.9 illustrate the precompiled lookup step for a semantically monotonic
construction (the verb love) and a non-monotonic construction (kick the bucket).

Indexing for generation with semantically non-monotonic grammars.
The same indexing scheme will be used as for semantically monotonic grammars.
Even though this indexing scheme ensures termination, it still leads to useless
search because it allows the creation of useless items.

3.3.3 Conclusion on Generation

By defining a lookup step for semantically non-monotonic grammars, we have over-
come the most serious obstacle for bottom-up chart-based generation algorithms.
These algorithms can be used for cases of incremental generation where the input
becomes known gradually, e.g., in the case of interactive machine translation.

In terms of efficiency, however, generation algorithms which look up lexical
entries dynamically, such as SHDG or UTA are superior to bottom-up Earley
deduction for generation. This is due the fact that an algorithm with dynamic
lookup (prediction) will produce fewer items in the lookup step because syntactic
and morphological information gets instantiated before the prediction is done. As
a result, less search is needed in algorithms which do prediction dynamically.

18We will not provide details of the compilation step here. A related technique for compiling
goto and reduce tables for an LR-style generation algorithm is described in [Samuelsson, 1994a].
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This is in contrast to the case of parsing with discontinuous constituents, where
the use of a lookup step reduces the amount of search that would be needed for a
top-down algorithm with prediction.

Moreover, the indexing scheme defined for generation allows the production of
items which are useless to the proof of a goal, so that bottom-up Earley deduction
in its current form does not appear as an efficient algorithm for generation unless
further improvements are made.

3.4 Properties of the Algorithm

In this section, we will discuss the three fundamental properties of the algorithm:
correctness, completeness and termination. In addition, we will touch on questions
of complexity.

Clearly, completeness and especially termination depend on the complexity
properties of the particular grammatical theory to which the bottom-up Earley
deduction algorithm is applied. If a grammar is undecidable, i.e., allows infinitely
many derivations, then for example termination cannot be guaranteed. The com-
pleteness property depends on the specification of the lookup relation and on the
chosen indexing scheme. Rather than attempting to show properties such as com-
pleteness and termination in general, we will outline the general structure of a
completeness argument, and provide the structure of these arguments for the case
of HPSG with sequence union, on the basis of particular choices for the lookup
relation and the indexing scheme.

3.4.1 Correctness

An deduction algorithm is called correct if all the proofs derived by the algorithm
are consequences of the program. We will show completeness by showing that any
item derived by the algorithm follows from the program.

The arguments proceeds by induction. First, we show that the items added
initially are consequences of the program, and then we show that the combination
of any two items by the completion rule creates an item which is a consequence of
the program. There is no other way to create items.

The items that are added to the chart initially fall into two classes: (i) all
non-unit clauses of the program, and (ii) the unit clauses selected by the lookup
relation. The non-unit clauses of the program are trivially consequences of the
program. The unit clauses added by the lookup relation are either instances of
program clauses, in which case they are consequences of the program, or they are
proved from the clauses of the program by a resolution theorem prover (e.g., the
Prolog proof strategy), for which it is also known that it produces only conse-
quences of the program clauses.
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In order to show that the combination of an active and a passive item by the
completion rule (3.3) is a consequence of the program, we must show this (i) for
the combination of the first waiting goal with the passive item, and (ii) for the
proof of the remaining goals with other goal types up to the next waiting goal.
The first is just a resolution step, and the proof of the remaining goals proceeds
also by resolution, so that the correctness of this step is ensured.

If other goal types occur in a clause, these are processed by resolution algo-
rithms (e.g., SLD resolution) whose correctness is well-known in logic program-
ming.

Since the only items in the chart are either (i) added as non-unit clauses of the
program, or (ii) added by the lookup operation, or (iii) produced by application
of the completion inference rule (3.3) from items which are consequences of the
program, every item is a consequence of the program.

The indices associated with items do not affect correctness, since they are only
used as filters that blocks certain possible deduction steps that are useless for the
given goal, but does not influence the resulting item.

3.4.2 Completeness

Completeness is a more interesting property because it depends crucially on the
lookup relation, and on the chosen indexing scheme. Incompleteness can arise
either when the lookup step does not add all the clauses that are needed for a
proof, or if the combination of indices prevents the creation of an item that would
be needed to prove the goal.

Without lookup and indexing (i.e., if all clauses of the program are items
in the chart), the completeness argument would be even simpler than that for
regular Earley deduction, since the addition of items is not even restricted by the
prediction step.

3.4.2.1 Restrictions on the Lookup Operation

We show that the lookup step preserves completeness for the case of hpsg with
sequence union. We make the simplified assumption that an hpsg grammar con-
sists of clauses of the following form (ignoring the cp/2 goal for the moment),
where S stands for the predicate sign/1, L for lexical sign/1, and P for
phrasal sign/1. We assume binary branching for this example.

S ← L.
S ← P.
P ← S ∧ S.

(3.13)

Given this abstract program, all branches of a proof tree have the following
form.
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S(PS)∗L (3.14)

It is easy to see that all leaves of any proof tree are lexical signs (L). Therefore,
a specification of the lookup relation is possible that adds only lexical signs to the
chart if the goal is to prove that the input is a sign, as in the following abstract
specification of the lookup relation.

lookup(S, L). (3.15)

Addition of the cp/2 goals is not problematic since it is not proved by bottom-
up methods, but rather by normal top-down resolution for which all needed clauses
are present.

We must now further refine the above argument for the case where only a
subset of the lexical signs are added to the chart by showing that the lexical signs
which are not added as items cannot be leaves of the proof tree.

In the parsing case, the argument builds on the fact that a non-erasing opera-
tion is used for the combination of strings. As a consequence, no lexical sign can be
part of the proof tree that does not cover a word of the input string.19 Therefore,
words that are not in the input string need not be added as lexical items to the
chart.

Completeness for the parsing case

If every reading of every word in the input string and every non-unit
clause of the program are added to the chart, then completeness of
parsing is guaranteed.

For the case of generation, the same argument can be made on the basis of
the semantic content of the goal, of the lexical signs, and of the compositional
operation for the combination of semantic contents of the constituents. In case of
a semantic monotonicity requirement, any semantic content of a leaf of the proof
tree becomes part of the semantic content of nodes that dominate it. Therefore,
any lexical sign whose semantic content is not a component of the semantic content

19If a grammar makes use of empty categories, these must also be added to the chart since
they can be part of any input string. All grammar rules which introduce lexical entries must also
be added to the chart.
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of the goal need not be added as items to the chart.

Completeness for semantically monotonic generation

If every lexical entry for every component of the input logical form
and every non-unit clause of the program are added to the chart, then
completeness of generation with semantically monotonic grammars is
guaranteed.

In the case of semantically non-monotonic grammars, the completeness depends
crucially on the fact that the lookup step adds all the lexical entries that are needed
for a proof of the goal, even if their semantics is not a component of the logical
form to be generated. This is ensured by a precompilation of the lookup relation
by making use of the non-chain rules and of lexicalised chain rules of the grammar,
as illustrated in section 3.3.2.

Completeness for semantically non-monotonic generation

If every lexical entry for every decomposition (via non-chain rules and
lexicalised chain rules) of the input logical form and every non-unit
clause of the program are added to the chart, then completeness of
generation with semantically non-monotonic grammars is guaranteed.

We conclude that a specification of the lookup relation preserves completeness
if it adds all items that can occur as leaves in the proof tree for a given goal.

3.4.2.2 Restrictions on Indexing

Indexing serves the purpose of preventing the creation of items that cannot be
part of the proof of a given goal. In order to show completeness, it must be shown
that the indexing operation does not rule out any items that could be part of the
proof.

In section 3.2.6, we have argued that indexing is redundant in the sense that
it only represents information that is an instantiation of the program clauses for
a particular parsing or generation instance. The clearest example of this is the
case where the phon value in a chart parser with a context-free backbone is rep-
resented in the clause part as well as in the index part of each item. In this case,
the combination of indices will only fail if the combination of the clauses by the
fundamental rule also fails for that particular problem instance.

[[index(C)]] ⊇ [[C]] (3.16)

[[Ri(index(C1), index(C2))]] ⊇ [[R(C1, C2)]] (3.17)
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Hence, if the requirements postulated in section 3.2.6 on the choice of indices in
(3.16), and on the operation for combining indices in (3.17) are fulfilled, indexing
will only block derivation steps that do not contribute to a proof of the particular
problem instance, and the use of indexing does not affect completeness.

3.4.3 Complexity and Termination

The complexity of the algorithm, and hence its possibility for termination, is de-
pendent on particular grammatical theories, and cannot be given in general. For
context-free grammars, since the algorithm becomes identical to a bottom-up chart
parser, its complexity is known to be O(n3), where n is the length of the input
string. For other grammatical theories, the complexity calculation must be done
separately. However, for particular grammars the complexity may be better than
the worst-case complexity of the grammar formalism in which they are encoded.
This is a question of current research, and recent results concern the relationship
between hpsg and tag [Kasper et al., 1995] and between feature-based grammars
and indexed grammars [Burheim, 1995].

The argument for termination is also relative to particular grammatical theories
and cannot be given in general. The termination argument requires that proof trees
for a given goal cannot exceed a certain size, and that there are only finitely many
proof trees smaller or equal to this size. Then we need to show that bottom-up
Earley Deduction is an algorithm for enumerating a subset of the trees of this
maximal size.

In order to demonstrate that bottom-up Earley deduction only produces a
finite number of proof trees up to a maximal size for a given goal, we need to show
that

(i) the lookup step for a goal produces only a finite number of passive items,

(ii) indexing ensures that the size of a derivation tree is bounded by the number
of items with distinct indices produced by the lookup step, and

(iii) there are only a finite number of proof trees smaller or equal to a given
maximal size.

For the parsing case, (i) follows from the fact

• that there are finitely many words in the input string,

• that each word is only finitely ambiguous,

• that lookup adds only lexical signs for the words in the input string, and

• that there are only finitely many empty categories.

For the generation case, the argument is similar, with the notable difference



114 CHAPTER 3. BOTTOM-UP EARLEY DEDUCTION

• that there are only finitely many components of a given logical form in the
goal,

• that there are only finitely many lexical entries that match each logical form,
and

• that lookup adds only lexical signs for words whose semantic content is a
component of the goal’s semantic content.

Part (ii) of the argument, the fact that proof trees for a given goal have a
maximal size rests on certain properties of the grammar, most importantly that it
does not make unlimited use of cyclic derivations, and restricts the introduction of
empty categories. For lfg, this property is formulated as the off-line parsability
constraint. For hpsg, it can be shown by an analysis of the rule schemata and
principles.

Part (iii) of the argument, that there are only a finite number of proof trees
which are equal or smaller than this size, cannot be made in general, since in
feature-based grammars the number of non-terminal symbols is potentially infinite.
Once again, this must be shown for particular grammars. It would follow from
the fact that a derivation of a given size would also put an upper bound on the
complexity of the recursively defined feature structures involved in it.

From the premises (i), (ii), and (iii), it follows that there are only a finite
number of proof trees for a given goal. Now it remains to be shown that the
algorithm enumerates a subset of this finite set of proof trees. This fact is guar-
anteed by the use of indexing. The indexing schemes presented in figure 3.4 don’t
allow the use of any item (except the initial active items created from the non-
unit clauses of the program, which have the “free” index) more than once in a
derivation, and the use of non-branching trees is strictly restricted in a grammar
that obeys the offline-parsability constraint (or an equivalent of it). Therefore,
the available passive items will eventually get “used up,” so that the proof tree
cannot grow beyond a maximal size (measured in the number of nodes) on the
order of O(2∗W ∗E ∗N), where W is the number of words returned by the lookup
relation, E is the number of empty categories present in the grammar, N is the
maximal length of non-branching derivations, and the factor 2 is the number of
nodes which are constructed by branching derivations.

Head-driven algorithms and Neumann’s uniform tabular algorithm have termi-
nation problems in case of grammars which make use of empty heads, e.g., analyses
of verb-second phenomena in Dutch or German (e.g., [Netter, 1992]). These termi-
nation problems arise because the lexical entry of the empty head does not place
any constraints on its complements, so that prediction and completion loops can
occur.

For the bottom-up algorithm presented here, empty heads do not engender such
termination problems because even though the empty head does not constrain its
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arguments, it can only combine with a finite number of them arising from bottom-
up steps, and prediction of the unconstrained elements is never attempted.

Nevertheless, instantiation of the empty head with the potential fillers can re-
duce the search space by pruning of derivations. This can be achieved by delaying
the lookup of empty heads until all other lookups have been done, and then uni-
fying the empty head with the potential fillers found among the other predicted
items. Such a procedure has been suggested by Johnson and Kay, who introduce
empty elements only if there is a “sponsor” for the empty element [Johnson and
Kay, 1994].

3.5 Incrementality

In this section, we will argue that Earley deduction is very well suited for incre-
mental linguistic deduction. Incremental linguistic deduction means that as more
of the input (phonetic form for parsing, and semantic representation for genera-
tion) becomes known, the appropriate deduction steps are performed immediately,
even if the complete input is not yet completely known. Stated in terms of logic
programming, incremental deduction means that further instantiation of the query
leads to further deduction steps that can contribute to a proof of the query. We
also discuss the question of “full incrementality,” that is the situation where the
input is not only further instantiated, but can also be modified destructively.

3.5.1 Motivation

Incremental parsing of natural language input is a crucial to make NL applications
more acceptable to the user by reducing the waiting time to a minimum. This is
achieved by performing most of the computation while the input is still being
entered. This is particularly important in applications with speech input where
the parser has to deal with a large number of concurrent word hypotheses.20

The need for incremental generation is not quite as evident since there are not
so many scenarios where the input to a generation component is entered incre-
mentally. One situation in which both incremental parsing and generation are
important is machine-translation of face-to-face dialogues (as pursued in projects
like the interactive telephony translation at ATR, or Verbmobil [Wahlster, 1993]),
where output should already be produced as the input is still being processed. Of
course, incremental generation is also important as a potential model of human
cognitive processes.

20Just like interactive graphical user interfaces have become a reality as soon as enough com-
puting power has become available to perform the necessary tasks (cursor movement etc.) in
real time, natural language interfaces will become widespread when there is enough computing
power to support incremental real-time NL understanding.
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In his study of incremental natural language analysis, Wirén makes a distinc-
tion between two senses in which the term “incremental” is used [Wirén, 1992, p.
2]:

1. Analysis of piecemeal, left-to-right21 extensions of a text. We call this left-
to-right incrementality, or LR incrementality for short.

2. Analysis of arbitrary piecemeal changes (insertions, deletions and replace-
ments) of a text. We call this full incrementality.

LR incrementality is a special case of full incrementality.
Full incrementality is useful when the input can change while it is being pro-

cessed. This is for example the case in word processing. An application are sys-
tems for grammar checking that analyse a text to check it for errors and suggest
corrections while the text is still being entered and edited.

3.5.2 Left-Right Incrementality

Wirt́en’s algorithm for handling incremental changes in the input is based on chart
parsing. LR incrementality can easily be handled with a standard chart parser,
which operates as usual, with the exception that new input which is added to the
right of an already analysed string causes the application of the scanning step to
that new input, and the consequent addition of new items, which combine with
the old items in the usual way by means of the completion rule. LR incrementality
is compatible with both bottom-up and top-down processing, and with arbitrary
search strategies.

LR incrementality has often been used in interleaved approaches, in which
syntax and semantics work in parallel such that each word or phrase is given an
interpretation immediately upon being recognised22

Incremental algorithms in which the input is processed as soon as it is received
have also been developed for natural language generation23

3.5.2.1 Earley Deduction and LR Incrementality

In the Linguistic Deduction framework, incremental input corresponds to further
instantiation of the query. As the query gets instantiated, more items are added
to the chart and their consequences computed. This is of course contrary to the
traditional intuitions about logic programming, where a more fully instantiated
query leads to fewer solutions and vice versa. However, in a situation where an
insufficiently instantiated query leads to an infinite set of solutions it is necessary to

21More precisely front-to-back or beginning-to-end.
22Cf.[Mellish, 1983; Mellish, 1985; Bobrow and Webber, 1980; Haddock, 1987].
23Cf. [Finkler and Neumann, 1989; Neumann and Finkler, 1990; Harbusch et al., 1991;

Reithinger, 1992a; Reithinger, 1992b].
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wait until (some part of) the input is instantiated to permit further computation
steps. LR-incrementality can be implemented by the use of delayed goals and
guarded constraints in the definition of the lookup relation.

Earley Deduction is a suitable framework for LR incrementality, because its
basic operation (completion) involves the addition of information and the compu-
tation of its consequences.

3.5.3 “Full” Incrementality

Wirén has developed a theory of “fully incremental” chart parsing [Wirén, 1992;
Wirén and Rönnquist, 1993; Wirén, 1994], which covers not only the case where
words are incrementally added to the input string, but also the case where words
are removed or replaced.

The key idea of the algorithm is to record dependencies between items, so
that any items which become invalid through a change in the input string can be
retracted by following the dependency links. The dependency relation is a binary
relation on the set of chart items and the set of tokens in the input. The following
dependencies are induced by the three operations of a chart parser:

• A predicted item depends on the item that has triggered it and on the items
that have redundantly proposed it, unless it is an initial top-down prediction,
which does not depend on any item.

• A combined item depends on the active and and inactive item that have
formed it.

• A lexical item depends on the token in the input that triggered it.

On the basis of the dependency relation, Wirén and Rönnquist define the dis-
turbance set of a token in the input as the set of items which are in the transitive
close of the dependency relation for that token. If a token is deleted from the
input the items in its disturbance set must be removed from the chart. In the case
of the insertion of a token, all items which cross the point of the insertion must
be removed, a new edge must be added to the chart, and a scanning step must be
performed for the inserted item. As a result of the scanning step, a new lexical
item is added to the chart which combines with the existing items.

In later work, the fully incremental algorithm is improved by reducing the
disturbance set [Wirén and Rönnquist, 1993], and by presenting an algorithm
for bounded incremental parsing, whose complexity is bounded in the size of the
change of the input and the change of the chart. The bounded algorithm treats
the disturbed edges as “sleeping,” but does not remove them so that they can be
re-used. The notion of boundedness is a recently developed criterion in the study
of incremental computation [Ramalingam and Reps, 1991], and Wirén’s work is
its first application to natural language processing.
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There is a close relationship between fully incremental chart parsing algo-
rithms and Assumption-Based Truth Maintenance Systems (ATMS) [de Kleer,
1986], which is discussed in detail in [Wirén, 1992].

3.5.3.1 Earley Deduction and Full Incrementality

In the Earley deduction framework used here, the question arises whether it is
necessary to use such a fully incremental algorithm. After all, all items in the
chart are valid consequences of the grammar, even if they are not solutions to the
given query. So, from a logical point of view, it is not necessary to retract any
items.

But, as argued in chapter 3, the main point of entering only a subset of the
program clauses into a chart for bottom-up deduction is to make the deduction
process more efficient by considering only those clauses which can be part of the
proof tree of the given goal.

If we allow, in a fully incremental setting, items in the chart which can no
longer contribute to a proof of the given goal, then efficiency will degrade. This is
due to the incremental nature of the algorithm; the “useless” items can neverthe-
less combine with other items to produce more items that are equally useless for
proving the given query.

It is such useless combination of items that needs to be prevented. In order to
do this, we keep a record of dependencies between items. The dependency relation
is defined as follows:

An item X depends on another item X’ if X has been produced by ap-
plying the fundamental rule to X’ and another item. The dependency
relation is reflexive and transitive. An item depends on itself and on
any items on which the items from which it was constructed depend.

The information about the dependency relation can be stored with each item.

3.5.3.2 Recomputation of Indices

So far, only the clause part of the items has been considered, but not the index
part. The clause part need not be changed, but it is only necessary to prevent
further combination of items that are dependent on items which are no longer
relevant. It must be noted that the re-use of items is only possible at all because
some information is not instantiated, e.g., information about left and right context
in case of lexical signs. Part of this information is represented in the index part of
the items (cf. section 3.2.6).

In the following example we show what would happen to a unit clause if the
context were instantiated during lookup.
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lexical sign(phon:〈einen,dicken,Hund,begraben〉-〈dicken,Hund,begraben〉)

lexical sign(phon:〈einen,Hund,begraben〉-〈Hund,begraben〉)

The example is taken from a parsing problem; strings are represented by dif-
ference lists. The first line of the example shows the lexical entry for the word
einen in the context of parsing the sentence: . . . einen dicken Hund begraben. The
second line shows the same lexical entry after the word dicken is removed from the
input. Such a representation with context would not allow re-use of items since
they are different for each problem instance.

In the next example, the information about the context is not instantiated.
Therefore, the item can be re-used even if the context of the query changes. The
information about the context will be represented in the index of the corresponding
item.

lexical sign(phon:〈einen|A 〉-A)

When the query is changed, e.g., by removing a word in a parsing instance, the
indices of items must change accordingly because they would otherwise disallow
the combination of items that should be able to combine. The indices of all items
which depend on items with changed indices must be recomputed.

In the following we present the data structures for representing items and
indices that supports this kind of incremental recomputation. The key idea is that
the same derivation can occur several times, but with different indices. In order
to uniquely identify a derivation, we store the derivation tree with each item. A
prerequisite for this is that the clauses from which an item is constructed can be
uniquely identified. Therefore each clause of the program is associated with a
unique identifier.

Each item is uniquely identified by its derivation tree. The representation of
the items will be as a pair of clause and derivation:

〈Clause, Derivation〉 (3.18)

Since the derivation is frequently used in the algorithm to access items, special
attention must be paid to a representation of the derivations so that two derivations
can be compared with a minimum of computational effort.

Note that the information about the index is missing because this is the part
that may, or may not, change when indices must be recomputed. When an item
is removed, it is enough to remove the information about its index to make it
unavailable for further computation while the representation of the item itself can
remain intact to be re-used later. This has useful applications for text editing
operations where some part of an input string is moved (deleted in one place and
inserted in another).
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The fully incremental algorithm operates on three data structures:

Chart Item. An item in the chart is a pair 〈Clause, Derivation〉. This informa-
tion is persistent and can be re-used with different indices. Derivation is
either the identifier of a program clause or a pair of the derivations of the
active and the passive item from which the chart item is constructed. The
derivation of an item uniquely identifies the item.

Index Set. An entry in the index set is a triple 〈Derivation,Active,Index〉.
Derivation uniquely identifies an item, Active is act for active items and
pas for passive items, Index is an index as introduced in section 3.1.2. This
set is used to establish a relation between chart entries and their indices.
This information is destructively modified when items are removed.

Dependency Set. An entry in the dependency set is a pair
〈Derivation,Derivation0〉 of derivations which uniquely identifies a pair of
items. It is used in the operation remove-item to remove all entries in the
index set which depend on an item that is removed.

In figure 3.10 we show the modified algorithm for fully incremental bottom-up
Earley deduction. In order to simplify the description of the algorithm, we do not
use an agenda for the fully incremental algorithm. This avoids the necessity to
remove information from the chart and from the agenda in case of an update. It
also avoids the necessity to pass information about items and about index sets
through the agenda. There is, however, no principled problem with an agenda-
based fully incremental algorithm.

The procedure add-item(Item,Index) takes an item and an index, and looks
for other items with which the item can be combined by checking whether the
indices of the items can be combined. If the indices can be combined, the pro-
cedure construct-item(Active,Passive,Derivation,Index) is called to take care of the
combination of the items.

Since an item with the same derivation, but possibly a different index, may
already have been added to the chart, the procedure construct-item first checks if
such an item already exists, and updates the index set to associate the existing
item with the new index. Also the procedure add-item is called since the new
item may be able to combine with other items with which it could not have been
combined with its previous index. If no item with the same derivation exists, the
first goal of the active item is unified with the passive item, and if the unification
succeeds, the chart, the index set and the dependency set are updated. Since
the dependencies are between items, not between indices, they don’t have to be
updated in the case where an item already exists.

The principal difference to the algorithm given in chapter 3 is that the fully
incremental algorithm always checks whether an item with a given derivation al-
ready exists before trying to construct it. If such an item already exists, only the
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procedure add-item(〈C,D0〉,Idx0)
– if C is a unit clause
– then

for every 〈D1, act, Idx1〉 in index-set such that Idx = Idx1 ? Idx0 exists
– for the item 〈NUC,D1〉

– construct-item(NUC,C, 〈D1, D0〉, Idx)
– if C is a non-unit clause
– then

for every 〈D1, pas, Idx1〉 in index-set such that Idx = Idx0 ? Idx1 exists
– for the item 〈UC,D1〉

– construct-item(C, UC, 〈D0, D1〉, Idx)

procedure construct-item(H ← G ∧ Ω, UC, 〈D0, D1〉, Idx)
– if an item 〈C, 〈D0, D1〉〉 exists

then
– if C is a unit clause, then A = pas
– else if C is a non-unit clause, then A = act
– index-set := index-set ∪ 〈〈D0, D1〉, A, Idx〉
– add-item(〈C,〈D0,D1〉〉, Idx)

– else if σ = mgu(UC,G) exists
– if H ← Ω is a unit clause, then A = pas
– else if H ← Ω is a non-unit clause, then A = act
– chart := chart ∪ {〈H ← Ω, 〈D0, D1〉〉}
– index-set := index-set ∪ {〈〈D0, D1〉, A, Idx〉}
– dependency-set := dependency-set ∪ {〈D0,〈D0, D1〉〉}
– dependency-set := dependency-set ∪ {〈D1,〈D0, D1〉〉}
– add-item(〈C,〈D0,D1〉〉, Idx)

procedure remove-item(〈C,D〉, Idx0)
– index-set := index-set / {〈D1, A, Idx〉 | depends-on(D1, D) ∧

subindex(Idx0, Idx)}

Figure 3.10: Algorithm for fully incremental bottom-up Earley deduction
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procedure update(Query)
– if L exists then Lold := L else Lold := ∅
– create lookup set L for Query
– for every element 〈C,Deriv,Index〉 in L/Lold

– add-item(〈C,Deriv〉,Index)
– for every element 〈C,Deriv,Index〉 in Lold/L

– remove-item(〈C,Deriv〉,Index)

Figure 3.11: Procedure for updating the chart after a changed query

index associated with it is manipulated. This allows the optimal reuse of items
that have been produced and removed again by an update operation.

Removing an item leaves the representation of the item intact, but the pro-
cedure remove-item(Item,Index) only removes the index associated with the item.
Since the index is used to determine which items can combine with each other,
an item whose index is removed cannot enter into further combinations. The fact
that the item is not removed allows its reuse with a different indexing.

The indexing of all items I that logically depend on a given item I0 is removed,
but only if the index of I is a subindex of the index of I0. The subindex relation
is the reflexive, transitive closure of the following definition, which states that an
index I0 is a subindex of any index I that can be constructed by making use of
I0.

subindex(I1, I) if I = I0 ? I1
subindex(I0, I) if I = I0 ? I1 (3.19)

The use of the subindex relation is necessary if the same derivation is used at
different places in a proof to make sure that only the indices of those occurrences
are removed that directly involve the removed item. This situation is the case in
parsing when the same word or the same constituents occur more than once in
the input string and therefore share items, but not indices in the fully incremental
algorithm.

The procedure update(Query) in figure 3.11 takes a new or changed query, and
initiates the appropriate actions of adding and removing items in order to update
the chart for the new query. The procedure works by creating a lookup set, the set
of all items which are the output of the lookup relation for the changed query, and
comparing it to the lookup set of the previous query. If an item is present in the
new lookup set, but not in the old one, then it is added to the chart; and if an item
from the old lookup set is not present in the new one, then it is removed. All items
which are in the intersection of the old and new lookup sets remain unchanged.

In the concrete implementation, it is advantageous to implement the algorithm
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in such a way that it is not necessary to enumerate the entire lookup set and then
comparing it to the previous one, but rather to enumerate the differences of the
sets directly. In practice this means integration of the lookup and the update
procedures into one procedure.

3.5.4 Incremental Addition of Non-Unit Clauses

The preceding sections have shown that unit clauses, typically from the lexicon,
can be added incrementally. However, the same is also true of non-unit clauses,
i.e., grammar rules, lexical rules etc.

One useful application of this lies in the processing of ill-formed input. Nor-
mally, well-formed input is expected, and only the rules which define the well-
formed signs of the language are used. If the analysis of a string fails, however,
a second, less restrictive, set of rules can be added. Within the Earley deduction
framework, this second set of rules can be added to the chart of the failed analysis
as non-unit clauses.

3.6 Conclusion

It remains to be seen how bottom-up Earley deduction compares with (and can be
combined with) the improved top-down Earley deduction of Dörre [Dörre, 1993],
Johnson [Johnson, 1993] and the uniform tabular algorithm (UTA) [Neumann,
1994b], and to head-driven methods with well-formed substring tables [Bouma
and van Noord, 1993], and which methods are best suited for which kinds of
problems (e.g. parsing, generation, noisy input, incremental processing etc.).

On the question of efficiency, it appears that bottom-up Earley deduction is
useful for parsing with discontinuous constituents, for which its performance is
comparable to a head-corner parser augmented with memoing. In this case, the
bottom-up Earley deduction has an advantage over the UTA. For grammars with
a context-free backbone, the performance of bottom-up Earley deduction and the
UTA is comparable. For generation, however, the UTA and semantic-head driven
generation are at an advantage.

As far as incrementality is concerned, bottom-up Earley deduction has advan-
tages both over head-driven methods and over its top-down counterpart because
it can process the input incrementally before the head has been instantiated or
before it has been predicted.

One disadvantage of the bottom-up approach is that the lookup/2 relation
must be specified separately for each grammar or program, and an appropriate
indexing scheme must be selected. Automatic generation of the lookup relation
and selection of the indexing scheme for particular grammars is an interesting and
non-trivial problem, which will be the subject of future research.
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With the exception of the fully incremental algorithm, the bottom-up Earley
deduction system described in this chapter has been fully implemented in Prolog
(cf. chapter 5).

Under current Prolog implementations, the use of active items is a source of
inefficiency because of the amount of copying that must be performed when an
item is stored. Since active items must encode information about the consequent of
a clause, and about the goals that must still be proven, it is generally substantially
larger than a passive item. This is a strong efficiency disadvantage because most
of the time in Earley deduction is spent with the copying of constrained terms
(feature structures) when items are stored in the chart. For this reason, it is
advantageous to restrict the number and the size of the items stored in the chart.
In practice, it has turned out that the avoiding of copying can contribute more to
efficiency than the storing of partial solutions through active items.

In the case where it is known that a grammar makes only use of binary branch-
ing, the algorithm can be improved to avoid the use of active items. We formalise
this method through the following inference rule which is specialised for clauses
which start with two waiting goals (binary branching), followed by a sequence Ξ
of goals with other goal types. This rule is equivalent to the double application of
the inference rule 3.2. σ is the most general unifier of G1 and G1′; φ is the most
general unifier of G2 and G2′; and τ is the constraint that is the result of proving
the sequence of goals Ξ.

〈X ← G1 ∧G2∧ Ξ, I1〉
〈G1′ ←, I2〉
〈G2′ ←, I3〉

〈τφσ(X ←), I1 ? (I2 ? I3)〉 (3.20)

We have not yet done any experiments with bottom-up Earley deduction and
really large-coverage grammars. However, the experience of the ale system and
the Babel system [Müller, 1995] suggest that bottom-up Earley deduction without
active items is an efficient algorithm for parsing large-coverage hpsg grammars.
Müller has implemented a large-coverage hpsg for German, and employs a bottom-
up chart parser which allows for combination of discontinuous constituents. His
system, which is an instance of the bottom-up Earley deduction scheme described
here (making use of indexing scheme 2), is among the fastest hpsg parsers avail-
able.



Chapter 4

Preference-Driven Linguistic
Deduction

This chapter aims to demonstrate that Bottom-Up Earley Deduction is the
right choice for realistic NLP systems because it supports best-first processing
(preference-driven linguistic deduction) due to its inherent incrementality dis-
cussed in section 3.5. Incremental processing is a property of Earley deduction
that is a prerequisite for the implementation of best-first processing. Best-first
processing is easy to implement on the basis of an incremental algorithm because
the incremental algorithm allows new items to be added at any time; consequently
the best (most promising) items can be added first, and the addition of the less
promising items can be delayed because they can then be added incrementally if
they are needed.

We will introduce a notion of preference value which formalises the criteria used
to guide best-first search. The preference value of a structure can be regarded as
the probability that it is a sentence of the language described by the grammar.
We show the application of preference values to disambiguation (especially making
use of word order preferences) and to generation.

4.1 Preferences and Best-First Processing

Models of linguistic competence describe all possible meaning-sound relationships
in natural languages. This is generally a many-to-many mapping because one
string may express several meanings (ambiguity) and one meaning may be ex-
pressed by several strings (paraphrases). In human communication, and in applied
NLP systems, it is necessary to choose one of the possible meanings for a given
phonetic input in parsing, or one of the possible paraphrases for a given meaning
in generation.

125
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Competence models, which are an abstraction from actual language behaviour,
must be augmented with performance models in order to form a basis of models
of human cognitive activities, such as the choice between different readings of
paraphrases. Performance models are also needed to perform similar functions in
NLP systems.

In a knowledge-based approach, a system would be endowed with enough know-
ledge about the language, the communicative situation, the world, the knowledge
of its interlocutor etc. to make an intelligent choice between different readings or
paraphrases. It is questionable whether all of the required knowledge can be for-
malised at all, but it is certainly not going to be available for the next generation
of NLP systems. Even if the knowledge were available, the required amount of in-
ference would make its use unrealistic for practically applied NLP systems, which
are required to be usable on current workstations and personal computers, and to
have reasonable response times.

A model of preference that is useful for linguistic engineering, i.e., applied
NLP systems, ought to be able to make use of any information that is available
for deciding on an order of the produced linguistic deduction (LD) results. This
is often not the kind of knowledge needed to make an informed and intelligent
choice, but rather statistical information gathered from collections of linguistic
data (corpora), or other numeric data which is output from processing modules
to give a confidence score on their results. Examples of the available data are the
following:

• information about the frequencies of lexical items, or about the frequencies
of their readings,

• information about the frequencies of grammar rules or clauses of disjunctively
specified principles,

• scored word hypotheses from a speech recogniser,

• output of a spelling corrector with associated penalty scores,

• bigram or trigram statistics from part-of-speech tagging,

• output from semantic processing, e.g. quantifier scoping, selectional restric-
tions etc.

Our working hypothesis is the following:1

Performance = Competence + Preference

1In this case, we view performance as the performance of an NLP system in executing its
tasks, rather than actual human cognitive activity.
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Apart from these data from linguistic engineering, linguistics (in particular the-
oretical, quantitative and psycholinguistics) has produced numerous results about
about the relative acceptability of linguistic derivations, but these results have
not yet found an adequate formalisation. The following are just some examples of
linguistic work concerned with degrees of acceptability.

• The effect of different word order variations on the acceptability of sen-
tences has been studied in theoretical linguistics (e.g. [Uszkoreit, 1987b],
[Hawkins, 1990; Hawkins, 1994]) and investigated in psycholinguistic exper-
iments [Pechmann et al., 1994].

• Attachment preferences have been studied extensively in psycholinguistics
(for an overview see [Konieczny et al., 1991]), and have given rise to various
parsing models (e.g., [Fodor and Frazier, 1970; Shieber, 1983]).

• Lexical choice, depending on register and context, and the choice of readings
of ambiguous lexical entries [Wanner, 1992].

• Word frequencies and collocational properties of words. For example, the
conventionality principle for idiomatic expressions ensures that the figura-
tive reading of an idiomatic expression like ”kick the bucket” is in general
preferred over its literal reading.

• Preferences for quantifier scope assignment. For example, one observation is
that quantifiers tend to be scoped in the same order as they appear in the
sentence.

• Restrictions on center-embedding have been studied in psycholinguistics, and
explained by models of human sentence processing.

• Selectional restrictions and other semantic constraints have been studied
extensively.

All of this is very diverse information which cannot readily be integrated. How-
ever, it can be noted that a lot of this information is of a statistical nature, and can
be interpreted as probabilities. In some cases, it may be possible to re-interpret a
numerical value produced by a component (e.g. a speech recogniser or a spelling
corrector) as the probability that the item with which this value is associated is
the correct one. In the case of spelling correction, the basis for probabilistic rea-
soning is a model of error production in which certain errors (insertions, deletions,
transpositions) occur with a certain probability. Even components which make
only binary decisions can be integrated in such a probabilistic model by taking
into account the probability that the component’s acceptance or rejection of a
structure is correct.
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Treating preferences as probabilities is a reasonable option because probability
theory is mathematically well-understood and makes it possible in principle to
relate probabilities of larger structures to the probabilities of their constituents.

It must be noted that multiplication of the probability values assigned by the
various components would be appropriate if the different probability values were
independent of each other and all components produced equally reliable proba-
bilities. In practice this is not the case, and some fine-tuning will be required in
order to arrive at a combination of different probability values which is useful for
a particular linguistic engineering task.2 With these caveats in mind, we interpret
the preference of an LD result as its probability.

In a simple processing model, all the LD results would be ordered according to
their probabilities after they have been enumerated as solutions to a query. For
practical applications, performing a complete search can be too expensive, and
the preferences must be used at runtime to follow the most probable paths in the
search space. In order for this to happen, the program’s clauses (lexical entries,
grammar rules, principles) and intermediate LD results (constituents) are also
associated with probabilistic preference values. The preference value of a phrase
is derived compositionally from the preference values of its constituents.

Before we present a definite clause language augmented with preferences in
section 4.1.2, we review some other approaches to preference which have been
proposed in the literature.

4.1.1 Models of Preference for Constraint-Based Grammars

We classify the preference models into three categories:

1. Probabilistic Approaches. In probabilistic models, preference is ex-
pressed through probability values. Structures with a higher probability
are preferred.

2. Processing-Based Approaches. Processing-based models take processing
as the basis for modelling of preference. That LD result which is enumerated
first by a particular processing model is the preferred one. Processing-based
models are common in psycholinguistic theories.

3. Other Declarative Approaches. These models make use of an ordering
relation, which is sometimes, but not necessarily based on numerical values.

In the following, we will give an overview of models that have been proposed
in each of these approaches.

2The problem is similar to that of the use of confidence factors and probabilities in expert
systems.
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4.1.1.1 Probabilistic Models

A simple example of probabilistic models are the probabilistic context-free gram-
mars [Garside and Leech, 1987; Fujisaki et al., 1991], which associate a probability
with each grammar rule (such that the sum of the probabilities for all expansions
of one non-terminal symbol is 1), and in which the probability of a derivation is the
product of the probabilities of the lexical entries and rules used in the derivation.

A probabilistic model for principle-based grammars, based on logic program-
ming, has been proposed by Eisele [Eisele, 1994]. This model is the most basic
probabilistic model that can be assumed for such kinds of grammars. Every goal of
a clause (e.g. principles and constituents) is associated with a probability, and the
product of these probabilities is the probability of the consequent of the clause.3

This model has the advantage that it allows probabilities for rules, lexical
entries and different clauses of principles to be estimated from a corpus by counting
their frequency. It can therefore be seen as a first step towards a probabilistic
model of principle-based grammars that can be applied by making use of data from
obtained from corpora. Eisele’s approach can account for necessary conditions for
the proof of a clause (through goals which have only two solutions: one which has
the probability 0 (= failure) and another one which has the probability 1).

While multiplication of probabilities may make sense for constituents of a
phrase, whose preference values could be seen as independent, it is a question-
able model for the different principles of a principle-based linguistic theory, since
they cannot be considered as independent.

Moreover, a model which simply multiplies probabilities cannot account for the
fact that the satisfaction or violation of some constraints has a stronger influence
on the overall result than other constraints. An example is the Subcat Principle as
a really strong constraint, opposed to weaker constraints, such as stylistic factors.
What is therefore needed is a notion of weights to model the different strength of
influence of different constraints.

Brew proposed another probabilistic model which combines part-of-speech tag-
ging and parsing [Brew, 1993]. Normally tagging is regarded as a kind of prepro-
cessing for parsing, which reduces the search by reducing the number of part-of-
speech tags for each word. The problem is that errors of the tagging algorithm
may lead to failure of the parser if the tagger fails to assign the tags that the parser
needs. In Brew’s model, the relationship between parser and tagger is therefore
reversed. First the parser enumerates the analyses (on the basis of a pure compe-
tence grammar without probabilities), and then the tagger is used to estimate the
probabilities of the different sequences of tags that occur as the terminal yield of
the parse results, in order to select the analysis which maximises the probability
for the tag sequence. On the basis of the knowledge sources which are available
today (probabilistic data for part-of-speech tagging, and pure competence models

3The same kind of model has been proposed in [Erbach, 1993a], but is superseded by the
model proposed in this thesis.
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for syntactic parsing), this model provides a way of choosing between different
parse results. If a part-of-speech tagger is available which assigns all possible tags
annotated with probabilities to each word, then the tagger can be used for pre-
processing, and the probabilities associated with the tags can be used to guide a
best-first search.

In later work, Brew proposes a stochastic hpsg [Brew, 1995]. However, the
version of hpsg which Brew considers is far removed from the principle-based hpsg
which we have considered so far. His model generalises probabilistic context-free
grammars by treating the important problem of re-entrancies (or variable sharing)
in grammatical descriptions. In Brew’s model, the sorts of an hpsg sort hierarchy
play roughly the same role as atomic category labels in context-free grammars.

Attempts to assign probabilities or preference values to feature structures in-
stead of constraints (cf. [Erbach, 1993b]) run into problems because feature struc-
tures are simply descriptions of objects, and it is not clear how the probabilities
associated with feature values should be combined, especially since they can occur
more than once in the same structures due to coreferences.

For building up statistical models, it is necessary to count the frequencies of
disjuncts in their context. The open question is the classification of the objects
whose probabilities are counted, and how fine-grained the context should be. These
choices are important to avoid the sparse data problem.

4.1.1.2 Processing-Based Models

This class of models is intended to explore the search space in such a way that
preferred readings are found before the less preferred ones. This is achieved by
defining decision criteria for handling non-deterministic processing steps. These
decision criteria can be based on statistical probability or structural considerations.

In Prolog-based grammar formalisms like DCG [Pereira and Warren, 1980], the
search can be controlled by ordering the clauses in such a way that the preferred
clauses are tried first. [Haugeneder and Gehrke, 1986] and [Erbach, 1991a] define
arbitrary parsing strategies by assigning priorities to parsing tasks for a chart
parser, based on statistics about previous parse results.

An example for the exploitation of structural properties for resolving non-
determinism is deterministic parsing [Marcus, 1980], where every choice is deter-
ministic in the sense that no alternatives are ever considered. The choice depends
on the phrase structure that has already been built, and on the contents of a buffer
of constituents that need to be integrated. Another example is Shieber’s use of
a shift-reduce parser to model attachment preferences by shifting in case of shift-
reduce conflicts, and performing the “longer reduction”4 in case of reduce-reduce
conflicts [Shieber, 1983].

4The “longer reduction” is the reduction that involves a grammar rule with more elements on
its right-hand side.
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The approaches mentioned have been applied in more traditional parsing frame-
works, where the effect was mostly to order the rules of the grammar. With the
increasing trend towards principle-based grammars, the ordering of rules does not
make very much sense, because only very few rule schemata are used.

Controlled Linguistic Deduction [Uszkoreit, 1991] adds control information to
declarative grammars in typed feature formalisms, and allows the mixing of depth-
first and breadth-first search by assigning preferences to disjuncts. The effect is
to derive a set of preferred readings first, and to cut off unlikely paths in the
search space. The preferences are based on the success potential of a disjunct,
i.e., “the disjuncts that have the highest probability of success are processed first.”
However, the approach suffers from the problem that it uses only local optimisation
for the processing of disjuncts, but often unifications that are successful locally are
not successful in later structure building. For lexical ambiguity, preferences are
assigned dynamically to disjuncts by means of a spreading activation net, based
on “a combination of factors such as the topic of the text or discourse, previous
occurrence of priming words, register, style, and many more.”

Other processing-based approaches are parsers based on simulated annealing
[Kempen and Vosse, 1989], connectionistic models [Schnelle, 1990; Cottrell, 1987],
and psycholinguistic models of human sentence processing [Hawkins, 1990].

The use of specialised processing strategies for disambiguation is appealing
because the search space is reduced and the efficiency of the system increased.

The drawbacks of ordering readings by means of a processing strategy are the
following:

• The criteria for ordering are hidden in the processing model and not specified
in a declarative way. A change of the processing model may change the
ordering of the analyses.

• Additional knowledge (like word order constraints or selectional restrictions)
is not exploited for ordering.

Procedural models make very good sense as explicit psycholinguistic models of
human sentence processing, which can account for emergent behaviour from the
interaction of simple processing principles and also as a target for the compilation
of declarative grammars into performance grammars.

4.1.1.3 Other Declarative Approaches

Barnett and Mani propose a model of bidirectional preferences, which can be
used for both parsing and generation [Barnett and Mani, 1991; Barnett, 1994].
Their model is simpler than the other models discussed since they do not make
use of numerical values. In their approach, preference is just on order relation
between readings. While the simplicity of this model is appealing, it cannot handle
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cases where the preference of a phrase depends on different factors since it has no
mechanism for combining different preferences.

In the PLNLP system, dynamic relaxation techniques are used to handle ill-
formed input in a multiple-pass parsing model [Jensen et al., 1992; Chanod et
al., 1994]. This model contains conditions which can be relaxed with a certain
cost. During the first parsing pass, all constraints are enforced. If the first-pass
analysis fails, then further analyses are performed in which constraints can be
relaxed dynamically.

The opposite approach is pursued by Manaster-Ramer, who — following Chom-
sky — proposes a model called transductive linguistics, in which every sentence,
whether ill-formed or well-formed, is given a structural description [Manaster-
Ramer, 1992]. In the case of well-formed sentences, further constraints can be
applied to the structural description.

Menzel takes a similar approach, in which parsing is understood as a dis-
ambiguation procedure [Menzel, 1995]. In his model, syntax and semantics are
regarded as autonomous modules which can independently produce analyses of
strings at different layers of representation. If the analysis at one level fails, the
other level can still produce an analysis. Constraints are associated with numerical
penalty factors (with a range of values between 0 and 1), which are combined by
multiplication. If the penalty factor for constraint violation is 0, then it is a strict
constraint in the classical sense, and if it is a value greater than 0, then it is a soft
constraint which can be violated. Parsing proceeds by proposing a set of analyses,
and applying constraints to prune this set to find the least disfavoured analysis.

A related approach is followed by Huckle, who uses a greatly impoverished
phrase structure component (finite automata) which is combined with a very com-
plex probabilistic model [Huckle, 1995]. All the constraints of the grammar that go
beyond regular languages are handled by the statistical model. It is, however, not
obvious that reliable statistical data can be extracted from corpora to model all
the complex constraints of the grammar, as would be required in Huckle’s model.

Kim [Kim, 1994] proposes a variant of unification called graded unification
which allows unification failure with a certain penalty score.

Kim’s method for combining scores is taking the average of two scores. How-
ever, averaging leads to the loss of commutativity, as the following examples show.
In both examples, the feature structure X1 has the score 0.8, X2 has the score 0.4,
and X3 has the score 0.2. In (4.1), X1 and X2 are unified first, and then the result
is unified with X3 with, and in (4.2), X2 and X3 are unified first, and then the
result is unified with X1, and in (4.3), X1 and X3 are unified first. The resulting
scores are different in each case.

(X1 ∧X2) ∧X3 has the score

(
(0.8+0.4)

2

)
+ 0.2

2
= 0.4 (4.1)
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X1 ∧ (X2 ∧X3) has the score
0.8 +

(
(0.4+0.2)

2

)
2

= 0.55 (4.2)

(X1 ∧X3) ∧X2 has the score

(
(0.8+0.2)

2

)
+ 0.4

2
= 0.45 (4.3)

Given that Kim’s paper addresses the question of psycholinguistic processing,
it might be argued that commutativity in the calculation of preferences does not
hold in incremental sentence processing because the elements that are processed
first have a larger influence. However, Kim does not attempt to give any evidence
which could support such a view.

Abductive models of linguistic interpretation associate a cost with every fact
that must be assumed in order to explain a reading [Hobbs et al., 1993; Den, 1994].

There are no approaches that explicitly make use of fuzzy logic. This makes
sense insofar as the properties assigned to NL structures are not gradable quanti-
ties, e.g. being a sign or satisfying the subcat principle can be true with a certain
probability, but it is hard to conceive of a structure being a sign to a certain degree.

The question of preferences, probabilities, grammaticality etc. is a notoriously
difficult one that will require much more research and touches the foundations
of linguistic theory. At present, probabilistic models operate at a very different
level (e.g. bi/trigrams) than full-fledged grammatical theories. The formalism and
processing model presented here do not attempt to answer these questions, but
hope to provide a formal framework in which such models can be implemented
and evaluated.

4.1.2 A Model of Preference

In order to model the choice between different linguistic deduction results (i.e.,
different readings for parsing and different paraphrases in generation), we impose
an ordering relation on the different LD results. The relation expresses which
results are preferred over each other. The relation is transitive, but not required
to be antisymmetric, so that two LD results can be equally preferred.

The ordering relation is based on numerical preference values, which can be in-
terpreted as probabilities. Each clause of a program is associated with a preference
value. In case of unit clauses, this is a probability value, a real number between
0 and 1. In case of non-unit clauses, some goals in the antecedent are associated
with a preference value, while others have no preference value because they express
necessary conditions for the clause to be true. The consequent is associated with a
formula which denotes a function for computing the preference value of the whole
clause from the preference values of those goals in the antecedent which have a
preference value.
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The function for computing the preference value of a structure from the pref-
erence values of its parts is required to be monotonic. If the preference value
of one part is increased, and the preference values of all other parts remain un-
changed, then the preference value of the whole structure must also increase. This
monotonicity requirement is crucial for the best-first search algorithm presented
in section 4.1.3 because it makes sure that items with low preference value can
be ignored or delayed because they cannot increase the preference value of the
constituents which they are a part of.

The monotonicity requirement might seem to suggest a kind of “context-
freeness” of the combination of items in the sense that the combination of two
constituents with high preference value would also receive a higher preference value
than the combination of two constituents with lower preference value. However,
this is not necessarily the case since the principles of the grammar can express
conditions on the relation between two constituents that are combined. Since the
evaluation of the principles also results in a preference value which enters into the
preference value of the whole, it is possible that violation of a relational constraint
expressed by a principle leads to the degradation of the preference value of the
whole structure.

We propose a definite clause language augmented with preference values. A
clause of a logic program has the form in (4.4), where C is the consequent of the
clause, and the Ai are the goals in the antecedent.

C ← A1 ∧ . . . ∧An (4.4)

In the following, we give two schemes for calculating the preference value of a
clause. P(x) stands for the probability of the consequent or one of the goals in the
antecedent of the clause, and P(Clause) stands for the probability of the entire
clause. The probabilities of different clauses that can be chosen as alternatives
must add up to 1. The question which clauses can be chosen as alternatives to
each other depends on the instantiation of the ‘input’ arguments of these clauses.
For example, if the instantiation of an input argument leads to the deterministic
choice of a clause, then the probability of choosing that clause, given the input
argument, is always 1. Since the same holds for the other clauses, for different input
arguments, the sum of the probabilities for the defining clauses of a predicate can
be larger than one. In the special case where all clauses that make up a predicate
definition can be chosen, their probabilities must add up to 1.

In (4.5), the scheme of for the calculation of probabilities is the same as in
Eisele’s approach: all the goals are treated as having independent probabilities,
whose product multiplied with the probability of the clause is the probability of
the consequent of the clause.

P(C) = P(Clause) ∗ P(A1) ∗ . . . ∗ P(An) (4.5)
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In (4.6), the probability of the consequent is the product of the probability of
the clause and the weighted sum of the probabilities of the goals in the antecedent.
In this case, the goals are not treated as independent, but rather the satisfaction
of each goal constitutes additional evidence for the truth of the consequent. All
weights Wi in the formula add up to 1 (W1 + . . .+ Wn = 1), and the preference
values (probabilities) of all goals in the antecedent of a clause can have a value
between 0 and 1.

P(C) = P(Clause) ∗ [W1 ∗ P(A1) + . . .+Wn ∗ P(An)] (4.6)

In practice, it may be necessary to mix the two kinds of approaches and treat
some goals as independent, while others just supply supporting evidence. We will
see an example below for the case of hpsg where the probabilities of the daughters
are treated as independent and multiplied, whereas the principles are seen as
providing supporting evidence, and their weighted sum enters in the probability
calculation.

In the concrete notation, we combine the consequent C and its preference
formula with the operator # and likewise the goals in the antecedent and with
their preference variables, so that the clause and the probability assignment in
(4.6) are combined in the following notation:

C#(PClause ∗ (W1 ∗ P1 + . . . + Wn ∗ Pn))←
A1#P1 ∧
...

An#Pn.

(4.7)

As a simple illustration, figure 4.1 shows a preference-based definition of the mem-
ber relation that gives preference to the first members of the list. The solutions of
a query and their preference values are also shown.

(4.8) shows the definition of a sign in hpsg as a clause in a logic program (cf.
section 2.3). The clause given is the one for head-complement structures.

sign


X&


head dtr: HD

comp dtr: CD




←

sign(HD) ∧
sign(CD) ∧
principles(X).

(4.8)

The probabilities for the clause are calculated according to schema (4.5), as
indicated below in semi-formal notation.
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member(X,〈X|R 〉)#0.5.

member(X,〈H|R 〉)#0.5*P ←
member(X,R)#P.

?- member(X,〈a,b,c 〉)#Pref.

X = a Pref = 0.5
X = b P ref = 0.5 ∗ 0.5 = 0.25
X = c P ref = 0.5 ∗ 0.5 ∗ 0.5 = 0.125

Figure 4.1: A definition of the member relation with preference values

P(sign(X)) = P(sign(HD)) ∗ P(sign(CD)) ∗ P(principles) ∗ P(Clause) (4.9)

sign


X&


head dtr: HD

comp dtr: CD




#PHD ∗ PCD ∗ Pprinciples ∗ Pclause ←

sign(HD)#PHD ∧
sign(CD)#PCD ∧
principles(X)#Pprinciples.

(4.10)

For the calculation of the preference value of the principles, we use schema (4.6),
the weighted sum of preferences, since the principles cannot really be considered
as independent. The probability of the clause does not appear in this example
since there is only one clause defining the principles, so that the probability of this
clause is 1.

principles(X) ← principle1(X) ∧ . . .∧ principlen(X). (4.11)

P(principles) = W1 ∗ P(principle1) + . . .+Wn ∗ P(principlen) (4.12)

principles(X)#(W1 ∗ P1 + . . . + Wn ∗ Pn)←
principle1(X)#P1 ∧ . . .∧ principlen(X)#Pn.

(4.13)
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It must be noted that this scheme for calculating preferences is an educated
guess at the appropriate method that appears to fulfill the requirements given
above. Clearly, the exact statistical dependencies between the choices of different
clauses for a principle and the resulting influence on the probability of a reading or
paraphrase are too hard to work out exactly at the present state of our knowledge,
so that we propose to approximate this relationship by the use of weights which
correspond to the different strength of the influence of each principle.

In particular, it appears appropriate that

• the probabilities of the constituents are treated as independent and therefore
multiplied, as any relationships between the signs are stated in the principles,

• the use of addition for the combination of weighted evidence can be used to
limit the influence of really peripheral (e.g., stylistic) principles, and

• the probability of the clause enters as a multiplicand in the formula, as this
ensures that more frequent structures are indeed preferred.

4.1.3 Preferences and best-first processing

In this section, we will discuss how preference values can be used to control the
agenda-based best-first algorithm presented in chapter 3. There are a number of
methods for assigning a priority. A good strategy might try to compensate for the
effect that the preference value is generally lower with more complex derivations.
For example, in the case of parsing, an items that covers more of the input string
than another item will, ceteris paribus, have a lower preference value than an
item which covers less of the input string. Since the longer item will need fewer
combinations with other items to cover the entire input string (i.e., a proof of the
goal), it appears reasonable to give it a higher priority than a shorter item with
the same preference value. Another strategy could make use of the indices of the
items to ensure that combination of the items at the top of the agenda with the
items already present in the chart can completely cover the entire input. Since it
can be very complex to tune such strategies, we will stick to a simpler model in
this section: we will equate the preference value of an item with its priority on the
agenda. This model has the nice property that it guarantees that the derivation
with the highest preference value is found first. This best-first search algorithm
implements the A∗ search algorithm [Nilsson, 1980].

The same model has been used for speech parsing by Thompson, who applies
chart parsing techniques to find an optimal path through a lattice of word hy-
potheses with probabilities for the word hypotheses given the acoustic evidence,
and tag transition probabilities [Thompson, 1990].

In the case of passive items, the equation of preference values with priorities
poses no problem. A passive item (as a completely proved goal) always has a defi-
nite preference value. In the case of active items, on the other hand, the preference
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formula associated with its consequent may contain uninstantiated variables for
the preference values of the goals that are still needed for the proof of the item.
Since these variables can only take on a value between 1 and 0, the preference
value of an active item will be in an interval whose lower bound is determined if
all free preference variables in a formula are set to 0, and whose upper bound is
determined by setting all free variables to 1. The formula for calculating the pref-
erence interval of a formula is given in rule (4.14) and makes use of the formulae
for the lower bound in (4.15) and for the upper bound in (4.16).

pref-interval(F ) = [lower-bound(F ), upper-bound(F )] (4.14)

lower-bound(x) = 0 where x is a free variable
lower-bound(n) = n where n is a real number
lower-bound(x + y) = lower-bound(x) + lower-bound(y)
lower-bound(x ∗ y) = lower-bound(x) ∗ lower-bound(y)

(4.15)

upper-bound(x) = 1 where x is a free variable
upper-bound(n) = n where n is a real number
upper-bound(x + y) = upper-bound(x) + upper-bound(y)
upper-bound(x ∗ y) = upper-bound(x) ∗ upper-bound(y)

(4.16)

We assign the upper bound of its preference formula as the priority of an active
item. Under this assumption, we can state the following proposition that holds if
preferences values of goals are multiplied with each other, i.e., if they are treated
as independent probability values as in Eisele’s model.

If the priority of each passive item is its preference value and the
priority of each active item is the upper bound of its preference value,
then a best-first algorithm will enumerate all solutions in order of de-
creasing preference (i.e., it will find the optimal solution first).

The proof of this proposition proceeds by contradiction: Assume that a non-
optimal solution S with preference value P has been found, but there is still an
item I with preference value P 1 on the agenda whose combination with the chart
can produce a better solution. Since P 1 is after P on the agenda, P 1 ≤ P . Since
preference values are multiplied, a new item which is constructed by making use
of item I must have a preference value lower then P 1. Hence, no item can be
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constructed which has a preference value higher than P 1, and by transitivity of
the ≤ relation no item which has a higher preference value than P . Therefore, the
solution S with preference value P is optimal, and the assumption is false.

Unfortunately, this nice property does not hold in the case where preferences
are not treated as independent probabilities. In the special case of a formula
(4.17), however, it can be assumed to hold, since the only things that are stored
as items (the daughters, but not the individual instances of principles), are in fact
combined by multiplication.

P(X) = P(HD) ∗ P(CD) ∗ P(principles) ∗ P(clause) (4.17)

However, it must be noted that such a strategy which guarantees to find optimal
solutions can lead to a fairly complete exploration of the search space because all
items which still have the chance of contributing to a better solution are combined
before the best solution found so far is further processed. In order to avoid this
large search space one may give higher priority to longer strings or more complex
derivations (by normalising by the string length or number of nodes), or consider
beam search as an alternative which cuts off some parts of the search space with
low preference values, but may occasionally miss an optimal solution.

4.1.4 Word Order

The original motivation for the proposal made in this section stems from our work
on the encoding and processing of linear precedence (LP) constraints for German
word order. LP constraints are not absolute constraints, but their violation only
makes a sentence less acceptable. The same is true of other kinds of linguistic
information, e.g., selectional restrictions, collocational information, or attachment
preferences. On the one hand, information about word order regularities etc. can
easily be expressed in typed feature formalisms (see [Engelkamp et al., 1992]),
and used for disambiguation. On the other hand, if these kinds of knowledge are
added as additional constraints to natural language grammars, some unambiguous
sentences will also be excluded. Sentence (5) illustrates this problem with a simple
example from German word order.

(5) Die Mutter (nom/acc) küßte die Tocher (nom/acc)
The mother kissed the daughter
The mother kissed the daughter / The daughter kissed the mother

In English, subject and object are distinguished by their position, whereas in
German they are distinguished by case marking. The subject is in the nominative
case, and the object in the accusative. Sentence (5) is ambiguous because the NPs
die Mutter and die Tochter can morphologically both be in the nominative and in
the accusative case. So, both NPs can be either the subject or the object of the
sentence.
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However, speakers of German are in general not aware of the ambiguity of
example sentence (5) because there is a strong tendency for the subject to precede
the object in linear order. Example sentence (5) can be disambiguated by adding
an LP constraint (nom < acc) to the grammar. Unfortunately, a grammar which
contains this LP constraint would also exclude the perfectly grammatical German
sentence (6).

(6) Den Knaben schlägt der Lehrer
the boy (acc) hits the teacher (nom)
The teacher hits the boy

The problem is that the grammar becomes too restrictive when the knowledge
needed for disambiguation is added.

The adequate treatment of word order is still an open problem in linguistics.
For the purposes of this section, we consider two approaches: first, a model which
assumes an unmarked (default) argument order, and gives deviations from this
order a lower preference value, and secondly a model which assumes several com-
peting ordering principles.

For the first model, the unmarked word order is the order of the elements of
the subcategorisation (SUBCAT) list5, as in the simplified lexical entry for the
ditransitive verb gibt (give).

lexicon


gibt,


synsem:loc:


cat:head:v

subcat:〈np(acc), np(dat), np(nom) 〉






.

(4.18)

Elements of the subcat list are discharged by the Subcat principle. We assume
that only one element of the Subcat list is taken at a time, so that binary branching
trees result.

subcat principle







synsem:loc:cat:subcat:Subcat

dtrs


head dtr:synsem:loc:cat:subcat:HSC

comp dtr:synsem:CD Synsem







←

insert(Subcat,CD Synsem,HSC).

(4.19)

5We use Prolog notation for lists. The elements of the SUBCAT list are given in reverse
surface order to facilitate processing in head-final structures, where the head takes arguments
from right to left.
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The third argument of the predicate insert/3 is a list, in which the second
argument is inserted at any place into the first argument, which is a list.

insert(L,X,〈X|L 〉).
insert(〈H|L1 〉,X,〈H|L 〉) ←

insert(L1,X,L).

(4.20)

These definitions allow any word order that is a permutation of the subcat list
of the head. For this example, we make the simple assumption that the “best”
word order is the unmarked word order, and that any deviation from the unmarked
order results in a decrease in preference.

We write pairs of feature terms (FT) and preference values (PV) as FT#PV. Each
consequent of a clause is followed by a formula which specifies how the preference
for that clause is calculated. The definitions of insert/3, subcat principle and
phrasal sign annotated with formulae for preference calculation are shown in
figure 4.2. The preference value of a phrasal sign is defined by the multiplication
of the preference values of the daughters, and the preference value that results from
application of the subcat principle for that sign. The subcat principle can unify
any element of the subcat list with the complement daughter, by means of the
relation insert/3. The subcat principle gets its preference value from insert/3.
The idea is that the preference value is highest if the first element is taken from
the subcat list of the head daughter. The further away the element is from the
beginning of the list, the lower the preference.

The preference calculation function in the definition of phrasal sign is re-
sponsible for percolating preference values in phrase structures, which results in
the preference assignments shown in figure 4.3 for the constituents of permutations
of sentence (7), which is given in the unmarked word order.

(7) (weil) der Mann dem Mädchen das Buch gibt
(because) the man (nom) the girl (dat) the book (acc) gives

Under the view presented here, word order constraints are not really constraints
that are violated, but rather preferences for choosing one alternative clause in the
definition of insert/36.

Equivalently, the above treatment of unmarked word order can be handled in
the lexical entry of the verb. In this case we assume that the SUBCAT principle
always takes the first element of the SUBCAT list. The lexical entry for the verb
differs from the one above in that its SUBCAT value is the permutational closure
of the SUBCAT list.

6There may be other uses of insert/3, in which there is no preferred order. For these cases, an
alternative definition of insert/3 must be used, in which all solutions have the same preference
value.
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insert(L,X,〈X|L 〉)#0.5.

insert(〈H|L1 〉,X,〈H|L 〉)#0.5*Pref ←
insert(L1,X,L)#Pref.

subcat principle







synsem:loc:cat:subcat: Subcat

dtrs:


head dtr:synsem:loc:cat:subcat: HD SC

comp dtr:synsem: CD Synsem










#Pref ←

insert(Subcat,CD Synsem,HD SC)#Pref.

phrasal sign


X&


hd: HD

cd: CD




 #P1 ∗ P2 ∗ P3←

sign(HD)#P1,

sign(CD)#P2,

subcat principle(X)#P3.

Figure 4.2: Principles with preferences
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String Pref. Comment

gibt 1

das Buch gibt 1 first element of subcat list
dem Mädchen das Buch gibt 0.5 first element of remaining SL
der Mann dem Mädchen das Buch gibt 0.5
der Mann das Buch gibt 0.25 2nd element of remaining SL
dem Mädchen der Mann das Buch gibt 0.25

dem Mädchen gibt 0.25 2nd element of subcat list
das Buch dem Mädchen gibt 0.25 first element of remaining SL
der Mann das Buch dem Mädchen gibt 0.25
der Mann dem Mädchen gibt 0.125 2nd element of remaining SL
das Buch der Mann dem Mädchen gibt 0.125

der Mann gibt 0.125 3rd element of subcat list
dem Mädchen der Mann gibt 0.125 first element of remaining SL
das Buch dem Mädchen der Mann gibt 0.125
das Buch der Mann gibt 0.0625 2nd element of remaining SL
dem Mädchen das Buch der Mann gibt 0.0625

Figure 4.3: Preference values for the permutations of a sentence

lexicon


gibt,


synsem:loc:


cat:head:v

subcat:SUBCAT






#Pref ←

permute(〈np(acc),np(dat),np(nom) 〉,SUBCAT)#Pref.

(4.21)

The closer the permuted list is to the original list, the better the preference
value that the relation permute/2 assigns.

permute(〈 〉,〈 〉)#1.0.

permute(〈H|T 〉,Perm)#Pref0∗Pref1 ←
permute(T,Perm1)#Pref0,

insert(Perm1,H,Perm)#Pref1.

(4.22)

As a result, we get six lexical entries for the word gibt with all permutations of
the standard order of the subcat list. In figure 4.4, the permuted subcat lists and
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their preference values are given.

〈np(dat),np(acc),np(nom)〉 0.25
〈np(acc),np(nom),np(dat)〉 0.25
〈np(nom),np(acc),np(dat)〉 0.125
〈np(dat),np(nom),np(acc)〉 0.125
〈np(nom),np(dat),np(acc)〉 0.0625

Figure 4.4: Permuted subcat lists and their preference values

This model of word order preferences as deviation from a standard order is
too simple to account for real word order data because other factors also play a
role. We will take a look at the work on Linear Precedence constraints for German
[Uszkoreit, 1987b]. Uszkoreit [p. 24] lists the following most relevant principles
that govern the order of complements and adjuncts in German:7

1. Focus follows nonfocus.

2. The unmarked order is SUBJ, IOBJ, DOBJ.

3. Personal pronouns precede other NPs.

4. Definite NPs precede nondefinite NPs.

5. Light constituents precede heavy constituents.

6. If a focussed constituent precedes a nonfocussed it will carry the focus accent.

However, not all of these principles must always be observed, and it is often
impossible to observe all these principles simultaneously, for example in a sentence
with a pronominal object NP and a non-pronominal subject NP, one principle will
always be violated, as Uszkoreit illustrated with the sentences (8) and (9).

(8) Dann wird der Doktor ihn sehen
Then will the doctor him see
Then the doctor will see him

(9) Dann wird ihn der Doktor sehen
Then will him the doctor see
Then the doctor will see him

7These principles were first proposed in [Lenerz, 1977], and have been tested and confirmed
in recent psycholinguistic experiments [Pechmann et al., 1994].
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In sentence (8), principle 3 is violated since a pronoun follows a full NP, and the
order in sentence (9) violates principle 2 since it deviates from the standard order.
Uszkoreit proposes the following solution for the problem of ordering conflicts.
The set of ordering principles above is divided into those that directly influence
the grammaticality of a sentence, and those that are stylistic factors that influence
the acceptability, but do not make a sentence ungrammatical. We shall call the
former set ordering principles and the latter set ordering preferences. According
to Uszkoreit, this division is a separation of syntactic and stylistic rules. The set
of ordering principles are the following:

1. Focus follows nonfocus.

2. The unmarked order is SUBJ, IOBJ, DOBJ.

3. Personal pronouns precede other NPs.

Only violation of ordering principles can make a sentence entirely ungrammat-
ical. However, for a sentence to become ungrammatical, all ordering principles
must be violated. In [Uszkoreit, 1987b], this is formalised by taking these word
order constraints as a disjunction. At least one of the disjuncts must be true, not
just in the sense that the order specified by the disjunct is not violated by a pair
of constituents, but in the stronger sense that the reverse ordering would lead to
a violation of the constraint.

Moreover, “the degree of markedness increases with the number or total weight
of violated principles” [Uszkoreit, 1987b, p. 123]. We will use our notion of pref-
erences to formalise this observation (where a lower preference value corresponds
to an increased degree of markedness).

The constraints from the set of ordering preferences (relating to definiteness,
heaviness and focus accent) also influence the relative acceptability, but can never
make a sentence completely ungrammatical.

We will now show how to formalise this theory with our notion of preferences.
In contrast to the gpsg theory in [Uszkoreit, 1987b], we can not only formalise
the fact that violation of a combination of ordering constraints makes a sentence
ungrammatical, but also the varying degrees of acceptability.

The definition of a sign in figure 4.5 makes use of the notion of
an ordering domain (a sequence of constituents), and uses the procedures
ordering-principles/1 and ordering-preferences/1 to check the ordering
principles and the ordering preferences for this domain. The resulting probabilities
are multiplied, based on the assumption of independence between the principles
and the preferences. The procedure ordering-principles is defined by a dou-
ble recursion over the word order domain in order to check the three ordering
principles for every pair of elements in the domain.

The procedures check-focus and check-pronominal (figure 4.6) define the
checking of the ordering principles relating to focus and pronominality. In this
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sign(X)#P1 ∗ P2 ∗ . . . ∗ Pwo1 ∗ Pwo2 ←
sign(Dtr1)#P1 ∧
sign(Dtr2)#P2 ∧
. . .

ordering-domain(X,OD) ∧
ordering-principles(OD)#Pwo1 ∧
ordering-preferences(OD)#Pwo2 .

ordering-principles(〈F|R 〉)#P1 ∗ P2 ←
ordering-principles2(F,R)#P1 ∧
ordering-principles(X)#P2.

ordering-principles(〈 〉)#1.

ordering-principles2(X,〈F|R 〉)#(W1 ∗ P1 + W2 ∗ P2 + W3 ∗ P3) ∗ P4 ←
check-unmarked-order(X,F)#P1 ∧
check-focus(X,F)#P2 ∧
check-pronominal(X,F)#P3 ∧
ordering-principles2(X,R)#P4.

ordering-principles2(X,〈 〉)#1.

Figure 4.5: Ordering principles
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check-focus(+focus,−focus)#0.

check-focus(−focus,−focus)#1.

check-focus(+focus,+focus)#1.

check-focus(−focus,+focus)#1.

check-pronominal(+pro,−pro)#1.

check-pronominal(−pro,−pro)#1.

check-pronominal(+pro,+pro)#1.

check-pronominal(−pro,+pro)#0.

check-unmarked-order(dat,nom)#0.

check-unmarked-order(acc,nom)#0.

check-unmarked-order(acc,dat)#0.

check-unmarked-order(acc,acc)#1.

check-unmarked-order(nom,acc)#1.

check-unmarked-order(nom,dat)#1.

check-unmarked-order(dat,acc)#1.

check-unmarked-order(X,¬ case)#1.

check-unmarked-order(¬ case,X)#1.

Figure 4.6: Procedures for checking the ordering principles

case, the preference values 1 and 0 are simply interpreted as truth and falsehood,
respectively. Since both variables in the goal are expected to be instantiated (input
variables), the preference values assigned to the clauses can add up to more than 1.
It is assumed that the features focus and pro are appropriate for all complements
and adjuncts. The notations +focus, -focus, +pro, -pro are abbreviations for
the corresponding feature structures.

The procedure check-unmarked-order assigns a preference value of 0 if the
unmarked order is violated, and a preference value of 1 otherwise. There are
two clauses for the case where one of the elements of the ordering domain is not
specified for case.8

If all word ordering principles are violated for a pair of constituents in an or-
dering domain, the preference value for each principle is 0, and hence the weighted
sum of the preference values is also 0. Since this value enters into the preference
calculation of the whole sentence as a factor of a product, the preference value for

8The notation nom, dat, acc are abbreviations for feature structures in which the case value
of specified as nominative, dative, or accusative, respectively. The notation ¬case is an abbre-
viation for the sorts for which the feature case is not appropriate. There are no clauses for the
pairs 〈nom,nom〉 and 〈dat,dat〉 since these will not occur together in an ordering domain.
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the sentence will also be 0, i.e., the sentence is ungrammatical.
If one of the ordering principles is satisfied and has preference value 1, the

weighted sum of the preferences is greater than 0, and therefore the ordering prin-
ciples do not lead to the ungrammaticality of the structure. This has exactly the
same effect as the formulation of the ordering principles as a disjunction in [Uszko-
reit, 1987b], but in addition, it can also account for the differences in acceptability
among the sentences which satisfy some of the ordering principles.

The exact determination of the weights will have to make use of corpus-based
statistics, and of the results of the psycholinguistic experiments on word order
preferences described in [Pechmann et al., 1994].

In the case where ordering preferences are violated, the preference value is
always greater than 0, so that these principles will never predict the ungrammat-
icality of a sentence, but only model its loss of acceptability. This is shown in
figure 4.7, where the procedure for checking ordering preferences is given, with
preference values for the ordering preference “definites precede indefinites”.9 Like
the procedure ordering-principles, the procedure ordering-preferences is
defined by a double recursion over the list representing the word order domain
(figure 4.7).

We will not discuss optimal processing strategies for checking the ordering
constraints here, but it is clear that they should be based on guarded constraints
to avoid the instantiation of features through the checking of ordering constraints,
which would lead to an increased amount of search. There must also be a numerical
constraint that the preference value of a phrase be greater than 0, to ensure the
instantiation of the feature focus with the values + or − in cases where this is
the only possibility to make a sentence grammatical.

In a more recent model word order constraints are modelled by finite state
transducers, which return a preference value for each order [Erbach and Uszkoreit,
1995]. The output of such a transducer can also enter as a factor in the preference
calculation of a sign.

4.1.5 Application to Disambiguation

A typical natural language understanding (NLU) system will have to decide which
of several analyses of a given string is the appropriate one, i.e. the one intended by
the (human or artificial) system that generated the string. The question is which
parts of an NLU system are responsible for this step.10

9+def, -def, ¬def are the usual abbreviatory conventions. The preference value 0.5 for
the case where the principle is violated is randomly chosen, and has not been determined by a
statistical analysis. Since 1 is interpreted as truth and 0 as falsity, 0.5 can be interpreted as the
probability the the clause being true given the input arguments.

10In the construction of the LILOG system, there was at one time a situation where the group
responsible for syntactic analysis delivered all possible readings of an input string and counted
on the knowledge processing group to take care of the disambiguation, whereas the knowledge
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ordering-preferences(〈F|R 〉)#P1 ∗ P2 ←
ordering-preferences2(F,R)#P1 ∧
ordering-preferences(X)#P2.

ordering-preferences(〈 〉)#1.

ordering-preferences2(X,〈F|R 〉)#(W1 ∗ P1 + W2 ∗ P2 + W3 ∗ P3) ∗ P4←
check-heaviness(X,F)#P1 ∧
check-definiteness(X,F)#P2 ∧
check-focusaccent(X,F)#P3 ∧
ordering-preferences2(X,R)#P4.

ordering-preferences2(X,〈 〉)#1.

check-definiteness(+def,−def)#1.

check-definiteness(−def,−def)#1.

check-definiteness(+def,+def)#1.

check-definiteness(X,¬ def)#1.

check-definiteness(¬ def,X)#1.

check-definiteness(−def,+def)#0.5.

Figure 4.7: Procedures for checking ordering preferences
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We can roughly characterise the architecture of an NLU system as consisting
of three major parts.

1. Syntactic (and morphological) analysis

2. Contextual interpretation (anaphora resolution etc.)

3. Knowledge representation and inference

We claim that the task of disambiguation cannot be solved by any of these
components alone, but all of these three parts can play a role in disambiguation,
as sentences 10 to 17 illustrate.

The German example sentence (10) has four readings, since Schauspielerin
can fill the roles of subject and direct object, and Moritz and Lisa can fill the
roles of subject, indirect object and direct object. All four readings are equally
plausible, but word order preferences provide strong evidence for the reading in
which Moritz is the subject, Lisa the indirect (dative) object and Schauspielerin
the direct (accusative) object. This is a case where syntactic preferences determine
the choice of a reading, unless there is evidence to the contrary.

(10) Moritz zeigt Lisa die Schauspielerin
Moritz shows Lisa the actress

Sentence (11) shows a lexical ambiguity of the word mouse, which is ambiguous
between rodent and computer input device. In the first sentence, both readings
are equally possible. Coindexation of the pronoun it in the second sentence with
mouse, together with selectional restrictions of the predicative adjective dead, lead
to a preference for the rodent reading. The same effect occurs in sentence (12), and
the device reading is preferred in sentence (13). In this case, anaphora resolution
and selectional restrictions determine the choice of a reading.

(11) On the table there was a mouse. It was dead.

(12) Bill found a mouse. The animal was half-starved.

(13) Bill found a mouse. The device was in need of repair.

The following sentences can only be disambiguated by inference and world
knowledge. In sentence (14), the locative adjunct in the river suggests the auxiliary
verb reading of can, since rivers are locations where fishing is possible, and in
sentence (15), the main verb reading of can is suggested by the locative adjunct
since factories are locations where goods are canned.

(14) We can fish in this river.

processing group assumed that they would get only one reading because disambiguation i takes
place during syntactic processing.
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(15) We can fish in this factory.

In the sentences (16) and (17) knowledge processing is required to resolve the
lexical ambiguity of window between an opening in a wall and a human-computer
interface widget. The process of fitting the definite descriptions the pane and
the title bar into the discourse representation will assist in the disambiguation of
window if knowledge is available that a pane is part of a framed window in the
wall, and that a title bar is part of a computer window.

(16) John stared at the window. The pane was broken.

(17) John stared at the window. The title bar showed weird characters.

By viewing syntactic analysis as a deductive process, it can be integrated with
the other two processes. The same preference scheme, and even the same deductive
techniques can be applied to all three stages, so that the final preference ordering
among different readings is made up from results of all three processes.

4.1.6 Application to Generation

In an ideal situation, one can assume that the input to a generator is always fully
specified so that only one unique result is generated that is optimally suited to
a achieve the desired communicative effect in a given communicative situation.
However, in realistic NLP applications, there is often not enough information
available and decisions must be made in the face of this incomplete knowledge.
Such situations arise for example in systems that must deal deal with a wide variety
of input, such as the generation component of large-coverage machine translation
systems, which normally do not make use of a discourse model. In order to arrive
at a reasonably acceptable output of the generator when no information is available
to make an informed decision for a non-deterministic choice, one can use statistical
information and simply take the most probable choice. For example in the case of
lexical selection or the selection of syntactic variants, the most frequent one (either
in terms of absolute probabilities or of conditional probabilities such as n-gram
models) is chosen. Whenever the information for making a choice is available, it is
used, and preferences (probabilities) are only used to resolve those choices which
are left underspecified in the input.

4.1.6.1 Preferences and Self-Monitoring

Neumann and van Noord have developed an algorithm for self-monitoring of syn-
tactic generation [Neumann and van Noord, 1992]. The purpose of the algorithm
is to avoid the generation of ambiguous utterances. The algorithm starts out by
generating a sentence which is then parsed in order to determine whether it is am-
biguous. If a sentence is found to be ambiguous, its analysis trees are traversed to
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find the place in which the derivations differ. At this choice point, another choice is
taken, and the result is then again checked for ambiguity. This process is repeated
until a non-ambiguous paraphrase of the utterance is generated. The algorithm is
quite efficient because it reduces the search to the parts of the derivation which
are responsible for the ambiguity of the utterance.

The classic example is the ambiguous sentence (18), which can be paraphrased
by the non-ambiguous sentences (19) and (20).

(18) Remove the folder with the system tools

(19) Remove the folder by means of the system tools

(20) Remove the folder containing the system tools

In realistic language models, there are often situations where it is impossible
to generate non-ambiguous utterances. This is due to lexical ambiguities (most
lexical entries have a number of different readings), structural ambiguities (which
are often not even noticed), and scope ambiguities (it is hardly possible to avoid
ambiguities in quantifier scope). In such “deadlock” situations, it is desirable to
generate a phrase that is unlikely to be misinterpreted. In terms of preference
values this means that the preference value of the most preferred reading must be
significantly higher than that of the second most preferred reading.11

An example would be the German sentence Kohl kritisierte Chirac (Kohl crit-
icised Chirac), which has one reading in which Kohl is the subject and Chirac the
object, and another reading in which the roles are reversed. However, the second
reading is so unlikely that there is hardly a chance of a misunderstanding. In this
case the word order preferences are so strong that there will be a large distance in
the preference values.

An example in which there is not enough difference is the sentence Florian
löst sein Problem mit exzessivem Drogenkonsum (Florian solves his problems with
excessive drug-consumption) which has one reading the the drug consumption is
the problem that is solved and another — equally plausible — one where the
problem is solved by means of drug consumption. In this case, unambiguous
paraphrases must be generated.

Of course the preference values (viewed as probabilities) can be different for
different sublanguages. In the computer domain, the word mouse is more likely
to refer to an input device than to a rodent, and the word window is more likely
to refer to user interface widget than an opening in a wall, while the probabilities
will be reversed in texts from other domains (e.g., pest control, construction).

11We won’t attempt to formalise what “significantly higher” means since it depends strongly
on the given purpose of the generation system. The higher the cost of misunderstanding (the
potential damage), the greater the difference in preference values should be.
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4.1.7 Determination of Preference Values

We still need to answer the question how the preference values can be determined
from a given corpus. What is needed is a corpus annotated with analyses (e.g.
hpsg signs). Since such of corpus is currently not available, the ideas in this
section cannot be backed up with empirical evidence and rates of accuracy.
There are two kinds of values that must be determined:

• the probabilities of clauses (lexical entries, grammar rules, principles)

• the relative weights of different goals in a clause

For the probabilities of the rules and lexical entries, we would follow the sug-
gestion of Eisele to count the frequency of occurrence in a corpus [Eisele, 1994]. Of
course, this raises a number of problems, especially whether just absolute frequen-
cies are counted or frequencies relative to a given context, and about the choice of
the context.

The assignment of weights is an even harder problem, since it is not obvious
from a corpus how strong the influence of the different factors is. This problem is
very complex because it involves a large number of variables that can be varied,
and for which an optimal assignment of values must be found. Since this is an
optimisation problem with a vast search space, appropriate search techniques must
be used, such as evolutionary strategies [Bäck et al., 1991] or genetic algorithms
[Holland, 1975; Goldberg, 1989]. These methods work by choosing several initial
sets of weights and applying them to a corpus. The resulting performance of each
set of weights is used as its fitness measure. The sets with the highest fitness value
are selected, and further variations (mutation and crossover) are used to produce
variations of the sets. This new set of weights is the input for the next step of the
algorithm, which will settle on an optimal solution after some number of steps.

4.2 Conclusion

We have presented a formalisation of the notion of degrees of grammaticality by
augmenting definite clauses with preference values. Best-first search can be applied
in a straightforward manner to obtain solutions with the highest preference values
first.

We have shown by giving some examples that a notion of numerical preference
value can indeed have beneficial effects for language engineering purposes because
it provides criteria for making decisions in non-deterministic situations.

More theoretical and empirical work is required in order to arrive at a satisfac-
tory foundation of preference values. The exact relationship between preference
values and probabilities must be clarified, and methods for obtaining preference
values from observable data (such as corpora) must be developed.
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The methods discussed in this chapter are more speculative than those pre-
sented in the previous chapters, and not yet supported by empirical evidence.
Since such empirical work involves a lot of effort (e.g. annotation of corpora with
hpsg signs), we find it first necessary to argue that the expected results may be
worth the effort.



Chapter 5

Implementation

The methods discussed in the previous chapters are implemented in an experimen-
tal NLP system called GeLD (Generalised Linguistic Deduction). Considerable
attention has been paid to efficiency issues in the implementation.

The aim of the implementation is to combine the useful linguistic deduction
algorithms described in the preceding chapters into a logic programming system in
order to make them applicable to constraint-based grammars that do not rely on
a particular rule format. Grammars can be written in a definite clause language
that is augmented with sorted feature terms and the possibility to add control
information which determines how grammars are processed.

The emphasis of the system is to provide a framework for easy experimentation
with different kinds of processing strategies for different kinds of grammars by
adding control information. As such, it is a tool for the developer of processing
algorithms, rather than a tool for the development of declarative grammars.

The realization of the linguistic deduction methods in a logic programming
framework is achieved by manipulating the Control part in the famous equation
that defines logic programming [Kowalski, 1979].

Algorithm = Logic + Control

We can characterise our Generalised Linguistic Deduction (GeLD) system by
instantiating Logic, Control, and Algorithm as follows:

Logic. As our logic, we have a declarative theory of grammar, stated as definite
clauses.

Control. Instead of a fixed control strategy (e.g. Prolog’s depth-first top-down
strategy, or more specialised schemes such as chart parsers, etc.) control
information is added to the clauses of the grammar, in order to permit ex-
perimentation with different processing algorithms.

155
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Algorithm. Depending on the control information, different algorithms (and mix-
tures of algorithms) result.

Like Prolog, GeLD is a proof procedure for definite clause programs. Unlike
Prolog, however, our interest is not in providing a universal procedural program-
ming language. Therefore, we do not support control constructs in programs that
eliminate some of the solutions (e.g. the cut, negation as failure, or tests of the
instantiation state of variables such as var/1, nonvar/1 etc.). We find the control
information presented here more appropriate for linguistic applications than the
control facilities offered by Prolog. The control constructs we provide instead con-
cern choosing different proof procedures for different goals, and preferred choices
in case of non-determinism.

The GeLD system consists of three parts:

1. A sorted feature term language including set descriptions and set constraints,
guarded constraints, and linear order constraints.

2. A partial deduction system for grammar transformations

3. A linguistic deduction system which allows the combination of Earley de-
duction with head-driven processing, top-down processing and direct Prolog
execution.

The processing of a grammar proceeds in three stages:

1. Sorted Feature Terms are translated into a Prolog term representation by
the ProFIT system (cf. section 5.1).

2. Various grammar transformations are carried out by the partial deduction
system according to the specified control information, and the grammar is
converted into an internal format (cf. section 5.3.5).

3. The linguistic deduction system is used to parse and generate strings.

The overall architecture of the system is shown in figure 5.1.
The system is implemented in Sicstus Prolog. The sizes of the system’s com-

ponents given in figure 5.2 give a rough idea of the size of the system.
The following sections give an overview of the implementation. Full user doc-

umentation for ProFIT and CL-ONE is available.1

1[Erbach, 1995; Ruessink, 1994; Erbach et al., 1995c]
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System Component Lines of Size in
Prolog Code Kilobytes

Sorted Feature Terms (ProFIT) 2850 77
Extended Constraint Language (CL-ONE) 3250 67
Deduction System (GeLD) 1320 36
Total 7420 180

Figure 5.2: Components of the GeLD system

5.1 Sorted Feature Terms: ProFIT

It has been noted that first-order Prolog terms provide expressive power equiv-
alent to sorted feature terms [Mellish, 1992]. For example, Carpenter’s typed
feature structures [Carpenter, 1992] can easily be represented as Prolog terms, if
the restriction is given up that the sort hierarchy be a bounded complete partial
order.

Such compilation of sorted feature terms into Prolog terms has been success-
fully used in the Core Language Engine (CLE) [Alshawi, 1991] and in the Advanced
Linguistic Engineering Platform (ALEP), [Alshawi et al., 1991].2 ProFIT extends
the compilation techniques of these systems through the handling of multiple in-
heritance, (cf. [Erbach, 1994b]) and makes them generally available for a wide
range of applications by translating programs (or grammars) with sorted feature
terms into Prolog programs.

ProFIT is not a grammar formalism, but rather extends any grammar formal-
ism in the logic grammar tradition with the expressive power of sorted feature
terms.

5.1.1 The ProFIT Language

The set of ProFIT programs is a superset of Prolog programs. While a Prolog
program consists only of definite clauses (Prolog is an untyped language), a ProFIT
program consists of datatype declarations and definite clauses. The clauses of a
ProFIT program can make use of the data types (sorts, features, templates and
finite domains) that are introduced in the declarations. A ProFIT program consists
of:

• Declarations for sorts

• Declarations for features

• Declarations for templates

2Similar, but less efficient compilation schemes are used in Hirsh’s P-PATR [Hirsh, 1986] and
Covington’s GULP system [Covington, 1989].
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• Declarations for finite domains

• Definite clauses

5.1.1.1 Sort Declarations

In addition to unsorted Prolog terms, ProFIT allows sorted feature terms, for
which the sorts and features must be declared in advance.

The most general sort is top, and all other sorts must be subsorts of top.
Subsort declarations have the syntax given in (5.1). The declaration states that
all Subi are subsorts of Super, and that all Subi are mutually exclusive.

Super > [Sub1, . . . , Subn]. (5.1)

It is also possible to provide subsorts that are not mutually exclusive, as in
(5.2), where one subsort may be chosen from each of the “dimensions” connected
by the ∗ operator. This kind of multi-dimensional inheritance is described in more
detail in [Erbach, 1994b].

Super > [Sub1.1, . . . , Sub1.n] ∗ . . . ∗ [Subk.1, . . . , Subk.m] (5.2)

Every sort must only be defined once, i.e. it can appear only once on the
left-hand side of the connective >.

The sort hierarchy must not contain any cycles, i.e. no sort may be (directly
or indirectly) a supersort of itself.

The immediate subsorts of top can be declared to be extensional. Two terms
which are of an extensional sort are only identical if they have the same most spe-
cific sort (terminal node in the sort hierarchy), and if all features are instantiated
to ground terms. If a sort is not declared as extensional, it is intensional. Two
intensional terms are identical only if they have been unified.

5.1.1.2 Feature Declarations

Unlike unsorted feature formalisms (such as patr-ii), where any feature can be
added to any structure, ProFIT follows the notion of appropriateness in Carpen-
ter’s logic of typed feature structures [Carpenter, 1992], and introduces features
for particular sorts. For each sort, one must declare which features are introduced
by it. The features introduced by a sort are inherited by all its subsorts, which
may also introduce additional features. A feature must be introduced only at one
most general sort. This makes it possible to provide a notation in which the sort
name can be omitted since it can be inferred from the use of a feature that is
appropriate for that sort.

This notion of appropriateness is desirable for structuring linguistic knowledge,
as it prevents the ad-hoc introduction of features, and requires a careful design of
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the sort and feature hierarchy. Appropriateness is also a prerequisite for compila-
tion of feature terms into fixed-arity Prolog terms.

Each feature has a sortal restriction for its value. If a feature’s value is only
restricted to be of sort top, then the sortal restriction can be omitted. The syntax
of feature declarations is given in (5.3).

Sort intro [Feature1 : Restr1, . . . , F eaturen : Restrn]. (5.3)

The following declaration defines a sort binary tree with subsorts leaf and
internal node. The sort binary tree introduces the feature label and its subsort
adds the features left daughter and right daughter . If a sort has subsorts and
introduces features, these are combined in one declaration.

binary_tree > [leaf,internal_node]
intro [label].

internal_node intro
[left_daughter:binary_tree,
right_daughter:binary_tree].

5.1.1.3 Sorted Feature Terms

On the basis of the declarations, sorted feature terms can be used in definite clauses
in addition to and in combination with Prolog terms. A Prolog term can have a
feature term as its argument, and a feature can have a Prolog term as its value.
This avoids potential interface problems between different representations, since
terms do not have to be translated between different languages. As an example,
semantic representations in first-order terms can be used as feature values, but do
not need to be encoded as feature terms.

Sorted feature terms consist of a specification of the sort of the term (5.4),
or the specification of a feature value (5.5), or a conjunction of terms (5.6). A
complete BNF of all ProFIT terms is given in the appendix.

< Sort (5.4)
Feature ! Value (5.5)
Term & Term (5.6)

The following clauses (based on hpsg) state that a structure is saturated if its
subcat value is the empty list, and that a structure satisfies the Head Feature Prin-
ciple if its head features are identical with the head features of its head daughter.3

3These clauses assume appropriate declarations for the sort elist, and for the features
synsem, local, cat, subcat, head, dtrs and head dtr.
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Note that these clauses provide a concise notation because uninstantiated features
can be omitted, and the sorts of structures do not have to be mentioned because
they can be inferred from use of the features.

saturated( synsem!local!cat!subcat!<elist ).

head_feature_principle( synsem!local!cat!head!X &

dtrs!head_dtr!synsem!local!cat!head!X ).

Note that conjunction also provides the possibility to tag a Prolog term or
feature term with a variable (Var & Term).

5.1.1.4 Feature Search

In the organisation of linguistic knowledge, feature structures are often deeply
embedded, due to the need to group together sets of features whose value can
be structure-shared. In the course of grammar development, it is often neces-
sary to change the “location” of a feature in order to get the right structuring of
information.

Such a change of the “feature geometry” makes it necessary to change the path
in all references to a feature. This is often done by introducing templates whose
sole purpose is the abbreviation of a path to a feature.

ProFIT provides a mechanism to search for paths to features automatically
provided that the sortal restrictions for the feature values are strong enough to
ensure that there is a unique minimal path. A path is minimal if it does not
contain any repeated features or sorts.

The sort from which to start the feature search must either be specified ex-
plicitly (5.7) or implicitly given through the sortal restriction of a feature value,
in which case the sort can be omitted and the expression (5.8) can be used.

Sort >>> Feature ! Term (5.7)
>>> Feature ! Term (5.8)

The following clause makes use of feature search to express the Head Feature
Principle.

head_feature_principle( sign>>>head!X &
dtrs!head_dtr! >>>head!X ).

While this abbreviation for feature paths is new for formal description lan-
guages, similar abbreviatory conventions are often used in linguistic publications.
They are easily and unambiguously understood if there is only one unique path to
the feature which is not embedded in another structure of the same sort.
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5.1.1.5 Templates

The purpose of templates is to give names to frequently used structures. In addi-
tion to being an abbreviatory device, the template mechanism serves three other
purposes.

• Abstraction and interfacing by providing a fixed name for a value that may
change,

• Partial evaluation,

• Functional notation that can make specifications easier to understand.

Templates are defined by expressions of the form (5.9), where Name and Value
can be arbitrary ProFIT terms, including variables, and template calls. There can
be several template definitions with the same name on the left-hand side (relational
templates). Since templates are expanded at compile time, template definitions
must not be recursive.

Name := Value. (5.9)

Templates are called by using the template name prefixed with @ in a ProFIT
term.

Abstraction makes it possible to change data structures by changing their def-
inition only at one point. Abstraction also ensures that databases (e.g. lexicons)
which make use of these abstractions can be re-used in different kinds of applica-
tions where different data structures represent these abstractions.

Abstraction through templates is also useful for defining interfaces between
grammars and processing modules. If semantic processing must access the seman-
tic representations of different grammars, this can be done if the semantic module
makes use of a template defined for each grammar that indicates where in the
feature structure the semantic information is located, as in the following example
for hpsg.

semantics(synsem!local!cont!Sem) := Sem.

Partial evaluation is achieved when a structure (say a principle of a grammar)
is represented by a template that gets expanded at compile time, and does not
have to be called as a goal during processing.

We show the use of templates for providing functional notation by a simple
example, in which the expression @first(X) stands for the first element of list X,
and @rest(X) stands for the tail of list X, as defined by the following template
definition.

first([First|Rest]) := First.
rest([First|Rest]) := Rest.
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The member relation can be defined with the following clauses, which corre-
spond very closely to the natural-language statement of the member relation given
as comments. Note that expansion of the templates yields the usual definition of
the member relation in Prolog.

% The first element of a list is a member of the list.

member(@first(List),List).

% Element is a member of a list if it is a member of the rest of the list

member(Element,List) :-

member(Element,@rest(List)).

The expressive power of an n-place template is the same as that of an n+1
place fact.

5.1.1.6 Disjunction

Disjunction in the general case cannot be encoded in a Prolog term representat-
ion.4 Since a general treatment of disjunction would involve too much compu-
tational overhead, we provide disjunctive terms only as syntactic sugar. Clauses
containing disjunctive terms are compiled to several clauses, one for each consis-
tent combination of disjuncts. Disjunctive terms make it possible to state facts
that belong together in one clause, as the following formulation of the Semantics
Principle of hpsg, which states that the content value of a head-adjunct structure
is the content value of the adjunct daughter, and the content value of the other
headed structures (head-complement, head-marker, and head-filler structure) is
the content value of the head daughter.

semantics_principle( (<head_adj &

>>>cont!S & >>>adj_dtr!>>>cont!S )

or

( (<head_comp or <head_marker or <head_filler) &

>>>cont!S & >>>head_dtr!>>>cont!S )

).

For disjunctions of atoms, there exists a Prolog term representation, which is
described below.

5.1.1.7 Finite Domains

For domains involving only a finite set of atoms as possible values, it is possible
to provide a Prolog term representation (due to Colmerauer, and described by
Mellish [Mellish, 1988]) to encode any subset of the possible values in one term.
For reasons of space, we do not give a description of the encoding here.

4see the complexity analysis by Brew [Brew, 1991].
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agr fin dom [1,2,3] * [sg,pl].

verb(sleeps,3&sg).

verb(sleep, (̃3&sg)).

verb(am, 1&sg).

verb(is, 3&sg).

verb(are, 2 or pl).

np(’I’, 1&sg).

np(you, 2@agr).

Figure 5.3: An example of finite domains

Consider the agreement features person (with values 1, 2 and 3) and number
(with values sg and pl). For the two features together there are six possible com-
binations of values (1&sg, 2&sg, 3&sg, 1&pl, 2&pl, 3&pl). Any subset of this set
of possible values can be encoded as one Prolog term. Figure 5.3 shows the decla-
ration needed for this finite domain, and some clauses that refer to subsets of the
possible agreement values by making use of the logical connectives ~ (negation),
& (conjunction), or (disjunction).5

This kind of encoding is only applicable to domains which have no coreferences
reaching into them, in the example only the agreement features as a whole can be
coreferent with other agreement features, but not the values of person or number
in isolation. This kind of encoding is useful to avoid the creation of choice points
for the lexicon of languages where one inflectional form may correspond to different
feature values.

5.1.1.8 Cyclic Terms

Unlike Prolog, the concrete syntax of ProFIT allows one to write down cyclic terms
by making use of conjunction:

X & f(X).

Cyclic terms no longer constitute a theoretical or practical problem in logic
programming, and almost all modern Prolog implementations can perform their
unification (although they can’t print them out). Cyclic terms arise naturally in

5The syntax for finite domain terms is Term@Domain. However, when atoms from a finite
domains are combined by the conjunction, disjunction and negation connectives, the specification
of the domain can be omitted. In the example, the domain must only be specified for the value
2, which could otherwise be confused with the integer 2.
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NLP through unification of non-cyclic terms, e.g. the Subcategorisation Principle
and the Spec Principle of hpsg.

ProFIT supports cyclic terms by being able to print them out as solutions. In
order to do this, a costly ‘occurs check’ must be performed. Since this must be
done only when results are printed out as ProFIT terms, it does not affect the
runtime performance.

5.1.2 From ProFIT Terms to Prolog Terms

5.1.2.1 Compilation of Sorted Feature Terms

The compilation of sorted feature terms into a Prolog term representation is based
on the following principles, which are explained in more detail in [Mellish, 1988;
Mellish, 1992; Schöter, 1993; Erbach, 1994b].

• The Prolog representation of a sort is an instance of the Prolog representation
of its supersorts.

• Features are represented by arguments. If a feature is introduced by a sub-
sort, then the argument is added to the term that further instantiates its
supersort.

• Mutually exclusive sorts have different functors at the same argument posi-
tion, so that their unification fails.

We illustrate these principles for compiling sorted feature terms into Prolog
terms with an example from hpsg. The following declaration states that the sort
sign has two mutually exclusive subsorts lexical and phrasal and introduces
four features.

sign > [lexical,phrasal] intro [phon,synsem,qstore,retrieved]

In the corresponding Prolog term representation below, the first argument
is a variable whose only purpose is being able to test whether two terms are
coreferent or whether they just happen to have the same sort and the same values
for all features. In case of extensional sorts (see section 5.1.1.1), this variable is
omitted. The second argument can be further instantiated for the subsorts, and
the remaining four arguments correspond to the four features.

$sign(Var,LexPhras,Phon,Synsem,Qstore,Retrieved)

The following declaration introduces two sort hierarchy “dimensions” for sub-
sorts of phrasal, and one new feature. The corresponding Prolog term representa-
tion instantiates the representation for the sort sign further, and leaves argument
positions that can be instantiated further by the subsorts of phrasal, and for the
newly introduced feature daughters.
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phrasal > [headed,non_headed] * [decl,int,rel]

intro [daughters].

$sign(Var,$phrasal(Phrasesort,Clausesort,Daughters),Phon,Synsem,Qstore,Retrieved)

5.1.2.2 Compilation of Finite Domains

The compilation of finite domains into Prolog terms is performed by the “brute-
force” method described in [Mellish, 1988]. A finite domain with n possible domain
elements is represented by a Prolog term with n+ 1 arguments. Each domain ele-
ment is associated with a pair of adjacent arguments. For example, the agreement
domain agr from section 5.1.1.7 with its six elements (1&sg, 2&sg, 3&sg, 1&pl,
2&pl, 3&pl) is represented by a Prolog term with seven arguments.

$agr(1,A,B,C,D,E,0)

Note that the first and last argument must be different. In the example, this
is achieved by instantiation with different atoms, but an inequality constraint
(Prolog ii’s dif) would serve the same purpose. We assume that the domain
element 1&sg corresponds to the first and second arguments, 2&sg to the second
and third arguments, and so on, as illustrated below.

$agr( 1 , A , B , C , D , E , 0 )
1sg 2sg 3sg 1pl 2pl 3pl

A domain description is translated into a Prolog term by unifying the argument
pairs that are excluded by the description. For example, the domain description
2 or pl excludes 1&sg and 3&sg, so that the the first and second argument are
unified (1&sg), as well as the third and fourth (3&sg).

$agr(1,1,X,X,D,E,0)

When two such Prolog terms are unified, the union of their excluded elements is
computed by unificatation, or conversely the intersection of the elements which are
in the domain description. The unification of two finite domain terms is successful
as long as they have at least one element in common. When two terms are unified
which have no element in common, i.e., they exclude all domain elements, then
unification fails because all arguments become unified with each other, including
the first and last arguments, which are different.

5.1.3 ProFIT Implementation

ProFIT has been implemented in Quintus and Sicstus Prolog, and should run with
any Prolog that conforms to or extends the proposed ISO Prolog standard.
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All facilities needed for the development of application programs, for example
the module system and declarations (dynamic, multifile etc.) are supported by
ProFIT.

Compilation of a ProFIT file generates two kinds of files as output.

1. Declaration files that contain information for compilation, derived from the
declarations.

2. A program file (a Prolog program) that contains the clauses, with all ProFIT
terms compiled into their Prolog term representation.

The program file is compiled on the basis of the declaration files. If the input
and output of the program (the exported predicates of a module) only make use
of Prolog terms, and feature terms are only used for internal purposes, then the
program file is all that is needed. This is for example the case with a grammar
that uses feature terms for grammatical description, but whose input and output
(e.g. graphemic form and logical form) are represented as normal Prolog terms.

Declarations and clauses can come in any order in a ProFIT file, so that the
declarations can be written next to the clauses that make use of them. Decla-
rations, templates and clauses can be distributed across several files, so that it
becomes possible to modify clauses without having to recompile the declarations,
or to make changes to parts of the sort hierarchy without having to recompile the
entire hierarchy.

Sort checking can be turned off for debugging purposes, and feature search and
handling of cyclic terms can be turned off in order to speed up the compilation
process if they are not needed.

Error handling is currently being improved to give informative and helpful
warnings in case of undefined sorts, features and templates, or cyclic sort hierar-
chies or template definitions.

For the development of ProFIT programs and grammars, it is necessary to give
input and output and debugging information in ProFIT terms, since the Prolog
term representation is not very readable. ProFIT provides a user interface which

• accepts queries containing ProFIT terms, and translates them into Prolog
queries,

• converts the solutions to the Prolog query back into ProFIT terms before
printing them out,

• prints out debugging information as ProFIT terms.

When a solution or debugging information is printed out, uninstantiated fea-
tures are omitted, and shared structures are printed only once and represented by
variables on subsequent occurences.
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A pretty-printer is provided that produces a neatly formatted screen output of
ProFIT terms, and is configurable by the user. ProFIT terms can also be output in
LATEX format, and an interface to graphical grammar development environments
such as Pleuk [Calder and Humphreys, 1993], HDrug [van Noord, 1994] or the
graphical feature editor Fegramed (developed at DFKI) is foreseen.

In order to give a rough idea of the efficiency gains of a compilation into Prolog
terms instead of using a feature term unification algorithm implemented on top of
Prolog, we have compared the runtimes with ALE and the Eisele-Dörre algorithm
for unsorted feature unification for the following tasks:

1. unification of (unsorted) feature structures,

2. unification of inconsistent feature structures (unification failure),

3. unification of sorts,

4. lookup of one of 10000 feature structures (e.g. lexical items),

5. parsing with an hpsg grammar to provide a mix of the above tasks.

The timings indicate that ProFIT is 5 to 10 times faster than a system which
implements a unification algorithm on top of Prolog, a result which is predicted
by the studies of Schöter [Schöter, 1993] and the experience of the Core Language
Engine. An overview of the results is given in appendix B.1.

5.2 Extensions of the Constraint Language

5.2.1 Set Descriptions and Set Constraints

For set descriptions and set constraints, we use the set constraint solver developed
by Suresh Manandhar [Manandhar, 1994; Erbach et al., 1994a; Erbach et al.,
1994b; Erbach et al., 1995b], and integrated with ProFIT by S. Manandhar and
the author.

The set descriptions and set constraints shown in figure 5.5 are allowed in
definite clauses.

Full details about the implementation can be found in the deliverables of the
RGR project [Erbach et al., 1994a; Erbach et al., 1995a].

5.2.2 Guarded Constraints

The implementation of guarded constraints supports the following general purpose
syntax:
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PFT := <Sort Term of a sort Sort
| Feature!PFT Feature-Value pair
| PFT & PFT Conjunction of terms
| PROLOGTERM Any Prolog term
| FINDOM Finite Domain term, BNF see below
| @Template Template call
| ‘ PFT Quoted term, is not translated
| ‘‘ PFT Main functor is not translated
| >>>Feature!PFT Search for a feature
| Sort>>>Feature!PFT short for <Sort & >>>Feature!PFT
| PFT or PFT Disjunction; expands to multiple terms

FINDOM := FINDOM@FiniteDomainName
| FINDOM
| FINDOM & FINDOM
| FINDOM or FINDOM
| Atom

Figure 5.4: BNF for ProFIT terms

Set Constraint Meaning Syntax for variable X
empty set X is the empty set { }
element E is an element of X exist(E)
set description X contains the elements

E1 . . .En (but they need
not be disjoint)

{E1, . . . , En}

fixed cardinality set X contains the disjoint el-
ements E1 . . .En

fixed card({E1, . . . , En})

subset X is a subset of Y subset(Y)
union X is the union of Y and Z union(Y,Z)
intersection X is the intersection of Y

and Z
intersection(Y,Z)

disjointness the members of X and Y
are disjoint

disjoint(Y)

disjoint union X is the disjoint union of
Y and Z

dis union(Y,Z)

Figure 5.5: Syntax of set constraints
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LP Constraint Meaning Syntax for variable X
precedence X precedes Y precedes(Y)
precedence equals X precedes or precedes equals(Y)

is equal to Y
first daughter X precedes all other fst daughter(Y)

elements of domain Y
domain precedence (every element of) dom precedes(y)

domain X precedes
(every element of)
domain Y

guard on precedence if X precedes Y then if precedes(Y)
X is unified with S, then S
otherwise X is unified
with T

else T

Figure 5.6: Syntax of linear precedence

case( [ condition1 #>action1,
. . .
conditionn #>actionn

])
else actionn+1

Each of the actioni can be any term or another guarded constraint. Each of
the conditioni (also known as guard) is restricted to one of the following forms
(the variables ∃x1, . . . , xn stand for existentially quantified variables).

condition −→ ∃x1, . . . , xn feature term
| ∃x1, . . . , xn exists(feature term)
| precedes(x, y)

The constraint if G then S else T can then be thought of as syntactic sugar
for the statement case([G ⇒ S]) else T . The constraint if G then S else T can
also be thought as syntactic sugar for the constraint if G then S u if ¬G then T .
However, since the test for both G and ¬G can be done simultaneously, the former
representation is more efficient.

5.2.3 Linear Precedence Constraints

In figure 5.6 we describe the syntax of the linear precedence constraints supported
by our implementation; for the formal semantics, refer to [Manandhar, 1995].
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5.2.4 Interaction between Constraint Handling and Tabula-
tion

Unfortunately, there is no representation of set descriptions as Prolog terms that
allows unification of set descriptions to be performed by Prolog unification of
their representations. Therefore, programs containing set descriptions cannot be
compiled to Prolog programs, but need a meta-interpreter that takes care of set
unification.

For datatypes such as sets that do not have such a convenient Prolog term
representation, we use the following technique: In the Prolog term representation,
we leave a variable at the position for an object which has such a datatype, and
keep a separate list in which we can look up the object which belongs to that
variable. In addition, we use the coroutining mechanism of Sicstus Prolog to
ensure that unification of the externally represented data objects is performed
whenever two of the variables that replace them in the Prolog term representation
are unified. The same coroutining mechanism is used to enforce constraints on
sets (e.g. subset constraints), implicational constraints, and linear precedence
constraints.

The treatment of set constraints makes heavy use of the coroutining facilities
of Sicstus Prolog. Where these “blocked goals” have not yet been evaluated,
they belong to the clause containing the set description. Whenever a clause is
stored as an item, these “blocked goals” must be copied, which causes a significant
slowdown, as experiments have shown.6 This slowdown is due to the large number
of “blocked” goals that are introduced for every pair of set descriptions occurring in
a term in order to ensure that the set descriptions get unified in case the variables
associated with them get unified. Further “blocked goals” are introduced by the
membership, subset, union, and intersection constraints.

Of course this does not mean that there is a fundamental incompatibility be-
tween Earley deduction and the use of set descriptions and constraints. What it
means is that the efficient implementation of set descriptions is not really feasible
on top of today’s Prolog systems, a problem which is made worse by the fact that
tabulation (memoing) in Prolog is not handled very efficiently. Combining both
of these sources of inefficiency does therefore not appear to be a wise move.

Since this thesis is mainly concerned with the study of Earley deduction tech-
niques for efficient NLP, we opt for tabulation at the expense of set descriptions
at the current stage of the implementation.

For the future, we expect significant improvements on both fronts. With re-
spect to set descriptions, we expect a significant improvement in the near future

6In the implementation of CL-ONE, both a chart parser and a left corner parser for ALE-
style grammars are provided. If set descriptions are present in clauses, it is recommended to use
the left corner parser because of the performance problems that the chart parser suffers due to
the large (2 – 4 times slower according to experiments done with a small grammar) slowdown
through the copying of “blocked goals.”
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from the use of attributed variables [Holzbaur, 1992] in the next version of Sicstus
Prolog (3.0), which form a natural basis for the implementation of set constraints
since they allow user-defined unification.

In the long run, we expect sets to become a built-in datatype in logic program-
ming languages, which allows a much more efficient implementation.

On the tabulation front, we follow with great interest the development of XSB
Prolog, which uses top-down Earley deduction as its basic operation. Any advances
in the implementation of tabulation made in this respect are also applicable for a
more efficient implementation of the bottom-up variant.

It is these developments that have encouraged the use of the extended con-
straint language for expository purposes in the preceding chapters, even though
the current implementation cannot support their efficient processing in combina-
tion with Earley deduction strategies.

5.3 The Generalised Linguistic Deduction

(GeLD) System

This section gives an overview of the GeLD system, and in particular of the differ-
ent kinds of control information that can be added to clauses in order to determine
their behaviour with respect to partial deduction, and to the different deduction
systems.

The compilation of programs, and the workings of the partial deduction system
are described, whereas the description of the deduction engine is the subject of
section 5.4.

5.3.1 Control Information

5.3.1.1 Clause Types

The most important kind of control information concerns the question of what
a clause should be compiled into. This is indicated by the main connective that
links the consequent and the antecedent of the clause (cf. figure 5.7).

Clause Type Syntax
Prolog clause C :- A.
GeLD clause C <- A.
Macro C <= A.
Fact C.

Figure 5.7: Clause types

The choice of a clause type determines how the clause is processed. The four
classes have the following appropriate uses:
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Prolog clause: Prolog clauses are compiled directly into Prolog clauses, although
some of their goals may be expanded by partial deduction. They can later
only be executed directly by Prolog, which is in certain cases more efficient
than use of a deduction system implemented on top of Prolog, but suffers
from the usual problems of Prolog’s search strategy. Goals in a Prolog clause
can be passed to the GeLD system for an alternative deduction strategy. Pro-
log clauses are primarily intended for calling externally defined procedures,
and for side effects.

GeLD clause: GeLD clauses are compiled into a form that can be interpreted by
the deduction system described below. If a GeLD clause has an empty body
(usually as the result of partial deduction), it is compiled into a Prolog fact
in order to gain efficient access to it through Prolog’s indexing mechanisms.
This is especially important in order to ensure efficienct access to large data
bases, e.g. lexicons with thousands of entries.

Macro: A “macro” is a clause that is used during the partial deduction phase, but
for which no representation is created in the target file. This not only avoids
redundant code in the target file, but also allows the expansion of recursive
macros, provided that their relevant variables are properly instantiated.

Fact: Clauses without goals (possibly as the result of partial deduction) are always
compiled into Prolog facts, since obviously they need not contain any control
information, but are trivially provable. The compilation into Prolog facts is
used to make the Prolog compiler perform indexing on these clauses, so that
even large databases of facts can be efficiently accessed.

This distinction into several clause types allows a proper division of labour be-
tween those clauses which can easily be handled by Prolog (and benefit of efficient
compilation) and those that need the deduction system as a meta-interpreter.

5.3.1.2 Goal Types

A goal in the body of a clause can be annotated with control information (goal
type) that specifies how it should be executed. A goal type is specified by a one-
letter code which is prefixed to the goal. A list of possible goal types is given in
figure 5.8.
The significance of each goal type is explained below:

c: chart-based processing. This option refers to the bottom-up Earley deduc-
tion developed in chapter 3. A new chart is created for proving the goal.

d: top-down processing. This option is like Prolog’s proof strategy, but a meta-
interpreter is used instead. This option should be chosen if goals other than
Prolog goals can occur in the proof of the goal.
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Code Goal Type
c chart-based processing
d top-d own goal
e (top-down) Earley deduction
h Head-driven processing
i immediate execution
m macro
p Prolog goal
w waiting goal

Figure 5.8: Goal types

e: (top-down) Earley deduction. These goals are executed by the classic top-
down Earley deduction algorithm. A new chart is created for the proof of
an e-goal.

i: immediate execution. i goals are executed immediately at compile time by
calling them as Prolog goals. This is a form of partial deduction: i goals never
appear in the output of the partial deduction; instead there will be a number
of new clauses, depending on how many solutions the i-goal has. i-goals are
used for calling Prolog built-in predicates or predicates of a program that
has previously been consulted.7

m: macro. These goals are replaced in a partial deduction step. An m-goal
is matched against clauses (of the same program) with the same predicate
in their consequent, and replaced by the goals in the antecedents of these
clauses. If the goals in these clauses contain again m or i-goals, the process
is applied recursively. It is possible that the goal completely disappears in
the process by being (successively) replaced by the empty body.

p: Prolog goal. Prolog goals are executed directly by Prolog at runtime. Clauses
for goals that are called as Prolog goals should be either Prolog built-in
predicates or specified as Prolog clauses.

h: head-driven goal. These goals are executed according to a head-driven stra-
tegy.

w: waiting goal. A waiting goal is one that waits to be combined with a passive
item in the course of (bottom-up or top-down) Earley deduction, or with
the result of a bottom-up deduction step in head-driven processing. When
a waiting goal is encountered in the proof of a goal, its clause is turned into

7Some Prolog systems make a distinction between consulting and compiling, where the latter
is more efficient. When the term consult is used in this chapter, we generally mean the loading
of Prolog clauses by the most efficient method available.
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GeLD Goals

Compile time goals Runtime goals

Immediate
execution

m  Macro w  Waiting goalProvable Goal

Backward chaining Forward chaining

d  top-down e  Earley deduction Prolog
goal

h  head-driven c  chart goalp

i

Figure 5.9: Hierarchy of goal types

an active item. Any clauses whose first goal is a waiting goal are turned into
items at compile time.

These goal types can be divided into those which are used at compile time (i and
m) and the others which are used at runtime. The runtime goals can be divided
into waiting goals (w) which are passive and activated in Earley deduction or head-
driven processing, and provable goals, for which proof procedures are implemented
in the system. The provable goals are further subdivided into backward chaining
(top-down) goals (d, e and p) and forward chaining (bottom-up) goals (c and h).
This hierarchy of goal types is shown in figure 5.9.

In addition to goal types for individual goals, it is possible to specify a default
goal type for each predicate. This default will be used for every goal which is not
given an explicit goal type. The notation for the specification of a default is the
following:

:- goal_type(Functor/Arity,Type).

The following directives specify that the default goal type for sign/1 is w and
for head feature principle/1 is m.

:- goal_type(sign/1,w).
:- goal_type(head_feature_principle/1,m).

If there is no goal type and no default for a goal in a clause, then it becomes a p
goal. This is in accordance with the strategy to use execution by Prolog whenever
possible for reasons of efficiency.

There is a restriction for the goal types in the body of a Prolog clause or a
macro: they must not contain any waiting goals.
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5.3.1.3 Base Case Lookup

In order to prove c and h goals by means of forward chaining, the deduction system
must know which base cases of recursively defined predicates to use for a given
goal. For example, for computing the factorial function bottom-up, the base case
should always be the factorial of 0. For linguistic deduction, the base cases should
for example be the lexical entries of the words contained in a string to be parsed,
or a non-chain rule having the same semantics as a sign to be generated.

At present, we have no general method for determining the appropriate base
cases for given goals. Therefore, the user must specify which base case is appropri-
ate for which goal. This is done by providing clauses for the relation lookup/3 for
head-driven processing, and for lookup/4 for bottom-up Earley deduction. The
prodcures lookup/3 and lookup/4 have the following arguments (the first three
are shared).

1. The first argument is the goal to be proven.

2. The second argument is the base case that is used to start a bottom-up proof
of the goal.

3. The third argument is the goal type according to which the base case is
proven. If the base case must simply be looked up as a fact, then it can be
specified as a p-goal.

4. The extra fourth argument in the case of bottom-up Earley deduction is the
index of the passive item that is created as the result of base case lookup.

Figure 5.10 shows a specification of the lookup relation for bottom-up Earley
deduction (based on the specification of the lookup relation in figure 3.5).

Assuming that the derivation via a chain rule or a non-chain rule is encoded
in a sign as the value of the feature deriv, the following is the lookup relation for
semantic-head driven generation (goal type: h).

lookup(sign(sem!Sem), sign(sem!Sem & deriv!non chain), d). (5.10)

5.3.1.4 Priorities

The goals in the body of the clause can be given a numerical priority which deter-
mines the order in which they are processed. This is merely a notational conve-
nience which makes re-ordering goals easier than cut-and-paste which always leads
into trouble when the last goal of the clause is affected.

Goals without a priority are assumed to have the priority 0.
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lookup(sign(phon!PhonList),

lexical sign(phon![Word] & synsem!X ),

d,

Begin-End ) <-

nth member(Word,Begin,End,PhonList),

lexicon(Word,X).

nth member(X,0,1,[X| ]).

nth member(X,N1,N2,[ |R]) <-

nth member(X,N0,N1,R),

N2 is N1 + 1.

Figure 5.10: Specification of the relation lookup in GeLD

5.3.2 Coroutining

GeLD supports the same form of coroutining as Sicstus Prolog (when/2). Wherever
possible, the coroutining is delegated to Sicstus Prolog. For example, the relevant
clause in the interpreter for d goals is the following.

prove(when(Condition,Goal)) :-
when(Condition,prove(Goal)).

5.3.3 Preference Values

In the source file, predicates can optionally be associated with preference values.
The syntax for this is given in (5.11).

Predicate # Pref (5.11)

If a predicate is associated with a preference value, its preference value must
be present on all occurrences. For reasons of efficiency, an n-place predicate with a
preference value is compiled into an n+1 place predicate, where the last argument
is reserved for the preference value.8

In the following example, the 3-place predicate insert with preference value
is compiled into a 4-place predicate. The same kind of compilation of preference
values takes place whether the predicate is defined as a Prolog clause, a GeLD
clause or a macro.

8For this reason, using an n-place predicate with preference value and an unrelated n + 1-
place predicate without preference value in the same program must be avoided. This situation
is similar to the caveat against using an n-place dcg category and an unrelated n + 2-place
predicate in the same program.
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Input clauses:

insert(X,R,[X|R])#1.

insert(X,[F|R],[F|New])#0.9*Pref :-

insert(X,R,New)#Pref.

Compiled clauses:

insert(X,R,[X|R],1).

insert(X,[F|R],[F|New],0.9*Pref) :-

insert(X,R,New,Pref).

Figure 5.11: Compilation of clauses with preference values

This addition of an extra argument (similar to the addition of difference list
arguments in case of DCG compilation) allows the direct compilation of pro-
grams/grammars with preference values into Prolog programs, and their efficient
processing without the need for a meta-interpreter.

During the processing, variables in preference formulae get further instanti-
ated. Preference formulae are only evaluated where this is necessary to control
the processing, i.e., in order to calculate the priority of an item that is about to
be added to the agenda.

5.3.4 Compilation

The first step of the compilation consists in bringing the program clauses into a
normal form to which partial deduction can be applied. This step is necessary
because we want to perform partial deduction to simplify clauses of a program by
using other clauses of the same program. This is different from partial deduction
during the compilation of Prolog programs by making use of term expansion/2
or goal expansion/2, which can only use clauses for partial deduction that have
been previously consulted.

Bringing a clause into normal form consists of three steps:

1. Integration of preference values (cf. section 5.3.3)

2. Ordering of goals in the body of a clause according to their priority (cf.
section 5.3.1.4)

3. Storage of clauses in normal form in the internal Prolog database
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All clauses in the internal database have the same normal form, irrespective
of whether they are Prolog clauses, GeLD clauses, macros or facts (although this
information is preserved):

geld clause(Conseq,Pref,Type,Body)

Conseq is the consequent of the clause. Pref is the preference value associated
with the consequent, if any, and the atom nil otherwise. Type is an atom that
encodes the difference between Prolog (unit and non-unit) clauses (prolog), Geld
clauses (geld), and macros (macro). Body is a list of goals, which are also in a
normal form:

goal(Goal,Type,Pref)

Here, Goal is the goal itself, Type is the goal type (cf. section 5.3.1.2), and Pref
is the preference value of the goal. The priority given to a goal does not appear
here any more because the goals are already ordered according to their priority.

This normal form forms the basis for the partial deduction step described in
the following section.

5.3.5 Partial Deduction

As described in chapter 2, partial deduction is a technique for program transforma-
tion which takes a logic program as input and gives an equivalent logic program,
in which some goals are expanded, as output. In our case, the input logic pro-
gram can be the output of the ProFIT compiler, transformed into a normal form
described in the previous section.

In the actual partial deduction step, each clause is transformed into (zero, one,
or more) new clauses by partial deduction, making use of the other clauses stored
in the internal database. The clauses which result from the second step are written
to a file and then compiled (in order to be able to benefit from the indexing which
takes place for compiled predicates).

i goals

In this section, we discuss how the goals with types i and m are treated by the
partial deduction system. The Prolog code of the core of the partial deduction
system is given in appendix C.

In the partial deduction step, all i goals in Prolog clauses and GeLD clauses
are executed and disappear, and the constraint that is the solution of the goal is
added to the constraint of the clause.

A← Γ ∧ iB ∧∆
σ(A← Γ ∧∆)

(5.12)
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σ is the constraint (a substitution in case of Prolog) that is returned as a
solution of proving goal B.

m goals

M goals also disappear in the partial deduction step, but unlike i goals their are
replaced by a (possibly empty) sequence of goals. The sequence of goals that
replaces the m goal can be the body of a Prolog clause, a GeLD clause, or of a
macro.

A← Γ ∧mB ∧∆
B′ ← Θ

σ(A← Γ ∧Θ ∧∆)
(5.13)

σ is the merged constraint (unifying substitution in case of Prolog) of B and
B′.

Both of the above inference rules are applied until no more i or m goals are
present in the clause. In case where a rule contains more than one goal to which
one of the inference rules can be applied, then it is always applied to the leftmost
such goal.

This order of execution is often necessary in order to ensure that the partial
deduction process terminates and generates only a finite number of clauses. Often
partial deduction performed on one m or i goal which can instantiate variables
that ensure that a goal following it has only a finite number of solutions.

The inference rules are applied to a clause until it contains no more i or m
goals; then the clause is written to a file in a format that allows efficient execution
and exploits the indexing of Prolog when it is compiled. Clauses with an empty
antecedent are always represented as Prolog facts, since they don’t need any control
information, and in order to provide the most efficient processing and indexing.

Prolog rules are translated back into Prolog format after partial deduction.
This allows them to be executed directly by Prolog, thereby exploiting Prolog
compilation and processing.

GeLD clauses are written to a file in the following form.

geld clause(Consequent,Body,Preference)

If a GeLD clause starts with a waiting goal, then it is also written into the
output file as an active item.

Macros are only used during the partial deduction step, but are never simplified
during partial deduction or written to the output file. This does not only make the
output file more compact, but also avoids non-termination in case of recursively
defined macros.
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5.4 The Deduction Engine

In this section, we discuss the implementation of the deduction systems for the
various goal types. The Prolog code of the core of the deduction engine is given
in appendix C.

GeLD includes the bottom-up Earley deduction described in chapter 3. In
addition, it provides interpreters for a top-down Prolog proof strategy, top-down
Earley deduction and for a head-driven strategy, as well the the option to pass
calls directly to the underlying Prolog system for more efficient execution or for
side effects.

Each goal can be annotated with one of the following goal types (in addition
to the goal types i and m that are dealt with by the partial deduction system)
which are described in section 5.3.1 on control information (cf. figure 5.8, page
174).

c chart-based proof (Bottom-Up Earley Deduction)

d top-down search (Prolog search strategy

e top-down Earley Deduction

h head-driven search (head-driven strategy)

p Prolog call

w waiting goal

The deduction system is completely modular so that other deduction algo-
rithms (e.g. LR strategies) can be added as needed.

Unlike Prolog, the order of clauses in the source file does not determine the
order in which clauses are executed.9 This is due to the fact that we are do not
want to provide a procedural programming language, but a deduction system that
enumerates all solutions to a given query. The instrument for controlling the order
of execution are the preference values given to clauses.

In Prolog clauses, the order is of course respected — their execution should
(apart from the effects of partial deduction) be no different than it would be if
they had been consulted directly by Prolog.

9In reality, the order of clauses happens to be respected with the exception that facts are
always looked up first before more complex deduction procedures are attempted for proving a
goal.
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5.4.1 Top-down processing

D-goals are executed in the same fashion as Prolog p-goals: top-down, left-to-
right, backtracking. The following is the inference step that is used in the pro-
cessing of d goals. σ is the merged constraint (the unifying substitution) of B and
B′.

A← B ∧ Γ
B′ ← ∆

σ(A← ∆ ∧ Γ)

The reason why d-goals are used instead of p-goals is that a d-goal may be
defined by a clause whose body contains goals of another goal type. If something is
called as a p-goal, control is passed to Prolog entirely. An example for a predicate
which should be called as a d-goal is the following top-level predicate parse/0,
which reads a string to be parsed, and then uses the grammatical specification
(the predicate sentence/2) to parse the sentence using head-driven methods.

parse <-
p read_string(String),
u sentence(String,Structure),
p pretty_print(Structure).

Alternatively, this clause can be specified as follows.10

parse :-
read_string(String),

u sentence(String,Structure),
pretty_print(Structure).

This will be compiled into the following Prolog clause (where prove/2 is a
predicate which calls the deduction system with a goal type and a goal).

parse :-
read_string(String),
prove(u,sentence(String,Structure)),
pretty_print(Structure).

10At the present stage of the implementation, there is no absolute necessity for d-goals since
they could always be replaced by p-goals. However, we keep them in the implementation to keep
the system extensible.
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5.4.2 Head-Driven Processing

Head-driven processing is appropriate if only one base case is sufficient to start
the bottom-up process. In head-driven processing, as soon as some predicate P
has been proven or put into the bottom-up process as the base case of a recursion,
the system looks for a clause C which starts with a w-goal which unifies with P .
Then the remaining goals of the clause C are proven, and the head of the clause
again looks for a w-goal that waits for it. This is continued until a solution to the
h-goal has been found.

The following is the inference rule that is used in head-driven processing. Dur-
ing the processing, A is either entered as a base case or has been derived by the
inference rules, and A′ is a waiting goal. σ is the merged constraint (unifying
substitution) of A and A′.

A
B ← A′ Γ
σ(B ← Γ)

(5.14)

As soon as a h-goalG is called, the system looks for an instance of the lookup/3
relation, which specifies the base case with which a head-driven proof of a goal can
be started. The goal B returned as the second argument the relation lookup/3 is
proven according to the goal type returned as the third argument. The goal type
can be a d-goal, which is defined by a clause containing a h-goal, in which case a
head-driven proof is executed for finding the base case from which the head-driven
process can be started (in the case of semantic-head driven processing, this can be
a non-lexical non-chain rule).

The goal B that has been looked up and proven serves as input to the bottom-
up proof procedure. IfB unifies with the original goalG, then the proof is finished.
Otherwise, the system looks for a clause C that needs B as its first goal (a waiting
goal). Then the remaining goals ofC are proven according to their goal types. The
consequent of the clause then serves as the next input to the bottom-up process.

Note that there is no inference rule for base case lookup because there is no
inference involved in base case lookup. Base case lookup only instantiates known
(or provable) facts as a in the inference rule, but it does not produce any new
conclusions.

5.4.3 Chart-Based Algorithms

Two chart-based algorithms (top-down Earley deduction and bottom-up Earley
deduction) are implemented in the GeLD system. These two algorithms share all
the basic procedures for managing the agenda, combination of active and passive
items, and for the representation of items. They only differ in their rule invocation
strategy (prediction in the top-down case and lookup of a set of initial items in
the bottom-up case).
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In general, there can be more than one chart active at the same time. This is
the case if several independent goals are proved as c-goals or e-goals. The items
of the different charts are stored in different databases, so that an active item of
one chart cannot be combined with a passive item of another chart.

5.4.3.1 Earley Deduction

This component implements top-down Earley deduction for logic programs. Top-
down Earley deduction makes use of prediction and a subsumption check. When
goals other than e-goals occur, these are handled by the appropriate proof proce-
dure.

Like the bottom-up Earley deduction procedure described in chapter 3, top-
down Earley deduction makes use of indexing and allows other goal types than
e-goals. Therefore, in figure 5.12, we extend the algorithm given in chapter 1
(figure 1.7) to handle indexing and other goal types.

5.4.3.2 Bottom-Up Earley Deduction

This component is a faithful implementation of the bottom-up Earley deduction
algorithm (figure 3.7 described in chapter 3, with best-first search based on pref-
erence values (cf. section 4.1).

For bottom-up Earley deduction, all non-unit clauses of the program which
start with waiting goals are assumed to be present as active items. In order to
increase efficiency, these are detected at compile time, and represented in such a
way as to make optimal use of Prolog’s first-argument indexing for most efficient
lookup.

Bottom-up Earley deduction involves a lookup step which relies on the user-
defined relation lookup/4.

5.4.4 Prolog Call

P goals are executed directly by Prolog. This may be done either for efficiency
reasons, or to call other system components implemented in Prolog (e.g., know-
ledge processing), or for side effects (e.g., reading and pretty-printing as in the
above example.)

5.5 Best-First Search

Best-first search based on preferences is implemented for bottom-up and top-down
Earley deduction. The agenda is represented as a list of items which is ordered
according to the priority of the items.

In the current stage of the implementation, the priority of each item is simply
the upper bound of its preference value. If two items on the agenda have the same
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procedure prove(Goal):
– predict(Goal)
– consume-agenda
– for any item 〈G,I〉

– return mgu(Goal,G) as solution if it exists

procedure add item I to agenda
– compute the priority of I
– if there is no item I′ in the chart or the agenda such that I′ subsumes I

then agenda := agenda ∪ {I}
else agenda := agenda

procedure consume-agenda
– while agenda is not empty

– remove item I with highest priority from agenda
– add item I to chart

procedure predict G
– for all rules C = G′ ← Γ

– if σ = mgu(G,G′) exists
then create index I for σ(C)
add item 〈σ(G′ ← Γ),I〉

procedure add item 〈C, I1〉 to chart
– chart := chart ∪ {〈C, I1〉}
– if C is a unit clause

– for all items 〈H ← G ∧ Ξ ∧Ω, I2〉
– if I = I2 ? I1 exists

and σ = mgu(C,G) exists
and goals Ξ are provable with solution τ
then add item 〈τσ(H ← Ω), I〉 to agenda

– if C = H ← G ∧ Ξ ∧ Ω is a non-unit clause
– for all items 〈G′ ←, I2〉

– if I = I1 ? I2 exists
and σ = mgu(G,G′) exists
and goals Ξ are provable with solution τ
then add item 〈τσ(H ← Ω), I〉 to agenda

– predict G

Figure 5.12: Algorithm for best-first Earley deduction with indexing and different
goal types
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priority, the newer one is preferred. As a consequence, depth-first search results if
all items on the agenda have the same priority.

5.6 Performance of the System

Efficiency has been achieved in the implementation by following a simple principle:
Let Prolog do the work (wherever possible). Since Prolog is an efficiently imple-
mented deduction system for definite clauses, control is passed to Prolog wherever
possible, and only taken away from Prolog in those cases where Prolog’s proof stra-
tegy is inappropriate and leads to inefficiency (e.g. by duplicated deduction steps
through backtracking) or non-termination (e.g. in cases of left-recursion). For
other tasks, such as unification, the handling of coroutining, indexing of clauses,
simple top-down proofs, the use of Prolog is appropriate, and this has been ex-
ploited as much as possible.

Appendix B provides details about experiments with various types of grammars
and compares the performance of the different algorithms with respect to the time
needed and the number of items.

It should be clear, however, that there are possibilities for further efficiency
improvements. For example, information about the index of an item and about
the predicate in the case of passive items, and the first waiting goal in the case of
active items could be used to index the items at the Prolog level to achieve more
efficient lookup, as it has been done in the Prolog-based chart parser of [Erbach,
1987]. However, since the GeLD system is an experimental system for evaluating
different deduction strategies for natural language processing, we have not found it
necessary to squeeze out the last bit of efficiency, but leave this to the construction
of actual applications. It should be noted, however, that the simple design and
closeness to Prolog of the GeLD system ensures reasonable efficiency.

5.7 Conclusion

While the feature term language (ProFIT) provided can be used directly by a
grammar writer for the statement of linguistic knowledge, the same is probably
not true of the definite clause part with control information. This part is in-
tended to provide the programmer (algorithm developer) of NLP systems with an
experimental system for trying out various combinations of different processing
strategies. Once a suitable processing strategy has been found, it could be re-
implemented in order to exploit special properties of the grammar to achieve more
efficiency. It is up to the algorithm developer to choose a combination of control
annotations that ensures termination and completeness.

For the actual writing of grammars, a neat notation for rules, principles and
lexical entries should be provided which is then mapped into clauses with control



5.8. AVAILABILITY 187

information, or for which a compilation step can be provided.
Such a translation to a grammar rule notation has been implemented for ale

grammars. An existing ale grammar can be converted to a set of GeLD clauses,
which are annotated with control information for partial deduction. The output of
the partial deduction procedure can then either be translated back automatically
to ale clauses for processing with the ale parser, or can be handled by the GeLD
deduction engine.

So far, the extended constraint language and the deduction engine have not yet
been combined with each other. Currently, a re-implementation of the constraint
language is under way, which makes use of the attributed variable mechanism of
Sicstus Prolog 3.1. On the basis of this implementation, it will not be necessary
to rewrite the deduction engine to handle the constraints, but this will be done by
defining hook predicates that are called whenever Prolog unifies two terms with
attributed variables. Once this implementation is available, a new experiment will
be carried out to evaluate the performance of the combination of the extended
constraint language and tabulation techniques.

5.8 Availability

All systems described here are in the public domain, and can be obtained free
of charge from the ftp server ftp.coli.uni-sb.de.11 The files are kept in the
following directories:

ProFIT sorted feature system pub/coli/systems/profit
CL-ONE extended constraint language pub/coli/systems/cl1
GeLD linguistic deduction system pub/coli/systems/geld

Further information about the systems is available through the World Wide
Web (http://www.coli.uni-sb.de/~erbach).
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Chapter 6

Conclusion and Future
Research

In this chapter, we summarise the results of the thesis, discuss how they fit to-
gether, and indicate potential problems where further research is needed.

6.1 Summary

In the thesis, we have discussed the processing of principle-based grammars such
as hpsg, with an application to best-first processing for disambiguation, selection
of paraphrases and possibly also handling ill-formed input.

We have taken the view of a grammar as a definite clause program, to which
program transformation and deduction techniques could be applied. In particular,
we have adopted the view of constraint logic programming, which has enabled us
to abstract away from the handling of constraints (which is regarded as a service
provided by the constraint solver) and concentrate on resolution strategies.

The contributions of the thesis are the following:

• A constraint language supporting sorted feature terms, Prolog terms, multi-
dimensional inheritance, finite domains, by compilation to Prolog terms. The
constraint language has been extended with external constraint solvers for
set constraints, LP constraints, guarded constraints.

• A partial deduction system for compiling a principle-based grammar into a
set of grammar rules. Partial deduction can be applied selectively through
control information in the program, which makes it possible to do exper-
imental work in order to determine the selection of goals to which partial
deduction is best applied in order to bring the greatest performance improve-
ment.

189
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• Bottom-Up Earley deduction as a deduction system which generalises
bottom-up chart parsing to a wider class of grammars/programs than just
those with a context-free backbone. Bottom-up Earley deduction is better
suited for handling discontinuous constituency than its top-down counter-
part, it allows best-first search based on bottom-up information (e.g. tag
probabilities), and provides different indexing schemes for different modes
of combination of items. The correctness, completeness and termination
properties of the algorithm have been shown.

• A generalised linguistic deduction system, which allows combination of dif-
ferent deduction strategies via control annotations, and which is tightly in-
tegrated with the underlying programming language in order to achieve ef-
ficiency.

• A fully incremental algorithm for bottom-up Earley deduction has been spec-
ified, which can cope efficiently with a change in the query by re-using in-
termediate deduction results as much as possible.

• Augmentation of a definite clause language with preference values. We have
discussed how preference values from a variety of sources can be combined.

Figure 6.1 shows how the different techniques developed in the thesis fit to-
gether. A check mark (

√
) indicates that they can be combined without problems,

a question mark indicates that problems can arise, and further research is needed,
a cross (×) indicates that they are incompatible. The numbers in parentheses refer
to the comments given below.

Comments on Integration

1. Feature Terms / Constraints: The addition of constraints to feature
terms has been problematic on the basis of older Prolog systems, but is no
problem with newer CLP-approaches such as attributed variables that allow
user-defined semantic unification.

2. Partial Deduction / Constraints: The interaction of partial deduction
and constraint handling is no problem, and partial deduction can lead to a
simplification of the constraint set associated with a clause or to the replace-
ment of a goal by a set of constraints.

3. Feature Terms / Preferences: There is no interaction between terms
and preferences because preferences are attached to clauses (lexical entries,
grammar rules, principles), and not to components of terms.

4. Constraints / Preferences: There is a potential conflict here between
eager evaluation strategies based on the most preferred solution to a con-
straint and a strategy in which constraints are delayed until they can be
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Constraints
√

(1)

Partial √ √
(2)

Deduction

Preferences
√

(3) ? (4)

√
(5)

Earley √ √
(6)

√
(7)

√
(8)

Deduction

Feature
Constraints

Partial
Preferences

Terms Deduction

Figure 6.1: Compatibility of the techniques

solved deterministically. More research is needed in order to handle this
kind of interaction.

5. Partial Deduction / Preferences: The use of preferences and partial
deduction can be combined with each other. The result of applying par-
tial deduction to a program with preference values is another program in
which the preference formulae associated with the consequents of clauses are
more instantiated than in the original program, i.e., they specify a narrower
preference interval.

6. Earley Deduction / Constraints: The combination of Earley deduction
and constraints is theoretically no problem in a CLP model, but with some
implementation strategies, efficiency problems may arise through the copying
of constrained terms when items are stored.

7. Earley Deduction / Partial Deduction: Earley Deduction and Partial
Deduction can well be combined with each other, but additional program
transformation techniques such as LR methods or EBL may further improve
the efficiency.

8. Earley Deduction / Preferences: Earley Deduction and preference-
driven processing can be ideally combined with each other by implementing
best-first search through the use of an agenda.
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6.2 Future Research

This section outlines some directions for future research.

Combining top-down and bottom-up. One problem with the bottom-up
Earley deduction algorithm is that all non-unit clauses of the program are added to
the chart. The addition of non-unit clauses should be made dependent on the goal
and the base cases in order to go from a purely bottom-up algorithm to a directed
algorithm that combines the advantages of top-down and bottom-up processing. It
has been repeatedly noted [Kay, 1980; Wirén, 1987; Bouma and van Noord, 1993;
Bouma, 1994] that directed methods are more efficient than pure top-down or
bottom-up methods. However, it is not clear how well the directed methods are
applicable to grammars which do not depend on concatenation and have no unique
‘left corner’ which should be connected to the start symbol.

Specification of control information. At the current state of the implementa-
tion, the specification of the lookup relation, and the choice of an indexing scheme
must be done individually for each grammar either by the grammar writer or by
the linguistic deduction expert. It would be desirable to derive this information
automatically from a given grammar for both the parsing and the generation di-
rection. This is a question of future research, but in the near future there is no
prospect of a system in which the grammar developer is freed from worrying about
control issues (cf. [Seiffert, 1993]).

Parallel Algorithms. The algorithms in this thesis have been formulated as
sequential operations. There are various ways to turn them into parallel algo-
rithms, by making use of the work in logic programming on and-parallelism for
conjunctions and or-parallelism for disjunctions. This question deserves further
research.

Mathematical and empirical foundations of preference values. More the-
oretical and empirical work is required in order to arrive at a satisfactory foun-
dation of preference values. The exact relationship between preference values and
probabilities must be clarified, and methods for obtaining preference values from
observable data (such as corpora) must be developed.

Ill-formed Input. The framework developed in this thesis appears suitable for
handling ill-formed input because relaxed versions of rules/principles can be added
incrementally to the chart, because preference values can be used to model degrees
of grammaticality [Erbach, 1993a], and because preference-driven linguistic deduc-
tion can be used to control the search and avoid an explosion of the search space
that would result from the unrestricted introduction of hypotheses about possible
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ill-formedness. However, there are still a number of problems to be solved. One of
them is the fact that ill-formed input often involves a unification failure. In order
to handle unification failures, it is necessary to develop a model that can localise
the source of the unification failure, and determine how “serious” the mismatch is
that caused the unification failure. Another problem is that handling ill-formed
input by introducing relaxed versions of principles introduces a lot of disjunction
into the grammar, which makes the application of partial deduction difficult since
it would lead to very large number of rules, each of which accounts for a particular
kind of ill-formedness.
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Appendix A

Programs with Control
Information

A.1 Partial deduction for DCG

This section shows the program from page 47 with appropriately specified control
information in order to turn it into the program shown on page 48.

% The top-down parser

parse(Cat,String) <-

m word_list(Word,String),

m word(Cat,Word).

parse(Cat,String) <-

m rule(Cat,RHS),

m parse_rhs(RHS,String).

parse_rhs([Cat1|Cats],String) <-

m concat(Prefix,Rest,String),

d parse(Cat1,Prefix),

m parse_rhs(Cats,Rest).

parse_rhs([],Elist]) <-

m empty_list(Elist).

% Auxiliary predicates

concat(A-B,B-C,A-C).

word_list(Word,[Word|R]-R).

empty_list(A-A).

% The grammar

rule(s,[np(Num,Pers),vp(Num,Pers)]).
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rule(np(Num,3),[det(Num),n(Num)]).

rule(np(Num,Pers),[pron(Num,Pers)]).

rule(vp(Num,Pers),[vi(Num,Pers)]).

rule(vp(Num,Pers),[vt(Num,Pers),np(_,_)]).

% The lexicon

word(pron(sg,third),she).

word(pron(pl,first),we).

word(det(sg),a).

word(det(_),the).

word(n(sg),house).

word(n(pl),carpenters).

word(vi(sg,third),burns).

word(vt(pl,_),build).

A.2 Partial deduction for GB

This section shows the source code of the gb grammar from section 2.2.2 that
formed the input to the partial deduction procedure. Simple disjunction of bar-
levels is encoded by means of finite domains. The resulting parser can be called
by the procedure rec/2.

:- goal_type(’=’/2,i).

:- goal_type(’dif’/2,i).

:- goal_type(terminal/1,m).

:- goal_type(non_terminal/1,m).

top > [-node].

node intro [cat,bar,string].

bar fin_dom [0,1,2].

non_terminal(n).

non_terminal(d).

non_terminal(v).

terminal(the).

terminal(film).

terminal(saw).

branch([cat!M&string!SM,cat!L&string!SL,cat!R&string!SR]) <-

non_terminal(M),

non_terminal(L),

non_terminal(R),

m concat(SL,SR,SM).

branch([cat!M&string!S,D]) <-
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non_terminal(M),

terminal(D),

m word_to_list(D,S).

proper_branch(X) <-

m branch(X),

m conditions(X).

conditions(X) <-

m x_bar_theory(X),

m case_filter(X),

m theta_criterion(X).

x_bar_theory([cat!X&bar!2@bar,cat!Y&bar!2@bar,cat!Z&bar!K]) <-

K = 0 or 1,

X = Z,

m is_spec_of(Y,X).

x_bar_theory([cat!X&bar!I,cat!Y&bar!0@bar,cat!Z&bar!2@bar]) <-

I = 1 or 2,

X = Y.

x_bar_theory([cat!Cat&bar!Bar,Word]) <-

m cat(Word,Cat),

Bar = 0 or 1 or 2.

case_filter([_,X,cat!n&bar!2@bar]) <-

m is_a_case_assigner(X).

case_filter([_,X,cat!n&bar!(0 or 1)]).

case_filter([_,X,cat!Cat]) <-

dif(Cat,n).

case_filter([_,_]).

theta_criterion([_,X&bar!0@bar,Y&bar!2@bar]) <-

m theta_marks(X,Y).

theta_criterion([_,bar!(1 or 2),bar!(0 or 1)]).

theta_criterion([_,_]).

cat(the,d).

cat(film,n).

cat(saw,v).

is_a_case_assigner(cat!v).

theta_marks(cat!v&bar!0@bar, cat!n&bar!2@bar).

is_spec_of(d,n).

concat(A-B,B-C,A-C).

word_to_list(Word,[Word|R]-R).
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rec(Node) :-

m proper_branch([Node,_]).

rec(Node) :-

m proper_branch([Node,

LeftDtr,

RightDtr]),

rec(LeftDtr),

rec(RightDtr).



Appendix B

Performance of the
Algorithms

This appendix contains some runtimes for different parsing, generation and logic
programming tasks. The purpose of these runtimes is to evaluate the effect of
different compilation and partial deduction strategies, and the performance of dif-
ferent deduction algorithms and indexing schemes for different kinds of grammars.
The following questions were addressed by the experiments:

• How big is the efficiency advantage of compiling feature terms into Prolog
terms, compared to unification algorithms implemented on top of Prolog,
such as ale?

• What performance benefits can be achieved by partial deduction techniques?

• How does the performance of bottom-up Earley deduction compare to its
top-down counterpart, to other deduction strategies, and to dedicated, spe-
cialised parsers?

The figures given here can only give a rough indication of the actual perfor-
mance, which may differ for specific grammars, and for particular choices of the
implementation strategy.

B.1 Compilation to Prolog Terms

In order to evaluate the performance gain achieved by compilation of sorted feature
terms to Prolog terms, we have performed experiments with the following tasks,
which occur as steps in NLP algorithms.
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1. unification of (unsorted) feature structures,

2. unification of inconsistent feature structures (unification failure),

3. unification of sorts,

4. lookup of one of 10000 feature structures (e.g. lexical items),

5. parsing with an hpsg grammar to provide a mix of the above tasks.

Figure B.1 gives an overview of the results.1 The time needed by the ProFIT
system is always given as 1.

Problem ProFIT ALE Eisele-Dörre
algorithm

1. Unification of feature structures 1 3-5
2. Unification failure 1 5
3. Unification of sorts 1 —
4. Lookup of lexical entry 1 13
5. hpsg parsing 1 5-10 —

Figure B.1: Comparison of performance between ProFIT, ale, and the Eisele-
Dörre algorithm

We have performed an experiment in which we compared the runtime of the
ale grammar processed by ale (with sorted feature term unification implemented
on top of Prolog), and by ProFIT. For ProFIT, we have used the same parsing
technology as ale, namely a bottom-up chart parser, which scans the string from
right to left, and hence does not make use of active items. The results are sum-
marised in figure B.2. Time 1 is the time needed by ale, Time 2 is the time
needed by the ProFIT implementation, and the last column gives time needed by
ProFIT as a percentage of the time needed by ale.2

From these experiments, we can conclude that compilation of feature structures
to Prolog terms brings substantial performance benefits, while the implementation
of sorted feature unification on top of Prolog is prohibitively slow.

The alternative to a compilation to Prolog terms is a lower-level implemen-
tation of feature unification algorithms, such as the new implementation of the
XEROX LFG system, in which a unification algorithm with disjunction has been
implemented in C. The current efforts to re-implement ale with an abstract ma-
chine approach go in the same direction.

1Note that these are only rough results which may differ depending on the particular sort
hierarchy that is used, and on the problem instances.

2The entry in the last row of the last column is the average of the percentages, rather than
the percentage of the averages. The possessive suffix s counts as one word.
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Input string Time 1 (ms) Time 2 (ms) % diff
total ms/word total ms/word

Kim persuades every person
to walk

13135 2189 559 93 4.25

that Kim walks bothers
Sandy

8081 1616 218 44 2.69

Kim can see every red red
red book

19241 2405 653 82 3.30

Kim walks 2102 1050 56 28 2.66
Kim tries to persuade Sandy
to walk

10258 1465 398 57 3.87

Kim tries to persuade Sandy
to try to persuade Kim to
try to walk

26558 1897 1415 101 5.32

that Kim is persuaded to be-
lieve Sandy to walk bothers
every person

33426 1936 1149 96 3.43

Kim can walk 4283 1428 124 41 2.89
Kim is believed to see Sandy 11406 1901 261 44 2.28
that Kim tries to persuade
Sandy to try to persuade
Kim to try to walk bothers
every person’s red book

173823 8277 7965 379 4.58

Kim gives Sandy the red
book

12151 2025 263 44 2.16

every person’s red book 5984 1197 263 53 4.39
Average 26704 2281 1110 88 3.49

Figure B.2: Comparison of runtimes for ale grammar with ale and ProFIT
compilation
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B.2 Partial Deduction

In order to evaluate the effect of partial deduction, we have performed several
experiments with the hpsg grammar for ale written by Gerald Penn. We have
measured the runtimes for the following partial deduction setups:

1. No partial deduction. The original grammar has 9 rules, 14 daughters, 2
indefinite sequences of daughters, and 85 goals (9.4 per rule).

2. All deterministic calls to HPSG principles are expanded (i.e., head feature
principle, spec principle, and marking principle). The resulting grammar has
9 rules, 14 daughters, 2 indefinite sequences of daughters, and 50 goals (5.6
per rule).

3. All deterministic calls to HPSG principles are expanded, (i.e. head
feature principle, spec principle, and marking principle) and calls to
synsems to non words and cats are expanded up to list length 3. The
resulting grammar has 13 rules, 30 daughters, and 119 goals (9.1 per rule).

4. The subcat principle was expanded by partial deduction, in addition to the
deterministic principles. This reduced the number of goals to 108 (8.3 per
rule).

5. In addition to the above, the clausal rel prohibition was expanded by partial
deduction. The resulting grammar has 69 rules, 157 daughters, and 574 goals
(7.1 per rule).

The runtimes obtained in the partial deduction experiments can be summarised
as follows:

• Partial deduction applied to deterministic principles did not bring any no-
ticeable speedups. This is probably due to the fact the Prolog is very good
at handling deterministic procedures efficiently.

• Likewise, it did not make any difference whether the sequence of goals
(comp-dtrs) was expanded by partial deduction, as long as the subcat
principle was not expanded.

• If partial deduction was applied to a very large extent, e.g., by expansion of
the clausal rel prohibition, which resulted in 69 rules, which showed uninter-
esting variation, the runtime more than doubled.

• When partial deduction was applied to the comp-dtrs and to the Subcat
principle, the runtime could be reduced to less than 50 percent.
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Figure B.3 gives the runtimes for the grammar without partial deduction (case
1) and for the grammar in which partial deduction had been applied to all deter-
ministic principles, the sequence of head daughters, and to the Subcat principle
(case 4). The runtimes given are for the enumeration of all analyses. Time 1 is the
time needed with the original ale grammar, Time 2 is the time needed with the
compiled grammar after the application of partial deduction and ‘% diff’ is Time
2 expressed as a percentage relative to Time 1 (which is 100 per cent). All times
are given in ms.3

Input string Time 1 (ms) Time 2 (ms) % diff
total ms/word total ms/word

Kim persuades every person
to walk

1046 174 559 93 53.4

that Kim walks bothers
Sandy

501 100 218 44 43.5

Kim can see every red red
red book

1518 190 653 82 43.0

Kim walks 83 42 56 28 67.5
Kim tries to persuade Sandy
to walk

898 128 398 57 44.3

Kim tries to persuade Sandy
to try to persuade Kim to
try to walk

3547 253 1415 101 39.9

that Kim is persuaded to be-
lieve Sandy to walk bothers
every person

3880 323 1149 96 29.6

Kim can walk 232 77 124 41 53.4
Kim is believed to see Sandy 510 85 261 44 51.2
that Kim tries to persuade
Sandy to try to persuade
Kim to try to walk bothers
every person’s red book

33503 1595 7965 379 23.8

Kim gives Sandy the red
book

484 81 263 44 54.3

every person’s red book 493 99 263 53 53.3
Average 3891 491 1110 140 46.4

Figure B.3: Comparison of runtimes for ale grammar with and without partial
deduction

3Like in figure B.2, the entry in the last row of the last column is the average of the percentages,
rather than the percentage of the averages, in which the good performance of the very long
sentence has too much of an influence.
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B.3 Bottom-Up Earley Deduction

The bottom-up Earley deduction algorithm was applied to a grammar based on
the ale grammar, to which a call to the constituent order principle (making use
of concatenation), and calls to sign/1 were added. Otherwise the grammar was
essentially the same as the one in which partial deduction had been applied to the
deterministic principles and the subcat principle. We used indexing scheme 4 (the
one which uses the string positions of a chart parser), and obtained the runtimes
given in figure B.4.

Input string Passive Active Total Time
Items Items (in ms)

Kim persuades every person
to walk

63 95 20560

Kim can see every red red
red book

71 88 21650

Kim walks 17 11 1200

Figure B.4: Runtimes for bottom-up Earley deduction with indexing scheme 4

In the next experiment, we used indexing scheme 3, and replaced the two
versions of schema 5, which combine an adjunct with a head to its left or to its
right by one rule which is underspecified for direction. The number of items and
runtimes are given in figure B.5.

Input string Passive Active Total Time
Items Items (in ms)

Kim persuades every person
to walk

79 120 31960

Kim can see every red red
red book

134 197 80080

Kim walks 17 8 970

Figure B.5: Runtimes for bottom-up Earley deduction with indexing scheme 3

It must be noted that the runtimes are much worse than those obtained with
a dedicated chart parser, such as the one used in ale. We attribute this to the
fact that the ale parser does not make use of active items. Under current Prolog
implementations, the use of active items is a source of inefficiency because of the
amount of copying that must be performed when an item is stored. Since active
items must encode information about the consequent of a clause, and about the
goals that must still be proven, it is generally substantially larger than a passive
item. This is a strong efficiency disadvantage because most of the time in Earley
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deduction is spent with the copying of constrained terms (feature structures) when
items are stored in the chart. For this reason, it is advantageous to restrict the
number and the size of the items stored in the chart. In practice, it has turned
out that the avoiding of copying can contribute more to efficiency than the storing
of partial solutions through active items.
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Appendix C

Prolog Code of the
Deduction Algorithms

This appendix contains listings of the Prolog code for the most important predi-
cates used in the deduction system.

Goals of all goal types are called with the predicate prove/3.

prove(+Type,-Goal,-Pref)

The first argument is the goal type, the second argument the goal, and the
third the preference value in case it needs to be accessed for controlling the search
or returned with the result.

C.1 Prolog goals

For Prolog goals, control is entirely passed to Prolog.

% goal type p: Prolog goals
prove(p,Goal,_Pref) :-

call(Goal).

C.2 Top-down goals

Top-down goals fall into three cases:

Goals delayed by coroutining. In this case, the corouting is handled by Pro-
log.
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Goals provable as facts. For this case, control is passed to Prolog to permit
more efficient access to clauses.

Other goals. In this case a meta-interpreter is used to select a matching clause
and prove the goals in the body according to their respective goal types.
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% goal type d: top-down goals
prove(d,when(Cond,Goal),Pref) :-

!,
when(Cond,prove(d,Goal,Pref)).

prove(d,Goal,_) :- % takes care of facts
call(Goal).

prove(d,Goal,PrefFn) :-
geld_clause(Goal,Subgoals,PrefFn), % select a matching clause
prove_goals(Subgoals,[]). % exit without waiting goals

% for top-down processing

% prove_goals(+Goals,-WaitingGoals)
prove_goals([],[]).
prove_goals([goal(Goal,Type,PrefVal)|Goals],WaitingGoals) :-

( Type == w
-> WaitingGoals = goals(Goal,Goals)
; (prove(Type,Goal,PrefVal),

prove_goals(Goals,WaitingGoals)
)

).

C.3 Head-driven Processing

Head-driven processing consists of looking up a potential base case of a recursive
definition (procedure look/4), and using it as input to the bottom-up step.

init/4 is the representation of non-unit clauses starting with a waiting goal
for more efficient access. A clause [A#Pref ← wG ∧ Ω] is represented as
init(G,A,Omega,Pref).

look/4 is the precompiled version of the lookup relation. The fourth argument
represents the index and is not needed for head-driven processing.

% goal type h: head-driven processing
prove(h,Goal,Pref) :-

look(Goal,Fact,Pref0,_),
bu_step(Fact,Pref0,Goal,Pref).

bu_step(Goal,Pref,Goal,Pref).
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bu_step(Fact,_Pref0,Goal,Pref) :-
init(Fact,IntGoal,Goals,PrefFn),
prove_goals(Goals,[]),
bu_step(IntGoal,PrefFn,Goal,Pref).

C.4 Top-down Earley Deduction

The implementation of top-down Earley deduction is straightforward. A unique
identifier for each chart based proof is generated in order to allow for separate
charts for separate proofs.

% goal type e: Earley deduction
prove(e,Goal,Pref) :-

gensym2(td_proof,ProofID),
recorda(proof,ProofID,_),
predict(Goal,Goal,Pref,ProofID),
get_agenda(ProofID,[],Agenda),
consume_agenda(Agenda,td,ProofID,Goal,Pref).

predict(Goal,InitGoal,Pref,ProofID) :-
call(Goal),
add_item([],Goal,Pref,id,ProofID,InitGoal,subs_chk),
fail.

predict(Goal,InitGoal,Pref,ProofID) :-
geld_clause(Goal,Subgoals,Pref),
prove_goals(Subgoals,WaitingGoals),
add_item(WaitingGoals,Goal,Pref,id,ProofID,InitGoal,subs_chk),
fail.

predict(_,_,_,_).

C.5 Bottom-Up Earley Deduction

Bottom-up Earley deduction differs from the top-down counterpart in that pre-
diction has been replaced by lookup (c prove init/2).

% goal type c: bottom-up Earley deduction
prove(c,Goal,Pref) :-
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gensym2(bu_proof,ProofID),
recorda(proof,ProofID,_),
c_prove_init(Goal,ProofID),
get_agenda(ProofID,[],Agenda),
consume_agenda(Agenda,bu,ProofID,Goal,Pref).

c_prove_init(Goal,ProofID) :-
look(Goal,Fact,Pref,Index),
add_item([],Fact,Pref,Index,ProofID,Goal,no_subs_chk),
fail.

c_prove_init(_,_).

C.6 Shared Code for Bottom-Up and Top-Down

Earley Deduction

consume agenda/5 drives both Earley deduction processes by adding items to
the chart, returning solutions, and executing tasks from the agenda. The first
argument is the agenda, and the other arguments are information about direc-
tion of processing (top-down vs. bottom-up), the proof identifier, the goal in the
query, and the preference value that is passed to procedures which are called by
consume agenda/5.

perform task/4 takes an item, and combines it with items in the chart by
means of the completion rule, and also predicts new items in case of top-down
Earley deduciton. For non-unit clauses that have been turned into active items
(init/4), a specialised instance of the completion rule is used.

% consume_agenda(Agenda,Direction,ProofID,BigGoal,Pref)
% clause1: if there are any solutions to the goal, retrieve them
consume_agenda([_-Item|_],_,ProofID,_,_) :-

recorda(ProofID,Item,_),
fail.

consume_agenda(_,_,ProofID,Goal,Pref) :-
recorded(ProofID,solution(Goal,Pref),Ref),
erase(Ref).

% clause2: do the tasks on the agenda
consume_agenda([_-Task|Agenda],Direction,ProofID,Goal,Pref) :-

perform_task(Task,Direction,Goal,ProofID),
get_agenda(ProofID,Agenda,NewAgenda),
!, % this cut should help Prolog detect the determinism
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consume_agenda(NewAgenda,Direction,ProofID,Goal,Pref).

% perform_task(Item,BU_or_TD,BigGoal,ProofID)
% combination of active with passive items
perform_task(act(Goal,Sub1,Subgoals,PrefFn,IndexA),_,G,Proof) :-

pas_item(Proof,Sub1,_Pref,IndexP),
combine_index(IndexA,IndexP,Index),
prove_goals(Subgoals,WaitingGoals),
add_item(WaitingGoals,Goal,PrefFn,Index,Proof,G,no_subs_chk),
fail.

% prediction; only for top-down
perform_task(act(_Goal,Sub1,_Subgoals,_PrefFn,_IndexA),td,G,Proof) :-

predict(Sub1,G,_Pref,Proof),
fail.

% combination of passive with active items
perform_task(pas(Goal1,_Pref,IndexP),_,G,Proof) :-

act_item(Proof,Pred,Goal1,Goals,Pref,IndexA),
combine_index(IndexA,IndexP,Index),
prove_goals(Goals,WaitingGoals),
add_item(WaitingGoals,Pred,Pref,Index,Proof,G,no_subs_chk),
fail.

% combination with init. active items; only for bottom-up
perform_task(pas(Goal1,_Pref,Index),bu,G,Proof) :-

init(Goal1,Pred,Goals,Pref),
prove_goals(Goals,WaitingGoals),
add_item(WaitingGoals,Pred,Pref,Index,Proof,G,no_subs_chk),
fail.

perform_task(_,_,_,_).

C.7 Handling of Items

add item/6 adds items to the agenda. If the first argument is a compound term
(goals/3), then an active item is added; otherwise if it is the empty list, a passive
item is added. Each item is assigned a priority based on the upper bound of its
preference value at this step, which is used for ordering it in the agenda. If an
item has no preference value, it is given the value 1.

% add_item(Goals,Pred,Pref,Index,+ProofID,InitGoal)
% purpose: add items to the agenda
add_item(goals(Type,Goal,Goals),Pred,Pref,Index,ProofID,InitGoal) :-
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Item = act(Pred,Goal,Goals,Pref,Index),
prio(Pref,P),
recorda(ProofID,agenda(P-Item),_),
( Type == e
-> (restriction(Goal,RestrGoal),

predict(RestrGoal,InitGoal,ProofID))
; true
),
!.

add_item([],Pred,Pref,Index,Proof,InitGoal) :-
Item = pas(Pred,Pref,Index),
prio(Pref,P),
recorda(Proof,agenda(P-Item),_),
record_solution(Pred,InitGoal,Proof,Pref),
!.

% function for priority calculation
prio(PrefFn,P) :-

upper_estimate(PrefFn,Up),
P is Up,
!.

prio(_,1).

Access Predicates

Items are accessed with the predicates act item/6, pas item/4. Initial active
items (those created at compile time) are accessed with the special predicate
init/4.
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Appendix D

GeLD Interface Specification

This appendix describes the exported procedures of the GeLD system, which pro-
vide its interface to the user and to other applications.

D.1 Proving Goals

Goal # Pref call the goal Goal with the preference value Pref

prove(Goal) call the goal as top-down proof

prove(Type,Goal) call the goal with goal type Type

? Goal A goal must be prefixed by ‘?’ if it contains any
ProFIT terms.

D.2 Loading Programs

fit(File) load the file as ProFIT program

lg(File) load the file as GeLD program

lpg(File) pass the file through ProFIT and load the compiled
file as a GeLD program

215
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D.3 Inspection of Clauses and Items

show clause shows all GeLD clauses

show pas shows all passive items in the chart and the number
of passive items

show act shows all active items in the chart and the number
of active items

show init shows all initial active items (GeLD clauses starting
with w-goals.

show solution shows all solutions to the last query which are
recorded in the chart and the time needed for each
solution.

stats show statistics about the number of active and pas-
sive items and about the runtime
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