
Using lexical statistics to improve HPSG parsing

Dissertation
zur Erlangung des akademischen Grades eines
Doktors der Philosophie der Philosophischen

Fakultäten
der Universität des Saarlandes

vorgelegt von
Rebecca Dridan

Dekan der Philosophischen Fakultät III: Univ.-Prof. Dr. W. Behringer

Berichterstatter: Prof. Dr. Hans Uszkoreit, Prof. Dr. Stephan Oepen

Tag der Disputation: 17. Dezember 2009

Contents

Table of Contents . 3

1 Introduction 15
1.1 Aims and Contributions 16
1.2 Thesis Outline . 19

2 Background 23
2.1 HPSG Parsing . 23

2.1.1 Head-Driven Phrase Structure Grammar 23
2.1.2 The PET Parser 25
2.1.3 Relationship of PET to Other Parsers 28

2.2 Hybrid Processing . 34
2.3 Supertagging . 36

2.3.1 Motivation . 36
2.3.2 Initial Experiments 37
2.3.3 HPSG-related Supertagging 38
2.3.4 The Tags . 40

2.4 Integration Issues . 41
2.5 Summary . 44

3 Parser Evaluation 47
3.1 Background . 47

3.1.1 Phrase Boundaries 50
3.1.2 Dependencies 51
3.1.3 Mapping Between Representations 54
3.1.4 The Score . 57
3.1.5 Application-based Evaluation 59
3.1.6 The Lessons Learnt 60

3.2 Evaluating the PET Parser Output 61
3.2.1 The Treebanks 61
3.2.2 Coverage and Efficiency 63

4 Contents

3.2.3 Accuracy . 65

3.2.4 Elementary Dependency Match: A New Granu-
lar Evaluation 67

3.3 Conclusion . 73

4 The Supertagger 75

4.1 The Tags . 75

4.2 The Training Data . 79

4.2.1 Extracting the data 80

4.3 The Taggers . 82

4.4 Results . 83

4.4.1 Single Tag Accuracy 84

4.4.2 Multiple Tags 92

4.4.3 Selective Tagging 93

4.5 Discussion . 99

4.6 More Training Data . 100

4.6.1 Domain Adaptation 101

4.6.2 Using Unlabelled Data 106

4.7 Summary . 118

5 Unknown Word Handling 123

5.1 Tagger Accuracies Over Unknown Words 124

5.2 Parsing . 129

5.2.1 Generic Lexical Entries 130

5.2.2 Coverage and Efficiency 133

5.2.3 Accuracy . 142

5.3 Summary . 149

6 Restricting Parser Search Space 153

6.1 Implementation . 154

6.2 Baseline and Upper Bound 157

6.3 Configurations . 163

6.4 Results . 165

6.4.1 Single Tagging 166

6.4.2 Multi-Tagging 171

6.4.3 Selective Tagging 173

6.5 Conclusion . 178

Contents 5

7 Parse Ranking 181
7.1 Soft Constraints . 182
7.2 The Lexical Statistics 184
7.3 Incorporating Lexical Statistics in Parse Ranking 186

7.3.1 Reranking . 186
7.3.2 Expanding the Maximum Entropy Model . . . 190

7.4 Conclusion . 193

8 Conclusion 195
8.1 Extensions and Future Research 199

A Generic Lexical Types 221

List of Figures

2.1 Lexical items and the (simplified) HPSG analysis for Kim
loves Sandy . 26

2.2 MRS for He persuaded Kim to leave 28

2.3 Graphical representation of parser relationships 31

2.4 Supertags for the noun price 42

3.1 EDM triples for a gold standard analysis 69

3.2 Verbose output of a comparison of EDM triples from a
gold standard analysis and a top-1 parsed analysis. . . . 70

4.1 Example lexicon entry from the ERG. 76

4.2 Lexical type v pp e le, simplified 76

4.3 Definitions of the related, but separate terms lexical en-
try, lexical type and lexical item. 77

4.4 Derivation tree for The natural environment was favorable,
at least. 83

4.5 Learning curves over different data sets showing accuracy
in predicting letype+sel and letype+sel+morph tags
as a function of the amount of training data 87

4.6 Learning curves over different data sets showing accuracy
in predicting letype and letype+morph tags as a func-
tion of the amount of training data 88

4.7 Learning curves over different data sets showing accura-
cy in predicting subcat and subcat+morph tags as a
function of the amount of training data 89

4.8 Learning curves over different data sets showing accuracy
in predicting pos and pos+morph tags as a function of
the amount of training data 90

4.9 Tag accuracy for the fine-grained tags varying against av-
erage number of tags assigned. 94

4.10 Tag accuracy for the coarse-grained tags varying against
average number of tags assigned. 95

List of Figures 7

4.11 Tag accuracy for the fine-grained tags varying against the
percentage of tokens restricted. 97

4.12 Tag accuracy for the coarse-grained tags varying against
the percentage of tokens restricted. 98

4.13 The co-training process, taken from Clark et al. (2003). . 111
4.14 Tag accuracy for the fine-grained tags after each iteration

of the co-training process. 112
4.15 Tag accuracy for the coarse-grained tags after each itera-

tion of the co-training process. 113
6.1 Example of a +stag feature structure 155
6.2 Coverage and accuracy versus sentence throughput using

multiple tagging . 174
6.3 Coverage and accuracy versus sentence throughput using

selective tagging . 175
6.4 Focussed close-up of coverage and accuracy versus sen-

tence throughput using selective tagging 176

List of Tables

2.1 Supertags across systems 41
3.1 Microaveraged scores over the DepBank GRs from differ-

ent parsers, after mapping. From Miyao et al. (2007) . . 58
3.2 Summary of English test data sets 63
3.3 Baseline coverage and efficiency 64
3.4 Baseline precision . 66
3.5 EDM evaluation over all triple types. 71
3.6 State-of-the-art English parsing performance 72
3.7 EDMNA evaluation, which evaluates both the names and

args triple types, but not props 73
4.1 Supertag types, with examples. 79
4.2 The long tail: percentages of infrequently seen tags in each

tag set . 80
4.3 The treebanks used for training the supertaggers 81
4.4 Single tag accuracy for the jhpstg t data set 84
4.5 Single tag accuracy for the ws02 data set 85
4.6 Single tag accuracy for the cb data set 85
4.7 Single tag accuracy for the ws02 data set, with the original

training set, and then the training set augmented with
30,730 tokens of Wikipedia data 104

4.8 Single tag accuracy for the cb data set, with the original
training set, and then the training set augmented with
30,730 tokens of Wikipedia data 105

4.9 Indicative tag accuracies of tagger output for each domain
and tag type . 107

4.10 Single tag accuracy over the jhpstg t data set, with the
original model and the two new models trained on the
output of the tagger . 108

4.11 Single tag accuracy over the ws02 data set, with the orig-
inal model and the two new models trained on the output
of the tagger . 108

List of Tables 9

4.12 Single tag accuracy over the cb data set, with the original
model and the two new models trained on the output of
the tagger . 109

4.13 Indicative tag accuracies of parser output for each domain
and tag type. 115

4.14 Single tag accuracy over the jhpstg t data set, with the
original model and the two new models trained on the
output of the parser . 116

4.15 Single tag accuracy over the ws02 data set, with the orig-
inal model and the two new models trained on the output
of the parser . 116

4.16 Single tag accuracy over the cb data set, with the original
model and the two new models trained on the output of
the parser . 117

4.17 The best single tag accuracy achieved for each data set
and tag type. 121

5.1 Tagger accuracy for different tag types over those words
unknown to the ERG lexicon. 125

5.2 Tagger accuracy for different tag types over those words
unknown to a lexicon that only contains lexical entries
that have been seen in the training data. 127

5.3 Tag accuracy of unknown words in the ws02 data set,
comparing two different TnT models. 128

5.4 Coverage over jhpstg t, parsing with both a full and filtered
lexicon. The numbers of sentences which failed to parse
due to time outs or lexical gaps are also shown. 134

5.5 Coverage over ws02, parsing with both a full and filtered
lexicon. The numbers of sentences which failed to parse
due to time outs or lexical gaps are also shown. 134

5.6 Coverage over cb, parsing with both a full and filtered
lexicon. The numbers of sentences which failed to parse
due to time outs or lexical gaps are also shown. 135

5.7 Tag accuracy for words unknown to the filtered lexicon
(OOV), assigning up to two tags, if the probability of the
second tag is at least 0.01 times that of the first tag. . . 136

5.8 Efficiency over the jhpstg t test data set, parsing with both
a full and filtered lexicon. 138

5.9 Efficiency over the ws02 test data set, parsing with both
a full and filtered lexicon. 138

10 List of Tables

5.10 Efficiency over the cb test data set, parsing with both a
full and filtered lexicon. 139

5.11 Coverage and efficiency over the jhpstg t data set, parsing
with both full and filtered grammars, using a gap detection
rather than gap prevention strategy. 140

5.12 Coverage and efficiency over the ws02 data set, parsing
with both full and filtered grammars, using a gap detection
rather than gap prevention strategy. 141

5.13 Coverage and efficiency over the cb data set, parsing with
both full and filtered grammars, using a gap detection
rather than gap prevention strategy. 141

5.14 EDM evaluation for the jhpstg t data set, comparing the
accuracy when using a gap prevention or gap detection
strategy and a filtered lexicon. 143

5.15 EDM evaluation for the ws02 data set, comparing the ac-
curacy when using a gap prevention or gap detection strat-
egy and a filtered lexicon. 144

5.16 EDM evaluation for the cb data set, comparing the accura-
cy when using a gap prevention or gap detection strategy
and a filtered lexicon. 145

5.17 EDMA evaluation of the jhpstg t data set over just those
sentences which have words unknown to the filtered gram-
mar, but are completely known to the full grammar (101
sentences). 147

5.18 EDMA evaluation of the ws02 data set over just those
sentences which have words unknown to the filtered gram-
mar, but are completely known to the full grammar (157
sentences). 148

5.19 EDMA evaluation of the cb data set over just those sen-
tences which have words unknown to the filtered grammar,
but are completely known to the full grammar (215 sen-
tences). 148

6.1 Remaining lexical ambiguity when restricting the parse
search space to only those lexical entries that match the
gold standard tag. 158

6.2 The space for possible improvement when using lexical
restriction over the jhpstg t data set. 159

6.3 The space for possible improvement when using lexical
restriction over the ws02 data set. 159

List of Tables 11

6.4 The space for possible improvement when using lexical
restriction over the cb data set. 160

6.5 Coverage, efficiency and accuracy over the jhpstg t data set,
when using lexical restriction via a single tag per token . 167

6.6 Coverage, efficiency and accuracy over the ws02 data set,
when using lexical restriction via a single tag per token . 168

6.7 Coverage, efficiency and accuracy over the cb data set,
when using lexical restriction via a single tag per token . 169

7.1 Average and median number of parses as produced by the
original model (limited to top 500) and in the reduced set
obtained by looking at only the most likely tag sequences. 187

7.2 Best exact match precision when using MaxEnt model
rank, tag sequence probability or tag compatibility scores
as the first ranking criteria. 188

7.3 Exact match precision when using a linear combination
of MaxEnt model score, tag sequence probability and tag
compatibility scores to rank parses. 190

12 List of Tables

Acknowledgements
There are many people who contributed towards the completion of this
thesis. I wish first to thank Hans Uszkoreit for taking me on as a student,
and for his overviews and inspirations. I am also grateful to Valia Kordoni
for her support, even before I landed in Germany, and for the advice and
guidance she gave me from the start of my PhD. Stephan Oepen has
been generous with his ideas and assistance from the very first, but I am
particularly indebted to him for taking on a supervisory role, among all
the other claims to his time. His feedback, advice and support have been
invaluable.

Throughout my PhD I have been financially supported by the Inter-
national Research Training Group (IRTG) in Language Technology and
Cognitive Systems and by the PIRE program. IRTG funding not only
allowed me to complete my thesis in Germany, but also enabled me to
travel to conferences, summits and research meetings. As part of the
PIRE program, I was a guest in the Department of Cognitive and Lin-
guistics Sciences at Brown University and I am much obliged to Mark
Johnson, Eugene Charniak and the whole BLLIP group for making me
welcome and for providing me with new perspectives on my work.

The DELPH-IN community is a wonderful resource and I have bene-
fitted greatly from the contact with other DELPH-IN members. Many,
including Yi Zhang, Dan Flickinger, Peter Adolphs, Berthold Crysmann
and Ulrich Schäfer have provided technical help with the various DELPH-
IN tools and grammars. In addition to that, Tim Baldwin, Francis Bond
and Emily Bender have been fantastic mentors. I’m also grateful to Ann
Copestake and Emily Bender for hosting me on visits to Cambridge Uni-
versity and University of Washington respectively.

I have had many fruitful conversations with other researchers in hall-
ways and conference centres, but I particularly want to single out James
Curran and Alexander Koller for the feedback they have given me. I
am also grateful to Alexander for helping me out with translation. Fi-
nally, fellow students in both IRTG and DELPH-IN have helped get me
through the last few years with my sanity intact and I wish to thank them
all, but especially Bart Cramer, Antske Fokkens and Jeremy Nicholson
for their feedback, support and friendship.

14 Acknowledgements

1 Introduction
This thesis investigates the improvements that can be made by adding
lexical statistics to a parser that uses hand-crafted grammars in the Head-
Driven Phrase Structure Grammar (HPSG: Pollard and Sag 1994) frame-
work. In the following chapters, we tease apart various aspects of the
parser that can make use of different sorts of lexical information, and de-
termine how particular factors affect the three-way accuracy, robustness
and efficiency trade-off that is always a part of parser evaluation.

The experimental setup uses the PET parser (Callmeier 2001) together
with the English Resource Grammar (ERG: Flickinger 2002), both which
are part of the tools and resource collection of the DELPH-IN research
initiative. This parser and grammar combination produces the sort of
finely detailed syntactic and semantic analyses of natural language that
have already been successfully used in applications such as information
extraction and machine translation, and which will be progressively more
necessary as natural language processing becomes more sophisticated.
These precise and detailed analyses depend heavily on the fine-grained
information encoded in the grammar lexicons, making HPSG one of the
family of heavily lexicalised grammar formalisms that also includes others
such as LFG (Kaplan and Bresnan 1982), LTAG (Schabes and Joshi 1991)
and CCG (Steedman 2000). While the lexicon contributes much of the
power of HPSG analysis, the central place the lexicon holds in the parsing
process can also be a weakness, affecting the efficiency and robustness of
the parser. It is these issues that we address in this thesis.

In contrast to hand-crafted grammars, treebank-derived grammars
such as those used by the Collins parser (Collins 1996), are known to
be robust and efficient but do not generally produce the same depth of
analysis. The divide between treebank-derived and hand-crafted gram-
mars is not a hard and fast line. Treebank-derived parsers require hand
coding information at some level, both in corpus annotation and in the
assumptions built into the parsers. All parsers that use hand-crafted
grammars include at least some statistical component. And so, it is
widely understood that the best way forward is to combine features of
the different families. One theory of the best way to do this is to start
with the robust shallow parsers and start trying to add more informa-
tion. The reverse of this is to start with a deep precise hand-crafted core,
and add robustness through the use of statistics. This thesis looks at the

16 Chapter 1. Introduction

second approach, trying to improve the performance of a HPSG parser
that uses hand-crafted grammars, by adding statistical information.

1.1 Aims and Contributions
The aim of this research is to improve the PET parser, which first requires
that we define improve. Chapter 3 discusses parser evaluation in terms of
robustness, efficiency and accuracy, with the major contribution of this
section being a new granular accuracy evaluation metric, suitable for
assessing the detailed semantic output the PET parser produces. Previ-
ously, all accuracy evaluation of DELPH-IN grammars used exact match
as a basis, but with such fine-grained analyses, exact match is ill-suited
for distinguishing between analyses which are completely incorrect, and
those that vary in a small insignificant detail from the gold standard.
In an application scenario, it makes more sense to assess how correct an
analysis is, rather than determining whether it matches the gold standard
in every feature. The Elementary Dependency Match (EDM) metric al-
lows that more nuanced evaluation and can be parameterised to evaluate
the sort of information required by an application.

Lexical information has been used to improve robustness and efficiency
for parsers of varying formalisms and implementations. This thesis aims
to discover whether this lexical information can be as beneficial for a
hand-crafted HPSG-based grammar as it has been shown to be for groups
such as Bangalore and Joshi (1999), Clark and Curran (2007b) and Mat-
suzaki et al. (2007). While the choice of supertag granularity appears to
have been straightforward for other formalisms, the lexical information
in HPSG comes from different parts of the grammar and so there is not
an obvious candidate for the HPSG supertag form. Hence, one aim is
to discover the ideal unit of lexical information that will be beneficial
to HPSG parsing. Supertags have been defined as lexical descriptions
that embody richer information than part-of-speech (POS) tags, and in
particular include dependency information. In this work, we look at a
range of granularities, ranging from simple part-of-speech distinctions to
very fine-grained tags that incorporate a variety of lexical information.
We look at the different forms possible and ask:

• Which tag forms are predictable from the available training data?

• Which tag forms are useful for different aspects of the parsing pro-
cess?

1.1. Aims and Contributions 17

The first question is particularly pertinent for the fine-grained tag
forms, given that there is a limited amount of data that has been anno-
tated with the appropriate HPSG structures. We experiment with train-
ing two taggers with different underlying statistical models to see which
gets the better standalone tag accuracy using the available gold stan-
dard data and find that the TnT POS tagger (Brants 2000a) achieved
higher tag accuracy for fine-grained tags for this amount of data than
the C&C supertagger (Clark and Curran 2007b). However we find that
when using the underlying probability distribution to guide tag assign-
ment, rather than just evaluating the most likely tag, in most cases the
C&C supertagger gives better results. We also experiment with adding
additional data and find that a small amount of domain-specific gold
standard data is very effective in increasing tag accuracy, but a more
cost-effective method of obtaining extra training data is to use the un-
corrected output of the parser. This reinforces the indications given by
Prins and van Noord (2003), but is a more reliable result, since we evalu-
ate against gold standard annotations, rather than against parser output.
The question remaining from this portion of the research is whether stan-
dalone tag accuracy gives a good prediction as to the effect of the lexical
information on the parsing process.

The answer to that question is no, not really. The second part of
evaluating these different tag forms is to assess the usefulness of the
information they convey to the parsing process. We look at three different
uses of the lexical information and find that in most cases the tags as
predicted by the C&C supertagger yield greater improvements. Even
in situations where earlier results would suggest TnT has an advantage,
such as when only tagging with the single most likely tag, the tags from
C&C lead to greater parser robustness. In part this was due to the kinds
of tags that TnT tended to get wrong, a trend that could be detected
by thorough error analysis of standalone tag accuracy. But the errors
in closed class tags would not be enough to explain the difference in
performance. Nor does sentence accuracy appear to favour the C&C
supertagger in these situations. It appears that the C&C supertagger is
just better at predicting tag sequences that are acceptable to the parser.
While this does not always mean that the analysis is completely correct,
it means that the parser is able to find an analysis that is mostly correct,
where the tags from the TnT tagger lead to no analysis at all. This sort
of trend in tag prediction is difficult, if not impossible to predict from tag
accuracy alone, since it involves complex interactions that are encoded

18 Chapter 1. Introduction

into the grammar, and can only really be detected by running the parser.
Regarding the effective usefulness of the lexical information, we look at

three different aspects of the parsing process, aiming to discover, for each
aspect, which information helps and how effective is that information.
First we look at increasing parser robustness by using lexical statistics
to predict information about unknown words in the input. For this task,
we find that the current default unknown word handling method of using
Penn Treebank POS tags gives the best compromise between robustness,
efficiency and accuracy. They provide an appropriate amount of informa-
tion at a higher level of accuracy than similarly detailed tags that have
been trained on HPSG structures, primarily because the tagger model
for the Penn Treebank tags was trained on a greater amount of training
data. However, we did find that when precision has a much greater pri-
ority than robustness or efficiency, supertags formed from HPSG lexical
types from the grammar could be appropriate. While not bringing the
same coverage as Penn Treebank tags, they bring significant advantage
over using no unknown word handling and greater precision than the
Penn Treebank tags for the sentences that do manage to parse. In the
current parser implementation, having many fine-grained tags available
for unknown word handling can make parsing less efficient, but that is
something that could be rectified with a minor change to the parser.

When we focus on increasing parser efficiency, by reducing lexical am-
biguity (the method often referred to in the literature as simply supertag-
ging), our oracle experiments show that the potential improvement from
using lexical information in this fashion is much less than in other for-
malisms. Rather than speed increases of 30 or 300 times, as others have
reported, the best possible speed-up was found to be around twelve times
the unrestricted parsing speed, when using very fine-grained gold stan-
dard tags. When using tags predicted by the best performing tagging
models we had, we found that it was possible to double parsing speed
with no loss of accuracy or robustness, but that any further speed in-
creases came with an associated drop in coverage. The very simplest
of the ‘supertags’ was found to be the most effective up to double the
parsing speed, although at higher levels of restriction (and hence higher
speeds), the tags based on lexical types again gave the best trade-off
between coverage and speed.

The final aspect of parsing where lexical statistics have been shown to
be useful is in parse ranking. In this work, we carry out a preliminary
exploration of the data available in order to give an indication of what

1.2. Thesis Outline 19

information would be the most beneficial to add to the statistical parse
ranking model. The most interesting conclusion from this investigation is
that, unlike in the other experiments, predicting morphology information
seems likely to yield parsing improvements, in terms of disambiguating
between likely analyses.

1.2 Thesis Outline
This thesis is laid out in the following manner: the first two chapters
provide the necessary background of the framework, tools and methods
used (Chapter 2) and of parser evaluation (Chapter 3); then Chapter 4
addresses the question of tag predictability; while the next three chapters
look at the usefulness of the different tags in terms of parser robustness
(Chapter 5), efficiency (Chapter 6) and accuracy (Chapter 7). Finally,
Chapter 8 summarises the main results and discusses the implications of
these results for future research. Below we summarise each chapter:

Chapter 2: Background In this chapter, we explain relevant charac-
teristics of the HPSG formalism and of the PET parser that is used
for experimentation. We situate the parser and grammar combina-
tion in the broader parser space, and discuss the respective advan-
tages and disadvantages of deep hand-crafted grammars, as opposed
to other systems that are derived from treebanks or that provide a
less detailed analysis. We find that many disadvantages of the deep
hand-crafted system come from the same sources as the advantages
this combination yields. Rather than eliminate the disadvantages
by eliminating the advantages, we look to combine advantages from
different systems. An overview of hybrid processing examines meth-
ods that have worked in other situations, and we then focus on su-
pertagging as one method particularly appropriate for a lexicalised
formalism such as HPSG. Finally we describe our method for dealing
with tokenisation mis-match, a problem that commonly occurs when
integrating information from disparate sources.

Chapter 3: Parser Evaluation In order to measure parser improve-
ment, we need to define ‘improve’. This chapter discusses the history
of parser evaluation, outlining the issues involved in evaluating ro-
bustness and efficiency, and then gives a detailed overview of parser
accuracy evaluation metrics. Building on the conclusions drawn from

20 Chapter 1. Introduction

this overview, we then define a new granular evaluation metric, El-
ementary Dependency Match (EDM), that is suitable for evaluat-
ing the detailed semantic information that is produced by the PET
parser.

Chapter 4: The Supertagger We define eight tag forms based on the
distinctions made in the English Resource Grammar, ranging from
a simple 13-tag set of part-of-speech tags that would not generally
be considered supertags, up to very fine-grained descriptions that
include information about morphology, subcategorisation and selec-
tional preference of prepositions. We first attempt to train two dif-
ferent taggers, one Hidden Markov Model-based and the other based
on a Maximum Entropy Markov Model, on the 157,920 tokens of
gold standard parser data available for this grammar. We then try
and supplement this data, first by using a small amount of addi-
tional domain-specific gold standard data, and then with automati-
cally annotated data. Results from these experiments indicate that
the HMM-based tagger achieves better results on less training data,
when evaluating only the single best tag predicted by the tagger.
However, if sufficient in-domain training data is available, or when
the method of assigning tags makes use of the underlying probability
distribution model learnt by the tagger, the Maximum Entropy-based
tagger has superior performance.

Chapter 5: Unknown Word Handling This chapter looks at using
lexical statistics to predict information about an unknown word, in
order to boost parser robustness. We use different granularities of
tag forms that are based on the distinctions made within the gram-
mar, and compare them to using no external information and to
using Penn Treebank-style part-of-speech tags predicted by a tagger
trained on one million words. While robustness is the main focus
of these experiments, we also evaluate the effects on efficiency and
accuracy when using each tag form.

Chapter 6: Restricting Parser Search Space This chapter consid-
ers the impact of lexical ambiguity on parser efficiency. This has
been the focus of previous work involving supertags, and following
that work, we use the predicted tags of different forms to restrict
the lexical items that are considered in parsing. We first carry out
an oracle experiment with each tag type, in order to determine the
upper bound on performance possible by using this technique. Then,

1.2. Thesis Outline 21

three different methods of lexical restriction are used: first, we al-
low only lexical items compatible with the single top tag predicted
for each token; then we try allowing multiple tags, depending on the
probabilities assigned by the taggers to the tags; finally we selectively
restrict particular tokens of the input, depending on the probability
assigned by the tagger to the top tag.

Chapter 7: Parse Ranking We discuss the manner in which lexical
statistics could be added to the statistical parse ranking model, and
how this application of lexical statistics differs from the previous
experiments. Preliminary experiments are carried out to investigate
what information is available in the statistics we can learn from the
available training data, in order to give some indication of the effect
this data could have when properly integrated into the statistical
parse ranking model.

Chapter 8: Conclusion This chapter reiterates the main results that
we have seen and describes future refinements and extensions of this
work that could lead to further parser improvements.

22 Chapter 1. Introduction

2 Background
This chapter describes the PET parser and its associated DELPH-IN
grammars, situating it among other parsers and grammars currently in
the field. We outline some of the advantages and disadvantages of using
a deep, hand-crafted grammar and, in Section 2.2, discuss some previous
work on combining the advantages of deep and shallow systems. Then,
in Section 2.3, we focus on supertagging as one specific method of using
lexical statistics to improve deep parsing, examining how people have
used it, and how effective it has been. Finally Section 2.4 describes some
initial work that was required to be able to combine information from
different sources in our parser.

2.1 HPSG Parsing
The research in this thesis uses deep, hand-crafted grammars in the Head-
Driven Phrase Structure Grammar framework. These grammars are very
different to the more well-known Collins (Collins 1996, Collins and Koo
2005) or Charniak (Charniak 2000, Charniak and Johnson 2005) proba-
bilistic context free grammars (PCFGs) in what they output, how they
are created and how they are used in parsing. This section describes the
formalism, parser and grammars and compares these to other current
systems.

2.1.1 Head-Driven Phrase Structure Grammar

Head-driven Phrase Structure Grammar (HPSG: Pollard and Sag 1994)
is a unification-based formal theory of language which models syntax and
semantics together in typed feature structures. In this formalism, types
are associated with features which in turn take other typed feature struc-
tures as their values. These values can be atomic, or, frequently, other
complex feature structures, and the types are arranged in a type hierar-
chy, allowing for abstraction and generalisation. The building blocks of
an HPSG analysis are instances of the word and phrase types, which are
subtypes of sign. Each sign contains detailed information about the text
span it represents, with the information necessary for constraining the
use of the sign encapsulated in the synsem feature of the sign. A full

24 Chapter 2. Background

analysis is constructed by combining these signs using generic rules that
conform to a few key principles. The Head Feature Principle states that
a headed phrase and its head daughter share the same head value. The
Valence Principle specifies that each feature of val in a headed phrase
is the same as that of its head daughter, unless a rule states otherwise,
for instance by discharging a specific val element. There are also se-
mantic principles playing analogous roles regarding the semantic content
of the sign. The Semantic Inheritance Principle controls which seman-
tic features are passed from the head daughter up to the mother, while
the Semantic Composition Principle states that the restr feature of the
mother is the composition of the restr features of each daughter. This
restr feature contains the semantic restrictions each sub expression im-
poses on the world, if the expression is to be true.

Somewhat simplified, the rules and principles specify how the signs
unify but the information that constrains which signs can be unified
with each other is encoded into the signs themselves, and ultimately
comes from the lexical entries. Figure 2.1(b) shows an example of how
the words in Figure 2.1(a) can be combined to form an analysis. We see
here that the lexical entry for love contains the information that love
is a transitive verb, requiring a subject and a complement. When the
third sing verb morphological rule is applied to this lexical entry, a sign
is created for the word loves that includes this information, and further
specifies that the subject must have third person singular agreement.
The information in the signs for the words Kim and Sandy comes directly
from the lexical entries.

The head-complement rule creates a headed phrase from a head daugh-
ter and a non-head daughter, specifying that the comps value of the
headed phrase is the comps value of the head daughter minus the synsem
of the non-head daughter. In effect, applying the head-complement rule
to two signs allows the non-head daughter to ‘cancel out’ (or fulfil) one
element of the head daughter’s comps list. This is the rule that com-
bines the words loves and Sandy. The synsem that is the first (and only)
element of the comps value in loves is unified with the synsem value of
Sandy. If any features in the two synsems were incompatible, the unifi-
cation would fail. Since the synsem from the comps value is completely
underspecified in this simplified case, there is no incompatibility.

The head-subject rule also creates a headed phrase from a head daugh-
ter and a non-head daughter. In this case, the rule further specifies that
the subj value of the headed phrase is the subj of the head daughter

2.1. HPSG Parsing 25

minus the synsem of the non-head daughter. When this rule is applied
to Kim and the phrase constructed from loves and Sandy, we can see
how unification of the synsem value from Kim and that specified in the
subj value of the word loves (and passed up via the Valence Principle)
enforces agreement between the subject and the verb.

This example is highly simplified, leaving out, among other things, all
semantic detail, but a full analysis works on the same general principle:
the rules outline general patterns, defining which features must unify in
all cases and the lexical entries specify constraints related to the lexical
item. This makes the lexicon a central part of an HPSG grammar.

2.1.2 The PET Parser

The PET parser (Callmeier 2000) is an efficient, unification-based HPSG
parser that was originally developed as part of a platform for testing
various unification algorithms. It has been continually enhanced and
extended since that time, with the addition of various input and out-
put formats, subsumption-based packing for increased efficiency (Oepen
and Carroll 2000) and statistical parse ranking (Zhang et al. 2007b). The
parser is part of a set of tools and grammars developed and maintained by
the DELPH-IN1 community, an international consortium of researchers
from universities and institutes across the world who share an aim of us-
ing deep linguistic processing to get at the meaning of human language.
DELPH-IN grammars are bidirectional grammars, used for parsing and
generation, and all use Minimal Recursion Semantics (MRS: Copestake
et al. 2005) as a common semantic representation. DELPH-IN maintains
a commitment to multilinguality and has, largely through the LinGO
Grammar Matrix project (Bender et al. 2002), developed many standard
analyses for common cross-language phenomena. There are currently
large broad-coverage DELPH-IN grammars for English (ERG: Flickinger
2002), Japanese (Jacy: Siegel and Bender 2002) and German (GG: Müller
and Kasper 2000, Crysmann 2003), and smaller grammars for other lan-
guages such as Modern Greek (Kordoni and Neu 2004), Spanish (Ma-
rimon et al. 2007), French (Tseng 2003), Korean (Kim and Yang 2004)
and Wambaya (Bender 2008).

The basic algorithm that PET uses to process text operates on a lattice
of input tokens, externally generated, or produced from raw text using

1http://www.delph-in.net/

26 Chapter 2. Background

lexeme



PHON love

SYNSEM

synsem


HEAD 1

head

[
CAT verb

]
VAL

val

[
SUBJ 〈 synsem 〉
COMPS 〈 synsem 〉

]



third sing verb rule

⇒
word



PHON loves

SYNSEM

synsem


HEAD 1

head

[
CAT verb

]
VAL

val

SUBJ 〈
synsem

[
AGR 3sg

]
〉

COMPS 〈 synsem 〉






word



PHON Kim

SYNSEM 2

synsem


HEAD noun
AGR 3sg

VAL

val

[
SPR 〈 〉
COMPS 〈 〉

]



word



PHON Sandy

SYNSEM 3

synsem


HEAD noun
AGR 3sg

VAL

val

[
SPR 〈 〉
COMPS 〈 〉

]



(a) Lexical items used in the analysis

phrase



PHON Kim loves Sandy

SYNSEM

synsem


HEAD 1

VAL

val

[
SUBJ 〈 〉
COMP 〈 〉

]



head-subject-rule

ssssssssssssssssssssss

H

LLLLLLLLLLLLLLLLLLLLL

word


PHON Kim

SYNSEM 2

synsem

AGR 3sg

VAL
val

[
COMPS 〈 〉

]


phrase



PHON loves Sandy

SYNSEM

synsem


HEAD 1

VAL

val

[
SUBJ 〈 2 〉
COMPS 〈 〉

]



head-complement-rule

H

tttttttttttttttttttttt

GGGGGGGGGGGGGGGGGGGG

word



PHON loves

SYNSEM

synsem


HEAD 1

head

[
CAT verb

]
VAL

val

[
SUBJ 〈 2 〉
COMPS 〈 3 〉

]


 word


PHON Sandy

SYNSEM 3

synsem

[
VAL

val

[
COMPS 〈 〉

]]


(b) Simplified HPSG analysis

Figure 2.1: Lexical items and the (simplified) HPSG analysis for Kim
loves Sandy

2.1. HPSG Parsing 27

the built-in preprocessor. The orthographic sub-rules associated with a
set of morphological rules are applied to each input token to produce
possible base lemmas. These potential lemmas are looked up in the lex-
icon and a lexical item is added to the parsing chart for each matching
lexical entry in the lexicon. The morphological rule related to the ortho-
graphic rule that produced the appropriate lemma is then applied to the
relevant lexical item to produce chart items that represent word signs.
The morphological rule application may be not be successful, and in that
case no chart item would be produced. For example, the orthographic
sub-rule associated with a morphological rule for third person singular
finite verbs applied to ups could hypothesise the lemma up, but applying
the rule to the lexical items returned from the lexicon would fail for all
non-verb up items. An agenda-based chart parsing algorithm then oper-
ates over the valid word items, unifying them according to the grammar
rules to produce spanning edges with a phrasal type. At each unifica-
tion the chart is checked to see whether the most recent edge created
subsumes or is subsumed by a pre-existing edge. In this case the edges
are packed appropriately, as described by Oepen and Carroll (2000), so
one edge represents all other edges that cover the same span and are
more specific than the representative edge. A parse is successful when
there is an edge that spans the entire input and has a type designated as
a valid root condition. If the parser has been run to produce a limited
number of analyses, the required analyses are unpacked from the chart in
an order dictated by the statistical model released with the grammar, a
process called selective unpacking (Carroll and Oepen 2005; Zhang et al.
2007b). The entire packed forest is created during parsing, and the selec-
tive unpacking is guaranteed to find the best analyses according to the
statistical model.

One difference to many other parsers is the fact that the semantic
analysis is built up with the syntactic analysis, rather than as a post-
processing step. This fact affects the distinctions made within the gram-
mar, since the semantic details are an integral part of the lexical entries.
The semantic construction is guided by features of the lexical type which
can, for example, force co-indexation of the correct semantic indices in
raising verbs. As stated above, the common semantic representation for
DELPH-IN grammars is Minimal Recursion Semantics (MRS). MRS is
a flat semantic formalism that represents semantics with a bag of el-
ementary predications and a list of scopal constraints. An elementary
predication can be directly related to words in the text, or can have a

28 Chapter 2. Background



text He persuaded Kim to leave.
ltop h1
index e2

rels



 pron rel<0:2>
lbl h3
arg0 x4



pronoun q rel<0:2>

lbl h5
arg0 x4
rstr h6
body h7




persuade v of rel<3:12>
lbl h8
arg0 e2
arg1 x4
arg2 x10
arg3 h9



named rel<13:16>

lbl h14
arg0 x10
carg Kim



proper q rel<13:16>

lbl h11
arg0 x10
rstr h12
body h13




leave v 1 rel<20:26>
lbl h15
arg0 e16
arg1 x10
arg2 p17




hcons{h6 qeq h3 , h9 qeq h15 , h12 qeq h14}


Figure 2.2: MRS for He persuaded Kim to leave

grammatical function, such as a quantifier. Each elementary predication
has a relation name, a label and an index (designated arg0). Arguments
of an elementary predicate are represented by argn features, which ref-
erence the relation that fulfils the argument role. Figure 2.2 shows the
MRS representing the semantic analysis of He persuaded Kim to leave.
Here we see six elementary predicates, four with text referents and two
quantifier predications. The arg1, arg2 and arg3 roles of the verbal
predicates describe the predicate argument relations and demonstrate
co-indexation between the arg2 of persuade and the arg1 of leave.

2.1.3 Relationship of PET to Other Parsers

This section discusses other parsers currently in active development and
use in the NLP community, and how they compare to the PET parser.

2.1. HPSG Parsing 29

For this discussion the PET parser actually refers to the combination
of the unification-based parser and an appropriate HPSG grammar to
better compare with other parsers that don’t have the same modularity
between parser and grammar.

One way that parsers can be characterised is according to the depth
of their analysis, where depth refers to the amount of information in
the analysis, particularly the level of semantic detail. PET belongs to
a family of parsers that produce deep linguistic analysis, where deep in
this context means that the parser is capable of identifying long-distance
dependencies and produces at least predicate-argument level semantics.
Other deep parsers include the C&C parser (Clark and Curran 2007b)
implementing the Combinatory Categorical Grammar formalism (CCG:
Steedman 2000), Lexical Functional Grammar (LFG: Dalrymple 2001)
parsers such as those from PARC (XLE: Riezler et al. 2002) and DCU
(Cahill et al. 2004) and other HPSG-based parsers like ENJU (Miyao
and Tsujii 2005) and ALPINO (van Noord and Malouf 2004). At the
other end of this spectrum are PCFG parsers (Collins 1996, Charniak
and Johnson 2005, inter alios) that produce basic phrase structure trees.
Dependency parsers such as the MSTParser (McDonald et al. 2005) or
MALTParser (Nivre et al. 2004) are somewhere in the middle, produc-
ing word-to-word surface-based dependencies and making some effort to-
wards recovering long distance dependencies.

Another differentiating characteristic of parsers is how their grammars
are built. The DELPH-IN grammars used by the PET parser are all
hand-crafted grammars that have benefitted from many years of gram-
mar engineering by linguists and hence consist of very detailed lexical and
syntactic information. Other fully hand-crafted grammars are ALPINO,
PARC XLE and RASP (Briscoe et al. 2006). The opposite of this situ-
ation is when the grammar is learnt from the annotations of a treebank.
The most common treebank in use (for English) is the Penn Treebank
(Marcus et al. 1993), which was annotated with phrase structure trees,
and later enhanced with traces, null elements and function tags (Marcus
et al. 1994). Although the enhancements were carried out because many
users wanted a richer linguistic annotation, most parsers only use the
phrase structure annotation. The Collins and Charniak parsers both fit
this category, although some versions of the Collins parser extract spe-
cific information from the enhancements. In some cases, a treebank has
to be converted to the right format for the parser. Both MALTParser
and MSTParser used head finding rules from Yamada and Matsumoto

30 Chapter 2. Background

(2003) to convert the Penn Treebank phrase structure annotation to an
appropriate dependency format for use in training their English parsers.
The C&C parser was trained on CCGBank (Hockenmaier and Steedman
2007), which was also created by converting the Penn Treebank, although
this conversion required a lot more pre-processing and validation than the
dependency conversions and made full use of the enhanced annotations.
The ENJU HPSG parser falls somewhere in between the hand crafted
and treebank-derived parsers: the grammar rules were all hand written,
but the lexical details were learnt from a pre-processed version of the
Penn Treebank (Miyao et al. 2004). Since HPSG is a lexicalist formal-
ism, this means that the majority of the grammar was derived from the
treebank, but the derivation process and the rule creation used a lot of
linguistic knowledge.

Parsers that use treebank-derived grammars have often been called
statistical parsers but this can be a misleading term. All current parsers
use statistics at some point in the parsing process since, at the very
least, a parser that is to be used in applications needs to be able to select
the most likely analysis from all those that are syntactically possible.
The PET HPSG parser is one of several (e.g., Clark and Curran 2007b,
Miyao and Tsujii 2008, van Noord and Malouf 2004) that build the entire
parse forest and then use a statistical model to determine the most likely
parse from the forest. In the case of PCFG parsers, it is computation-
ally intractable to build the entire parse forest because of the relatively
unconstrained nature of these grammars. However, by assuming inde-
pendence of subtrees in the analysis, PCFG parsers (e.g., Charniak and
Johnson 2005, Collins 1996) are able to use a simple generative statisti-
cal model to guide the parsing. This allows them to introduce statistics
early in the parsing process, assigning probabilities to each rule appli-
cation and discarding less likely rules at each point. As Abney (1997)
explains, attribute-value grammars like HPSG that use re-entrancy (co-
indexation between features) cannot legitimately make this independence
assumption and so they can not use the same simple statistical model.

Common wisdom was that a grammar was either shallow and learnt
from a treebank, or deep and handcrafted, but as described above and
summarised graphically in Figure 2.3, modern parsers vary across both
spectra and there are advantages and disadvantages to all configurations.
Treebanks bring many advantages like relatively rapid grammar devel-
opment, broad coverage (given a large treebank), and an easily accessed
source of statistics. In essence, the linguistic knowledge in a treebank-

2.1. HPSG Parsing 31

Fully Treebank-derived

Fully Hand-crafted

Shallow Deep
Analysis Depth

PET

Charniak

ENJU

MST

C&C

ALPINO

RASP

Figure 2.3: Graphical representation of parser relationships

derived grammar is the knowledge that was encoded in the treebank
annotations. However, a treebank can be only as informative as its anno-
tation scheme, and annotating a treebank is a long and expensive process.
The Redwoods treebanks (Oepen et al. 2004b) demonstrate one method
of overcoming these disadvantages, being dynamic treebanks created from
the grammar. Since these treebanks are grammar-dependent, they don’t
bring the same rapid development advantages, but they do provide the
statistics required to build a parse ranking model. Section 3.2.1 will go
into more details regarding the creation and use of these treebanks.

One significant advantage that hand-crafted grammars have over those
derived from treebanks is generalisation. Particularly for semantic anal-
ysis, it is useful to know that seen and saw have the same base form
and to relate them to other transitive verbs that have similar usage pat-
terns. While it would be possible to have this information in a treebank,
most grammar-independent treebanks do not contain this information.
Another problem for treebank-derived grammars is that they are heavily
influenced by the domain and genre of the treebank they were created
from. Given the central place of the Penn Treebank in English pars-
ing, we now have parsers that are very good at parsing newspaper text,
but significantly worse at other domains. Recent research into domain
adaptation (e.g. Hara et al. 2007, McClosky et al. 2006b) has examined
techniques for overcoming this problem.

32 Chapter 2. Background

Examining the advantages of deep versus shallow analysis, it is difficult
to see a disadvantage to deep, detailed, accurate information, all else be-
ing equal. The fact is, though, that not all else is necessarily equal. The
fact that many of the popular parsers produce a relatively impoverished
level of analysis is primarily due to engineering issues. In the first place,
hand annotating a treebank with a full HPSG structure is practically
impossible. The simple sentence Kim loves Sandy produces an analysis
with over 900 values that no person would be able to consistently repro-
duce with any accuracy. Annotation tools could provide some assistance,
but not enough to make constructing a large treebank by hand practical.
Strategies such as those in the HPSG extraction from Penn Treebank
described by Miyao et al. (2004) provide one option but still depend on
possibly error-prone heuristics. Another issue related to deep analysis
is the sheer number of distinctions being made, and the effect this has
on any statistical processing. Around seventy node labels (pre-terminal
POS tags and other non-terminals such as vp and s) are used in the
Penn Treebank, and at this level of distinction, an annotated corpus of
one million words is enough to build up a reasonable statistical model.
In a large HPSG grammar, where even the set of pre-terminals (lexi-
cal types) can number around 600–800 types, data scarcity becomes a
much greater problem. The statistical models are also more complicated
because they can not depend on the subtree independence assumption.

One possible disadvantage sometimes assigned to deep analysis is that
of unnecessary distinctions and hence spurious ambiguity. While this can
indeed be an issue, it is more an issue of how the analysis is used — it
is, after all, often much easier to ignore unnecessary distinctions than to
add missing information after the fact. Another accusation commonly
levelled against deep processing is lack of speed. While this has been,
and can be, an issue with deep parsers, recent work, particularly that
involving the C&C parser (Clark and Curran 2007b) or the ENJU parser
(Matsuzaki et al. 2007), has shown that slow processing is not an inherent
factor in deep parsing.

The PET parser produces deep detailed syntactic and semantic analy-
ses but, like other parsers, it has some factors that limit its use in appli-
cations. In the case of PET, the main factor is robustness: the ability to
produce an analysis regardless of circumstances. Baldwin et al. (2005)
describe some of the reasons for parse failure which include ungrammati-
cal input, extra-grammatical input (i.e., ungrammatical according to the
grammar of the parser, but not to a native speaker) and resource exhaus-

2.1. HPSG Parsing 33

tion. Each of these causes of failure requires a different strategy to over-
come. In the case of ungrammatical input, there are occasions where it is
preferable for the parser to fail, such as a grammar checking application
or any application that requires precision before recall. Other situations
might benefit from a ‘best guess’ of the intended meaning by the parser,
optionally marked as ungrammatical. Work from Bender et al. (2004)
and Crysmann et al. (2008) describe one way to do this using mal-rules,
but this is limited to parsing predictable errors. A broader coverage so-
lution would require the relaxing of constraints in the grammar. For
extra-grammatical input, the obvious strategy is to improve the gram-
mar and there has been research into methods of assisting the grammar
writer in this aim (van Noord 2004, Zhang and Kordoni 2006, Goodman
and Bond 2009). However, even with complete constructional coverage,
ever-changing language means it is not practical to assume that a gram-
mar will contain every possible word in use and hence other strategies to
handle unknown words are required.

Resource exhaustion can refer to overstepping memory, space or time
limits, whether hard limitations of the hardware or limits applied to
ensure reasonable parse times. The obvious solution to parse failures
caused by resource limits (other than increasing the limits, which is not
always possible) is to make the parser more efficient. The addition of
subsumption-based packing (Oepen and Carroll 2000) and selective un-
packing (Zhang et al. 2007b) strategies to the PET parser have increased
parser efficiency significantly, but there is always room here for improve-
ment.

Many of the robustness issues the PET parser has can be attributed to
specific features of the parser that differentiate it from other parsers: the
inherent idea of grammaticality encoded in part by hard constraints, the
detailed syntactic and semantic nature of the analyses and, relatedly, the
detailed lexicon with its precise distinctions. Rather than eliminate the
issues by eliminating the advantages of the parser, a better solution comes
from combining the advantages of different parsers and other language
processing tools. The next section outlines some of the previous work in
so-called hybrid processing.

34 Chapter 2. Background

2.2 Hybrid Processing
Hybrid processing can refer to any number of ways of combining the in-
formation produced by different natural language processing tools. As
discussed in the last section, often the features that give a parser its ad-
vantages are also responsible for certain disadvantages. By combining
tools with different advantages and disadvantages, we can produce a bet-
ter overall system. This can mean using both different methods of anal-
ysis, but also different sources of information. For instance, statistical
information about word collocation frequencies and semantic information
about word meanings can both have some influence on how a sentence is
interpreted.

One issue of hybrid processing is how to combine the information from
different tools. The simplest method is that of fall-back: tools are ordered
according to the desirability of their output (generally, deeper is better)
and the output of the best tool to produce an analysis within a given
time is used. Another option is to merge the output of complementary
processing tools, adding depth to the final analysis. Finally, it is possible
to integrate information from different sources within, say, a parser. The
Heart of Gold (Callmeier et al. 2004; Schäfer 2006) is a system that
uses all three techniques: integrating information by annotating parser
input with part-of-speech (POS) tags, falling back to the best parser
that produced an output and then merging that parser output with the
output of a named entity recogniser.

Integrating is the most relevant strategy to examine when the goal is
to improve HPSG parsing, but it has certain complications, the most
frequent being mismatch of assumptions that the different tools make.
This can be in the form of different distinctions, such as in named entity
classifications or in word categorisations, perhaps emphasising syntactic
over semantic distinctions. Another frequent mismatch is tokenisation.
While this may appear to be a trivial issue, disagreements over the defini-
tions of the fundamental building blocks of an analysis can cause serious
problems when attempting to integrate different forms of information.

Most previous work on hybrid processing by integration adds extra
information to a parser, often by annotation of the input. The most
common form of this pre-processing is to add POS tags to the data.
Generally these tags are used to increase coverage, by allowing the parser
to treat an unknown word as a generic entry that behaves according to
its POS, but they may have other uses.

2.2. Hybrid Processing 35

In Crysmann et al. (2002) a POS tagger is used to prioritise lexical
items in order to improve the probability of finding the correct reading
earlier. In addition to POS tagging, they use two more detailed sources
of lexical information to increase coverage — named entity recognition is
used to create complex multiword types and semantic information con-
tained in GermaNet is used to extend types that would otherwise be
considered as generic noun types. This work is extended in Frank et al.
(2003), where phrasal level annotation is added to the extra lexical infor-
mation. The shallow processor used for the phrase level information was
a German stochastic topological parser, which was argued to be a better
match for the HPSG formalism than a chunker. They used the brack-
eting from the topological parser to order the HPSG parsing agenda,
prioritising those parsing steps which would result in creating phrases
that matched the topological bracketing, according to a pre-calculated
mapping from topological bracket type to HPSG phrase. Confidence lev-
els in the shallow parser were incorporated into the priority calculation,
and the results showed that the best efficiency was achieved when the
shallow annotation was allowed to influence up to half the original deep
parser priority score.

Another experiment on German (Daum et al. 2003) attempted to in-
corporate chunk information into their Weighted Constraint Dependency
Grammar and found that the chunk information improved both efficiency
and coverage, but to much less an extent than POS information did.
They also reported that even a small amount of inaccuracy in the chun-
ker could halve this improvement.

Rather than merely guide the parsing order, the use of shallow tools
to guide the search of the parser can be taken further to filter the use
of unlikely constituents in order to increase efficiency. Grover and Las-
carides (2001) describe a parser for the ANLT grammar (based on the
GPSG formalism, Gazdar et al. 1985) that rejects readings that have
assumed a different POS to the initial annotation. While they showed
some sentences where this approach worked, rejecting incorrect read-
ings, it does bring up the matter of tagger accuracy. The methods they
used to counter-act issues of tagger inaccuracy involved using two taggers
and allowing both tags when they disagree, and using some handcrafted
patterns to correct systematic tagging errors. Despite this, they found
roughly a third of the failed and incorrect parses involved tagging errors.
Their results showed that using this pre-processing gave an substantial
coverage increase, but this was from a very poor original coverage (2%)

36 Chapter 2. Background

to a still impractical 39.5%.
Kiefer et al. (1999) describe a method of filtering lexical items by speci-

fying and checking for required prefixes and particles which is particularly
effective for German with its separable verbs, but also applicable to En-
glish. Other research has looked at using dependencies to restrict the
parsing process (Sagae et al. 2007), but the most well known filtering
method is supertagging. Originally described by Bangalore and Joshi
(1999) for use in LTAG parsing, it has also been used successfully for
CCG (Clark 2002). Supertagging is the process of assigning probable
‘supertags’ to words before parsing to restrict parser ambiguity, where a
supertag is a tag that includes more specific information than the typical
POS tags. The next section goes into more detail about supertagging,
its motivations and its effects.

2.3 Supertagging

2.3.1 Motivation

Bangalore and Joshi (1999) describe supertagging as ‘almost parsing’
since they find that once the correct supertags had been assigned, al-
most no decisions are left to their LTAG parser, speeding parsing up
significantly. The motivation behind their work was based on the idea
that part-of-speech taggers had long been used to reduce ambiguity in
parsing and a POS tag was a category of a word that described how that
word was used. Moreover POS tags could be quite accurately assigned
using only local context. They reasoned that their LTAG elementary
trees were also word categories that constrained word use. As a lexicalist
formalism, LTAG defines complex lexical item descriptions, which were
designed “to allow for all and only those elements on which the lexical
item imposes constraints to be within the same description” (Bangalore
and Joshi 1999). As such, many decisions that would be made by the
parser were localised with the lexical item and if the correct lexical item
description out of the many possible descriptions could be pre-assigned,
parsing could be substantially simplified. They called these lexical item
descriptions — in their case elementary trees — supertags to indicate
that they embodied richer information than standard POS tags, in par-
ticular dependency information. Their initial experiments indeed showed
that assigning gold supertags reduced average sentence parsing time from

2.3. Supertagging 37

120 seconds to 4 seconds over a 1300 sentence selection from the Wall
Street Journal. Having proved that supertags could speed up parsing,
the next step required to show the effectiveness of supertagging was to
see if supertags, like POS tags, could be accurately predicted from local
context.

2.3.2 Initial Experiments

The initial supertagging experiments described in Bangalore and Joshi
(1994) could only manage tag accuracy of 68% using local context, which
was not viable for use in parsing. Later experiments reported in Banga-
lore and Joshi (1999) increased the tag accuracy to 92% by using a much
larger amount of training data and adding some smoothing techniques
to the tagging model. Even this would not be sufficient for parsing, since
any word in a sentence mistagged would render the full sentence incorrect
and often unparseable. The authors suggest that allowing more than one
tag could alleviate this problem, and show that accuracy rises to 97%
when the top 3 tags are considered. They don’t, however, report full
parsing results to show whether this is effective.

Supertagging was predicted to be an effective technique for speeding
up parsing based on any lexicalised formalism and Clark and Curran
(2007b) show that, at least for CCG, this is the case. The supertags in
their case are the 425 CCG lexical categories that appear at least 10 times
in Sections 2-21 of CCGBank. The C&C supertagger uses a Maximum
Entropy model, as opposed to the HMM-based model in Bangalore and
Joshi (1999) and also gets around 92% single tag accuracy (when using
automatically assigned POS tags as features). Rather than set a fixed
number of tags to use in parsing though, they propose assigning tags with
a probability within a factor, β, of the probability of the top tag. Using
this method, tag accuracy is 97.86% while assigning an average of about
2 tags per word. This translates to a sentence accuracy of around 70%,
compared to 37% for single tagging. Clark and Curran experiment with
various strategies for integrating the supertagger into their C&C parser
and achieve the best results by initially using a fairly restrictive β factor,
which assigns on average 1.27 supertags per word on their development
set. Only if the parse fails do they adjust the β factor to allow more tags
per word for a particular sentence. On the development set, over 93%
of sentences could be parsed with the most restrictive setting. Using

38 Chapter 2. Background

this strategy of gradually allowing more tags as needed, they are able
to parse 99.6% of section 23 of CCGBank in under 2 minutes, at 20.6
sentences per second. It is interesting to note that, when using gold
supertags, the speed increases by a factor of 4, but the coverage goes
down to 94.7% of the test set. The possibility of trading coverage for
speed is always an issue in supertagging, since assigning an incorrect
tag can make an utterance unparseable, but in this case it is not an
issue of incorrect tags. For over 5% of the test set, the parser is unable
to produce the gold analysis using gold tags and so it is theoretically
possible to get ‘better’ results by assigning incorrect tags and getting
part of the analysis correct. The final analysis is evaluated by measuring
the precision, recall and F-score of the predicate-argument dependencies
returned against those of CCGBank. As will be discussed in Chapter 3,
it is difficult to compare accuracy evaluations across different formalisms,
but their result of 85.45 labelled F-score appears to be state-of-the-art
for CCG parsing.

2.3.3 HPSG-related Supertagging

There has also been some previous supertagging research in HPSG-based
systems. Ninomiya et al. (2006) describe a supertagger for the lexical
templates used in the ENJU grammar. With an effective tag set size
of 1361, the single tag accuracy on section 22 on their converted Penn
Treebank was 87.51%. In this work, the supertags were not used to
restrict parser input, but instead the supertag probabilities were used
in the parse ranking model. Toutanova et al. (2002) also use supertags
as part of a disambiguation model, although in that case the supertags
are taken from the set of approximately 8000 lexical entries in the ERG
HPSG grammar of the time. They do not give the accuracy results
of their tagger. They do demonstrate, through using gold supertags
in one disambiguation model, that the correct lexical entry sequence is
not always sufficient to disambiguate between parses from this grammar,
giving the correct parse in only 54.59% of ambiguous sentences.

Matsuzaki et al. (2007) take the supertagger from Ninomiya et al.
and integrate it into the parser in a more standard pre-processing man-
ner, restricting the parser input to single tagged sequences and adding
new sequences on parse failure. In addition, they use a CFG filtering
stage between the supertagger and their ENJU HPSG parser to exclude

2.3. Supertagging 39

unparseable sequences. As in the C&C parser, a high percentage of sen-
tences (almost 95%) could be parsed using the first input tag sequence.
Using supertagging and CFG filtering, the optimal settings gave an av-
erage speed of 29.6ms per sentence, or 33.8 sentences per second when
parsing section 23 of their converted Penn Treebank. Differing hard-
ware doesn’t really allow direct comparison, however this is faster than
the reported C&C figures, but with a lower coverage of 97.1%. On the
development set they were able to get a coverage of 99.6% by chang-
ing experimental parameters, but this came with a decrease in accuracy
and F-score, as well as a slower speed (slightly slower than C&C). These
trade-offs are common and will be discussed in terms of evaluation in the
next chapter.

Alpino is an HPSG-based grammar of Dutch which also uses a form
of supertagging in its parser. Prins and van Noord (2003) describe the
HMM tagger they use to assign tags from a set of 1365 lexical category
classes and report standalone accuracy results of 94.69% for single tag-
ging with this tagger, however this number can’t really be compared to
other results. In the first place, it is over a Dutch test set that no one else
has used. Secondly, the gold standard for tags in this case was the un-
corrected output of the parser. They give an example of one case where
their tagger was actually correct when the ‘gold standard’ was incorrect,
but it would be equally possible for both tagger and gold standard to be
incorrect. The supertagger probabilities are integrated into the parser by
throwing away potential lexical categories whose probability is not within
factor τ of the top tag probability. Their optimal value of τ on the test
set (216 sentences from the newspaper section of the Eindhoven corpus)
produces approximately a factor of 4 speed up, while improving accu-
racy of lexical dependency relation recovery by about 2%. This accuracy
improvement is largely due to a decrease in full sentence parsing cover-
age. The results of this system basically reflect those found in lexicalised
English parsing systems. The main contribution of this work is that the
tagger was trained on the uncorrected output of the parser, circumvent-
ing the data scarcity issue often a problem in combining statistics with
deep linguistic processing.

Specifically related to the grammars and parser that will be used in
this thesis, Blunsom (2007) develops a supertagger for assigning lexical
types from the ERG and Jacy grammars (615 and 360 tags respectively).
This tagger, which slightly outperforms the C&C tagger when tagging
CCG categories from CCGBank, achieves single tag accuracy of 93.7%

40 Chapter 2. Background

for Jacy and 90.3% for the ERG. No full parsing experiments were car-
ried out with this tagger, but examination of the test data showed that
many complete, but non-preferred analyses could be removed by limiting
the lexical types to those produced by the tagger. A limited scope exper-
iment that manually restricted the lexicon according to the predictions
of the parser showed that properly integrated supertagging should also
be effective for this setup.

2.3.4 The Tags

While all the above work can be categorised as supertagging, the actual
supertag set differs by formalism and even by researcher. Comparing only
English tag sets, the tag set size varies from around 300 LTAG elementary
trees, to 8000 HPSG lexical entries, as summarised in Table 2.1. The
Penn Treebank POS tag set, by contrast, has 48 tags.

It’s not only the tag set size that differs, but also the distinctions
made in each tag set. In LTAG, for example, the word price has different
elementary trees in This is the price., What is the price?, The price
includes breakfast. and The price war rages. CCG, on the other hand,
uses the same category for the first three sentences, but has a separate
category for price used as a bare noun phrase (without determiner). For
both CCG and LTAG, different inflections of the same verb (i.e, includes
and included) have different sets of possible supertags. Examples of
supertags of each type are shown in Figure 2.4.

For HPSG, the situation is more complex since different parts of the
lexical information are encoded in different places. As mentioned in Sec-
tion 2.1.1, the building blocks of an HPSG analysis are the word signs, but
words come from the combination of lexical types, which encode subcate-
gorisation information; lexical rules, which add information triggered by
inflection; and lemma specific information such as phonology and lexical
semantics. Previous work in HPSG supertags has used different combi-
nations of this information: Blunsom (2007) used the lexical types, Ni-
nomiya et al. (2006) used lexical templates, which combine lexical types
and lexical rules, and Toutanova et al. (2002) used lexical entries, which
combine lexical types and lemma specific information, but ignore inflec-
tion. This variation has, in part, been due to characteristics of the parser
and grammar implementations. In the DELPH-IN grammars, used by
Blunsom and Toutanova et al., lexicon entries are lemmatised and lexical

2.4. Integration Issues 41

Formalism # Tags Tag shape
Bangalore and Joshi (1999) LTAG 300 elementary trees
Clark and Curran (2007b) CCG 425 lexical categories
Blunsom (2007) HPSG 615 lexical types
Ninomiya et al. (2006) HPSG 1361 lexical templates
Toutanova et al. (2002) HPSG 8000 lexical entries

Table 2.1: Supertags across systems

rules are applied on-the-fly before lexicon lookup. In the ENJU gram-
mar, used by Ninomiya et al., the lexicon entries are words indexed by
the combination of the inflected word and the POS tag. Chapter 4 will
further explore these differences and the effects they have.

Other factors of the parser and grammar affect the way that different
information can be integrated into the parsing process. The next section
describes some of the concrete problems that had to be overcome in order
to use any tagger with the PET parser.

2.4 Integration Issues
All of the experiments described in this thesis involve combining informa-
tion from disparate sources into the PET parser. Before any integration
experiments could be carried out however, there was one issue, touched
on in Section 2.2, that needed to be overcome. Integration requires some
common element on which to match, and the obvious element in this case
is the word. The problem is that the definition of word is not straight-
forward.

Most English treebank-derived parsers have standardised by default
on the tokenisation used in the Penn Treebank, since that is the data
they learnt from. In linguistically-motivated grammars like the ERG or
GG (for German), the decision regarding the definition of a word was
made according to the linguistic analysis given by the grammar writers.
In the case of the ERG, this analysis has given rise to a tokenisation
that differs from that of the Penn Treebank in certain ways. The most
obvious is that punctuation is not treated as a separate token except for
particular punctuation marks (such as colons and certain dashes) that
are analysed as contributing an independent elementary predicate to the
semantic analysis. In general, punctuation is treated as an affix to a
word, and is processed using lexical rules, similar to those for inflection.

42 Chapter 2. Background

Sq

qqqqqqq
MMMMMMM Nr

qqqqqqq
MMMMMMM

NP↓ Sr

qqqqqqq
MMMMMMM N Nf*

NP0 VP

qqqqqqq
MMMMMMM <word>

ε0 V NP1

ε N Sr

qqqqqqq
MMMMMMM

<word> NP0 ↓ VP

qqqqqqq
MMMMMMM

NP V NP1

N ε N

<word> <word>

(a) LTAG elementary trees

N
N/N
NP\NP

(b) CCG categories

Figure 2.4: Supertags for the noun price

2.4. Integration Issues 43

Other tokenisation differences include splitting hyphenated compounds,
but not splitting contracted negations such as don’t.

All of the DELPH-IN grammars include preprocessing rules that de-
scribe how to tokenise their input (except Jacy, which includes directions
for using the Japanese morphological analyser ChaSen (Matsumoto et al.
1999) as a preprocessor). However, these rules assume a raw text input
and cannot be applied to pre-tokenised input. In order to use the output
of a tagger and still input the tokenisation that the parser expects, there
are a couple of solutions. The obvious one is to retrain the tagger using
the parser’s tokenisation so that tagging and parsing operate over the
same tokens. However that requires a large annotated training set with
appropriate tokenisation. It might be possible to convert a training set
from one tokenisation to another, but that would be an inexact process
adding noise to the data. Furthermore, one of the aims of hybrid pro-
cessing is to integrate information from different sources, even when the
original raw information is not available. Having to pre-process all the
raw information negates some of the benefits of integrating off-the-shelf
tools.

Assuming then that the goal is to map information between different
token sets, this can be done in a pipeline, or by merging. In the pipeline
scenario, the input is first tokenised according to the rules of the tag-
ger, then tagged, and then the differences in the tokenisation rule sets
are extracted and this difference set is applied to the tagged token. If
the differences really only required re-attaching the punctuation to the
neighbouring token, this would be simple, but the differences are in real-
ity more subtle than that. It is possible to write a highly accurate set of
rules to map between tokens, but it requires a different set of rules per
grammar, and possibly per grammar version since the grammar writers
may change tokenisation assumptions as their linguistic analysis evolves.

The merging process, on the other hand, leaves control of tokenisation
assumptions with the grammar writers by making use of the prepro-
cessing rules released with the grammar. In this scenario, the input is
tokenised twice, once according to the tagging rules, and once using the
parser’s rules. Then, using the parser tokens as the controlling set, the
tagger’s output is consulted and added to the appropriate parser token.
This process is made much simpler by the agreement among DELPH-IN
members on the necessity of characterisation information in analyses.
This refers to recording the character span of each token, with respect to
the original string. The idea that details of the analysis can always be

44 Chapter 2. Background

related back to the appropriate part of the original input is useful in all
forms of integration, including post-parsing analysis merging and integra-
tion with external lexical resources, and makes merging between tokens
mostly straightforward. Characterisation information is also added to
the tokens for the tagger as the input is tokenised and hence the tagged
token(s) that correspond with the parser token can be identified by their
character span and all the tags added to the parser token. Certain heuris-
tics operate to filter the tags from multiple tokens, throwing out punc-
tuation tags (which would be ignored by the parser anyway) and not
keeping duplicate tags. This is still a fuzzy solution, since no correction
is made to tag probabilities when assigning tags from two different tokens
to one, but short of annotating a new training set to acquire the correct
model, it was thought the best solution for an unexpectedly complicated
problem. A very recent version of the ERG has implemented a different
solution within the grammar, where the grammar writers have developed
preprocessing rules that assume a Penn Treebank tokenisation and apply
the necessary changes to produce the tokenisation the grammar requires
(Adolphs et al. 2008). The tags, however, are still handled in a similar
way to that described here, with heuristics determining which tags to
keep when tokens are split or merged, and with punctuation tags being
discarded.

2.5 Summary
The PET parser is an efficient unification-based parser which, when used
with the hand-crafted DELPH-IN HPSG grammars, can produce deep
detailed syntactic and semantic analyses of input in several languages.
A number of aspects of this parser and grammar combination that con-
tribute to the rich analysis, at the same time bring disadvantages when
compared with other parsing systems whose grammars are derived from
treebanks and may produce shallower analyses. Hybrid processing at-
tempts to overcome disadvantages of one system by combining it with
others with different advantages and disadvantages. In particular, one
form of hybrid system involves integrating different sources of informa-
tion into a parser to increase robustness. Supertagging is one instance
of this integration that is particularly appropriate to lexicalised gram-
mar formalisms. Previous work has shown that supertagging is effective
in improving parser performance for LTAG and CCG parsers, and some

2.5. Summary 45

preliminary work suggests that it will also be effective for hand-crafted
HPSG grammars such as those used by the PET parser. Before any work
on integrating information into PET can be undertaken, it is first neces-
sary to be able to relate the information between different sources. The
final section of this chapter outlined the problem of disparate tokenisation
assumptions and the method used to overcome this issue.

In order to ascertain whether the proposed integration of statistical
information into the PET parsing process is effective, it is necessary to
evaluate the performance of the parser with and without the information.
Parser performance can be measured against multiple criteria and in a
variety of different ways. The next chapter examines how parsers have
been evaluated in the past and defines the evaluation criteria that the
PET parsing system will be measured against.

46 Chapter 2. Background

3 Parser Evaluation
One of the goals of this thesis is to measure how lexical statistics can help
the parsing process, but this goal needs further definition. What exactly
does it mean to ‘help’ parsing, and how do we measure this help? This
chapter examines parser evaluation: different evaluation criteria; accu-
racy evaluation metrics based on different representation; inter- as well as
intra-parser evaluation; and the relationship between evaluation metrics
and the goals of parsing and evaluation. The second half of the chapter,
using the ideas from the first, considers the evaluation metrics used with
the PET parser and outlines the evaluation metrics that will be used
for the rest of this thesis, including a new granular accuracy evaluation
method based on the parser MRS output format. Baseline experiments
without any input annotation are described, providing results with which
subsequent experiments will be compared.

3.1 Background

Parser evaluation is, in terms of Gaizauskas (1998), evaluation from the
perspective of researchers rather than users or funders, and on a task
that is primarily user-transparent, rather than user-visible. Evaluation
of this kind is necessary to direct and focus language technology research.
For example, without breaking down a question answering system into
its component parts, it is next to impossible to discover what causes an
incorrect answer to be returned, and so there is no way to know where
improvement efforts should be focussed. On the other hand, the discon-
nect of a parse with the desired result makes defining a useful evaluation
scheme much more difficult, since what makes a ‘good’ parse depends
on how that parse will be used towards producing the end result. The
ill-defined goal of parsing has produced many parse evaluation schemes.

Evaluation itself can have many goals, even focussing just on evalu-
ation by and for researchers. The goals listed below, while overlapping
significantly, all give rise to slightly different evaluation needs.

• Task suitability: evaluating a parser for the benefits it brings to a
wider task, which may have constraints on runtime, memory usage
or accuracy required.

48 Chapter 3. Parser Evaluation

• Parser comparison: comparing among parsers (potentially with dif-
ferent mechanisms and different outputs) to select ‘the best’.

• Parser development: evaluation to focus development efforts on flaws
in the grammar or parser, while not making changes that decrease
parser performance.

• Parameter tuning: selecting the optimal configuration of a particular
parser.

Ideally the first goal of task suitability should inform any parser evalua-
tion, but that is not always straightforward, since the requirements of the
(possibly hypothetical) task are not always known. Some effort however
should be made to define the goals both of parsing and of evaluation.

One obvious evaluation criterion is the accuracy of the analyses, but
there are other factors to consider. Section 2.1 mentioned that robustness
is the main limiting factor proscribing the use of the PET parser in
applications. As discussed there, there are multiple reasons for parse
failure. Resource exhaustion is one, and a parser’s resistance to this cause
of parse failure can best be measured by evaluating parser efficiency. In
computer science, efficiency is considered in terms of both time and space,
or more specifically runtime and memory usage. At a fine-grained level,
these aspects are difficult to compare between different runs because they
can both be affected by differences in hardware, arbitrary implementation
decisions and run conditions (such as what sort of output is requested).
In a controlled scenario, however, they can give a picture of differences
between different configurations of a parser and, at a coarser grained
level, they are an important part of a parser’s suitability for a task.
Any comparisons between parsers should define exactly what is being
measured. For example, is it time per sentence successfully parsed or
per sentence input? Another variation seems to be measuring complete
runtime including loading of models versus parsing time only.

The other causes of parse failure mentioned were ungrammatical and
extragrammatical input, however, without prior grammaticality judge-
ments on text input, these are hard to tease apart. In fact, most recent
parsing research operates on the assumption that they shouldn’t be, that
all input should be given an analysis. Under this assumption, a common
evaluation criterion is coverage — the percentage of input utterances that
receive a parse. This directly measures robustness, including failures
resulting from resource exhaustion when resources are limited. When

3.1. Background 49

grammaticality judgements are available, and the parser is supposed to
reflect these grammaticality judgements, it makes sense to also include
the criterion of overgeneration — the percentage of inputs that receive an
analysis when they shouldn’t. In this case, the definition of coverage is
refined to the percentage of grammatical sentences that received a parse.

Carroll et al. (1998) give an overview of the state of parser evaluation
up until eleven years ago. They differentiate between metrics that require
an annotated corpus and those that don’t. Characteristics of a parser
like coverage and efficiency can be measured without the need for an an-
notated corpus. Both of these measures are useful in parser or grammar
development, but do not give a full picture of how good a parser really
is. For that, some sort of gold standard annotated corpus is required to
measure parser accuracy. An obvious measure of accuracy is how many
sentences received the correct analysis according to the gold standard,
known as exact match. This metric is occasionally reported (e.g., Briscoe
and Carroll 1993, Yamada and Matsumoto 2003) and Magerman (1994)
claims it is the only reliable, concrete evaluation. Against that however
is the problem that exact match cannot distinguish between a truly aw-
ful parse and one that is very close. The more detailed a parse is, the
more likely that one small detail is incorrect. In order to still be able to
use detailed analyses, we need to know how correct they are, and this
can be done by making more granular accuracy judgements. The stan-
dard method for doing this defines sub-sentential elements about which
a binary correctness judgement can be made. Granular accuracies are
usually reported as the precision, recall and f-score of these elements,
with the following definitions:

precision

number of elements correct

number of elements found

recall
number of elements correct

number of elements in gold standard

f-score the harmonic mean of precision and recall

2× precision× recall

precision + recall

The following sections look in more detail at the history of granular
accuracy evaluation.

50 Chapter 3. Parser Evaluation

3.1.1 Phrase Boundaries

PARSEVAL (Black et al. 1991) was the first serious attempt to define
a representation that would allow different (English) parsers to be com-
pared with each other. The definition they came up with utilises a lowest
common denominator approach, describing a set of steps that should be
applied to a phrase structure tree to remove all those phenomena for
which the correct analysis was debatable. Hence, any instances of “not”,
pre-infinitival “to”, auxiliaries, null categories, possessive endings and
word-external punctuation are removed, and then parenthesis pairs that
now contain less than two words are deleted. Finally, scores are calcu-
lated based on parenthesis only, ignoring constituent labels. Two things
can be taken from that work. The first, clearly, is the evaluation met-
ric that has been used ever since, despite its obvious shortcomings, as a
standard parse evaluation metric. The second thing is the reason that
such a metric was defined: comparing parses according to constituent
bracketing and labelling is very difficult. Despite a general agreement
in the meaning of a sentence, each grammar makes different decisions
and distinctions in how they represent details of the syntax. A paper
by Gaizauskas et al. (1998), seven years later describes an even more
impoverished annotation scheme to be used purely for parser evaluation.
It is clear in this work however that the scheme is intended only as a
minimum standard for parsers and hence they dispense with precision
completely for evaluation, reporting only where a parser failed to return
the minimal markup, or where it violated the minimal constraints thus
annotated.

Subsequent work in parsing often refers to the PARSEVAL metric, but
in actual fact uses a less lenient version than that originally published.
The most common metrics are labelled precision, recall and f-score of
brackets, though unlabelled bracketing scores and bracket crossing scores
are also often reported. The EvalB program (Sekine and Collins 1997) is
used by many people in order to report comparable results. One reason
that the labelled constituents can be more easily used now than when
PARSEVAL was defined is that much of the recent parsing research has
focussed on treebank-derived parsing, using the Penn Treebank (PTB:
Marcus et al. 1993) for training and testing. Hence the annotation on the
Penn Treebank has become the default standard for parsing in English.
While this has led to encouraging progress in statistical parsing, it is
not without its problems. In the first place, there are disagreements

3.1. Background 51

about the quality of the PTB annotation which contains what are now
considered idiosyncratic analyses of, for example, noun phrases. There
are suggestions that all the progress in statistical parsing has led to a
state where we can now reproduce the shortcomings in the PTB with
high accuracy. Furthermore, even if the linguistic annotations of the
PTB were correct, questions remain as to what use they are in NLP
systems.

A workshop entitled Beyond PARSEVAL was convened in 2002. This
workshop recognised that PARSEVAL was biased towards shallow tree-
bank grammars for English and one of the stated aims of the workshop
was to discuss a “new, uniform evaluation metric which provides a basis
for comparison between different parsing systems, syntactic frameworks
and stochastic models, and how well they extend to languages of differ-
ent types” (Carroll et al. 2002). Various comparisons and alternatives
were presented. The leaf-ancestor metric (Sampson and Babarczy 2002)
calculated the tag or label path to each word, and then averaged the
edit distance of each tag path over all words. Roark (2002) presented a
similar algorithm, but generalised to look at the edit distance between
different representations of the parse including derivation rule sequence.
In both cases, the new metrics attempted to mitigate the problem of
counting an incorrect attachment multiple times, a common criticism
against PARSEVAL. Interestingly, they also both noted that these new
metrics made it easier to discover systematic errors. Given that one ob-
ject of parser evaluation is for the benefit of the parser developer, this
can be a useful feature. Roark’s main point however was a comparison
between the metrics of precision and recall versus edit distance, rather
than advocating for a particular parse representation. As he pointed
out, edit distance could also be used to measure accuracy in terms of
constituent spans in the PARSEVAL model, as well as in terms of de-
pendencies. Other researchers at this workshop presented comparisons
between the PARSEVAL metric and those based on dependency-type
relations, as described in the following section.

3.1.2 Dependencies

The usefulness of phrase structure annotation was questioned directly in
Lin (1998): “. . . the purpose of parsing is usually to facilitate semantic
interpretation. No semantic interpretation algorithm makes direct use

52 Chapter 3. Parser Evaluation

of phrase boundaries.” Lin went on to propose syntactic dependencies
as a better granularity to evaluate against. He argues that dependency
evaluations more closely coincide with the intuitions of human evalua-
tors. While the algorithm presented matches unlabelled dependencies,
comparable to the unlabelled bracketing of PARSEVAL, Lin suggests
that, given that an equivalence mapping between relations can be cre-
ated, matching labelled dependencies is possible. Indeed, one benefit he
claims dependency evaluation has is the ability to selectively evaluate the
relations of interest, for example determining how well a parser predicts
prepositional phrase attachment or the subject–verb relation.

Carroll et al. (1998) outline a new evaluation method based on gram-
matical relations (GRs). These relations are very similar to the relations
encoded by the dependencies Lin describes. According to the authors,
the differences are: a single dependent may have two heads, thereby mak-
ing a graph rather than a tree; arguments ‘displaced’ by movement are
associated with their underlying relation; semantic arguments realised
syntactically as modifiers can be represented; and arguments that are not
lexically realised can be included (e.g. subjects in pro-drop languages).
These points do differentiate them from Lin’s work, but not from all de-
pendency representations. Traditional syntactic dependencies are surface
based, but there are annotations which are called dependency-based but
are even further from surface form than the GRs, such as those used in
the Prague Dependency Treebank (Böhmová et al. 2003). The effective
differences of the GR based proposal from other dependency represen-
tations are the use of relation subtypes and the definition of a relation
hierarchy to allow lenient evaluations.

While both Lin (1998) and Carroll et al. (1998) promote dependency-
based evaluation because of its advantages in cross-parser comparison,
Collins (1999) uses word–word dependency evaluation for stand-alone
evaluation of his treebank parser, trained on the Penn Treebank. His
motivation for doing so is that this allows a finer-grained evaluation,
capturing attachment accuracy. This reinforces the idea that dependen-
cies are better able to show what a parser should be attempting to return.
Collins uses a set of heuristics to determine the head word of each con-
stituent in a Penn Treebank tree and calculates dependencies based on
these. Since the same mapping is carried out for the gold standard and
the parser output (and indeed is used within the parser), there is no
problem with mis-matching, although no evaluation is given of how the
heads so chosen would relate to those a linguist would select. However,

3.1. Background 53

at least for English, the position of head word of a phrase is generally
consistent, given phrase type, and so these heuristics may be supposed
to give accurate results.

Multiple groups at the Beyond PARSEVAL workshop looked at eval-
uation metrics measured over dependency or grammatical relation type
representations. Clark and Hockenmaier (2002) compared evaluation of
their CCG parser using the PARSEVAL metrics, the dependencies of
Collins (1999) and the dependencies that a different CCG parser (C&C:
Clark et al. 2002) produces natively. They find that the flat nature of
the Penn Treebank, compared to the binary branching of CCG trees,
leads to an automatic decrease in bracket precision for CCG and also
makes PARSEVAL too lenient towards mis-attachments produced by
Penn Treebank parsers. The Collins dependency measure, in contrast, is
neutral to the branching factor of trees, since the number of dependencies
is related only to the number of words and they find that the unlabelled
dependencies allow a valid comparison with Collins’ work. There is still a
problem comparing labelled dependencies however, since the node labels
used by CCG are very different from those used by Collins and include
information about the sentence structure. This leads to one error be-
ing propagated to every word in that constituent, a similar problem to
that caused by using bracketing and one that dependency-based evalua-
tion was meant to circumvent. The C&C CCG dependencies are ‘deep’
dependencies, encoding argument positions even when arguments are dis-
placed due to raising, extraction etc. and hence are quite similar to those
of Carroll et al. (1998). However, as with the other CCG dependency
evaluation, the relations here are CCG constituent labels which are very
detailed and encode how a derivation was calculated, rather than just
represent the final result. As such, while it would be a useful tool for
focussing further development work on a CCG parser towards problem-
atic structures, this dependency style would need to be generalised to
compare with work in anything but the CCG formalism.

Another evaluation metric comparison at Beyond PARSEVAL was by
a group (Crouch et al. 2002) that worked with a different non-Penn Tree-
bank parser, the LFG-based XLE parser (Maxwell and Kaplan 1993).
They compared between evaluation at the level of a feature specifica-
tion of their native f-structure (a preds-only version that strips out some
grammatical detail) and the grammatical relations suggested by Car-
roll et al. (1998). Their second evaluation involved mapping from the
f-structure to grammatical relations. They report that both metrics ap-

54 Chapter 3. Parser Evaluation

pear to display similar behaviour with respect to upper bound, lower
bound and error reduction, but that the grammatical relation metric is
systematically lower than the other and they attribute this to the map-
ping process. Mapping from one representation to another is a large part
of any comparative evaluation and even between representations that ap-
pear to encode the same information, small differences in tokenisation,
lemmatisation and granularity, as well as actual differences of analysis
opinion can lead to significant differences in scores. As mapping is a re-
curring theme within parser evaluation work, the next section is devoted
to summarising some of the methods, problems and results related to
inter-representation mapping.

3.1.3 Mapping Between Representations

PARSEVAL was designed as a lowest common denominator standard,
ignoring any distinctions for which there was no consensus. Despite this
minimal standard, mapping rather than deleting was still required in
some circumstances. One early attempt to use the PARSEVAL metric
(Grishman et al. 1992) describes the rewriting they had to do, even given
the specified deletions, to compare their Linguistic String Theory-based
parsing (subject, verb, object) to the X-bar theory based treebank.

In proposing dependencies as a medium for evaluation, Lin (1998) also
defines an algorithm for mapping from a phrase structure tree to a depen-
dency representation. This algorithm uses heuristics to select the head
word on any constituent (similar to Collins (1999)) and is quite English
specific. No full scale evaluation of the fairness of this mapping is given.
More generally useful, Lin (1998) also provides a method of mapping be-
tween parses that use different tokenisation. As tokenisation is a major
problem in parser comparison, this step is frequently necessary. Lin’s
method, for each span where tokenisation differs, takes the largest token
as the standard and ignores dependencies within that. Since this is open
to abuse (by calling a whole constituent one token), token boundaries
are enforced at white space. This is a reasonable heuristic but fails when
multi word expressions are given special treatment by a parser (as is the
case with many lexicalised parsers).

Crouch et al. (2002) detail some of the problems they encountered
when attempting to map between two representations that might be sup-
posed to encode almost the same information, LFG f-structure features

3.1. Background 55

and the grammatical relations of Carroll et al. (1999). As they calcu-
lated the mapping between gold standard annotations of the same data
set, they expected a straightforward and deterministic mapping. Apart
from tokenisation problems, ‘standardisation’ of the lexical items caused
issues. The grammatical relation (GR) gold standard used the unin-
flected form of a word as the head (e.g. walk for walking) which could
usually be recovered from the LFG f-structure, but in some cases there
were inconsistencies where, for example, should was mapped to shall in
the GR standard but not LFG, and himself to he in LFG but not GR.
Added to this, in the GR standard any American spelling was normalised
to the appropriate British representation. At a higher level, there were
problems because the authors were mapping from the f-structure only,
since that was supposed to encode the dependency relations, however
they found the GR standard actually encoded a mixture between surface
phrase structure and underlying dependencies. Hence the f-structure, by
abstracting away surface differences, lost some of the information neces-
sary to distinguish clausal and non-clausal subjects, as well as the surface
representation of tense, aspect and mood, which are instead reported as
semantic features in LFG.

Learning from the problems they found in the above mapping task,
a new dependency bank, the PARC 700 Dependency Bank (depbank:
King et al. 2003) was created with the aim of abstracting away from
those surface structure features recorded by Carroll et al.. Kaplan et al.
(2004) then used this dependency bank to evaluate their own parser and
the Collins statistical parser (Collins 1999), requiring a mapping from
the shallower Collins parser output to depbank format. The mapping
they perform replaces surface form words with their uninflected version
and makes some systematic changes for head selection in coordinations
and sentential complements. They also compensate for the difference in
treatment of auxiliaries. The Collins parser distinguishes objects, ad-
juncts and subjects, but not exactly as LFG does. No attempt was made
to adjust the subjects of coordination or of matrix verbs, since this was
considered to be adding extra information that the parser did not know.
While the authors released the results of the mapping, it is still hard
to evaluate the fairness of the subsequent comparison. As reported, the
Collins parser had an f-score 5% lower than the best result of the XLE
parser, but it is not clear how much of that gap is due to the mapping
process.

Another mapping to depbank was described in Burke et al. (2004).

56 Chapter 3. Parser Evaluation

In this instance, the goal was to evaluate an automatic f-structure anno-
tator that produced f-structures from Penn Treebank trees. Despite the
fact that depbank and the annotator are linked to the same linguistic
formalism, LFG, the conversion was not straightforward. The first stage
of mapping added the depbank named entity markup to the parse trees
to be annotated. Then, after annotation, post-processing was carried out
to rename features, in some cases collapsing distinctions made in dep-
bank (e.g. allowing adjunct to map to either adjunct or mod). The
addition of extra features was also required, using heuristics to determine
properties such as number and statement type from the base annotation
and the lexical item. Finally xcomp Flattening was used to transform
the automatic annotation of auxiliaries to the pred and tense represen-
tation used in depbank. After all this, the f-score was still significantly
lower than that achieved over their own evaluation set, DCU 105,1 a set of
hand-constructed LFG analyses for 105 randomly selected sentences from
Section 23 of the Penn Treebank. While overfitting on the DCU105 could
contribute to this (and was one motivation for this new evaluation at-
tempt), as with the Collins parser experiment, it is hard to quantify how
much of the error can be attributed to the mapping process. Examina-
tion of the results showed one issue to be treatment of hyphenated words,
which are commonly, but not always separated in depbank, which was
not considered in the mapping since there is no way to decide when to
split deterministically. This was not a parsing task, so the results can
not be compared to the early work, but they still underline some issues
in mapping: both the difficulty (even with the same formalism) and the
problem of distinguishing errors due to conversion and errors due to the
task being evaluated.

Briscoe and Carroll (2006) also attempt to evaluate against the PARC
700 depbank, evaluating a parser that produces grammatical relations
(GRs). They find (mirroring Crouch et al. 2002), that depbank annota-
tion is too close to its LFG roots and re-annotate with their own system.
In some cases this involves simplifying or omitting the depbank anno-
tation, though there are instances of annotating according to different
linguistic philosophies. This is an alternative to mapping (particularly
as they have released their annotations alongside the original depbank
annotations) but it doesn’t allow numeric comparison, merely points out
the disagreements over what should be evaluated.

1Available at http://www.computing.dcu.ie/research/nclt/gold105.txt.

3.1. Background 57

Clark and Curran (2007a) use the Briscoe and Carroll re-annotation
(DepBank: Briscoe and Carroll 2006) to evaluate their CCG parser.
Again they find that an apparently straightforward mapping task is a
time-consuming and non-trivial exercise. In many cases, as in the LFG
to GR conversion, mapping required converting from a deep semantic
relation to one more surface related. As an attempt to explicitly mea-
sure what effect mapping errors have on the final results, they run the
conversion script they devised on gold standard CCG annotations for the
same data set as that of DepBank. Comparing these dependencies to the
DepBank annotations, they achieve 84.76% f-score, after a lot of effort
had gone into the conversion process. Since this is what they achieve on
perfect parses, this provides an upper bound of what the parser could
hope to achieve over DepBank. The results from their actual parser give
an f-score of 81.86%, less than 3% below the upper bound. They do not
report what results they achieve over this data set against the CCGbank
dependency annotations, but over the entire Section 23 (from which the
DepBank sentences come), the parser achieves an f-score of 85.45%. It
is not clear what these results mean, but their claim that any evaluation
that involves mapping should report an upper bound on the conversion
has merit.

Miyao et al. (2007) take on the challenge given by Clark and Curran
to evaluate on DepBank, and provide a conversion upper bound along
with the results. They convert the output of their ENJU HPSG-based
parser, along with three Penn Treebank style parsers: Charniak and
Johnson’s reranking parser, Charniak’s parser and the Stanford parser.
Results could only be called inconclusive. While ENJU achieves the
best f-score compared to the three treebank parsers and also Clark and
Curran’s CCG parser, they also have the highest upper bound from the
conversion process. Table 3.1 summarises the relevant results they give.
Is a parser that comes closer to its upper bound a better parser than one
with a higher score?

3.1.4 The Score

Any sort of quantitative evaluation ends up producing one or several final
numbers. The different methods of calculating these final numbers can
produce significant differences in the final number, but this fact is often
disregarded in reporting results. One aspect of this is clear definitions of

58 Chapter 3. Parser Evaluation

Parser

Upper
bound on

f-score
after

conversion

Parser
f-score
after

conversion

Absolute
difference
from the

upper
bound

Enju 87.14 82.64 4.50
C&J parser 74.54 72.81 1.73
Charniak parser 74.54 72.65 1.89
Stanford parser 74.54 69.44 5.10
C&C parser 84.76 81.86 2.90

Table 3.1: Microaveraged scores over the DepBank GRs from different
parsers, after mapping. From Miyao et al. (2007)

the evaluation criteria: accuracy, precision, recall and coverage should all
be clearly defined, particularly when examining parsers that do not al-
ways produce an analysis. Recall of sub-sentence elements, for instance,
varies significantly depending on whether the number of gold elements
includes those from the inputs for which no analysis was returned. Rimell
and Clark (2008b) talk about a more subtle factor of how the selection of
which granular elements to count can affect final scores as well as partial
credit. Their work is based on the assumption that the real linguistic ob-
jects we wish to measure are syntactic phenomena, and so they describe
the effect, in three different granular relation-based evaluation schemes,
of mis-identifying all or part of various syntactic phenomena, such as
passive and coordination constructions. One highlight that comes from
this work is that relations are not independent and hence getting one
aspect of an analysis correct can make it (almost) certain that another
aspect of the analysis is also correct. This leads to the criticism that very
fine-grained evaluation schemes have the effect of double counting certain
correct (or incorrect) decisions that a parser might make. The flip side
of this is that coarser grained schemes do not allow for the full range of
partial credit to be counted. One solution to this issue would be to count
only those relations that are at least partially independent, however this
actually depends on the parser formalism and implementation. For cross-
framework comparison it is impossible. The other ‘solution’ is to reframe
the problem. Going back to the earlier ideas of this chapter, evaluation
should be about evaluating how close the parser output gets us to the
parsing goal. If, indeed, the goal of parsing is to identify completely

3.1. Background 59

certain syntactic phenomena, then that is what should be counted. If
certain phenomena, or aspects of phenomena are more important to get
right, then they should have a heavier weight in the calculation of the
final score. The re-occurring problem is that evaluation has generally
been framed as how well does the parser do what it does, rather than
how well does the parser do what needs to be done. While both perspec-
tives have some validity for internal parser assessment, when comparing
parsers or evaluating suitability for a task, the second, more independent
perspective should be the guiding question.

3.1.5 Application-based Evaluation

One inter-parser evaluation method that directly addresses the question
how well does the parser do what needs to be done? is to use application
performance as a metric. By substituting different parsers into place in an
application, the performance of the application provides a direct means to
say which parser performs better in that application. Miyao et al. (2008)
take eight different parsers, and perform such a task-oriented evaluation,
where the task is to identify protein-protein interactions in biomedical
texts. They use parsers with different default output formats, including
phrase structure trees, dependencies and predicate argument structures
and convert each (where possible) to five different representations: Penn
Treebank style phrase structure trees, three different dependency formats
and the predicate argument structure used by the ENJU parser. Features
were extracted from each parser and representation combination, and
fed separately to SVM-based machine learning classifiers. Their results
showed that, for the same training data, all parsers had approximately
the same accuracy, and all representations were about the same, except
the phrase structure trees that led to lower accuracy. There was signif-
icant differences in the speed between parsers, with dependency parsers
being much faster than all the others. This is an interesting result, but
the methods raise certain questions about their conclusion that all the
parsers were equal. Both the conversion to different representations and
the feature extraction mechanisms affect the final performance, as the
authors acknowledged when they suggested that better results might be
achievable for the phrase structure tree representation if different features
were extracted. By limiting the features to something that all parsers can
produce, this evaluation method can artificially limit the contribution of

60 Chapter 3. Parser Evaluation

a parser. Defining a task-based evaluation that this criticism could not
be levelled against is very difficult however, and this work provided mean-
ingful numbers to application developers showing how parsing could help
their application.

3.1.6 The Lessons Learnt

A recurring problem from the above discussion is that everyone wants
to evaluate something different, usually something that could be sum-
marised as “what my parser can produce”. Hence people working with
Penn Treebank parsers want to evaluate how well their parser can re-
create the Penn Treebank, dependency parsers want to evaluate syntac-
tic word-to-word dependencies, and deep parsers want to evaluate deep
or semantic dependencies. This comes about because of the issue raised
earlier in this chapter: the disconnect between the parser and how the
parser output will be used.

While there are no silver bullet solutions to this problem, many of
these issues can be mitigated for a particular situation by carefully defin-
ing the goals of evaluation and the (hypothesised) goals of parsing. The
second half of this chapter describes the evaluation metrics that will be
used for the remainder of this thesis. In this work, the goal is to compare
variations of the same parser to judge the effect of specific modifications
and as such, there is no need for mapping to a generic representation.
However, the envisaged goal of parsing is to use the analyses in an appli-
cation, and so the evaluation metrics need to be easily understood by an
application developer. While the exact application is not specified, we
assume an application that requires some semantic information rather
than merely a statistical language model. By evaluating robustness, effi-
ciency and accuracy separately, we hope to allow application developers
to make an informed decision depending on the particular requirements
of their application.

3.2. Evaluating the PET Parser Output 61

3.2 Evaluating the PET Parser Output

3.2.1 The Treebanks

As Carroll et al. (1998) say, full parser evaluation requires an annotated
gold standard and both the English and Japanese DELPH-IN grammars
that are used with the PET parser come with a set of treebanks that can
be used for this purpose. As explained in Chapter 2, an HPSG analysis
is much too complex to be annotated by hand, and so these treebanks
are produced by parsing the input items using the PET parser, and
then having an annotator select the correct analysis using the LinGO
Redwoods treebanking environment (Oepen et al. 2004b). Unlike the
Penn Treebank (or others such as the Prague Dependency Treebank or
the German TiGer Corpus), the treebanks created in this fashion are
dynamic treebanks. This means that as the underlying linguistic theory
evolves and matures, the annotations can be easily updated to reflect
any changes. In order to facilitate this, the annotations are recorded as
a set of decisions based on so-called parse discriminants (Carter 1997).

The annotator is initially shown all analyses produced by the parser
along with a list of discriminants that distinguish between sets of parses.
By making binary decisions on the correctness of these discriminants,
the set of analyses is whittled down until only one parse remains, at
which point this parse can be accepted or rejected. When the grammar
is changed as the grammar writers refine their analysis, the corpus can
be reparsed and all the old annotation decisions still applicable can be
automatically applied to the new corpus. Any unchanged analysis is
kept and the annotator only needs to see parses that are affected by the
change. Additionally, many of the old decisions will still be relevant even
for those parses and only a few new decisions should be required of the
annotator.

There are many treebanks released with the English Resource Gram-
mar (ERG: Flickinger 2002). Some of them are test suites specifically
written to cover a set of linguistic phenomena and the items in these
data sets tend to be short in order to better focus on the phenomenon
of interest. The other data sets are taken from real world corpora and
reflect real world language usage. It is from this second group that we
select the sets that will be used for evaluation throughout this thesis.

An important artifact of the way these treebanks are produced is the

62 Chapter 3. Parser Evaluation

fact that not all test items have a gold analysis. Only those items for
which, firstly, the parser produced an analysis and, secondly, the anno-
tator decided that at least one of the analyses was completely correct
will have a gold analysis recorded. It would, of course, be possible to
only release those items that have a gold analysis, but these data sets
are used, among other things, to measure coverage of the grammar which
requires a fixed test set against which improvements can be measured.
This leads to three categories of test items within a test set: those with
a gold analysis; those parseable, but with no completely correct analy-
sis; and the unparseable items. Table 3.2 describes the test sets we will
be using, including the number of items, their average word length, the
number of items with a gold analysis, the number of items with any anal-
ysis (Parsed) and the ambiguity of these parsed items. This ambiguity
figure is the average number of analyses per item and can be considered
both a measure of grammar precision and an indication of the difficulty
of parse ranking. Lower ambiguity shows a ‘tighter’ grammar, one that
discards ungrammatical analyses, leaving it to the parse ranking model
to discard possible but unlikely analyses. Since language is genuinely
ambiguous, this number will almost always be greater than one, even for
the perfect grammar, and will in general be higher for longer test items.
In the creation of this gold standard data the number of analyses is lim-
ited to the best 500 according to the parse ranking model released with
the grammar. As such, the ambiguity numbers reported here are not
true ambiguity, but still give a representative picture, since many items
will have fewer than 500 analyses.

Of the four test sets shown, the first two consist of Norwegian tourist
data from the LOGON English-Norwegian machine translation project
(Oepen et al. 2004a). The jh5 set is part of the training data for the
parse ranking model, while jhpstg t is material from the same source, but
not used in training the statistical model. This data has been used to
test the grammar for many years now and so the lexical coverage of the
grammar is high for these sets. The last two sets are web data — in both
cases edited text and hence they don’t have the same high proportion of
ungrammaticality that could be expected in less formal web data, but
they both contain a lot of technical vocabulary and other uncommon
words.

3.2. Evaluating the PET Parser Output 63

Test Word
Set Items Length Gold Parsed Ambiguity Comment

jh5 464 12.92 413 442 196.73 Tourism data
jhpstg t 814 13.45 739 784 202.62 Tourism data
ws02 946 17.35 717 853 269.56 Wikipedia articles
cb 769 21.63 503 649 317.09 Technical essaya

aThe Cathedral and the Bazaar, by Eric Raymond.
Available from http://catb.org/esr/writings/cathedral-bazaar/

Table 3.2: Summary of English test data sets, showing the number of
items in each set, the average word length, the number of items for which
a gold analysis is available and the number of items for which at least
one parse was possible. Ambiguity is the average number of parses found
for each item, where the parser was limited to a maximum of 500 parses.

3.2.2 Coverage and Efficiency

In order to produce baseline results against which to compare in later
experiments, the data sets described in Table 3.2 were parsed with the
0902 release version of the English Resource Grammar (ERG), using the
PET parser configured2 to produce only one analysis and to use the
subsumption-based ambiguity packing of Oepen and Carroll (2000) and
the selective unpacking of Zhang et al. (2007b). The time limit was set
to a maximum of 60 seconds and the supplied jhpstg.mem parse ranking
model was used. No external information was used for unknown word
handling in this baseline experiment. Table 3.3 shows the coverage and
efficiency for each set. In this instance, efficiency is shown as the av-
erage total time and memory usage per item, as reported by the [incr
tsdb()] system. The time includes parsing time only and ignores gram-
mar and model loading time. Both measurements ignore items which
failed because of unknown words, but include those items that were not
complete within the 60-second time limit. Coverage is the percentage of
items which received a parse. For comparison, gold coverage (the Parsed
column from Table 3.2) is also shown. The procedure for creating these
results differed in two ways from that used in creating the gold standard:
the gold set was parsed allowing up to 500 analyses per sentence3 to give
the annotators something to select from; and there was some unknown

2options: -nsolutions=1 -packing -timeout=60
3option: -nsolutions=500

64 Chapter 3. Parser Evaluation

Test
Set

Raw
Coverage

Gold
Coverage

Unknown
Words

Timed
Out

Seconds
per Item

MB per
Item

jh5
jhpstg t

ws02
cb

95.5%
93.7%
56.8%
57.1%

95.3%
96.3%
90.2%
84.4%

—
2.7%

37.7%
33.8%

0.2%
0.2%
0.5%
1.8%

1.69
0.97
2.00
3.85

99.83
82.74

128.45
187.47

Table 3.3: Baseline coverage and efficiency. Raw coverage is the per-
centage of items that received a parse and the coverage from the gold
treebanks is provided for comparison. The percentages of sentences that
failed to parse because of unknown words or because parsing had not
completed within the 60-second time limit are shown as Unknown Words
and Timed Out respectively. Average time and memory are calculated
only for those sentences that do not fail instantly due to unknown words
and are given in the last two columns.

word handling utilised when the gold set was created. As later experi-
ments will only evaluate the top parse, limiting the parse to one analysis
now will allow better comparisons and is a more realistic application
scenario. The percentage of parses that failed due to a lack of unknown
word handling is shown in column Unknown Words and those that timed
out (took longer than 60 seconds to parse) in column Timed Out.

The first obvious point to take from these results is the major issue that
unknown words can cause in unseen text. In both of the web data based
test sets parsing fails instantly for over 30% of items because of unknown
words. Chapter 5 will discuss unknown word handling mechanisms and
to what extent they solve this problem. In terms of efficiency, both time
and space show a similar picture: the shorter items from the tourism data
are quicker to parse and use less memory, the longer items from cb take
the most time and memory (and incidently have the highest percentage of
timeouts). It is not a direct relationship however and Chapter 6 examines
another factor that affects parser efficiency. The parsing speeds shown
here, while not unusable, are still perhaps a bit slow for large scale parsing
and Chapter 6 reports some experiments designed to improve that aspect
of parsing.

3.2. Evaluating the PET Parser Output 65

3.2.3 Accuracy

The DELPH-IN grammars are often known as precision grammars, but
many recent experiments on improving the PET parser or the grammars
have focussed on coverage as the primary evaluation. Those that do
report precision vary between so-called ‘oracle’ precision and top-1 preci-
sion. Oracle precision evaluates the proportion of sentences that, having
produced at least one parse, produces a correct parse. If the parser has
been limited to a maximum number of parses, it is possible that the
correct parse might be available to the grammar, but not found. Still,
by setting the maximum number of parses high enough (the tradition is
500), the effect of parse ranking is reduced, and oracle precision might
be thought to evaluate the grammar only, discounting the effects of the
parser and parse ranking. Top-1 precision measures the proportion of
parsed sentences that have the correct parse ranked highest and so eval-
uates the grammar and parse ranking model as a complete system. Top-1
precision is a more realistic evaluation where the goal is use of the parser
in an application, since an application will generally not have the luxury
of a human hand-picking the best parse from those returned. Oracle pre-
cision is appropriate to evaluate techniques that affect the grammar (in
most cases, more specifically, the lexicon). Importantly, in both cases,
the correct parse is the parse that matches the gold standard exactly in
every way. Table 3.4 shows oracle precision, top-1 precision and mean
reciprocal rank (MRR) for each of the five test sets, where reciprocal
rank is the reciprocal of the rank of the analysis that exactly matches
the gold standard, or zero if there is no such parse in the top 500. The
parser was run with the same configuration as before, except that the
top 500 best parses were recorded in order to calculate oracle precision
and MRR.

The oracle results might be considered an upper bound on the perfor-
mance of the parse ranking model. The performance on most data sets
is quite high, but there are still a percentage of sentences in each set for
which the grammar currently does not have a completely correct analy-
sis, even though some sort of analysis was produced. The top-1 precision
assesses the parse ranking model alongside the grammar. As expected,
the best performance comes on the jh5 data set that actually formed part
of the training data. The other results were as expected, with those for
the in-domain set jhpstg t better than the out-of-domain sets. Here the
MRR appears to be simply a more lenient version of top-1 precision but,

66 Chapter 3. Parser Evaluation

Test set Oracle precision Top-1 precision MRR

jh5 0.934 0.656 0.742
jhpstg t 0.948 0.433 0.536
ws02 0.858 0.388 0.470
cb 0.817 0.204 0.295

Table 3.4: Baseline precision. Oracle precision is the proportion of sen-
tences that, having received at least one parse, had a correct parse within
the top 500 parses. Top-1 precision is the proportion of parsed sentences
that had the correct parse ranked highest and MRR is the mean of the
reciprocal rank of parsed sentences, where the reciprocal rank is the re-
ciprocal of the rank of the parse that exactly matches the gold standard,
or zero if no such parse is in the top 500 analyses.

where the parse ranking model is the main component being evaluated,
it provides a broader picture of any effects of changing the model since
it measures not only improvements in the percentage of correct parses
ranked on top, but also when the correct parse moves up in the rankings,
even if not as far as the top. Of course, if the aim is to focus solely on
the effect of the parse ranking model, it might make sense to focus only
on that subset of data for which we know a gold analysis exists. In the
current configuration, that would have the effect of making the upper
bound (oracle precision) 1, since the conditions are the same as those
that produced the gold standard, except for the lack of unknown word
handling which may affect coverage but not precision.

Our stated aim for evaluation, however, is to assess suitability for a
task, which indicates that we should evaluate the parser, grammar and
parse ranking model as a complete system, and focus on top-1 evaluation.
The problem is that the top-1 precision figures here only give half the
picture. By making a binary correct or incorrect decision about the top
tree, we ignore the fact that some ‘wrong’ trees are better than others.
Particularly given the detail produced by DELPH-IN HPSG grammars
like the ERG, in some cases only subtle distinctions or arbitrary decisions
separate some analyses. If the purpose of evaluation is to judge the
appropriateness of this grammar and parser for a particular application,
it makes more sense to ask How good is the top result?, rather than, Is
the top result the very best analysis the grammar is capable of?. Even
when the goal of evaluation is to drive grammar internal improvement,
rather than anything application specific, it helps to have a more detailed

3.2. Evaluating the PET Parser Output 67

picture of what the grammar is getting right or wrong, alongside the exact
match results. This motivates the experiments in granular evaluation in
the next section.

3.2.4 Elementary Dependency Match: A New Granular
Evaluation

With a few exceptions, parsing results in the wider community are over-
whelmingly not given as functions of exact sentence match. The standard
metric in the PCFG parsing community, as discussed in Section 3.1.1, is
PARSEVAL, a metric based on counting matching brackets that mark
phrase boundaries. In dependency parsing (labelled and unlabelled)
triples of <head,dependency,modifier> are the elements that are counted.
While the DELPH-IN HPSG parser does produce trees as part of its anal-
ysis (derivation trees as well as the compacted phrase structure trees used
in treebanking), our hypothetical application requires semantics, and so
it makes sense to evaluate this semantics, rather than the steps used to
obtain it. While the canonical representation of these semantics is an
MRS structure (as described in Section 2.1.1), it is possible to present
most of the information (excluding scopal information) in the MRS in
the form of triples, abstractly similar to those in dependency parsing.

These triples are formed from what Oepen and Lønning (2006) have
defined as Elementary Dependencies. In their work, details from these
dependencies were used as discriminants denoting individual differences
between different analyses, and annotators made binary decisions regard-
ing the correctness of these discriminants to select the correct analysis
from amongst a set of possible analyses of a sentence. Oepen and Lønning
described three different forms of discriminant:

(a) relationi

(b) relationi rolej relationk

(c) relationi propertyj valuej

In these forms, relation is the predicate name of an elementary pred-
ication (EP) from the MRS, role is an argument type such as arg1,
property refers to an attribute such as tense or gend and value is an
appropriate instantiation for the respective property. For evaluation pur-
poses, we are also interested in individual differences between analyses,

68 Chapter 3. Parser Evaluation

but in our case, we want to count them and so small alterations are re-
quired to the above definitions. In our Elementary Dependency Match
(EDM) metric, we use the three types of discriminants listed above, how-
ever, in those forms an error in predicate name is propagated to each
discriminant bearing that relation. To counter that issue, instead of us-
ing the predicate name to identify a relation, we use the character span
associated with the relation’s EP, which links to the span of the input
text that triggered the creation of that predicate. To relate the actual
predicate relation to the character span, we introduce a meta-relation
name. Now we have three types of triples:

names: spani name relationi
args: spani rolej spank
props: spani propertyj valuej

Figure 3.1 shows an example of the triples for the gold analysis of A
declaration associates a variable name with a datatype. with the args
highlighted. These triples represent the core of the semantic information
contained in the analysis, except for scopal relations and they provide
an easy way to see how an analysis of a sentence differs from the gold
analysis. Figure 3.2 shows the verbose output of comparing an analysis
against the gold standard, using the diff convention of marking missing
lines (or triples) with < and extra lines with >.

In this representation of the differences between analyses, it can be
seen that in the top-ranked parse, variable was mis-analysed as an adjec-
tive, rather than a noun. This meant first that the associated predicate
was assigned the properties of an adjective, and secondly that variable
name was considered an adjective-noun construction, rather than a noun
compound. The numeric results are calculated over all EDM triples, as
well as separately over the three different types defined earlier. In this
example, all four sets of numbers are similar, but different sorts of errors
can have greater impact on one triple type over another, leading to wider
variation between the sets of numbers.

An EDM evaluation of our four data sets was carried out using the
same parser options as those used for the coverage and efficiency evalua-
tions4 and hence only evaluating the top parse as selected by the statisti-
cal model. Since it is not possible to evaluate an analysis for which there
is no gold standard, the precision, recall and f-score are calculated across

4options: -nsolutions=1 -packing -timeout=60

3.2. Evaluating the PET Parser Output 69

“a” <0:0> name a q
“a” <0:0> ARG0 <2:12> “declaration”

“declaration” <2:12> name declaration n of
“declaration” <2:12> pers 3
“declaration” <2:12> num sg

“associates” <14:23> name associate v with
“associates” <14:23> ARG1 <2:12> “declaration”
“associates” <14:23> ARG2 <40:43> “name”
“associates” <14:23> ARG3 <54:64> “datatype.”

“associates” <14:23> sf prop
“associates” <14:23> tense pres
“associates” <14:23> mood indicative
“associates” <14:23> prog -
“associates” <14:23> perf -

“a” <25:25> name a q
“a” <25:25> ARG0 <40:43> “name”

“variable name” <29:43> name compound
“variable name” <29:43> name udef q

“variable name” <29:43> ARG0 <29:36> “variable”
“variable name” <29:43> ARG1 <40:43> “name”
“variable name” <29:43> ARG2 <29:36> “variable”

“variable name” <29:43> sf prop
“variable name” <29:43> tense untensed
“variable name” <29:43> mood indicative
“variable name” <29:43> prog -
“variable name” <29:43> perf -

“variable” <29:36> name variable n 1
“variable” <29:36> ind +

“name” <40:43> name name n of
“name” <40:43> pers 3
“name” <40:43> num sg
“name” <40:43> ind +

“a” <50:50> name a q
“a” <50:50> ARG0 <54:64> “datatype.”

“datatype.” <54:64> name datatype nn
“datatype.” <54:64> pers 3
“datatype.” <54:64> num sg

Figure 3.1: EDM triples for the gold analysis of A declaration associates
a variable name with a datatype. The input text span associated with
the character spans is shown for illustrative purposes in the first and last
columns.

70 Chapter 3. Parser Evaluation

< “variable” <29:36> name variable n 1
> “variable” <29:36> name variable a 1

< “variable” <29:36> ind +
> “variable” <29:36> sf prop
> “variable” <29:36> tense untensed
> “variable” <29:36> mood indicative

< “variable name” <29:43> name compound
< “variable name” <29:43> name udef q
< “variable name” <29:43> arg0 <29:36> “variable”
< “variable name” <29:43> arg1 <40:43> “name”
< “variable name” <29:43> arg2 <29:36> “variable”
< “variable name” <29:43> sf prop
< “variable name” <29:43> tense untensed
< “variable name” <29:43> mood indicative
< “variable name” <29:43> prog -
< “variable name” <29:43> perf -
> “variable” <29:36> arg1 <40:43> “name”

all Precision: 0.833 Recall: 0.676 F-score: 0.746
names Precision: 0.875 Recall: 0.700 F-score: 0.778
args Precision: 0.857 Recall: 0.667 F-score: 0.750
props Precision: 0.800 Recall: 0.667 F-score: 0.727

Figure 3.2: Verbose output of a comparison of EDM triples from the
gold and top-1 analyses of A declaration associates a variable name with
a datatype. Numeric results are given for all triples, as well as separately
for the names, args and props triple types. Lines headed by < depict
triples missing in the top-1 analysis, while those headed by > show triples
that are incorrectly included in the top-1.

3.2. Evaluating the PET Parser Output 71

EDM evaluation Exact match evaluation
Test set Precision Recall F-score Precision Recall F-score

jh5 0.965 0.965 0.965 0.702 0.702 0.702
jhpstg t 0.921 0.903 0.912 0.456 0.447 0.451
ws02 0.888 0.520 0.656 0.452 0.289 0.352
cb 0.884 0.611 0.723 0.250 0.177 0.207

Table 3.5: EDM evaluation over all triple types measured across all items
for which a gold standard exists. Exact match evaluations are shown
for comparison. Exact match precision is the same as top-1 precision
from Table 3.4, except measured only over those sentences with a gold
standard. Exact match recall and precision have the related definitions.

only those test items for which a gold analysis has been recorded. These
results are shown in Table 3.5 along with exact match precision, recall
and f-score calculated over the same test items for comparison. This ex-
act match precision is the same as the top-1 precision given in Table 3.4,
except that it is only calculated over those sentences for which a gold
standard exists, and so the numbers are slightly higher. The associated
recall and f-score figures are included to allow direct comparison between
the granular and exact match evaluation metrics. One noticeable vari-
ation between the two occurs when looking at the relative differences
between performance on the ws02 and cb data sets. While recall on cb
according to exact match is lower, showing that the best parse is not
often ranked top, recall according to EDM is higher, indicating that a
higher proportion of relations are correct in cb than in ws02.

Table 3.6 reports the best published granular evaluations of other pop-
ular parsers. None of these results are directly comparable, since they
use different evaluation schemes and different test sets, but they give
an overview of state-of-the-art parsing. While compiling these results,
many of the problems involved in comparing across parsers came up:
some system use gold standard POS tags (hardly a realistic scenario)
and others don’t; many use a subset of the Penn Treebank Section 23,
but that subset changes; some ignore punctuation and others count it;
some results are calculated over just those sentences parsed, while others
use all sentences. In some cases, there was not enough information given
to determine these variables for each set of results.

Clark and Curran (2007b) and Miyao and Tsujii (2008) use proba-
bly the closest evaluation schemes to the one described here, although

72 Chapter 3. Parser Evaluation

Data Set Precision Recall F-score

Collins and Koo (2005) PTB §23
(<100 words)

89.6 89.9 89.7

Charniak (2000) PTB §23
(<100 words)

89.6 89.5 89.5

McClosky et al. (2006a) PTB §23 n/a n/a 92.1
Kaplan et al. (2004) PARC 700

DepBank
79.4 79.8 79.6

Briscoe and Carroll (2006) GR DepBank 81.5 78.1 79.7
Clark and Curran (2007b) CCGBank §23 86.17 84.74 85.45
Miyao and Tsujii (2008) PTB §23

(<100 words)
86.47 85.83 86.15

Table 3.6: State-of-the-art English parsing performance

neither evaluate the property values as well as the relations. In order
to be more comparable with this work, as well as because relations are
considered more important than properties in many applications, we de-
fine an EDMNA evaluation that combines the names and args EDM
triples. Table 3.7 shows precision, recall and f-score using this EDMNA

evaluation. Sentence accuracy figures are also given, where a sentence
is considered correct if all EDMNA triples in that sentence are correctly
identified. Clark and Curran report a sentence precision of 32.92% and
Miyao and Tsujii a sentence recall of 33.8%. Our sentence accuracy for
the in-domain jhpstg t data set is quite a bit higher, but this is probably
due to the relatively short average sentence length (12.87 words for this
subset, compared to 22.23 for Miyao and Tsujii). The sentence accuracy
results for ws02, which is out-of-domain for the parse ranking model, are
very good, considering the low coverage on this test set — almost half of
the sentences that parsed had all args and names correct. For the cb
data set, the sentence results are much lower than the EDMNA evalua-
tion, echoing the difference we saw in Table 3.5 between EDM and exact
match, since the longer sentences make it more likely that there will be
at least one error in the analysis. Looking at the EDMNA results for the
out-of-domain test tests, we see they both suffer from a low recall caused
by low parse coverage. Chapter 5 will attempt to address this problem.

This EDM evaluation scheme has not been previously used in evaluat-
ing the accuracy of DELPH-IN grammars and parsers, but it has attrac-
tive features that make it a promising candidate for the as-yet undefined

3.3. Conclusion 73

EDMNA evaluation Sentence Accuracy
Test Set Precision Recall F-score Precision Recall F-score

jh5 0.952 0.952 0.952 0.729 0.729 0.729
jhpstg t 0.899 0.881 0.890 0.497 0.487 0.492
ws02 0.857 0.501 0.632 0.469 0.304 0.369
cb 0.846 0.585 0.692 0.268 0.193 0.224

Table 3.7: EDMNA evaluation, which evaluates both names and args
triple types, but not props. Sentence accuracy figures are calculated
based on a sentence being correct if all EDMNA triples in that sentence
are correct.

internal granular evaluation standard for these parsers. It measures the
same sort of atomic units that other deep parsers have used for evalua-
tion, it evaluates semantics directly and it is readily understandable to
application developers as Figure 3.2 should illustrate. The results can
also be broken up by predicate type in order to get a closer look at where
the parser is going wrong, which makes it a useful evaluation scheme for
focussing parser development, but also for evaluating just those relations
that are useful to an application. For example, the EDMNA evaluation
may be the most suitable for an application, but it would also be possi-
ble to only evaluate arg1 and arg2 relations, as the most important.
Another variation could weight the relations differently. The EDMNA

evaluation is the equivalent of setting all props type triples to a weight
of zero, and all other types to weight one, but a more nuanced weighting
scheme is also possible. Evaluation profiles describing these weights, in
the style of the parameter files for EvalB (Sekine and Collins 1997) would
be one way to standardise the parameters of this evaluation scheme, mak-
ing sure that the evaluation profile was available for any published set of
results to aid later comparisons.

3.3 Conclusion
This chapter attempted to give a clear definition of parser evaluation,
emphasising how the goals of parsing and of evaluation can affect the
ideal evaluation method. Different evaluation criteria, such as efficiency
and robustness were discussed, and then an overview was given of the
attempts of the parsing community to define parse accuracy evaluation

74 Chapter 3. Parser Evaluation

metrics. This overview summarised some of the proposed schemes based
on either phrase structure boundaries or dependency relations, and the
case made for the latter over the former. Section 3.1.3 focussed on the
bugbear of cross-framework parser evaluation, inter-representation map-
ping, showing the difficulty of the task, even within frameworks. Some
of the research summarised here raised the question of whether there is
any validity in comparing between mapped results when the mapping
process can have a greater effect on the results than any difference in
parsing performance. Section 3.1.4 discussed how, even among relation-
based evaluation schemes, the granularity of the relations can have a big
impact on a final evaluation score. Again, this problem arises because
of unstated disagreements over the goals of both parsing and evalua-
tion. The aim of the second half of this chapter was to look at how the
PET parser has been evaluated before and, using the ideas developed
through the first half, define the evaluation metrics that will be used in
this thesis. The first lesson learnt was to define the goals of parsing and
evaluation. Throughout this work, we will assume that the goal of pars-
ing is to produce a semantic analysis to be used in an application, where
the semantic analysis should describe all the semantics that is encoded
syntactically. Specifically, the application requires the answers to Who
did what to whom, when, where and how? The evaluation goals therefore
are to assess the parser suitability for this task, and to compare between
different parser configurations, given this task. Evaluation metrics pre-
viously used for this parser were examined and it was found that these
metrics were suitable where the goal was grammar development or, in
other cases, evaluating the parse ranking model. For the current pars-
ing and evaluation goals, however, a granular accuracy evaluation metric
seemed more appropriate, and Section 3.2.4 described the EDM evalua-
tion scheme that we will use, including details of the level of granularity
and why they were selected. The results in Tables 3.3, 3.5 and 3.7 will
provide the baseline for experiments in subsequent chapters.

4 The Supertagger
Many different types of lexical statistics can be learnt from annotated and
unannotated text. Word frequencies, part of speech categories and named
entity information are all frequently used to inform natural language pro-
cessing systems, and tools are readily available to produce this informa-
tion, at least for English. Supertags, as described in Section 2.3, are also
an effective source of lexical information. This effectiveness comes, in
large part, from the close integration with the linguistic formalism used
in parsing, which means that off-the-shelf supertaggers complete with
model are not so easily come by. This chapter will detail experiments de-
signed to find an appropriate supertagger for using with the PET HPSG
parser, where appropriate might vary depending on how the supertagger
is to be used. Later chapters will investigate not only different ways of in-
tegrating the supertagger into the parser for search space restriction, but
also how it can be used for unknown word handling and parse ranking.

4.1 The Tags
The first step is to define the form of the supertag. For both CCG and
LTAG, it appears this step was straightforward, since the CCG categories
and the LTAG elementary trees are the elements stored in the lexicon.
In HPSG, this is not as clear-cut. Section 2.3.3 summarised a few of
the different types of supertag that have been used in HPSG parsing.
This variation is a matter both of implementation as well as formalism.
The information contained in a HPSG sign of type word comes from
different sources, and how much is explicitly encoded in the lexicon varies
according to the grammar implementation. Figure 4.1 shows an example
of a lexical entry from the DELPH-IN ERG we used for evaluation in
Chapter 3.

Most of the information from this lexical entry is specific to the form
and meaning of the associated word: the stem and phon.onset re-
late to the form, while the keyrel.pred is the semantic predicate that
will contribute to the semantic analysis. The –compkey feature is not
present for every lexical entry and encodes the fact that this entry selects
for a preposition of form of in its complement. The more general cate-
gory information associated with this lexical entry is represented by the
lexical type v pp e le, which generalises subcategorisation information.

76 Chapter 4. The Supertagger

think of := v pp e le &
stem 〈 “think” 〉,

synsem

lkeys

[
–compkey of p sel rel

keyrel.pred “ think v of rel”

]
phon.onset con




Figure 4.1: Example lexicon entry from the ERG.

v pp e le

synsem



local


cat



head verb

val



subj 〈
[
local

[
cat nomp cat

]]
〉

spr 〈 〉

comp 〈

local
[
cat basic pp

]
–min 1 selected rel

〉






lkeys

[
–compkey 1

]




Figure 4.2: Lexical type v pp e le, simplified

To a rough approximation, this lexical type represents the same sort of
information encoded in a CCG category or an LTAG elementary tree.
There are two main differences however. First, this lexical type is not an
atomic value, but represents a large feature structure, shown in simplified
form in Figure 4.2. While the names of the lexical types have been chosen
to reflect the feature structure details, they do not completely describe
the lexical type. The other major difference between HPSG lexical types
and supertags from other formalisms is that the lexical type describes
the category of a lexical entry, not a word. In concrete terms, this means
that think, thinks and thought would all trigger this lexical entry and
hence this lexical type. Information from lexical rules, triggered by mor-
phology, is added to that of the lexical entry to produce the lexical item
used in parsing. The terms lexical entry, lexical type and lexical item
are easily confused, but do refer to different types of entity. Figure 4.3
contains definitions for each of these terms.

The decision as to the most appropriate supertag for HPSG should

4.1. The Tags 77

Lexical Entry Element stored in the lexicon. Made up of, at
least, an identifier, a lexical type, a stem (used as a look
up key in parsing), a semantic predicate (look up key during
generation) and phonetic information.

Lexical Type A feature structure containing category informa-
tion for the lexical entry. Describes at least head type and
valence information.

Lexical Item A word sign used in parsing. A combination of the
information from a lexical entry and from one or more lexical
rules.

Figure 4.3: Definitions of the related, but separate terms lexical entry,
lexical type and lexical item.

take into consideration two possibly competing requirements. Previous
research has discussed these two requirements as internal and external
qualities (e.g. Dickinson and Jochim 2008) or computational and lin-
guistic qualities (Leech 1997), looking specifically at the linguistic dis-
tinctions. For this work, however we take an entirely practical point of
view and think of these requirements as predictability, i.e. the tags can
be accurately predicted from local surface information; and usefulness,
where useful means ‘improves parser performance’. While we expect that
a useful tag set will in fact make linguistically meaningful distinctions,
which distinctions are useful will depend on the make up of the parser
and grammar. Looking again at the lexical entry then, the non-word
specific information is contained in the lexical type and the selectional
relations. The more information that can be predicted, the more useful
the supertags will be for their particular purpose. However, in order to
be effective, they also need to be predictable. This chapter focusses on
measuring this predictability, with later chapters determining the useful-
ness of the tags. The granularity that gives the best trade-off between
useful and predictable is something that will be determined empirically.
To this end, four tag granularities are defined.

The most fine-grained tag type is a concatenation of the lexical type
and any selectional relation in a lexical entry, which will be referred to as
letype+sel. A natural coarsening of this form is to use the lexical type
(letype) on its own, as Blunsom (2007) did in his experiments, described
in Chapter 2. These lexical types are still quite specific, and so two fur-

78 Chapter 4. The Supertagger

ther generalisations are defined. As mentioned above, the name of the
lexical type does not reflect all properties of the type, but the types were
deliberately named according to a fixed pattern as a mnemonic for people
using the grammar. This pattern is broken up by underscores () and is of
the form <part-of-speech> <subcategorisation> <description> le. The
part-of-speech is one of a small set of broad categories such as v:verb or
aj:adjective. The subcategorisation gives the types of the arguments, in-
cluding marking some arguments as optional, hence np-np would be the
subcategorisation of a standard ditransitive verb, where pp*-cp repre-
sents an optional prepositional phrase and an obligatory complementiser.
The description field can further specify the lexical type, indicating, for
instance, a particular complementiser or an idiomatic use. Not all lexical
types have a description field. According to this break down, we can
see that the lexical type v pp e le represents a verb with a prepositional
phrase argument, where the preposition is semantically empty. Using
this fixed pattern, we define two further supertag forms. The subcat
form consists of the first two fields of the lexical type and, by leaving
off the often semantic distinctions given in the description field, is quite
close to LTAG elementary trees. The pos tag is the least fine-grained
tag and is made up of only the first (part-of-speech) field of the lexi-
cal type. According to the earlier definition — that supertags embody
richer information than POS tags, particularly dependency information
— these last tags would not even be called supertags. They are included
as a baseline to determine whether the power of supertags is needed in all
cases. Since these pos tags are derived from the lexical type, they match
the distinctions made in the DELPH-IN grammars, something that the
Penn Treebank tags do not always do.

All the above supertag forms relate to the lexical entry. Another vari-
ation, which would be closer to the effective distinctions made in CCG
and LTAG, would be to tag the lexical item. Ninomiya et al. (2006)
did this by concatenating the lexical rules and the lexical types of the
ENJU grammar, as in D<N.3sg> lxm-noun adjective rule, where
D<N.3sg> lxm represents one of their syntactic lexeme categories (lexi-
cal types) and noun adjective rule, an inflectional rule. The analogous
method for the DELPH-IN grammars would be to add the morphologi-
cal rules to each level of granularity, hence giving 8 tag forms which are
summarised in Table 4.1.

One common consequence of making fine distinctions is that many of
the tags will not be frequently seen; this pattern is obvious when looking

4.2. The Training Data 79

Tag Type Example
Number
seen in
training

letype+sel+morph v pp e le + of p sel rel
+third sg fin verb orule

1217

letype+sel v pp e le+ of p sel rel 803
letype+morph v pp e le+third sg fin verb orule 996
letype v pp e le 676
subcat+morph v pp+third sg fin verb orule 254
subcat v pp 110
pos+morph v+third sg fin verb orule 36
pos v 13

Table 4.1: Supertag types, with examples. There are four granularities
based on the syntactic information represented by the lexical type and
selectional relations. In addition, each granularity can be used with and
without morphological information. The numbers show how many dis-
tinct values were seen for each type in the basic training data set that
will be described in Section 4.2.

at the frequency distributions of the tags in the basic training data set,
described in Section 4.2. Examining the distribution of the pos set, it
is fairly balanced, with nouns being about twice as popular as the next
most frequent tag, but the next five tags having similar frequencies, and
there is only one rare tag. As the tag sets get more fine-grained, this is no
longer the case. None of the tag sets show a strictly Zipfian distribution,
since many of the most common tags in each distribution show similar
frequencies, but all the fine-grained tag sets have long tails, with many
tags being seen infrequently in the training data. Table 4.2 shows the
percentages of infrequent tag values of each type, broken down into the
percentage seen less than 100 times, less than 10 times and only once in
the 157,920 token training set.

4.2 The Training Data
All of the training data comes from the dynamic treebanks released with
the 0902 release of the ERG. The total token size of the training set is
157,920 tokens, with almost 94% of that being tourism data from the
LOGON project (Oepen et al. 2004a). The remainder is made up of test

80 Chapter 4. The Supertagger

Tag Type <100 times <10 times only once

letype+sel+morph 84.0% 54.8% 17.7%
letype+sel 79.0% 44.2% 11.2%
letype+morph 80.8% 46.0% 12.2%
letype 75.1% 38.0% 8.3%
subcat+morph 72.4% 41.3% 11.4%
subcat 56.4% 32.7% 7.3%
pos+morph 19.4% 8.3% 0.0%
pos 15.4% 7.7% 0.0%

Table 4.2: The long tail: percentages of infrequent tags in each tag set,
broken down into the percentage seen less than 100 times, less than
10 times and only once in the 157,920 token training set (described in
Section 4.2).

suites designed to test particular syntactic and semantic phenomena.
Table 4.3 lists the treebanks in the training set, along with their vital
statistics. These statistics represent only those items which have a gold
analysis and hence can be used for training.

4.2.1 Extracting the data

As described in Section 3.2.1, these treebanks have been constructed by
parsing the data and then having an annotator select the correct parse
out of the top 500 produced by the parser. Only those parses anno-
tated as completely correct have been used in training. The training
data was extracted from gold derivation trees, but this was not a com-
pletely straightforward process. As discussed in Section 2.4, the ERG
does not natively use Penn Treebank tokenisation. Figure 4.4 shows an
example derivation tree for the sentence The natural environment was
favorable, at least. Here we can see some of the possible issues involving
mismatches between the expected input and the output tokenisation. In
the token favorable,, we see the comma attached to the word, one of
the key differences between Penn Treebank tokenisation and that of the
ERG. Even if it were decided to use the ERG native tokenisation as in-
put to the supertagger, that would not solve the problem displayed in the
last token, at least. In this case, the grammar writer has lexicalised the
multiword expression at least, since the meaning was thought to be non-

4.2. The Training Data 81

Tokens
Treebank Items Tokens per Item Comment
csli 880 6660 7.57 CSLI (LinGO) Test Suite
fracas 325 2843 8.75 FraCaS Semantics Test Suite
hike 328 4726 14.41 Tourism Data
jh0 233 4904 21.05 Tourism Data
jh1 1250 18737 14.99 Tourism Data
jh2 1130 17159 15.18 Tourism Data
jh3 1302 18701 14.36 Tourism Data
jh4 1456 20917 14.37 Tourism Data
jh5 414 5540 13.38 Tourism Data
mrs 107 594 5.55 DELPH-IN MRS Test Suite
ps 874 12896 14.76 Tourism Data
rondane 1108 17251 15.57 Tourism Data
tg1 877 13202 15.05 Tourism Data
tg2 891 13790 15.48 Tourism Data
Total 11175 157920 14.13

Table 4.3: The treebanks used for training the supertaggers. The tree-
banks come from the 0902 release of the ERG. The numbers describe
only those items which have a gold analysis.

82 Chapter 4. The Supertagger

compositional and hence, in this analysis, two ERG native tokens have
been joined to form one leaf node of the derivation tree. These lexicalised
multiword expressions are fairly common in the grammar, and so using
the native ERG tokenisation as input to the supertagger would not make
extracting the token-to-tag matches straightforward anyway. As such, it
was decided to use Penn Treebank tokenisation in the supertagger input,
making it easier to integrate with standard part-of-speech taggers.

A pre-processing step tokenised the raw input according to Penn Tree-
bank tokenisation rules and then calculated the best alignment between
these tokens and the leaves of the derivation tree. To find the tag for each
leaf, the pre-terminal lexical entry (e.g., environment n1) was looked up
in the lexicon, and the lexical type and any selectional relations were ex-
tracted. The morphological information, when it occurred, was found in
the tree above the pre-terminal node, for example, the sing noun irule

in Figure 4.4. The different forms of supertag were created from the
lexical type, selectional relation information and morphological rule in
the eight forms described in the preceding section. All non-punctuation
tokens associated with a leaf were given the tag associated with that leaf.
This led to the token at being assigned an adverbial tag in this training
example. No attempt was made to indicate that a token was part of
a multiword expression. Since both taggers we use employ a sequence-
aware model, it was thought that idiosyncrasies of multiword expressions
could be learnt without introducing unnecessary data sparsity. For punc-
tuation tokens that do not have a lexical type, the letype+sel, letype
and subcat supertags were the same form: PUNCT <surface>, e.g.,
PUNCT ,. The pos supertag was simply PUNCT, and the +morph
information in each case was the punctuation-related morphological rule
found in that branch of the tree, e.g., punct comma orule.

4.3 The Taggers
We tested two off-the-shelf taggers that use different statistical models.
The first is the TnT POS tagger, an implementation of the Viterbi algo-
rithm for second order Markov models (Brants 2000b). This tagger has
been used for a variety of languages and tag sets and is very fast both to
train and to use. The input we used for this tagger was the raw tokens,
one per line and the output can be either a single tag, or multiple tags
with their appropriate probabilities. TnT has a reported tag accuracy

4.4. Results 83

subjh

cccccccccccccccccccccccc

[[[[[[[[[[[[[[[[[[[[[[[[

hspec

lllllllll
RRRRRRRRR hadj i uns

lllllllll

XXXXXXXXXXXXXXXXX

the 1 adjn

lllllllll
RRRRRRRRR hcomp

lllllllll
RRRRRRRRR punct period orule

the natural a1 sing noun irule be c was punct comma orule at least adv

natural environment n1 was favorable a1 at least.

environment favorable,

Figure 4.4: Derivation tree for The natural environment was favorable,
at least.

of 96.7% on Penn Treebank Wall Street Journal text, using the Penn
Treebank POS tags, and just over a million tokens of training data.

The state-of-the-art for supertagging is the C&C supertagger, which is,
like TnT, freely available (Clark and Curran 2007b). The tagger is based
on a Maximum Entropy model, and uses as features words and POS
tags from a five word window, as well as the previous two tags assigned.
The C&C tagger uses a form of the Viterbi algorithm to calculate the
optimal tag sequence and gets a single tag accuracy of 91.5% on Section
00 of CCGBank, using the 425 category tag set, and also using just over
a million tokens of training data. As input to this tagger, we use the
raw tokens and the POS tag as assigned by TnT, using the Wall Street
Journal model released with TnT. As with TnT, output can be single
tags, or multiple tags with probabilities.

As a baseline, we use a simple unigram tagger that assigns the tag
most frequently seen with a word, if that word was seen in the training
data, or else the most frequent tag given the POS tag assigned by TnT.
Note that this baseline actually has more input information than the
TnT tagger, which does not benefit from the Wall Street Journal POS
tag model.

4.4 Results
Each tagger was used to tag three different data sets (fully described
in Section 3.2.1), jhpstg t which is from the same tourism domain as the

84 Chapter 4. The Supertagger

Baseline TnT C&C
letype+sel+morph 0.8031 0.9011 0.8777
letype+sel 0.8305 0.9143 0.8898
letype+morph 0.8033 0.9015 0.8783
letype 0.8306 0.9147 0.8908
subcat+morph 0.8446 0.9266 0.9125
subcat 0.8800 0.9432 0.9309
pos+morph 0.8901 0.9510† 0.9452†

pos 0.9331 0.9713† 0.9674†

† marks pairs of results in each row which are not significantly different to each other,

statistically

Table 4.4: Single tag accuracy for the jhpstg t data set

majority of the training data; ws02, which is from Wikipedia; and cb, a
technical essay. Both the latter data sets are completely out of domain,
given the training data. We evaluate the accuracy of the top tag, and
also two alternative tagging strategies: one that assigns multiple tags
depending on the tag probability, and another that selectively assigns a
tag, also dependent on the tag probability.

4.4.1 Single Tag Accuracy

The first evaluation looked only at the top tag predicted by each tagger.
Tables 4.4, 4.5 and 4.6 show the tag accuracies achieved for each data
set. Differences between all results are statistically significant (p < 0.001)
according to the sign test, except where marked.

While accumulating the results, an interesting difference between the
taggers was noticed. In these experiments, we trained models for each
level of tag granularity, and initially evaluated only the predictions of
the granularity in the model, but then also decided to evaluate all pos-
sible tag granularities from each model. That is, when training and
predicting, for example, an letype level tag, it is also possible to evalu-
ate pos and subcat tags, but not letype+sel or any of the +morph
type tags. Here we found that the TnT tagger gets better results when
trained on more detailed tags, even when the goal is to predict pos tags.
This echoed results found by the TnT author, Brants (1997) when he
looked at different clusterings of the Susanne tag set. In the experiments

4.4. Results 85

Baseline TnT C&C
letype+sel+morph 0.6118 0.6722 0.6297
letype+sel 0.6594 0.7163 0.6458
letype+morph 0.6118 0.6727 0.6298
letype 0.6594† 0.7169 0.6460†

subcat+morph 0.6698 0.7294† 0.7187†

subcat 0.7953† 0.8177 0.7967†

pos+morph 0.7419 0.8060 0.8274
pos 0.9047 0.9177 0.9328

† marks pairs of results in each row which are not significantly different to each other,

statistically

Table 4.5: Single tag accuracy for the ws02 data set

Baseline TnT C&C
letype+sel+morph 0.6755 0.7165 0.6943
letype+sel 0.6751 0.7453 0.7024
letype+morph 0.6439 0.7173 0.6819
letype 0.6752 0.7461 0.7040
subcat+morph 0.6944 0.7667† 0.7582†

subcat 0.7651 0.8188† 0.8117†

pos+morph 0.8802 0.9100 0.9306
pos 0.7761 0.8395 0.8623

† marks pairs of results in each row which are not significantly different to each other,

statistically

Table 4.6: Single tag accuracy for the cb data set

86 Chapter 4. The Supertagger

here, there was not, in general, a significant difference between training
on letype+sel+morph and letype+morph, but the accuracy differ-
ence between the model trained on letype+sel+morph tags and that
trained on pos tags could be as much as 3% when predicting pos tags.
Turning then to the C&C tagger, we found that the differences between
models were smaller, but that the most accurate model was generally
that trained on the exact granularity that was being evaluated, perhaps
because the additional POS tag input helped to provide the disambigua-
tion that detailed tags could contribute. The baseline unigram model
also followed this trend. When collating the results for the tables then,
we used matching training and prediction tag granularities for the C&C
and baseline taggers, but those from the letype+sel+morph model for
all TnT experiments. It may not always be realistic to train a model at
this level of detail when data is to be hand annotated, but since we take
training data from the parser output, it seemed appropriate to explore
the most effective training strategy in each case.

As expected, the best results are on the test set which is closest in
domain to the training data. For the most detailed tags the best accuracy
on this set is close to that achieved with the C&C supertagger when
predicting CCG tags (Clark and Curran 2007b). In that experiment,
Clark and Curran used five times the amount of training data we have
here, suggesting that the HPSG tag sets, while larger, are actually easier
for the tagger to predict.

The best accuracy on the pos+morph tag set, closest in size and
distinctions made to the Penn Treebank POS tags, is 95.1%, just below
state-of-the-art (96%-97%) for POS tagging the Penn Treebank. Accord-
ing to the learning curves given by Brants (2000a), this would be normal
performance for predicting the Penn Treebank tags with the amount of
training data used in this instance.

Focussing on individual tagger performance, the simple TnT tagger
does better than the Maximum Entropy-based C&C tagger, although
this difference narrows as the tags get coarser, and for the pos and
pos+morph tags the performance difference is either insignificant, or
slanting in C&C’s favour. This suggests that there is not enough training
data to learn an accurate model for the detailed tags. To get a better pic-
ture of how the amount of training data affects each tagger, we measured
tag accuracy for models trained on varying amounts of data, increasing
in 10% intervals. Figures 4.5, 4.6, 4.7 and 4.8 show the learning curves
for the different tag granularities.

4.4. Results 87

0.78

0.82

0.86

0.90

8 16
Size of Training Data

(x10000 tokens)

letype+sel tag

TnT

C&C

baseline 0.75

0.80

0.85

0.90

8 16
Size of Training Data

(x10000 tokens)

letype+sel+morph tag

TnT

C&C

baseline

(a) Tag accuracy over the jhpstg t data set

0.58

0.62

0.66

0.70

8 16
Size of Training Data

(x10000 tokens)

letype+sel tag

TnT

C&C

baseline

0.54

0.58

0.62

0.66

8 16
Size of Training Data

(x10000 tokens)

letype+sel+morph tag

TnT

C&C

baseline

(b) Tag accuracy over the ws02 data set

0.56

0.62

0.68

0.74

8 16
Size of Training Data

(x10000 tokens)

letype+sel tag

TnT

C&C

baseline 0.55

0.60

0.65

0.70

8 16
Size of Training Data

(x10000 tokens)

letype+sel+morph tag

TnT

C&C

baseline

(c) Tag accuracy over the cb data set

Figure 4.5: Learning curves over different data sets showing accuracy in
predicting letype+sel and letype+sel+morph tags as a function of
the amount of training data

88 Chapter 4. The Supertagger

0.78

0.82

0.86

0.90

8 16
Size of Training Data

(x10000 tokens)

letype tag

TnT

C&C

baseline 0.75

0.8

0.85

0.9

8 16
Size of Training Data

(x10000 tokens)

letype+morph tag

TnT

C&C

baseline

(a) Tag accuracy over the jhpstg t data set

0.57

0.62

0.67

0.72

8 16
Size of Training Data

(x10000 tokens)

letype tag

TnT

C&C

baseline

0.54

0.58

0.62

0.66

8 16
Size of Training Data

(x10000 tokens)

letype+morph tag

TnT

C&C

baseline

(b) Tag accuracy over the ws02 data set

0.56

0.62

0.68

0.74

8 16
Size of Training Data

(x10000 tokens)

letype tag

TnT

C&C

baseline

0.54

0.60

0.66

0.72

8 16
Size of Training Data

(x10000 tokens)

letype+morph tag

TnT

C&C

baseline

(c) Tag accuracy over the cb data set

Figure 4.6: Learning curves over different data sets showing accuracy in
predicting letype and letype+morph tags as a function of the amount
of training data

4.4. Results 89

0.86

0.88

0.90

0.92

0.94

8 16
Size of Training Data

(x10000 tokens)

subcat tag

TnT

C&C

baseline

0.81

0.84

0.87

0.90

0.93

8 16
Size of Training Data

(x10000 tokens)

subcat+morph tag

TnT

C&C

baseline

(a) Tag accuracy over the jhpstg t data set

0.74

0.76

0.78

0.80

0.82

8 16
Size of Training Data

(x10000 tokens)

subcat tag

TnT

C&C

baseline 0.64

0.66

0.68

0.70

0.72

8 16
Size of Training Data

(x10000 tokens)

subcat+morph tag

TnT

C&C

baseline

(b) Tag accuracy over the ws02 data set

0.73

0.75

0.77

0.79

0.81

8 16
Size of Training Data

(x10000 tokens)

subcat tag

TnT

C&C

baseline

0.64

0.67

0.70

0.73

0.76

8 16
Size of Training Data

(x10000 tokens)

subcat+morph tag

TnT

C&C

baseline

(c) Tag accuracy over the cb data set

Figure 4.7: Learning curves over different data sets showing accuracy in
predicting subcat and subcat+morph tags as a function of the amount
of training data

90 Chapter 4. The Supertagger

0.93

0.94

0.95

0.96

0.97

8 16
Size of Training Data

(x10000 tokens)

pos tag

TnT

C&C

baseline

0.87

0.89

0.91

0.93

0.95

8 16
Size of Training Data

(x10000 tokens)

pos+morph tag

TnT

C&C

baseline

(a) Tag accuracy over the jhpstg t data set

0.87

0.89

0.91

0.93

8 16
Size of Training Data

(x10000 tokens)

pos tag

TnT

C&C

baseline

0.73

0.76

0.79

0.82

8 16
Size of Training Data

(x10000 tokens)

pos+morph tag

TnT

C&C

baseline

(b) Tag accuracy over the ws02 data set

0.87

0.89

0.91

0.93

8 16
Size of Training Data

(x10000 tokens)

pos tag

TnT

C&C

baseline

0.74

0.78

0.82

0.86

8 16
Size of Training Data

(x10000 tokens)

pos+morph tag

TnT

C&C

baseline

(c) Tag accuracy over the cb data set

Figure 4.8: Learning curves over different data sets showing accuracy in
predicting pos and pos+morph tags as a function of the amount of
training data

4.4. Results 91

For the in-domain jhpstg t data set, the TnT learning curve has started
to flatten out for all tag sets, suggesting we are approaching the upper
bound for this style of tagger with approximately 150,000 tokens of in-
domain data. For the other two data sets with TnT, and all data sets
for the C&C tagger, the learning curves are still rising, indicating that
further improvements should be possible given more training data. The
baseline tagger, on the other hand, looks to be approaching the limits
of its performance, since most of the learning curves for this tagger are
flattening.

In order to better understand how the taggers were performing, we
looked at the different confusion matrices, focussing on those tags that
appeared at least 20 times in the gold data set which might be expected
to show stable error patterns. The first observation to be made from
this examination is that most of these tags were accurately predicted,
meaning, not surprisingly, that rare tags were the ones that were difficult
to predict. Within the more frequent tags, there were very few regular
confusions — when a tag was incorrectly predicted, the erroneous tag
varied almost randomly. A few general trends were, however, observed.

Within the pos tag types, cm (complementiser) was the most difficult
to predict, although not the rarest. It was most often mistaken for a p
(preposition). In the pos+morph set, all taggers occasionally found it
difficult to correctly distinguish between past, passive and past partici-
ple verbs. Equally, there was often confusion over whether a noun was a
mass noun, a count noun or could be used as either. It should be noted
that, even in these difficult cases, accuracy was usually over 80%. Very
little qualitative difference was found between the different taggers, with
all showing similar error patterns. There were, however, differences be-
tween the test sets. In both the ws02 and cb test sets, there was regular
confusion between third singular verbs and plural nouns, and between
non-third singular verbs and singular nouns. This confusion was not ev-
ident in the jhpstg t test set, which reflects the fact that this set had very
few unknown words. The TnT tagger uses suffixes to predict the type
of unknown words, which explains this tendency in the case of the TnT
tagger. For C&C and the baseline model, both depend heavily on the
input POS tags when trying to tag an unknown word. In this case, the
POS tags were taken from TnT (using the WSJ model) and so, C&C
and the baseline also use, indirectly, the word suffix as a feature.

At the subcat and subcat+morph levels, the most frequent incorrect
predictions involve confusions between verb subcategorisation frames. In

92 Chapter 4. The Supertagger

the jhpstg t test set, this is most often very difficult distinctions such as de-
ciding whether an np complement is optional or obligatory (v np* versus
v np). In the out-of-domain sets we start to see other subcategorisation
frames that were just not seen frequently in the training data, and so the
confusions are less predictable.

At the letype level, many of the frequent errors were between tags
that differ only in the description field. This includes examples like
av - i-vp le and av - s-vp-pr le, which designate intersective and scopal
adverbs respectively, or p np ptcl-of le and p np i-nm-poss le where the
preposition defined is of, but in one case semantically empty and in the
other marking possession. Other errors also involved word specific tags,
such as v np poss-le and v vp has le which differentiate between main
and auxiliary uses of has, as in the utterances She has flowers. and She
has sung. This is exactly the sort of distinction where a tagger could be
expected to help, since it can usually be decided by the tag of the follow-
ing word, and the taggers can predict this distinction with an accuracy
between 80% and 90%. Whether this is sufficient accuracy to assist in
the parsing process will be explored in later chapters.

Selection relations were infrequent enough that no clear patterns were
observed in the letype+sel or letype+sel+morph tag sets that were
not seen in the coarser grained sets.

4.4.2 Multiple Tags

When the output of the supertagger is to be used to restrict the search
space, assigning a single tag per token is not necessarily the best option,
since it may lead to many unparseable sentences. Clark and Curran
(2007b) address this problem by assigning a variable number of tags,
dependent on a β value. This β value is used to compare the probabilities
of different tags for the same token. When the probability of a tag is
with β of the probability of the most likely tag, that tag is also assigned.
Both the TnT and C&C taggers have an option to set this β value. In
the following experiments, β was varied between 0.5 and 0.00001 (for
TnT only), and a token was considered correct if any one of the tags
thus produced was the same as the gold tag.

The value of β is relevant only to the particular model and tagger
used, and hence, as an external factor, is meaningless. What β indirectly
controls is the number of tags assigned to each word. The results of

4.4. Results 93

the experiments then graph accuracy against the average number of tags
assigned, allowing a meaningful comparison between the two taggers. As
we need the probabilities as well as the tags for this evaluation, we need
to use the TnT model that matches the tag type, rather than always
using the letype+sel+morph model, since the probabilities depend on
the tag type used in training. This means that TnT will be less accurate
when assigning a lower number of coarse-grained tags than the earlier
results would suggest. Since the baseline tagger has no probabilistic
model at all, it is not included in these experiments. Figure 4.9 shows
how accuracy varies with tags assigned for the fine-grained tags, over
each data set. The TnT curve in these graphs is always to the left of
that from C&C, showing greater accuracy with less tags assigned, with
the gap widest for the jhpstg t in-domain data set. It is clear in most
graphs though that the TnT curve is starting to flatten out, while the
C&C curve is still increasing. The β values give a possible reason for this:
C&C often produces on average 10 or more tags, for a β value of 0.01,
while this value for TnT only gives around 4 tags, meaning that C&C is
producing a flatter probability distribution. This is not surprising, since
the governing principle of Maximum Entropy is that all tags have equal
probability, unless information suggests otherwise. Since we have already
hypothesised that there is not enough information in the training data
for C&C to build an accurate model, a model where many tags have the
same probability is to be expected.

Looking at Figure 4.10 which shows the results for the coarser tags, we
see a different picture. Here, as soon as we start to assign more than one
tag, C&C is the more accurate tagger. This is particularly clear for the
pos and pos+morph tag sets, where we have already seen that C&C
has enough training data to build accurate models. The subcat and
subcat+morph tag sets show that the two taggers give similar results
for low numbers of tags, but the gap between the curves widens in C&C’s
favour once we start to assign more than 2 tags on average.

4.4.3 Selective Tagging

An alternative method of using the supertagger to restrict the
search space is by using thresholding to selectively tag. In this
scenario, a token is only restricted to a particular supertag when

94 Chapter 4. The Supertagger

0.90

0.93

0.96

0.99

0 2 4 6 8 10
Ave. tags per token

jhpstg t

TnT

C&C

0.72

0.80

0.88

0.96

0 2 4 6 8 10
Ave. tags per token

ws02

TnT

C&C

0.72

0.80

0.88

0.96

0 2 4 6 8 10
Ave. tags per token

cb

TnT

C&C

(a) Accuracy over letype+sel+morph tags

0.90

0.93

0.96

0.99

0 2 4 6 8 10
Ave. tags per token

jhpstg t

TnT

C&C

0.72

0.80

0.88

0.96

0 2 4 6 8 10
Ave. tags per token

ws02

TnT

C&C

0.72

0.80

0.88

0.96

0 2 4 6 8 10
Ave. tags per token

cb

TnT

C&C

(b) Accuracy over letype+sel tags

0.90

0.93

0.96

0.99

0 2 4 6 8 10
Ave. tags per token

jhpstg t

TnT

C&C

0.72

0.80

0.88

0.96

0 2 4 6 8 10
Ave. tags per token

ws02

TnT

C&C

0.72

0.80

0.88

0.96

0 2 4 6 8 10
Ave. tags per token

cb

TnT

C&C

(c) Accuracy over letype+morph tags

0.90

0.93

0.96

0.99

0 2 4 6 8 10
Ave. tags per token

jhpstg t

TnT

C&C

0.72

0.80

0.88

0.96

0 2 4 6 8 10
Ave. tags per token

ws02

TnT

C&C

0.72

0.80

0.88

0.96

0 2 4 6 8 10
Ave. tags per token

cb

TnT

C&C

(d) Accuracy over letype tags
Figure 4.9: Tag accuracy for the fine-grained tags varying against aver-
age number of tags assigned (controlled by varying the β value for each
tagger).

4.4. Results 95

0.935

0.955

0.975

0.995

1 2 3 4
Ave. tags per token

jhpstg t

TnT

C&C

0.78

0.84

0.90

0.96

1 2 3 4 5 6
Ave. tags per token

ws02

TnT

C&C

0.78

0.84

0.90

0.96

1 2 3 4 5 6
Ave. tags per token

cb

TnT

C&C

(a) Accuracy over subcat+morph tags

0.935

0.955

0.975

0.995

1 2 3 4
Ave. tags per token

jhpstg t

TnT

C&C
0.84

0.89

0.94

0.99

1 2 3 4 5
Ave. tags per token

ws02

TnT

C&C
0.84

0.89

0.94

0.99

1 2 3 4 5
Ave. tags per token

cb

TnT

C&C

(b) Accuracy over subcat tags

0.935

0.955

0.975

0.995

1 2 3
Ave. tags per token

jhpstg t

TnT

C&C
0.84

0.89

0.94

0.99

1 2 3 4
Ave. tags per token

ws02

TnT

C&C
0.84

0.89

0.94

0.99

1 2 3 4
Ave. tags per token

cb

TnT

C&C

(c) Accuracy over pos+morph tags

0.965

0.975

0.985

0.995

1 1.5 2
Ave. tags per token

jhpstg t

TnT

C&C 0.935

0.955

0.975

0.995

1 1.5 2 2.5
Ave. tags per token

ws02

TnT

C&C 0.935

0.955

0.975

0.995

1 1.5 2 2.5
Ave. tags per token

cb

TnT

C&C

(d) Accuracy over pos tags
Figure 4.10: Tag accuracy for the coarse-grained tags varying against
average number of tags assigned (controlled by varying the β value for
each tagger).

96 Chapter 4. The Supertagger

the tag probability is over a certain threshold. This particular
method exploits one of the differences between the C&C CCG
parser and the PET HPSG parser — in C&C the supertagger and
the parser are tightly integrated, while in PET they are separate
tools. In C&C, the parser operates directly on the output of
the supertagger, since these supertags represent all information
known about the word. However, as explained in Section 4.1, an
HPSG lexical entry includes word-specific information as well as
the category information, and of this, the supertagger can only
predict the category information. (Morphological information is
added to the lexical entry at a later stage of parsing.) This means
that the lexicon must be part of the parsing process and so the
supertags are just used as a filter on what comes from the lexicon.
As such, it is not necessary for the supertagger to tag every token,
since the lexicon already has a filtering effect.

The following experiments evaluate the effect of using different
thresholds on both taggers. As in the preceding experiments, the
actual threshold value is relevant only to the specific tagger and
model. The effect of the threshold is what percentage of tokens
will be restricted, and so, in Figures 4.11 and 4.12, results are pre-
sented by graphing tag accuracy against percentage tagged (and
hence restricted). A high threshold will lead to a low percentage
of the tokens being tagged.

Looking at this representation of the results, we see that C&C
is getting very high tag accuracies when it is tagging a low per-
centage of the tokens. Which tagger is the most appropriate then
will come down to the trade-off between efficiency and accuracy
— when using fine-grained tags, TnT can more accurately tag
a larger percentage of the tokens with fine-grained tags, while
C&C can very accurately tag a smaller percentage of tokens. For
the coarse-grained tags, again C&C is the more accurate tagger.

4.4. Results 97

0.88

0.92

0.96

1.00

0 25 50 75 100
Percentage restricted

jhpstg t

TnT

C&C 0.6
0.7
0.8
0.9
1.0

0 25 50 75 100
Percentage restricted

ws02

TnT

C&C 0.6
0.7
0.8
0.9
1.0

0 25 50 75 100
Percentage restricted

cb

TnT

C&C

(a) Accuracy over letype+sel+morph tags

0.88

0.92

0.96

1.00

0 25 50 75 100
Percentage restricted

jhpstg t

TnT

C&C 0.6
0.7
0.8
0.9
1.0

0 25 50 75 100
Percentage restricted

ws02

TnT

C&C 0.6
0.7
0.8
0.9
1.0

0 25 50 75 100
Percentage restricted

cb

TnT

C&C

(b) Accuracy over letype+sel tags

0.88

0.92

0.96

1.00

0 25 50 75 100
Percentage restricted

jhpstg t

TnT

C&C 0.6
0.7
0.8
0.9
1.0

0 25 50 75 100
Percentage restricted

ws02

TnT

C&C 0.6
0.7
0.8
0.9
1.0

0 25 50 75 100
Percentage restricted

cb

TnT

C&C

(c) Accuracy over letype+morph tags

0.88

0.92

0.96

1.00

0 25 50 75 100
Percentage restricted

jhpstg t

TnT

C&C 0.6
0.7
0.8
0.9
1.0

0 25 50 75 100
Percentage restricted

ws02

TnT

C&C 0.6
0.7
0.8
0.9
1.0

0 25 50 75 100
Percentage restricted

cb

TnT

C&C

(d) Accuracy over letype tags

Figure 4.11: Tag accuracy for the fine-grained tags varying against the
percentage of tokens restricted (controlled by varying the threshold value
for each tagger).

98 Chapter 4. The Supertagger

0.92
0.94
0.96
0.98
1.00

0 25 50 75 100
Percentage restricted

jhpstg t

TnT

C&C
0.7

0.8

0.9

1.0

0 25 50 75 100
Percentage restricted

ws02

TnT

C&C
0.7

0.8

0.9

1.0

0 25 50 75 100
Percentage restricted

cb

TnT

C&C

(a) Accuracy over subcat+morph tags

0.92
0.94
0.96
0.98
1.00

0 25 50 75 100
Percentage restricted

jhpstg t

TnT

C&C 0.80
0.85
0.90
0.95
1.00

0 25 50 75 100
Percentage restricted

ws02

TnT

C&C 0.80
0.85
0.90
0.95
1.00

0 25 50 75 100
Percentage restricted

cb

TnT

C&C

(b) Accuracy over subcat tags

0.92
0.94
0.96
0.98
1.00

0 25 50 75 100
Percentage restricted

jhpstg t

TnT

C&C 0.80
0.85
0.90
0.95
1.00

0 25 50 75 100
Percentage restricted

ws02

TnT

C&C 0.80
0.85
0.90
0.95
1.00

0 25 50 75 100
Percentage restricted

cb

TnT

C&C

(c) Accuracy over pos+morph tags

0.92
0.94
0.96
0.98
1.00

0 25 50 75 100
Percentage restricted

jhpstg t

TnT

C&C
0.88

0.91
0.94
0.97

1.00

0 25 50 75 100
Percentage restricted

ws02

TnT

C&C
0.88

0.91
0.94
0.97

1.00

0 25 50 75 100
Percentage restricted

cb

TnT

C&C

(d) Accuracy over pos tags

Figure 4.12: Tag accuracy for the coarse-grained tags varying against the
percentage of tokens restricted (controlled by varying the threshold value
for each tagger).

4.5. Discussion 99

Whether these coarse-grained tags can restrict the parser search
space enough to significantly increase efficiency is something that
will be explored in Chapter 6.

4.5 Discussion

The results so far suggest that, on the in-domain test set, all forms
of the supertag can be predicted with an accuracy level that has
been shown in the past to be sufficient to improve parsing. Clark
and Curran (2007b) achieve very good parsing results using a
supertagger that has a single tag accuracy of 91.5% and gets
around 97.9% when assigning approximately 2 tags per token.
The HPSG supertagger used by Matsuzaki et al. (2007) in the
ENJU parser has a single tag accuracy of 87.5%, which increases
to 95.1% when assigning an average of two tags to each token.
Both parsers shown significant speed increases when employing
these supertaggers. In comparison, the letype+morph tag
form is the most similar to that used in ENJU, and for this tag
type, the TnT tagger has a single tag accuracy of 90.2% and
97.2% when assigning two tags. The most similar tag form to
CCG categories is probably subcat+morph, where the best
single tag accuracy in our experiments is 92.7%, rising to 98.3%
when approximately two tags are assigned. Furthermore, the
thresholding experiments show another method of search space
restriction that could be used when even higher accuracies are
required.

Looking at the results on the out-of-domain test set, results
are not as encouraging. While domain mis-match is a common
issue in all sorts of statistical natural language processing, there
are very few published results for out-of-domain supertagging.
Rimell and Clark (2008a), as well as Hara et al. (2007) describe

100 Chapter 4. The Supertagger

experiments in adapting their various parsers to alternative do-
mains by retraining their respective supertaggers. Both cases
show parser improvement, but only Rimell and Clark gave sepa-
rate results for the supertagger accuracy. They found that their
C&C supertagger, trained on CCGBank had a single tag accu-
racy of 89.0% for the biomedical domain and 71.6% when tag-
ging questions, compared to the 91.5% the same tagger achieved
on Section 0 of CCGBank. Retraining the supertagger model
on a small amount (1,328 sentences) of labelled in-domain data
brought the tag accuracies up to 93.0% and 92.1% respectively.
Question data is notoriously difficult to analyse for NLP tools
trained on the more common declarative data, since the syntac-
tic differences are large. On the other hand, domain differences
coming from biomedical data, as well as the Wikipedia articles
and the technical essay we are using here, are generally attributed
more to lexical differences. The tag accuracy differences between
in and out of domain data sets in the above experiments are
more extreme than those reported by Rimell and Clark, but it is
still likely that adding more in-domain data will increase tagger
accuracy.

Examining the differences between the two taggers, the clearest
suggestion is that TnT can do more with less training data. From
the current models, TnT gives the most accurate single tag results
for fine-grained tags, where training data was most sparse. On
the other hand, C&C is more accurate where sufficient training
data is available, such as for the pos type tags.

4.6 More Training Data

The overall need so far is for more training data, both to improve
out-of-domain performance, and to improve the C&C tagger to

4.6. More Training Data 101

a point where the complex model can produce, for fine-grained
tags, the sort of accuracy that it achieves on coarse-grained tags.
But producing training data is expensive, particularly for the fine-
grained tags. The rest of this chapter looks at a few different ways
to cheaply boost the training data. The first method emulates
that of Rimell and Clark (2008a), by adding a small amount of in-
domain data to the larger out-of-domain set. The other methods
involve non-gold standard data, obtained either from the taggers
themselves, or from the parser.

4.6.1 Domain Adaptation

The results for the ws02 data set are particularly low, compared
to the jhpstg t set and domain differences probably account for
much of that difference. The ws02 set consists of 11 Wikipedia
articles from the domain of Computational Linguistics, very dif-
ferent in topic and style from the LOGON tourism data that
has been used for training (Ytrestøl et al. 2009). A relatively
small amount (1,941 sentences) of parsed and annotated data
from the same Wikipedia domain was available to add to the
training data. This training data had one problem, however,
which was not present in the original data: that of generic lexical
entries.

There are two types of generic entry that occur in the tree-
banks. The first type is used for pattern-based ‘named entities’
— tokens such as times, dates and email addresses that can be
detected by regular expressions. These are detected during the
pre-processing stage of parsing so, for example, representations of
a time trigger the lexical entry generic time noun ne which has
a lexical type n np pn-hour-gen le. These generic entries are not
a problem, since the lexical entry contains all relevant information

102 Chapter 4. The Supertagger

for use in parsing. The other kind of generic entry is that used for
unknown word handling. Chapter 5 will examine this mechanism
in more detail, but the basic process is that underspecified lexical
entries are triggered by, for example, POS tags. Hence, a POS
tag of VB triggers a lexical entry generic trans verb bse with a
lexical type of v np* bse-unk le.

The gold standard for the Wikipedia data, unlike that of the
LOGON data, was created using unknown word handling in the
parser and 3.3% of the tokens are assigned a generic lexical en-
try. Given the technical vocabulary contained in these scientific
articles, this reasonably high proportion of unknown words is not
unexpected. This is increasingly likely to be true, as more tree-
banks are created from large amounts of real world data, hence
any supertagger created from these treebanks will need to address
this issue.

Having the supertagger predict these placeholder types, rather
than the fully specified lexical types, seems sub-optimal, since
ideally we are trying to predict the syntactic properties of a to-
ken, not an approximate description, along with the fact that it
is unknown to the grammar. The obvious thing to do would be
to leave them out of the training data if we do not wish to pre-
dict them anyway. However, when there is limited training data
available, leaving out every sentence that contained at least one
generic type increases the problem. (It is not possible to leave out
just the individual tokens, since the taggers predict sequences of
tags.) In the case of the Wikipedia data, this would mean leaving
out approximately one quarter of the training data. For these ex-
periments therefore, the generic tags were included, unless they
could be clearly mapped to an appropriate non-generic type. In
some cases this was possible, since there is no meaningful dif-

4.6. More Training Data 103

ference between n - pn-unk le and n - pn le.1 Unknown verbs,
however, were left as v np* bse-unk le, even though the subcate-
gorisation information could be wrong, because no further correct
information was available.

The taggers were re-trained using the original data and the
additional 30,730 tokens of Wikipedia data, bringing the total
training data amount to 188,650 tokens. Table 4.7 shows the sin-
gle tag accuracy over the ws02 data set for the TnT and C&C
taggers with the original model and the new model with the ad-
ditional Wikipedia data, and also shows the accuracy increase
between the two models. Significant increases are shown for all
tag types, although still not to the level achieved on the jhpstg t
data set. Using this new augmented model on that jhpstg t set
showed minor increases in accuracy, mostly not statistically sig-
nificant, but on the cb data set, even though it is not clearly
the same domain as the new data, significant improvements were
seen. Table 4.8 shows these improvements which, while not as
impressive as those over ws02, are still very good. Whether these
improvements are because the Wikipedia data is a good fit for
the cb data set, or because, at this point, any extra data will
yield improvements is not yet clear.

Looking at the differences between the taggers, we still seem to
be in the region of the learning curve where TnT is making better
use of the training data. TnT, in most cases, shows a greater
improvement and has significantly higher accuracy in all except
the pos and pos+morph tag sets where the only statistically
significant difference is pos+morph over the ws02 data set. It
appears that more data is required to get the full benefit of the
C&C tagging model. The next section looks at how that training
data might be found.

1Details of these mappings are given in Appendix A.

104 Chapter 4. The Supertagger

TnT C&C
original +Wiki change original +Wiki change

letype+sel
+morph

0.6722 0.8260 +15.4% 0.6297 0.7613 +13.2%

letype+sel 0.7163 0.8631 +14.7% 0.6458 0.7931 +14.7%
letype

+morph
0.6727 0.8270 +15.4% 0.6298 0.7623 +13.3%

letype 0.7169 0.8641 +14.7% 0.6460 0.7957 +15.0%
subcat

+morph
0.7294 0.8583 +12.9% 0.7187 0.8187 +10.0%

subcat 0.8177 0.9124 +9.5% 0.7967 0.8752 +7.9%
pos

+morph
0.8060 0.8937 +8.8% 0.8274 0.8808 +5.3%

pos 0.9177 0.9570† +3.9% 0.9328 0.9500† +1.7%

† marks pairs of results in each row which are not significantly different to each other,

statistically

Table 4.7: Single tag accuracy for the ws02 data set, with the original
training set, and then the training set augmented with 30,730 tokens of
Wikipedia data

4.6. More Training Data 105

TnT C&C
original +Wiki change original +Wiki change

letype+sel
+morph

0.7165 0.7815 +6.5% 0.6943 0.7403 +4.6%

letype+sel 0.7453 0.8075 +6.2% 0.7024 0.7403 +3.8%
letype

+morph
0.7173 0.7820 +6.5% 0.6819 0.7417 +6.0%

letype 0.7461 0.8080 +6.2% 0.7040 0.7663 +6.2%
subcat

+morph
0.7667 0.8252 +5.9% 0.7582 0.8029 +4.5%

subcat 0.8188 0.8647 +4.6% 0.8117 0.8484 +3.7%
pos

+morph
0.8395 0.8825† +4.3% 0.8623 0.8832† +2.1%

pos 0.9100 0.9323† +2.2% 0.9306 0.9381† +0.8%

† marks pairs of results in each row which are not significantly different to each other,

statistically

Table 4.8: Single tag accuracy for the cb data set, with the original
training set, and then the training set augmented with 30,730 tokens of
Wikipedia data

106 Chapter 4. The Supertagger

4.6.2 Using Unlabelled Data

Adding gold standard in-domain data to the training set achieved
some significant increases in accuracy, but there is still much need
for improvement. Additional gold standard data would be the
optimal solution, but gold standard data is expensive and time-
consuming to produce. An alternative solution is to use non-gold
standard data to train the taggers. In the following sections we
explore three different methods to produce this training data. We
had two different sources of unlabelled training data available.
First, a collection of tourism data from the same domain as the
jhpstg t data set. While TnT appears to be approaching its upper
bound for this data set, it is possible that C&C could benefit by
adding more in-domain data, even if the data is noisy. There are
23,009 sentences available in this set, making a total of 208,988
tokens. The second source of non-gold standard training data is
the ubiquitous Wall Street Journal data from the Penn Treebank.
While this data is not in the domain of any of the test sets, it
is a large source of data, commonly used in data-driven natural
language processing. These experiments will use Sections 3-22,2

which are comprised of 39,543 sentences, making 939,333 tokens
in all.

Self-Training

Self-training has been successfully used as a bootstrapping method
for various statistical processing tools such as taggers (e.g. Clark
et al. 2003) and parsers (e.g. McClosky et al. 2006a). In these ex-
periments, we use the tagger models trained on the original data

2While Sections 2-21 make up the more traditional training set, some gold standard parsing
data was available for Section 2, so this data was held out of the training set. Since there was
no variable tuning to require a development set, Section 22 was added to the training data to
better approximate the traditional training data amounts.

4.6. More Training Data 107

TnT C&C
Tag Type Tourism WSJ Tourism WSJ
letype+sel+morph 0.9011 0.7018 0.8777 0.6582
letype+sel 0.9143 0.7411 0.8898 0.6807
letype+morph 0.9015 0.7027 0.8783 0.6578
letype 0.9147 0.7420 0.8908 0.6812
subcat+morph 0.9266 0.7645 0.9125 0.7645
subcat 0.9432 0.8333 0.9309 0.8263
pos+morph 0.9510 0.8357 0.9452 0.8586
pos 0.9713 0.9185 0.9674 0.9466

Table 4.9: Indicative tag accuracies of tagger output for each domain
and tag type. The Tourism figures are based on tagger accuracies for
the jhpstg t data set, while a small amount (147 sentences) of gold parsed
data from WSJ Section 2 was used to estimate tagger accuracy on WSJ
data.

set to tag our new unlabelled data. This tagged data is then
added to the training data, and a new model is trained for each
tagger. Of course, the accuracy of the original tagging model will
affect how noisy the new training data is. To try and get some
indication of that, we looked at how the taggers perform on data
from a similar domain. For the new tourism data, the previous
results on jhpstg t should give some indication of the accuracy
that could be expected. For the Wall Street Journal (WSJ) data,
a small section (147 sentences) of gold standard parsed data from
Wall Street Journal Section 2 was available, and we used this for
our accuracy estimation. These accuracy indications are shown
in Table 4.9.

Tables 4.10, 4.11 and 4.12 show the single tag accuracies on
each data set from the two new models, with the accuracy from
the original model shown for comparison. For jhpstg t, the ef-
fect on TnT performance was mostly negative, particularly for
the WSJ data set, though all differences were small. Since the
learning curves had suggested that TnT performance was flat-

108 Chapter 4. The Supertagger

TnT C&C
original +tourism +wsj original +tourism +wsj

letype+sel
+morph

0.9011 0.9013 0.8974 0.8777 0.8806 0.8816

letype+sel 0.9143 0.9160 0.9122 0.8898 0.8949 0.8945
letype

+morph
0.9015 0.9016 0.8975 0.8783 0.8809 0.8846

letype 0.9147 0.9163 0.9124 0.8908 0.8958 0.8952
subcat

+morph
0.9266 0.9249 0.9231 0.9125 0.9142 0.9141

subcat 0.9432 0.9429 0.9412 0.9309 0.9309 0.9329
pos

+morph
0.9510 0.9488 0.9470 0.9452 0.9457 0.9452

pos 0.9713 0.9696 0.9686 0.9674 0.9678 0.9662

Table 4.10: Single tag accuracy over the jhpstg t data set, with the original
model and the two new models trained on the output of the tagger

TnT C&C
original +tourism +wsj original +tourism +wsj

letype+sel
+morph

0.6722 0.7340 0.7890 0.6297 0.6589 0.7499

letype+sel 0.7163 0.7797 0.8320 0.6458 0.6785 0.7837
letype

+morph
0.6727 0.7346 0.7898 0.6298 0.6606 0.7539

letype 0.7169 0.7803 0.8327 0.6460 0.6797 0.7891
subcat

+morph
0.7294 0.7814 0.8262 0.7187 0.7443 0.8147

subcat 0.8177 0.8620 0.8932 0.7967 0.8204 0.8741
pos

+morph
0.8060 0.8339 0.8646 0.8274 0.8385 0.8771

pos 0.9177 0.9313 0.9434 0.9328 0.9366 0.9509

Table 4.11: Single tag accuracy over the ws02 data set, with the original
model and the two new models trained on the output of the tagger

4.6. More Training Data 109

TnT C&C
original +tourism +wsj original +tourism +wsj

letype+sel
+morph

0.7165 0.7449 0.7679 0.6943 0.6986 0.7380

letype+sel 0.7453 0.7768 0.7978 0.7024 0.7193 0.7587
letype

+morph
0.7173 0.7454 0.7683 0.6819 0.7017 0.7388

letype 0.7461 0.7772 0.7984 0.7040 0.7225 0.7624
subcat

+morph
0.7667 0.7951 0.8145 0.7582 0.7749 0.8024

subcat 0.8188 0.8429 0.8584 0.8117 0.8275 0.8488
pos

+morph
0.8395 0.8610 0.8758 0.8623 0.8678 0.8825

pos 0.9100 0.9249 0.9317 0.9306 0.9334 0.9385

Table 4.12: Single tag accuracy over the cb data set, with the original
model and the two new models trained on the output of the tagger

tening out for this data set, it is not too surprising that we are
only adding noise here. For C&C, where lack of training data
still appeared to be a problem for the fine-grained tags on this
data set, we do get an increase in accuracy for those fine-grained
tags. The increases are still quite small though, showing C&C is
not getting a lot of benefit from this extra data, even from the
in-domain set.

On the ws02 data set, there are large improvements across
the board, but not as large as those from the previous experi-
ment. It appears that 30,730 tokens of gold standard, in-domain
data have more effect than even 939,333 tokens of noisy data. It
also appears that this extra data is still not enough to lift the
performance of C&C over that of TnT for the fine-grained tags.

For the cb data set, again we see improvements over the original
for all tag types. TnT, with gold standard Wikipedia data, still
gets better results, but here we see that the performance of C&C
is approximately the same with the 30,730 tokens of gold standard

110 Chapter 4. The Supertagger

data, or with 939,333 tokens of noisy data. Table 4.9 showed that
we might expect less noise if we trained on the output of the TnT
tagger, which leads to the idea of co-training between the taggers,
explored in the next set of experiments.

Co-Training

Co-training (Blum and Mitchell 1998) is the process of training
two learners on the output of each other in an iterative fashion,
trying to capitalise on the differences in each learner. Traditional
co-training experiments have some way of selecting which output
of each tagger is appropriate to use as training for the other, such
as the confidence score of the learner. Clark et al. (2003) used
co-training to boost the performance of the same TnT tagger we
use here, together with the C&C Maximum Entropy based POS
tagger, which is different to the version of the C&C supertagger
we are using, but similar. They experimented with a computa-
tionally intensive agreement-based selection method, but found
that the naive method of using all the tagged data performed just
as well in most cases. We follow their naive co-training method
here, as outlined in Figure 4.13, with a cache size of 500 sen-
tences. Clark et al. found that co-training was effective when
only a small amount of labelled data was available, but achieved
no significant improvement when a large (40,000 sentence) la-
belled seed was used. The seed we use here is much larger than
their small seeds (11,175 sentences compared to 50 or 500), but
not as large as their large seed. Furthermore, they were predicting
POS tags and they could achieve state-of-the-art accuracy with
their large seed. We have already seen that more training data
can lead to accuracy improvements for most of our tag types and
data sets, and so the following experiments investigate whether
co-training is effective for a medium-sized seed. The unlabelled

4.6. More Training Data 111

S is a seed set of labelled sentences
LT is labelled training data for TnT
LC is labelled training data for C&C
U is a large set of unlabelled sentences
C is a cache holding a small subset of U

LT ← LC ← S
Train TnT and C&C on S
repeat

Partition U into disjoint sets C and U ′

CT ← C labelled with TnT
CC ← C labelled with C&C
LC ← LC ∪ CT

Train C&C on LC

LT ← LT ∪ CC

Train TnT on LT

U ← U ′

until U is empty

Figure 4.13: The co-training process, taken from Clark et al. (2003).

data set is the first 25,000 sentences of the WSJ set used in the
self-training experiments.

Figure 4.14 shows that co-training has a degrading effect on
TnT accuracy for fine-grained tags. In contrast, the effect on
C&C accuracy was negligible or positive. This could be because
of their initial accuracy differences, since TnT is training on the
less accurate output of the C&C tagger, however the variations
in the C&C tagger accuracy don’t appear to affect the shape of
the TnT curve and Clark et al. found that imbalance in initial
tagger accuracy did not make co-training less effective.

In Figure 4.15, the results for the subcat+morph and sub-
cat levels of granularity follow this same pattern. Evaluating
the pos+morph tags, however, C&C performance starts to de-
crease with co-training, and, for the cb data set, co-training has
a positive effect on TnT. Again, for the pos tags, the accuracy of

112 Chapter 4. The Supertagger

0.88

0.89

0.90

0 25 50
Iterations

jhpstg t

TnT

C&C

0.63

0.64

0.65

0.66

0.67

0 25 50
Iterations

ws02

TnT

C&C

0.68

0.69

0.70

0.71

0 25 50
Iterations

cb

TnT

C&C

(a) Accuracy over letype+sel+morph tags

0.89

0.90

0.91

0 25 50
Iterations

jhpstg t

TnT

C&C

0.65

0.67

0.69

0.71

0 25 50
Iterations

ws02

TnT

C&C

0.71

0.72

0.73

0.74

0 25 50
Iterations

cb

TnT

C&C

(b) Accuracy over letype+sel tags

0.88

0.89

0.90

0 25 50
Iterations

jhpstg t

TnT

C&C

0.63

0.64

0.65

0.66

0.67

0 25 50
Iterations

ws02

TnT

C&C

0.68

0.69

0.70

0.71

0 25 50
Iterations

cb

TnT

C&C

(c) Accuracy over letype+morph tags

0.89

0.90

0.91

0 25 50
Iterations

jhpstg t

TnT

C&C

0.65

0.67

0.69

0.71

0 25 50
Iterations

ws02

TnT

C&C

0.71

0.72

0.73

0.74

0 25 50
Iterations

cb

TnT

C&C

(d) Accuracy over letype tags

Figure 4.14: Tag accuracy for the fine-grained tags after each iteration
of the co-training process.

4.6. More Training Data 113

0.914

0.918

0.922

0.926

0 25 50
Iterations

jhpstg t

TnT

C&C

0.71

0.72

0.73

0.74

0 25 50
Iterations

ws02

TnT

C&C

0.756

0.762

0.768

0.774

0 25 50
Iterations

cb

TnT

C&C

(a) Accuracy over subcat+morph tags

0.932

0.936

0.940

0.944

0 25 50
Iterations

jhpstg t

TnT

C&C

0.800
0.805
0.810
0.815
0.820

0 25 50
Iterations

ws02

TnT

C&C

0.810

0.815

0.820

0.825

0.830

0 25 50
Iterations

cb

TnT

C&C

(b) Accuracy over subcat tags

0.940

0.944

0.948

0.952

0 25 50
Iterations

jhpstg t

TnT

C&C

0.80

0.81

0.82

0.83

0 25 50
Iterations

ws02
TnT

C&C

0.840

0.848

0.856

0.864

0 25 50
Iterations

cb
TnT

C&C

(c) Accuracy over pos+morph tags

0.960

0.964

0.968

0.972

0 25 50
Iterations

jhpstg t

TnT

C&C

0.916

0.922

0.928

0.934

0 25 50
Iterations

ws02

TnT

C&C

0.91
0.915
0.92

0.925
0.93

0 25 50
Iterations

cb

TnT

C&C

(d) Accuracy over pos tags

Figure 4.15: Tag accuracy for the coarse-grained tags after each iteration
of the co-training process.

114 Chapter 4. The Supertagger

the C&C tagger decreases with co-training. In this tag set, TnT
accuracy increases for all data sets, but particularly for ws02
and cb, where C&C had the better performance with the initial
training data. Our results do suggest that the effect of co-training
depends on the accuracy differences of the initial taggers, but we
also find that none of the co-training experiments achieve results
as good as those from self-training, except for the pos tags on the
jhpstg t data set, where none of the differences (between initial,
self-training or co-training) are statistically significant. It is pos-
sible that a less naive co-training process could get better results
by selecting the more accurate labelled instances to train on, but
the process here was computationally intensive and adding com-
plications to it would exacerbate that issue. We need another
method of producing more accurate labelled data automatically.
A candidate is trialled in the next section.

Parser Output

Prins and van Noord (2003) used a different method to produce
training data for their supertagger: they used the unannotated
output of their parser. Their ALPINO parser, like the PET
parser used here, is HPSG-based and it is thought that the strong
constraints of the grammar will produce much cleaner data than
the taggers alone could. In the following experiments, we parsed
the two unlabelled data sets, and used the top parse produced
as if it were gold standard data. One disadvantage this method
has over self-training or co-training is that not every sentence
will be parseable, and hence there will be less additional training
data. In this instance, the tourism set provided an extra 19,675
sentences or 175,832 tokens, and the WSJ set an extra 31,253
sentences or 689,028 tokens, 84% and 73% of the potential ad-
ditional data respectively. The hypothesis is, however, that the

4.6. More Training Data 115

Tag Type Tourism WSJ
letype+sel+morph 0.9503 0.9111
letype+sel 0.9593 0.9251
letype+morph 0.9503 0.9111
letype 0.9593 0.9251
subcat+morph 0.9617 0.9293
subcat 0.9713 0.9457
pos+morph 0.9840 0.9527
pos 0.9729 0.9743

Table 4.13: Indicative tag accuracies of parser output for each domain
and tag type. The Tourism figures are based on the tag accuracy of the
top parse for the jhpstg t data set, while a small amount (147 sentences) of
gold parsed data from WSJ Section 2 was used to estimate tag accuracy
from the parser for the rest of the WSJ data.

greater tag accuracy obtainable from parsing will make up for
the decrease in the amount of training data. Table 4.13 gives
indicative accuracies for the same data sets as Table 4.9. The tag
accuracies from the parser should be much higher than those from
the taggers, according to these figures. While the figures for the
tourism set are highest, since that is the data the parser has been
trained on, the accuracy over the WSJ set shows a massive im-
provement over what the taggers could produce, recommending
this as a method for producing training data from out-of-domain
labelled data.

Table 4.14 shows the single tag accuracies on the jhpstg t data
set. The TnT results here are the highest so far for this data set,
with the differences between the model augmented with WSJ
data and that using the tourism data statistically insignificant.
Likewise, the results from the C&C tagger trained on the WSJ
augmented training set, while consistently below those from TnT,
are not significantly different.

For the ws02 data set, Table 4.15 shows that the additional
data gave large increases in accuracy, but still not to the level that

116 Chapter 4. The Supertagger

TnT C&C
original +tourism +wsj original +tourism +wsj

letype+sel
+morph

0.9011 0.9141 0.9146 0.8777 0.9045 0.9127

letype+sel 0.9143 0.9270 0.9283 0.8898 0.9137 0.9216
letype

+morph
0.9015 0.9144 0.9151 0.8783 0.9040 0.9126

letype 0.9147 0.9274 0.9287 0.8908 0.9143 0.9231
subcat

+morph
0.9266 0.9348 0.9360 0.9125 0.9267 0.9308

subcat 0.9432 0.9495 0.9515 0.9309 0.9431 0.9457
pos

+morph
0.9510 0.9547 0.9539 0.9452 0.9497 0.9521

pos 0.9713 0.9719 0.9717 0.9674 0.9689 0.9689

Table 4.14: Single tag accuracy over the jhpstg t data set, with the original
model and the two new models trained on the output of the parser

TnT C&C
original +tourism +wsj original +tourism +wsj

letype+sel
+morph

0.6722 0.7275 0.8149 0.6297 0.6748 0.7949

letype+sel 0.7163 0.7693 0.8506 0.6458 0.6986 0.8300
letype

+morph
0.6727 0.7279 0.8155 0.6298 0.6791 0.7963

letype 0.7169 0.7696 0.8512 0.6460 0.7007 0.8299
subcat

+morph
0.7294 0.7785 0.8457 0.7187 0.7520 0.8441

subcat 0.8177 0.8537 0.9021 0.7967 0.8230 0.8946
pos

+morph
0.8060 0.8342 0.8765 0.8274 0.8346 0.8847

pos 0.9177 0.9291 0.9402 0.9328 0.9374 0.9460

Table 4.15: Single tag accuracy over the ws02 data set, with the original
model and the two new models trained on the output of the parser

4.6. More Training Data 117

TnT C&C
original +tourism +wsj original +tourism +wsj

letype+sel
+morph

0.7165 0.7558 0.8196 0.6943 0.7226 0.8138

letype+sel 0.7453 0.7864 0.8430 0.7024 0.7455 0.8360
letype

+morph
0.7173 0.7564 0.8203 0.6819 0.7249 0.8149

letype 0.7461 0.7872 0.8437 0.7040 0.7481 0.8370
subcat

+morph
0.7667 0.8024 0.8530 0.7582 0.7837 0.8509

subcat 0.8188 0.8492 0.8863 0.8117 0.8366 0.8882
pos

+morph
0.8395 0.8669 0.8972 0.8623 0.8704 0.9022

pos 0.9100 0.9290 0.9373 0.9306 0.9364 0.9443

Table 4.16: Single tag accuracy over the cb data set, with the original
model and the two new models trained on the output of the parser

the additional gold standard Wikipedia data did. The differences
between the taggers for each data set here are not statistically sig-
nificant for the subcat+morph, subcat, pos+morph and
pos tag sets, but TnT is still significantly better for the fine-
grained tags.

In Table 4.16, we see that the additional parsed WSJ data
gives the best results seen so far for the cb data set, though
these results are still well below the level of accuracy achievable
on the jhpstg t set. The differences between the two taggers for
this training set are not statistically significant. Looking at the
differences between the two training sets, it is clear that more
data is still better, unlike, for example, in the jhpstg t data set,
where both taggers appear to be approaching their upper bound.
As results over ws02 show, in-domain data would be best, but
it is not clear which data is in-domain for this cb data set. It
is online, edited text discussing technical subjects from a social
perspective. Not coming from a corpus, it is hard to pin down

118 Chapter 4. The Supertagger

what text would be similar, but it is exactly the sort of text that
one might expect to parse when parsing ‘the Web’.

4.7 Summary

Supertags are an effective source of lexical information, in part
because they are closely linked to the linguistic formalisms used
in parsing. This tight integration with the formalism means that
off-the-shelf supertaggers are not readily available for every for-
malism, and the goal of this chapter was to find an effective
supertagger for use with the PET HPSG parser. Since HPSG
lexical items are made from information of different types, the
definition of supertag form is not straightforward, and eight tag
forms of varying granularity were used in the experiments.

The two taggers tested were the HMM-based TnT tagger from
Brants (2000b) and the Maximum Entropy based C&C supertag-
ger (Clark and Curran 2007b). Both taggers were trained on
data extracted from the gold-standard parse trees released with
the HPSG English Resource Grammar, approximately 160,000
tokens. For in-domain tests, this data was sufficient for TnT to
reach an tag accuracy level that has been shown to be effective in
speeding up parsing. The single tag accuracy of C&C, however,
was significantly lower than that of TnT, except when tagging the
coarse-grained pos and pos+morph tag forms. These tags are
not strictly speaking supertags, since they provide no more infor-
mation than Penn Treebank part-of-speech tags, but are included
as a baseline. Performance of both taggers dropped considerably
when tagging out of domain data, by almost 4% for the pos tags,
up to over 20% for the most detailed tags. TnT was still the more
accurate tagger, for all fine-grained tags.

When multiple tags were assigned, according to a β value, it

4.7. Summary 119

was possible to get an accuracy of almost 98% on in-domain data,
when assigning approximately four of the most detailed tags on
average per word. When assigning fine-grained tags, TnT still
had the highest accuracy when assigning the same number of
tags. With the coarser subcat and subcat+morph tags, how-
ever, the taggers had similar performance when assigning very few
tags per word, but C&C was more accurate when assigning more
than two tags. Hence we see that the most appropriate tagger
depends not only on the tag type, but also on the way the tags
are to be used.

Another method of using the tags was evaluated, where a word
is only tagged when the tag probability is over a certain threshold.
In this scenario, all decisions are left to the parser, unless the tag
probability is high. Here we saw that C&C can be the more
accurate tagger when not all words need to be tagged, although
TnT is generally still the more accurate tagger for fine-grained
tags when tagging over 50% of tokens. The optimal tagger and
probability threshold depends heavily on the appropriate trade-
off point between efficiency (from tagging and hence restricting
more tokens) and accuracy (tagging tokens correctly).

Since a lack of training data seemed to be an issue both for
out of domain data, and for C&C performance in general, several
attempts were made to add extra training data. A small amount
of gold standard data in the domain of the ws02 data set was
available, and adding this to the training data gave a large im-
provement in accuracy for that data set, though not quite to the
level achieved on the jhpstg t set. A significant, though not as
large improvement was also seen on the cb data set.

Since more gold standard data was unavailable, different meth-
ods were tried to automatically produce additional training data.
Unlabelled data from the Wall Street Journal, as well as from the

120 Chapter 4. The Supertagger

tourism domain of the original data, was labelled first by the tag-
ger itself, then as part of a co-training process, labelling training
data for one tagger with the other tagger, and finally by parsing
with the PET parser. Despite providing less data, since many
sentences were not parseable, the data labelled by the parser led
to greater tagger accuracy than either self-training or co-training.
Table 4.17 shows the best results achieved for each tag type on
each data set. For both the jhpstg t and cb data sets, adding
large amounts of automatically parsed data to the training data
had the best effect on accuracy. The results on ws02 show that
adding gold standard in-domain data is still more effective, since
30,000 tokens of additional Wikipedia data gives better results
than almost 700,000 tokens of parsed data.

For a supertagger to be effective, the supertags need to be both
predictable, and provide useful information to the parser. This
chapter focussed on the first requirement, and found that all tag
types are predictable, to varying degrees, for a tagger trained on
approximately 150,000 tokens of in-domain data. Later chapters
will test the usefulness of different tag forms for different tasks,
such as unknown word handling, parser search space restriction
and parse ranking. The best method of tagging, the appropriate
amount of information in the tag and the required tagging accu-
racy may all vary according to the task. The following chapter
looks at the first of these – unknown word handling.

4.7. Summary 121

Data Set Tag Type Tagger Training Data Accuracy
jhpstg t letype+sel+morph TnT +parsed WSJ 0.9146
jhpstg t letype+sel TnT +parsed WSJ 0.9283
jhpstg t letype+morph TnT +parsed WSJ 0.9151
jhpstg t letype TnT +parsed WSJ 0.9287
jhpstg t subcat+morph TnT +parsed WSJ 0.9360
jhpstg t subcat TnT +parsed WSJ 0.9515
jhpstg t pos+morph TnT +parsed tourism 0.9547
jhpstg t pos TnT +parsed tourism 0.9719
ws02 letype+sel+morph TnT +gold Wikipedia 0.8260
ws02 letype+sel TnT +gold Wikipedia 0.8631
ws02 letype+morph TnT +gold Wikipedia 0.8270
ws02 letype TnT +gold Wikipedia 0.8641
ws02 subcat+morph TnT +gold Wikipedia 0.8583
ws02 subcat TnT +gold Wikipedia 0.9124
ws02 pos+morph TnT +gold Wikipedia 0.8937
ws02 pos TnT +gold Wikipedia 0.9570
cb letype+sel+morph TnT +parsed WSJ 0.8196
cb letype+sel TnT +parsed WSJ 0.8430
cb letype+morph TnT +parsed WSJ 0.8203
cb letype TnT +parsed WSJ 0.8437
cb subcat+morph TnT +parsed WSJ 0.8530
cb subcat C&C +parsed WSJ 0.8882
cb pos+morph C&C +parsed WSJ 0.9022
cb pos C&C +parsed WSJ 0.9443

Table 4.17: The best single tag accuracy achieved for each data set and
tag type.

122 Chapter 4. The Supertagger

5 Unknown Word Handling
It is not possible for a grammar to include every word that might
be used in a natural language, since, among other reasons, new
words are constantly being invented. On the other hand, the
strength of lexicalist grammars, like those in the HPSG formal-
ism, is the detailed information about words contained in their
lexicons. Robust parsing with lexicalist grammars therefore re-
quires some means of retaining this detailed lexicon while aug-
menting it to handle those words that the grammar writer has
not entered into the lexicon.

In the C&C CCG parser, this task is handled by the supertag-
ger, since, as discussed in Chapter 4, the supertag plus word form
completely define the lexicon entries as used by the C&C parser.
The DELPH-IN HPSG grammars, with their more fine-grained
lexical entries, don’t allow this method of augmentation. Instead,
the typical mechanism for unknown word handling in DELPH-IN
grammars has been to add a number of generic lexical entries to
a supplementary lexicon, and allow these generic entries to be
triggered by additional information in the input. For the most
part, this additional information has been POS tags from a stan-
dard POS tagger (e.g., TnT for English and German, ChaSen
for Japanese). There is also some previous work (e.g., Baldwin
2005, Zhang and Kordoni 2006, Zhang et al. 2007a) that looked
at predicting the lexical types of unknown words in DELPH-IN
grammars, though most of this work was under the umbrella of
deep lexical acquisition and was hence evaluated according to the
quality of the augmented lexicons thus produced.

In this chapter, we look at how parsing performance is affected
by different forms of unknown word handling when parsing with
the ERG. All experiments use the basic mechanism of triggering

124 Chapter 5. Unknown Word Handling

generic lexical entries for unknown words, with the set of generic
entries, and the input information used to trigger them, varying
across experiments. The Penn Treebank (PTB) POS tags, as as-
signed by TnT using a model trained on the Wall Street Journal,
have already been shown in recent ERG parsing work to be very
effective triggers for this task. They will be used as a baseline,
and the major goal of these experiments is to ascertain whether
a more accurate analysis can be achieved by using more infor-
mative tags or, in the case of our pos tags, by using tags more
closely aligned to the distinctions made in the grammar.

5.1 Tagger Accuracies Over Unknown Words

In addition to the default PTB POS tags, we will try using some
of the different supertag forms from Chapter 4 as triggers for
generic lexical entries. Since, in the PET parser, morphologi-
cal processing is a separate process applied to each lexical entry
in the parsing chart after lexicon lookup, we restrict our trig-
gering tags to those without morphological information. Before
attempting to parse using these tags, we first look at the stan-
dalone accuracy of the different taggers over unknown words. It
is common practice to report tagger accuracy on known and un-
known words separately, in addition to overall tag accuracy, but
that is generally on tokens unknown to the tagger. In this case,
we are interested in tagger performance on words unknown to
the grammar.

Evaluating unknown words in this scenario is not straightfor-
ward, since the gold standard comes from the parser and hence
words unknown to the grammar do not generally appear in the
gold standard. As previously mentioned, however, recent gold
treebanks were produced by parsing using unknown word han-

5.1. Tagger Accuracies Over Unknown Words 125

Data pos subcat letype letype+sel
Set OOV TnT C&C TnT C&C TnT C&C TnT C&C
jhpstgt 0.1% 1.00 1.00 0.85 1.00 0.31 0.39 0.31 0.39
ws02 3.1% 0.923 0.931 0.854 0.900 0.490 0.487 0.490 0.490
cb 1.8% 0.909 0.857 0.823 0.806 0.526 0.474 0.526 0.469

Table 5.1: Tagger accuracy for different tag types over those words un-
known to the ERG lexicon (OOV). The percentage of tokens unknown
in each data set is shown in the second column.

dling and hence some gold trees include generic lexical entries
triggered by the default unknown word handling mechanism of
using PTB POS tags. While these generic entries are a fuzzy gold
standard, they have been accepted in treebanking as producing
reasonable analyses. Table 5.1 shows tagger performance over
these tags. All experiments use the +WSJ tagger model from
Chapter 4, where the base model was augmented with parsed
(but not gold standard) data from the Wall Street Journal, ex-
cept for the TnT experiments over the ws02 data set. For these
experiments we used the +Wiki model, augmented with gold
standard Wikipedia data, since this model gave significant in-
creases in overall tagging accuracy in the previous chapter.

In the jhpstg t data set, there are only 13 unknown words, with
three being mis-spellings, four coming from idiosyncrasies in num-
ber pre-processing and three being proper names. Only three
words thus are legitimate candidates for addition to the lexicon.
The ws02 and cb data sets, on the other hand, both contain
a reasonable proportion of unknown words, with nouns making
up approximately three quarters of the unknown tokens, and ad-
jectives a further 20%. Unknown verbs and adverbs occur, but
infrequently.

Looking at the performance on these tags, we see that the
accuracy measured at the pos or subcat granularity is quite
good. For comparison, the TnT POS tagger has an unknown

126 Chapter 5. Unknown Word Handling

word accuracy of 85.5% tagging Penn Treebank data with Penn
Treebank POS tags (Brants 2000a). The performance on the
letype and letype+sel tags, according to these figures, is not
as good. However, when examining the ‘errors’, in many cases the
predicted tags are more specific and more accurate than the gold
standard tags. For example, many words have been correctly
identified as countable nouns, where the gold standard under-
specified the tag as a mass or count noun. This underlines the
fuzziness of the gold standard, and shows that any evaluation
against these gold tags should evaluate for compatibility only, at
the pos or subcat level.

In order to get a better indication of the tagger performance
for these fine-grained tags, we need to identify words for which
we have gold standard tags, but that resemble unknown words in
their properties and distributions. Zhang et al. (2007a) describe
a fairly complex method of restricting the lexicon according to
the distribution of lexical entries in the treebanks and lexemes in
a large corpus in order to get controlled levels of correctness. We
decided to use the simpler method of assuming any lexical entry
not seen in the gold treebanks used for training is unknown by
the grammar. In the parsing experiments later in this chapter, we
will construct a filtered lexicon based on this assumption. Note
that this filtering is based on lexical entries, not words. That is,
if ration has been seen in the training data as a verb, but not
as a noun, we only consider the ration n1 lexical entry to be
unknown.

According to this definition, just over six percent of the non-
punctuation tokens in the gold test sets are now considered ‘un-
known’. Again, the majority are nouns, making up 57% of un-
known tokens, but in this case, 23% are verbs. This discrepancy
between the proportion of unknown verbs according to the full

5.1. Tagger Accuracies Over Unknown Words 127

Data pos subcat letype letype+sel
Set OOV TnT C&C TnT C&C TnT C&C TnT C&C
jhpstgt 5.2% 0.952 0.954 0.914 0.903 0.846 0.801 0.843 0.798
ws02 5.5% 0.820 0.887 0.625 0.782 0.453 0.589 0.448 0.589
cb 8.4% 0.906 0.866 0.782 0.712 0.709 0.611 0.701 0.603

Table 5.2: Tagger accuracy for different tag types over those words un-
known to a lexicon that only contains lexical entries that have been seen
in the training data (OOV). The percentage of tokens unknown in each
data set according to this lexicon is shown in the second column.

lexicon, and according to our filtered lexicon is due, in part, to a
recent effort to add verbs to the ERG lexicon. Our filtered lexi-
con is perhaps representative of a grammar lexicon that has not
had this focussed effort on adding verbs. Around 12% of these
unknown tokens are adjectives and 6.6% are adverbs. The few
closed class ‘unknown’ tokens are mostly from lexicalised multi-
word expressions such as on the basis of (p np i le) and as if
(p cp s-unsp le). Since the individual words from these multi-
word expressions are in the lexicon, removing the multiword lexi-
cal entry from the lexicon will not necessarily cause parse failure,
but will preclude the precise semantic analysis that the gram-
mar writer has deemed correct for these multiword expressions.
Table 5.2 shows the tagger performance over these ‘unknown’
tokens.

Here we see that for jhpstg t, performance over the pos and
subcat tags remains high. Moreover, in this instance where we
are measuring over real tags rather than those from generic lex-
ical entries, the accuracy over letype and letype+sel is also
very good, particularly from the TnT tagger. In fact, when we
look at the differences between the taggers, we see that TnT is
significantly more accurate over the jhpstg t and cb data sets,
in all but one instance, where the difference is statistically in-
significant. While we saw, in Chapter 4, that TnT was generally

128 Chapter 5. Unknown Word Handling

Full Lexicon Filtered Lexicon
Tagger Tag Type +Wiki +WSJ +Wiki +WSJ
TnT letype+sel 0.490 0.481 0.448 0.685
TnT letype 0.490 0.481 0.453 0.686
TnT subcat 0.854 0.883 0.625 0.785
TnT pos 0.923 0.954 0.820 0.875

Table 5.3: Tag accuracy of unknown words in the ws02 data set for TnT
using different training models. The +Wiki model added gold standard
Wikipedia data to the basic model and gave the best overall tag accuracy
for this data set, for these tagger and tag type combinations. The +WSJ
model added parsed (by not gold standard) Wall Street Journal data to
the basic model. The +WSJ model was not as accurate overall for this
data set, but appears to have better accuracy for unknown words in most
cases. The different categories of unknown words are words unknown to
the full ERG lexicon and words unknown to a lexicon filtered to include
only words seen in the gold treebanks used for training.

the more accurate tagger, the differences had narrowed in most
cases to less than one percent when using the augmented mod-
els. The much larger differences here indicate that TnT is better
at tagging unknown words. Over the ws02 data set, this trend
reverses. One possible explanation for this is that the tagger
model TnT used to tag the ws02 data set was the smaller model
trained only on gold data, including gold Wikipedia data. To
test this hypothesis, we re-tagged the ws02 data set with the
larger model, augmented with parsed (but not gold standard)
Wall Street Journal data. Table 5.3 shows the results. It appears
that, even though the model trained on gold standard data does
better overall, the bigger, more general model has higher tag ac-
curacy on unknown words. This is an important factor to keep
in mind when selecting the best tagger for a particular purpose.
All subsequent experiments shall use the model augmented with
Wall Street Journal data for both taggers and all data sets.

5.2. Parsing 129

5.2 Parsing

The next set of experiments uses the tags evaluated above, as
well as the standard PTB POS tags as produced by the TnT tag-
ger, to augment parser input for the purpose of unknown word
handling. Using the chart mapping mechanism as described by
Adolphs et al. (2008), the parser accepts Penn Treebank style
tokenised input, with up to two associated tags per token, and
manipulates the tokens to match the assumptions of the gram-
mar. Some minimal tag assignment adjustment is required in
this process. Where multiple input tokens are combined into
one, the grammar writer must specify in the chart mapping rules
which tags to assign to the combined token. For example, in
combining the contracted negations such as {do, n’t} back into
one token, the final token is assigned the tag(s) from the first
input token, whereas when re-attaching punctuation, the punc-
tuation tags are discarded, regardless of whether they are on the
first or last token. An analogous process occurs when single in-
put tokens are split into their component pieces, for example in
hyphenated words. In most of these cases, the tags of the original
token are assigned to each of the component tokens. Finally, cer-
tain tokens are identified, by use of regular expressions, as named
entities such as dates, times and URLs, and the tags on these to-
kens are discarded, since these tokens will trigger another form
of lexical entry.

Once the final tagged tokens are settled, separate lexical items
are hypothesised for each token and tag combination. These hy-
pothesised lexical items are the ones that may unify with the
generic lexical entries that have been specified as part of the
grammar. An untagged lexical item for each token is also hypoth-
esised, but this item may only unify with non-generic (referred to

130 Chapter 5. Unknown Word Handling

as native) lexical entries, and is prevented from unifying with the
generic entries. Lexical lookup occurs at this stage of the process,
and the final result may be a mixture of lexical items from native
lexical entries, and those constructed from generic lexical entries.
A lexical filtering process is then applied. In the current ERG,
this process throws away all lexical items that come from generic
entries if there is one from a native lexical entry that covers the
same input span. The only exception to this is if a generic name
was hypothesised. These are kept, unless a native lexical entry
for the name was included in the lexicon. This filtering process
could be more nuanced, retaining some generic items where the
original tag had high probability, if the native entry had an in-
compatible type, but in these experiments, we wish to compare
with the status quo. This fact also dictates the manner in which
tags are assigned. Chapter 4 showed that the tag accuracy could
vary considerably, depending on the number of tags assigned and
their relative probabilities. To keep the variation space manage-
able, we use the tagger configuration currently used to produce
the ERG gold treebanks: β is set to 0.01, and furthermore, a
maximum of two tags are assigned.

5.2.1 Generic Lexical Entries

The effect of any unknown word handling mechanism is con-
trolled, not only by the triggering tags, but by the form of the
generic entries they trigger. A single, extremely underspecified
generic entry of type word would allow an analysis to be con-
structed in the vast majority of cases, but would also lead to mas-
sive ambiguity (which could in turn lead to a loss of robustness
due to resource limitations). By using tags to select particular
generic entries, we allow some specification without requiring full

5.2. Parsing 131

knowledge of the word. There are different strategies for selecting
which information to specify for a particular tag. One possibil-
ity is to specify only that information given in the tag, leaving
everything else underspecified. For example, given a tag of v, we
know only that the word is probably a verb, but know nothing
about its subcategorisation, and so a very underspecified lexical
entry could be used that specified only the head type as verb.
However, this strategy ignores characteristics of language, and
of unknown words in particular. Another strategy, and the one
used in the current grammar, is to define generic lexical entries
that specify the most likely information, given that the word is
unknown to the grammar. For instance, English has a restricted
number of ditransitive verbs, or verbs that take a sentential com-
plement, and any reasonably mature grammar will have most of
them in its lexicon. Although all types of base form verb should
be assigned the PTB POS tag VB, most unknown verbs will
be simple transitive, or perhaps intransitive. Hence, by defining
the generic lexical entry triggered by VB as a verbal type that
takes an optional noun phrase complement, the grammar loses
very little coverage, but does not unnecessarily increase ambigu-
ity. This is the strategy we will continue with when defining our
new lexical entries.

Designing the appropriate entries to go with the various su-
pertag tag forms is not totally straightforward. The current set
of generic lexical entries associated with PTB POS tags have
been defined and fine-tuned by the grammar writer over years of
grammar development. We will attempt to follow the same basic
strategy, but without the same time for fine-tuning.

For the letype and letype+sel tags, defining the appropriate
entries is reasonably simple. Since they are both associated with
full lexical types, the lexical entry can inherit from that type and

132 Chapter 5. Unknown Word Handling

then very little else needs to be specified. For the letype+sel
tags, the appropriate selectional restrictions are added to the en-
tries. Apart from these details, the only other specification is
one intended to make the final lexical items more informative.
Since these entries will not, in general, have complete semantics
defined for them, they will not have predicate names defined.
As such, for most of these generic lexical entries, we set the se-
mantic pred feature to a string based on the word form and
the tag. However, this specification has to be selectively ap-
plied, since there are particular lexical types that already define
this feature. For example, types referring to pronouns, months,
seasons or other named entities use abstract pred values (e.g.
named rel), which are useful for downstream applications such
as information extraction and machine translation. These steps
lead to the creation of 1006 generic entries for letype+sel tags,
and 800 for letype tags.

Only six generic entries were created for the pos tags, for the
open class tags aj, av, n, pp, p and v. The other tags describe
closed class tags like determiners and conjunctions, which are
unlikely to be unknown to a grammar, and whose properties
would be very difficult to predict if they were unknown.

For the subcat tags, again we only define generic lexical en-
tries for open class tags. Even within this set, there were a
number of tags that described subcategorisations that were only
used for one word, or a small class of words. No generic entries
were created for these types. In the end, 48 generic entries were
defined, with the majority representing verb subcategorisations.
This was the most difficult set of generic entries to create, since
there was frequently conflict between overspecifying information
not represented by the tag and underspecifying, and hence in-
creasing parser ambiguity.

5.2. Parsing 133

5.2.2 Coverage and Efficiency

Since robustness is the main goal of unknown word handling,
we first evaluate raw coverage numbers over the full test sets,
including those items for which we do not have a gold standard
analysis. It is possible, and even likely, that for some items for
which a parse is produced, none of the parses will be a reasonable
analysis. However, recent treebanking work has found that about
90% of parsed items have at least one correct analysis.

Each data set was parsed with both the full grammar, and the
grammar with the filtered lexicon described in Section 5.1. Re-
sults from Table 3.3 show how the full grammar performs without
unknown word handling. To get the equivalent picture for the fil-
tered grammar, each data set was first parsed with no associated
tags on the input tokens. Tables 5.4, 5.5 and 5.6 show the raw
coverage for both grammars without unknown word handling as
well as one round for each of the different tagger and tag form
combinations. Coverage here is defined as the percentage of sen-
tences which received an analysis. The number of sentences that
failed to parse either due to exceeding the 60 second time limit or
because there were still lexical gaps is shown for each experiment.

When parsing with the full grammar, the default method of
triggering generic entries using Penn Treebank POS tags from
TnT has the highest coverage for all data sets, although all tag
forms achieve a similar level of coverage. Close inspection shows
that the number of sentences with lexical gaps is not directly re-
lated to coverage (although it obviously has some impact). In
some cases it can be seen that, although fewer sentences failed
instantly, overall coverage was lower. This occurs when an in-
correct tag invokes a generic lexical item that cannot lead to a
successful parse.

134 Chapter 5. Unknown Word Handling

Coverage (%) Timed Out Lexical Gaps
Tagger Tag Types Full Filtered Full Filtered Full Filtered
none none 93.7 80.6 2 0 22 119
TnT PTB POS 96.4 93.1 2 0 0 0
TnT letype+sel 95.1 91.8 3 2 8 8
C&C letype+sel 95.3 92.6 3 1 6 7
TnT letype 95.1 92.0 3 0 8 8
C&C letype 95.3 92.5 3 2 6 7
TnT subcat 95.8 92.5 2 1 2 2
C&C subcat 96.2 93.6 2 1 0 0
TnT pos 95.9 92.8 2 1 2 2
C&C pos 96.2 93.7 2 1 0 0

Table 5.4: Coverage over jhpstg t, parsing with both a full and filtered
lexicon. The numbers of sentences which failed to parse due to time outs
or lexical gaps are also shown.

Coverage (%) Timed Out Lexical Gaps
Tagger Tag Types Full Filtered Full Filtered Full Filtered
none none 56.8 35.8 5 0 357 547
TNT PTB POS 90.9 85.0 22 12 3 3
TnT letype+sel 89.7 82.5 28 14 3 3
C&C letype+sel 89.4 83.8 28 16 6 7
TnT letype 89.9 82.9 26 13 3 3
C&C letype 89.4 83.8 28 16 6 7
TnT subcat 90.6 84.5 27 17 3 5
C&C subcat 90.1 85.0 31 22 3 3
TnT pos 90.7 85.3 26 15 3 5
C&C pos 90.5 85.7 28 18 3 3

Table 5.5: Coverage over ws02, parsing with both a full and filtered
lexicon. The numbers of sentences which failed to parse due to time outs
or lexical gaps are also shown.

5.2. Parsing 135

Coverage (%) Timed Out Lexical Gaps
Tagger Tag Types Full Filtered Full Filtered Full Filtered
none none 57.1 22.9 14 0 260 550
TnT PTB POS 85.3 72.4 25 12 2 4
TnT letype+sel 83.9 70.0 33 14 1 2
C&C letype+sel 84.1 73.1 33 12 2 7
TnT letype 84.1 70.1 30 14 1 2
C&C letype 84.0 73.1 34 12 2 7
TnT subcat 84.7 71.1 31 19 1 2
C&C subcat 85.0 72.8 32 24 1 1
TnT pos 84.9 71.7 29 18 1 2
C&C pos 85.3 73.6 29 21 1 1

Table 5.6: Coverage over cb, parsing with both a full and filtered lexicon.
The numbers of sentences which failed to parse due to time outs or lexical
gaps are also shown.

Where the filtered grammar has been used for parsing, the
PTB POS tags no longer give the highest coverage. This is not
so surprising, since the generic entries for these tags have been
specifically tuned to cover those gaps likely, given the grammar.
By altering the grammar, we negate the advantage given by this
tuning and then the C&C tagger has slightly higher performance,
although again the differences in coverage between the different
taggers and tag forms are small. We see a slight trend to higher
coverage from the coarser grained tags, which is unsurprising,
since these tags lead to less constrained lexical items. More sur-
prising is that C&C generally outperforms TnT when assigning
the same tag form. The standalone tag accuracies from Sec-
tion 5.1 would have predicted the reverse trend. One possible
explanation is that the method of assigning tags is having an
effect. The standalone figures above are for single tag accuracy,
and we saw in Chapter 4 that C&C was the more accurate tagger
when assigning multiple tags, although the advantage there came
when assigning more than two tags. We re-ran the tag evalua-

136 Chapter 5. Unknown Word Handling

Data pos subcat letype letype+sel
Set OOV TnT C&C TnT C&C TnT C&C TnT C&C
jhpstgt 5.2% 0.980 0.977 0.939 0.948 0.898 0.877 0.893 0.871
ws02 5.5% 0.948 0.981 0.871 0.921 0.782 0.727 0.780 0.728
cb 8.4% 0.963 0.963 0.866 0.867 0.795 0.752 0.787 0.735

Table 5.7: Tag accuracy for words unknown to the filtered lexicon (OOV),
assigning up to two tags, if the probability of the second tag is at least
0.01 times that of the first tag.

tions, allowing one extra tag if the probability of the second tags
was within 0.01 of the first — the same conditions in which an
extra tag is assigned during parsing. As the results in Table 5.7
show, the differences between the taggers do narrow, and even
slant in favour of C&C for the coarse-grained tags, as we saw in
Chapter 4. However, TnT is still the more accurate tagger for
fine-grained tags. Even looking in terms of sentence accuracy for
these tags shows no advantage to C&C. It appears that, in the
complicated interactions in the parsing process, the errors C&C
makes have less effect either because they are in sentences that
would fail to parse anyway, or because the erroneous tag still al-
lows parsing, although no obvious pattern could be detected in
error analysis.

Another interesting pattern in these parsing results can be seen
when looking at the number of errors due to time limits, which
uniformly drops between the full and filtered grammar results.
Generally speaking, generic lexical entries should lead to longer
times, because the lexical items they create are underspecified
compared to those that come from native lexical entries, and
hence lead to more parsing ambiguity. Looking at the details,
however, it seems that many sentences that timed out when pars-
ing with the full grammar failed without error with the filtered
grammar, probably due to impossible tag sequences being pre-

5.2. Parsing 137

dicted that could not parse. The filtered grammar does, however,
show slightly more time outs for the less specific of the new tags,
which follows from the idea that underspecification leads to more
ambiguity and hence more time.

In terms of absolute coverage numbers, the results for the three
data sets reflect the size of the unknown word problem for each
set. Despite having a similar percentage of unknown words ac-
cording to the filtered grammar, the test sets jhpstg t and ws02
have markedly different coverage when no unknown word han-
dling is used, indicating that the unknown words in the jhpstg t
set are clustered in a small number of sentences. For the cb
data set, parsing of over 70% of sentences fails instantly due to
unknown words where no unknown word handling is used. Fil-
tering the grammar had a much greater effect on this data set,
and so a top coverage of 73.6%, although perhaps disappointing,
is not unexpected.

Unknown word handling is not intended to have any effect
on parsing efficiency but, as mentioned above, it is possible for
generic lexical entries to lead to longer parsing times, due to
underspecification. Of course, parsing times can also increase be-
cause we are able to parse more, and longer, sentences. Tables 5.8,
5.9 and 5.10 show the time and memory use while parsing with
each of the different tag types.

We can see here that the form of unknown word handling in
fact has a large effect on parsing efficiency, largely independent of
the coverage achieved. It appears that time and memory usage
is related to the number of generic lexical entries that have been
added to the grammar. Comparing between taggers with the
same tag form, we see that when C&C is used, parsing is always
slightly slower, even when TnT gives better coverage. This is
most likely because, as we saw in Chapter 4, C&C assigns more

138 Chapter 5. Unknown Word Handling

Time (sec.) Memory (MB)
Tagger Tag Types Full Filtered Full Filtered
none none 0.97 0.62 82.74 64.96
TnT PTB POS 1.10 0.90 104.31 94.88
TnT letype+sel 4.23 4.02 1652.03 1644.88
C&C letype+sel 4.38 4.20 1713.78 1709.43
TnT letype 3.60 3.44 1341.71 1338.61
C&C letype 3.72 3.56 1400.48 1392.91
TnT subcat 1.28 1.28 194.64 190.69
C&C subcat 1.33 1.32 200.86 197.21
TnT pos 1.13 1.10 118.98 113.98
C&C pos 1.17 1.12 118.60 113.51

Table 5.8: Efficiency, measured as average time and memory usage per
sentence, over the jhpstg t test data set, parsing with both the full gram-
mar and the filtered grammar.

Time (sec.) Memory (MB)
Tagger Tag Types Full Filtered Full Filtered
none none 2.00 0.54 128.45 66.59
TNT PTB POS 3.59 2.33 206.57 171.62
TnT letype+sel 8.46 7.26 2400.17 2420.18
C&C letype+sel 9.00 7.93 2509.02 2528.21
TnT letype 7.50 6.25 2077.46 2090.95
C&C letype 7.93 6.87 2193.81 2208.49
TnT subcat 4.40 3.39 369.53 344.58
C&C subcat 4.70 3.97 389.23 372.40
TnT pos 4.12 3.12 240.35 215.53
C&C pos 4.23 3.33 238.44 216.80

Table 5.9: Efficiency, measured as average time and memory usage per
sentence, over the ws02 test data set, parsing with both the full grammar
and the filtered grammar.

5.2. Parsing 139

Time (sec.) Memory (MB)
Tagger Tag Types Full Filtered Full Filtered
none none 3.85 1.17 187.47 93.72
TnT PTB POS 5.32 3.52 270.41 218.63
TnT letype+sel 11.04 9.08 2711.73 2744.01
C&C letype+sel 11.52 9.69 2804.73 2839.03
TnT letype 9.93 7.91 2360.90 2375.54
C&C letype 10.31 8.50 2453.57 2480.95
TnT subcat 6.35 4.76 454.73 410.73
C&C subcat 6.82 5.65 477.09 444.54
TnT pos 6.05 4.39 313.85 266.68
C&C pos 6.22 4.99 313.60 279.08

Table 5.10: Efficiency, measured as average time and memory usage per
sentence, over the cb test data set, parsing with both the full grammar
and the filtered grammar.

tags than TnT at the same β level, and so more lexical items
will be hypothesised. However, the major effect is seen between
tag types. Parsing using the letype+sel tags, with just over
1000 generic lexical entries, uses at least ten times the memory
and twice the time as when PTB POS tags are used. Any benefit
from using more specified lexical entries is lost in adding so many
entries.

The reason that the size of the supplementary lexicon has such
a large effect of parser performance, even in cases where there are
very few unknown words, is due to details of the parsing process.
At present, lexical instantiation with large numbers of generic
entries is implemented in quite an inefficient manner, since most
current grammars uses fewer than 20. As described earlier, the
supplementary lexicon is searched once for every token and tag
combination, a strategy which we will refer to as gap preven-
tion. While the parser implementation could be improved if large
generic entry sets are to become common, a currently available
alternative strategy is to only consult the supplementary lexicon

140 Chapter 5. Unknown Word Handling

Coverage (%) Time (sec.) Memory (MB)
Tagger Tag Types Full Filtered Full Filtered Full Filtered
none none 93.6 80.0 0.88 0.55 64.41 48.14
TnT PTB POS 96.3 92.6 0.92 0.80 69.21 61.88
TnT letype+sel 95.1 91.4 0.91 0.99 85.47 172.18
C&C letype+sel 95.3 92.3 0.92 1.04 86.05 185.99
TnT letype 95.1 91.5 0.90 0.96 81.96 147.83
C&C letype 95.3 92.3 0.91 1.00 82.49 159.40
TnT subcat 95.7 92.1 0.95 0.96 73.06 75.60
C&C subcat 96.1 93.2 0.98 1.06 74.17 78.11
TnT pos 95.8 92.4 0.94 0.95 72.28 70.14
C&C pos 96.1 93.4 0.98 0.97 72.86 70.68

Table 5.11: Coverage and efficiency over the jhpstg t data set, parsing
with both full and filtered grammars, using a gap detection rather than
gap prevention strategy.

after the main lexicon had been searched and a native lexical en-
try not found. However, this would not allow lexical filtering rules
that depended on knowing which generic lexical entries were ap-
plicable for a token. With the present lexical filtering policy, this
would only affect the rule that keeps lexical items from generic
entries that relate to names. Tables 5.11, 5.12 and 5.13 show
the coverage and efficiency we get using this alternative strategy,
which could be thought of as gap detection.

Results show that this gap detection strategy of looking up
the generic lexical entries only when no native entry exists is
much more efficient, showing reductions in time and memory
across the board. The reductions are modest when using PTB
POS tags, but substantial for the letype and letype+sel tags.
Comparing coverage on the jhpstg t data set, we see some small
decreases, caused by the fact that some generic items represent-
ing names were not included in the parsing chart. Note that this
problem does not occur for every unknown name, but only for un-
known names which are also real words in the lexicon, for example

5.2. Parsing 141

Coverage (%) Time (sec.) Memory (MB)
Tagger Tag Types Full Filtered Full Filtered Full Filtered
none none 56.6 35.6 1.57 0.37 92.82 41.59
TnT PTB POS 90.5 85.2 3.08 1.99 140.33 114.77
TnT letype+sel 89.9 82.8 3.30 2.45 316.16 423.13
C&C letype+sel 89.6 84.0 3.42 2.77 334.60 469.53
TnT letype 89.9 83.2 3.25 2.34 279.52 358.39
C&C letype 89.7 83.8 3.38 2.64 297.51 394.13
TnT subcat 90.4 84.4 3.41 2.60 161.54 145.15
C&C subcat 90.0 84.8 3.64 3.15 166.74 159.65
TnT pos 90.5 85.3 3.35 2.56 153.91 133.84
C&C pos 90.3 85.6 3.56 2.77 155.45 137.37

Table 5.12: Coverage and efficiency over the ws02 data set, parsing with
both full and filtered grammars, using a gap detection rather than gap
prevention strategy.

Coverage (%) Time (sec.) Memory (MB)
Tagger Tag Types Full Filtered Full Filtered Full Filtered
none none 56.3 22.6 3.47 1.00 152.49 66.91
TnT PTB POS 84.8 72.2 4.63 2.95 202.91 156.32
TnT letype+sel 84.1 70.4 4.93 3.55 357.40 602.79
C&C letype+sel 84.3 73.0 4.99 3.91 374.79 666.05
TnT letype 84.0 70.5 4.85 3.41 322.39 504.39
C&C letype 84.3 73.1 4.93 3.74 339.20 561.96
TnT subcat 84.4 71.5 5.19 3.76 224.83 201.13
C&C subcat 84.7 73.1 5.54 4.64 235.02 228.30
TnT pos 84.5 72.0 5.15 3.74 218.16 181.95
C&C pos 84.5 73.7 5.39 4.34 220.84 197.23

Table 5.13: Coverage and efficiency over the cb data set, parsing with
both full and filtered grammars, using a gap detection rather than gap
prevention strategy.

142 Chapter 5. Unknown Word Handling

Brooks. Looking at the other data sets, we see that sometimes
coverage increases, and sometimes decreases. Here we see the
interplay of two effects: the loss of coverage because unknown
names are not always identified, but also the increase in coverage
because parsing is more efficient. The gap detection strategy for
handling unknown words leads to a reduction of parses that fail
due to exceeding the time limit. Whether up or down, the differ-
ences in coverage between the two methods is consistently small.
The next section will investigate whether there is any difference
in accuracy between gap prevention and gap detection, and also
examine the effects of the different tag forms on accuracy.

5.2.3 Accuracy

The next evaluations focus on the accuracy of the final analyses.
Having seen that, for most tagger and tag form combinations,
we can achieve similar coverage to that using PTB POS tags, we
now see if there is any benefit in precision to using these new tags.
As we saw above, the generic lexical entries that are part of the
gold standard treebanks don’t really allow evaluation of any type
more specific than that used to create the gold standards (the
PTB POS tags). Hence, for these accuracy evaluations we parse
with the filtered grammar. This leads to more lexical gaps that
need to be filled by the unknown word handling mechanism, but
in these cases, we have the true gold standard to evaluate against.
This evaluation is not a true representation of the ERG perfor-
mance because of the filtering, but might be assumed to show
the effect of the different unknown word handling configurations
on a slightly less mature grammar.

Accuracy is measured across those parses for which we have
a gold standard analysis, using the EDM metrics described in

5.2. Parsing 143

EDM EDMNA

Tagger Tag Types P R F P R F
none none 0.921 0.724 0.811 0.897 0.704 0.789
TnT PTB POS 0.914 0.859 0.886 0.886 0.834 0.859
TnT letype+sel 0.912 0.865 0.888 0.884 0.838 0.860
C&C letype+sel 0.913 0.866 0.889 0.883 0.838 0.860
TnT letype 0.912 0.863 0.887 0.884 0.836 0.859
C&C letype 0.912 0.866 0.889 0.883 0.838 0.860
TnT subcat 0.909 0.854 0.880 0.877 0.828 0.852
C&C subcat 0.908 0.863 0.885 0.875 0.836 0.855
TnT pos 0.907 0.857 0.881 0.875 0.831 0.852
C&C pos 0.907 0.866 0.886 0.875 0.840 0.857

(a) Gap prevention
EDM EDMNA

Tagger Tag Types P R F P R F
none none 0.930 0.723 0.814 0.907 0.704 0.793
TnT PTB POS 0.921 0.858 0.889 0.894 0.834 0.863
TnT letype+sel 0.920 0.862 0.890 0.893 0.836 0.863
C&C letype+sel 0.921 0.866 0.892 0.892 0.839 0.865
TnT letype 0.920 0.863 0.890 0.892 0.837 0.864
C&C letype 0.920 0.866 0.892 0.892 0.839 0.865
TnT subcat 0.917 0.853 0.884 0.885 0.829 0.856
C&C subcat 0.916 0.862 0.888 0.883 0.837 0.860
TnT pos 0.915 0.856 0.885 0.884 0.831 0.857
C&C pos 0.915 0.865 0.889 0.884 0.840 0.861

(b) Gap detection

Table 5.14: EDM evaluation of the top parse for the jhpstg t data set,
comparing the accuracy when using a gap prevention (a) or gap detection
(b) strategy and a filtered lexicon. Accuracy is measured against all EDM
triples, and separately against EDMNA triples, which include names and
args triple types, but not props.

Section 3.2.4. Tables 5.14, 5.15 and 5.16 show the comparison
for each data set when using a gap prevention or gap detec-
tion strategy, including both the full EDM evaluation against
all triples, and the EDMNA evaluation, which ignores the props
type triples.

144 Chapter 5. Unknown Word Handling

EDM EDMNA

Tagger Tag Types P R F P R F
none none 0.872 0.270 0.413 0.841 0.261 0.399
TNT PTB POS 0.868 0.786 0.825 0.829 0.758 0.792
TnT letype+sel 0.857 0.757 0.804 0.817 0.724 0.768
C&C letype+sel 0.856 0.771 0.811 0.815 0.736 0.773
TnT letype 0.856 0.761 0.806 0.816 0.728 0.769
C&C letype 0.856 0.770 0.811 0.815 0.736 0.773
TnT subcat 0.854 0.760 0.804 0.807 0.730 0.767
C&C subcat 0.850 0.759 0.802 0.803 0.728 0.764
TnT pos 0.854 0.774 0.812 0.807 0.743 0.774
C&C pos 0.849 0.771 0.808 0.803 0.742 0.771

(a) Gap prevention
EDM EDMNA

Tagger Tag Types P R F P R F
none none 0.873 0.268 0.410 0.843 0.259 0.397
TNT PTB POS 0.868 0.786 0.825 0.828 0.757 0.791
TnT letype+sel 0.857 0.751 0.800 0.816 0.719 0.764
C&C letype+sel 0.857 0.771 0.811 0.815 0.736 0.773
TnT letype 0.857 0.760 0.806 0.816 0.727 0.769
C&C letype 0.856 0.766 0.808 0.814 0.732 0.771
TnT subcat 0.853 0.755 0.801 0.807 0.725 0.763
C&C subcat 0.849 0.752 0.798 0.802 0.722 0.760
TnT pos 0.854 0.774 0.812 0.807 0.743 0.774
C&C pos 0.849 0.767 0.806 0.803 0.738 0.769

(b) Gap detection
Table 5.15: EDM evaluation of the top parse for the ws02 data set,
comparing the accuracy when using a gap prevention (a) or gap detection
(b) strategy and a filtered lexicon. Accuracy is measured against all EDM
triples, and separately against EDMNA triples, which include names and
args triple types, but not props.

5.2. Parsing 145

EDM EDMNA

Tagger Tag Types P R F P R F
none none 0.875 0.174 0.290 0.836 0.165 0.276
TnT PTB POS 0.846 0.679 0.753 0.795 0.642 0.711
TnT letype+sel 0.847 0.677 0.753 0.796 0.635 0.707
C&C letype+sel 0.847 0.693 0.763 0.798 0.652 0.717
TnT letype 0.848 0.667 0.747 0.799 0.625 0.702
C&C letype 0.847 0.690 0.760 0.797 0.649 0.715
TnT subcat 0.839 0.668 0.743 0.783 0.630 0.698
C&C subcat 0.837 0.679 0.750 0.780 0.641 0.704
TnT pos 0.838 0.676 0.748 0.781 0.637 0.702
C&C pos 0.834 0.683 0.751 0.778 0.647 0.706

(a) Gap prevention
EDM EDMNA

Tagger Tag Types P R F P R F
none none 0.893 0.173 0.289 0.852 0.164 0.275
TnT PTB POS 0.854 0.679 0.757 0.802 0.643 0.714
TnT letype+sel 0.857 0.662 0.747 0.806 0.622 0.702
C&C letype+sel 0.853 0.688 0.762 0.803 0.648 0.717
TnT letype 0.856 0.664 0.748 0.806 0.624 0.703
C&C letype 0.853 0.688 0.762 0.803 0.648 0.717
TnT subcat 0.846 0.667 0.746 0.789 0.629 0.700
C&C subcat 0.843 0.679 0.752 0.786 0.641 0.706
TnT pos 0.844 0.677 0.751 0.787 0.638 0.705
C&C pos 0.841 0.684 0.754 0.785 0.648 0.710

(b) Gap detection
Table 5.16: EDM evaluation of the top parse for the cb data set, com-
paring the accuracy when using a gap prevention (a) or gap detection (b)
strategy and a filtered lexicon. Accuracy is measured against all EDM
triples, and separately against EDMNA triples, which include names and
args triple types, but not props.

146 Chapter 5. Unknown Word Handling

Comparing between the two strategies, we see that, on jhpstg t,
gap detection is more accurate. All f-score differences between
the two are statistically significant (p < 0.01) except results using
PTB POS tags, or TnT tagging with letype+sel tags. On the
other two data sets, the better strategy varies, but none of the
differences are statistically significant. In truth, any accuracy
difference is not a result of the unknown word handling strategy,
but of the effect of the lexical filtering rule that the gap prevention
strategy allows. The results here suggest that any benefits from
the rule that keeps unknown names in the parsing chart when
a native entry is available are not large or consistent enough to
make up for the loss of efficiency caused by using gap prevention.
It is possible that other lexical filtering rules could add sufficient
coverage or accuracy, but with the present policy, gap prevention,
at least given the current implementation in PET, does not seem
the optimal strategy when parsing for an application. Parsing to
produce the gold standards, on the other hand, where the top
500 parses are inspected, could benefit from adding extra items
to the chart, and in that case, efficiency is of less concern.

When we turn to look at the differences between tag types,
we see that, when comparing precision numbers, there is a trend
indicating that the fine-grained tags are more precise than the
coarse-grained tags. A high precision can sometimes occur in
conjunction with low recall, indicating that the parser is only
analysing easy sentences, but that is not the pattern we see here.

Looking at f-scores, the PTB POS tags give the best perfor-
mance on the ws02 data set, possibly because of the lower un-
known tag accuracy we saw on this data set in Section 5.1. Over
the jhpstg t and cb data sets, we do see a benefit in accuracy
when using the new fine-grained tags, with the C&C tagger giv-
ing better results. The difference between the taggers comes from

5.2. Parsing 147

Gap prevention Gap detection
Tagger Tag Type P R F P R F
TnT PTB POS 0.839 0.572 0.680 0.836 0.572 0.679
TnT letype+sel 0.812 0.633 0.712 0.813 0.621 0.704
C&C letype+sel 0.818 0.643 0.720 0.819 0.645 0.721
TnT letype 0.810 0.623 0.704 0.811 0.624 0.706
C&C letype 0.818 0.643 0.720 0.818 0.645 0.721
TnT subcat 0.799 0.592 0.680 0.802 0.595 0.683
C&C subcat 0.788 0.623 0.696 0.792 0.626 0.700
TnT pos 0.789 0.593 0.677 0.792 0.596 0.680
C&C pos 0.795 0.640 0.709 0.798 0.643 0.712

Table 5.17: EDMA evaluation of the jhpstg t data set over just those
sentences which have words unknown to the filtered grammar, but are
completely know to the full grammar (101 sentences). Results are shown
for both the gap prevention and gap detection strategies. Since using
generic lexical entries means that predicate names will rarely be right for
unknown words, we evaluate only the role relations encoded in the EDM
args type triples.

the difference in coverage we noted earlier. While the differences
seem consistent, they are largely drowned out by results from
sentences with no unknown words, or where the gold standard
contains items coming from generic entries. In order to focus on
the unknown word performance, Tables 5.17, 5.18 and 5.19 show
the results over the subset of sentences for each data set which
are affected by filtering the grammar. That is, the sentences that
we have a true gold standard for, but that, by filtering the gram-
mar’s lexicon, we have forced the parser to employ its unknown
word handling mechanism to find an analysis. Since, when using
generic lexical entries, it is not possible to get the right predicate
name for an unknown word, in this evaluation we only look at
the role relations encoded in the EDM args type triples, and
ignore differences in the names triples.

Over this subset of sentences, none of the differences between

148 Chapter 5. Unknown Word Handling

Gap prevention Gap detection
Tagger Tag Type P R F P R F
TnT PTB POS 0.792 0.625 0.699 0.794 0.646 0.712
TnT letype+sel 0.806 0.590 0.681 0.800 0.591 0.680
C&C letype+sel 0.798 0.629 0.704 0.799 0.650 0.717
TnT letype 0.804 0.596 0.684 0.802 0.613 0.695
C&C letype 0.798 0.629 0.704 0.797 0.634 0.706
TnT subcat 0.799 0.601 0.686 0.802 0.608 0.691
C&C subcat 0.773 0.618 0.687 0.776 0.620 0.689
TnT pos 0.794 0.622 0.698 0.800 0.646 0.715
C&C pos 0.777 0.632 0.697 0.781 0.640 0.703

Table 5.18: EDMA evaluation of the ws02 data set over just those sen-
tences which have words unknown to the filtered grammar, but are com-
pletely know to the full grammar (157 sentences). Results are shown
for both the gap prevention and gap detection strategies. Since using
generic lexical entries means that predicate names will rarely be right for
unknown words, we evaluate only the role relations encoded in the EDM
args type triples.

Gap prevention Gap detection
Tagger Tag Type P R F P R F
TnT PTB POS 0.728 0.534 0.616 0.735 0.544 0.625
TnT letype+sel 0.760 0.565 0.648 0.767 0.556 0.645
C&C letype+sel 0.765 0.587 0.664 0.770 0.587 0.666
TnT letype 0.759 0.551 0.639 0.767 0.556 0.645
C&C letype 0.763 0.581 0.660 0.770 0.588 0.666
TnT subcat 0.736 0.538 0.621 0.742 0.545 0.628
C&C subcat 0.738 0.554 0.633 0.744 0.563 0.641
TnT pos 0.734 0.554 0.632 0.740 0.564 0.640
C&C pos 0.732 0.560 0.634 0.739 0.571 0.644

Table 5.19: EDMA evaluation of the cb data set over just those sentences
which have words unknown to the filtered grammar, but are completely
know to the full grammar (215 sentences). Results are shown for both the
gap prevention and gap detection strategies. Since using generic lexical
entries means that predicate names will rarely be right for unknown
words, we evaluate only the role relations encoded in the EDM args
type triples.

5.3. Summary 149

the gap prevention and gap detection strategies are statistically
significant. Looking between tag forms however, the differences
are clearer than before, and not mixed with those occurring be-
cause of generic lexical items in the gold standard. Here we can
see that tagging with letype+sel or letype tags using the C&C
tagger gives better performance predicting unknown words. On
the cb data set in particular, the difference between accuracy
with C&C’s letype+sel and any of the pos, subcat or PTB
POS tags is significant at p < 0.01. Over jhpstg t, which is the
smallest of the subsets, the differences are significant at p < 0.05.

5.3 Summary

The standard unknown word handling mechanism for DELPH-
IN HPSG grammars relies on generic lexical entries that are trig-
gered by tags associated with the input tokens. The current
method uses Penn Treebank POS tags assigned by the TnT POS
tagger and has been shown to achieve very good coverage on
unseen data. We experimented with various supertag forms to
see whether it was possible to get more precise analyses by us-
ing either more detailed tags, or tags that better matched the
divisions in the grammar. To do this, we needed to simulate
unknown words, since we have no true gold standard for words
that are really unknown to the grammar, and so lexical entries
were removed from the grammar. The lexical items that were
removed from the original lexicon were those not seen in the gold
treebanks used for training, which might firstly be considered rare
words, and hence likely to be left out of a handwritten grammar.
Secondly, this ensured that the words hadn’t been seen in the
taggers’ training data, so no unfair advantage was given to the
taggers trained on parser output.

150 Chapter 5. Unknown Word Handling

Results when parsing with this filtered grammar showed that
using the PTB POS tags still gave good coverage, but that using
the other tag forms gave just as good, or better coverage. The
one exception was over the ws02 data set, where lower unknown
word tag accuracy meant that the finer-grained tags had slightly
lower coverage.

An unexpected result was that the current method of handling
unknown words, which we refer to as gap prevention, makes pars-
ing efficiency dependent on the size of the supplementary lexicon
used for unknown words. This gap prevention strategy allows
the grammar writer great flexibility in controlling which lexical
items will be in the parse chart, but, with the current sub-optimal
implementation, leads to a massive reduction in efficiency when
the number of generic lexical entries is high. At present, this
flexibility is not highly utilised, and so we lost very little (if any)
accuracy or coverage, by switching to a gap detection strategy
and losing this flexibility. Using gap detection, the PTB POS
tags were still the most efficient means of dealing with unknown
words, but the other tags showed reasonable time and memory
usage, and and still achieved coverage as good as, or better than,
the PTB POS tags.

Since the supertags did not cause a massive drop in coverage,
we looked at whether they brought any benefits in precision and
found that, where the tagging was fairly accurate (i.e. for the
jhpstg t and cb data sets), the fine-grained tags as assigned by
C&C did bring some improvements in accuracy. This is best
seen in Tables 5.17, 5.18 and 5.19. We can see here that the pos
and subcat tags also gave a very slight increase over the PTB
POS tags, but these differences are not statistically significant.

The method by which we filtered the grammar in order to have
a gold standard for unknown words is likely to have a stronger

5.3. Summary 151

effect on the PTB POS tag unknown word handling, since the
generic lexical types associated with those tags have been fine-
tuned to match the full grammar. As such, the actual perfor-
mance over unknown words might be slightly higher using these
tags than we have seen. The final conclusion, and the theme that
will be continued throughout the thesis, is that the best configu-
ration depends on the exact needs of the application. The PTB
POS tags, which are the current default unknown word handling
mechanism for the ERG, appear to give the best compromise be-
tween efficiency, robustness and accuracy. However, our results
do show that letype+sel and letype tags can be predicted
with sufficient accuracy to give good coverage when faced with
many unknown words in parser input, and furthermore, produce
precise analyses of these unknown words. Thus, if precision is
the driving force, using these fine-grained tags might be worth
the drop in efficiency. Conversely, where time or memory are
limited, using gap detection, rather than gap prevention for un-
known word handling appears the better option, even if it comes
with a drop in coverage or flexibility. The following chapter will
look at another way to increase parser efficiency, which will, in
turn, require similar trade-offs.

152 Chapter 5. Unknown Word Handling

6 Restricting Parser Search Space

The detailed lexicon at the centre of DELPH-IN HPSG gram-
mars is, at the same time, both the strong point and the weak
point of the approach. The detailed information in the lexicon
enables the precise semantic analyses that can be produced. On
the other hand, as we saw in the last chapter, such level of detail
can only be provided for a finite number of lexical entries, and
so additional measures must be taken to process input not cov-
ered by the lexicon. In this chapter, we address a contradictory
weakness arising from the lexicon: rather than insufficient lexical
entries, sometimes we have too many. Again, this issue can be
attributed to the detailed nature of the lexicon. By providing
precise distinct analyses, for example, of think in I think well
of him and I think about him, we increase parsing ambiguity
for any input involving think. Balancing between too many and
not enough lexical entries is a problem for any grammar that
aims at precise analysis. Furthermore, it is not a direct trade-off
between robustness and efficiency. As we saw in Chapter 5, solu-
tions such as gap prevention that add robustness through adding
lexical entries to the chart can also decrease robustness by in-
creasing ambiguity and hence increasing failures due to resource
exhaustion.

In this chapter, we attempt to increase efficiency by restricting
the parser search space. This process is generally referred to in
the literature as supertagging, but since we are using supertags
for multiple purposes, in this work, we limit the term supertag-
ging to mean assigning supertags, and speak separately of the
different ways in which supertags can be used. We will restrict
parser search space by restricting the number of lexical entries
that get added to the parsing chart, which we refer to as lexical

154 Chapter 6. Restricting Parser Search Space

restriction. Other possible methods of search space restriction
use structure or dependency information from other parsers (e.g.
Torisawa et al. 2000, Sagae et al. 2007, Frank et al. 2003, inter
alios), or rule probabilities learnt statistically as in any PCFG
parser, but in this thesis we focus on benefits possible from using
lexical information. Restricting the search space of a parser in
this way, by definition, has the potential to decrease robustness
by removing lexical entries necessary to the analysis. As men-
tioned before, however, this is not a straightforward trade-off,
since it is also possible to increase robustness by increasing effi-
ciency and hence decreasing failures due to resource exhaustion.
The experiments in this chapter will explore this trade-off space.

The first section describes how lexical restriction was imple-
mented in the PET parser. Following that, we describe the po-
tential of this efficiency technique by showing the results obtain-
able by using gold supertags as described in Chapter 4, and then
experiment with different methods of using the supertags within
the parser.

6.1 Implementation

The implementation of lexical restriction in PET makes use of
the chart mapping mechanism of Adolphs et al. (2008) briefly
described in Section 5.2. In this scenario, input tokens are fea-
ture structures, allowing different attributes of the token to be
described precisely. This is, for example, how POS tags are in-
put with each token to be used for unknown word handling. We
extended the definition of the token feature structure to add a
feature where a list of supertags could be described. Since, as
detailed in Chapter 4, the information in the supertags comes
from different sources, there are different modes of interaction

6.1. Implementation 155

+stag

stag


+sletype 〈 “v pp e le” 〉
+ssel 〈 “ of p sel” 〉
+smorphs 〈 “third sg fin verb orule” 〉
+sprbs 〈 “0.89745” 〉


Figure 6.1: Example of an +stag feature structure for the supertag
v pp e le+ of p sel rel+third sg fin verb orule.

within the parser. To facilitate this, the supertag (+stag) fea-
ture is structured, defining values related to the lexical type,
the selectional relations and the morphological information of
each supertag. A tag probability can also be included. Fig-
ure 6.1 shows an example +stag feature structure for the tag
v pp e le+ of p sel rel+third sg fin verb orule.

The effects of the supertag are controlled at different places
within the grammar. The +sletype feature is used for letype
information, and its generalisations subcat and pos. To use
this information, the lexical type definitions within the grammar
are modified to include a reference to the tag values with which
they are compatible. This modification can be made individu-
ally to each lexical type, which allows the grammar writer a fine
level of control. If there are lexical types that should never be
restricted, they can be defined to be compatible with all tag val-
ues. During lexical lookup in the parsing process, appropriate
lexical entries (triggered by their stem value) are unified with
the input token feature structure. Since all lexical entries inherit
from a lexical type, an incompatibility between the associated
lexical type definition and the +sletype value of the input to-
ken feature structure will cause unification to fail, and the lexical
entry not to be added to the parsing chart.

The selectional relation information is specified at a lower level
than the lexical type: in the lexical entry itself. In order to

156 Chapter 6. Restricting Parser Search Space

use this information from the +ssel feature, the lexical entries
need to be modified to require compatibility with the tag value.
Then, the same unification process as above will be used to po-
tentially filter out lexical entries based on this information. It is
not clear whether this additional information brings much ben-
efit in terms of efficiency, since a filter based on inter-word de-
pendencies (Kiefer et al. 1999) operates just after lexical lookup
to quickly discard lexical entries with unfulfilled selectional rela-
tions. Hence, only scenarios that were not caught by this filter
would see any benefit. Our preliminary experiments explore the
frequency of this scenario.

As discussed in previous chapters, in the PET parser, morpho-
logical processing occurs after lexicon lookup. Hence, to make use
of this sort of information from the supertag, a different mecha-
nism from that described above is needed. After potential mor-
phological rules have been applied to the lexical entries, a lexical
filtering stage, described in Chapter 5, takes place. In Chapter 5
we saw this lexical filtering used to discard generic lexical en-
tries when native entries occurred in the same input span. In
this chapter, we add rules to discard lexical items that have had
particular morphological rules applied, if those rules conflict with
the value of the +smorph feature. By this stage of the parsing
process, lexical items with inconsistent morphological rules have
already been ruled out, so these filtering rules are only required
to decide between morphological rules that could be ambiguous.
For instance, an unfiltered parsing chart often contains rules for
both the passive and the past tense form of a verb. If the correct
form could be accurately predicted, ambiguity could be reduced.
However, these are exactly the tags that are likely to be confused
in supertagging. Whether tagging accuracy is high enough in
these particular instances to improve parsing will be seen in the

6.2. Baseline and Upper Bound 157

following sections.

As in unknown word handling, the token mapping process adds
a few subtleties to the tag assignments. Following the example of
the grammar writer in assigning PTB POS tags, we throw away
supertags on punctuation, since punctuation is treated as an affix
on word-based tokens. We also discard supertags when generic
named entries are identified by pattern matching, since these
entries have special handling. In rules controlling the merging or
splitting of tokens, case by case decisions were made as to the
most appropriate tag assignment for each rule.

Adding extra rules, features and information to the grammar
always has the potential to slow parsing down, even when the
intended effect was to increase efficiency. A balance needs to
be struck between the effectiveness of the change, and added
complexity it causes. In the following experiments, we attempt
to measure the effects and find a good balance point.

6.2 Baseline and Upper Bound

Since the main goal of lexical restriction is to increase parser
speed, we will use, as a baseline, the fastest parser configuration
we have seen so far that achieves good coverage. That is, the basic
PET parser, using unknown word handling with a gap detection
(rather than gap prevention) strategy, and PTB POS tags for
triggering generic lexical entries (see Chapter 5 for details). To
this basic configuration, we will add the lexical restriction mech-
anisms, based on supertag forms described in Chapter 4. First,
in order to see the potential for this lexical restriction technique,
we parsed our test data sets (described in Chapter 3), using gold
standard tags of each form. Since we only have gold standard
tags where we have gold standard analyses, these first indicative

158 Chapter 6. Restricting Parser Search Space

Average Lexical Entries
per sentence per token

Tags jhpstg t ws02 cb jhpstg t ws02 cb
none 77.70 95.44 121.20 5.95 6.74 6.78
letype+sel 17.87 23.33 26.72 1.37 1.65 1.49
letype 18.12 23.58 27.29 1.39 1.66 1.53
subcat 26.57 32.32 38.80 2.03 2.28 2.17
pos 53.62 61.93 80.95 4.10 4.37 4.53

Table 6.1: Remaining lexical ambiguity when restricting the parse search
space to only those lexical entries that match the gold standard tag.
These numbers show how many lexical entries are fetched, on average,
when restricting by the four basic tag types. (Since +morph restrictions
occur as a filtering step after lexical entries are extracted, they have no
extra effect on these numbers.) The unrestricted numbers (top line) are
shown for comparison.

experiments parse only that subset of the test data for which gold
analyses are available. Table 6.1 shows the effect the restrictions
have on the number of lexical entries that are fetched into the
parsing chart. Lexical ambiguity figures are only given for the ba-
sic tag types (without +morph) because the +morph restric-
tion happens as a filtering step after lexical entries are fetched.
Tables 6.2, 6.3 and 6.4 show the actual coverage, accuracy and
efficiency that results when parsing is restricted with supertags of
each separate tag form. Coverage is the proportion of sentences
which received an analysis, accuracy is given in terms of EDM
f-score, described in Section 3.2.4, and efficiency is given both
as average time per sentence (in seconds) and average memory
usage (in megabytes). In all cases, the unrestricted numbers are
shown in the top line for comparison.

The coverage we see using no restriction is slightly below the
100% that might be expected on these data subsets, given that
the options used in this instance were similar to those used to
produce the gold standard. The difference comes from the de-

6.2. Baseline and Upper Bound 159

EDM Time Memory
Tags Coverage F-score (sec.) (MB)
none 0.999 0.928 0.67 60.46
letype+sel+morph 1.000 0.959 0.08 23.79
letype+sel 1.000 0.959 0.08 22.58
letype+morph 1.000 0.959 0.08 23.73
letype 1.000 0.959 0.08 22.51
subcat+morph 1.000 0.954 0.10 25.95
subcat 1.000 0.954 0.11 24.98
pos+morph 0.999 0.948 0.21 34.25
pos 0.999 0.948 0.22 33.79

Table 6.2: The space for possible improvement when using lexical restric-
tion over the jhpstg t data set. We show the baseline performance (using
no restriction), and the results when using gold standard tags of each tag
form to restrict the possible lexical items. Coverage is the proportion of
sentences that received an analysis, accuracy is given in terms of EDM f-
score, as described in Section 3.2.4, and efficiency is measured as average
time and memory usage per sentence.

EDM Time Memory
Tags Coverage F-score (sec.) (MB)
none 0.996 0.887 1.07 83.84
letype+sel+morph 0.999 0.932 0.12 30.66
letype+sel 0.999 0.932 0.12 29.98
letype+morph 0.999 0.932 0.12 30.62
letype 0.999 0.932 0.13 29.93
subcat+morph 0.994 0.923 0.16 33.98
subcat 0.996 0.923 0.18 33.73
pos+morph 0.996 0.916 0.30 44.43
pos 0.997 0.915 0.34 46.20

Table 6.3: The space for possible improvement when using lexical restric-
tion over the ws02 data set. We show the baseline performance (using
no restriction), and the results when using gold standard tags of each tag
form to restrict the possible lexical items. Coverage is the proportion of
sentences that received an analysis, accuracy is given in terms of EDM f-
score, as described in Section 3.2.4, and efficiency is measured as average
time and memory usage per sentence.

160 Chapter 6. Restricting Parser Search Space

EDM Time Memory
Tags Coverage F-score (sec.) (MB)
none 0.990 0.886 1.76 116.76
letype+sel+morph 1.000 0.947 0.14 34.16
letype+sel 1.000 0.947 0.14 33.15
letype+morph 1.000 0.947 0.14 34.08
letype 1.000 0.947 0.14 33.07
subcat+morph 0.982 0.931 0.20 38.35
subcat 0.990 0.935 0.20 37.79
pos+morph 0.980 0.916 0.46 56.56
pos 0.988 0.920 0.49 57.81

Table 6.4: The space for possible improvement when using lexical restric-
tion over the cb data set. We show the baseline performance (using no
restriction), and the results when using gold standard tags of each tag
form to restrict the possible lexical items. Coverage is the proportion of
sentences that received an analysis, accuracy is given in terms of EDM f-
score, as described in Section 3.2.4, and efficiency is measured as average
time and memory usage per sentence.

cision to use a gap detection strategy for efficiency reasons. As
we saw in Chapter 5, this can occasionally lead to parse failure
when a word in the lexicon is being used as a proper name, but
is not in the lexicon as such. The gap prevention strategy al-
lows the lexical filtering rule that retains generic lexical entries
related to names, where such have been predicted by the tagger,
or by heuristics applied during token mapping. With gap detec-
tion, the presence of a native entry means no generic options are
sought. Interestingly, using lexical restriction can have a similar
effect to this filter. By discarding the native entries incompat-
ible with the supertag, in some cases we actually see coverage
improvement because a more appropriate generic entry was used
in their place.

From the tables, it is clear that lexical restriction has a sig-
nificant effect in terms of efficiency. In the best case (letype

6.2. Baseline and Upper Bound 161

and more specific tags on the cb data set), we see a twelve-fold
speed up. It should be noted, however, that this is not the same
speed up potential that has been seen in LTAG and CCG. Ban-
galore and Joshi (1999) showed that using an oracle supertagger
gave them a thirty-fold speed up in parsing with their LTAG
parser. Clark and Curran (2004) don’t provide parsing results
without a supertagger, since their supertagger is an integral part
of their C&C CCG parser, however the speed when using single
gold supertags compared to using a fairly unrestrictive setting of
their supertagger (that supplies many tags per word) is almost
200 times as fast. We won’t see these sort of efficiency increases,
because, as we see in Table 6.1, the lexical ambiguity is not so
high to begin with. On average, less than 7 lexical entries are
assigned per word without any restriction, in part because the
lexicon itself acts as a filter. In contrast, the CCG supertagger
was shown to assign almost 22 categories per word on Section 00
of CCGBank when unrestricted.

Despite not having the massive potential for efficiency increase
seen elsewhere, lexical restriction is still worth pursuing as a strat-
egy for increasing parsing efficiency when parsing with the ERG.
Even the most general tag form (pos) could make parsing three
times faster, if it could be accurately assigned. Comparing the
effects of different tag forms, we see very little difference between
any tag form which uses the full lexical type. All have a parser
speed of between eight and twelve times that of unrestricted pars-
ing. However, once lexical entries with incompatible lexical types
have been filtered out, the additional filtering from selectional re-
lations or morphological rules has little, if any benefit in terms of
time. The +morph versions use slightly more memory, but not
at a level that makes a discernible difference. Table 6.1 shows
that adding the +sel information does filter slightly more ag-

162 Chapter 6. Restricting Parser Search Space

gressively, but this is not reflected in the time figures, probably
because of the dependency filtering mentioned in Section 6.1.

When the subcat generalisation of the lexical type is used
for restriction, parser speed is around six to eight times faster
than for the unrestricted parser. If tags of this form could be
predicted with significantly higher accuracy than the more fine-
grained tags, they could provide a good balance between effi-
ciency and robustness. We saw in Chapter 4 that they were
more predictable, but whether at a sufficiently higher level to
make up for the difference in restrictiveness needs to be deter-
mined empirically. At this level of granularity, we see that adding
morphological information does bring a slight but consistent in-
crease in speed. Again, we see a slightly higher memory usage for
the +morph variant, which must be attributed to the additional
complexity caused by adding the lexical filtering rules.

Restricting by pos or pos+morph tags leads to using ap-
proximately a third of the parsing time of the unrestricted parser.
In these experiments, the speed benefit of adding morphological
information is clearly shown. In terms of lexical ambiguity, these
tags cause the parser to throw away about a third of the lexi-
cal entries that the unrestricted parser considers, but still retain
about twice as many as when restricting with subcat-based tags.
While they are certainly not as effective as the more detailed tags,
it could be considered that they provide exactly the information
that a tagger should: they discard the blatantly wrong lexical en-
tries, and leave the parser to decide on the fine distinctions made
at higher levels. We saw earlier that these tags could be predicted
with a very high level of accuracy, and so they would provide
the conservative option, increasing speed moderately while not
greatly affecting coverage or accuracy.

Another observation from these results is the consistent in-

6.3. Configurations 163

crease in accuracy. By filtering out incorrect lexical entries, the
number of analyses the parse ranking stage has to process is
much lower. Note however that even when restricted to analy-
ses which contain the correct sequence of lexical types, accuracy
is not 100%, clearly showing (as observed by Toutanova et al.
(2002)) that the tag sequence is not sufficient to unambiguously
determine the correct parse.

The discussions so far focus on the potential benefits of each
tag form. However, in realistic scenarios there are many variables
that may affect the result of using these tags. The next section
describes the different ways the tags will be assigned, and also
what strategy is taken when the supertag introduces lexical gaps.
After that, we will study the results of the different methods and
strategies.

6.3 Configurations

In Chapter 4, we described a number of ways in which supertags
could be used to restrict parsing. Single tagging is the simplest
method, but also the most aggressive. In this method, each token
is restricted to be compatible with the single top tag, as produced
by the tagger. This will have an effect on lexical ambiguity sim-
ilar to that shown in Table 6.1, bringing close to upper bound
speed. However, any incorrect tag in a sentence will prevent the
optimal analysis from being possible, and possibly (depending
on the exact tag) prevent any analysis from being found. This
is a reasonable method when there are large amounts of data to
be parsed and speed is preferred over full coverage, or when the
tagger is very accurate.

A more flexible tagging method is multi-tagging, where a vari-
able number of tags are assigned, depending on the tag proba-

164 Chapter 6. Restricting Parser Search Space

bilities. In this method, a β value is used to indirectly control
the number of tags assigned to each token, assigning all tags that
have a probability with a factor of β of the probability of the top
tag. This means that when the top tag has a high probability
(and β is high enough), only one tag is assigned, but when the
top tag is less likely, more tags can be added.

The third tagging method, selective tagging, assigns a tag only
when the tag probability is over a certain threshold. This means
that, when the top tag probability is low, we allow all appropriate
lexical entries from the lexicon. However, when the tag proba-
bility of a token is high, we restrict the lexical entries retrieved
for that token. The effectiveness of this method will depend on
which tokens can be tagged with a high probability. As we have
seen, the lexical ambiguity of the unrestricted parser is around
six to seven lexical entries per token, however there is some vari-
ability in this figure. Certain word forms, such as take, all and in
trigger as much as 30 lexical entries, while many others only have
one related entry. Obviously, any benefit from lexical restriction
comes about when these highly ambiguous tokens are restricted.

In the following section, we will experiment with the three tag
assignment methods: single tagging, multiple tagging and selec-
tive tagging. In addition, there will be some investigation of the
optimal values of β and the probability threshold in multi-tagging
and selective tagging respectively. Apart from these variables,
there is another point of variation to consider: what to do when
the lexical restriction causes lexical gaps.

Ideally, lexical restriction throws away incorrect lexical entries
and keeps the one appropriate entry. However, it is possible to
throw away all lexical entries hypothesised for a particular to-
ken, either because the tagger was wrong, or because the correct
lexical entry was not in the lexicon. There are three potential

6.4. Results 165

strategies to use in this scenario. The first is to allow parsing to
fail. In a situation where speed is the primary concern, we might
choose to say that if the supertagger could not ‘select’ (through
tag compatibility) an appropriate lexical entry from the lexicon,
stop attempting to parse and go on to the next sentence. An-
other option is to fall back to the default unknown word handling
mechanism: treat the restriction-triggered lexical gap in the same
way as other lexical gaps and use the PTB POS tags to trigger
appropriate generic lexical entries. It could be considered incon-
sistent however, to throw away lexical entries that don’t match a
very fine-grained tag and instead substitute one or more under-
specified entries in that place. Thus, another possibility is to use
the supertag to trigger a more specified generic entry, as we saw
in Chapter 5. There are many nuanced combinations of these
strategies possible, including falling back to different granular-
ities of supertag, but in the following experiments we will stick
with the three representative forms of gap handling: no tag, PTB
POS tag, and supertag.

6.4 Results

All the following experiments use the supertags as assigned by
the C&C and TnT taggers that were described in Chapter 4. We
saw in Chapter 5 that the best tagger model could depend on
the task at hand, with one model that showed the best overall
tagging accuracy having a lower tag accuracy on unknown words.
In these experiments, we are attempting to tag every word, and
so we again use the +WSJ model described in Chapter 4 for
all C&C experiments, and all TnT experiments on the jhpstg t
and cb data sets. For TnT experiments on the ws02 data set,
we use the +Wiki model that gave significantly higher overall

166 Chapter 6. Restricting Parser Search Space

tag accuracy in Chapter 4. The first set of experiments use the
simple single tagging method, and varying the three different gap
handling strategies.

6.4.1 Single Tagging

Varying two taggers, eight tag types and three gap handling
strategies leads to 48 different possible configurations. Initial ex-
amination of the results showed that, for the TnT tagger, there
was no speed difference between the letype, letype+morph,
letype+sel and letype+sel+morph tag types. Since the
letype tag always had marginally better coverage and accuracy,
for the TnT tagger we omit results for the more fine-grained
tags. That still leaves 39 configurations, and Tables 6.5, 6.6 and
6.7 show the coverage, efficiency and accuracy for each config-
uration, along with the results achieved when using no lexical
restriction. The different gap handling strategies are indicated
by ‘none’, where gaps cause parse failure; ‘PTB’, where gaps are
covered by generic lexical entries triggered by PTB POS tags,
as normal; and ‘ST’, where the gaps are covered by generic lex-
ical entries triggered by the supertag. We report coverage and
efficiency over the full data sets, as well as over the subset for
which gold analyses are available. Results over the gold subset
allow comparison with Tables 6.5, 6.6 and 6.7, which give upper
bounds for each data set. Results are given over the full data sets
to measure possible gains on those sets. One potential benefit of
lexical restriction is to increase the coverage by decreasing the
number of timeouts, and hence we want to see the effects on data
which could not be parsed correctly with the baseline setup. Ac-
curacy, in terms of EDM f-score, is measured only over the gold
subset.

6.4. Results 167

Coverage Time EDM
Configuration Full Gold Full Gold F-score

Baseline: no restriction 0.963 0.999 0.93 0.67 0.928
C&C pos PTB 0.881 0.916 0.24 0.22 0.868
TnT pos PTB 0.876 0.915 0.23 0.21 0.872
TnT pos+morph PTB 0.875 0.913 0.24 0.22 0.871
C&C pos+morph PTB 0.872 0.909 0.25 0.22 0.866
C&C pos ST 0.869 0.905 0.24 0.22 0.862
TnT pos ST 0.866 0.907 0.24 0.22 0.867
TnT pos+morph ST 0.865 0.905 0.24 0.22 0.866
C&C pos+morph ST 0.862 0.899 0.24 0.22 0.861
TnT pos none 0.837 0.885 0.22 0.20 0.852
TnT pos+morph none 0.835 0.884 0.23 0.21 0.851
C&C pos none 0.801 0.853 0.22 0.21 0.833
C&C pos+morph none 0.799 0.851 0.22 0.21 0.835
C&C subcat+morph PTB 0.794 0.840 0.12 0.11 0.813
C&C subcat+morph ST 0.789 0.831 0.13 0.12 0.810
C&C subcat PTB 0.781 0.827 0.11 0.10 0.798
TnT subcat PTB 0.776 0.820 0.11 0.10 0.801
C&C subcat ST 0.776 0.817 0.14 0.13 0.792
TnT subcat+morph PTB 0.775 0.819 0.11 0.10 0.800
TnT subcat ST 0.765 0.811 0.11 0.11 0.793
TnT subcat+morph ST 0.764 0.809 0.12 0.11 0.793
C&C letype PTB 0.762 0.809 0.08 0.08 0.775
C&C letype+sel PTB 0.759 0.804 0.09 0.08 0.771
C&C letype ST 0.753 0.801 0.23 0.21 0.772
C&C letype+sel+morph PTB 0.751 0.790 0.09 0.08 0.765
C&C letype+morph PTB 0.748 0.788 0.09 0.08 0.764
C&C letype+sel ST 0.748 0.796 0.27 0.25 0.767
C&C letype+morph ST 0.741 0.783 0.24 0.23 0.762
C&C letype+sel+morph ST 0.740 0.782 0.28 0.26 0.761
TnT subcat none 0.724 0.775 0.10 0.09 0.767
TnT subcat+morph none 0.722 0.774 0.10 0.09 0.766
TnT letype PTB 0.710 0.754 0.08 0.07 0.740
TnT letype ST 0.697 0.743 0.14 0.12 0.729
C&C subcat+morph none 0.667 0.719 0.10 0.09 0.747
C&C subcat none 0.667 0.719 0.10 0.09 0.732
TnT letype none 0.651 0.700 0.07 0.06 0.691
C&C letype none 0.608 0.659 0.06 0.06 0.663
C&C letype+sel none 0.602 0.652 0.06 0.06 0.659
C&C letype+sel+morph none 0.586 0.633 0.06 0.06 0.645
C&C letype+morph none 0.585 0.632 0.06 0.06 0.644

Table 6.5: Coverage, efficiency and accuracy over the jhpstg t data set,
when using lexical restriction via a single supertag per token.

168 Chapter 6. Restricting Parser Search Space

Coverage Time EDM
Configuration Full Gold Full Gold F-score

Baseline: no restriction 0.905 0.996 3.09 1.07 0.887
C&C pos PTB 0.809 0.907 0.91 0.37 0.803
C&C pos ST 0.803 0.895 0.90 0.40 0.777
C&C pos+morph PTB 0.802 0.894 0.91 0.37 0.803
C&C pos+morph ST 0.793 0.879 0.90 0.39 0.776
TnT pos PTB 0.757 0.815 0.86 0.33 0.785
TnT pos+morph PTB 0.747 0.842 0.77 0.34 0.781
TnT pos ST 0.736 0.831 0.83 0.36 0.752
TnT pos+morph ST 0.728 0.824 0.74 0.37 0.749
C&C subcat+morph PTB 0.728 0.819 0.41 0.20 0.730
C&C subcat PTB 0.725 0.821 0.42 0.20 0.726
C&C subcat ST 0.721 0.815 0.60 0.27 0.698
C&C subcat+morph ST 0.720 0.806 0.64 0.26 0.702
C&C letype+sel PTB 0.659 0.753 0.36 0.15 0.662
C&C letype+sel+morph PTB 0.653 0.748 0.36 0.16 0.662
C&C letype PTB 0.640 0.732 0.35 0.15 0.640
C&C letype+morph PTB 0.638 0.732 0.34 0.16 0.647
C&C letype+sel ST 0.636 0.725 1.33 0.91 0.641
TnT subcat PTB 0.629 0.725 0.39 0.16 0.672
C&C letype+sel+morph ST 0.627 0.715 1.39 0.96 0.633
TnT subcat+morph PTB 0.625 0.721 0.37 0.16 0.669
C&C letype ST 0.621 0.707 1.11 0.74 0.624
C&C letype+morph ST 0.615 0.704 1.15 0.78 0.623
TnT subcat ST 0.608 0.700 0.54 0.30 0.631
TnT subcat+morph ST 0.604 0.697 0.51 0.30 0.630
TnT letype PTB 0.545 0.640 0.28 0.12 0.590
TnT letype ST 0.544 0.643 0.84 0.53 0.587
TnT pos none 0.427 0.510 0.36 0.19 0.515
TnT pos+morph none 0.423 0.506 0.26 0.20 0.513
C&C pos none 0.393 0.476 0.30 0.20 0.499
C&C pos+morph none 0.378 0.537 0.28 0.20 0.488
TnT subcat none 0.299 0.370 0.10 0.07 0.338
TnT subcat+morph none 0.298 0.368 0.10 0.08 0.337
C&C subcat none 0.242 0.301 0.11 0.09 0.314
C&C subcat+morph none 0.240 0.298 0.12 0.10 0.316
TnT letype none 0.236 0.307 0.06 0.05 0.264
C&C letype none 0.149 0.183 0.07 0.06 0.177
C&C letype+sel none 0.148 0.181 0.07 0.06 0.176
C&C letype+morph none 0.145 0.180 0.08 0.06 0.175
C&C letype+sel+morph none 0.140 0.173 0.07 0.06 0.163

Table 6.6: Coverage, efficiency and accuracy over the ws02 data set,
when using lexical restriction via a single supertag per token.

6.4. Results 169

Coverage Time EDM
Configuration Full Gold Full Gold F-score

Baseline: no restriction 0.847 0.990 4.63 1.76 0.886
C&C pos PTB 0.637 0.787 0.92 0.44 0.737
C&C pos ST 0.629 0.777 1.01 0.48 0.717
C&C pos+morph PTB 0.628 0.777 0.90 0.43 0.731
C&C pos+morph ST 0.614 0.759 0.96 0.48 0.706
TnT pos PTB 0.610 0.759 0.87 0.43 0.736
TnT pos+morph PTB 0.597 0.753 0.87 0.44 0.733
TnT pos ST 0.597 0.742 1.01 0.48 0.717
TnT pos+morph ST 0.585 0.736 1.02 0.50 0.714
C&C subcat ST 0.455 0.598 0.54 0.35 0.568
C&C subcat PTB 0.454 0.594 0.37 0.18 0.576
C&C subcat+morph PTB 0.445 0.586 0.38 0.19 0.575
C&C subcat+morph ST 0.440 0.577 0.78 0.48 0.556
C&C letype+sel PTB 0.433 0.565 0.31 0.14 0.563
C&C letype+sel ST 0.429 0.555 1.09 0.74 0.537
C&C letype ST 0.425 0.551 0.93 0.62 0.540
C&C letype PTB 0.424 0.559 0.30 0.14 0.561
C&C letype+morph ST 0.421 0.539 0.95 0.62 0.524
C&C letype+sel+morph ST 0.420 0.541 1.13 0.76 0.522
C&C letype+sel+morph PTB 0.411 0.537 0.32 0.15 0.531
C&C letype+morph PTB 0.406 0.531 0.32 0.14 0.527
TnT subcat PTB 0.388 0.499 0.43 0.22 0.515
TnT subcat ST 0.385 0.495 0.43 0.22 0.504
TnT subcat+morph PTB 0.382 0.495 0.33 0.16 0.513
TnT pos none 0.380 0.513 0.47 0.36 0.543
TnT subcat+morph ST 0.380 0.491 0.44 0.23 0.502
TnT pos+morph none 0.377 0.511 0.49 0.37 0.542
C&C pos none 0.350 0.475 0.46 0.27 0.476
TnT letype ST 0.342 0.457 0.71 0.43 0.468
C&C pos+morph none 0.339 0.463 0.46 0.29 0.467
TnT letype PTB 0.339 0.449 0.25 0.11 0.456
TnT subcat none 0.229 0.318 0.14 0.11 0.327
TnT subcat+morph none 0.228 0.316 0.14 0.11 0.326
C&C subcat none 0.195 0.278 0.12 0.09 0.279
TnT letype none 0.181 0.262 0.10 0.07 0.261
C&C subcat+morph none 0.179 0.258 0.11 0.09 0.255
C&C letype+sel none 0.150 0.211 0.08 0.06 0.199
C&C letype none 0.144 0.207 0.07 0.06 0.198
C&C letype+sel+morph none 0.144 0.207 0.08 0.06 0.186
C&C letype+morph none 0.139 0.199 0.07 0.06 0.176

Table 6.7: Coverage, efficiency and accuracy over the cb data set, when
using lexical restriction via a single supertag per token.

170 Chapter 6. Restricting Parser Search Space

Results are ordered according to the coverage and we can
clearly see that the coarse-grained pos and pos+morph tags
achieve the best coverage, while still losing coverage compared
to the unrestricted parser. EDM f-score is largely dominated by
coverage, but not completely. For any configurations with sim-
ilar coverage, those using TnT are always more accurate than
C&C results. However, with any form of gap handling, TnT usu-
ally has lower coverage. This is interesting in view of the fact
that, when no gap handling is used, TnT has higher coverage. A
closer look at the differences shows that TnT makes more errors
in closed class words. Since the unknown word handling mech-
anisms assume that closed class words will rarely be unknown,
generic lexical entry coverage of these words is not as good.

In terms of parsing time, those results with the highest coverage
show the approximate three-fold speed up predicted for pos tags
in the earlier tables. For the jhpstg t data set, where the tagging is
most accurate, the best f-score (from configuration TnT, assign-
ing pos, with fallback to PTB POS tags) is only 0.056 below that
when using no restriction. In certain circumstances, that might
be an acceptable drop for the associated gain in speed. While
parsing times do drop further for finer grained tags, since these
decreases comes along with large drops in coverage, it is difficult
to make any definitive claims about relative speed benefits.

Comparing the three gap handling strategies, we see that, in
terms of coverage, PTB POS tags perform better than supertags,
which are better than no gap handling. This is unsurprising and
fits well with the results of Chapter 5. It is important to realise
that in these experiments where every token is restricted, all lex-
ical gaps are considered ‘caused by lexical restriction’, even when
they would occur without restriction. Hence, with a gap handling
strategy of none, parsing will fail if any words in the input are

6.4. Results 171

not in the lexicon. This is particularly clear on the ws02 and cb
data sets, which have a high percentage of unknown words. More
appropriate baselines for these configurations would be those in
Tables 3.3 and 3.5. Looking at time, we see that, as in Chapter 5,
using supertags for gap handling is slower than using PTB POS
tags, and this is particularly so for the fine-grained tags which
have more associated generic lexical entries. Indeed, that prob-
lem is exacerbated here since fine-grained tags means both more
lexical gaps and more generic entries for each gap. As mentioned
above, this strategy could be fine-tuned to use less fine-grained
tags for gap handling, but as long as the lexical restriction leads
to a high percentage of gaps, any speed benefits of restriction
may be lost in the slow-down caused by gap handling. Using sin-
gle tagging, only pos and pos+morph tags can be predicted
accurately enough to maintain a workable proportion of lexical
gaps. The next section looks at one method to reduce the gaps
caused by lexical restriction — allowing multiple supertags per
token.

6.4.2 Multi-Tagging

In these experiments, a variable number of supertags is assigned
to each token, depending on the tag probabilities and a β value
that is varied between 0.0005 and 0.5. A large β value leads to
fewer tokens having more than one tag. For instance, when β is
0.5, a token will only have multiple tags when the top tag has a
probability below 67%, and not always then. For the TnT tagger,
this leads to between 4% and 8% of tokens having multiple tags.
As we saw in Chapter 4, the C&C tagger has a flatter probability
distribution than TnT and so a β value of 0.5 can mean multiple
tagging up to approximately 15% of tokens. Using multiple tags

172 Chapter 6. Restricting Parser Search Space

in this way is less restrictive than single tagging, and so leads to
higher coverage, but without the same speed increase.

Again, many configurations were tested, with the same eight
tag forms and two taggers. Since we saw in the previous section
that using PTB POS tags for gap handling always gave higher
coverage and speed than using supertags, without showing any
decrease in accuracy, we use only the two gap handling strategies
in this section — none and PTB. In the previous experiments,
using no gap handling was always faster, but at the expense of a
drop in coverage. In these experiments, by varying the β level,
we are able to compare at equal coverage levels, and found that
using PTB POS tags is always faster than no gap handling for the
same coverage level. This results from the fact that, to get the
same coverage level without gap handling, a much less restrictive
β setting was required which assigned more supertags on average,
hence allowing more lexical items into the chart.

Comparing tag forms, there was very little difference, for ei-
ther tagger, between letype, letype+sel, letype+morph
and letype+sel+morph, with letype the best of the four.
Comparing between pos, subcat and letype, we see that where
the same level of coverage can be achieved, parsing speed in-
creases as tags get more specific. However, when tagging with
letype, we can not reach the same level of coverage as with pos
tags, as sometimes the taggers are very certain of one tag, but
wrong. Figure 6.2 shows how coverage and accuracy (measured
as EDM f-score) vary according to sentence throughput, using
the two best configurations for each tagger, where best is either
fastest (and hence letype) or highest coverage (pos). All cases
are using PTB POS for gap handling. We can see here that the
C&C tagger generally gives the best results, although we see the
same pattern as before in that where the coverage is similar be-

6.4. Results 173

tween the taggers (letype over data sets jhpstg t and cb), TnT
has higher accuracy. This points to another trend in tagger differ-
ences — the C&C tagger is more likely to assign a tag that allows
a valid analysis, but is incorrect. While this is a difficult trend
to quantify, it suggests that the C&C tagger optimises more for
valid tag sequences, while TnT’s decisions are more local.

Compared to parsing without restriction, we see that using
pos tags we can achieve the equivalent coverage with a small or
no decrease in accuracy, but only on the ws02 data set do we
see an increase in coverage due to less time outs. However at
these coverage levels, the speed increases are minor. If accuracy
decreases of between 0.007 and 0.018 are acceptable, however,
speed can be doubled and a 5% or 6% loss in coverage can lead
to parsing six times as many sentences per second.

6.4.3 Selective Tagging

Multiple tagging increases coverage over single tagging, but at
the expense of adding extra input tokens to the parsing chart.
An alternative is to be more selective about when to potentially
reduce coverage by lexical restriction. Here we assign the most
likely supertag only if the tag probability is higher than a thresh-
old value. Where the threshold value is low, the results of this
method approach those from single tagging, but by increasing
the threshold we allow a more nuanced restriction that can be
adjusted depending on the requirements of coverage, accuracy
and speed. We varied the threshold from 0.5 to 1.0, and again
compared the results from the two taggers, eight tag forms and
two gap handling strategies.

Using selective tagging in this threshold range, we found that
C&C had clearly better performance. This is unsurprising, given

174 Chapter 6. Restricting Parser Search Space

0.80

0.85

0.90

0.95

0 1 2 3 4 5 6 7 8 9
Sentences parsed per second

Coverage vs Speed
×

TnT letype PTB

rrrrrr

r
TnT pos PTB

b b b b

0.82

0.86

0.90

0.94

0 1 2 3 4 5 6 7 8 9
Sentences parsed per second

Accuracy vs Speed

×

rrrrrr

C&C letype PTB

b b b b

b
C&C pos PTB

(a) jhpstg t

0.72

0.78

0.84

0.90

0 0.5 1 1.5 2 2.5
Sentences parsed per second

Coverage vs Speed
×

TnT letype PTB

rrrr

r
TnT pos PTB

b b b b
b

0.75

0.80

0.85

0.90

0 0.5 1 1.5 2 2.5
Sentences parsed per second

Accuracy vs Speed

×

rrrrr

C&C letype PTB

b b b b
b

b
C&C pos PTB

(b) ws02

0.55

0.65

0.75

0.85

0 0.5 1 1.5 2 2.5
Sentences parsed per second

Coverage vs Speed

×

TnT letype PTB

rr
rrrr

r
TnT pos PTB

b b b b
0.60

0.70

0.80

0.90

0 0.5 1 1.5 2 2.5
Sentences parsed per second

Accuracy vs Speed
×

rrrrrr

C&C letype PTB

b b b b

b
C&C pos PTB

(c) cb
Figure 6.2: Coverage and accuracy (EDM f-score) versus sentence
throughput using multiple tagging. The letype tag gives the best sen-
tence throughput at almost every level of coverage, but the pos tags give
the best absolute coverage. The relevant performance when no restriction
is used is shown on each graph by ×.

6.4. Results 175

0.80

0.85

0.90

0.95

0 1 2 3 4 5 6 7 8 9
Sentences parsed per second

Coverage vs Speed
×

C&C pos none
C&C subcat+morph none

0.82

0.86

0.90

0.94

0 1 2 3 4 5 6 7 8 9
Sentences parsed per second

Accuracy vs Speed

×

C&C pos+morph none
C&C letype none

(a) jhpstg t

0.72

0.78

0.84

0.90

0 0.5 1 1.5 2 2.5
Sentences parsed per second

Coverage vs Speed
×

C&C pos PTB
C&C subcat+morph PTB

0.75

0.80

0.85

0.90

0 0.5 1 1.5 2 2.5
Sentences parsed per second

Accuracy vs Speed

×

C&C pos+morph PTB
C&C letype PTB

(b) ws02

0.55

0.65

0.75

0.85

0 0.5 1 1.5 2 2.5
Sentences parsed per second

Coverage vs Speed

×

C&C pos PTB
C&C subcat PTB

0.60

0.70

0.80

0.90

0 0.5 1 1.5 2 2.5
Sentences parsed per second

Accuracy vs Speed
×

C&C pos+morph PTB
C&C letype PTB

(c) cb
Figure 6.3: Coverage and accuracy (EDM f-score) versus sentence
throughput using selective tagging. Curves are shown for the best per-
forming configurations. The relevant performance when no restriction is
used is shown on each graph by ×.

176 Chapter 6. Restricting Parser Search Space

0.92

0.93

0.94

0.95

0.96

1.0 1.5 2.0
Sentences parsed per second

Coverage vs Speed

×

C&C pos none
C&C subcat+morph none

0.912

0.916

0.920

0.924

0.928

1.0 1.5 2.0
Sentences parsed per second

Accuracy vs Speed

×

C&C pos+morph none
C&C letype none

(a) jhpstg t

0.858

0.870

0.882

0.894

0.906

0.4 0.5 0.6 0.7
Sentences parsed per second

Coverage vs Speed

×

C&C pos PTB
C&C subcat+morph PTB

0.85

0.86

0.87

0.88

0.89

0.4 0.5 0.6 0.7
Sentences parsed per second

Accuracy vs Speed

×

C&C pos+morph PTB
C&C letype PTB

(b) ws02

0.78

0.80

0.82

0.84

0.86

0.2 0.3 0.4 0.5
Sentences parsed per second

Coverage vs Speed

×

C&C pos PTB
C&C subcat PTB

0.845

0.855

0.865

0.875

0.885

0.2 0.3 0.4 0.5
Sentences parsed per second

Accuracy vs Speed
×

C&C pos+morph PTB
C&C letype PTB

(c) cb
Figure 6.4: Close-up of coverage and accuracy (EDM f-score) versus sen-
tence throughput using selective tagging. Curves are shown for the best
performing configurations. The relevant performance when no restriction
is used is shown on each graph by ×. The point where unrestricted speed
is doubled is marked with a vertical line.

6.4. Results 177

the results seen in Figures 4.11 and 4.12, where TnT perfor-
mance was only superior when most of the tokens were being
tagged. The better tag form depends on whether the emphasis
is being placed on speed or coverage. Figure 6.3 shows, for each
data set, configurations that, for some sentence throughput, had
the highest coverage or accuracy. Each of these graphs suggests
that letype assigned by C&C is the better configuration, at the
maximum speed-up predicted using gold supertags. However,
this speed up comes with a loss in coverage of up to 30%.

Compared to multiple tagging, selective tagging performs sim-
ilarly when optimising for speed, however a closer look at the
top of the graph shows where the benefits of selective tagging
are. Figure 6.4 focusses on those threshold values that give up to
twice the parsing speed, and in this range selective tagging shows
better coverage and accuracy than multiple tagging. In terms of
tag forms, at twice the parsing speed, letype still gives the best
coverage, but the better accuracy comes when using subcat or
subcat+morph, which appear to be a middle ground between
speed and accuracy.

At this level, the better configurations over jhpstg t use no gap
handling because the tag accuracy is high, and hence restriction
causes very few gaps. For the other two data sets where tagging
accuracy is not so high, and there are more unknown words, PTB
POS gap handling is required to get good coverage.

Compared to no restriction, we can see that pos+morph
tags can actually give an increase in coverage and accuracy, and a
speed increase of 50% is possible for all data sets with no decrease
in accuracy. At higher speeds, accuracy starts to decrease, and,
as with multiple tagging, the highest speed possible depends on
how large an accuracy decrease is acceptable.

178 Chapter 6. Restricting Parser Search Space

6.5 Conclusion

Lexical restriction is a means of increasing parser efficiency by
reducing the number of lexical entries in the parse chart. To see
how effective the various supertag types from Chapter 4 could
be at this task, we parsed using gold supertags. The results
showed that, while all tag forms gave an increase in efficiency, the
potential benefits were much less than those possible for CCG or
LTAG parsing, owing to the fact that the lexicon already has a
filtering effect on lexical entries.

Still, speed increases were possible, and so three different tag-
ging strategies were tested, using supertags assigned by the TnT
and C&C taggers. Single tagging, where each token is restricted
to lexical entries compatible with the single most likely tag ac-
cording to the tagger, yielded a three-fold speed up using pos
tags, but at the cost of 8% in coverage on the data set where tag-
ging is most accurate, and up to 20% for the cb data set, where
tagger accuracy is lower.

When multiple tags could be assigned to each token (depending
on relative tag probabilities), the same efficiency increase could be
achieved with a smaller, though still noticeable drop in coverage.
Here, we saw that where speed has a high priority, the letype
tags yield a higher coverage and accuracy than other options
at most levels of sentence throughput, but that pos still gives
the best absolute coverage, at up to approximately twice the
parsing speed. As discussed in earlier chapters, these coarse-
grained tags would not, in general, be considered supertags since
they don’t explicitly contain dependency information. However,
for this task, they provide the sort of information that is expected
of a tagger and discard blatantly wrong analyses, while allowing
the parser to make the fine distinctions. Furthermore, they are

6.5. Conclusion 179

superior to Penn Treebank POS tags for this purpose, because
they make exactly the distinctions that are made in the grammar,
which the PTB POS tag set does not.

Using selective tagging, where a token is restricted only when
the tag probability is over a certain threshold, we see that at a
high level the results are very similar to multiple tagging. How-
ever, when focussing on the top part of the curve, the coverage
decrease is more gradual. Speed increases of up to 50% were
achieved with no decrease in coverage or accuracy, and in gen-
eral selective tagging gave better results up to double the parsing
speed.

Comparing between the TnT and C&C taggers, we found that
despite TnT being the most accurate tagger when evaluating
the top tag, there were three reasons that C&C was the better
tagger to use in this task when coverage is important. Firstly,
we saw in single tagging that TnT, while making fewer errors,
made more errors in closed class tags where gap handling is not
as effective. Secondly, as we saw in Chapter 4, characteristics
of C&C’s probability model mean that it is more accurate when
multiple tags are assigned according to the probabilities of this
model. Finally, although it is difficult to quantify exactly, results
suggest that C&C optimises more for a valid sequence that will
lead to a parse, compared to the more local optimisations of
TnT, which lead to more accurate tagging, but fewer parseable
tag sequences.

The final results show that modest efficiency increases are pos-
sible using lexical restriction. When speed has high priority, the
letype tag form gives the best coverage and accuracy at higher
speeds, but when maintaining high coverage is important the pos
and posmorph tags, using selective tagging can give an increase
in speed of between 50% and 100%.

180 Chapter 6. Restricting Parser Search Space

7 Parse Ranking
Parse accuracy, when evaluating the top ranked parse, is affected
both by the grammar, and by the statistical model that ranks
the possible analyses that the grammar can produce. In previ-
ous chapters, we have ignored the effect of the statistical ranking
model and measured relative accuracy differences by modifying
the grammar and holding the ranking model fixed. We made
the simplifying assumption that adding (Chapter 5) and remov-
ing (Chapter 6) possible analyses did not change the ranking of
unaffected analyses, in order to focus on the effects of various
grammar modifications associated with using supertag informa-
tion. In this chapter we look at using the supertag information
in a different way — to inform the parse ranking stage.

While we saw that lexical restriction can have an effect on parse
accuracy, there is a fundamental difference in how supertags were
used in those experiments, and how they will be included in parse
ranking. In lexical restriction, supertags form hard constraints on
the solution of the parsing problem. Even with multiple tagging
or selective tagging, the constraints, while more relaxed, are fixed
and no analysis that does not satisfy them will be produced. In
contrast, for parse ranking, supertags will be used as soft con-
straints. In constraint programming, soft constraints define pref-
erences regarding the optimal solution and are usually encoded
in the form of a cost function to be maximised or minimised.

There are many ways that lexical statistics could be added to
the statistical parse ranking model, and exploring the full spec-
trum of possibilities is out of scope for this thesis. The aim of
this chapter is to explore the space of possibilities and describe
some preliminary experiments designed to investigate how much
information is available in the tagger models we have trained.

182 Chapter 7. Parse Ranking

7.1 Soft Constraints

Soft constraints were originally a solution to over-constrained
problems in the field of constraint programming. Later, it became
obvious that framing a problem as one of optimising soft con-
straints, rather than satisfying hard constraints was also suitable
for modelling systems that included some concept of fuzziness,
preference or probability. Parsing natural language fits both sce-
narios. When we use lexical information to form hard constraints,
such as enforcing that a token must have a type compatible with
a, we run into robustness issues if no solution can be found to sat-
isfy that constraint, an instance of over-constraint. As discussed
in Chapter 3, this can occur either because of something missing
in the grammar, or because of ungrammatical input, but in ei-
ther case leads to parse failure. In previous chapters we looked
at solutions to this problem. The ideal solution is to predict the
correct tag in the first place, using a more accurate tagger trained
on additional training data. In a real, non-ideal situation differ-
ent strategies for assigning multiple tags can be used, and so we
can allow types compatible with a, b or c, in constraint terms,
enlarging the domain of a variable. But what about d? The
more options we give, the greater the ambiguity in parsing.

There are two issues arising from greater parsing ambiguity.
The first is the higher number of possible analyses from which
to select the “correct” analysis. This is where the idea of using
soft constraints for modelling systems with preferences or prob-
abilities comes in to play. Semiring-based constraint satisfaction
(Bistarelli et al. 1997) is a framework for assigning preference
weights to different values a variable might take, and defining
the means by which these preferences weights are combined to
determine the ‘best’ solution. The preference weights are in the

7.1. Soft Constraints 183

range [0, 1], where a weight of zero or one is a hard constraint,
representing total incompatibility or absolute necessity of a value
respectively. In the case of a PCFG parser, at each decision point
(node), the set of values is the set of expansions that are possible
for that node, and the preference weights are the probabilities
associated with each expansion rule. In general, in a PCFG, all
constraints are soft constraints, hence there are no robustness is-
sues caused by over-constraint and the most likely parse is the
one where the combination of probabilities was highest.

Given that robustness is a continuing problem in HPSG pars-
ing, why do we not use soft constraints throughout the parsing
process, as in PCFG parsing? This goes back to the second is-
sue arising from greater parsing ambiguity: loss of efficiency. By
adding more and more possible values at each decision point,
the parser has to make more choices, leading to slower parsing
times and greater memory use. In a PCFG parser, this problem
is mitigated by two factors. Firstly, the analysis is not as de-
tailed as in HPSG, and so there are much fewer possible values
to consider. Secondly, because each subtree is considered inde-
pendent, the parsing chart can be pruned at each node, keeping
only those sub-analyses that yield the highest probability while
still being able to find the best full analysis, according to the
PCFG model. Even given these factors, reported PCFG pars-
ing times are not significantly better than those we reported in
Chapter 6. It might still be informative to create a PCFG by
multiplying out all observed feature value combinations from a
treebank created with a broad-coverage HPSG-based grammar
such as the ERG. However, while this could provide interesting
observations about the amount of information in such a tree-
bank, it is doubtful that there is sufficient training data available
to provide accurate probabilities for such a grammar.

184 Chapter 7. Parse Ranking

Returning to our recurring theme of trade-offs, the balance
between hard and soft constraints reflects the trade-off between
robustness and efficiency. There are many ways that the different
types of constraints could be mixed during parsing to affect this
trade-off. At the present point in time, the PET parser combines
the two in a fairly rigid manner, using hard constraints while fill-
ing the parsing chart, but employing soft constraints in the later
ranking stage, the stage where the probabilities and preferences
of natural language are best balanced. There is certainly scope
for introducing soft constraints in the first stage of parsing, with-
out going all the way towards a PCFG. However, in this work we
will focus on possible improvements to the current utilisation of
soft constraints, using the lexical statistics that have been learnt
by the supertaggers.

7.2 The Lexical Statistics

There are various ways of using the lexical information that the
taggers can give us. In this preliminary investigation, we will fo-
cus on two statistics that represent different types of information.
Both are global statistics, based on the full tag sequence extracted
from each potential parse. These tag sequences are extracted us-
ing exactly the same method as was used to extract the training
data for the supertaggers, which is described in Chapter 4.

The first lexical statistics feature uses the probabilistic models
created for the supertaggers to calculate the tag sequence prob-
ability. In this scenario, we want the sequence probability not
for the most likely sequence, but for an arbitrary tag sequence as
extracted from an analysis. The supertaggers do not, by default,
output the sequence probability, even of the best sequence they
produce. They do, however, output the marginal probabilities of

7.2. The Lexical Statistics 185

the tags they predict and we use these to calculate an approxi-
mation of the tag sequence probability. In order to calculate this
probability according to the tagger’s model, we ran each tagger
on each test set with a β value of 0.000000001 and recorded the
tags and their associated probabilities according to each model.
Then, for each sentence in the test data, we extracted the tag se-
quences from each of the analyses returned by the parser, up to
500 analyses, and looked up the probabilities given by the model
for each tag. The tag sequence probability then was the product
of the individual tag probabilities. No additional smoothing was
used, as we were interested in the probabilities as given by the
models. Since both C&C and TnT restrict the tags that can be
seen with particular word forms, this can lead to a tag probabil-
ity, and hence a sequence probability, of zero. This is something
that could be fine-tuned in future parse ranking experiments.

Since we have seen, with the TnT tagger, that even when the
probabilistic model isn’t helpful for our task, single tag accuracy
can be good, we also look at a second statistic more aligned with
single tag accuracy. This second lexical statistics feature ignores
the tag probabilities and measures the compatibility between the
tag in the parse and that predicted by the supertaggers. The
value used here is the percentage of tokens in each parse that
were compatible with the predicted tags. This type of feature
could be fine-tuned to ignore certain word or tag types (such as
closed class tags or named entities), or conversely to put greater
weight on getting particular token classes correct. For the pur-
pose of this investigation, we simply align the tokens and tags as
the parser would in lexical restriction, but more intelligent han-
dling of multiword expressions would also be an area for future
improvements.

There are other possibilities for lexical statistics features, in-

186 Chapter 7. Parse Ranking

cluding merging different tag granularities, instead of trying to
determine the most appropriate, or perhaps trying to incorporate
some measure of tagger confidence learnt in training, at a global
level or for particular tags. In the following section however, we
will look at how the basic statistics described above could be used
to improve parse ranking.

7.3 Incorporating Lexical Statistics in Parse
Ranking

Lexical statistics can be added to the parse ranking stage of pars-
ing in a variety of ways that vary in their complexity and speed
of implementation. The simplest methods involve reranking the
output of the current statistical model. Both Collins (2000) and
Charniak and Johnson (2005) have shown that reranking the out-
put of a statistical parser can bring significant improvements in
accuracy, but the common reason given for reranking in this sce-
nario is to add features that are difficult to add to a generative
statistical model. We already use a discriminative model that can
incorporate arbitrary global features, although currently no lexi-
cal features are used. However, reranking could also been seen as
a simple way of adding additional information without needing
to train a full model.

7.3.1 Reranking

Taking the top 500 parses as returned when using the ERG’s
default Maximum Entropy statistical model, we looked at what
information the tagger models could contribute towards selecting
the best parse. The first step was to look at the discriminative
power of the two lexical statistics, as provided by the different

7.3. Incorporating Lexical Statistics in Parse Ranking 187

Original Model Reduced Set
Data Set Average Median Precision Average Median Precision
jhpstg t 191.34 56 0.135 26.50 6 0.265
ws02 240.89 119 0.142 36.97 7 0.224
cb 283.65 424 0.091 27.26 8 0.165

Table 7.1: Average and median number of parses as produced by the
original model (limited to top 500) and in the reduced set obtained by
looking at only the most likely tag sequences. Precision is calculated by
randomly selecting an analysis within each set, and evaluating in terms
of exact match against the gold standard.

tagging models. Dalrymple (2006) reports a similar investigation
using gold standard LFG tags from the PARGRAM grammar,
however she only has a small data set which has gold standard
annotation. Toutanova et al. (2002) discuss using tagger out-
put to discriminate between parses from an earlier version of the
ERG, using very fine-grained tags. Despite the differences in tag
granularity and parser formalisms, both find that determining
the gold standard sequence of tags leads to a 50% reduction in
ambiguity. In this experiment we don’t use gold standard tags,
but only look at the parses that were most likely, according to
the lexical statistics provided by the taggers. Table 7.1 shows
the best result obtainable by using the available lexical statistics.
Here we see it is possible to reduce the set of parses down to 10%-
15% of the original set. Of course, not all of these sets will now
contain the correct parse. To get some idea of how this reduction
could affect the accuracy, for each item we randomly selected a
parse from the set and evaluated using exact match. Repeating
this ten times gave us an average precision. In all cases, this
is substantially better than randomly selecting from the entire
set, despite the fact that for many items there was no chance of
selecting the right parse.

The effect of random selection to a large extent drowns out the

188 Chapter 7. Parse Ranking

MaxEnt Sequence Tag
Data Set Model Rank Probability Compatibility
jhpstg t 0.459 0.470 0.484
ws02 0.375 0.381 0.385
cb 0.265 0.228 0.228

Table 7.2: Best exact match precision when using MaxEnt model rank,
tag sequence probability or tag compatibility scores as the first ranking
criteria, backing off to the other criteria as needed to narrow the set of
parses down to one.

differences between taggers, tag forms and lexical statistics, with
a preference to fine-grained tags the only trend strong enough to
show up. Looking at the reduced sets as a whole, we can see
that tag compatibility in most cases leads to smaller sets. For
the ws02 and cb data sets, this goes hand in hand with a lower
percentage of items which have the correct parse in the reduced
set, but in jhpstg t, where the tagger models are more accurate,
we see smaller sets that are more likely to contain the correct
parse.

As an alternative to randomly selecting a parse from within
a reduced set, we looked at a number of ways of combining the
information that we have to select the one best parse. The first
method naively combines the sequence probability, tag compati-
bility and original parse rank from the statistical model by using
them as distinct ranking criteria, ranking first by one and then
backing off to the others if there is still more than one parse with
the same ranking. Since the original rank uniquely identifies a
parse, it is always the last criteria and we varied which of se-
quence probability and tag compatibility to use first. Table 7.2
shows the best results when varying the first ranking criteria.

For the jhpstg t data set, where there has been sufficient in-
domain training data for the taggers to achieve reasonable accu-
racy, the best results came when using the most fine-grained tags

7.3. Incorporating Lexical Statistics in Parse Ranking 189

(letype+sel+morph) as predicted by the C&C tagger. Over
the ws02 data set, where the C&C tagger never achieved the
same level of accuracy as TnT, the better results all come from
TnT, although the differences between the tag types, and indeed
between the three ranking criteria are small, with tag compatibil-
ity against the pos+morph tags giving slightly better results
than any other configuration. The lower tagger accuracy for the
cb data set means that there was no apparent benefit to using
the lexical information in this sort of model, and any differences
between taggers and tag forms appeared random.

The most interesting observation from these results is that,
when looking at the jhpstg t data set which is most representa-
tive of the benefits accurate tagging could bring, the +morph
tag variants are the ones that improve over the original ranking.
This differs from the earlier tasks, where morphology informa-
tion was found to add very little, except to the coarse-grained
tags. Here we see over 3% improvement in accuracy between us-
ing letype+sel+morph and letype+sel tags. This suggests
that when we look at less naive methods of adding lexical in-
formation, we should perhaps focus on predicting morphological
information.

A slightly less naive method of using the information is to cal-
culate a score from a linear combination of sequence probability,
tag compatibility and MaxEnt score (rather than rank). Given
no extra information, the easiest combination is to give all three
criteria equal weighting. However, there is some training data
available that allows us to learn weights for each criteria. This is
the same tourism data that was used to train the original Max-
Ent model, and so may overfit to that domain of data. Table 7.3
shows the best results using an even weighting of criteria and
also the weighting learnt for each tagger and tag form combina-

190 Chapter 7. Parse Ranking

Data Set Equal Weighting Learnt Weighting
jhpstg t 0.493 0.494
ws02 0.392 0.394
cb 0.230 0.234

Table 7.3: Exact match precision when using a linear combination of
MaxEnt model score, tag sequence probability and tag compatibility
scores to rank parses, first with each criteria given equal weighting, and
then with weightings learnt from tourism training data.

tion using the extra tourism data.

We see here that learning the weights gives only a very slight,
statistically insignificant improvement over just giving each cri-
teria equal weight, despite the fact that the learnt weights are
not similar. For all tagger and tag form combinations, sequence
probability is given a much lower weight than either of the other
criteria, with tag compatibility in most, but not all, cases given
the heaviest weight of the three. For the jhpstg t and ws02, both
combinations give a significant improvement over all the ranking
criteria in Table 7.2, but again we see that the lexical information
we have brings no improvement over the original ranking for the
cb data set, and the differences between the different methods for
using this information are insignificant for this data set. Echoing
the results from Table 7.2, the best tag forms for the jhpstg t data
set are the fine-grained tags with morphological information from
the C&C tagger, while tags from TnT give the best results over
ws02, with most tag forms (except subcat and pos) producing
very similar results.

7.3.2 Expanding the Maximum Entropy Model

Reranking is a simple way of giving us some indication of how
the lexical statistics may contribute to parse ranking. In this

7.3. Incorporating Lexical Statistics in Parse Ranking 191

section we outline possible future experiments that incorporate
these statistics into the Maximum Entropy (MaxEnt) model.

The simplest method would be to treat the two statistics used
above as auxiliary distributions (Johnson and Riezler 2000).
Generally, an auxiliary distribution is a probability distribution
estimated from a larger, simpler corpus than that used to train
the main model. The log probability according to the auxiliary
distribution is added as a feature to the full model. Auxiliary
distributions were proposed as a method to include lexical selec-
tional preferences in parse disambiguation, and have also been
tried as a means of domain adaptation (Plank and van Noord
2008). So far, auxiliary distributions have not been proven to
bring much, if any improvement, over a base model in parse
disambiguation. It is not clear why adding extra information
degrades performance. One possibility is that the simpler struc-
tures learnt in the auxiliary distribution are not a good match
for the structures in the grammars. In our situation, there is no
mis-match between structures, and since we have already seen
that the lexical statistics above brought some improvement in a
combination model, it would be worthwhile to see if inclusion in
the full model could improve over that.

The general theory suggests that auxiliary distributions should
be based on annotated corpora that are larger and simpler than
the main training data since they bring more data for less cost,
but there is minimal difference between the effort involved in
producing training information for the Maximum Entropy model,
and that for the supertagger models. It is true that the supertag-
ger only uses the tag sequence without the full parse structure,
but assigning the tag sequences, particularly with the fine-grained
tags, is very little easier than assigning the full analysis. So what
is the point of learning them separately? One possible answer to

192 Chapter 7. Parse Ranking

that considers the quality of the training data. We saw in Chap-
ter 4 that the tag accuracy of the unannotated parser output was
quite good, even on the Wall Street Journal data, where parse
accuracy is much lower. Self-training (i.e. training a parse model
on unannotated parser output) has been shown to be effective for
improving accuracy in a PCFG parser (McClosky et al. 2006a),
but hasn’t been attempted for the PET parser. An interesting ex-
periment would be to compare between ranking models that have
fully trained with unannotated parser output and those that have
been enhanced with lexical statistics from a supertagger trained
on parser output (as in Chapter 4). The hypothesis being that
the constrained nature of the grammar is enough to produce good
quality, internally-consistent tag sequences within the size of the
context window used by the taggers, whereas training the parsing
model on parser output will reinforce bad ranking decisions.

Another possible direction to consider for introducing lexical
statistics to the Maximum Entropy model was touched on in
Section 7.2. The statistics we have used so far have been sim-
ple global summaries of the tag sequence, but more fine-tuned
features could be included. Rather than have tag compatibility,
for instance, be a percentage across the whole sentence, individ-
ual features could count aspects like the percentage of tokens
classed as noun types where the tagger predicted a verb, or,
given the positive effect that morphological predictions seem to
have, we could count the number of times that a token type
was compatible with the predicted pos but not the predicted
pos+morph tag (or the equivalent at different levels of granu-
larity). The possible feature space in this regard is huge, but at
least the preliminary experiments we have conducted here give
some indication of which information is useful and predictable.
A more comprehensive error analysis of tagging accuracy could

7.4. Conclusion 193

also direct the feature engineering.

7.4 Conclusion

Modelling a system in terms of soft constraints is useful when
hard constraints would regularly lead to no solutions, or when the
system being modelled includes ideas of fuzziness, preference or
probability. Natural language parsing falls into both categories.
This chapter focusses on using lexical statistics as soft constraints
for the second purpose, introducing lexical preferences into the
ranking stage of parsing.

We experimented with two different types of lexical statistics
based on the tag sequences extracted from possible analyses: the
first, sequence probability, makes use of the probabilistic mod-
els learnt by the taggers, while the second, tag compatibility,
looks only at the tag instances that are predicted as most likely.
Looking at the discriminative power of these statistics, we found
that taking only those parses that were most likely according to
each statistic can reduce the average number of analyses down to
10%–15% of what the parser returns (when limited to 500 parses).
Selecting randomly from this reduced set gave better exact match
precision results than selecting from the full set, despite the fact
that the reduced set was not guaranteed to contain the correct
parse. Looking at the reduced sets themselves, without introduc-
ing random selection, we found that tag compatibility produced
smaller sets of possible analyses and, on the in-domain test set
where the tagging was most accurate, these smaller sets were
more likely to contain the correct result than those distinguished
by sequence probability.

Moving on to non-random selection methods, we experimented
with different methods of combining sequence probability, tag

194 Chapter 7. Parse Ranking

compatibility and the original Maximum Entropy score. The
first was as a very simple set of ranking criteria, backing off from
one criteria to the next as necessary to narrow the possible parses
down to one. Next we tried calculating a ranking score using a
linear combination of the three criteria, first with each having
equal weighting, and then by learning the optimal weights using
additional training data in the tourism domain. We found that
learning the weights gave only a slight, statistically insignificant
improvement over equal weighting, despite the learnt optimal
weights having a repeatable, non-equal pattern across tag forms.
All methods of combining lexical statistics with the original Max-
imum Entropy ranking improved over the original ranking on the
jhpstg t and ws02 data sets, but the lower tag accuracy achiev-
able on the cb data set meant that the lexical statistics there
added only random noise. Where the lexical statistics were bene-
ficial, we saw that morphological information, unlike in previous
chapters, gave a significant boost to results. For the in-domain
jhpstg t data set, where there is enough relevant training data to
start forming an accurate model, the fine-grained tags as pre-
dicted by the C&C tagger yielded the greatest improvements,
but we also saw that tags from TnT can give some advantage in
situations where less training data is available.

The above observations are meant to provide a starting point
for selecting features to add to the Maximum Entropy model.
Section 7.3.2 gave some suggestions for future work in this direc-
tion.

8 Conclusion
Deep hand-crafted grammars can produce very detailed syntactic
and semantic analyses of natural language that can be useful for
applications such as information retrieval and machine transla-
tion. The aim of this thesis was to discover how lexical statis-
tics could be used to improve the performance of parser that
uses such a grammar. The result has been a story of trade-offs.
We evaluated the PET parser, together with the broad-coverage
HPSG-based English Resource Grammar, in terms of robustness,
efficiency and accuracy. Each set of experiments that we carried
out painted a complex picture showing how to improve one factor
at the cost of reduction in another, but also described how best
to configure the system to balance the three factors, or to give
priority to one or two of the three.

Chapter 2 outlined the respective advantages and disadvan-
tages of deep hand-crafted grammars, as opposed to other sys-
tems that are derived from treebanks or that provide a less de-
tailed analysis. We found that the many of the sources of disad-
vantage in the deep hand-crafted system were also the source of
the system’s advantages. Rather than eliminating the advantages
in efforts to ameliorate disadvantages, we look to combine advan-
tages from different systems. Hybrid processing is one means by
which to accomplish that and we focus on supertagging as a par-
ticular hybrid processing technique that has been shown to work
well for a lexicalised formalism such as HPSG.

In Chapter 3 we discussed efficiency, robustness and accuracy,
the three often competing factors used to evaluate parser per-
formance. In particular, we looked at the problem of evaluating
and comparing accuracy between different parsers, and for dif-
ferent purposes, finding that much of the confusion surrounding

196 Chapter 8. Conclusion

parser accuracy metrics stems from an ill-defined purpose both
of parsing and of evaluation. Learning from this, we define our
parsing goal as producing semantic information (in terms of who,
what, when, where, why and how) for an application, and fur-
ther specify that our evaluation is aimed at finding the optimal
configuration of the PET parser together with the ERG for that
task. The major contribution of this chapter is a new granular
evaluation metric, Elementary Dependency Match (EDM), that
is suitable for evaluating the detailed semantic information that
is produced by the PET parser.

The lexical statistics that we experimented with were those
learnt in the process of training tagger models for a variety of
different tag forms. The tag forms varied in granularity and
type of information, from the pos tags, which are make only
very broad distinctions, up to the letype+sel+morph, which
include information about morphology, subcategorisation and se-
lectional preference of prepositions. There were two questions we
were interested in with regards to these tags:

(a) Which tag forms are predictable from the available training
data?

(b) Which tag forms are useful for different aspects of the parsing
process?

In order to answer the first question we ran a set of experiments
comparing the performance of TnT, a Hidden Markov Model-
based POS tagger, and the C&C supertagger, a Maximum En-
tropy Markov Model-based tagger. The experiments varied the
amount and source of the training data, and also the method
by which tags were assigned. Results from these experiments
showed that the simpler TnT tagger achieves better results on
less training data, when evaluating only the single best tag pre-
dicted by the tagger. However, if sufficient in-domain training

197

data is available, or when the method of assigning tags makes
use of the underlying probability distribution model learnt by
the tagger, the C&C supertagger has superior performance.

To explore the usefulness of the different tag forms, we looked at
three different aspects of the parsing process where lexical infor-
mation has been demonstrated to help. One of the main sources
of parser failure is unknown words in the input. Hence, the first
set of experiments used lexical statistics to predict information
about an unknown word, in order to boost parser robustness.
Here we used four different levels of granularity related to the
word class and its subcategorisation, but no morphology infor-
mation. In addition to the tag forms based on the types of the
grammar, we also used Penn Treebank-style POS tags predicted
by a tagger trained on one million words. These Penn Treebank
POS tags have been the parser’s default method of injecting ex-
ternal information where the grammar needs supplementation,
and part of this investigation was to quantify the effect the tags
have. It had been suggested that using more detailed tags, or
tags more aligned with the grammar would lead to better quality
analyses. The results showed that it was possible to get more
precise analyses with the letype tags, but less of them. That is,
in the three-way evaluation trade-off, more detailed tags brought
greater precision, but lower robustness than the Penn Treebank
tags. In comparison to using no external information, the letype
tags provide a good option when precision is paramount, but
when balance between efficiency, robustness and accuracy is re-
quired, the default tags are a good compromise.

The second aspect of parsing that we considered was the impact
of lexical ambiguity on parser efficiency. This has been the focus
of previous work involving supertags, and following that work,
we use the predicted tags of different forms to restrict the lexical

198 Chapter 8. Conclusion

items that are considered in parsing. The first stage was an oracle
experiment with each tag type, in order to determine the upper
bound on performance possible by using this technique. We found
that the massive potential for improvement previously reported
for CCG and LTAG parsing was not possible in our situation.
The potential space for improvement is narrowed from both the
top and the bottom. To start with, the baseline is not as low
as the other frameworks. The PET parser, without any tuning,
can already parse sentences at an acceptable speed, though not
the blinding speeds of the C&C parser. Secondly, the level of
detail produced is greater which may mean that the top speed is
limited without making approximations. Despite these caveats,
we found that there was space for improvement and so a set of
lexical restriction experiments were conducted.

Three different methods of lexical restriction were tested: first,
allowing only lexical items compatible with the single top tag
predicted for each token; then allowing multiple tags, depending
on the probabilities assigned by the taggers to the tags; finally
selectively restricting particular tokens of the input, depending
on the probability assigned by the tagger to the top tag. Again,
we were mapping the trade-off space. The clearest result was
that a speed increase of 1.5–2 times the base speed was possible
without losing accuracy or robustness. This result was achieved
using the basic pos tags, a tag form that would not fit any stan-
dard definition of supertag, since it represents less information
than most POS tags. Not only does it not encode subcategori-
sation information, but even the morphological distinctions that
are made in Penn Treebank POS tags are absent. Looking at the
more complex picture, we found that where speed has priority,
using the letype tag to restrict lexical entries leads to slower
degradation in coverage and accuracy as speed increases.

8.1. Extensions and Future Research 199

Finally, lexical statistics have also been shown to be useful for
increasing the accuracy of parse ranking. We looked at the po-
tential benefits of using the lexical information encoded in our
tagging models as soft rather than hard constraints, by using
them in the parse ranking stage. Some basic preliminary rerank-
ing experiments showed that, when tagging was accurate, the
fine-grained tags as predicted by the C&C tagger brought some
improvement over the default statistical parsing model that is
released with the ERG. In contrast to the earlier experiments, in
parse ranking it appears that information about predicted mor-
phology is brings a significant advantage. Full inclusion of the
lexical statistics into the Maximum Entropy model was beyond
the scope of the current work, but we outlined a number of steps
that could be taken in this direction in future work.

8.1 Extensions and Future Research

Each set of experiments we carried out left open questions and
room for further experimentation. Here we list some of the po-
tentially fruitful areas for future research.

Evaluation The new EDM metric satisfied the criteria required
for the current work, but there are many remaining questions re-
garding its general applicability, customisation and comparison
to other evaluation metrics. Since one motivation for a granu-
lar evaluation based on ‘semantic’ units is that is better reflects
human preference between better and worse analyses. This hy-
pothesis could be tested in a human evaluation experiment by
collecting pair-wise preferences from a human annotator and com-
paring the relative rankings with EDM scores. This could also
give some indication of the relative importance of the different

200 Chapter 8. Conclusion

triple types.
There are also interesting possibilities in using the EDM metric

for slightly different purposes. Since the Elementary Dependen-
cies are closely aligned to the underlying grammar, there are
potential benefits to the grammar writer in using EDM for er-
ror detection and classification. EDM could also be used where
sentence similarity was required.

Learning Supertags The best results in learning supertags came
from two sources: domain adaptation and training on parser out-
put. The obvious next step in this direction is to combine these
two. Small additional amounts of gold standard Wikipedia data
yielded significant accuracy increases on Wikipedia test data.
Since there is a large amount of Wikipedia data available, this
would be the perfect source for uncorrected parsed data.

Unknown Word Handling Since we found the generic entries
based on lexical types could give more precise analyses than Penn
Treebank POS tags, at only a small cost in coverage, it seems
worthwhile to fine-tune these generic entries in an attempt to
bring the coverage to an equivalent level. To make this a viable
unknown word handling strategy, some effort needs to be made
to improve the efficiency of the generic entry instantiation in the
PET parser. This would enable more flexibility in the lexical
filtering rules, without the loss of efficiency that gap prevention
currently brings.

Lexical Restriction A more sophisticated approach to lexical
restriction would require substantial changes to the parser imple-
mentation, tying the supertagger and parser closer together as
in the C&C parser. This reworking could allow the parser to be

8.1. Extensions and Future Research 201

more reactive, making adjustments to entries in the chart in cases
of parse failure. Another area for more sophisticated processing
is in gap handling. In our experiments, using normal unknown
word handling turned out the best option of those we tried, but
there are other possibilities, including using the supertag to filter
incompatible POS tags, or using underspecified versions of the
supertags when a lexical gap is created.

202 Chapter 8. Conclusion

Bibliography
Abney, Steven. 1997. Stochastic attribute-value grammars.

Computational Linguistics 23(4):597–618.

Adolphs, Peter, Stephan Oepen, Ulrich Callmeier,
Berthold Crysmann, Dan Flickinger, and Bernd
Kiefer. 2008. Some fine points of hybrid natural language
parsing. In Proceedings of the Sixth International Con-
ference on Language Resources and Evaluation (LREC
2008), Marrakech, Morocco.

Baldwin, Timothy. 2005. Bootstrapping deep lexical re-
sources: Resources for courses. In Proceedings of the ACL-
SIGLEX 2005 Workshop on Deep Lexical Acquisition ,
pages 67–76, Ann Arbor, USA.

Baldwin, Timothy, John Beavers, Emily M. Bender,
Dan Flickinger, Ara Kim, and Stephan Oepen.
2005. Beauty and the beast: What running a broad-coverage
precision grammar over the BNC taught us about the gram-
mar — and the corpus. In Linguistic Evidence: Empiri-
cal, Theoretical, and Computational Perspectives , ed. by
Stephan Kepser and Marga Reis. Berlin: Mouton de Gruyter.

Bangalore, Srinivas, and Aravind K. Joshi. 1994. Dis-
ambiguation of super parts of speech (or supertags): Almost
parsing. In Proceedings of the 15th International Confer-
ence on Computational Linguistics (COLING 1994), pages
154–160, Kyoto, Japan.

Bangalore, Srinivas, and Aravind K. Joshi. 1999. Su-
pertagging: an approach to almost parsing. Computational
Linguistics 25(2):237–265.

204 BIBLIOGRAPHY

Bender, Emily M. 2008. Evaluating a crosslinguistic gram-
mar resource: A case study of Wambaya. In Proceedings
of the 46th Annual Meeting of the ACL, pages 977–985,
Columbus, USA.

Bender, Emily M., Dan Flickinger, and Stephan
Oepen. 2002. The grammar matrix: An open-source starter-
kit for the rapid development of cross-linguistically consistent
broad-coverage precision grammars. In Proceedings of the
Workshop on Grammar Engineering and Evaluation at the
19th International Conference on Computational Linguis-
tics , pages 8–14, Taipei, Taiwan.

Bender, Emily M., Dan Flickinger, Stephan Oepen,
Annemarie Walsh, and Tim Baldwin. 2004. Ar-
boretum: Using a precision grammar for grammar checking
in CALL. In Proceedings of the InSTIL/ICALL Sympo-
sium: NLP and Speech Technologies in Advanced Lan-
guage Learning Systems , pages 83–86, Venice, Italy.

Bistarelli, Stefano, Ugo Montanari, and Francesca
Rossi. 1997. Semiring-based constraint satisfaction and op-
timization. Journal of the Association for Computing Ma-
chinery 44(2):236–265.

Black, Ezra, Steve Abney, Dan Flickinger, Clau-
dia Gdaniec, Ralph Grishman, Phil Harrison,
Don Hindle, Robert Ingria, Fred Jelinek, J. Kla-
vans, Mark Liberman, Mitch Marcus, S. Roukos,
B. Santorini, and Tomek Strzalkowski. 1991. A
procedure for quantitatively comparing the syntactic coverage
of English grammars. In Proceedings of the Workshop on
Speech and Natural Language , pages 306–311, Pacific Grove,
USA.

BIBLIOGRAPHY 205

Blum, Avrim, and Tom Mitchell. 1998. Combining la-
belled and unlabelled data with co-training. In Proceedings
of the 11th Annual Conference on Computational Learn-
ing Theory , pages 92–100, Madison, USA.

Blunsom, Philip, 2007. Structured Classification for Multi-
lingual Natural Language Processing . Department of Com-
puter Science and Software Engineering, the University of Mel-
bourne dissertation.

Brants, Thorsten. 1997. Internal and external tagsets in
part-of-speech tagging. In Proceedings of Eurospeech 97 ,
pages 2787–2790, Rhodes, Greece.

Brants, Thorsten, 2000a. TnT — A Statistical Part-of-
Speech Tagger . Saarland University, version 2.2 edition.

Brants, Thorsten. 2000b. TnT — a statistical part-of-
speech tagger. In Proceedings of the Sixth Conference on
Applied Natural Language Processing ANLP-2000 , pages
224–231, Seattle, USA.

Briscoe, Ted, and John Carroll. 1993. Generalised prob-
abilistic LR parsing for unification-based grammars. Compu-
tational Linguistics 19(1):26–60.

Briscoe, Ted, and John Carroll. 2006. Evaluating the
accuracy of an unlexicalised statistical parser on the PARC
DepBank. In Proceedings of the 44th Annual Meeting of
the ACL and the 21st International Conference on Com-
putational Linguistics , pages 41–48, Sydney, Australia.

Briscoe, Ted, John Carroll, and Rebecca Watson.
2006. The second release of the RASP system. In Proceed-
ings of the COLING/ACL 2006 Interactive Presentation
Sessions , pages 77–80, Sydney, Australia.

206 BIBLIOGRAPHY

Burke, Michael, Aoife Cahill, Ruth O’Donovan,
Josef van Genabith, and Andy Way. 2004. Evaluation
of an automatic f-structure annotation algorithm against the
PARC 700 dependency bank. In Proceedings of the LFG04
Conference, pages 101–121, Christchurch, New Zealand.

Böhmová, Alena, Jan Hajič, Eva Hajičová, and
Barbora Hladká. 2003. The Prague Dependency Tree-
bank: A three level annotation scenario. In Treebanks: build-
ing and using parsed corpora, ed. by Anne Abeillé. Springer.

Cahill, Aoife, Michael Burke, Ruth O’Donovan,
Josef van Genabith, and Andy Way. 2004. Long-
distance dependency resolution in automatically acquired
wide-coverage PCFG-based LFG approximations. In Pro-
ceedings of the 42nd Annual Meeting of the ACL, pages
319–326, Barcelona, Spain.

Callmeier, Ulrich. 2000. PET - a platform for experimen-
tation with efficient HPSG processing techniques. Natural
Language Engineering 6(1):99–107.

Callmeier, Ulrich, 2001. Efficient parsing with large-scale
unification grammars. Master’s thesis, Saarland University.

Callmeier, Ulrich, Andreas Eisele, Ulrich
Schäfer, and Melanie Siegel. 2004. The deepthought
core architecture framework. In Proceedings of the Fourth
International Conference on Language Resources and
Evaluation (LREC 2004), pages Lisbon, Portugal, 1205–
1208.

Carroll, John, Ted Briscoe, and Antonio Sanfil-
ippo. 1998. Parser evaluation: a survey and a new proposal.
In Proceedings of the 1st LREC Conference, pages 447–454,
Granada, Spain.

BIBLIOGRAPHY 207

Carroll, John, Anette Frank, Dekang Lin, Detlef
Prescher, and Hans Uszkoreit. 2002. Beyond PAR-
SEVAL — towards improved evaluation measures for parsing
systems. In Proceedings of the Beyond PARSEVAL Work-
shop, Third International Conference on Language Re-
sources and Evaluation (LREC 2002), pages 1–3, Granada,
Spain.

Carroll, John, Guido Minnen, and Ted Briscoe. 1999.
Corpus annotation for parser evaluation. In Proceedings of
the EACL Workshop on Linguistically Interpreted Corpora
(LINC), Bergen, Norway.

Carroll, John, and Stephan Oepen. 2005. High efficiency
realization for a wide-coverage grammar. In Proceedings of
the 2nd International Joint Conference on Natural Lan-
guage Processing , pages 165–176, Jeju Island, Korea.

Carter, David. 1997. The treebanker: a tool for supervised
training of parsed corpora. In Proceedings of a Workshop on
Computational Environments for Grammar Development
and Linguistic Engineering , pages 9–15, Madrid, Spain.

Charniak, Eugene. 2000. A maximum-entropy-inspired
parser. In Proceedings of the First Conference of the North
American chapter of the Association for Computational
Linguistics , pages 132–139, San Francisco, USA.

Charniak, Eugene, and Mark Johnson. 2005. Coarse-
to-fine n-best parsing and maxent discriminative reranking. In
Proceedings of the 43rd Annual Meeting of the ACL, pages
173–180, Ann Arbor, USA.

Clark, Stephen. 2002. Supertagging for combinatory
categorical grammar. In Proceedings of the 6th Interna-

208 BIBLIOGRAPHY

tional Workshop on Tree Adjoining Grammar and Related
Frameworks , pages 101–106, Venice, Italy.

Clark, Stephen, and James R. Curran. 2004. The
importance of supertagging for wide-coverage CCG parsing.
In Proceedings of the 20th International Conference on
Computational Linguistics (COLING 2004), pages 282–
288, Geneva, Switzerland.

Clark, Stephen, and James R. Curran. 2007a.
Formalism-independent parser evaluation with CCG and Dep-
Bank. In Proceedings of the 45th Annual Meeting of the
ACL, pages 248–255, Prague, Czech Republic.

Clark, Stephen, and James R. Curran. 2007b. Wide-
coverage efficient statistical parsing with CCG and log-linear
models. Computational Linguistics 33(4):493–552.

Clark, Stephen, James R. Curran, and Miles Os-
bourne. 2003. Bootstrapping POS taggers using unlabelled
data. In Proceedings of the 7th Conference on Natural
Language Learning (CoNLL-2003), pages 49–55, Edmon-
ton, Canada.

Clark, Stephen, and Julia Hockenmaier. 2002. Eval-
uating a wide-coverage CCG parser. In Proceedings of the
Beyond PARSEVAL Workshop, Third International Con-
ference on Language Resources and Evaluation (LREC
2002), pages 60–66, Granada, Spain.

Clark, Stephen, Julia Hockenmaier, and Mark
Steedman. 2002. Building deep dependency structures with
a wide-coverage CCG parser. In Proceedings of the 40th An-
nual Meeting of the ACL and 3rd Annual Meeting of the
NAACL (ACL-02), pages 327–334, Philadelphia, USA.

BIBLIOGRAPHY 209

Collins, Michael. 1996. A new statistical parser based
on bigram lexical dependencies. In Proceedings of the 34th
Annual Meeting of the ACL, pages 184–191, San Francisco,
USA.

Collins, Michael, 1999. Head-Driven Statistical Models
for Natural Language Parsing . University of Pennsylvania
dissertation.

Collins, Michael. 2000. Discriminative reranking for natural
language parsing. In Seventeenth International Conference
on Machine Learning (ICML 2000), pages 175–182, Stan-
ford, USA.

Collins, Michael, and Terry Koo. 2005. Discrimina-
tive reranking for natural language parsing. Computational
Linguistics 31(1):25–70.

Copestake, Ann, Dan Flickinger, Ivan A. Sag, and
Carl Pollard. 2005. Minimal recursion semantics: An
introduction. Research on Language and Computation vol
3(no 4):pp 281–332.

Crouch, Richard, Ronald M. Kaplan, Tracy Hol-
loway King, and Stefan Riezler. 2002. A comparison
of evaluation metrics for a broad-coverage stochastic parser.
In Proceedings of the Beyond PARSEVAL Workshop,
Third International Conference on Language Resources
and Evaluation (LREC 2002), pages 67–74, Granada, Spain.

Crysmann, Berthold. 2003. On the efficient implementa-
tion of German verb placement in HPSG. In Proceedings of
RANLP 2003 , pages 112–116, Borovets, Bulgaria.

Crysmann, Berthold, Nuria Bertomeu, Peter
Adolphs, Dan Flickinger, and Tina Kluwer. 2008.

210 BIBLIOGRAPHY

Hybrid processing for grammar and style checking. In Pro-
ceedings of the 22nd International Conference on Compu-
tational Linguistics (Coling 2008), pages 153–160, Manch-
ester, UK.

Crysmann, Berthold, Anette Frank, Bernd Kiefer,
Stefan Müller, Günter Neumann, Jakub Pisko-
rski, Ulrich Schäfer, Melanie Siegel, Hans
Uszkoreit, Feiyu Xu, Markus Becker, and Hans-
Ulrich Krieger. 2002. An integrated architecture for
shallow and deep processing. In Proceedings of the 40th An-
nual Meeting of the ACL and 3rd Annual Meeting of the
NAACL (ACL-02), pages 441–448, Philadelphia, USA.

Dalrymple, Mary. 2001. Lexical Functional Grammar .
New York, USA: Academic Press.

Dalrymple, Mary. 2006. How much can part-of-speech
tagging help parsing? Natural Language Engineering
12(4):373–389.

Daum, Michael, Kilian A. Foth, and Wolfgang Men-
zel. 2003. Constraint based integration of deep and shal-
low parsing techniques. In Proceedings of EACL 2003 , Bu-
dapest.

Dickinson, Markus, and Charles Jochim. 2008. A
simple method for tagset comparison. In Proceedings of
the Sixth International Conference on Language Resources
and Evaluation (LREC 2008), pages 821–826, Marrakech,
Morocco.

Flickinger, Dan. 2002. On building a more efficient grammar
by exploiting types. In Collaborative Language Engineering ,
ed. by Stephan Oepen, Dan Flickinger, Jun’ichi Tsujii, and
Hans Uszkoreit, pages 1–17. Stanford: CSLI Publications.

BIBLIOGRAPHY 211

Frank, Anette, Markus Becker, Berthold Crys-
mann, Bernd Kiefer, and Ulrich Schäfer. 2003. In-
tegrated shallow and deep parsing: TopP meets HPSG. In
Proceedings of the 41st Annual Meeting of the ACL, pages
104–111, Sapporo, Japan.

Gaizauskas, Robert. 1998. Evaluation in language and
speech technology. Computer Speech and Language 12:249–
262.

Gaizauskas, Robert, M. Hepple, and C. Huyck. 1998.
A scheme for comparative evaluation of diverse parsing sys-
tems. In Proceedings of the 1st LREC Conference , pages
143–149, Granada, Spain.

Gazdar, Gerald, Ewan Klein, Geoffrey Pullum,
and Ivan A. Sag. 1985. Generalized phrase structure
grammar . Harvard University Press.

Goodman, Michael Wayne, and Francis Bond. 2009.
Using generation for grammar analysis and error detection. In
Proceedings of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natural Lan-
guage Processing , pages 109–112, Suntec, Singapore.

Grishman, Ralph, Catherine Macleod, and John
Sterling. 1992. Evaluation parsing strategies using stan-
dardized parse files. In Proceedings of the Third Conference
on Applied Natural Language Processing , pages 156–161,
Trento, Italy.

Grover, Claire, and Alex Lascarides. 2001. XML-based
data preparation for robust deep parsing. In Proceedings of
the 39th Annual Meeting of the ACL and 10th Conference
of the EACL (ACL-EACL 2001), pages 252–259, Toulouse,
France.

212 BIBLIOGRAPHY

Hara, Tadayoshi, Yusuke Miyao, and Jun’ichi Tsu-
jii. 2007. Evaluating impact of re-training a lexical disam-
biguation model on domain adaptation of an HPSG parser. In
Proceedings of the 10th International Conference on Pars-
ing Technology (IWPT 2007), pages 11–22, Prague, Czech
Republic.

Hockenmaier, Julia, and Mark Steedman. 2007. CCG-
bank: A corpus of CCG derivations and dependency structures
extracted from the Penn Treebank. Computational Linguis-
tics 33(3):355–396.

Johnson, Mark, and Stefan Riezler. 2000. Exploiting
auxiliary distributions in stochastic unification-based gram-
mars. In Proceedings of the 1st North American chapter of
the Association for Computational Linguistics conference ,
pages 154–161, Seattle, USA.

Kaplan, Ronald M., and Joan Bresnan. 1982. Lexical-
functional grammar: A formal system for grammatical repre-
sentation. In The Mental Representation of Grammatical
Relations , ed. by Joan Bresnan, pages 173–281. MIT Press.

Kaplan, Ronald M., Stefan Riezler, Tracy Hol-
loway King, John T. Maxwell III, Alexander
Vasserman, and Richard Crouch. 2004. Speed and
accuracy in shallow and deep stochastic parsing. In Proceed-
ings of the 4th International Conference on Human Lan-
guage Technology Research and 5th Annual Meeting of the
NAACL (HLT-NAACL 2004), pages 97–104, Boston, USA.

Kiefer, Bernd, Hans-Ulrich Krieger, John Car-
roll, and Rob Malouf. 1999. A bag of useful techniques
for efficient and robust parsing. In Proceedings of the 37th
Annual Meeting of the ACL, pages 473–480, Maryland, USA.

BIBLIOGRAPHY 213

Kim, Jong-Bok, and Jaehyung Yang. 2004. Projections
from morphology to syntax in the korean resource grammar:
Implementing typed feature structures. In Proceedings of the
5th International Conference of Computational Linguis-
tics and Intelligent Text Processing (CICLing 2004), pages
14–25, Seoul, Korea.

King, Tracy Holloway, Richard Crouch, Stefan
Riezler, Mary Dalrymple, and Ronald M. Kaplan.
2003. The PARC 700 Dependency Bank. In Proceedings of
the LINC-03 Workshop, Budapest, Hungary.

Kordoni, Valia, and Julia Neu. 2004. Deep analy-
sis of modern greek. In Proceedings of the First Interna-
tional Joint Conference on Natural Language Processing
(IJCNLP-04), pages 674—-683, Hainan Island, China.

Leech, Geoffrey. 1997. Grammatical tagging. In Corpus
Annotation: Linguistic Information from Computer Text
Corpora, ed. by Roger Garside, Geoffrey Leech, and Anthong
McEnery, chapter 2. Addison Wesley Longman Ltd.

Lin, Dekang. 1998. A dependency-based method for evaluat-
ing broad-coverage parsers. Natural Language Engineering
4(2):97–114.

Magerman, David M., 1994. Natural Language Parsing as
Statistical Pattern Recognition. Stanford University disser-
tation.

Marcus, Mitchell, Grace Kim, Mary Ann
Marcinkiewicz, Robert MacIntyre, Ann Bies,
Mark Ferguson, Karen Katz, and Britta Schas-
berger. 1994. The Penn Treebank: Annotating predicate
argument structure. In Proceedings of the Human Language
Technology Workshop, pages 114–119, Princeton, USA.

214 BIBLIOGRAPHY

Marcus, Mitchell P., Beatrice Santorini, and
Mary Ann Marcinkiewicz. 1993. Building a large anno-
tated corpus of English: The Penn Treebank. Computational
Linguistics 19(2):313–330.

Marimon, Montserrat, Núria Bel, and Natalia
Seghezzi. 2007. Test-suite construction for a Spanish gram-
mar. In Proceedings of the GEAF 2007 Workshop, pages
224–237, Stanford, USA.

Matsumoto, Yuuji, Akira Kitauchi, Tatsu Ya-
mashita, and Yoshitake Hirano. 1999. Japanese mor-
phological analysis system ChaSen version 2.0 manual. Tech-
nical Report NAIST-IS-TR99009, NAIST, Nara, Japan.

Matsuzaki, Takuya, Yusuke Miyao, and Jun’ichi Tsu-
jii. 2007. Efficient HPSG parsing with supertagging and CFG-
filtering. In Proceedings of International Joint Conference
on Artificial Intelligence (IJCAI 2007), pages 1671–1676,
Hyderabad, India.

Maxwell, III, John T., and Ronald M. Kaplan. 1993.
The interface between phrasal and functional constraints.
Computational Linguistics 19(4):571–589.

McClosky, David, Eugene Charniak, and Mark
Johnson. 2006a. Effective self-training for parsing. In Pro-
ceedings of the Human Language Technology Conference
of the NAACL, pages 152–159, New York City, USA.

McClosky, David, Eugene Charniak, and Mark
Johnson. 2006b. Reranking and self-training for parser
adaptation. In Proceedings of the 44th Annual Meeting of
the ACL and the 21st International Conference on Com-
putational Linguistics , pages 337–344, Sydney, Australia.

BIBLIOGRAPHY 215

McDonald, Ryan, Fernando Pereira, Kiril Rib-
arov, and Jan Hajič. 2005. Non-projective dependency
parsing using spanning tree algorithms. In Proceedings of
Human Language Technology Conference and Conference
on Empirical Methods in Natural Language Processing
(HLT/EMNLP), pages 523–530, Vancouver, Canada.

Miyao, Yusuke, Takashi Ninomiya, and Jun’ichi Tsu-
jii. 2004. Corpus-oriented grammar development for acquir-
ing a Head-driven Phrase Structure Grammar from the Penn
Treebank. In Proceedings of the First International Joint
Conference on Natural Language Processing (IJCNLP-
04), Hainan Island, China.

Miyao, Yusuke, Rune Sætre, Kenji Sagae, Takuya
Matsuzaki, and Jun’ichi Tsujii. 2008. Task-oriented
evaluation of syntactic parsers and their representations. In
Proceedings of the 46th Annual Meeting of the ACL, pages
46–54, Columbus, USA.

Miyao, Yusuke, Kenji Sagae, and Jun’ichi Tsujii. 2007.
Towards framework-independent evaluation of deep linguistic
parsers. In Proceedings of the GEAF 2007 Workshop, Palo
Alto, California.

Miyao, Yusuke, and Jun’ichi Tsujii. 2005. Probabilistic
disambiguation models for wide-coverage HPSG parsing. In
Proceedings of the 43rd Annual Meeting of the ACL, pages
83–90, Ann Arbor, USA.

Miyao, Yusuke, and Jun’ichi Tsujii. 2008. Feature for-
est models for probabilistic HPSG parsing. Computational
Linguistics 34(1):35–80.

Müller, Stefan, and Walter Kasper. 2000. HPSG
analysis of German. In Verbmobil: Foundations of Speech-

216 BIBLIOGRAPHY

to-Speech Translation, pages 238–253. Berlin, Germany:
Springer.

Ninomiya, Takashi, Takuya Matsuzaki, Yoshimasa
Tsuruoka, Yusuke Miyao, and Jun’ichi Tsujii. 2006.
Extremely lexicalised models for accurate and fast HPSG pars-
ing. In Proceedings of the 2006 Conference on Empirical
Methods in natural Language Processing (EMNLP 2006),
pages 155–163, Sydney, Australia.

Nivre, Joakim, Johan Hall, and Jens Nilsson. 2004.
Memory-based dependency parsing. In Proceedings of the
8th Conference on Natural Language Learning (CoNLL-
2004), pages 49–56, Boston, USA.

Oepen, Stephan, and John Carroll. 2000. Ambigu-
ity packing in constraint-based parsing - practical results. In
Proceedings of the 1st Conference of the North American
Chapter of the Association for Computational Linguistics ,
pages 162–169, Seattle, USA.

Oepen, Stephan, Helge Dyvik, Jan Tore Lønning,
Erik Velldal, Dorothee Beermann, John Car-
roll, Dan Flickinger, Lars Hellan, Janne Bondi
Johannessen, Paul Meurer, Torbjørn Nordg̊ard,
and Victoria Rosén. 2004a. Som̊a kapp-ete med trol-
let? Towards MRS-based Norwegian—English machine trans-
lation. In Proceedings of the 10th International Confer-
ence on Theoretical and Methodological Issues in Machine
Translation, Baltimore, USA.

Oepen, Stephan, Dan Flickinger, Kristina
Toutanova, and Christopher D. Manning. 2004b.
LinGO redwoods. a rich and dynamic treebank for HPSG.

BIBLIOGRAPHY 217

Journal of Research in Language and Computation
2(4):575–596.

Oepen, Stephan, and Jan Tore Lønning. 2006.
Discriminant-based MRS banking. In Proceedings of the
Fifth International Conference on Language Resources
and Evaluation (LREC 2006), pages 1250–1255, Genoa,
Italy.

Plank, Barbara, and Gertjan van Noord. 2008. Ex-
ploring an auxiliary distribution based approach to domain
adaptation of a syntactic disambiguation model. In Pro-
ceedings of the workshop on Cross-Framework and Cross-
Domain Parser Evaluation , pages 9–16, Manchester, UK.

Pollard, Carl, and Ivan A. Sag. 1994. Head-Driven
Phrase Structure Grammar . Chicago, USA: University of
Chicago Press.

Prins, Robbert, and Gertjan van Noord. 2003. Rein-
forcing parser preferences through tagging. Traitement Au-
tomatique des Langues 44(3):121–139.

Riezler, Stefan, Tracy Holloway King, Richard S.
Crouch, John T Maxwell, and Ronald M. Ka-
plan. 2002. Parsing the Wall Street Journal using a lexical-
functional grammar and discriminative estimation techniques.
In Proceedings of the 40th Annual Meeting of the ACL and
3rd Annual Meeting of the NAACL (ACL-02), pages 7–12,
Philadelphia, USA.

Rimell, Laura, and Stephen Clark. 2008a. Adapting a
lexicalized-grammar parser to contrasting domains. In Pro-
ceedings of the 2008 Conference on Empirical Methods in
Natural Language Processing (EMNLP 2008), pages 475–
484, Honolulu, USA.

218 BIBLIOGRAPHY

Rimell, Laura, and Stephen Clark. 2008b. Constructing
a parser evaluation scheme. In Coling 2008: Proceedings
of the workshop on Cross-Framework and Cross-Domain
Parser Evaluation , pages 44–50, Manchester, UK.

Roark, Brian. 2002. Evaluating parser accuracy using
edit distance. In Proceedings of the Beyond PARSEVAL
Workshop, Third International Conference on Language
Resources and Evaluation (LREC 2002), pages 30–36,
Granada, Spain.

Sagae, Kenji, Yusuke Miyao, and Jun’ichi Tsujii. 2007.
HPSG parsing with shallow dependency constraints. In Pro-
ceedings of the 45th Annual Meeting of the ACL, pages
624–631, Prague, Czech Republic.

Sampson, Geoffrey, and Anna Babarczy. 2002. A test
of the leaf-ancestor metric for parse accuracy. In Proceed-
ings of the Beyond PARSEVAL Workshop, Third Interna-
tional Conference on Language Resources and Evaluation
(LREC 2002), pages 23–29, Granada, Spain.

Schabes, Yves, and Aravind K. Joshi. 1991. Parsing
with lexicalized tree adjoining grammar. In Current Issues
in Parsing Technology , ed. by Masaru Tomita, chapter 3,
pages 25–48. Kluwer.

Schäfer, Ulrich. 2006. Middleware for creating and com-
bining multi-dimensional NLP markup. In Proceedings of
the EACL-2006 Workshop on Multi-dimensional Markup
in Natural Language Processing , pages 81–84, Trento, Italy.

Sekine, Satoshi, and Michael Collins, 1997. EvalB: a
bracket scoring program.

BIBLIOGRAPHY 219

Siegel, Melanie, and Emily M. Bender. 2002. Effi-
cient deep processing of Japanese. In Proceedings of the
3rd Workshop on Asian Language Resources and Inter-
national Standardization at the 19th International Con-
ference on Computational Linguistics , pages 31–38, Taipei,
Taiwan.

Steedman, Mark. 2000. The Syntactic Process . MIT Press.

Torisawa, Kentaro, Kenji Nishida, Yusuke Miyao,
and Jun’ichi Tsujii. 2000. An HPSG parser with CFG
filtering. Natural Language Engineering 6(1):pp 63–80.

Toutanova, Kristina, Chistopher D. Manning, Stu-
art M. Shieber, Dan Flickinger, and Stephan
Oepen. 2002. Parse disambiguation for a rich HPSG gram-
mar. In First Workshop on Treebanks and Linguistic The-
ories (TLT2002), pages 253–263.

Tseng, Jesse. 2003. Lkb grammar development: French and
beyond. In Workshop on Ideas and Strategies for Multilin-
gual Grammar Development , pages 91–97, Vienna, Austria.

van Noord, Gertjan. 2004. Error mining for wide-coverage
grammar engineering. In Proceedings of the 42nd Annual
Meeting of the ACL, pages 446–453, Barcelona, Spain.

van Noord, Gertjan, and Robert Malouf. 2004. Wide
coverage parsing with stochastic attribute value grammars. In
IJCNLP-04 Workshop Beyond Shallow Analyses – For-
malisms and statistical modelling for deep analyses .

Yamada, Hiroyasu, and Yuji Matsumoto. 2003. Sta-
tistical dependency analysis with support vector machines. In
Proceedings of the 8th International Workshop on Parsing
Technologies , pages 195–206, Nancy, France.

220 BIBLIOGRAPHY

Ytrestøl, Gisle, Dan Flickinger, and Stephan
Oepen. 2009. Extracting and annotating wikipedia sub-
domains. In Proceedings of the Seventh International
Workshop on Treebanks and Linguistic Theories (TLT 7),
pages 185–196, Groningen, The Netherlands.

Zhang, Yi, Timothy Baldwin, and Valia Kordoni.
2007a. The corpus and the lexicon: Standardising deep lexi-
cal acquisition evaluation. In Proceedings of the ACL 2007
Workshop on Deep Linguistic Processing , pages 152–159,
Prague, Czech Republic.

Zhang, Yi, and Valia Kordoni. 2006. Automated deep lex-
ical acquisition for robust open texts processing. In Proceed-
ings of the Fifth International Conference on Language
Resources and Evaluation (LREC 2006), pages 275–280,
Genoa, Italy.

Zhang, Yi, Stephan Oepen, and John Carroll. 2007b.
Efficiency in unification-based n-best parsing. In Proceedings
of the 10th international conference on parsing technolo-
gies (IWPT 2007), pages 48–59, Prague, Czech Republic.

A Generic Lexical Types
Generic lexical types triggered by the default unknown word han-
dling mechanism occur in some of the training data for the su-
pertaggers. Where possible, these generic types were mapped to
an appropriate native lexical type. The list below gives each of
these types, and the mapping where appropriate.

Generic Lexical Type Mapped to
aj - i-unk le aj - i le
aj - i-cmp-unk le n/a
aj - i-sup-unk le n/a
aj - i-crd-unk le n/a
av - i-unk le n/a
n - c-pl-unk le n - c-pl le
n - mc-unk le n - mc le
n - pn-unk le n - pn le
v np* bse-unk le n/a
v np* pr-3s-unk le n/a
v np* pr-n3s-unk le n/a
v np* pa-unk le n/a
v np* prp-unk le n/a
v np* psp-unk le n/a
v - pas-unk le n/a

