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Gleichzeitig wirft die Notwendigkeit, auf der Grundlage einer kleinen Stichprobe zu
allgemeinen Schlußfolgerungen zu kommen, schwierige methodologische Fragen
auf.

At the same time, the necessity to come to general conclusions on the basis of a
small sample poses difficult methodological questions .

Par ailleurs, la nécessité de tirer des conclusions générales en fonction
d’échantillons réduits pose de sérieux problèmes méthodologiques.

(Europarl s14236202)



Abstract

Due to the high cost of manual annotation, resources with role-semantic annotation exist only
for a small number of languages, notably English. This thesis addresses the resulting resource
scarcity problem for languages where such resources are not available by developing methods
which automatically induce role-semantic annotations for these languages.

We address the induction task by taking advantage of the resource gradient between lan-
guages, extracting annotations from existing resources (e.g., for English) and transferring them
to new languages. We effect the transfer using annotation projection, a general procedure to
exchange linguistic information between aligned sentences in a parallel corpus. Basic anno-
tation projection is a knowledge-lean approach, and thus applicable even to resource-poor
languages. Specifically, we apply projection to semantic annotation in the frame semantics
paradigm. Frame-semantic annotation consists of two annotation layers: semantic classes for
predicates, and semantic roles linking predicates to their arguments. We evaluate our approach
by using FrameNet, a large English resource for frame semantics, to induce frame-semantic
annotation for two target languages, German and French.

In the first part of this thesis, we assess a prerequisite for annotation projection, namely
the degree of parallelism between monolingual reference annotations in a parallel corpus.
Inspection of a manually annotated sample corpus shows that frame-semantic annotation in
fact exhibits a substantial degree of parallelism, both with respect to semantic classes and
semantic roles. This result holds for both language pairs we consider, namely English–French
and English–German.

The two central parts of the thesis are concerned with the actual projection step for individual
predicates. We project semantic classes and roles in two separate steps, since the two tasks
have different profiles. The projection of semantic classes can be realised using simply by using
correspondences between predicates, which are usually single words. We identify translational
shifts as the central problem of this task, i.e., translations which change the semantic class
(frame) of the original predicate. We demonstrate that knowledge-lean filtering mechanisms
relying on distributional properties are sufficient to induce high-precision seed lexicons. In
contrast, the projection of semantic roles relies mainly on clean correspondences between
sentential constituents (i.e., role-bearing phrases). The latter are difficult to obtain due to
errors and omissions in the word alignment. We show that better constituent alignments can be
obtained by formalising the task as a graph matching problem which can integrate knowledge
about syntactic bracketings. The linguistic information encoded in the bracketings alleviates
word alignment errors and results in high-precision projections even for noisy input data
(e.g., resulting from automatic shallow semantic parsing).
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In the last part of the thesis, we approach the problem of translational shifts. We identify
a subclass of cases for which parallelism can be restored by considering groups of more than
one frame. These frame group paraphrases are amenable to a generalised version of annotation
projection, and we provide a semi-supervised algorithm for their corpus-based acquisition. In
a manual pilot study, we show that the acquisition algorithm results in linguistically plausible
frame group paraphrases which can furthermore account for a large portion of translational
shifts in our sample.

In sum, the results of this thesis indicate that the semantic generalisations made by frame
semantics carry over to a considerable degree from English to other languages. The projection
methods we have developed can be applied to robustly and automatically create frame-semantic
resources for new languages.
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Zusammenfassung

Zum jetzigen Zeitpunkt existieren nur für wenige Sprachen große Korpora mit hochwertiger
semantischer Annotation, was primär auf den hohen Arbeitsaufwand für manuelle Bedeutungs-
annotation zurückzuführen ist. Ziel dieser Arbeit ist es, diesen Ressourcenmangel zu beheben,
indem wir Methoden zur automatischen Zuweisung von rollensemantischer Annotation für
Sprachen entwickeln, für die keine entsprechenden Ressourcen verfügbar sind.

Wir machen uns für diese Aufgabe den Ressourcengradienten zwischen Sprachen zunutze,
indem wir Information aus bereits existierenden Ressourcen (z.B. für das Englische) in die
Zielsprache überführen. Die konkrete Umsetzung findet mithilfe von Annotationsprojektion
statt, einer allgemeinen Strategie zur Übertragung sprachlicher Information über Sprachgren-
zen hinweg. Annotationsprojektion arbeitet auf Satzpaaren in parallelen, alinierten Korpora
(d.h., Übersetzungen), bei denen ein Satz (der Quellsatz) annotiert ist, der andere (der Zielsatz)
jedoch nicht. Die Quellannotation wird auf den Zielsatz übertragen, indem jedes Element der
Annotation auf das beste Übersetzungsäquivalent der zugrundeliegenden sprachlichen Einheit
im Zielsatz abgebildet wird. Da Annotationsprojektion (in der einfachsten Form) kein weiteres
Wissen benötigt, ist diese Strategie auch für die Anwendung auf Sprachen geeignet, für die
wenig computerlinguistische Infrastruktur zur Verfügung steht.

Konkret projizieren wir frame-semantische Annotation, der eine zweistufige Theorie der
semantischen Rollen zugrunde liegt. In der Frame-Semantik erhält jedes Prädikat zunächst
eine semantische Klasse, Frame genannt, die die Menge der zulässigen semantischen Rollen
bestimmt. In einem zweiten Schritt werden dann semantische Rollen zugewiesen, die das Prä-
dikat mit seinen Argumenten verbinden. Wir evaluieren unseren Ansatz, indem wir ausgehend
von FrameNet, einer großen frame-semantischen Ressource für das Englische, vergleichbare
Ressourcen für das Deutsche und das Französische induzieren.

Der erste Teil der Arbeit betrachtet den Grad an Parallelismus zwischen der frame-seman-
tischen Annotation für die verschiedenen Sprachen. Dies ist notwendig, da Annotationspro-
jektion die Annotation der Zielsprache direkt nach dem Vorbild der Quellsprache konstruiert.
Infolgedessen führt fehlende Übereinstimmung zwischen monolingualen Referenzannota-
tionen in beiden Sprachen zu fehlerhaften Projektionen. Zur Untersuchung dieses Problems
wurde ein Testkorpus von 1000 parallelen Sätzen für alle drei Sprachen (English, Französisch,
und Deutsch) manuell frame-semantisch annotiert. Unsere Analyse ergibt, daß eine deutliche
Mehrheit der alinierten Prädikate Parallelismus aufweisen, und zwar sowohl im Hinblick auf
ihre semantische Klasse als auch auf ihre semantischen Rollen.

Der zweite und dritte Teil der Arbeit befaßt sich mit der eigentlichen Projektion. Da seman-
tische Klassen und Rollen bei der Übertragung unterschiedliche Probleme mit sich bringen,
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betrachten wir die beiden Schritte unabhängig voneinander.

• Die Projektion semantischer Klassen (Teil 2) benötigt ausschließlich Alinierungen zwi-
schen Prädikaten, d.h., typischerweise einzelnen Wörtern. Die Hauptschwierigkeit be-
steht bei diesem Schritt dabei, translational shifts zu erkennen, d.h. Übersetzungen, bei
denen sich die semantische Klasse des Quellprädikates ändert. Wir zeigen, daß wissens-
arme Methoden, die vor allem auf die distributionalen Eigenschaften von Übersetzungs-
paaren zurückgreifen, ausreichen, um Kernlexika zu erzeugen. Dies sind vergleichsweise
kleine Lexika, die jedoch eine hohe Qualität aufweisen und daher monolingual erweitert
werden können.

• Die Projektion semantischer Rollen (Teil 3) erfordert hingegen die Identifikation ganzer
Phrasen im Zielsatz, die mit semantischen Rollen etikettiert werden sollen. Die Schwie-
rigkeit dieser Aufgabe liegt vor allem in Lücken und Fehlern in der Wortalinierung
begründet, die zu unvollständigen oder falschen Projektionen führen. Wir zeigen, daß
diese Aufgabe als Matchingproblem in einem bipartiten Graphen mit gewichteten Kanten
formuliert werden kann, dessen Knoten den syntaktischen Konstituenten des Quell-
und Zielsatzes entsprechen. Dieser Ansatz kann Fehler in der Wortalinierung mithilfe
des linguistischen Wissens ausgleichen, das in der syntaktischen Analyse enthalten ist.
Der resultierende robustere Projektionsprozess weist selbst für fehlerhafte Quelldaten
eine hohe Präzision auf, was den Einsatz automatischer flacher semantischer Parser zur
Annotation einer großen Menge von Quellsätzen ermöglicht.

Im vierten Teil dieser Arbeit nähern wir uns dem Problem der Übersetzungen, bei denen
sich die semantischen Klassen der Prädikate nicht entsprechen. Wir zeigt, dass es möglich
ist, eine Unterklasse dieser Fälle zu identifizieren, für die der Parallelismus wiederhergestellt
werden kann, indem Frames nicht einzeln, sondern gruppenweise betrachtet werden. Auf
diese sogenannten frame group paraphrases kann dann eine verallgemeinerte Version von
Annotationsprojektion angewende werden. Wir geben einen halbüberwachten Algorithmus
zur Identifikation von neuen frame group paraphraseses an, evaluieren ihn erfolgreich in
einer manuellen Pilotstudie, und zeigen, wie er in einem Bootstrapping-Zyklus mit Standard-
Annotationsprojektion für die parallelen Fälle kombiniert werden kann.

Zusammengefaßt zeigen die Ergebnisse dieser Arbeit, dass die semantischen Generalisie-
rungen von Frame-Semantik nicht auf das Englische begrenzt sind und zu großen Teilen auf
andere Sprachen übertragen werden können. Die Methoden, die wir entwickelt haben, können
verwendet werden, um in der Praxis automatisch und robust frame-semantische Ressourcen
für Sprachen zu entwickeln, für die diese bisher nicht existieren.
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1. Introduction

This thesis is concerned with the development of methods for the automatic induction of
role-semantic annotation in languages for which no resources are available on this level of
description.

Recent advances in Natural Language Processing (NLP) suggest that many applications (such
as information access) can benefit greatly from the mapping of surface text onto a semantic
representation. Two interesting types of information provided by such representations are (a),
word sense disambiguation for predicates (to distinguish pass the house from pass the bucket),
and (b), characterisations of the semantic relations between predicates and their arguments (to
account for the synonymy of Peter sells the house and The house is sold by Peter).

Contemporary theories of role semantics provide exactly these two types of information. At
the same time, they are still amenable to current data-driven modelling techniques, in contrast
to semantic representations further removed from the linguistic surface, such as predicate
logics-based ones. As a result, recent years have seen substantial work on shallow semantic
parsing, i.e., the assignment of senses and semantic roles to free text.

Unfortunately, shallow semantic parsing relies heavily on the use of supervised learning
techniques. These require large annotated corpora as training data, a problem known as the
lexical-semantic bottleneck. While such resources are available for English (notably FrameNet
and PropBank), the prohibitive cost of manual semantic annotation has impeded the develop-
ment of comparable resources for almost all other languages. The result is a serious resource
scarcity problem.

In this thesis, we propose to automatically induce role-semantic annotations for languages
affected by the resource scarcity problem. To do so, we exploit the cross-lingual resource
gradient, using the annotation from an English resource as a starting point and employing
cross-lingual annotation projection in a parallel corpus to induce corresponding annotations
for another language. The resulting resource can serve to bootstrap shallow semantic parsers
for broad-coverage semantic analysis.

The main contribution of this thesis is the development of two general statistical frameworks
for (a), the cross-lingual induction of semantic classes (such as Statement or Movement); and
(b), the cross-lingual induction of semantic roles (such as Speaker or Goal). Our approach
provides an inexpensive way of inducing role-semantic resources for new languages, or at least
to greatly reduce the human effort involved. The models we construct are knowledge-lean, and
thus applicable also for resource-poor target languages, but make use of linguistic information
where available. We demonstrate that these models can be used to induce resources with high
precision, even if the original data is noisy.
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1. Introduction

This chapter outlines the state of the art in the research areas relevant for this thesis. Sec-
tion 1.1 introduces role semantics, the level of linguistic description we will consider. Then,
Sections 1.2 and 1.3 discuss shallow semantic parsing and annotation projection. Finally, Sec-
tion 1.4 presents the structure of this thesis.

1.1. Role Semantics

Role semantics is the level of linguistic analysis that describes the relationship between predi-
cates and their semantic arguments or semantic roles, i.e., the participants and objects involved
in the event or state described by the predicate. The crucial difference from a syntactic descrip-
tion of arguments (e.g., as subjects or objects) is that semantic roles are defined in terms of
their semantic properties, abstracting to a large degree from their syntactic realisation.

The need for a description of arguments on the semantic level was first recognised in the 1960s
in theoretical linguistics by Gruber (1965) and Fillmore (1968). Gruber’s motivation was the
limitations of Transformation Grammar (Chomsky 1957), which describes the subcategorisation
of predicates purely in terms of phrase types. This representation, Gruber argued, is inadequate
for modelling many lexical phenomena, for example variations in the surface realisation of
arguments, today called diathesis alternations (Levin 1993). Transformation Grammar can
represent quasi-universal diathesis alternations (such as active-passive) by means of general
grammatical transformations. However, consider the following example for the verb pierce,
where the object being pierced can be realised either as NP or PP1:

(1.1) (a) [Peter]NP pierces [the paper]NP [with the pencil]PP.

(b) [Peter]NP pierces [through the paper]PP [with the pencil]PP.

The first sentence is an instance of pierce with the subcategorisation (NP, NP, PP), the second
with (NP, PP, PP). In order to relate these two sentences, Transformation Grammar needs to
postulate a predicate-specific alternation which applies to pierce, but not to related verbs such
as puncture. This case-by-case solution leads to a large number of transformation rules with
little predictive power.

Fillmore (1968) proposed to model the paraphrastic nature of such sentence pairs by intro-
ducing a representational device called deep case which characterises arguments at a semantic
level and corresponds to semantic roles. Fillmore posited a set of six universal semantic
roles (Agentive, Instrumental, Dative, Factitive, Locative, Objective). Using these,
Example (1.1) is analysed as follows:

(1.2) (a) [Peter]Agentive pierces [the paper]Dative [with the pencil]Instrumental.

(b) [Peter]Agentive pierces [through the paper]Dative [with the pencil]Instrumental.

1Example taken from Gruber (1965).
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1.1. Role Semantics

Fillmore’s analysis shows that the same set of arguments, namely {Agentive, Dative, Instru-
mental}, is realised in both sentences. In this manner, it represents a generalisation over
surface variation which cannot be derived easily from purely syntactic description.

The fact that this generalisation is driven by semantic considerations has one very important
side effect: the assignment of semantic roles to arguments provides a coarse-grained character-
isation of the arguments’ semantic properties. Consider Fillmore’s original definitions (1968)
for the roles from Example (1.2):

Agentive: the [. . . ] typically animate perceived instigator of the action
Instrumental: the [. . . ] inanimate force or object causally involved in the action
Dative: the [. . . ] being affected by the action

Information of this kind has the potential of supporting inferences about the described events,
such as Peter was responsible for the piercing event, The pencil effected the piercing event, or
Peter is (probably) animate. In consequence, much research was carried out during the 1970s to
determine a unique, universally applicable set of semantic roles. Unfortunately, no such attempt
succeeded convincingly: there appears to be a number of choice points in the design of semantic
role inventories where each path leads into problems (see Davis (1996) for a detailed discussion).
One such design decision is granularity. Coarse-grained, universal role sets like Fillmore’s
original proposal cannot distinguish between the (semantically very similar) arguments of
symmetrical predicates like resemble, and are thus not truly universal. The most obvious
alternative, namely to define fine-grained roles specific to predicates, can model symmetrical
predicates successfully, but has its own serious drawback: the large number of roles significantly
reduces the predictive power of the theory. It was due to difficulties like this one that it was
suggested to give up the notion of a discrete set of roles altogether. Dowty (1991) argued that the
only clear-cut distinction that exists in the domain of semantic roles is between “Proto-Agent”,
a role cluster subsuming all agentlike roles, and “Proto-Patient”, a cluster for all patientlike
roles. While this account avoids many of the traditional pitfalls of semantic roles, it is too
coarse-grained for practical purposes.

In the 1990s, new interest in semantic roles arose in computational linguistics. At that time,
the field found itself faced with the challenge of processing and interpreting large amounts of
textual data (e.g., from the Internet). This situation called for robust and scalable linguistic
analysis models, which, as it turned out, could be acquired statistically from large, anno-
tated corpora. An important initial achievement was the syntactic annotation of the Penn
Treebank (PTB) for English (Marcus, Santorini, and Marcinkiewicz 1993) with a context-free,
comparatively flat syntactic structure. The availability of this resource led to considerable
advances in the automatic construction of wide-coverage parsers (Collins 1997; Charniak 1997).
Constituent-based syntactic analyses, such as adopted by the PTB, however remain primarily
surface-oriented: similar to the transformation grammar analyses described above, no common
analysis is given to diathesis alternations; also, nonlocal arguments (such as subjects in control
constructions, or extraposed arguments) are nontrivial to identify.
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In this situation, role semantics reemerged as a representation that could provide a nor-
malisation beyond syntactic structure, and from which both general data-driven models of
lexical semantics and NLP tasks requiring semantic knowledge should be able to benefit. The
particularly interesting types of information provided by semantic roles in this context are
(a), information about the type of event or state referred to by a predicate, and (b), a semantic
specification of the relationship between the event and the participants expressed by arguments
of the predicate. In addition, the prominent function of semantic roles in many theories of
syntax-semantics linking (see Davis (1996) for a discussion) indicates the practical feasibility of
mapping from syntactic structure onto semantic roles. Note in this context that role semantics
does not, in contrast to logics-based semantic theories such as Montague semantics (Montague
1974), attempt to model the complete meaning of a sentence. Concentrating on the types
of information described above, it typically disregards structural meaning aspects such as
quantification, modality, or negation.2

Today, three frameworks for semantic roles with different backgrounds are in general use in
computational linguistics: PropBank (Palmer, Gildea, and Kingsbury 2005), the Tectogrammat-
ical Layer of the Prague Dependency Treebank (Hajičová 1998), and Frame Semantics (Fillmore
1982). All three are coupled with large-scale annotation projects which have demonstrated
the feasibility of these frameworks for practical annotation. Importantly, it has been shown
that semantic roles are amenable to data-driven modelling, which enables the construction of
shallow semantic parsers to assign semantic roles to free text (see Section 1.2 for details). In
this endeavour, the annotated corpora have figured as valuable training data.

This development has led to a considerable number of studies investigating how semantic
roles can be used beneficially in natural language processing contexts. They have been applied
to information extraction (Surdeanu, Harabagiu, Williams, and Aarseth 2003), question an-
swering (Narayanan and Harabagiu 2004), machine translation (Boas 2002), the modelling of
entailment relations between sentences (Tatu and Moldovan 2005; Burchardt and Frank 2006),
telephone call classification (Hakkani-Tür, Tur, and Chotimongkol 2004), and the creation of
visual scenes from text (Johansson, Williams, Berglund, and Nugues 2004). Semantic roles
have been also found application as a language-independent representation mediating between
surface and ontology (Frank, Krieger, Xu, Uszkoreit, Crysmann, Jörg, and Schäfer 2007), and
for representing prepositional information in biomedicine (Cohen and Hunter 2006). First
steps also exist towards using semantic roles for modelling formal inferences (Baumgartner
and Burchardt 2004) and for constructing Semantic Web representation (Narayanan, Fillmore,
Baker, and Petruck 2002).

1.1.1. Frame Semantics and FrameNet

Frame Semantics (Fillmore 1982, 1985) is a usage-based theory of meaning which focuses on
the role of conceptual background knowledge in comprehension:

2See Carlson (1984) for a proposal which integrates semantic roles in the syntax-semantics interface of a truth-
conditional interpretation.
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I thought of each [...] frame as characterizing a small abstract “scene” or “ situa-
tion”, so that to understand the semantic structure of the verb, it was necessary to
understand the properties of such schematized scenes. (Fillmore 1982; p. 115)

For example, Frame Semantics argues that a hearer cannot understand the predicate promise
without being familiar with the typical “committment” situation in which one party makes a
pledge to a second party to follow some future course of action.

Building on this observation, Frame Semantics describes the meaning of predicates by
reference to frames. On the conceptual level, a frame models a specific schematised situation
and characterises the background knowledge attached to it. On the linguistic level, a frame
is a semantic class containing all predicates which are capable of expressing the situation in
question. Occurrences of these predicates in text are said to evoke the frame; thus, the predicates
are called frame-evoking elements (FEEs).

Each frame also specifies the “participants and props” of the situation it describes, the so-
called frame elements (FEs). Frame elements are the Frame Semantics instantiation of semantic
roles. Frame Semantics assumes that under normal circumstances, there is a direct parallelism
between the conceptual and the linguistic level: the participants of the situations are realisable
as arguments of the frame-evoking elements. In sum, the frame-evoking elements of one frame
share two important properties: (a), they are able to express the same semantic arguments; and
(b), they are able to describe the same state of affairs.

Note that the definition of semantic roles on the intermediate level of frames (i.e., per
semantic class) crucially distinguishes frame semantics from other theories of role semantics:
Frame-specific roles allow controlled generalisations over all FEEs of the current frame without
the need for a universally appropriate set of roles, and thus avoid the granularity problem
outlined above. Generalisations across frames can be specified, but are not implied by default.

The Berkeley FrameNet project (Baker, Fillmore, and Lowe 1998; Fillmore, Johnson, and
Petruck 2003) has been compiling a Frame Semantics-based semantic lexicon for English since
1997. Its current release (1.3) contains about 800 frames and 10,000 lexical items. Each frame
is provided with a definition in natural language; these often list properties of the described
situation and presuppositions of the situation or the frame elements.3 As an example, Table 1.1
shows the FrameNet entry for the Commitment frame which corresponds to the situation
outlined informally above.

In FrameNet, the FEEs are represented as lemma-dot-part of speech (e.g., promise.n). Cur-
rently, only individual lexical items can evoke frames (note that particle verbs count as one
lexical item), and FrameNet furthermore focuses on verbs, nouns, adjectives, and prepositions.
However, a more general definition of FEEs within the framework of Construction Gram-
mar (Kay and Fillmore 1999) is envisaged, which would, for example, also allow superlative
morphemes to evoke frames. Many FEEs are polysemous with respect to frames, i.e., can
serve as FEEs for more than one frame. For example, the predicate pass can introduce either
the Giving frame (as in Pass me the butter.) or the Path_shape frame (as in We passed the

3FrameNet also provides a hierarchy which relates individual frames; however it is at present only skeletal.
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Frame: Commitment

D
ef

.
A Speaker makes a commitment to an Addressee to carry out some
future action. This may be an action desirable (as with promise) or not
desirable (as with threaten) to the Addressee.
Speaker The Speaker is the person who commits him/herself to

do something
Addressee The Speaker’s commitment can be made to an Ad-

dressee.
Message An expression of the commitment made by the Speaker
Topic The topic about which the Speaker makes a promise.

Fr
am

e
E

le
m

en
ts

Medium The Medium is the physical entity or channel used to
transmit the Message.

FE
E

s consent.v, covenant.n, covenant.v, oath.n, vow.n, pledge.n, pledge.v,
promise.n, promise.v, swear.v, threat.n, threaten.v, undertake.v

[Democratic audiences]Speaker had to consent [to this approach]Message.
[The politicians]Speaker made vague promises [about independence]Topic.

A
nn

.

[“I’ll be back , “]Message [he]Speaker threatened.

Table 1.1.: Frame Commitment: Definition and annotated example sentences.

station.). In addition to the definitional content, FrameNet gives example sentences for almost
all FEEs. These amount to an annotated corpus of more than 100,000 example sentencess
extracted from the BNC (Burnard 1995), and selected according to lexicographic criteria for
the purpose of demonstrating important syntactic alternations of each predicate. FrameNet
is under continual development and presently covers neither the complete core vocabulary of
English, nor the complete “frame space”.

The frame construction process results in a considerable degree of cross-lingual interpreta-
bility of the frames. Being defined mainly on the conceptual level, they are often appropriate
to describe not only English predicate-argument structures, but also those of other languages.
In fact, it has been proposed that frames can be seen as a largely language-independent
meaning representation (Boas 2005). Several projects are currently investigating the use of
the English FrameNet frames for the semantic analysis of other languages, usually coupled
with the annotation of corpora for the new language. Currently, active development takes
place for German (Erk, Kowalski, Padó, and Pinkal 2003; Burchardt, Erk, Frank, Kowalski,
Padó, and Pinkal 2006b), Japanese (Ohara, Fujii, Ohori, Suzuki, Saito, and Ishizaki 2004),
Spanish (Subirats and Petruck 2003), and a common FrameNet for Romance languages (Pallotta
2005); efforts for French (Pitel 2006), Hebrew (Petruck 2005), and Swedish (Viberg 2006) are
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1.2. Shallow Semantic Parsing (Automatic Frame-Semantic Analysis)

getting underway.
In sum, the conceptual nature of Frame Semantics offers the best prospects for the cross-

lingual interpretability of role-semantic information. Therefore, the rest of this thesis will focus
on Frame Semantics. We will consider the language-independence of linguistic analyses in
detail in Chapter 3. This will also include an overview and discussion of the two other semantic
role frameworks, PropBank and Tectogrammatical Structure.

1.2. Shallow Semantic Parsing (Automatic Frame-Semantic
Analysis)

The use of semantic role information for any open-domain application requires robust models
for the role-semantic analyses of predicates in free text, a task known as shallow semantic
parsing. In the Frame Semantics paradigm, shallow semantic parsing of consists of two steps:

Frame assignment: Which frame (i.e., semantic class) is evoked by the predicate?

Role assignment: What constituents in the sentence realise which frame elements (i.e., se-
mantic roles) of this frame?

Figure 1.1 illustrates the output of a shallow semantic parser for an example sentence. Light
grey angular lines and oval boxes indicate the syntactic structure; frames and frame elements
are added on top in dark grey rectangular boxes and curved lines. The sentence contains two
predicates, appeared and spoke. The first of these, appeared, evokes the frame Coming_to_be,
with the roles Entity (assigned to the subject pronoun he) and Place (assigned to the preposi-
tional phrase to his apostles). The second predicate, spoke, evokes the frame Statement, with
three roles (Speaker, Addressee, and Topic).

Starting with the seminal study by Gildea and Jurafsky (2002), a considerable number of
studies has investigated the task. The interest within the computational linguistics community
is witnessed by the adoption of shallow semantic parsing as shared task at SENSEVAL 3 (Mihal-
cea and Edmonds 2004) and CoNLL (Carreras and Màrquez 2004, 2005). The predominant
paradigm has been supervised statistical modelling, so that the annotated example sentences
provided by FrameNet proved instrumental in the construction of shallow semantic parsers.4

Both frame and role assignment were almost exclusively modelled as classification tasks, the
major properties of which have now emerged.

Frame assignment. Frame assignment is a disambiguation step: Given all frames that a
predicate can evoke, and one particular instance of this predicate in running text, frame
assignment determines the unique frame that is appropriate for this instance. Since the set of
appropriate frame elements is dependent on the frame (cf. Section 1.1.1), frame assignment

4A small number of first studies towards unsupervised shallow semantic parsing exist; however, all of these assume
a small, fixed set of semantic roles (Swier and Stevenson 2004, 2005; Grenager and Manning 2006).
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1. Introduction

Figure 1.1.: Example output of a frame-semantic parser (adapted from Erk and Padó (2006))

has to precede role assignment. In the example above, the predicate appeared had to be
disambiguated between the two frames listed in FrameNet, namely Coming_to_be, which
can be paraphrased with emerge or materialise, and Appearance, to exhibit certain salient
characteristics. Only when Coming_to_be was chosen, it became clear that the two appropriate
frame elements were Entity and Place.

Frame assignment is closely related to the well-studied problem of word sense disambigua-
tion (WSD): frames can be seen as coarse-grained senses for predicates, and thus the set of
frames that a predicate can evoke can be seen as a sense inventory (Erk 2005). It follows that all
major strategies available for word sense disambiguation (see Agirre and Edmonds (2006) for
an overview) are also applicable to frame assignment. Unfortunately, WSD is known as a hard
problem, in the sense that even with supervised methods, it is difficult to improve significantly
on a simple frequency baseline that assigns each predicate the most frequent sense (McCarthy,
Koeling, Weeds, and Carroll 2004). This may contribute to the fact that frame assignment is
considerably less well studied than role assignment: often, the frame is simply assumed as
given (e.g., at SENSEVAL 3).

To our knowledge, Erk (2005) is the only study of frame assignment as an independent task.
Erk uses a classical WSD approach based on a Naive Bayes classifier that employs a rich feature
set combining a bag-of-words context with n-grams and local syntactic information. On a
held-out dataset of the English FrameNet 1.2 data, it was evaluated at 93.2% F-Score, just above
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the frequency baseline (93.0% F-Score).5 Thompson, Levy, and Manning (2003), who also
address the task, develop a joint generative model for frames and roles; optimisation of this
model yields the best combination of frame and roles. Again on a held-out dataset of FrameNet
1.2, they report a frame assignment accuracy of 89%.

Role assignment. Role assignment is the identification of semantic roles in the context of
the predicate. Usually, this step is modelled as the classification of syntactic constituents which
are obtained from robust, PCFG-based parsers.6 In the example in Figure 1.1, this amounts to
assigning each constituent (shown as grey ovals) either a semantic role or a pseudolabel None.
For the frame Coming_to_be, all constituents but the subject and the prepositional object are
labelled with None.

Since typically only a small portion of all constituents realises semantic roles, role assign-
ment is often subdivided into two separate classification steps: argument recognition, a binary
division of all constituents into roles and non-roles; and argument labelling, the distinction of
individual roles, which is only applied to those constituents which were classified as roles in the
first step. A number of classification frameworks has been applied to solve these classification
tasks. Examples include the direct estimation of probability distributions (Gildea and Jurafsky
2002), Maximum Entropy models (Fleischman and Hovy 2003), Support Vector Machines (Mos-
chitti and Bejan 2004; Giuglea and Moschitti 2006), and Hidden Markov Models (Thompson
et al. 2003).

Argument recognition is a relatively simple problem, since it only requires a binary decision
between arguments and non-arguments, a distinction that generalises sufficiently well across
predicates. It can be solved mainly on the basis of syntactic features, notably the parse tree path
from the predicate to the constituent. F-Scores routinely exceed 90% even with comparatively
little training data, and remaining errors are often due to nonlocal arguments for which training
data is sparse. Argument labelling, in contrast, is a more difficult problem. The mapping
between syntactic positions and semantic roles is highly lexicalised and idiosyncratic (Padó
and Boleda Torrent 2004), so that syntactic features alone are insufficient. Both practical
experiences and theoretical studies (Erk and Padó 2005) indicate that lexical features such
as the predicate itself and the head word of the constituent provide important clues. Since
these are typically sparse, argument labelling has been found to require much more training
data (Fleischman and Hovy 2003), and accuracies are still worse than for argument recognition,
with the best systems obtaining F-Scores in the high 80s.

5The height of the baseline is due to the incompleteness of the FrameNet sense inventory for many predicates, which
leads to an artificially low average polysemy. This problem will be discussed in Section 5.6. On a more realistic
German dataset, the system significantly outperformed the baseline (74.7% vs. 69.4% F-Score).

6See Frank and Erk (2004) for an account of role assignment as symbolic projection rules in Lexical Functional
Grammar.
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1.3. Cross-lingual Annotation Projection

Over the last decade, supervised learning techniques, as described above for shallow semantic
parsing, have become one of the mainstays of computational linguistics. These techniques
exploit the information inherent in large annotated corpora to construct models for linguistic
analysis. Unfortunately, the manual construction of corpora with linguistic annotation is an
expensive process which requires detailed specifications and safeguards to guarantee consis-
tency. This problem becomes especially pressing on “deeper” levels of linguistic analysis such
as lexical semantics. For example, lexical-semantic annotation systematically involves problems
of vagueness and ambiguity that cannot be avoided (Kilgarriff and Rosenzweig 2000). At the
same time, statistical models of such tasks typically require larger amounts of training data
(cf. the description of argument labelling above).

In fact, only research for English and a small number of other, mostly European, languages
commands the resources necessary to hand-craft large corpora with linguistic annotation. In
contrast, the majority of languages worldwide are so-called resource-poor languages for which
no such resources are available. This resource scarcity precludes that low-density languages
profit from the advances in supervised learning and modelling. Thus, any method which can
help to reduce the manual effort involved with resource creation for new languages constitutes
an important step toward cashing out the results of research on English for wider range of
languages.

A promising method to overcome resource scarcity is annotation projection (Yarowsky, Ngai,
and Wicentowski 2001). Its fundamental idea is to consider aligned sentence pairs in a parallel
corpus for one language where some resource is available (the source), and one language
where it is not (the target). For each sentence pair, annotation projection directly transfers the
linguistic annotation available on the source side over to the (unannotated) sentence on the
target side. This strategy effectively exploits existing knowledge about the source language to
construct a dataset for the resource-poor target language, which can subsequently be used as
training set for supervised learning.

The central problem of annotation projection is establishing reliable alignments between
units of linguistic annotation to guide the projection process. Such units can be words, but also
chunks, constituents, or even larger units (e.g., in the case of discourse annotation). Alignments
for subsentential units rely crucially on the availability of word alignments, links between
individual words of either sentence that indicate translational equivalence. Thus, annotation
projection has been greatly facilitated by the improvements in unsupervised word alignment
induction (Och and Ney 2003). State-of-the-art word alignment models can automatically
produce relatively accurate word alignments for sentence pairs, given a sufficiently large parallel
corpus of the two languages. No manual annotation is required, which is an important point
with respect to the applicability to resource-poor languages.

Figure 1.2 shows a successful case of annotation projection for part-of-speech information,
using English as source and German as target language. For parts of speech, annotation
projection simply follows the word alignment links (shown as dotted lines), assigning the part
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   PN           N        PRP    PN      V   ADJ 

Peter's marriage with Harriet is happy.

Peters Ehe mit Harriet ist glücklich.

   PN    N  PRP     PN      V        ADJ

Source sentece

Target sentence

Word Alignment

Projected target analysis

Source analysis

Figure 1.2.: Projection of part-of-speech annotation on an English–German sentence pair, ide-
alised version.

of speech of each English word to its German counterpart. In this example, all German words
receive a sensible tag, and thus provide a clean dataset for training a German POS tagger.

Over the last years, the feasibility of annotation projection to induce linguistic resources for
resource-poor languages has been demonstrated for a variety of levels of linguistic descrip-
tion (morphology, syntax, and semantics) and a considerable number of language pairs. In
morphology, projection has been used for part-of-speech tags (English–French (Yarowsky
and Ngai 2001) and English–Chinese (Hi and Hwa 2005)). In syntax, applications include
NP chunks (English–French and English–Chinese (Yarowsky et al. 2001)) and dependency
trees (English–Chinese and English–Spanish (Hwa, Resnik, Weinberg, and Kolak 2002; Hwa,
Resnik, Weinberg, Cabezas, and Kolak 2005)). Finally, in semantics, studies include word
sense (English–Italian (Bentivogli and Pianta 2005)), coreference chains (English–Romani-
an (Postolache, Cristea, and Orasan 2006)), and information extraction annotation (English–
French (Riloff, Schafer, and Yarowsky 2002)).

Unfortunately, annotation projection relies on a strong, problematic assumption, which can
be demonstrated on the less idealised sentence pair in Figure 1.3. Here, the projection results
in wrong part-of-speech tags for two words, which are marked in grey. For example, the last
German word, verheiratet (married), is a participle and should receive the part of speech V
(verb), but is assigned N (noun) by the projection. Note that these errors do not result from
alignment problems: verheiratet is clearly the best translational equivalent of the English noun
marriage in the German sentence; but the projection is still wrong. The problem is rather
that basic annotation projection, as described above, presumes perfect cross-lingual parallelism
of linguistic analyses. Since the original annotation is just copied between the source and
target sentences, it cannot deal with translational shifts (van Leuven-Zwart 1989) which break
the parallelism between the two. Such shifts can result from free translations, or differences
in preferred lexical realisation patterns (Dorr 1995), to name only two possible sources for
divergences. It is evident that the degree of parallelism determines an upper bound for the
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   PN           N        PRP    PN      V   ADJ 

Peter's marriage with Harriet is happy.

Peter ist glücklich mit Harriet verheiratet.

PN     V       ADJ     PRP    PN            N

PN     V      ADV    PRP    PN             V

Source sentece

Target sentence

Word Alignment

Projected target analysis

Source analysis

Ideal target analysis

Figure 1.3.: Projection of part-of-speech annotation on an English–German sentence pair, less
idealised version. Projection errors are marked in grey.

accuracy of annotation projection proper without postprocessing. However, in this domain no
universal statements are possible: for each language pair, and for each linguistic framework,
the degree of parallelism has to be assessed individually.

We will provide a thorough discussion of these issues in Chapter 3. At this point, we note
only that many studies on annotation projection have emphasised the need for subsequent
filtering even when using high-quality or gold-standard word alignments; this filtering step
usually leverages monolingual information about the target language to rule out implausible
projection results. Unfortunately, such filtering procedures are often ad-hoc and difficult to
motivate. An alternative direction for research, which is however still in its infancy, is the
use of high-density language annotation as additional knowledge source in the unsupervised
induction of models for resource-poor languages. In this scenario, the linguistic analyses do
not have to be exactly parallel, but merely informative for one another. In the area of syntax,
this idea has been pursued by Smith and Smith (2004), who train a bilinugal grammar for
English and Korean on a parallel corpus, and Kuhn (2004), who uses evidence from a parallel
corpus to restrict the rules proposed by a monolingual EM-based PCFG induction method.
In lexical semantics, Diab and Resnik (2002) present an unsupervised system for word sense
disambiguation based on translational correspondences.

1.4. Thesis Overview

This thesis addresses the resource scarcity that exists for many languages on the level of frame-
semantic annotation. Our goal is the development of methods to automatically construct
corpora with high-quality frame-semantic annotation in such languages. We approach this
task by developing annotation projection-based models that leverage information from the
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English FrameNet database and transfer it across languages in a parallel corpus. The resulting
annotation data can be used as training data for shallow semantic parsers using standard
learning methods.

We approach the modelling task statistically, for two main reasons. First, statistical models
offer a flexible framework for quantitative reasoning over multiple knowledge sources; this
allows us to phrase our models in an extensible way: in their basic state, they are knowledge-lean,
thus language-independent and applicable even to very resource-poor languages; however, they
can benefit of additional information wherever it is available. Second, a statistical formulation
of the projection problem makes it possible to apply well-understood and efficient optimisation
techniques that guarantee the scalability of the models to large corpora.

The thesis is structured as follows: The first part starts out with methodological consider-
ations (Chapters 2 and 3). The two central parts address the projection of the two levels of
frame-semantic annotation (cf. Section 1.2): In Part II, we describe a model for the induction of
frame-semantic predicate classes (Chapter 4) and its evaluation (Chapter 5). Part III developes
a model for the projection of semantic roles (Chapter 6) and evaluates it (Chapter 7). In Part IV,
Chapters 8 and 9 conclude the thesis with a general discussion and outlook.

Chapter 2 provides information on the parallel corpus we are using, and on the preprocessing
steps necessary to prepare it for the projection of role-semantic information. In particular, we
spell out the techniques and tools we use for the creation of word alignments as well as for
morphological and syntactic analysis.

Chapter 3 addresses the cross-lingual parallelism of linguistic analyses. The first part of the
chapter gives a theoretical discussion, concluding that frame-semantic classes and roles are
likely to show considerable cross-lingual parallelism, due to their construction method. To
verify this judgement, the second half of the chapter presents a study in which a 1000-sentence
parallel corpus for three languages (English, French, and German) is annotated manually with
class and role information. Analysis of this corpus shows that parallelism for frames exceeds
two thirds, and roles are parallel in around 90% of all cases. These results represent solid
empirical support for the appropriateness of applying annotation projection to frame-semantic
data. Results from this chapter have been published in Padó and Lapata (2005b).

Chapters 4 and 5 consider the first projection task, namely inducing a predicate classifica-
tion for a target language which lists the appropriate FrameNet frames for predicates of the
target language. This resource is necessary for frame assignment (cf. Section 1.2) in the target
language, as well as for determining the applicability of cross-lingual role projection. We show
that annotation projection based on word alignment can be used to solve this task. The main
problem of this approach is the identification and removal of predicate pairs which are aligned,
but evoke non-parallel frames, i.e., translational shifts (cf. Section 1.2). We show that filtering
schemes which assess the level of reliability of the predicate pair over the complete corpus on
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the basis of distributional characteristics and shallow linguistic features can be used to remove
such cases to a high degree. This results in small, but very clean seed lexicons that be used to
bootstrap larger predicate classifications for the target language. Results from this chapter have
been published in Padó and Lapata (2005a).

Chapters 6 and 7 focus on the second projection task, the projection of semantic roles
between sentences with aligned predicates that evoke the same frame. Again, we approach this
task on the basis of word alignment information. We find, however, that the correct projection
of roles relies crucially on the quality of correspondences between sentential constituents
(i.e., role-bearing phrases), which are difficult to obtain from word alignments directly, due to
errors and omissions. To obtain clean constituent alignments, we define a general framework
that phrases the task as an optimisation problem and can integrate syntactic bracketing infor-
mation and linguistically motivated filtering steps. We assess the impact of a wide range of
parameters, notably different kinds of bracketing information (none vs. chunks vs. full parses),
filtering schemes, word alignment (automatic vs. manual), and the quality of the semantic
role annotation in the source language (automatic vs. manual). Our results demonstrate that
linguistic information encoded in the bracketings can effectively alleviate noise and makes it
possible to create high-precision projections even for noisy input data and word alignments.
Results from this chapter have been published in Padó and Lapata (2005b, 2006).

Chapter 8 develops a perspective for the processing of the class of aligned predicates whose
frames are non-parallel (cf. Chapter 3), and which are thus excluded from processing by the
methods developed in Chapters 4 to 7. We address these cases by introducing the concept of
frame group paraphrases, contiguous groups of frames which can be parallel even if individual
frames are not. We show that annotation projection can also apply at the level of frame group
paraphrases, thus extending the coverage of the methods developed earlier, and provide a semi-
supervised algorithm for the identification of frame groups. A pilot study on a small parallel
corpus sample with manual frame-semantic analysis indicates that frame group paraphrases in
fact capture almost all of the non-parallel cases. Results from this chapter have been published
in Padó and Erk (2005).

Chapter 9 summarises and discusses the main results of this thesis and outlines suggestions
for future work.
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As described in Chapter 1, corpora are crucial as data sources in all areas of (empirical)
computational linguistics, in particular for the training and evaluation of data-driven models.
Cross-lingual investigations rely mostly on a particular class of corpora, namely parallel
corpora, which consist of parallel texts in several languages which are translations of one
another.

This chapter describes EUROPARL (Koehn 2005), the parallel corpus used in this thesis.
Since word alignments form the cornerstone of projection methods, we also discuss the state
of the art in word alignment methods. We sketch the preprocessing toolchain that we use to
obtain morphological and syntactic analyses for the English, German and French EUROPARL
material.1 For each aspect of the data and preprocessing, we discuss possible systematic
confounds for the subsequent evaluation.

2.1. The EUROPARL Corpus

The current release of the EUROPARL corpus, Release 2, contains around seven years’ worth
(1996-2003) of professionally translated debates of the European Parliament (Koehn 2005).
This parallel corpus constitutes a multitext which provides the same content in the 11 official
languages of the European Union at that time2. It comprises about 30 million words per
language, which makes it, at the time of writing, the largest multilingual corpus that is readily
available for research purposes. The corpus can be queried online, using the OPUS (open source
parallel corpus) interface at the URL http://logos.uio.no/opus/. We concentrate on
bitexts, i.e., parallel texts in two languages which consist of bi-sentences, pairs of sentences that
are mutual translations. The 11 languages in EUROPARL combine into 55 bitexts. The 10 bitexts
corresponding to combinations of English with the other languages can be downloaded in
sentence-aligned form from the URL http://www.statmt.org/europarl.

In this thesis, EUROPARL data serves both for the evaluation of hypotheses about cross-
lingual parallelism (Chapter 3), and as the primary basis of cross-lingual annotation projection
methods (Chapters 4, 6, 8) which involves evaluation and model selection. An important issue,

1All preprocessing steps were performed at Saarland University, with the exception of syntactic analysis of the
French corpus, which was provided by the French FrameNet group at INRIA Lorraine, whose help we gratefully
acknowledge.

2The languages are Danish, Dutch, English, Finnish, French, German, Greek, Italian, Portuguese, Spanish, and
Swedish.
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2. Technical Background

therefore, is the influence which the properties of EUROPARL as a corpus have on the methods
and evaluation results presented in this thesis.

Corpus representativity. The first crucial consideration in this respect is the profile of the
corpus in terms of both genre (text sort) and domain (subject matter), since it is well known
in computational linguistics that the performance of models induced on corpora of specific
genres or domains (e.g., parsers) deteriorates when these models are applied to different genres
or domains (Gildea 2001). Consequently, an “ideal” corpus would be balanced with respect to
both genre and domain, i.e. mirror the distribution of all (relevant) genres and domains in the
“real world”. However, the impossibility of defining the complete population from which to
sample , and the dynamic nature of language over time make the construction of such corpora
extremely tedious and expensive. To date, only two large balanced monolingual corpora exist,
and no balanced bilingual corpora are available at all.3

With respect to genre, EUROPARL is not balanced: it consists exclusively of transcribed
spoken language, and its contents respect the special speech conventions of the parliamentary
setting, such as frequent personal addresses (“Esteemed colleague, . . . ”) followed by the use
of first and second person singular, as well as recurring occurrences of of formulaic phrases
(“I declare resumed the session of the European Parliament adjourned on . . . ”). However, the
corpus can be considered to be open-domain, with discussion topics ranging from personal
addresses to fishing quotas and technical debates, with a slight predominance of political
vocabulary.

These imbalances are problems which EUROPARL shares with many other, commonly used
corpora such as the Penn Treebank (Marcus et al. 1993). On the other hand, EUROPARL is the
largest available parallel corpus of controlled origin (i.e., as opposed to noise-prone internet-
harvested corpora), and is commonly used for multilingual research such as statistical Machine
Translation (Koehn 2005). In addition, we find that our application of EUROPARL – annotation
projection of semantic class and role information – is comparatively robust to EUROPARL’s
imbalances. In particular, the induction of semantic classes (Chapter 4) only requires an open
domain corpus, which EUROPARL provides. The methods for the projection of semantic roles
(Chapter 6) might conceivably suffer from inferior performance of preprocessing software such
as parsers on a special-genre corpus (cf. above); however, we can still regard our results as a
lower bound of what should be obtainable with a less restricted corpus. Further details on these
points are provided in Chapters 4 and 6.

Translation. In a multilingual corpus, the translation process is another central consideration,
since its properties fundamentally shape the form of the corpus. For example, consistent,
asymmetric translation from one source language into one target language can lead to an
imprint of source language features onto the target language text. Similarly, in multilingual

3The two monolingual corpora are the British National Corpus (BNC) of British English from the 1980s (Burnard
1995) and the Brown corpus of American English from the 1960s (Kučera and Francis 1967).
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In den letzten Tagen hat es wiederum 
große Naturkatastrophen am Fluß 
Theiß gegeben .

Mehrere Menschen sind ums Leben 
gekommen.

Ich bitte deshalb darum, daß die 
Präsidentin Kondolenzschreiben an 
die Parlamente in Rumänien und 
Ungarn sendet .

Madam President, in recent days, 
immense natural catastrophes in 
which quite a number of people have 
died have again occurred on the 
banks of the River Tisza .

I would therefore ask the President 
to send our condolences to both the 
Romanian and Hungarian 
parliaments . 

I would therefore ask  the President to send our condolences to both parliaments.

Ich bitte deshalb darum, daß die Präsidentin Kondolenzschreiben an die Parlamente sendet.

Figure 2.1.: Examples of sentence alignment (above) and word alignment (below)

contexts a small set of proxy languages is often used through which all translations are routed;
this is likely to result in freer translations. Fortunately, the problems apparently do not apply to
EUROPARL: Each speaker in the European Parliament addresses the house in his or her native
language. The session transcripts are later translated into all other languages and corrected
offline4. This dataset forms the basis of EUROPARL. Since there is no preferred direction of
translation, we expect that there are no major systematic biases which arise from translation.
“Online” translation effects which often arise in simultaneous interpreting, such as the insertion
of light verbs in translations of sentences from verb-final languages, can also be disregarded.

2.2. Bilingual Alignment

Central to the use of bilingual corpora is the construction of bilingual alignments. Bilingual
alignments in the widest sense are links between structural units on either side of a bitext that
express translational equivalence. In other words, alignments link up portions of text that are
translations of one another, and thus make it possible in the first place to relate utterances, and
parts thereof, across languages.

The two most common levels of alignment are sentence alignments and word alignments,

4Source: http://www.europarl.europa.eu/cre/info_en.htm
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both shown in Figure 2.1. The upper part of the figure shows an example of sentence alignment
links. In non-literary bitexts like EUROPARL, where conserving propositional content is a
priority of translation, the vast majority of sentence alignments are one-to-one, as is the case
for the second English sentence. The first English sentence demonstrates a case where English
realises some complex semantic content as a single sentence, whereas this is split into two
sentences in German, resulting in a one-to-two sentence alignment. It is rarely the case that a
sentence remains unaligned, since this would mean that it is not translated at all.

The lower part of Figure 2.1 shows the word alignment links between the second English
and third German sentences. Note that word alignment appears much more varied than
sentence alignments: while many one-to-one alignment links exist, such as I 1 ich or the 1

die, many words remain unaligned. Examples are the English infinitive marker to, or the
German prepositional adverb darum, which are both not translated due to the subcategorisation
differences between the matrix verbs: In English, ask requires a to-infinitive, while in German
bitten can take darum and an embedded sentence. Another frequent phenomenon are one-to-
many word alignment links such as between the English would ask and the German bitte.

The example illustrated that alignments for larger structural units are generally easier
to obtain i.e., paragraph alignments can be constructed more easily than word alignments.
Indeed, Gale and Church (1993) have shown that accurate paragraph and sentence alignments
can be constructed for arbitrary bitexts, solely based on the heuristics that (a), order is mostly
preserved in the translation of paragraphs, and (b), translations tend to have similar lengths.
Naturally, this approach cannot be used to construct alignments on the word level, since
reordering of words within sentences is very frequent, and the length of words is not a reliable
indicator of translational equivalence. Since the EUROPARL corpus is available in a sentence-
aligned form, we concentrate in the following on the task of modelling word alignments.

2.2.1. Models for Word Alignment

Assume that we have two aligned stretches of text f (e.g., French) and e (e.g., English), which
are both sequences of words. f and e are usually sentences, but they can also be paragraphs.
Then, the task of word alignment is to find a relation a ⊆ e × f which contains all pairs of
words which are mutual translations. a is called a word alignment. Approaches to solve this
task fall into two major families, namely association-based (or heuristic) models and statistical
(or estimation-based) models.

Association-based word alignment. Association-based word alignment models compute a
cross-lingual binary association function between word types of either language in a first step.
Arbitrary linguistic knowledge, such as bilingual lexicons, can be used for the computation of
the association function; however, most models restrict themselves to using standard associa-
tion measures, applied to co-occurrence frequencies obtained from training corpora. Popular
choices are the t-test, the Dice coefficient, or pointwise mutual information (Tiedemann 2003b).
In a second step, a concrete pair (e, f) is considered, and a decision procedure is applied to
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the association measures for the token pairs in (e, f) to obtain an actual alignment. Greedy
search is a simple and frequent choice for the decision procedure. Various extensions have been
proposed, such as competitive linking, a more sophisticated search strategy (Melamed 2000).
Another option is the use of multi-pass alignment (Pianta and Bentivogli 2004): in a first pass,
only content words are linked up, which results in a reliable, though incomplete, alignment,
whose links are called pivots. Function words, which are translated in a more varied way, are
aligned in a second pass so as to minimise the number of crossing alignment links.

Statistical word alignment models. Statistical word alignment models follow a different
approach, treating word alignment as a subproblem of statistical machine translation (SMT).
The fundamental idea of SMT is to find a probabilistic model of the translation probability
Pr(f|e), i.e. the probability for any sentence pair (f, e) (e.g. French-English) that f is the
translation of e (see Brown, Pietra, Pietra, and Mercer (1993) for a detailed discussion).5 The
simplest definition for Pr is directly as an (empirically estimated) conditional probability pθ:

Pr(f|e) = pθ(f|e) (2.1)

Note that pθ, in this form, only explicitly represents the global probability of translating e

as f. However, intuitively, the probability of a given translation depends greatly on which
French words are supposed to be translations of which English words. Statistical alignment
models (Brown, Cocke, Della Pietra, Della Pietra, Jelinek, Lafferty, Mercer, and Roossin 1990)
introduce this notion into the structure of the model itself, by incorporating an additional
variable a, the alignment. The alignment specifies which words in f and e are translations of
one another. Using alignments, the probability of translating e into f can be defined as the sum
of translation probabilities pθ over all possible word alignments A:

Pr(f|e) =
∑
a∈A

pθ(f, a|e) (2.2)

The training of the model consists in finding a optimal set of parameters, θ̂. These are usually
estimated by optimising the likelihood of the given translations in some parallel, aligned
training corpus Tr, summing over all possible word alignments a, and assuming independence
between the individual bi-sentences:

θ̂ = argmax
θ

∏
(f,e)∈Tr

∑
a∈A

pθ(f, a|e) (2.3)

A number of instantiations for the translation model pθ(f, a|e) are routinely used, which differ
mainly in the independence assumptions they make. Common choices are sequence-based
models (such Hidden Markov Models) and fertility-based models (such as the so-called “IBM

5We assume that f and e are ordered lists of words.
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models” 3–5 (Brown et al. 1993)). See Och and Ney (2003) for a comparative evaluation of
different word alignment models.

All state-of-the-art models have in common that they include hidden parameters, i.e. pa-
rameters which cannot be observed directly in the training data. The alignment variable a is
exactly such a hidden parameter. Fortunately, methods to deal with missing data such as the
Expectation Maximisation (EM) algorithm (Dempster, Laird, and Rubin 1977) can be used to
estimate optimal parameters for pθ(f, a|e), although such methods usually cannot guarantee
to converge to the global maximum.

A central advantage of the SMT-based approach to word alignment is that the word alignment
forms part of the translation model: Once an optimal translation model has been estimated, the
optimal alignment for any new bi-sentence (f, e) is simply the single alignment which optimises
the translation probability of the bi-sentence:

â = argmax
a

pθ̂(f, a|e) (2.4)

This alignment is called the Viterbi alignment.

Discussion. While association-based models can potentially integrate more linguistic know-
ledge, they do not construct word alignments by maximising a global optimisation criterion.
This makes their integration into more general statistical processing frameworks problematic,
since this usually means expressing the output as the optimal solution to a joint optimisation
problem. Statistical alignment models, on the other hand, do have an optimisation criterion,
but require a large bilingual corpus for training, and external linguistic information is difficult
to integrate. Both model families share the problem of choosing from a wealth of possible
instantiations.

For the purpose of this thesis, we chose to use a statistical word alignment model. As
mentioned in the previous section, EUROPARL is a corpus with a considerable amount of
technical vocabulary. This is a problem for association-based models, which rely on bilingual
lexicons to obtain state-of-the-art performance (Pianta and Bentivogli 2004); on the other hand,
the data-driven construction of statistical alignment models makes them naturally adaptive.
Also, comparable word alignment models for new language pairs can be constructed very
simply from the corresponding bitexts.

The cross-lingual projection strategies we present in subsequent chapters are independent
of the alignment model in the sense that they can equally use alignments obtained from
association-based models. However, note that the choice of alignment model can influence the
types of observed errors to a certain degree. Since the methods we apply for the induction of
frame-semantic classes (Section 4) rely on the correctness of individual alignment links, the
use of a different alignment model might make it necessary to modify or extend the filtering
procedures. Our constituent-based methods for the projection of role information (Section 6)
are more robust in this respect by generalising over individual alignment links.
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Matching method Precision Recall
One-to-one only 89.5 64.2
Strict match 81.4 51.7
Individual links 98.6 52.9

Table 2.1.: Evaluation of English-German statistical word alignment

2.2.2. Automatic Word Alignment of EUROPARL

Throughout our experiments, we have used Och’s GIZA++ implementation of the statistical
word alignment models presented and evaluated in Och and Ney (2003). To alleviate the ten-
dency of Expectation Maximisation to get stuck in local extrema, GIZA++ offers the possibility
of stacked training: It starts by training simpler models, and iteratively uses the learnt parame-
ters from one model to initialise the next model, instead of starting from random parameters.
This results in a better convergence towards the global maximum. The standard setting involves
five iterations of the IBM Model 1, five iterations of the HMM model, five iterations of the IBM
Model 3, and five iterations of the IBM Model 4.6

For both language pairs (English-German and English-French), we first used the correspond-
ing EUROPARL bitexts to train statistical alignment models with GIZA++. We trained two
models for each bitext, one for each direction. In addition, we followed common practice
in Machine Translation (Koehn, Och, and Marcu 2003) and computed the intersection of the
source-target and target-source alignments, which is known to exhibit high precision. Finally,
we also produced manual word alignments for 1000 German-English bi-sentences (see Section 3
for details), using the intersective automatically produced GIZA++ alignments as a starting
point. These were manually corrected by one annotator, who followed the Blinker annotation
guidelines (Melamed 1998a,b).7

In sum, three alignment models were available for each bitext (source-target,target-source,
and intersection); for the English-German bitext, we additionally created a manual alignment.
When we refer to word alignments or alignment links in subsequent chapters, we mean the
Viterbi alignments of these models; the individual chapters specify which alignment is used.

Our manual alignment can also be used to assess the quality of the automatic alignment
(at least for the English-German bitext). For reasons of simplicity, we only evaluated the the
GIZA++ intersection model, using the manual alignment as a gold standard. We chose this
model since it will be used for the final experiments in both Chapters 4 and 6. Note that the
intersective word alignment only contains one-to-one alignment links; on the other hand, the
Blinker guidelines for manual annotation encourage one-to-many links. To examine the impact

6For more details on the individual models, see Och and Ney (2003) (IBM models) and Vogel, Ney, and Tillmann
(1996) (HMM model).

7We would like to thank Chris Callison-Burch for providing us with the linearb graphical frontend for this task.
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of this problem, we evaluated the automatically produced alignments in three conditions against
the manually constructed word alignments (see Table 2.1). The first condition (one-to-one
only), exclusively considers one-to-one alignment links. The results show that 90% of the
one-to-one links posited by GIZA++ are correct, but that the model managed to retrieve only
two thirds of all one-to-one links. The next condition (strict match) compares all alignments,
be they one-to-one or one-to-many. Not surprisingly, the numbers drop both for precision and
recall, since the manual word alignment contains one-to-many alignments which are either not
found at all (decrease in recall), or only identified partially (decrease in precision). The last
condition, (individual links) makes it possible to assess the impact of these partial alignments:
it evaluates individual alignment links by splitting one-to-many links (si  (tj, tk)) into
their individual one-to-one links (si  1 tj, si  1 tk). The very high precision number
shows that indeed almost all individual links in the intersective GIZA++ alignment are correct;
the improvement over the one-to-one only condition consists of alignments links which form
part of one-to-many links in the manual alignment. The recall remains low at 53%; again, the
difference between this condition and one-to-one only corresponds to one-to-many links not
retrieved by GIZA++. These account for almost 10% of all links in the corpus.

To illustrate the problems of word alignment on a concrete example, Figure 2.2 shows a
word alignment grid for an example sentence from EUROPARL. Black cells denote word
alignment links found by GIZA++, grey cells word alignment links added by the human
annotator (in this sentence, no erroneous alignments were found that had to be deleted).
As discussed above, an intersective alignment can contain (at most) one alignment link for
each row and each column. Nevertheless, one-to-many links are clearly necessary in both
directions, at least according to the maximal alignment strategy of the Blinker annotation style
guide (Melamed 1998a), which stipulates the annotation of phrasal alignments whenever no
direct correspondence between individual words can be established. An example for a single
English word translated as a German phrase is clearly  in der Tat; the inverse direction
is illustrated by before the  dem. Figure 2.2 also shows an instance of a many-to-many
alignment, where no single word on either side can be said to be a complete translation of the
corresponding phrase: am going  nun will.

Missing word alignment links are almost exclusively the result of structural differences
between the two sentences, which can be observed on at least three different levels:

Lexical selection. The first group is formed by cases in which the two languages choose differ-
ent wordings in an otherwise similar structural context. Recall that example introduced
above, clearly  in der Tat, where an adverb in English is translated into German as a
prepositional adjunct phrase.

Structural choice. The second group consists of cases where the languages differ in their syn-
tactic structures, or in the overt realisation of their syntactic structures. The alignment
before the  dem reflects a case where the recipient of the statement, the parliament, is
referred to in English as a location, while it is expressed as a beneficiary in German, using
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Figure 2.2.: Word alignment grid: Alignment links provided by GIZA++ intersective alignment
(black) and added by human annotator (grey).

simple Dative case. A different divergence is present in owe  bin schuldig, where an
English active construction is rendered in German with a passive.

Discourse organisation. The third group exhibits differences in text structure such as the
manner in which discourse entities are referred to. For example, in the case of the
translation this explanation  die, the English speaker chose to repeat a previously
mentioned noun phrase a second time, while the German speaker replaced it by a
pronoun.

The order of these levels also corresponds roughly to the difficulty of modelling them in a
fundamentally word co-occurrence based approach. While it appears that variation in lexical
selection can fall naturally out of state-of-the-art statistical alignment models, given enough
training data, modelling structural choice appears to presuppose at least some structural knowl-
edge, and the handling of discourse phenomena on a co-occurrence level is very ambitious.
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Figure 2.3.: Toolchain used for the automatic linguistic analysis of bitexts

In sum, the evaluation results indicate that automatically obtained word alignments exhibit
high precision, even if low recall, and can thus be used as reliable indicators for translational
equivalence. Consequently, we use these alignments as data source our automatic projection
models, without employing further correction methods.

2.3. Corpus Preprocessing

In this thesis, we concentrate on two bitexts: English–German, and English–French. The
EUROPARL bitexts are tokenised corpora, i.e. they do not contain any information beyond the
word forms with the exception of sentence alignments.

Figure 2.3 presents the structure of the preprocessing process on the example of the English–
French (E–F) bitext. We first enriched the bitexts with cross-lingual information in the form of
statistical word alignments, which could be computed without any further processing. Next,
we added monolingual information on different linguistic levels, both word-specific shallow
information (lemmas and parts of speech) and structural information of increasing depth
(chunks and full constituents). In addition, the English text was annotated with frames, using
an automatic frame element assignment system (see Chapter 6 for details). For each of these
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linguistic levels, we chose the best-performing tools that were freely available. Our assessment
of the tools’ quality was based on the published evaluations of the individual tools; a detailed
discussion on the different morphological and syntactic processing components is deferred to
the next section (Section 2.3.1).

Of course, even choosing the best-performing tools does not provide a guarantee for error-
free linguistic analysis. Considering the general scenario of this thesis, namely the induction of
semantic annotation for arbitrary target languages, it may be the case that even comparatively
simple preprocessing steps such as lemmatisation are difficult to obtain with high quality. For
these reasons, the ability to perform robust projection even when faced with noise in the input
data will form an important guiding principle in the development of projection models in the
subsequent chapters.

It occasionally happens that processing breaks down completely. This can occur during all
preprocessing steps, and we discarded all bi-sentences for which either word alignment failed
or the preprocessing for at least one of the sentences failed. As a consequence, bitexts with
increasingly deeper analysis become increasingly smaller. The complete EUROPARL bitexts
have a size of approximately 1,029,400 sentences.

• We first part-of-speech tagged, lemmatised, and word-aligned the corpora, resulting in
what we call Bitext 1 (cf. Figure 2.3). Bitext 1 contains around 1,010,200 sentences (EN-FR),
and 1,004,800 sentences (EN-DE), corresponding to a small loss of about 2%-2.5% of the
complete data. This bitext forms the basis for the experiments described in Chapter 4.

• Next, we chunked and parsed Bitext 1. Since parsing is expensive, we limited the dataset
by two considerations to keep parsing time manageable. First, we removed all bi-sen-
tences containing a sentence with more than 40 words. In addition, we restricted our
attention to “interesting” bi-sentences, i.e., bi-sentences whose English part contains at
least one predicate that is listed in FrameNet, and has a word alignment in the intersective
GIZA++ alignment. This left us with Bitext 2, with 625,700 sentences (EN–FR) and
674,600 sentences (EN–DE), about 60-65% of the original corpus size. Bitext 2 forms the
basis from which the parallel sample corpus described in Chapter 3 is drawn.

2.3.1. Morphological and Syntactic Preprocessing: Software Choice

This section gives details on the software tools used for the morphological and syntactic
processing of the monolingual EUROPARL texts, and discuss why they were chosen.

English. We produced part-of-speech tags and lemmas for the English text with a widely used
software package for these tasks, namely Schmid’s (1994) Treetagger. One important criterion
for choosing this system was its generality: It is both language-independent, providing pre-
trained models for all three languages in question (English, German, and French), and covers
two tasks at one time, which greatly simplified the preprocessing architecture. Treetagger uses a
standard Markov model to determine the most likely part-of-speech sequence; however, instead
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of directly estimating the trigram tag probabilities from the corpus, it computes them by using
a decision tree, thus avoiding sparse data issues. The pre-trained model for English uses the
Penn Treebank tagset, and its tagging accuracy on a held-out portion of the Penn Treebank
has been determined at around 96%, in the top range of state-of-the-art POS taggers. While
there is no explicit evaluation of its lemmatisation component in the literature, the joint tagging
and lemmatisation procedure means that correct tagging with a fine-grained tagset such as the
Penn Tagset should imply correct lemmatisation, at least for regular forms.

For chunking, we used Abney’s (1996) finite-state chunker CASS. CASS is a general parsing
architecture which uses cascaded finite-state pattern grammar to (non-recursively) assign
chunks and simplex clauses to input sentences. The parser takes part-of-speech tags as input,
and groups elements iteratively into larger elements when they match a pattern. CASS is one
of the best-documented chunkers for English; Abney (1996) estimates the precision of the
standard English CASS grammar on “a random sample of corpus positions” at 87.9% and the
recall at 87.1%. Note that this evaluation is relative to manual gold standard chunk annotation.
Since Abney’s annotation guidelines these did not aim at producing a “complete” syntactic
analysis, CASS’s high recall values should have to be interpreted accordingly: In practice, base
chunks are often recognised correctly in EUROPARL, but clauses are assigned only rarely.

Parsing was performed with Collins’ (1997) probabilistic parser (Model 3). This parser is
accurate and robust, and therefore one of the most widely used systems. It provides broad-
coverage, relatively flat context-free analyses in the style of the Penn Treebank (Marcus et al.
1993). Its output is a tree with labelled nodes (i.e., syntactic categories). When evaluated on
Section 23 of the Wall Street Journal Treebank (sentences with 6 40 words only), Model 3
showed a recall of 88.1% and precision of 88.6%.

German. German part-of-speech tagging and lemmatisation was performed with Treetagger,
as outlined above. Treetagger uses the Stuttgart-Tübingen (STTS) tagset for German POS tag-
ging. In the case of German, Treetagger is the only freely available, Unix-based morphological
analysis system. Its German model was trained on the Stuttgarter Zeitung corpus and was
evaluated on a held-out dataset. The resulting tagging accuracy was around 97%; again, the
lemmatisation was not evaluated separately (see the discussion for English above).

Chunks were obtained from Schmid and Schulte im Walde’s chunker (2000), which is to
our knowledge the only freely available chunker for German. It is based on a hand-written
probabilistic context-free grammar, which was extended with robustness rules to increase its
coverage. The rule probabilities were acquired from a large corpus using a variant of the EM
algorithm. Chunks (primarily noun phrases and some prepositional phrases) are extracted from
parse forests. The system was evaluated on a sample corpus from the Frankfurter Allgemeine
Zeitung, and showed an unlabelled precision of 93%, and an unlabelled recall of 92%.

Sleepy, Dubey’s statistical parser (2005), was used for full syntactic analysis. It is the only
available robust, broad-coverage parser for German optimised for accurate syntactic analysis.
Its “Smoothed Tiger” grammar model provides a syntactic analysis in the style of the Tiger
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Treebank (Brants, Dipper, Hansen, Lezius, and Smith 2002), and performs at 76.3% labelled
F-Score.

French. Resources for the computational analysis of French text are scarce, compared to
German or English. As mentioned above, we used the French parameter files for Schmid’s (1994)
Treetagger to tag and lemmatise the French text. Treetagger is, to our knowledge, the only
freely available complete morphological analysis system. It uses a set of 33 POS tags which was
developed at Stuttgart University and is cited as obtaining a tagging accuracy of 92%.8

Syntactic analysis was performed by one of the few existing syntactic analysis tools available
for French, the Syntex parser. Syntex is an incremental partial parsing architecture aimed at
robust analysis of open-domain French text (Bourigault, Fabre, Frérot, Jacques, and Ozdowska
2005; Bourigault and Frérot 2005). It builds on the output of Treetagger and produces depen-
dency parses using a hybrid approach. The backbone of the parser is formed by hand-written
rules, but it integrates probabilistic information where appropriate (e.g., to resolve attachment
ambiguities). The developers have performed a preliminary evaluation of the parser on a 500-
sentence corpus, corresponding to roughly 5000 dependency links. In a comparison against a
manually constructed gold standard, the parser showed a labelled recall of 83.4% and a labelled
precision of 89.3%, i.e., an F-Score of 86.2% (Bourigault, p.c. 2006).

2.4. Summary

In this chapter, we have described the technical background of the thesis, which consists of three
main elements. The first element (Section 2.1) is the EUROPARL corpus, a multilingual corpus
in eleven parallel languages, which will form the basis for our experiments. EUROPARL is a
body of transcriptions of debates from the European Parliament, with a size of around 30 million
words per language. While the corpus covers only a specific genre, this is a common problem
of corpus-based models; on the other hand, EUROPARL is reasonably domain-independent,
thus meeting the crucial desideratum for wide-coverage semantic modelling. We have also
shown that systematic effects of translation are not to be expected, given the nature of the
transcription and translation processes.

The second element (Section 2.2) is word alignment, i.e., the establishment of translational
relations on the word level in a bitext. After discussing the two main families of word alignment
models, we have argued for the choice of statistical word alignment models. These models
require less linguistic resources, and are fundamentally adaptive, thus being better suited to
new genres and language pairs. An evaluation of the automatically constructed word alignment
for the language pair German–English has revealed that the obtained alignment links show a
very high precision, but a comparatively low recall, resulting from structural divergences on a
variety of linguistic levels between translated sentences.

8Source: http://www.uni-stuttgart.de/lingrom/stein/forschung/resource.html
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The third element (Section 2.3) is the linguistic preprocessing steps that were applied to
the EUROPARL bitexts which our experiments concentrate on, namely English–French and
English–German. All bitexts are part-of-speech-tagged, lemmatised, and parsed. We use the
best available state-of-the-art tools, but do not perform manual postprocessing to create a
realistic experimental setup.
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Role-Semantic Annotation

In Chapter 1, we have touched on the topic of cross-lingual parallelism of linguistic annotation,
stating that annotation projection will produce correct results only if the ideal annotations
of two bi-sentences are parallel or identical. In this chapter, we investigate the topic of cross-
lingual parallelism in more detail, finding that there are two levels of parallelism that can
be distinguished, namely parallelism at the concept level and at the instance level. To our
knowledge, this distinction has not been made explicit in the existing literature on annotation
projection. It is however highly relevant, since parallelism on the concept level is not sufficient
for annotation projection, which requires parallelism on the instance level.

We continue by defining the concepts of frame instance parallelism and role instance par-
allelism, which represent special cases of instance-level parallelism tailored to the needs of
annotation projection for frame-semantic information. Since no empirical estimate for these
classes of parallelism exist to date, we present the annotation of a trilingual parallel sample
corpus extracted from EUROPARL with frame-semantic information to empirically assess the
degree of frame and role parallelism. The encouraging results represent solid evidence for the
practical applicability of the projection frameworks we will present in subsequent chapters.

3.1. Two Types of General Cross-lingual Parallelism

In Chapter 1, we referred to cross-lingual parallelism in a rather unspecific manner as “paral-
lelism” between “annotation” in two languages. Upon closer consideration it becomes clear
that this characterisation affords two interpretations: The first is as concept-level parallelism,
the claim that some linguistic theory, and the categories it introduces, can be used to describe
some linguistic level in more than one language. The second is as instance-level parallelism, the
claim that any pair of translationally equivalent linguistic entities in a parallel corpus should
receive the same analysis on some linguistic level.

It turns out that the two levels of parallelism have traditionally been investigated in two
different research areas: concept-level parallelism is discussed mostly in theoretical linguistics,
while instance-level parallelism us a topic in translation science. It is an occasional topic in
computational linguistics when parallel corpora are concerned, but is treated almost exclusively
from an application perspective. However, in the context of the current thesis, it is crucial to
highlight the interdependencies between the two levels: annotation projection requires instance-
level parallelism, and instance-level parallelism, in turn, requires concept-level parallelism. To
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outline the general picture, we therefore give a general overview of the two types of parallelism
in this section. A more detailed discussion of parallelism on the level of predicate-argument
structure is deferred to Section 3.2.

3.1.1. Concept-level Parallelism

Concept-level parallelism is concerned with a general property of linguistic theories, namely
the language independence of their conceptual inventory: Although most linguistic theories
are intended to be applicable to more than one language, they are generally developed, or at
least verified, on a restricted set of languages. It is therefore an empirical question whether
the conceptual inventory can be used – as it is, without any modifications – to completely and
appropriately analyse another language.1

Concept-level parallelism is a desirable property, both from a theoretical and a practical
point of view. In the development of theories, strong cross-lingual parallelism indicates that
generalisations to other languages are possible, and can thus act as a criterion in the decision
between rival theories. With respect to practical language processing, the more parallelism
between descriptions for different languages, the lesser overhead there is for the development
of linguistic resources or the implementation of software.

It is not surprising that the development of theories with complete concept-level paral-
lelism (i.e., complete language independence) was an early research goal in theoretical lin-
guistics. Notable proposals were Chomsky’s (1957) universal grammar for syntax, and Katz
and Fodor’s (1964) theory of semantic decomposition into universal primitives. Unfortunately,
developing these outlines into detailed and usable theories proved impossible in practice. This
is mainly due to the vast number of “design decisions” languages take, which frustrate attempts
at arriving at reliable generalisations. In semantics, for example, languages differ widely in the
lexicalisation of differences between related concepts and the criteria by which these differences
are made; as a result, it has been impossible to construct a complete set of semantic primitives.
In syntax, languages can choose different strategies to encode argument positions, for example,
by word oder (as in English), by morphological case (as in German), or by particles (as in
Japanese).

From the computational linguistics point of view, an important insight from these studies
is that granularity of description is a crucial factor influencing the degree of cross-lingual
parallelism: The coarser the categories are, the more they abstract away from idiosyncrasies of
particular languages, and therefore the higher the degree of concept-level parallelism. On the
downside, of course, coarse categories are unable to represent the more detailed information
present in the individual languages and can therefore only yield an incomplete description.

This insight has guided some more recent research activities which have tried to develop
practical, detailed linguistic theories at the “most informative practical” level of conceptual
parallelism. One prominent project following this strategy is PARGRAM (Butt, Dyvik, King,

1We use the term “theory” here in a very broad sense that encompasses all complete descriptions of some linguistic
level. This includes, for example, part-of-speech tagsets or named entity classifications.
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Masuichi, and Rohrer 2002), which aims at developing parallel grammars for initially six lan-
guages in the context of Lexical-Functional Grammar (LFG). PARGRAM proceeds phenomenon
by phenomenon, constructing parallel analyses for all languages. Only if this is not possible,
the partial analysis common to all languages is determined and extended with specific infor-
mation in individual languages. A similar approach has been taken in the development of
EuroWordNet (Peters, Vossen, Diez-Ortas, and Adriaens 1998), a multilingual ontology based
on the WordNet paradigm: There is a set of core concepts, which are assumed to be language-
independent, and which are used in all languages. In addition, each language may define more
specific concepts (i.e., language-specific distinctions).

In conclusion, perfect concept-level parallelism is an idealisation whose linguistic reality is
questionable, and whose realisation for detailed linguistic theories is in any case impractical.
On the other hand, projected annotation results in interpretable annotations for the target
language only if the conceptual inventory used for the analysis of the source language exhibits
concept-level parallelism. A high degree of concept-level parallelism is therefore crucial for
the feasibility of annotation projection. Fortunately, it appears that at least for some levels
of linguistic analysis, a fairly high degree of parallelism can be achieved, provided that the
description is situated at an appropriate level of granularity.

3.1.2. Instance-level Parallelism

While concept-level parallelism is an important property of linguistic theories, it is insufficient
for any investigations which are concerned with actual multilingual data such as parallel
corpora: Concept-level parallelism is only concerned with the inventory of categories, not with
the analysis of concrete utterances. To be able to characterise the relationship between mutual
translations, we have to consider parallelism at the level of individual instances.

Formally, instance-level parallelism is a property of a linguistic framework with respect to a
particular bilingual (or multilingual) corpus. We define that instance-level parallelism holds
if for all pairs of translationally equivalent linguistic units in the corpus, the pairs of analyses
according to the framework in question are identical. Evidently, instance-level parallelism
implies concept-level parallelism: Instances can receive parallel (i.e., identical) analyses only if
categories are parallel across languages (or can be mapped). Of course, the inverse does not
hold: Concept-level parallelism does not imply instance-level parallelism. Consider Figure 3.1,
a repetition of Figure 1.3. It shows a short English–German bi-sentence, tagged with simplified
“core” parts of speech which we assume to be concept-level parallel. We can now ask whether
the POS analysis exhibits instance-level parallelism, and take word alignment as an indication
of translational equivalence. We find that for the first pair of translated words, Peter’s/Peter, the
analysis is in fact parallel: both words are analysed as proper nouns (PN). However, parallelism
breaks down in the case of the second pair, marriage/verheiratet (married): The English noun
(N) marriage has been translated as the German participle (V) verheiratet: thus, the POS tag
analyses are not parallel. Note that this non-parallelism implies a second non-parallelism,
between the respective modifiers: English happy modifies a noun and is realised as an adjective
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   PN           N        PRP    PN      V   ADJ 

Peter's marriage with Harriet is happy.

Peter ist glücklich mit Harriet verheiratet.

PN     V      ADV    PRP    PN             V

Figure 3.1.: A short English–German bi-sentence with part-of-speech analyses

(ADJ), while German glücklich is an adverb (ADV) modifying a verb. The analysis of the
remaining words is again parallel.

Note that English and German are close enough that the English sentence could have been
translated word by word, leading to a translation which would have been exactly parallel to
the original English sentence in terms of part-of-speech tags, such as Peters Ehe mit Harriet
ist glücklich (Peter’s marriage with Harriet is happy). However, the sentences are in fact not
parallel on the instance level, the reason being that the translator did not choose this option.

This observation contains the key to the difference between concept-level parallelism and
instance-level parallelism: while concept-level parallelism is only concerned with pairs of lan-
guage systems, instance-level parallelism has to deal with pairs of concrete language utterances
resulting from a process of translation. This places the translator at the centre of any serious
account of instance-level parallelism, since his decisions during translation determine the very
shape of the target language text and all of its structural properties.

Current translation science emphasises the fact that translation is a semiotic process in
which the different linguistic dimensions of a source utterance have to be reconciled with
the often conflicting requirements of a target language (Matthiessen 2001). Examples are
surface-related properties (word order, lexical choice), semantics-related properties (predicate-
argument structure), or even supra-sentential considerations (rhetorical structure, coherence).
Which of the many possible translations will be chosen by the translator depends on a number
of factors, such as the purpose of translation or language-specific preferences in formulation.
In the example above, the translator might for example have considered the translation as a
participle “more idiomatic”.

From this perspective, it appears almost certain that on some linguistic level, the original
and its translation will not be parallel. Still, instance-level parallelism is an idealisation that
is methodologically very valuable: by assuming that perfect parallelism is the default case
(the null hypothesis), deviations from this default can be identified and investigated. In
fact, in translation science, such deviations are known as translational shifts, and are a topic
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of substantial long-term interest (Hawkins 1986; van Leuven-Zwart 1989; Cyrus 2006). For
typologically more distant languages, and for languages with culture differences, appropriate
translation tends to demand more radical departures from the linguistic structure of the
original (Truffaut 1997). We will resume the discussion of translational shifts in Section 5.7 for
our specific task of the induction of frame-semantic predicate classifications.

In computational linguistics, it is exactly the idealisation of instance-based parallelism that
allows annotation projection to formulate cross-lingual transfer in the simple manner described
in Section 1.3. The idealisation has been formulated most succinctly in Hwa et al.’s (2002) direct
correspondence assumption which posits that all syntactic relations between mutually aligned
nodes are instance-parallel.

In order to obtain a realistic picture of the chances of annotation projection, the actual degree
of instance-level parallelism has to be gauged for each linguistic framework used to analyse
a particular linguistic level, and each parallel corpus. Obtaining this figure is a important
task, since the degree of instance-level parallelism for a given framework and a given corpus
constitutes an approximate upper bound for the accuracy of directly projected annotation
information (without further preprocessing steps) within that setting.2

In this sense, the evaluation results for “direct projection” conditions for the existing studies
on annotation projection, which were briefly mentioned in Chapter 1, can be interpreted as
rough estimates for the instance-level parallelism in particular settings. In the following, we
give a brief overview of these results.

Part-of-speech tags. Yarowsky et al. (2001) projected part-of-speech tags from English to
French. Using a “core tagset” that distinguished only major morphosyntactic categories,
they found instance-level parallelism of 76% for automatic word alignment, which could
be improved to 85% by using manual alignment.

Word sense tags. Bentivogli and Pianta (2005) transferred EuroWordNet word sense tags
from English to Italian. Instead of using existing parallel texts, they translated an English
corpus with word sense annotation, which made is possible to produce both a free and a
controlled translation. Automatic word alignment was used for all experiments. On the
controlled translation, they obtained a precision of 88% and a recall of 71%. On the free
translation, these numbers are somewhat lower at 85% precision and 63% recall.

Coreference. Postolache et al. (2006) projected coreference chains, i.e. binary relations be-
tween noun phrases which refer to the same discourse entity from English to Romanian.
They used automatic word alignment and report projection accuracy on three texts. All
results were very close, clustering around 87% precision and 62% recall.

2In practice, an additional consideration with respect to the upper bound of annotation projection is the complexity
of the annotation task: A comparatively simple task such as part-of-speech tagging will obtain high inter-
annotator agreement in annotation, and does not require pre-processing. In contrast, more complex tasks like
parsing or shallow semantic parsing are more prone to coder disagreement in annotation and preprocessing
noise in practical implementations.
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NP chunks. Yarowsky et al. (2001) also transferred NP chunks information from English to
two other languages. For French, they obtained a precision of 43% and a recall of 48%
with automatic word alignment, and 56% precision and 51% recall with manual word
alignment. For Chinese, the numbers were 26% precision and 58% recall for automatic
word alignment, and 47% precision and 61% recall for manual word alignment.

Dependency relations. Hwa et al. (2002; 2005) projected dependency relations from English
to Spanish and Chinese. They found that direct projection resulted only in a compara-
tively small fraction of correct dependency links, namely 37% for Spanish and 38% for
Chinese.

These results demonstrate large differences in instance-level parallelism between different
levels of analysis. The general pattern that appears to emerge is that lexical-semantic properties
in the widest sense (part-of-speech tags, word sense, and coreference) show a substantial
degree of parallelism. When precision and recall are computed, precision is higher than
recall. On the other hand, structural properties diverge considerably between translations.
We observe the tendency that local structure (NP chunks) is still more parallel than global
structure (dependency relations).3 However, note that instance-level parallelism can only
assessed on particular corpora and assuming particular linguistic theories (or annotation
schemes, respectively); therefore, these numbers can only be generalised with due precaution.
More systematic studies are clearly necessary before any stronger claims can be made.

3.2. Parallelism of Role-Semantic Analyses

We have established above that instance-level parallelism is the type of parallelism necessary
for successful annotation projection, and we have also found that concept-level parallelism is a
prerequisite for instance-level parallelism. In this section, we review the existing research on
cross-lingual parallelism on the role-semantic level.

The main part of this section will concentrate on FrameNet, our role-semantic framework of
choice; the final subsection will discuss the case of alternative role-semantic frameworks, and
will argue why they are more problematic in a cross-lingual setting.

3.2.1. Concept-level Parallelism of FrameNet

Almost all the evidence we cited in Chapter 1 on the cross-lingual parallelism of FrameNet
annotation refers to concept-level parallelism. It concerns either the annotation of monolingual
data for new languages with FrameNet frames (Burchardt et al. 2006b; Pallotta 2005; Ohara et al.
2004; Subirats and Petruck 2003) or more abstract lexicographic considerations (Boas 2005).

3Consequently, projection efforts for syntactic information such as Hwa et al. (2005) have often employed post-
projection rewriting steps which transformed the source information according to linguistic knowledge about
the source-target language pair.
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In both cases, frames developed by the Berkeley FrameNet project for English are re-used for
the semantic analysis of other languages.

The reason why FrameNet frames show a large degree of concept-level parallelism is a result
of the principle underlying its design. This basic principle is that frames, and their roles, are
defined on a conceptual level by reference to the properties they exhibit and the inferences they
allow. In this way, FrameNet abstracts away from many details of the lexical items it describes.
While this granularity of description may not be fine enough for all purposes, it is crucial for
the cross-lingual interpretability, as we have argued in Section 3.1.1, and FrameNet can be seen
as a “most informative practical” level of description of predicate-argument structure.

However FrameNet does not rely exclusively on conceptual considerations, as ontologies
usually do; membership of a predicate in a frame has to be “grounded” by the predicate’s
syntactic ability to realise the core frame elements.4 As a consequence, non-parallelism on the
frame level can occur when the subcategorisation patterns of predicates in new languages differ
vastly from their English counterparts.

To date, no comprehensive quantitative studies of the concept-level parallelism of frame-
semantic classes across languages exist. Evidence can however be drawn from the FrameNet
annotation projects in other languages mentioned above. The impression is that concept-level
parallelism holds to a high degree, but is inversely correlated with typological distance from
English. The recent establishment of a Global FrameNet group has led to the joint discussion of
linguistic phenomena which can create problems for the concept-level parallelism of frames,
and bears the perspective of an incremental modification of FrameNet towards more perfect
concept-level parallelism, similar to the PARGRAM project (cf. Section 3.1.1).

An example for a problematic linguistic phenomenon is the general difference between
“satellite-framed” languages such as English or German, where prepositions and adverbial
particles tend to determine the meaning to a significant extent, and “verb-framed” languages
where this information is encoded lexically (Talmy 2000). The case of Motion verbs has been
analysed in FrameNet terms for Spanish contrastively to English (Subirats and Petruck 2003),
and the latest FrameNet release (1.3) attempts to provide a representation of Motion verbs which
abstracts over the language type.

Conflicts for particular predicates also arise occasionally between languages that are similar
with respect to predicate-argument structure, such as English and German. A case in point is
German fahren, which is the translation of both English drive and ride, which introduce two
different frames in English: (drive: frame Operate_vehicle, subject is driver; ride: frame
Ride_vehicle, subject is passenger). In German, the context often does not disambiguate
between the two frames, which makes it impossible for many instances to make the decision
reliably. The appropriate level of description is a more abstract, using a frame that does not
specify the role of the subject in detail. As a consequence, FrameNet has introduced the frame

4The core frame elements are those “that instantiate a conceptually necessary component of a frame”. For example,
the Speaker, Message and Addressee roles of the Commitment frame are all core roles, while Time, Place
and Reason are not. See Ruppenhofer, Ellsworth, Petruck, and Johnson (2005) for a discussion.
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Peter's marriage with Harriet is happy.

Peter ist glücklich mit Harriet verheiratet.

Social_Connection

Indiv_1 Indiv_2

Social_Connection

Indiv_1 Indiv_2

Figure 3.2.: A short English–German bi-sentence with frame-semantic analysis

Use_vehicle, which subsumes both Operate_vehicle and Ride_vehicle. While the frame
is unlexicalised for English, it is the right level to describe the meaning of German fahren.

3.2.2. Instance-level Parallelism of FrameNet

In contrast to concept-level parallelism, almost no evidence exists with respect to the instance-
level parallelism of FrameNet frames. The simple reason for this is that manual frame-semantic
analysis of parallel, multilingual texts has so far only been proposed in the context of the
Romance FrameNet project (Pallotta 2005), but has not materialised at the time of writing.
However, since instance-level parallelism is central for annotation projection, we crucially need
to obtain such evidence.

Intuitively, we would hope that role semantics in general, and frame semantics in its Frame-
Net instantiation in particular, stands a good chance of exhibiting a substantial degree of
instance-level parallelism: In Section 3.1.2, we saw that “lexical” annotation generally exhibits
more instance-level parallelism than “structural” annotation, and frame semantics is closer
to the former than to the latter. We can bolster this intuition by extending the argument
given in the last section for the concept-level parallelism of frame-semantic analysis: We argue
that the largely conceptual definition of FrameNet frames means that a substantial fraction
of possible translational shifts (primarily those related to the morphological and syntactic
levels) does not lead to cross-lingual differences between the respective frame instances. As
an example, consider Figure 3.2, which shows the frame-semantic analysis of the bi-sentence
in Figure 3.1 (page 34). We find that the analyses are indeed parallel on the instance level;
the improvements over the POS tag analysis, which was partially non-parallel, is a result of
FrameNet’s ability to abstract over the part of speech of predicates.
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If we try to spell out exactly which elements of the analysis correspond to one another across
languages, we need to recall from Section 1.2 that frame-semantic analysis consists of two steps:
(1), frame assignment, and (2), role assignment. To obtain a complete parallel frame-semantic
analysis, clearly instance parallelism has to hold for both levels. Instance-level parallelism
is therefore best decomposed into two components that we define below and illustrate in
Figure 3.2.

Frame instance parallelism. We define frame instance parallelism to holds if for all pairs of
source and target predicates that are translationally equivalent in a parallel corpus, both
predicates evoke the same FrameNet frame.

In Figure 3.2, the translationally equivalent predicates marriage and verheiratet evoke
the same frame, Social_Connection; this translation pair thus shows perfect frame
instance parallelism.

Role instance parallelism. We define role instance parallelism to hold if for all parallel frame
instances, each role that is realised overtly by one of the frames is also realised by the
other frame.

In Figure 3.2, the parallel Social_Connection frames both realise the two roles Indi-
vidual_1 and Individual_2; thus they also show role instance parallelism.

Role instance parallelism is conditional on frame instance parallelism: unless the frame in-
troduced by two predicates is the same, the roles cannot be parallel. This is a result of the design
of FrameNet, which defines roles at the level of individual frames. Even if two roles of different
frames bear the same name, they do not necessarily afford the same interpretation (Fillmore,
Wooters, and Baker 2001). For example, the semantic role Source occurs in a large number of
frames, but can stand for various source-like concepts in different prototypical situations.5

These two aspects of frame-semantic parallelism can now be tested in an annotation experi-
ment: We manually create a gold standard corpus with independent frame-semantic annotation
for three different languages (English, German, and French). Simple counting of the ratio of
matching and mismatching frames and roles allows us to quantitatively assess the amount
of cross-lingual parallelism. The details and results of this experiment will be described in
Section 3.3 below.

In the preceding operationalisation of instance-level parallelism for frame semantics, we
ignore the supra-frame structure (i.e., the relation between different frames in a sentence). This
is in line with the general FrameNet approach to role-semantic analysis, which concentrates on
the analysis of local predicate-argument structure. In fact, the FrameNet project until recently
only annotated one predicate per sentence. Full-text annotation is now also available, but the
mechanisms of interaction between different frames are only beginning to emerge (Burchardt,

5Of course, the frame hierarchy might provide mappings between roles of different frames; however, such cases
require careful consideration in a projection scenario and are best treated as cases of frame instance non-
parallelism, at least in the first instance.
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Frank, and Pinkal 2005b; Padó and Erk 2005). As a consequence, computational models of
shallow semantic parsing in the FrameNet paradigm have always treated role-semantic analysis
on a frame by frame basis, and so does annotation projection according to our definition from
Chapter 1.

The projection of individual frames confers an important benefit with respect to a certain
class of translational shifts, namely those which change relative position of two or more
predicate-argument structures in a sentence. One well-known phenomenon of this class is head
switching, where a first predicate governs a second predicate in one language, but is governed by
it in the other language. As an example, consider the English sentence Peter likes to sleep, where
the predicate likes has sleep as a complement. In the German translation Peter schläft gerne
(Peter sleeps willingly), however, it is sleep which is modified by willingly. In transfer-based
machine translation, which assumes structural parallelism between source and target, head
switching breaks this parallelism and therefore requires explicit treatment (Dorr 1995). The
projection of individual frames avoids this problem by concentrating on the level of individual
predicate-argument structures, which are not affected by head switching: In both sentences,
for example, Peter is analysed as the Sleeper of a Sleeping frame introduced by sleep. The
fact that the syntactic embedding relations differ has no impact on the projection process, and
does not have to be taken into special consideration.6

We will further pursue the question of interactions between frames in Chapter 8, where we
will use global frame structure to explore cases where frame instance parallelism breaks down
and annotation projection according to the simple definition from Chapter 1 cannot be realised.

3.2.3. Parallelism in Other Role-Semantic Paradigms

In Chapter 1, we mentioned two other frameworks that, apart from FrameNet, figure promi-
nently in current work on semantic roles in Computational Linguistics. These frameworks are
PropBank (Palmer et al. 2005), and the Tectogrammatical Layer of the Prague Dependency Tree-
bank (Hajičová 1998). In this section, we discuss why these alternatives are more problematic
than FrameNet for cross-lingual annotation projection.

PropBank. The aim of the PropBank project was to develop a theory-neutral, syntax-oriented
annotation scheme for semantic roles, and to annotate a large corpus, the Wall Street Journal
portion of the Penn Treebank, with these roles. The corpus has been completed in 2004 and is
available through the Linguistic Data Consortium.

In PropBank, predicates are assigned coarse-grained sense tags. These senses are comparable
in granularity to FrameNet frames within individual predicates, but they are not grouped into
semantic classes across predicates. Semantic roles for arguments are defined for each verb
sense separately, and are identified by indices (ARG-0 through ARG-n). In addition, there

6This is provided that no other considerations interfere; the example cited above is problematic insofar as the verb
likes is translated as an adverb (gerne), whose status as a full-fledged predicate with an own argument structure
is open to debate; however, this topic is outside the scope of the present thesis.
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are universal argument roles which are written as ARGM with an affixed function tag. With
respect to their semantics, the PropBank argument roles fall into two distinct classes: ARG-0
and ARG-1 correspond to Dowty’s (1991) Proto-Agent and Proto-Patient roles, respectively.
In contrast, the roles from ARG-2 onward are defined by syntactic criteria: Generally, higher
indices correspond to increasing obliqueness (Keenan and Comrie 1977). An effort was made to
keep indices consistent within Levin’s (1993) classes. Each role was also given a natural language
mnemonic, but these have “no theoretical standing” (Palmer et al. 2005).7

It is the combination of a predominantly structural role definition with the absence of
semantic classes which generalise roles across predicates that raises potential problems for
using PropBank roles in an annotation projection scenario. More specifically, PropBank roles
are defined by reference to structures of the source language, unlike FrameNet roles, which are
defined by reference to participants of (mostly) language-independent conceptual situations.
As a result, projected roles do not a priori have a well-defined semantics within the target
language, without recourse to the source utterance. What is crucially necessary is to provide
grounding for these roles, i.e. construct a definition in terms of the target language analogously
to the definition for English provided by the PropBank dictionary. Without such a dictionary,
concept-level parallelism cannot be guaranteed.

In an annotation projection scenario, the only source for this dictionary is the actual projec-
tion instances in the parallel corpus themselves. Note that this is problematic since it makes
concept-level parallelism dependent on instance-level parallelism: only if the translation of
particular instances in the corpus retains the structure of the role annotation can a consistent
general definition be constructed for the roles in the target language. More specifically, the
following well-formedness condition has to hold so that unique definition for roles in the
target language can be provided: only one role may be projected onto a particular grammatical
function of a target predicate.8

This well-formedness condition is problematic in practice, since each predicate in the target
language can naturally be the translation of more than one source verb. In consequence,
individual argument positions of these target predicate correspond to multiple argument
positions of different source predicates. Due to the definition of semantic roles at the sense level
in PropBank, these source argument positions are not guaranteed to be analysed consistently,
and thus the target argument position may be assigned more than one semantic role.

Table 3.1 illustrates this problem with a concrete example that consists of three synonymous
English sentences and a German sentence that is a plausible translation of the English sen-
tences. We assume for this argument that the German sentence occurs three times in a parallel
corpus, once as translation of each English sentence. The German predicate beginnen has two
arguments, a subject and a mit-PP. We now have to determine the set of ARG roles available
for the predicate, and to define them in terms of their syntactic realisation. The subject, die

7PropBank roles and example annotations are available online at the URL http://www.cs.rochester.
edu/~gildea/PropBank/Sort/.

8More specifically, this has to hold at least within one subcategorisation frame. Of course, mappings may vary
across diathesis alternations.
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Language Subject Verb Complement

English (I) [The government]ARG-0 begins [negotiations]ARG-3

English (II) [The government]ARG-0 starts [negotiations]ARG-1

English (III) [The government]ARG-0 launches [into negotiations]ARGM-DIR

German Die Regierung beginnt mit Verhandlungen

Table 3.1.: Three synonymous English sentences with PropBank-style analyses.

Regierung, is unproblematic: all English source sentences analyse the corresponding argument,
the government, as ARG-0. Consequently, we can analyse the subject of the German beginnen as
ARG-0 as well, which provides German syntactic grounding for the ARG-0 role. The situation
is different for the German PP, mit Verhandlungen. The corresponding English phrase, (into)
negotiations is variously analysed as ARG-1, ARG-3, or as an adjunct role (ARGM-DIR), and
thus the three German instances will be annotated inconsistently. On which grounds should
we choose one role over the others and include it in the definition of beginnen’s predicate as
analysis for the PP?9

It is unclear how much of an impediment this kind of problem is for role projection; this
question will have to be investigated empirically. It can however be speculated, based on the
experiences from FrameNet annotation projects (cf. Section 3.2.2) that obtaining consistent
projection results becomes increasingly difficult for typologically more distant languages. The
use of the more general theta roles from VerbNet (Kipper, Palmer, and Rambow 2002), which
generalise the sense-specific PropBank roles, could potentially alleviate the consistency issue;
but this claim must also be assessed empirically.

A more practical obstacle of using PropBank for annotation projection which should be
mentioned nevertheless is that the PropBank annotation covers only verbal predicates, which
rules out translation pairs whose English part is not a verb. This shortcoming is currently
being remedied by the NomBank project which adds annotations for nouns to the PropBank
corpus (Meyers, Reeves, Macleod, Szekely, Zielinska, Young, and Grishman 2004).

Prague Tectogrammatical Structure. Functional Generative Description (FGD, Sgall, Ha-
jičová, and Panevová (1986)) is a comprehensive theory of the linguistic system developed in
Prague. It assumes three layers of representation: morphology, surface syntax, and deep syntax.
The layer of deep syntax is called Tectogrammatical Structure.

In FGD, tectogrammatical structure is assumed to reflect the “literal meaning of the sentence”
and, at the same time, to provide the interface between linguistic theory (the domain of FGD)

9In FrameNet, all three English predicates (begin, start, and launch) evoke the Activity_start frame, which
guarantees consistent analysis.
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on one hand and semantic interpretation or discourse analysis on the other hand, which are
assumed to be interdisciplinary endeavours (Hajičová 2000). Formally, the tectogrammatical
structure is a labelled dependency tree whose nodes correspond to content words of the
sentence, and whose edge labels describe the relation between these content words. Since
the literal meaning is supposed to be identical with deep syntax, tectogrammatical structure
expresses not only predicate-argument relations like semantic roles in the sense of PropBank
or FrameNet, but provides a complete account of the structure of the sentence, including also
head-modifier and other relations such as coordination or apposition.

In an annotation projection scenario, complete instance-level parallelism of the tectogram-
matical structure thus presupposes parallelism not only on the semantic, but also on the syn-
tactic level, which is difficult (compare the results on dependency parallelism in Section 3.1.2).
It is therefore clear that annotation projection can only be successful for parts of the tectogram-
matical structure, and presumably in particular for the predicate-argument relations, which
are closest in spirit to semantic roles. For the predicate-argument relations, a problem similar
to PropBank arises: the labels (called functors) used by FGD to describe tectogrammatical rela-
tions are defined predominantly structurally (see Lopatková and Panevová (2005) for details),
and it is unclear how well these structural considerations transfer to new languages.

A more general consideration is that tectogrammatical structure is defined by the application
of certain transformation rules on the surface syntactic structure. It is a matter of future work
to determine the implications of a close coupling between syntax and semantics for instance-
level parallelism. A practical problem in resolving this issue is that, to our knowledge, no
worked-account of surface syntax in the FGD framework exists for other languages such as
English (Sgall 2000).

3.3. Assessing the Cross-lingual Parallelism of Frame-Semantic
Annotation

As mentioned in the preceding discussion, there are currently no studies on the actual degree
of instance-level parallelism of frame-semantic annotations, neither on the frame level nor on
the role level. This section describes an annotation study aimed at addressing this shortcoming.
In the first phase of the experiment, we created a gold standard parallel sample corpus of
1,000 English–German sentence pairs sampled from EUROPARL. Both sides of this corpus
were annotated manually with FrameNet frames and roles by two independent annotators.
This corpus allows us to empirically estimate the degree of instance-level parallelism, thereby
gauging the feasibility of automatic annotation projection for frame-semantic annotation. In
the second phase, the French sentences corresponding to this sample were annotated, to validate
our findings on a second language pair involving a language pair.

A second, equally important consideration was to create a gold standard corpus that could be
used for the evaluation of our role projection models and of shallow semantic parsers in general.
To our knowledge, our corpus is currently the only parallel corpus with manual role-semantic
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analysis. The annotations are freely available for research purposes and can be downloaded
from the URL http://www.coli.uni-saarland.de/~pado/projection/.

3.3.1. Creation of an English–German Bitext

We first describe the extraction and annotation of the English–German bitext.10

Sample Selection. The least biased strategy for drawing a sample from a corpus is by
random sampling. However, in the present setting, random sampling raises (at least) two
problems. First, FrameNet is as yet incomplete. As a result, randomly selected sentences may
contain readings of predicates which are simply not covered in with the current FrameNet
frame inventory; an example is the “greeting” sense of hail which is not represented by any
frame. Second, EUROPARL is a professionally translated corpus and likely to contain a large
fraction of free translations that do not preserve the frame across languages. However, since
role instance parallelism is conditional on frame instance parallelism (cf. Section 6.2), role
instance parallelism can only be assessed on sentences with parallel frames.

Note that both of these problems cannot be detected automatically, but only after annotation
has taken place. As a result, sampling runs the risk of yielding a dataset of which only a small
fraction can be analysed with FrameNet in the first place (since many instances are outside
FrameNet’s coverage), and which contains an even smaller number of bi-sentences suitable
for estimating the degree of role instance parallelism (since they do not show frame instance
parallelism).

To avoid this issue, we decided to use a more informed sampling strategy for obtaining
an English–German sample. Our selection was driven by two existing resources, the English
FrameNet and SALSA, a FrameNet-compatible predicate classification for German currently
under development (Erk et al. 2003). We used the intersective word alignment obtained from
GIZA++ (see Section 2.2.2 for details) to identify one-to-one aligned English–German predicate
pairs. We further required these predicates to be both listed in FrameNet and SALSA for at
least one common frame. The resulting corpus contains 83 frame types and 696 predicate pairs
(on the type level), exemplifying 265 unique English and 178 unique German lemmas. Sentence
pairs were grouped into three bands according to their frame frequency (High, Medium, and
Low). We randomly selected 380 instances of predicate pairs from each band, resulting in a
sample of 1,140 bi-sentences.

This sampling procedure produces a corpus sample which is not entirely random, but which
we consider a realistic input for the role projection task. However, this does not mean that all
sentences which do not show frame instance parallelism are outside the scope of automatic
processing in an annotation projection framework. We discuss how such cases can be handled
in Chapter 8.

10This bitext was prepared at Saarland University.
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Measure English German French
Frame Match 0.90 0.87 0.87
Role Match 0.95 0.95 0.89
Span Match 0.85 0.83 0.72
Kappa 0.86 0.90 0.75

Table 3.2.: Monolingual inter-annotator agreement on the calibration set (English and German)
and on the complete dataset (French)

Annotation and Inter-Annotator Agreement. The English–German bitext was annotated
manually by two annotators with native-level proficiency in German and English. For every
predicate, the annotation task involved two steps: (a) selecting the appropriate frame and (b) as-
signing the semantic roles it instantiates to the constituents of the sentence under consideration.
Annotators were provided with detailed guidelines, which are given as Appendix B. During
annotation, they had access to parsed versions of the sentences in question (see Section 2.3.1 for
details), and to the FrameNet and SALSA resources for English and German.

The annotation proceeded in three phases: a training phase (40 bi-sentences), a calibration
phase (100 bi-sentences), and the annotation of the main dataset (1,000 bi-sentences). During
training, annotators were acquainted with the annotation style. In the calibration phase, each
bi-sentence was doubly annotated to assess the inter-annotator agreement and revise guidelines
in case of low agreement (this turned out not to be necessary). Finally, in the main annotation
phase, each of the 1,000 bi-sentences in the main dataset was split and each half randomly
assigned to one of the coders for single annotation. We ensured that no annotator saw both
parts of any bi-sentence in order to guarantee independent annotation of the two halves of each
bi-sentence. Annotation proceeded predicate-wise; each coder annotated approximately the
same amount of data in English and German.

The first two columns in Table 3.2 show inter-annotator agreement on the calibration set for
English and German. In addition to the widely used Kappa statistic, we computed a number
of different agreement measures: the ratio of frames common between two sentences (Frame
Match), the ratio of common roles (Role Match), and the ratio of roles with identical spans
(Span Match). As can be seen from the table, annotators tend to agree in frame assignment;
disagreements are mainly due to difficult distinctions between closely related frames (e.g., be-
tween Awareness and Certainty). Annotators also agree well on what roles to assign (Role
Match is 0.95 for both English and German). Agreeing on the exact role spans is a harder
problem, since it involves additional syntactic decisions.

Our results show strong agreement, thus demonstrating that the task is well-defined. Un-
fortunately, no published agreement figures for English FrameNet annotation are available
for comparison. Our numbers are comparable to published figures for the German FrameNet
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annotation in the SALSA project: Burchardt, Erk, Frank, Kowalski, Padó, and Pinkal (2006a)
report 85% raw inter-annotator agreement for Frame Match and 86% inter-annotator agreement
for Span Match. The figures we obtained are 2% higher for Frames and 2% lower for Spans.
Given the small size of our calibration set, these differences are not statistically significant.

3.3.2. Creation of an English–French bitext

Any study restricted to a single language pair runs the risk of obtaining results that are biased
by specific properties of that language pair. To avoid this problem, we repeated the annotation
effort for a second language pair, in order to obtain a more general picture of the applicability of
frame-semantic annotation projection. We chose French as our second target language. French
belongs the Romance language group, while English and German are both Germanic languages.
Thus, the comparison of the results for the two target languages, German and French, can
reveal interesting differences across languages and language groups.11

Sample Selection. Due to the absence of manually produced frame-semantic resources for
French comparable to FrameNet, we could not follow the same sampling strategy as for German.
Instead, we chose to annotate the French translations of the 1000 sentences making up the
English–German bitext. This strategy has two advantages. First, it results in a parallel corpus of
three languages, allowing for controlled comparisons between the two target languages (see
above). Second, the English–French bitext is more representative of the entire EUROPARL
corpus than the English–German bitext: The predicate pairs have not been selected on the
basis of (potential) frame parallelism, as was the case for English–German. In this sense,
the English–French bitext provides a more realistic estimate of the degree of frame instance
parallelism in an unfiltered parallel corpus.

While extracting the French text, we found that sixty sentences of the 1000 English sentences
were sentence-aligned to empty French sentences. These sentences were removed; the French
corpus therefore consists of 940 French sentences. The automatically produced word alignments
(cf. Section 2.2) were used to determine which French predicates corresponded to the relevant
English frame-evoking elements.

Annotation and Inter-Annotator Agreement. The 940 French sentences were annotated
with frames and frame elements independently by two annotators, both of which were native
speakers of French. They followed the same annotation schemes used for the annotation of the
English–German bitext (see Section 3.3.1 for details). During annotation, the annotators did
not have access to the English–German bitext nor its frame-semantic annotations, but were
provided with parsed versions of the sentences in question (see Section 2.3.1), and with the
FrameNet resource for English.

11The annotation was provided at INRIA Lorraine in Nancy in the context of the French FrameNet project. We
would like to acknowledge their help and cooperation.
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The double annotation makes it possible to compute inter-annotator agreement on the entire
dataset. The results are listed in the rightmost column of Table 3.2. Overall, we find that the
strong inter-annotator agreement results carried over. Frames can be assigned equally well
for French as for German, leading to an equal Frame Match agreement of 87%. Role Match
agreement (which only takes into account whether roles were assigned at all) is also high at
89%, albeit around 5% worse than for English and German. We attribute the difference to the
fact that the annotation guidelines used for French annotation were originally developed for
German and English annotation (cf. Section 3.3.1) and probably were not sufficient to resolve
all problematic cases in the new language.

The main difference to the first language pair is the Span Match agreement that is clearly
lower for French (72%) than for German (83%). The fact that Role Match does not show the
same drop (see above) indicates that this is mainly a problem of assigning semantic roles
to constituents obtained from the French automatic syntactic analysis. Further analysis of
the data confirmed that frequent cases of incomplete and erroneous constituents compelled
annotators to assign many semantic roles to more than one syntactic node, which adversely
affects Span Match (Erk et al. 2003). In the following example, the frame element Addressee
of the frame Commitment, evoked by menace (threat), spans a prepositional phrase including
a coordination. Since no overarching constituent was found for the phrase, the role has to be
assigned to a total of four smaller constituents, indicated by round brackets.12

(3.1) Peu m’importe
I don’t mind

que
whether

les
the

menaces
threats

ou
or

les
the

crimes
crimes

soient
are

commis
committed

[(contre
[(against

un
a

Serbe)PP,
Serb)PP,

(un
(a

Rom)NP,
Roma)NP,

(un
(a

Bosniaque
Bosnian

ou
or

un
an

Albanais)NP]Addressee.
Albanian)NP]Addressee.

3.3.3. Evaluation

The annotated corpora also allows us to assess the degree of semantic cross-lingual parallelism.
We computed both frame (instance) parallelism and role (instance) parallelism. Frames were
counted as matching when the same frame was annotated for a parallel predicate pair. Roles
were counted as matching when they occurred in both halves of a bi-sentence regardless of the
role spans, provided that the frames matched (recall that role instance parallelism presupposes
frame instance parallelism). Since role spans are not easily comparable across languages, Span
Parallelism was not applicable in this cross-lingual setting.

The results (shown in Table 3.3) were computed on the complete English–German (1,000 bi-
sentences) and English–French (940 bi-sentences) bitexts. To facilitate comparisons with the
output of our automatic projection methods, we present agreement in terms of precision, recall
and F-score (see e.g. Baeza-Yates and Ribeiro-Neto (1999)), treating the annotations of the target
language (i.e., German and French) as gold standard against which we compare the English

12We provide glosses for all foreign language material in examples. Glosses can be distinguished from original
English EUROPARL material by their position underneath the foreign language material.
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Measure Precision Recall F-score
Frame Parallelism 0.72 0.72 0.72
Role Parallelism 0.91 0.92 0.91

Frame Parallelism 0.65 0.74 0.69
Role Parallelism 0.88 0.87 0.88

Table 3.3.: Cross-lingual instance-level parallelism for the language pairs English–German
(above) and English–French (below)

annotations. This evaluation scheme directly gauges the usability of English as source language
for annotation projection: A recall of less than 100% means that frame or role instances exist in
the gold standard for the target language which are not present in English, i.e., which cannot be
retrieved by annotation projection from English annotation. Conversely, imperfect precision
indicates additional English frame or role instances, whose projection results in erroneous
annotations of the target language.

Frame instance parallelism. We find a surprisingly similar degree of frame instance paral-
lelism between the two language pairs. For English–German, we obtain F=0.72; the result for
English–French is only slightly lower for English–French at F=0.69. In other words, around
70% of all relevant bilingual predicate pairs reliably evoke the same frame in both bitexts. This
result demonstrates substantial cross-lingual frame instance parallelism that is not restricted to
closely related language pairs (e.g., English–German). The degree of instance-level parallelism
that we found also corresponds well to results for other lexical-semantic annotation (cf. Section
3.1.2), confirming our intuitions about the nature of the frame assignment task.

Our interpretation of these numbers must however take inter-annotator agreement into
account: Cross-lingual parallelism is estimated on sentence pairs which were annotated by two
different annotators to guarantee independent annotation for each language. As a result, these
numbers do not only incorporate the cross-lingual variance caused by the translation proper,
but also variance due to disagreements among coders which naturally arise in any annotation
study. A realistic upper bound for cross-lingual parallelism is therefore less than 100%, and the
monolingual inter-annotator agreement for Frame Match can be considered as a more realistic
upper bound (around 90% in our annotation setting). The degree of cross-lingual parallelism
should therefore not be estimated as 30% below the upper bound, but only 15–20%.

A marked difference between the language pairs which we find for frame instance parallelism
is the relation between precision and recall. The English–German bitext shows very similar
precision and recall values, since almost the same number of frames and roles was annotated
for both languages. In contrast, the precision in the English–French bitext is almost 10% lower
than the recall, indicating that not all English frames had counterparts in the French gold
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standard. In fact, the difference in recall corresponds to around 120 French sentences which the
annotators decided to leave unannotated, due to the lack of suitable FrameNet frames.

This difference can be traced back to the differences in the corpus creation procedure for the
two bitexts: the English–French bitext included a considerable number of French sentences in
the corpus whose predicates could not be covered by FrameNet. However, the sample corpora
for the two language pairs are still crucially similar in that the overall frame instance parallelism
is almost equal, even though we should expect a lower result for the English–French both from
the perspective of language similarity and corpus creation. In the following, we will assume
that the two sampling strategies we have employed can be on the whole be disregarded in the
interpretation of quantitative experimental results.

In sum, we conclude that frame instance parallelism holds for the majority of cases, largely
independent of the language pairs and sample corpora we considered. We will therefore
assume frame instance parallelism as a working hypothesis for the purposes of cross-lingual
induction of predicate classifications (Part II) and the cross-lingual induction of semantic
roles (Part III). We will discuss translational shifts, the mechanisms leading to non-parallel
frames, in Section 5.7. In addition, Chapter 8 provides a generalisation of the principle of frame
instance parallelism, which allows us to treat certain cases of individual non-parallel frames as
translationally equivalent.

Role instance parallelism. We find a still higher, and more consistent, degree of parallelism
on the level of semantic roles. In the English–German bitext, 91% of the semantic roles of
matching frames are preserved in the translation process. The English–French bitext shows
almost the same level of parallelism with 88% matching roles.13 The influence of the language
difference is even smaller when we again consider monolingual inter-annotator agreement
(Role Match) as a more realistic upper bound: for both language pairs, agreement on the
cross-lingual dataset is only marginally lower than the agreement on the monolingual dataset.

For roles, there is virtually no difference between precision and recall for either language pair,
which indicates that role mismatches are not linked to general lexicalisation differences between
languages requiring different frame-semantic analyses. Rather, further analysis revealed that
the remaining mismatches are frequently cases of passivisation or infinitival constructions
leading to role elision in one of the languages, like the following:

13Note that in the case of role parallelism, the sampling strategy does not have significant bearing on the dataset,
since role parallelism is only computed on instances with parallel frames.
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(3.2) So I ask that [Ireland]Content be remembered in this particular case.

Ich
I

möchte
would like

deshalb
therefore

darum bitten,
to ask

dass
that

[man]Cognizer

[one]Cognizer

in
in

diesem
this

speziellen
particular

Fall
case

auch
also

[an Irland]Content

[of Ireland]Content

denkt.
thinks.

In this example, English uses a passive construction which leaves the deep subject position
unfilled. In contrast, German uses an active construction where the deep subject position has
to be filled; however, the filler is a semantically light pronoun.

In sum, we find that semantic roles exhibit almost perfect instance-level parallelism. We
consequently adopt role instance parallelism as a working hypothesis as well. This assumption
will be instrumental for the role projection methods developed in Part III, the cross-lingual
induction of semantic roles.

3.4. Summary

In the present chapter, we have discussed the cross-lingual parallelism of linguistic analyses.
In Section 3.1, we have introduced the more detailed categories of concept-level parallelism
(the applicability of linguistic frameworks for the analysis of more than one language) and
instance-level parallelism (the identical analysis of corresponding text in a parallel sentence).
Importantly, we have established that successful annotation projection on any linguistic level
presupposes a substantial degree of instance-level parallelism.

Next, Section 3.2 has analysed the design principles of frame semantics, finding that frames
and semantic roles, which are characterised on the conceptual level, exhibit a high degree
of concept-level parallelism. This has been verified by showing the usability of the English
FrameNet resource for the annotation of corpora in other languages.

To also assess the degree of instance-level parallelism empirically, we have described in
Section 3.3 how a 1000-sentence corpus sample from EUROPARL was annotated with frame-
semantic analyses, i.e., frames and semantic roles. The annotation was carried out in parallel
for three languages (English, French, and German). We found substantial parallelism for both
frames and semantic roles (roughly 70% for frames and 90% for semantic roles) and both
language pairs. This result yields support for the applicability of annotation projection for
frame-semantic analyses.
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4. A Framework for the Projection of
Frame-Semantic Predicate Classes

A frame-semantic predicate classification lists the possible frames for each predicate in a
language. This chapter discusses the induction of such a classification for languages in which it
does not yet exist. We first discuss the usefulness of frame-semantic predicate classifications
(Section 4.1) and possible strategies for their construction (Section 4.2). Next, Section 4.3
presents a data-driven architecture for the cross-lingual induction of frame-semantic predicate
classes which combines cross-lingual annotation projection with a subsequent filtering step. The
architecture specifies two filter types which are aimed at generality and language-independence
by relying mostly on shallow distributional information. We finally develop concrete filters by
analysing the major error sources in the data (Section 4.4).

4.1. Motivation

A frame-semantic predicate classification is a lexicon resource which lists available frames for
predicates (cf. Section 1.4). Frame-semantic predicate classifications form a subset of semantic
predicate classifications, namely those that use FrameNet frames as semantic classes. Other
prominent semantic predicate classifications are, for example, WordNet (Miller, Beckwith, Fell-
baum, Gross, and Miller 1990), whose classes consist of synonymous words, and Levin’s (1993)
verb classification which groups verbs by their alternation behaviour.1 Generally speaking,
the information contained in a semantic predicate classification can be interpreted from two
complementary angles:

• Within predicates, these semantic classes model the set of readings (or senses) of a
predicate. This list forms the basis for almost all current computational approaches to
word sense disambiguation (WSD, see Agirre and Edmonds (2006) for an overview):
WSD is usually modelled as a classification task, in which each reading corresponds to
one target class.

• Across predicates, semantic classes encode semantic properties which all predicates in
the class have in common. This generalisation is often crucial to alleviate the sparse data

1We use the term frame-semantic predicate classification rather than lexicon to indicate that at this stage, we limit
our focus to the (binary) mapping between lexical units and semantic classes. We ignore, for example, frequency
information or information about the syntax-semantics mapping that could be expected from a full-fledged
frame-semantic lexicon.
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Example Frame
He asks [about her health]Topic. Questioning sich erkundigen
He asks [for the jam]Message. Request bitten
He asks himself [if it is true]Content. Cogitation sich fragen

Table 4.1.: Senses, corresponding frames, and German translations of the verb ask

issue that is ubiquitous in empirical lexical semantics, especially when it comes to lexical
relationships. For example, selectional preferences are almost universally represented by
reference to WordNet classes (Resnik 1996); this builds on the hypothesis that all words in
a WordNet class are equally well (or badly) suited to fill one particular argument position.
Similarly, Lapata, Keller, and McDonald (2001) use class-based smoothing to estimate
the plausibility of unseen adjective-noun pairs.

Frame-semantic frames, as semantic classes, express their own particular set of semantic
generalisations, which have been discussed in detail in Section 1.1.1. At this point, we only
reiterate and discuss the two most important roles of a frame-semantic predicate classification
for computational modelling.

The first role is as a resource for shallow semantic parsing (cf. Section 1.2), and in particular
for frame assignment. Recall that there is an interdependence between frame assignment and
role assignment: Different frames introduce different role sets, and the frame assignment for a
particular instance therefore has direct implications on the appropriate role set for the instance.
This is illustrated in Table 4.1, which summarises the FrameNet analysis for the English verb
ask. According to FrameNet, ask can introduce three different frames; for each sense of ask, the
semantic arguments in the example sentences receive a different semantic analysis, i.e. semantic
role label. As a consequence, a comprehensive frame-semantic predicate classification is a
prerequisite for shallow semantic parsing of a new language: unless it is known which frames
can be evoked by a predicate, no analysis is possible.

The second role concerns annotation projection, and thus is especially relevant in the context
of the current thesis. Recall from Section 3.2 that there is no perfect frame instance parallelism
– in other words, not every pair of aligned predicates in a parallel corpus evokes the same frame.
Consider the following example, where the English expression take place introduces the frame
Event, which depicts the enlargement as an Event that is happening without the presence of
a causally involved agent. In contrast, the German translation vornehmen evokes the frame
Intentionally_Act, which implies that the enlargement is an Act performed by some (not
overtly realised) Agent:

(4.1) [An enlargement of the EU]Event is taking place.
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[Eine
[An

Erweiterung
enlargement

der
of the

Union]Act

union]Act

wird
is being

vorgenommen.
enacted.

Such translational shifts will be discussed in detail in Section 5.7; at this point, it should suffice
to point out that role annotations which are projected between non-parallel frames are bound
to be wrong, or at least nonsensical.

This observation suggests a two-step approach for the projection of frame-semantic informa-
tion: first, a frame-semantic predicate classification for the target language is being induced.
This classification can then serve as a filter on the projection of roles by allowing projection
only for pairs of predicate instances evoking the same frame. Note that for this application,
high precision appears to be more crucial than high recall, a point we will return to several
times in the course of this part.

4.2. Constructing Frame-Semantic Predicate Classifications

In the preceding section, we have shown that frame-semantic predicate classifications are a
central resource for the frame-semantic analysis of a language. English is currently the only
language for which a comprehensive frame-semantic predicate classification exists, in the
form of the definitional part of the FrameNet database, i.e. the frames, their definitions and
corresponding predicates. Almost all other languages, in contrast, suffer from resource scarcity
with respect to frame-semantic predicate classifications.

Fortunately, in Section 3.2.1 we have come to the result that the frames themselves (i.e., the
predicate classes) exhibit a large degree of concept-level parallelism, and can therefore, by and
large, serve as semantic classes for other languages as well.2 What is necessary to extend the
frame-semantic paradigm to a new language, therefore, is to assign lexical units of the new
language to the given set of frames. There are, in principle, three approaches to this task.

Manual Lexicography. This is the approach followed by the Spanish and Japanese FrameNet
projects as well as the manual track of the German SALSA project (cf. Section 1.1.1). This
strategy shares the usual benefits and problems of manual resource building: On the one
hand, its results are of a very high quality that cannot usually be obtained by automatic
means. On the other hand, the work has to be repeated for each new language, which is a
long and laborious process.

Automatic Induction. There has been considerable research on learning semantic classifica-
tions “from scratch”. Since semantic properties generally show a weaker correlation with
surface phenomena than e.g., syntactic properties, this has turned out to be a difficult
problem. It is compounded by the vast space of possible semantic generalisations that
might plausibly underlie semantic classes and which are difficult to encode in the form of
priors. Good results have been obtained when the desired semantic properties could be

2Of course, this does not preclude problems with individual frames; cf. Section 3.2.1.
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tied to clear morphosyntactic realisation regularities (Merlo and Stevenson 2001; Schulte
im Walde 2006). In the case of FrameNet, there is one study which has attempted to
“re-induce” FrameNet frames for English (Green, Dorr, and Resnik 2004). See Section 5.5
for a discussion; for the moment, we only note that successful induction required a rather
sophisticated combination of several resources.

Cross-lingual Transfer. The most promising strategy at the present time is to bootstrap the
resource for a new language by transferring the information contained in the FrameNet
resource across languages, that is, from English to the new language. More specifically,
the list of English frame-evoking elements given in FrameNet for each frame is used as
input to some procedure that produces the list of frame-evoking elements of the other
language for that frame. This strategy effectively combines the advantages of both above
approaches: we can produce a resource with high quality, to the extent that the quality
can be retained during transfer. The procedure can also be repeated for several languages
without additional manual cost, provided that it is sufficiently language-independent. We
will thus pursue this strategy.

Cross-lingual transfer of FrameNet information can be effected in a number of ways, which
can be grouped into two broad classes: Data-driven approaches use an unprocessed parallel
corpus or one with shallow linguistic analysis to transfer the information, while resource-driven
approaches use multilingual linguistic resources for the task, such as dictionaries or ontologies.

The only example of a resource-driven approach, to our knowledge, is the study by Fung
and Chen (2004), who construct a Chinese frame-semantic predicate classification by mapping
English FrameNet entries to concepts listed in HowNet, an on-line ontology for Chinese3. The
cross-lingual transfer is performed by using two bilingual dictionaries, with a subsequent
monolingual disambiguation step. Fung and Chen obtain an F-Score of 82% as the final quality
of their induced resource; however, their evaluation was only exemplary, restricted to six
predicates from six frames.

We do not follow this approach for a number of reasons. First, resource-driven approaches
strongly rely on the existence of large-coverage, high-quality language resources. Unfortunately,
large translation dictionaries are not readily available for all languages, and multilingual
ontologies even less so. Second, such resources are usually designed for human readers.
This means that even if they are manually created (and presumably clean), they are prone to
inconsistencies and omissions. A third, related problem is translational ambiguity: bilingual
dictionaries often contain one-to-many correspondences, of which only some translations
are general, while others may only be felicitous in specific contexts. All of these issues are
difficult to resolve automatically, since translational equivalence is rarely quantified in manually
constructed dictionaries.

On the other hand, quantitative information is readily available from parallel corpora, for
example in the form of word alignment probabilities. Therefore, we pursue a data-driven

3See http://www.keenage.com/zhiwang/e_zhiwang.html.
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STATEMENT:        {say}

...                     ...                        ...                                 ...

...                         ...                            ...                         ...

STATEMENT:       {sagen, meinen, beispielsweise} 

says

sagte

said say

meinten beispielsweise

Token level (translation pairs)

Type level (predicate class for 
source language)

Type level (predicate class for 
target  language)

Figure 4.1.: Noisy induction of German FEEs for the frame Statement, using translation pairs
in a parallel corpus for an English FEE of the same frame.

approach. In particular, we adopt an instance of cross-lingual annotation projection (as in-
troduced in Section 1.3): For each known English frame-evoking element, we observe its
translations in a parallel corpus, according to an automatically obtained word alignment. These
translations represent candidates for frame-evoking elements of the same frame in the other
language. The assumption behind this strategy is that word alignment can serve as a proxy for
frame instance parallelism (cf. Section 3.2.2): if a bilingual pair of expressions is found to be
word-aligned in a corpus, it can evoke the same frame.

This assumption is clearly an oversimplification: Due to the polysemy of frame-evoking
elements in the source language, as shown in Table 4.1, not all translations of a source lemma will
be good frame-evoking elements for the same frame. Nevertheless, we retain this assumption
for the moment: It allows us to formulate a baseline model, which can be subsequently refined.
In addition to resulting in a “division of labour”, this strategy allows us to gauge the actual
influence of polysemy-related errors in the FEE projection task.

Projection of frame-evoking elements is illustrated in Figure 4.1. Consider the English frame
Statement, and assume that it has just one frame-evoking element, say. The comprehensive
set of German FEE candidates is given by the set of German lemmas of which at least one
instance is word-aligned to an instance of say. In the figure, the German FEE candidates for
Statement are consequently sagen (say), meinen (say) and beispielsweise (for example).

The major benefit of this data-driven strategy is its ability to deal with low-density languages.
The only kind of data required are parallel corpora, which are much easier to obtain than wide-
coverage resources with a high quality. For example, Resnik and Smith (2003) have developed a
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method for automatically harvesting parallel corpora off the web. We will also show that high-
quality frame-semantic classifications can be obtained solely with shallow linguistic analysis (in
particular, lemmatisation and part-of-speech tags), which are usually among the first analysis
tools developed for any language. A second benefit of the data-driven strategy is the wealth of
linguistic patterns in the corpus: A corpus can provide a frame-semantic lexicon with a wider
range of translations than can be expected from a dictionary. In addition, domain-specific
corpora can be used to obtain frame-evoking elements for these domains, analogously to the
work on word sense by Koeling, McCarthy, and Carroll (2005).

To verify that a data-driven strategy in fact confers advantages over a resource-driven one,
we will compare our data-driven strategy against cross-lingual transfer based on wide-coverage
dictionary resource with high quality in Section 5.4.

4.3. Projection with a Generate-and-filter Strategy

In this section, we describe and define the general architecture which we use for projecting
frame-evoking elements across languages, and introduce the notation we will use to formalise
the projection regime and which is summarised in Table 4.2.

One central observation which can already be made in Figure 4.1 is that projection based
on word alignment links is evidently imperfect: not all of the German FEE candidates which
we have obtained for Statement can actually evoke the frame. In particular, beispielsweise
(for example) is not a Statement expression. In the general case, such errors can arise from
three main sources: noise in word alignments, polysemy of frame-evoking elements (briefly
mentioned above), and translational shifts leading to frame instance non-parallelism. These
error sources will be discussed in detail in Section 4.4.

To address this problem, we used a generate-and-filter approach: In a first generation step, we
transfer frame annotations across word alignment links in a parallel corpus to generate a noisy,
but comprehensive list of target language FEE candidates for each frame. More specifically, each
word in the target language which has been seen at least once as translation of a frame-evoking
element for a frame is considered as FEE candidate for this frame. In a second filtering step,
we then compute different statistics over the corpus which allow us to sort out unreliable
candidates to obtain a high-precision lexicon.

Such a generate-and-filter approach makes optimal use of the parallel corpus as a source of
linguistic information: In the generation step, we exploit the large amount of lexical variation
present in the different translations of the parallel corpus. In the filtering step, we take advantage
of the local and distributional patterns of translation pairs in the corpus.

The result we obtain is a very clean, but possibly small, seed lexicon for the target language.
Our rationale for optimising precision over recall is that high precision seed lexicons can
be extended with the help of monolingual resources, which are usually more plentiful than
multilingual ones; on the other hand, improving the quality of a large, noisy semantic lexicon is
a difficult task. In addition, we will show that even this precision-oriented strategy will retain a
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ls ∈ Ls, lt ∈ Lt lemmas (word types) of source and target lan-
guage

is ∈ Is, it ∈ It instances (word tokens) of source and target
language

f ∈ F frame in FrameNet
is  1 it is and it are one-to-one aligned
tp(is, it, f) is and it form a translation pair for f

fee(f, ls) ls is a known FEE for f

wsd(f, is) f is the disambiguated frame for instance is
cont(l) l is a content word (adjective, noun, or verb)
cand(lt, f) lt is a FEE candidate for f

lemma : (Is ∪ It) → (Ls ∪ Lt) Function assigning a lemma to an instance
insts : (Ls ∪ Lt) → 2(Is∪It) Function assigning the set of instances to a

lemma
p : Ls × Lt × F → [0; 1] translation pair probability
fi : Ls × Lt × F → B instance-level filter
fl : Lt × F× (Ls × Lt × F → [0; 1]) → B lemma-level filter

Table 4.2.: Notation overview for Chapter 4

usable recall level, even without further generalisation.

4.3.1. The Generation Step

The goal of the generation step is to produce a list of FEE candidates for the target language. In
the strategy we outlined above, this actually involves two different levels, namely lemmas and
instances. This can be illustrated on Figure 4.1: Both predicate classifications (for the source
and target languages) are located on the lemma level in that they map semantic classes to
lemmas. The annotation projection, on the other hand, is driven by word alignment links on
the level of individual instances. On the target side, then, the instances have to be mapped onto
lemmas again.4

As a consequence, the central unit of observation in the parallel corpus will is located at the
instance level, namely the translation pair. A translation pair is a triple of a source instance,

4This is not the only possibility to exploit word alignment information: we could also have used the weighted
correspondences present in the model’s translation table, i.e. on the lemma level. However, by taking local
context into account, instance alignments are a richer source of information and do not involve setting thresholds
to separate genuine alignments from spurious ones as would be necessary for using the translation table. In
addition, the presence of both the instance and the lemma levels will allow us to formulate powerful filtering
mechanisms in Section 4.4 (see there).
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a target instance, and a frame, where the source instance is an instance of a word which can
evoke the frame. For example, Figure 4.1 contains three translation pairs, all for the frame
Statement, the first one being (says,sagte,Statement). We define translation pairs formally
as follows (the notation is summarised in Table 4.2):

tp(is, it, f) ≡ ((is  1 it) ∧ fee(f, lemma(is))) (4.2)

On the level of lemmas, on the other hand, what we are interested in is the joint probability that
some target lemma lt is a translation of a source lemma ls for a given frame f. We also call lt
the candidate, and ls the support. For example, in Figure 4.1 the lemma say is a support for
the candidate meinen for the frame Statement. We obtain this translation pair probability by
simple maximum likelihood estimation (see e.g., Manning and Schütze (1999)) as the relative
frequency of this specific translation pairs compared to all observed translation pairs:

p(ls, lt, f) =
|{tp(is, it, f) | is ∈ insts(ls) ∧ it ∈ insts(lt)}|

|{tp(is, it, f)}|
(4.3)

The formulation of the translation pair probability as a joint probability makes it possible
to describe many interesting properties of the translation process by marginalisation. For
example, we can express the candidate probability that a target lemma lt is an FEE of frame f

simply as follows:

p(f|lt) =
p(f, lt)

p(lt)
=

∑
ls

p(ls, lt, f)∑
ls

∑
f ′ p(ls, lt, f ′)

(4.4)

Since the example in Figure 4.1 is simplified in that it uses only one frame, the candidate
probability of Statement for all target-language candidates is one. Generally, we can specify
our initial, unfiltered list of FEE candidates for a frame f as the set of all candidates with
non-zero candidate probability for f (i.e., candidates for which we have observed at least one
translation pair for f):

cand(t, lt) ≡ (p(f|lt) > 0) (4.5)

In Figure 4.1, all three German candidates sagen, meinen, and beispielsweise are therefore
candidates for Statement.

4.3.2. The Filtering Step

This section provides a modular framework for the filtering procedures which are suited to
prune the FEE candidate list obtained from the generation step. The description of the actual
filters we have used is deferred to Section 4.4 and is preceded by a detailed review of the error
sources we observed in the parallel corpus, and which motivate the filters.

In order to reap the benefits of the data-driven strategy discussed above, our filtering frame-
work has to be as language-independent as possible; in particular, it has to be applicable to
low-density languages for which language resources are scarce. This requirement precludes the
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use of “deep” linguistic analyses. Instead, we will base our filters shallow lexical information,
namely part-of-speech tags and lemmatisation (recall also the discussion in Section 4.2). This
knowledge-poor setting has clear implications on the architecture of our filtering procedures:
In the absence of detailed linguistic cues, filtering has to proceed mainly on the basis of patterns
in the corpus which are likely to correspond to frame-preserving translations. Our general
approach can thus be characterised as knowledge-lean.

Naturally, both the instance level and the lemma level introduced above can yield such
patterns, and we will therefore introduce two kinds of filters, one for each level of information.
Instance-level filters perform local filtering, accepting or rejecting translation pairs based on
properties of the aligned tokens, or the frame involved. Lemma-level filters exploit distri-
butional properties of candidates. We define both kinds of filters as additional conjunctive
constraints on definitions from the generation step, which makes it possible to combine filters
in a modular manner.

An instance-level filter is a binary predicate which takes a translation pair as input (a support,
a candidate, and a frame). It evaluates to true if the translation pair is likely to be frame-
preserving, according to its filtering criterion. This filtering step is integrated with the creation
of translation pairs: We extend Equation (4.2) with a set of instance-level filters Fi, marked in
boldface in the equation below. Instance-level filtering thus results in a smaller set of translation
pairs, namely those for which all filters evaluate to true.

tp(is, it, f, F
i) ≡ is  1 it ∧ fee(f, lemma(is)) ∧

∧
fi∈Fi

fi(si, tj, f) (4.6)

On the lemma level we extend the definition of the binary candidate predicate cand (Equa-
tion (4.5)). The definition now involves a set of lemma-level filters Fl, again marked in boldface.
The input to the lemma-level filters is a candidate, a frame, and the translation pair probability
distribution, which can be seen as a function assigning probabilities to translation pairs. As ar-
gued above, this function contains all relevant information about distributional characteristics
of candidates and supports in the corpus. Lemma-level filtering thus reduces the set of final
FEE candidates to those whose distribution in the corpus meets the requirements imposed by
the lemma-level filters.

cand(lt, f, F
l) ≡ (p(f|lt) > 0) ∧

∧
fl∈Fl

fl(lt, f, p) (4.7)

4.4. Error Sources and Filtering Procedures

In this section, we first discuss the different error sources resulting from the generation step
which can be found in the FEE candidate list. This allows us to develop filtering procedures
which specifically address these error sources by identifying the statistical regularities by which
errors from these sources can be recognised.
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4.4.1. Sources of Errors

The architecture for frame projection we have developed in this chapter contains three main
sources of erroneous FEE candidates: polysemy in the source data, noise in the word alignment,
and frame instance non-parallelism in the translation.5

Polysemy of frame-evoking elements. The first source of errors is the polysemy of source
language lemmas with respect to frames, which has been briefly mentioned in Section 4.3.
Recall the case of ask, whose three frames are listed in Table 4.1 (page 54). Since Equation (4.2)
does not include a disambiguation step for individual instances, all instances of ask together
with their translations form translation pairs for each of these frames. Clearly, this leads to
erroneous FEE candidates, since different senses of source language FEEs are likely to have
different translations. For example, the German verb bitten can only be used in the Request
sense of ask; however, in the unfiltered list produced in the generation step, it will be listed as
FEE candidate for Questioning and Cogitation as well.

Polysemy is especially problematic for high-frequency predicates, which tend to be more
polysemous than low-frequency ones (Miller et al. 1990) and often participate in idiosyncratic or
only partly compositional constructions such as support constructions or metaphors (Burchardt
et al. 2006b). The erroneous candidate beispielsweise from Fig. 4.1 is actually such a case,
stemming from an infrequent corpus occurrence of say as apposition:

(4.8) Taking account of, say, economic, geographical and social criteria will lead to a blurring
of these clear criteria.

Die
The

Berücksichtigung
consideration

von
of

beispielsweise
for example

wirtschaftlichen,
economic,

geographischen
geographic,

und
and

sozialen
social

Kriterien
criteria

wird
will

zu
to

einer
a

Verwischung
blurring

dieser
of these

nachvollziehbaren
comprehensible

Kriterien
criteria

führen.
lead.

Errors in statistical word alignment. Spurious and missing links in the automatically
induced word alignment are another source of errors. This category is somewhat difficult
to characterise, since a large number of linguistic phenomena can result in errors in word
alignments. We will concentrate on the two main systematic shortcomings of the statistical
word alignment models which we assume in this thesis (cf. Section 2.2). Recall that these
models establish word alignments primarily by observing the co-occurrence frequency of
all cross-lingual word pairs in a large corpus. They then establish links between the most
frequently co-occurring words, taking a limited context into account.

5We identified these error sources on the basis of the English-German and English-French EUROPARL bitexts.
On the qualitative level, there was little difference between the two language pairs. Detailed quantitative
comparisons follow in Chapter 5.
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The first problem of this strategy arises from frequent monolingual co-occurrences, so-called
indirect correspondences (Melamed 1996), which often lead to misalignments, especially for
infrequent words. Consider the following example: the English verb increase often cross-
lingually co-occurs with the German noun Anstieg (increase). However, German Anstieg forms
a collocation with plötzlicher (sudden); therefore, plötzlicher also tends to co-occur with English
increase. As a result, the alignment algorithm cannot decide well whether to align increase to
plötzlicher or Anstieg. Similar patterns arise from collocations between verbs and prepositions,
e.g., the frequent German phrase darum bitten, dass (to ask that).

The second shortcoming is that statistical word alignment models are best suited to account
for alignments between individual words, i.e. one-to-one alignments. State-of-the-art models
have the expressive power to model one-to-many relations as well; but one-to-many alignments
are only chosen if the corpus evidence is strong enough to overcome the bias towards one-to-one
alignments, and, at least according to our experience, the resulting one-to-many alignments are
generally of mixed quality. On the other hand, the translations of a large number of linguistic
phenomena requires one-to-many or even many-to-many alignments to be modelled correctly.
This comprises cases like noun compounds in German (e.g., Reisekosten) which correspond to
two English words (travel expenses), but also the complete area of multi-word expressions. To
name just two subclasses, support verb constructions such as eine Entscheidung treffen (to make
a decision) can be translated either as single verbs (to decide), or again as light verb expressions
(to make a decision). Similarly, idioms usually require many-to-many alignments: kick the
bucket can only be translated as a whole into den Löffel abgeben (to hand over the spoon); no
translational correspondences can be established on the level of individual words. On the
technical level, the computation of one-to-many word alignments is made more difficult by the
fact that the individual parts of multi-word expressions usually have very high monolingual
co-occurrence frequencies, which gives rise to the indirect correspondence problem introduced
above. Thus, the resulting word alignment is often inconsistent across instances: for example,
English decide can be found to be aligned to either Entscheidung and treffen individually, or
even to both.

Frame instance non-parallelism. The third error source are cases of frame-instance non-
parallelism. These are cases of translation pairs where the support is used in the right sense,
evoking the frame in question, and where the word alignment link is correct; however, the FEE
candidate in the target language cannot evoke the frame. We have already discussed such a
case (Example (4.1)) in Section 4.1 (Page 54)). Such instances arise through translational shifts
on the semantic level, i.e., translations which do not preserve the frame-semantic class of the
source predicate. Such “non-literal” translations will be discussed in detail in Section 5.7. The
most relevant points for the present discussion are that a clean semantic lexicon for the target
language needs to filter out instances of semantic translational shifts as far as possible. This is
a difficult task, though, since these cases do not form a uniform pattern, but range from the
systematic to the highly idiosyncratic and productive.
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4.4.2. Filtering Mechanisms

In Section 4.3, we have stated the general framework for the filtering step: In order to be as
language-independent as possible, filters should be informed primarily by shallow linguistic
and distributional cues. In this section, we exploit the analysis of error sources presented in the
last section to define filters within this framework. Not surprisingly, some error sources can be
addressed best by filtering on the instance level, while others are amenable to filtering on the
lemma level.

Instance-level filters

We start with instance-level filters, which rely on properties of individual translation pairs.6

Instance-level filter 1: Restriction to content words (POS). This filter simply constrains
the grammatical category of FEE candidates by discarding translation pairs whose target token
is not a content word (a verb, noun, or adjective):

fi
POS(is, it, f) ≡ cont(lemma(it)) (4.9)

In this manner, the filter addresses target language collocations of a content word and a function
word, an important subset of cases of indirect correspondence. Examples are noun-preposition
(fragen nach (ask for)) and noun-adverb (plötzlicher Anstieg (sudden increase)) collocations.
Since the English FrameNet lists almost exclusively content words as frame-evoking elements,
we assume that this coverage is sufficient at least for related target languages. Infrequently,
English FEEs are translated felicitously as adverbials or prepositions. However, it is currently
an open research question whether prepositions or adverbials can be said to have an argument
structure (similar to most content words), and whether they can therefore be analysed in
frame-semantic terms (see Saint-Dizier (2005) for an affirmative account).

Instance-level filter 2: Bidirectional alignment (BD). The second filter targets the level
of word alignment links themselves. As we have discussed in Section 2.2, state-of-the-art
word alignment models are directed, i.e., asymmetric. It is therefore standard practice in
statistical machine translation to obtain a bidirectional alignment by taking the intersection of
the target–source and source–target alignments. Such a bidirectional alignment contains only
reliable one-to-one correspondences that occur in both word alignment. Since the the standard
definition of translation pairs (Equation (4.2)) already requires the two words to be aligned in
the source–target direction, we can enforce bidirectional alignment simply by requiring the
link to hold in the inverse alignment as well:

fi
BD(is, it, f) ≡ it  1 is (4.10)

6Each filter is given a two- or three-letter shorthand which will be used in Chapter 5 to refer to its definition.
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Bidirectional alignment can be expected to address the problem of multi-word expressions, at
least to some extent. The fact that multi-word expressions can generally only be aligned in part,
often results in an empty bidirectional alignment for the participating words. This effectively
removes incomplete multi-word expressions from the set of FEE candidates.

Instance-level filter 3: Frame disambiguation (FrD). The third filter addresses the prob-
lem of frame polysemy by performing frame disambiguation for each instance:

fi
FrD(is, it, f) ≡ wsd(f, is) (4.11)

This reduces the set of translation pairs for each frame to those instances which actually evoke
the frame, according to the disambiguation model.

Lemma-level filters

Now we turn to lemma-level filters, whose input is the translation pair probability distribution
p over candidate lemmas and frames. Recall from above that other probability distributions
can be computed from the translation pair probability by marginalisation (e.g. the candidate
probability, see Equation (4.4)).

Lemma-level filter 1: Predominant frame (PrF). This filter is a heuristic approximation
of Instance filter 3 (FrD): It assigns each instance of a candidate the same frame, namely the
most frequent one. On the technical level, for each candidate the filter evaluates to true only for
the frame with the highest candidate probability, thereby removing the candidate for all other
frames.

fl
PrF(lt, f, p) ≡ (f = argmax

f ′
p(f ′|lt)) (4.12)

This strategy is known as the predominant sense heuristic (McCarthy et al. 2004). Its results
are clearly an approximation, since target language words can also be polysemous, and should
therefore be listed for more than one frame. However, work on word sense disambiguation
has shown that this heuristic is surprisingly hard, and sometimes impossible, to beat by more
informed methods. Therefore, it is worthwhile to compare the results of using the heuristic to
solving the complete task.

Lemma-level filter 2: Translational consistency (Ent). Melamed (1997) has proposed a
measure of translational (in-)consistency based on information theory. Translational consis-
tency is defined for every target word as the entropy of the conditional translation probability
distribution p(s|t) over all aligned source words, given the target word.7 The entropy of a
probability distribution ranges between zero and infinity, with zero signifying that the complete

7The conditional probability distribution can also be computed from the basic translation pair probability,
analogously to the candidate probability.
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probability mass is concentrated on a single event, and higher values that the mass is distributed
across more events. The use of entropy captures the intuition that consistent translations will
lead to a concentration of the probability mass on a few source words, resulting in low en-
tropy values. Reliable translations can thus be enforced by keeping only FEE candidates whose
entropy is below some threshold n:

fl
Ent(lt, f, p) ≡ (−

∑
ls

[p(ls|lt) log p(ls|lt)] < n) (4.13)

Translational consistency is a general-purpose filter which attempts to remove chance errors by
detecting rare patterns, which are assumed to be unreliable. This filter should have an impact
on word alignment errors, and particularly multi-word errors, by systematically dispreferring
target predicates with inconsistent alignment links. More importantly, though, it should
have a bearing on frame instance non-parallelism, which is the most difficult error source to
detect, and which has not been addressed by the other filters so far. Our hypothesis here is
that translational divergence, a result of contextual factors forcing the translator to choose
a different surface realisation, will lead to increased variance in translation, which can be
detected by the consistency filter.

Lemma-level filter 3: Frame-based translational consistency (FrEnt). One shortcoming
of Melamed’s definition in our setting is that it does not take frame information into account by
measuring consistency on the word level, and not on the frame level. As an example, consider
the translation of German versprechen (promise). If it is translated as vow or promise, both of
which evoke the Commitment frame, we still want to assign versprechen a high consistency
(low entropy) for the Commitment frame. If, on the other hand, versprechen is translated
as vow, say, or answer, this indicates that versprechen does not always evoke a Commitment
situation.

To better capture this intuition, we propose an alternative, frame-based definition of transla-
tional consistency, which does not measure the lexical variation of a target lemma (i.e., how
many source words it corresponds to), but the semantic class variation (i.e., how many frames
it corresponds to). To do so, we collapse all known FEEs of the current frame into one “meta-
word” (e.g., for Commitment, all FEEs in Table 1.1 on Page 8 are treated as a single word). The
results in the intended behaviour, namely that within-frame variance does not increase the
entropy, but that across-frame variance does. In Equation (4.14), the term in the first line is the
entropy of the event that the candidate t corresponds to one of the source language FEE for the
frame f; the term in the second line accounts for all other translations, treated as single events.
As before, we retain only FEE candidates if the entropy lies below a threshold n:

fl
FrEnt(lt, f, p) ≡ ( − [

∑
fee(f,ls)

p(ls|lt) log
∑

fee(f,ls)

p(ls|lt) ]

−
∑

¬fee(f,ls)

[p(ls|lt) log p(ls|lt)] < n)
(4.14)
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The impact of frame-based entropy filtering on error types should be similar to basic entropy
filtering, but more effective due to the improved ranking criterion.

4.5. Summary

In this chapter, we have presented the problem of inducing frame-semantic predicate classi-
fications for new languages (Sections 4.1 and 4.2). When comparable resources are available
for other languages, the induction can be phrased as a cross-lingual transfer task, for which
two main strategies are available: resource-based transfer (using e.g. bilingual dictionaries)
and data-driven transfer (using bilingual corpora). We have adopted the data-driven approach,
whose main advantages are lower prerequisites for new language pairs (only bilingual corpora
are necessary), the presence of variation in translation which leads to a high-recall classification
for the target language, and the availability of rich quantitative information as a basis for
judging the confidence of translation pairs.

The second part of the chapter (Sections 4.3 and 4.4) has introduced and discussed our data-
driven framework for the cross-lingual transfer of frame-semantic predicate classifications.
The framework consists of two steps: in the first step, generation, automatically constructed
word alignments are interpreted as indicators of frame-semantic parallelism to produce a com-
prehensive, but noisy, set of candidates for frame-evoking elements in the new language. The
second step, filtering, removes spurious candidates by general, largely language-independent
filtering mechanisms that rely mostly on shallow distributional information. Concrete filters
were developed by analysing the major error types in the data.
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5. Experimental Evaluation

In this chapter, we provide an experimental evaluation of the framework developed in Chapter 4
by inducing frame-semantic predicate classes for two different target languages, French and
German, on the basis of the EUROPARL corpus. We establish that our filtering framework can
be used to construct such classes with a high degree of precision.

We begin by detailing our general experimental setup (Section 5.1), followed by the actual
evaluation experiments for the language pairs English–German (Section 5.2) and English–
French (Section 5.3). After presenting a short comparative study on resource-based projection
(Section 5.4) and an overview of related work (Section 5.5), we give a general discussion of
our experimental results (Section 5.6). The chapter concludes with an analysis of the most
important remaining conceptual problem, namely translational shifts that break frame instance
parallelism.

5.1. Experimental Setup

The logic of our experiments followed the two steps of the cross-lingual induction architecture
developed in Chapter 4. We performed two experiments whose only difference is the language
pair: Experiment 1 considered the language pair English–German, and Experiment 2 the
language pair English–French. Otherwise, both experiments followed the same design:

• We first ran the generation step to acquire an initial, unfiltered list of FEE candidates for
each target language. Since the generation step did not involve any parameters, we did
not consider it as part of the experiment itself; it can rather be seen as a preprocessing
step. From the resulting unfiltered list, we drew a sample of frames for evaluation. The
FEE candidates for the sample frames were annotated manually as correct or erroneous,
and formed our gold standard.

• The subsequent filtering step formed our experiment proper. It consisted of applying
different filter combinations to the unfiltered candidate list and evaluating the filters’
output for the sample frames against the gold standard.

5.1.1. The Generation Step

As datasets, we used the English-French and English-German EUROPARL bitexts whose prepro-
cessing was described in Chapter 2. Since the present task does not require “deep” processing,
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DE Band TP FNr AvgC
High > 7836 159 199.7
Medium < 7836 159 64.7
Low < 959 158 12.6

FR Band TP FNr AvgC
High > 9528 163 203.0
Medium < 9528 163 56.6
Low < 1277 162 11.3

Table 5.1.: Frame frequency bands (TP: translation pair instances; FNr: number of frames; AvgC:
average number of candidate FEEs per frame)

we use the larger Bitext 1 for this experiment. Bitext 1 contains word alignments, part-of-speech
and lemma information, and consists of roughly one million bi-sentences for each language
pair (see Section 2.3 for details).1

The generation step then consisted in constructing lists of FEE candidates for German and
French as follows: We extracted all translation pairs which involved a frame-evoking element
described in the English FrameNet resource (release 1.1) from the parallel corpus. Their one-to-
one aligned translations in the target language formed our initial candidate list. We did not use
any filtering at this stage apart from applying a simple frequency threshold: We disregarded all
translation pairs for which we observed less than five instances in the corpus. This is standard
practice in empirical modelling to rule out sparse, and therefore unreliable, observations.

5.1.2. Construction of Sample Gold Standard Classifications

Drawing a sample. The unfiltered lists of FEE candidates that resulted from the generation
step contained over 44,000 candidates for each language, clearly too much for a complete
manual annotation. Therefore, we drew a representative sample from this population as follows:
To investigate how our approach performed across a range of frames with varying frequencies,
we split the set of frames into three equal-sized bands, based on the number of translation pair
instances per frame in the corpus. For each of the resulting bands for German (DE) and French
(FR), Table 5.1 shows the number of translation pairs (TP), the number of frames in the band
(FNr), and the average number of FEE candidates per frame (AvgC) in each band. We randomly
selected five frames from each band while ensuring that frames fell into the same bands in
French and German. This made our samples from the two language pairs as comparable as
possible, and allowed us to draw contrastive conclusions. The selected frames are shown in
Table 5.2, together with the total number of initial (unfiltered) FEE candidates for each band.

A number of additional observations can be made in Table 5.1. First, the EN–FR data covers

1The information included in Bitext 1 is sufficient to apply all filters except Token filter 3, the Frame disambiguation
filter. This filter requires frame disambiguation for each English predicate. We employed Erk’s (2005) frame
disambiguation system for this task. It is, to our knowledge, the only available standalone frame disambiguation
system, and is described in Section 1.2.
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Band Frames # Cands (DE) # Cands (FR)
High Cause_change_of_scalar_position, Com-

munication_response, Deciding, Giving,
Preventing

828 799

Medium Employing, Evaluative_comparison, Judg-
ment_communication, Sensation, Travel

366 347

Low Adding_up, Congregating, Escaping, Re-
covery, Suspiciousness

84 68

Sum 1278 1214

Table 5.2.: Frames from different frequency bands selected for evaluation, with total number of
unfiltered candidates for German and French

12 frames more than the EN–DE data. Closer analysis revealed that these are all “marginal”
frames with just one English frame-evoking element, which did not happen to be involved in
any translation pair in the EN–DE corpus. Note also that the EN–FR dataset generally contains
a higher number of translation pairs than the EN–DE dataset, while the average number of
candidates is about the same. The main reason for this pattern is the slightly larger size of the
English-French bitext. The second important factor is word order, which differs more between
English and German than between English and French, especially with regard to the position of
the predicate: Declarative sentences, which make up the vast majority, are (almost exclusively)
verb-second in English and French, while German makes a difference between main clauses,
which are verb-second as well, and embedded clauses, which are verb-final. Current statistical
word alignment models, which reward similar positions of translation candidates within their
respective sentences, tend to run into problems aligning predicates at differing positions. This
results in a sparser word alignment for the EN–DE dataset compared with the EN–FR dataset,
which notably leaves more English predicates, potential FEEs, unaligned.

Annotation scheme. All FEE candidates from the sample (a total of 1278 candidates for
German and 1214 for French) were annotated for correctness by two annotators. Annotators
tagged one FEE candidate at a time, but were able to see and revisit earlier annotation decisions.
They based their decisions on the candidate itself, and on its list of English supports (cf.
Section 4.3). We also provided bilingual concordances for candidate-support translation pairs
from EUROPARL to furnish some typical context.

The annotation scheme was defined by detailed English annotation guidelines. These opera-
tionalised the main annotation criteria, gave illustrative examples, and discussed borderline
cases. They are provided in Appendix A.

In addition to the fundamental classification of the candidates as either correct or spurious,
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we asked annotators to subdivide spurious cases into three errors classes: polysemy errors (P),
multi-word errors (M), and remaining errors (noise) (N). Polysemy errors are cases where the
candidate is a valid translation of the support, but for a different sense (i.e., frame). Multi-word
errors are cases where either candidate or support form part of a multi-word expression which
breaks the translational equivalence between the individual words. The Noise category covers
all remaining errors.

The aim of the error classification was to obtain a more detailed picture of the success of our
different filtering procedures in removing the errors they were designed for. Note, however,
the error annotation is necessarily based on distinctions which could be made easily and
reliably by the annotators. It therefore differs somewhat from the error classification given in
Section 4.4.1, which categorises errors by error sources. The error class P corresponds directly
to the polysemy errors in Section 4.4.1; error class M is a subset of the errors in statistical word
alignment introduced there; errors from class N, however, are either alignment errors or cases
of frame instance non-parallelism. The distinction between these two classes is a very difficult
one to draw, touching on the general problem of the appropriateness of claiming that two words
are translationally equivalent, and can often only be made in particular contexts.

Annotation process and reliability. The FEE candidates for each language pair were anno-
tated independently by two graduate students. Both annotators were native in one language and
had very good competence in the other. They were also familiar with FrameNet. Annotation
speed was between 100 and 200 instances per hour, using a simple text editor-based setup. After
annotation was finished, we computed inter-annotator agreement by a pairwise comparison of
the annotated categories. We computed both raw agreement, and κ, a chance-corrected measure
of agreement (Carletta 1996). We found an agreement of 85% (κ =0.79) for English–German
and 84% (κ =0.78) for English–French. The remaining disagreements were discussed, and a
gold standard was created by consensus.

These agreement numbers demonstrate good reliability, reflecting that the task is well-
defined and the output can be given a meaningful interpretation. More generally, this suggests
that a generate-and-filter approach can also be reasonably integrated into a more elaborate
workflow, e.g., by adding a subsequent manual verification step.

5.1.3. Experimental Method

Evaluation strategy and the precision-recall tradeoff. As indicated above, the experi-
ment itself consists in filtering the initial set of FEE candidates. By applying different filter
combinations, we explore the precision-recall tradeoff : With more filtering, the resulting re-
sulting list of FEE candidates is bound to be cleaner, but also smaller. This is not necessarily a
problem, since our aim is to induce a high-precision seed lexicon (cf. Section 4.3). However, the
seed lexicon must retain a substantial size to be amenable to monolingual extension methods;
we will discuss this point below.
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On the technical level, combining filters is trivial, since all filters are defined as conjunctive
constraints either on translation pairs (Eq. (4.6)) or on candidates (Eq. (4.7)). Therefore, the
result of any filter combination will be a subset of the initial candidate list. This means that any
filtered lists can be evaluated against the manually annotated gold standard.

Recall from Chapter 4 that all filters are parameter-free binary filters, with the exception
of the entropy-based translational consistency filters. These impose a linear order on FEE
candidates and thus use a threshold that determines which candidates to accept. To minimise
the number of times the threshold parameter has to be set, we first consider all binary filters
to identify the optimal combination of binary filters in terms of F-Score. We then apply the
consistency filter in the following form: we rank the candidates according to their consistency
and keep only the top n candidates. These n-best lists can be evaluated as before.

Type- vs. Token-based evaluation. There are two possible counting regimes for the evalu-
ation: by type or by token. Evaluation by type is based on the number of correct candidates,
and is therefore mainly a quality measure in terms of the vocabulary, while evaluation by token
measures the ability to cover words in running text. While type-based evaluation is arguably a
more useful statistic for predicate classifications, token-based evaluation can complement the
picture by including the effect of word frequency. Therefore, we provide the basic evaluation
(binary filters) additionally on the token level. However, if no level is explicitly mentioned,
evaluation figures always refer to the type level.

Evaluation measures. We use the standard quality measures from Information Retrieval,
namely precision, recall, and F-Score (see for example Baeza-Yates and Ribeiro-Neto (1999)).
We assess whether differences in F-Score are statistically significant using stratified shuffling
(Noreen 1989), an instance of assumption-free approximative randomisation testing (see Yeh
(2000) for a discussion). Note that we define recall with respect to the unfiltered list: a recall of
100% corresponds to the retrieval of all true positives in the gold standard.2

As stated above, the translational consistency filter uses a threshold parameter which allows
different settings. We also provide an overall assessment of the filter’s quality by computing
mean average precision (map). This statistic is applicable to any retrieval model that ranks its
returned candidates so that only the top N candidates can be considered. For each possible
value of N, it computes the precision of the top-n list, and returns the average:

map =

∑n
r=1 Precision(r)

n

By considering top-n lists for increasing n, mean average precision rewards assigning good
candidates high ranks.

2This manner of computing recall provides an accurate comparison of the different filters within the generate-and-
filter paradigm. A more comprehensive evaluation of recall against the complete target language would be more
informative, but would require the exhaustive annotation of a sample of free text from the target language. Such
an evaluation was outside the scope of the present study.
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Model Recall Precision F-Score %P %M %N
NoF (baseline) 100 35.2 52.0 30 9 24

POS 98.0 40.2 57.0 33 10 14
BD 70.2 47.1 56.4 36 4 11
FrD 79.7 34.8 48.4 31 10 21
PrF 49.7 56.7 53.0 21 16 3

POS FrD 77.7 39.5 52.4 34 11 13
BD POS 68.4 50.0 57.8 37 4 7
BD POS FrD 54.0 49.5 51.7 37 4 7
BD POS PrF 36.0 68.3 47.1 24 4 2

Table 5.3.: English–German: Type-based evaluation of binary filters and relative frequency of
error classes (100% = all candidate types)

In addition to these quality measures, we break down the false positive FEEs in terms of
polysemy (P), multiword (M), and noise (N) errors. For each filter combination, the error
percentages plus the precision (i.e., the percentage of true positives) sum to 100%, i.e. all
candidates of that condition.

5.2. Experiment 1: Language pair English–German

The quality of the induced lexicon for German prior to and following binary filtering is sum-
marised in Table 5.3 in terms of types, and Table 5.4 in terms of tokens.

The unfiltered list (NoF) has a recall of 1.0 (by definition), and a precision of 0.35 (0.69 on
the token level, which corresponds well to the token-based frame parallelism numbers we
identified in Section 3.3). These already substantial precision numbers indicate that the general
approach of inducing frame-semantic predicate classifications from parallel corpora is in fact
promising: The performance of the NoF baseline is 52% F-Score (82% F-Score for tokens).
However, filtering is still clearly necessary: In the unfiltered list, two thirds of the unfiltered FEE
candidate types, or one third of the unfiltered FEE tokens, are still false positives and cannot
evoke the frame they are listed under.

5.2.1. Binary Filters

We first assessed the impact of the individual filters on the list of FEE candidates. The part-of-
speech filter (POS) affects recall only marginally, but filters out a number of false positives. This
leads to an improvement of 5% F-Score (3.6% F-Score for tokens). This filter was designed to
remove spurious links resulting from indirect alignments, and it fulfills its task: The percentage
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Model Recall Precision F-Score %P %M %N
NoF (baseline) 100 69.0 81.6 19 4 8

POS 99.0 74.8 85.2 18 4 3
BD 97.8 72.7 83.4 19 3 5
FrD 96.5 70.4 81.4 19 4 7
PrF 67.5 84.9 75.2 11 3 1

POS FrD 95.5 75.9 84.6 17 4 3
BD POS 96.8 77.7 86.2 18 2 2
BD POS FrD 90.3 78.0 83.7 17 3 2
BD POS PrF 65.5 89.3 75.6 8 2 1

Table 5.4.: English–German: Token-based evaluation of binary filters and relative frequency of
error types (100% = all candidate tokens)

of N-type errors is reduced from 24% to 14% (8% to 3% for tokens). The slight increase in
P-type and M-type errors for tokens does not signify the introduction additional errors. It
reflects the stronger decrease of true positives compared to the remaining errors.

The bidirectional filter (BD) leads to a stronger decrease in recall, but also a corresponding
increase in precision, with a net gain of 4% F-Score (2% on the token level). Our design
hypothesis about the BD filter was that it should retain only reliable one-to-one word alignment
correspondences. This is confirmed in the data: Both M-type errors, which result from one-to-
many correspondences and N-type errors, are reduced – in the case of types, to less than half
their original number. A comparison of the type-based and token-based evaluations reveals
that the filter is even somewhat overzealous: The recall loss is much more pronounced in the
type-based evaluation (30%, vs. 2% for tokens), which indicates the existence of a group of
low-frequency true positives that are erroneously removed after being aligned differently in
the two directions. Problems with low-frequency items are a typical shortcoming of statistical
word alignment models.

The next filter, frame disambiguation (FrD), was created to address the polysemy problem (P-
type errors). Unfortunately, its results are disappointing: the precision can hardly be improved,
and for types, recall drops significantly by 20%. The result is an even slightly lower F-Score.
The hardly changed relative frequencies of the errors types show that FrD fails to address the
task at hand, namely deciding between frame-preserving and frame-changing FEE candidates.

The predominant frame filter (PrF) should address the same problem, and does so to a
certain extent, reducing the number of both polysemy and noise errors. The precision is thus at
its highest level for all individual filters at 57% (85% for tokens), however at the expense of a
sharp drop in recall. For types, the overall result is still positive – the F-Score increases by 1% –
however, for tokens, the F-Score drops by 6%.
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The lower portions of the tables show the most informative combinations of binary filters.
The first row (POS FrD) shows that combining FrD with other filters does not yield better results:
The loss in recall of POS FrD, compared with POS alone, leads to a worse overall result. The
second row shows the best filter combination both for type-based and token-based evaluation,
namely BD POS. Evidently, BD and POS apply somewhat orthogonal filtering criteria to the
N-type errors and are able to reduce their relative frequency from 24% to 7% (from 8% to 2%
for tokens). Together with BD’s effective filtering of M-type errors, this results in a candidate list
with a relatively small amount of alignment-related (M- and N-type) errors; however, polysemy
as an error source remains an essentially unsolved problem. The difference between the overall
F-Scores of the baseline (NoF) and BD POS is significant (p < 0.001). BD POS also significantly
outperforms the best single filter, POS (p < 0.01).

The bottom two rows specifically address the polysemy problem by combining BD POS with
frame-based filters. BD POS FrD again obtains bad results, probably due to the use of FrD. BD
POS PrF shows the best precision we have obtained with binary filters, namely 68% (89% for
tokens). This is mainly the result of filtering out a substantial number of P-type errors; some
N-type errors were removed as well. However, at the same time BD POS PrF shows the lowest
recall we obtained (36% for types, 66% for tokens), which leads to a net decrease in F-Score.

In sum, we found that the relative performance of all binary filter combinations was al-
most completely identical between type-based and token-based evaluation, with the absolute
performance around 25% to 30% higher in the token-based scheme. Not surprisingly, this
indicates a general frequency effect, as generally observed in empirical language modelling:
More frequently observed events (in this case, more frequent FEE candidates) tend to be more
reliable.

5.2.2. Consistency Filters

We consider four filter combinations for consistency filtering. Recall that the consistency filters
provide a ranking of a given candidate list. Therefore, we combined each of our two two
consistency filters, the vanilla entropy filter (Ent) and the frame entropy filter (FrEnt), with two
candidate lists, the unfiltered list (NoF) and the best binary filtered list (BD POS).

As described in Section 5.1.3, we extract the n best percent of candidates for different settings
of n, starting with 100% and decrementing in 3-percent steps. The resulting datapoints are
shown in Figure 5.1 in the form of a precision-recall plot. Each condition is visualised by
thirty-three datapoints, with low n (strict filtering) to the left, and high n (lenient filtering) to
the right. Note that for n=100%, no consistency filtering takes place, and the result corresponds
exactly to the previously computed results for NoF (recall=100%, precision=35%) and BD POS
(recall=68%, precision=50%).

For orientation, we have added in grey the recall level at which the resulting resource contains
on average as many true frame-evoking elements for the new language as FrameNet does for
English, namely an average of 10 FEEs per frame. For German, this recall level is 30%, since the
initial, unfiltered list of 1278 candidates (cf. Table 5.2) has a precision of 35%, which corresponds
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Figure 5.1.: English–German: Precision–Recall tradeoff and mean average precision (map) for
consistency filters (type-based evaluation). The grey horizontal line indicates the
size of FrameNet (Recall level≈ 30%).

to an average of 29 true FEEs per frame.
Two main trends emerge: First, consistency filtering can hardly improve the precision of the

unfiltered candidate list (starting point: recall 100%, precision 35%), while the list pre-filtered
with BD POS (starting point: recall 68%, precision 50%) can be ranked more successfully.
Second, in ranking the BD POS-filtered list, frame entropy systematically outperforms vanilla
entropy. While frame entropy consistently balances lower recall with higher precision, while
vanilla entropy cannot exceed a precision level of approximately 65%. These observations are
confirmed by the mean average precision scores shown in the legend of Figure 5.1. They show
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Band High Medium Low
NoF 51.2 32.0 6.8
BD POS 36.6 20.0 5.0
BD POS PrF 17.2 11.2 4.0
BD POS FrEnt (recall≈ 0.3) 19.6 8.6 2.0

Table 5.5.: English–German: Average number of true positives per frequency band for filter
combinations (type-based evaluation)

that the presence (or absence) of binary filtering is the more important factor, but that the type
of entropy filter chosen is also important.

In sum, a combination of binary filtering (BD POS) with frame-based entropy filtering (FrEnt)
makes it possible to obtain very high precision lists for German, albeit at low recall levels.

5.2.3. Frequency Bands

Table 5.5 shows how the induced lexicon varies in size (average number of true positives per
frame) across frequency bands (High, Medium, Low) before filtering, and with different filter
combinations. Unsurprisingly, in the unfiltered list (NoF) more true FEE candidates are found
for high-frequency frames than for low-frequency frames; since the frequency bands were
selected based on the number of translation pairs, the frames in this band tend to have many,
and frequent, English FEEs. Simple filtering with BD POS expectedly reduces the number of
true positives in each band due to the decrease of recall. Overall, the impact of BD POS is rather
similar across frequency bands.

As described above, additional filtering to improve precision cuts down drastically on recall.
The PrF filter removes more high-frequency items than low-frequency items: The true positives
in the High band are reduced by a factor of 2.1 and the low band by 1.25. For the consistency filter,
we optimised the threshold to obtain a recall of about 30%, which corresponds to a resource
about the size of English FrameNet. It shows exactly the opposite behaviour, cutting reducing
low-frequency candidates much more (by a factor of 2.5) than high-frequency candidates (by a
factor of 1.9).

5.3. Experiment 2: Language pair English–French

The results of binary filtering for French are summed up in Table 5.6 (type-based evaluation)
and Table 5.7 (token-based evaluation). As for German, the recall of the unfiltered list (NoF)
is 100%. The precision is in the same region, but (at least on the type level) slightly lower for
French (30%) than for German (35%). Correspondingly, the F-Score is also about 5% lower at
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Model Recall Precision F-Score %P %M %N
NoF (baseline) 100 29.8 45.9 31 6 32

POS 98.6 32.6 49.0 34 6 26
BD 80.3 35.9 49.7 37 6 22
FrD 79.2 29.4 42.9 32 7 31
PrF 31.4 60.0 41.3 26 3 11

POS FrD 77.9 32.1 45.5 35 7 26
BD POS 79.8 37.9 51.4 37 6 19
BD POS FrD 64.3 37.4 47.3 38 6 19
BD POS PrF 28.1 65.3 39.3 24 1 10

Table 5.6.: English–French: Type-based evaluation of binary filters and relative frequency of
error types (100% = all candidate types)

46%. While polysemy errors appear to be of about the same importance, we detect significantly
more N-type and slightly less M-type errors in French than in German.

5.3.1. Binary Filters

As for German, we first apply the filters individually. The relative performance of the different
filtering combinations is very similar to what we find for German, albeit at a lower level of
precision.

The POS filter improves precision by 3% to 32.6% (72% for tokens). As expected, this is
mainly a result of the elimination of N-type errors (32% to 26%). Analogously, the BD filter
successfully reduces the number of N-type errors (from 32% to 22%) by removing asymmetric
translation pairs. This improves the F-Score by 4% for types, though only by 1% for tokens.
As for German, high-frequency candidates appear to be less susceptible to alignment-related
errors. Interestingly, BD has only a very small impact on the number of M-type errors. Also in
parallel with the results for German, the application of FrD results mainly in a drop in recall for
types; the precision decreases (on the type level) or increases (on the token level) slightly.

Compared to German, the three first filters have less impact on the candidate list: the recall
remains higher, and the precision lower. The inverse is true for the PrF filter: it manages to
double precision from 30% to 60% (token level: increase from 70% to 87%), but at the expense
of almost 70% recall (token level: 40%). As a result, the overall F-Score is lower than for the
baseline, NoF. This filter reduces error types across the board, while polysemy still remains the
major source of errors, reduced only from 31% to 26% (tokens: 20% to 9%).

Regarding filter combinations, in the lower portions of the tables we observe that combina-
tions with the FrD filter are still always worse than without it, at least on the type level. The best
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Model Recall Precision F-Score %P %M %N
NoF (baseline) 100 70.2 82.5 20 3 7

POS 99.9 72.0 83.7 20 3 5
BD 99.4 71.9 83.5 20 3 5
FrD 98.6 72.0 83.3 19 3 6
PrF 60.1 87.3 71.2 9 0 4

POS FrD 98.5 73.5 84.2 19 3 5
BD POS 99.4 73.3 84.4 20 2 4
BD POS FrD 97.9 74.7 84.7 19 2 4
BD POS PrF 60.0 88.3 71.5 8 0 4

Table 5.7.: English–French: Token-based evaluation of binary filters and relative frequency of
error types (100% = all candidate tokens)

filter combination remains BD POS with 38% precision and 80% recall at the type level. The
differences between BD POS and both the baseline list (NoF) and the best single filter (POS)
are highly significant (p < 0.001).3 As for German, BD POS manages to remove more N-type
errors than either filter alone; however, more than 60% of the false positives remain, most of
which are polysemy errors. Further combining BD POS with the PrF filter results in the best
precision we have obtained for the French data, namely 65% (88% for tokens). However, due to
the very low recall of 28%, the F-Score falls below baseline.

Overall, the type-based and token-based evaluations yield parallel results for French as well.
The difference in overall performance is even greater for French than for German (30-35%
F-Score), which indicates that low-frequency candidates are more difficult to treat for French
than for German. The only major difference between types and tokens is observed in the case
of FrD, which leads to actual slight improvements in the token-based evaluation, indicating that
it performs above chance for very high-frequency candidates.

5.3.2. Consistency Filters

Figure 5.2 shows the impact of the consistency filters on French data. We use the same two-
factor setup as for German, varying both the dataset (NoF vs. BD POS) and the consistency
filter (Ent vs. FrEnt). Again, we consider top-n% lists, starting with 100%. In the case of French,
considering all candidates from the NoF list yields a recall of 100% and precision of 30%; all
candidates from the BD POS exhibit a recall of 80% and a precision of 38%. Again, we indicate

3In the token-based evaluation, BD POS FrD is actually numerically better than BD POS by 0.3% F-Score. This
difference is not statistically significant.
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Figure 5.2.: English–French: Precision/recall tradeoff and mean average precision (map) for
consistency filters (type-based evaluation). The grey horizontal line indicates the
size of FrameNet (Recall level≈ 40%).

the recall level of FrameNet (10 true FEEs per frame); in the case of French, this is 40%, since
the unfiltered candidate list contains on average 24 true positives per frame.

Overall, we find that the precision increases when a consistency filter is applied, i.e., when
only the n% highest-ranked candidates are considered. Qualitatively, the two main results for
German carry over to French: frame entropy (FrEnt) yields better performance than vanilla
entropy (Ent), and filtered data (BD POS) fares better than unfiltered data (NoF); the second
factor is more important than the first. This is confirmed by the mean average precision values,
also shown in Figure 5.2.
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Band High Medium Low
NoF 37.0 29.6 5.8
BD POS 31.0 23.2 3.6
BD POS PrF 6.8 11.8 1.8
BD POS FrEnt (recall≈ 0.4) 13.8 8.8 0.8

Table 5.8.: English–French: Average numbers of true positives per frequency band for filter
combinations (type-based evaluation)

However, the precision margin that can be gained from consistency filtering is disappoint-
ingly small for French. For the NoF data, we can at most increase the precision by 10% to 40%
(at 10% recall). For the binary filtered data (BD POS), we can improve the precision by 17% to
55% (also at 10% recall). We will discuss this problem below in Section 5.6.

5.3.3. Frequency Bands

Table 5.8 shows the impact of filtering on different frequency bands for French. The result
for NoF corresponds well to German. Note, however, that the number of true positives in the
High band is much higher for German than for French; this indicates that in EUROPARL, the
German translations of English high-frequency items show more lexical variation than the
French translations. Medium and Low bands show comparable numbers, though.

The side-effect of BD POS to remove true positives (i.e., to decrease recall) is less strong for
French than for German, especially in the High and Medium bands, which explains the overall
lower German recall (68% vs. 80%).

Contrastively, the decrease in recall for the predominant frame filter and the consistency
filter are both much more pronounced for French than for German. Still, the effect on different
frequency bands carries over: A comparison of BD POS with BD POS Prf shows that PrF cuts
down mostly on high-frequency items, leading to a reduction by a factor of 4.6 for the High
band and 2 for the Low band. FrEnt, on the other hand, is more severe on the low band (4.5)
than on the high band (2.2).

5.4. Dictionary-based Predicate Class Induction

Recall from Section 4.2 that two basic strategies are available for the cross-lingual transfer of
predicate classes: data-driven transfer, and resource-based transfer. While we have advocated a
data-driven approach, in this section we repeated our experiment using dictionaries instead of
parallel corpora to gauge the potential of the alternative approach. As dictionary resources,
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Language Precision %P %M %N #Cands
German 34 59 6 1 901
French 38 59 3 0 623

Table 5.9.: Evaluation of dictionary-based induction of semantic predicate classes.

we used the machine-readable versions of two professional, comprehensive dictionaries, the
Oxford–Duden English–German and Oxford–Hachette English–French bilingual dictionaries4.

We paired each English lemma in the dictionary with all of its translations. In the process,
we removed nonliteral translations, translations in context (i.e., senses given in the form
of complete phrases) and translations for specific collocations, as far as they were marked
consistently. For each frame, we then computed the set of FEE candidates as the union of all
translations for the English FEEs of this frame. We are aware that this procedure is bound
to return translations of wrong senses; however, there is no a priori way of disambiguating
dictionary entries. We annotated the same sample used in Experiments 1 and 2 for correctness,
also using the same annotation scheme (see Section 5.1.2).

The results of the evaluation are shown in Table 5.9. The precision of the FEE candidate sets
is comparable to the precision of the unfiltered FEE candidate sets we extracted from parallel
corpora in Experiments 1 and 2 (35% for German and 30% for French). There are two main
differences to the results of the earlier experiments. The first is the size of the FEE candidate
set: while we were able to obtain between 1200 and 1300 candidates for each language from
the corpus(cf. Table 5.2), the dictionaries is considerably smaller, containing only two thirds
the number of candidates for German, and half the number for French. The second difference
is the distribution over error types, which is as would be expected from a clean dictionary
from human usage: almost all errors in the dictionary-induced candidate set are polysemy
errors, that is, translations of inappropriate senses. There are virtually no noise errors, and
just a small number of multi-word errors, which results from inconsistently marked multi-
word expressions. The incidence of multi-word translations is somewhat more pronounced in
the English–German dictionary and also appears to be the main reason for the difference in
precision between the language pairs.

In sum, the first impression of this strategy is favourable: the dictionary-induced candidate
lists are roughly comparable to the unfiltered candidate lists obtained from parallel corpora. Of
course, given the large number of P-type errors, the observation we have made in Section 4.3
applies here as well: filtering is crucial to obtain usable predicate classes with a high precision.
This is, however, where we encounter the fundamental problem of dictionary-based transfer:
being targeted at a human audience, the data encoded in a dictionary is much more difficult
to use as basis for automatic filtering procedures. A first aspect of this is that the linguistic

4We are grateful to Oxford University Press for allowing us to use these resources.
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descriptions in entries are not normalised (as for collocates) or refers to the vague notions of
traditional grammar (as for valency). Another second aspect is that no quantitative information
is present in the entries, which makes it difficult to judge the confidence in particular translation
pairs. In combination with the smaller initial size of the candidate sets, and the absence of
comparable dictionaries for many language pairs, we conclude that a dictionary-based strategy
for cross-lingual transfer that relies exclusively on bilingual dictionaries is both less generally
applicable and presents more obstacles to the development of suitable filtering schemes than a
data-driven strategy.

5.5. Related Work

The cross-lingual transfer of frame-semantic predicate classifications has been the topic of
two other studies. The first one, Fung and Chen (2004), follows an approach different from
the one taken in this thesis, namely cross-lingual transfer on the basis of a bilingual ontology,
and has been already discussed in Section 4.2. The second study, Kanamaru, Murata, Kuroda,
and Isahara (2005), is more similar to ours, exploiting translation pairs in a parallel corpus to
identify Japanese lexical units for FrameNet frames. Its motivation, however, was substantially
different: Instead of automatically deriving a comprehensive semantic predicate classification,
the researchers were interested in a lexicographic resource comparison across languages. The
study concentrated on the FrameNet analyses for one particular, highly polysemous Japanese
predicate, osou, which were compared to classifications drawn from monolingual Japanese
dictionary resources. The study avoided the need for automatic filtering methods by manually
validating all translation pairs.

The task of inducing frame-semantic predicate classes completely “from scratch” has been
addressed by Green et al. (2004) in an English monolingual setting. Using the information
from two English dictionary resources (WordNet and LDOCE), they first clustered verbs into
frame-semantic classes, and then determined names and sets of semantic roles for these frames.
Their results corresponded well to FrameNet frames, where available, and were generally found
to be adequate by human judges (Green and Dorr 2004). However, the application of this
approach to induce classifications for new languages would meet two difficulties. Firstly, it
relies on high-quality dictionary resources, which may not be available, especially for low-
density languages. The second, and more general, problem indicated by the study is the huge
parameter space imminent in the task: Recreating exactly the particular meaning distinctions
made by FrameNet is a very difficult problem. Green et al.’s solution for English builds on
specific properties of the resources involved, and cannot be expected to generalise easily to
other resources or languages.

A more modest aim has been to extend the FrameNet resource, typically also with the help
of other resources. For example, Burchardt, Erk, and Frank (2005a) identify probable frames
for unknown English predicates by identifying the most similar FrameNet entry according to
WordNet distance. Giuglea and Moschitti (2006) combine FrameNet with VerbNet by defining
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a mapping between the semantic roles of the resources. This results in an increased coverage
both of previously unknown verbs, and of linking patterns for known verbs. The success of
these methods indicates the feasibility of extending a small predicate classifications, such as a
seed lexicon produced by our methods.

Another similar task is the induction of clean, broad-coverage translation lexicons. This
task is almost universally approached in a data-driven fashion, with the help of large parallel
corpora in which distributional properties of translation pairs can be observed. However, in
contrast to our generate-and-filter strategy, it is usually assumed that it suffices to define an
appropriate association score between source and target lemmas and to apply a simple n-best
cutoff. A number of different association scores have been proposed (see e.g., Melamed (1996)
or Tufiş (2002) and the references therein). The crucial difference between the two tasks is
the linguistic relation that is being modelled, namely translational equivalence and frame-
semantic equivalence, respectively. These two relations are not identical: While frame-semantic
equivalence is largely lexically determined, translational equivalence is to a certain degree
dependent on the context. As a result, translation pairs which are equivalent in certain contexts
such as answer (a question) / addresser (une question) are acceptable entries for a translational
lexicon (see also the discussion in Melamed (1996)). On the other hand, the two words evoke
different frames (Communication_response and Topic, respectively), and thus cannot be
used for transferring frame information. In comparison, we have developed a more flexible
filtering paradigm, whose usefulness has been verified by the experimental results – recall that
purely association-based filtering, at least with our Ent and FrEnt filters, is outperformed by a
combination of association-based filtering with other mechanisms (see Figures 5.1 and 5.2).

5.6. General Discussion

In Part II of this thesis, we have discussed the task of inducing a frame-semantic predicate
classification for new languages, arguing that the cross-lingual transfer of an existing clas-
sification in a data-driven fashion holds the greatest promise. We have presented a general
framework that decomposes the cross-lingual transfer into a generation and a filtering step:
In the generation step, word alignment links from a large parallel corpus serve as a proxy for
frame-semantic equivalence to produce a list of FEE candidates in the new language. In the
filtering step, intuitions about properties of frame-preserving translations can be exploited to
remove erroneous candidates.

We have evaluated our approach by inducing frame-semantic classifications for German
and French, using the English FrameNet resource and EUROPARL bitexts. We find that for
both languages, only about one third of the unfiltered FEE candidate lists resulting from the
generation step consist of true positives, which confirms general expectations about the neces-
sity of filtering in annotation projection. At the same time, due to the variety of translations,
these unfiltered lists contain about three times as many true positives for the new languages as
FrameNet does for English. This high recall constitutes a promising basis for filtering, since
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it allows us to apply restrictive filters to the list and still retain sufficient candidates to form a
high-quality seed lexicon. In fact, we find that the application of a small number of shallow
filters, which are predominantly based on distributional, and shallow linguistic, properties of
translations, results in a significant increase of the precision of the induced classifications.

Finally, we have repeated our experiments, using bilingual dictionaries in place of bilingual
corpora. The results are comparable in precision to the unfiltered corpus-induced candidate
lists, but somewhat smaller in size. In addition, the absence of quantitative information in the
dictionary makes it difficult to devise automatic filtering procedures for the prevalent polysemy
errors. We therefore consider our data-driven strategy as more powerful as well as more easily
applicable.

5.6.1. Measuring the Quality of a Predicate Classification

We have compared the performance of our binary filters and filter combinations mainly on the
basis of F-Scores. This is usual practice, since F-Scores combine precision- and recall-based
evaluation aspects in a single overall figure of quality. We have been able to show that almost
all binary filters lead to significant increases in F-Score; this means that their gain in precision
outweighs their loss in recall.

However, an F-Score based evaluation does not do justice to at least one binary filter, PrF,
which produces the highest precision values, but whose F-Score is near or even below baseline
due to the recall penalty it incurs. A similar point can be made for the consistency filters,
which give rise to a continuum of predicate-recall combinations whose usefulness is not easily
compared on the level of F-Scores.

An alternative evaluation strategy could start out from the observation that the recall used
in F-Score is computed with respect to the unfiltered candidate list (cf. Section 5.1.3), which
is somewhat arbitrary; in practice, the absolute size of the resulting predicate classification
will be more relevant. As a result, it might be instructive to compare precision values at a
fixed level of recall. For comparatively low recall values, this corresponds to the “seed lexicon”
idea we have referred to throughout this chapter. A natural choice for this recall level might
be the size of the original FrameNet resource for English. The complete English FrameNet
resource (release 1.2) lists on average 10 FEEs per frame; our unfiltered candidate lists contain
on average 30 (German) and 24 (French) true positives. Thus, a lexicon whose size roughly
corresponds to FrameNet must have a recall level of 30% for German and 40% for French.
These levels are shown as grey lines in Figures 5.1 and 5.2.

For German, the best consistency filter combination at this recall level (BD POS FrEnt) yields
around 63% precision; interestingly, the binary filter combination BD POS PrF yields a higher
precision, 68%, at a higher recall of 36%. For a resource of approximately this size, therefore,
BD POS PrF appears to be the better choice. For French, the same consistency filter obtains
(BD POS FrEnt) 44% precision. The precision of BD POS PrF is considerably higher at 65%,
but at a much lower recall (28%). Whether the high precision of BD POS PrF can be exploited
therefore depends on external considerations, namely whether a lower bound for the size of the
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induced resource exists.
An additional consideration, which is especially important for comparatively small induced

classifications (i.e., at low recall levels), is the effect of filtering procedures across the different
frequency bands. We found that PrF and the consistency filters differ substantially in their
behaviour. As can be seen in Tables 5.5 and 5.8, PrF filters out candidates across the board,
while the consistency filter tends to remove low-frequency items. Since frames with a single
correct FEE are probably to be avoided, PrF is arguably more appropriate.

5.6.2. Comparison between French and German

The majority of our observations generalises well across the two target languages, in particular
the relative performance of different filtering mechanisms. This indicates that the results we
obtained are not idiosyncratic for particular language pairs. The most important difference is
that all filtering procedures (with the exception of PrF, the predominant frame filter) were less
aggressive for French, i.e., less candidates were removed. This resulted in lower recall losses,
but simultaneously lower precision gains than for German.

A possible explanation for this observation is suggested by results from contrastive linguistics,
where English was found to prefer more abstract verbs, while German tends to use specific or
concrete verbs (Hawkins 1986); French appears to side with English in this respect. Indeed, an
inspection of our bitexts revealed roughly 3400 English verb types, 3100 French verb types, and
4200 German verb types. This indicates that the distinction between meanings is organised
differently: in German, it is to a high degree a matter of lexicalisation, whereas in French
other linguistic means are used. This observation is supported by the lower numbers both of
unfiltered candidates and true positives we find for French, compared to German. Since our
filtering architecture is primarily based on distributional properties of translation pairs, and
largely ignores monolingual context, it is not surprising that it is better able to distinguish
between German candidates and pick out the most consistent ones, which results in the low
combination of low recall and high precision we observe. French candidates, on the other hand,
are more difficult to distinguish in our framework, resulting in a smaller impact of our filters.

Judging from these observations, we would expect our framework to work well for target
languages that distinguish meanings by lexicalisation and less well for languages that use
other means. Performance for such languages can presumably be improved by extending our
framework with a component that models monolingual context as a richer basis to determine
(frame)-semantic equivalence. Supporting evidence for the role of context as a source of infor-
mation can be drawn from studies which induce semantic predicate classifications exclusively
from unannotated monolingual corpora (Schulte im Walde 2006).

5.6.3. Error Types

Recall that our annotators classified false positives into three classes: polysemy-related errors
(P), multiword-related errors (M), and all other errors (N), in particular cases of alignment
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WordNet gloss FrameNet frame German translation
1 declare to be true Statement zugeben
2 allow to enter – einlassen
3 allow participation – zulassen
4 admit into a group – einlassen, zulassen

Table 5.10.: Incomplete coverage of FrameNet: the case of admit

noise and frame non-parallelism. We found that P and N were the dominating error types in
the unfiltered data for both languages, both of which accounted for around 30% of candidates.
M-type errors occurred only in smaller quantities.

The improvement we obtain from filtering is almost exclusively a result of a significant
reduction in N-type errors, both for French and German. The most successful filters are BD
(bidirectional alignment) and POS (part-of-speech filtering), which are able to remove largely
complementary sets of N-type errors, so that the combination BD POS consistently obtains
the highest F-Score. While this strategy is able to remove the majority of N-type errors for
German (from 24% down to 7%), more than half of the original number remains for French
(19%, compared to an original 32%). These are almost exclusively cases of frame instance
non-parallelism, which will be considered in detail in Section 5.7.

Disappointingly, we find that a considerable ratio of over 20% of polysemy (P-type) errors
remains in the filtered lists for both languages. The frame disambiguation filter (FrD) has
hardly any impact. The predominant frame (PrF) filter addresses the polysemy problem to
some extent, since it can combine evidence from translation pairs for different supports, and
thus increase precision significantly (from 35% to 57% for German, and from 30% to 60% for
French); however, this comes at the cost of a large loss in recall. This error class therefore merits
some closer inspection.

In turns out that polysemy errors are not artefacts of the projection process. They are
already present in the source language, independent of any cross-lingual considerations. Their
main cause is the current incomplete coverage of FrameNet in terms of senses for predicates:
FrameNet, being primarily a lexicographic project, extends its semantic lexicon one frame at a
time, without necessarily covering all senses of a given lemma. This happens frequently, as a
comparison of FrameNet with the SALSA lexicon, a FrameNet-compliant semantic lexicon for
German which lists all senses for predicates, shows: The average polysemy is 2.3 in FrameNet
and 4.1 in the SALSA lexicon (Erk 2005). As an example, consider the FEE admit.v. Table 5.10
shows the four WordNet senses of admit which are documented in the SemCor corpus. Only
the most frequent sense, sense 1, is covered by FrameNet. In the absence of evidence to
the contrary in the training data, the supervised frame disambiguation system underlying
the frame disambiguation (FrD) filter therefore wrongly classifies all tokens of admit.v as
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cases of Statement. This error percolates through projection and results in the listing of
German einlassen and zulassen as Statement verbs. These are clear polysemy errors, since
einlassen and zulassen cannot be used to express the Statement sense of admit at all. Since
the translations of “wrong” senses are often quite reliable, they are difficult to remove with the
predominant frame filter.

A promising direction for future work is provided by recent advances in outlier detection,
also known as single-class classification (Markou and Singh 2003). This is a general strategy
to identify outliers in datasets; in our application, these outliers correspond to instances of
predicate senses not yet covered in FrameNet. Erk (2006) has presented a first encouraging
application of outlier detection to FrameNet example sentences, where she identified outliers
by their distance to nearest neighbours. An application of this technique to our corpus which
removes all instances of senses not covered by FrameNet can be hoped to result in a substantial
decrease of polysemy errors.

5.7. A Closer Look at Translational Shifts

In our evaluation, we have found two major error sources which were difficult to address by our
filtering procedures, namely P-type (polysemy) errors (for both languages) and N-type (noise)
errors (for French). In the last section, have sketched a proposal for addressing polysemy errors;
this section considers N-type errors in more detail. Even though we were able to remove N-type
errors almost completely for German in our sample, this sample was admittedly small, and
these errors remain a significant factor for French. It is conceivable that these errors become
more prominent for languages which are typologically further removed from English.

Recall from Section 5.1.3 that the N-type error category covers all erroneous candidates which
do not directly evoke the frame for which they are listed in the induced lexicon, but which are
caused neither by polysemy nor multiword-related problems. This leaves two main processes
as sources for N-type errors, namely errors in the word alignment, and translational shifts
proper. In an inspection of relevant FEE candidates, we found that alignment errors do not
figure prominently: in almost all cases, the alignment links the source predicate to what can
be considered its best translational equivalent in the target sentence. This ties in well with
the results for German, where the N-type errors could be eliminated almost completely. Our
conclusion is that the remaining “difficult” cases of N-type errors are cases of proper frame
instance non-parallelism, where the translation crosses frame boundaries. In other words,
these are the instances where the fundamental assumption of our projection approach, namely
that word alignment can be interpreted as frame-semantic equivalence (cf. Section 4.2) fails.

The purpose of this section is to develop a better qualitative understanding of the complexity
of the problem, and to assess to what extent it can be solved by automatic means. To this end,
we investigate the linguistic phenomena that give rise to the N-type errors found in the induced
French frame-semantic lexicon, giving consideration to the properties of FrameNet that are
relevant to the errors. We also link these results to more general insights from translation
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Figure 5.3.: Translation of predicates: The case of frame instance parallelism (left) and frame
instance non-parallelism (right)

science on translational shifts, that is, cases where a translation differs in its linguistic properties
from the original.

5.7.1. Translational Shifts and Frame Instance Non-parallelism

In translation science, a number of classifications has been proposed for translational shifts
(see Cyrus (2006) for a discussion). For our purposes, we adopt Cyrus’ classification, a variant
of van Leuven-Zwart (1989), since it is explicitly aimed at investigating the relationship between
predicates (and arguments) and their translations, the same level of description that frame-
semantic analysis addresses. Cyrus’ classification distinguishes two main classes of translational
shifts: grammatical shifts and semantic shifts, both of which are subdivided into finer categories
which are based on the relation holding between original and translation. For predicates, the
most relevant grammatical shifts are (de-)passivisation and category change; the most relevant
semantic shift is semantic modification, broadly defined as “some type of semantic divergence”,
and its subcategories explicitation/generalisation.

Applied to our data, we find that the complete group of grammatical shifts is unproblem-
atic with respect to frame instance parallelism, since frame-semantic analysis abstracts over
grammatical features such as voice or part of speech. Thus, if only grammatical shifts occur, a
translation evokes the same frame as its original, provided that the frame is applicable to the
new language. In contrast, semantic shifts clearly have the potential to lead to frame instance
non-parallelism. Note, though, that they do not necessarily do so, due to the fairly coarse
granularity of frame-semantic classes. For example, the verbs say and reiterate are FEEs of the
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same frame, Statement, although their relation is probably one of explicitation/generalisation.
Figure 5.3 illustrates the relation between frame instance parallelism/non-parallelism and

translational shifts on a simplistic model of translation. The process is modelled as consisting
of an interpretation step, which recovers an underlying state of affairs from a source language
expression, and a generation step, which re-expresses this state of affairs in a new language.
This leads to an upside-down version of the well-known Vauquois triangle (Vauquois 1975),
with the frame as an intermediate, partly language-independent layer. The figure on the left
shows the unproblematic case: If the state of affairs is expressed very similarly in the source
and target languages, the original predicate and its translation are FEEs of the same frame, and
no shifts, or only grammatical ones, occur on the surface level. In this case, frame instance
parallelism is preserved, and our projection method will obtain correct FEE candidates for
the target language. The right-hand side shows the problematic case that occurs when the
translator decides to express the state of affairs in the target language using a frame different
from the one used in the source language: On the surface level, a semantic shift is visible, and
on the semantic level, frame instance parallelism breaks. In consequence, projection is prone
to result in errors.5

5.7.2. Which Semantic Shifts Break Frame Parallelism?

The next step of our analysis is to investigate what the prominent causes are for those semantic
shifts that can break frame instance parallelism. Cyrus’ classification cannot provide an answer
for two reasons. First, her scheme is framework-neutral and therefore cannot be expected to
distinguish specifically between frame-breaking and frame-preserving semantic shifts. Second,
Cyrus herself notes that “it is rather difficult to find objective criteria” for the subclassification
of semantic shifts. This is due to the immense number of semantic, pragmatic and stylistic
considerations which can lead to semantic shifts in translation (cf. Section 3.1.2).

To obtain a better understanding of the causes, we manually analysed the N-type errors
which we found in the induced French frame-semantic lexicon. While our results cannot form a
the basis of a comprehensive discussion of semantic shifts, we were able to identify two groups
of phenomena which contributed very strongly towards cases of frame instance non-parallelism
in our sample, namely the interdependence between arguments and predicates, and complex
event structure.

Interdependence between arguments and predicates. In its current state, FrameNet
makes the simplifying assumption that frames are introduced primarily by lexical items,
i.e. the FEEs.6 In general, no great influence is assigned to the specific semantics of the

5In the case of EUROPARL, where both languages of a bitext can be translations from an original third language,
the two expressions can be thought of as created by parallel generation; this does not change the gist of our
argument.

6It is acknowledged that frames can also be introduced by constructions, but this is currently not reflected in the
resource.
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frame element fillers other than the general implications provided by the frame description.
In our data, however, we find that languages differ in the degree to which the role fillers
influence the choice of the frame and frame-evoking element. This is especially prominent
for the Cause_change_of_scalar_position frame, whose FEEs are used in English to
very generally express processes of change. In French, there appears to be a tendency to
systematically use more specific frames, depending on the semantic type of the changing Item.
For instance, in Example (5.1), the combination increase [undesirable property] is translated as
the French predicate aggravation.

(5.1) An increase in social inequality

L’
The

aggravation
aggravation

des
of the

inégalités
inequalities

sociales
social

Arguably, aggravation, as a predicate specific to changes in quality and restricted to contexts
with a strong evaluative component, should not be considered as French FEE for the frame
Cause_change_of_scalar_position. Another instance is Example (5.2), where the combi-
nation increase [weight] is translated with the more specific French alourdir (to make heavier),
for which no corresponding English single-word expression exists, and which presumably
evokes some more specific frame dealing with weight change.

(5.2) Extending the Community’s legal competence within the framework of the third pillar
has increased the burden.

Le
The

fardeau
burden

s’est
has itself

alourdi
made heavier

avec
with

une
an

extension
extension

de
of

la
the

compétence
competence

juridictionnelle
legal

communautaire
of the Community

dans
in

le
the

cadre
frame

du
of the

troisième
third

pilier.
pillar.

Complex event structure. The inventory provided by FrameNet to describe meaning is the
set of frames, i.e. prototypical situations. Recall that FrameNet frames model a rather coarse
level of semantic granularity by grouping predicates into frames, semantic classes defined by
common linguistic realisation patterns and common characterisations of the participants and
props of the event they describe. Frames do not claim to capture the complete meaning of the
predicates they describe, but only its most salient meaning component. On the other hand,
all but the most simple real-world states of affairs that are the subject of linguistic discourse
combine more than one meaning aspect. As a result, there is almost always “more than one
way of putting it”, with different frames competing for the linguistic realisation of this state of
affairs. In a translation setting, this can result in frame mismatches (see the right-hand side in
Figure 5.3).

Clearly, this is not a problem which is specific to FrameNet; rather, it is one of the central
problems of lexical semantics. The examples we found in our sample exhibit a continuum of
the degree to which the relation between the candidate and its support can be characterised
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by a single lexical relation. This continuum consists of the complete range from (quasi)-
synonymy, whose treatment appears possible, to pure association, whose treatment would
involve a great deal of world knowledge. One of the simpler cases is Example (5.3), where the
event is expressed in English as a process caused by an actor, using the transitive raise, while no
actor is possible in French with the intransitive use of monter. This kind of shift corresponds to
the causative/inchoative alternation (Levin 1993), and there exists a quasi-synonymy relation
between the two predicates, even though they evoke different frames.

(5.3) [. . . ] The employment rate within the EU can be raised to 70%.

Le
The

niveau
level

d’
of

emploi
employment

pourrait
could

monter
rise

à
to

70%
70%

dans
in

l’
the

UE.
EU

The next two cases, Examples (5.4) and (5.5), show the gradually increasing difficulty of charac-
terising the lexical relationship which holds between candidate and support.

(5.4) Why, for example, was the proposal to increase Europe’s active population to 75% of the
total population removed?

Pourquoi
Why

a-t-on
has one

retiré
retracted

par
for

exemple
example

la
the

proposition
proposition

prévoyant
foreseeing

que
that

la
the

population
population

active
active

devait
had to

atteindre
reach

75%
75%

en
in

Europe?
Europe?

(5.5) [. . . ] The legal issue should take second place to consumer protection and preventing the
public from harm.

La
The

question
question

juridique
legal

doit
must

venir
come

après
after

la
the

protection
protection

des
of the

consommateurs
consumer

et
and

les
the

précautions
precautions

pour
for

nos
our

citoyens.
citizens.

In Example (5.4), English expresses the process itself (increase), while French expresses the
resulting end state (atteindre (reach)). In this case, the process–result relation is still clear,
whereas it becomes more elusive in Example (5.5): what exactly is the relation between prevent
and précaution? A precaution that is being taken against some X does not imply that X is
prevented, although this is typically the case. This appears to be an instance of a weaker
process–result relation, namely process–(intended result) or process–(typical result). The last
example, Example (5.6), is even further along this continuum:

(5.6) Questions that were not answered during Question Time shall be answered in writing,
Mr Gahler.

Les
The

questions
questions

qui
that

ne
not

sont
are

pas
not

examinées
examined

pendant
during

l’
the

heure
hour

des
of

questions
questions

recevront
will receive

une
an

réponse
answer

écrite,
written,

Monsieur
Monsieur

Gahler.
Gahler.
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Here the relation between the target language FEE candidate (answer) and its source language
support (examiner) is one that is purely associative: answering a question typically involves
examining it. Still, the fact that this kind of relation turns up as errors in our lexicon induction
task shows that this relation holds systematically enough in the corpus to lead to the consistent
translation pair answer-examiner.

5.7.3. Controlling Semantic Shifts

The final question relevant in the context of the projection of frame-semantic predicate classes
is to what degree translational shifts such as the ones described above can be controlled.

The interdependence between arguments and predicates appears to be moderately amenable
to automatic processing. One possibility is to capitalise on the fact that instances of this kind,
by definition, involve arguments with specific semantic properties, such as the undesirability
that warrants the translation of increase as aggravation in Example (5.1). Such properties can
be captured by taking monolingual context into account in the projection model; note that
this extension of our framework has been motivated independently in Section 5.6.2 to obtain
a model of equivalence that is appropriate for a broader range of languages that our present
framework. Another idea would be to extend our setup to the true multilingual case and
consider translations in more than two languages. In this setting, only translational shifts
which show the same systematicity in several target languages would remain in the induced
set of candidates. Under the assumption that the interdependence between arguments and
predicates is expressed differently across languages, this would lead to smaller, but highly
precise lexicons. Importantly for practical application, the necessary multilingual data is readily
available from EUROPARL. The problem of complex event structures is much more general
and much harder. Only the first part of the continuum appears to be amenable to automatic
processing techniques at the present state of the art: For the limited case of alternations, which
usually involve changes in syntactic valency, the shift can presumably be controlled by requiring
the syntactic valency of the candidate to match the support’s; however, this strategy already
breaks down for translation pairs involving changes in the part of speech.

More generally, the automatic distinction between different kinds of lexical relations by dis-
tributional means is an actively researched issue in lexical semantic modelling. Unfortunately,
current state-of-the-art methods are still largely unable to make the fine-grained semantic
distinctions necessary to address translational shifts. As an indication, consider the VerbOcean
resource (Chklovski and Pantel 2004), which classifies predicate pairs into different lexical
relations based on search engine results for specific query patterns. An analysis of VerbOcean
shows that its semantic similarity relation cannot distinguish between (frame-)semantic equiv-
alence proper and more associative relationships: it lists increase as related to (e.g.) accelerate
as well as widen and decline.7 Still, this approach appears to be more promising than its al-
ternative, namely the use of conceptual knowledge, which re-introduces all the problems of

7The confidence scores VerbOcean supplies cannot be used to make this distinction, either.
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resource-driven approaches discussed in Section 4.2.

5.8. Summary

This chapter has provided an experimental evaluation of the data-driven framework for the
cross-lingual transfer of frame-semantic predicate classifications developed in Chapter 4. Using
the English FrameNet database (release 1.1) as basis, we produced frame-semantic predicate
classifications both for German and French, using the respective EUROPARL bitexts as parallel
corpora.

The experimental results (Sections 5.2 and 5.3) have confirmed the intuitions we have used
to develop our framework in Chapter 4 in at least two important aspects. First, the first
step of the data-driven transfer results in comparatively large predicate classifications for the
target languages, taking advantage of the lexical variation in translation. However, second, the
induced classifications contain only about one third true positives, which highlights the need
for powerful filtering. We have been able to show that our filtering schemes can indeed result in
a significant improvement of the predicate classification, both in terms of F-Score, where recall
was computed with respect to the unfiltered classification, and in terms of precision for a given
recall level that corresponds to the size of the original English FrameNet resource. In the latter
condition, the obtainable precision figures are 68% for German and 50% for French. In an
analogous experiment with bilingual dictionaries (Section 5.4), we obtained comparable results
to the unfiltered condition of the data-driven transfer; however, we found the information
encoded in the dictionary not to be easily amenable to automatic filtering. Sections 5.5 and 5.6
have presented related work and discussed our results against this background.

The last part of the chapter, Section 5.7, has provided an extensive data analysis of the induced
frame-semantic predicate classification. We have shown that the largest remaining problem is
the lack of sense disambiguation for instances of English frame-evoking elements in the corpus
and sketched a possible solution for this problem. We have attributed the inferior performance
for French results to typological differences between English and French, which can also be
addressed by a conservative extension of our framework. Lastly, we have analysed the group of
“hard” error cases created by translational shifts on the semantic level, concluding that these
are currently outside the scope of simple filtering methods.
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Cross-lingual Projection of
Frame-Semantic Roles





6. A Framework for Cross-lingual Role
Projection

In this chapter, we develop a framework for the cross-lingual projection of semantic role
information. Section 6.1 motivates the task. In Section 6.2, we discuss the decomposition of
annotation projection for semantic roles into two subtasks, namely alignment and transfer.
Finally, Section 6.3 presents our general framework, which phrases alignment as an optimisation
problem, and describes concrete instantiations.

6.1. Motivation

In Section 1.2, we have introduced the task of shallow semantic parsing, i.e., the assignment
(a) of semantic classes to predicates, and (b) of semantic roles to surrounding constituents.
We have argued that shallow semantic parsing is an important step towards a robust, but
informative, representation of the meaning of the predicates. The resulting representation
abstracts over different syntactic configurations and provides fine-grained information on the
event type as well as on the relations that hold between the predicate and its arguments.

We have shown in Chapter 3 that role semantics in general, and Frame Semantics in particular,
exhibits a substantial degree of cross-lingual parallelism; therefore, the frames and roles
provided by FrameNet appear suitable for the analysis not only of English, but also of other
languages. However, the development of shallow semantic parsers for new languages runs into
a resource scarcity problem: As outlined in Section 1.2, all state-of-the-art models for shallow
semantic parsing make use of supervised learning techniques, inducing models from annotated
training data; however, sufficient training data for both frame assignment or role assignment
are only available for English and a small number of other languages. In Chapter 4, we have
presented a method for constructing frame-semantic classifications for languages without such
resources; the current chapter is concerned with inducing role-annotated corpora in a similar
fashion.

The general framework we assume is annotation projection, as introduced in Section 1.3.
Since role-semantic annotations are assigned to complete constituents (as opposed to single
words), we concentrate on obtaining appropriate semantic alignments between source and
target sentences. We formalise the search for the best semantic alignment as an optimisation
problem in a bipartite graph. We argue that bipartite graphs offer a flexible and intuitive
framework for modelling semantic alignments that is able to represent translational divergences
arising from typologically distinct languages. We present different classes of models with
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Kim versprach, pünktlich zu kommenKim promised to be on time

S MESSAGE

VP
NP SPEAKER

S

S MESSAGE

VP
NP SPEAKER

S

Figure 6.1.: Cross-lingual projection of semantic role information with optimal alignments.

varying assumptions regarding admissible alignments between the source and target language.
In addition, we investigate the amount of linguistic knowledge required for effecting projection
successfully. We thus compare and contrast word-based semantic alignment models against
more syntactically-informed ones that employ constituent structure. Experimental results on
the parallel corpus sample (cf. Section 3.3) demonstrate that semantic roles can be projected
relatively accurately when syntactic knowledge is taken into account.

This chapter begins with a presentation of the structure of our modelling framework (Sec-
tion 6.2), and continues with a detailed formalisation and discussion of different instantiations
of the framework in Section 6.3. Chapter 7 provides an evaluation of the framework: After
our experimental setup is discussed in Section 7.1, the experiments for the language pairs
English–German and English–French are presented in Sections 7.2 and 7.2.2, respectively. After
reporting on related work (Section 7.4), we conclude with a discussion of our results and future
work (Section 7.5).

6.2. Decomposing Projection into Alignment and Transfer

We first give an informal description of the structure of the semantic role projection process
using the parallel sentence in Figure 6.1 as an example. As usual, we assume an initial analysis
of the source language text (Step 1). However, we subdivide the subsequent cross-lingual
annotation projection into two independent steps, namely alignment (Step 2) and transfer
(Step 3):

1. Semantic role annotation of the source (English) side. Recall from Section 1.2 that this
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can be done automatically using a shallow semantic parser. The result are semantic role
labels for English constituents. In Figure 6.1, the NP Kim is labelled with the role Speaker
and the embedded sentence to be on time is labelled with the role Message.

2. Induction of semantic alignments. We next induce semantic alignments, indicated by
dashed lines in Figure 6.1. Semantic alignments are generalisations of word alignments to
arbitrary constituents. They connect linguistic units of the two languages which realise
the same semantic content, independent of their surface form; phrased differently, they
indicate translational equivalence. Semantic role information is completely ignored in
this step. As an example of a semantic alignment, the English phrase to be on time is
semantically aligned to German pünklich zu kommen.

3. Transfer of role information. Once the semantic alignments are in place, semantic
role information is transferred along alignment links, thus creating role labels for the
target constituents. In Figure 6.1, the semantic role Speaker will be transferred onto
the German NP Kim. Similarly, the embedded sentence pünklich zu kommen will be
assigned the role Message.

As far as we know, the decomposition of projection into alignment and transfer has not been
proposed in the literature. We assume that this is the case because existing studies were
mostly concerned with the projection of information for individual words (such as parts of
speech (Hwa et al. 2005)) or short phrases (such as NP bracketing (Yarowsky and Ngai 2001)),
where correspondences could be established from word alignment alone. However, the situation
is different when it comes to semantic roles, which can span arbitrarily long constituents, for
example embedded sentences. As we will show later on, relying on word alignments for the
projection of longer roles is bound to suffer from alignment errors.

Separating alignment and transfer is beneficial both with respect to methods and applications:
First, on the level of methods, a formulation of the alignment task that is independent from
the annotation projection scenario allows us to investigate solution strategies from different
areas of research, in particular graph matching and phrase alignment. Second, with respect
to applications, the modularisation enforces the development of general and reusable models.
Even though we specifically address the task of projecting semantic roles, the models we develop
do not use the semantic role annotation at all, and can thus serve for the projection of other
types of linguistic annotations.

Note, though, that we specifically model semantic (as opposed to structural) alignments.
Using semantic alignments for projection is appropriate for all types of annotation with a
predominantly semantic definition, such as named entities, anaphoric links, and discourse
relations. On the other hands, projection of, for example, grammatical function labels along
semantic alignments cannot be guaranteed to succeed, since semantically equivalent units are
not necessarily realised using the same grammatical function.

In what follows, we develop a model for the projection of semantic roles which capitalises on
the idea of semantic alignments. We discuss the properties of the alignment process in detail,
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and show how models with varying degrees of linguistic knowledge can be derived. For ease
of exposition, we assume that Step 1 (analysis of the source text) has already been performed.
This issue will be discussed in detail in during evaluation (Section 7.2.2).

6.3. Framework Formalisation

We represent a bi-sentence (i.e., a pair of parallel source and target sentences) as two sets of
linguistic units for the source (us ∈ Us) and target (ut ∈ Ut) languages. These units can be
words, chunks, constituents, or other groupings. The semantic roles for the source sentence are
modelled as a labelling function as : R → 2Us which maps roles to sets of source units. We
view projection as the construction of a similar role labelling function for the target sentence,
at : R → 2Ut . We thus restrict ourselves to projecting one frame at a time (cf. Section 3.2.2).

Following the decomposition introduced above, we first induce A, the set of semantic
alignments between source Us and target Ut units. We formally define A as a subset of the
Cartesian product of the source and target units:

A ⊆ Us ×Ut (6.1)

The (informal) semantics of A is as follows: An alignment link between us ∈ Us and ut ∈ Ut

implies that us and ut are semantically equivalent. Provided with A and the source role
assignment function as, the transfer step consists simply of assigning each source label r to the
union of target units that are semantically aligned with the source units labelled with role r:

at(r) = {ut ‖ ∃us ∈ as(r) : (us, ut) ∈ A} (6.2)

The decomposition of projection into alignment and transfer allows us to model the induction
of semantic alignments explicitly as an optimisation problem. Given a cross-lingual similarity
metric sim on links between source and target units, we search for the semantic alignment with
a maximal product of link similarities. Ideally, the similarity function sim should measure the
semantic similarity between source and target units. Several methods have been proposed in the
literature for computing similarity within the same language (see Weeds (2003) and Budanitsky
and Hirst (2001) for overviews) but not across languages. For the experiments reported in
this thesis, we employ automatic word alignments as a proxy for semantic equivalence (cf.
Section 2.2). Following general practice, we assume that sim is a function ranging from zero
(minimal similarity) to one (maximal similarity).

In addition, we require that each semantic alignment A we consider is a member of a set
of admissible alignments A. The notion of admissible alignments is central in our approach;
they impose constraints on the set of appropriate alignments, thus guiding the search towards
linguistically meaningful correspondences (admissible alignments are discussed in detail
in Section 6.3.2). Admissible alignments can be seen as counterparts of priors in statistical
modelling, which are also used to induce models with certain characteristics. For example,
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Kim versprach, pünktlich zu kommen

Kim promised to be on time

S1
VP2

NP3

S4

S1

VP2
NP3

S4

H
H

H
H

HHUs

Ut S1 VP2 NP3 S4

S1 0.58 0.45 0 0.37
VP2 0.45 0.68 0 0.55
NP3 0 0 1 0.18
S4 0.37 0.55 0.18 0.73

H
H

H
H

HHUs

Ut S1 VP2 NP3 S4

S1 0.54 0.80 ∞ 1.00
VP2 0.80 0.39 ∞ 0.60
NP3 ∞ ∞ 0 1.70
S4 1.00 0.60 1.70 0.31

Figure 6.2.: Bi-sentence (left) with matrices of constituent similarities (top) and edge weights
(bottom). Similarities computed according to Eq. (6.12).

we may want to avoid leaving linguistic units unaligned, or we may want to be able to model
one-to-many alignments. Our optimisation problem to find the optimal admissible alignment
is thus:

Â = argmax
A∈A

∏
(us,ut)∈A

sim(us, ut) (6.3)

A wealth of algorithms can be used to solve this optimisation problems. In this thesis, we
consider bipartite graph optimisation methods. Bipartite graphs provide a simple and intuitive
framework for cross-lingual semantic alignment that allows to derive several model classes
based on different assumptions with respect to the units of projection and the set of admissible
alignments. Comparison of these models can shed new light on the properties of the projection
task (see below). In addition, solution algorithms for graph optimisation are well-understood
and computationally moderate.

Formally, a weighted bipartite graph is a graph G = (V, E) whose node set V is partitioned
into two nonempty sets V1 and V2 in such a way that every edge E joins a node in V1 to a node
in V2 and each edge has an associated weight. In our projection application, the two partitions
are the sets of linguistic units Us and Ut, in the source and target sentence, respectively. We
assume that G is complete, that is, each source node is connected to all target nodes and each
target node to all source nodes. Edge weights model the (dis-)similarity between a pair of
source and target units.

The optimisation problem from Equation (6.3) identifies the alignment that maximises
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the product of link similarities. Similarity links between linguistic units in a bi-sentence
correspond to edges in our bipartite graph, and thus possible semantic alignments to subgraphs.
Optimisation problems over subgraphs in bipartite graphs are usually phrased as minimisation
problems over the sum of edge weights (see e.g., Cormen, Leiserson, and Rivest (1990)):

Â = argmin
A∈A

∑
(us,ut)∈A

weight(us, ut) (6.4)

At first sight, Equation (6.4) seems to optimise a different figure of merit than Equation (6.3);
the two problems are in fact identical when the following edge weight function is used:

weight(us, ut) = − log sim(us, ut) (6.5)

In other words, minimising the sum of negative log similarities corresponds exactly to max-
imising the product of similarities. Consequently, we can use efficient algorithms developed for
graph optimisation problems (Equation (6.4)) and directly interpret their output as a semantic
alignment which is optimal according to Equation (6.3). To avoid confusion, we will continue
making reference to Equation (6.3) and the semantic similarity measure (sim) which is more
intuitive than the graph-related term edge weight.

A complete bipartite graph for the bi-sentence from Figure 6.1 is shown in Figure 6.2 using a
matrix notation. The nodes in the graph denote constituents S1–S4. The numbers in the top
matrix correspond to example similarity scores, the corresponding edge weights of which are
shown in the bottom matrix. High similarity scores correspond to low edge weights. Edges
with similarity zero are set to infinity (in practice a very large number). Finally, notice that
alignments with high similarity scores (low edge weights) are in the diagonal of the matrix.

The projection framework sketched above is unsupervised, as it does not require training data
explicitly labelled with semantic role alignments. Nevertheless, it has three parameters which
have to be instantiated to obtain complete projection models, all of which can be identified in
Equation (6.3):

1. The choice of linguistic units Us and Ut, which determine the domain and range of A.

2. The definition of the similarity function sim, and

3. The specification of a set of admissible alignments A.

With respect to the linguistic units, we present two broad model families, one based solely
on words (Section 6.3.1), and one that uses constituents, obtained either from the output of a
chunker or a parser (Section 6.3.2).

6.3.1. Word-based Projection Model

In our first model family, the linguistic units are word tokens. Source and target sentences
are represented by sets of words, Us = {w1

s, w2
s, . . . } and Ut = {w1

t , w2
t , . . . }, and semantic
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alignments are simply word alignments (e.g., Viterbi alignments produced by statistical word
alignment models).

Recall from Section 6.3 that semantic alignments must be admissible, i.e., conform to some
notion of well-formedness. It is of course possible to impose constraints on word alignments
(e.g., by enforcing one-to-one alignments), and this is often the case for heuristic word align-
ment models (Melamed 2000). Statistical word alignment models, on the other hand, already
encode constraints as a byproduct of the translation model they are based on. For example, the
IBM models introduced in Brown et al. (1993) require each target word to be aligned to exactly
one source word (which may be the empty word), thus allowing one-to-many alignments in one
direction. Our experiments use word alignments induced by the publicly available statistical
word alignment software GIZA++ (Och and Ney 2003) (see Section 2.2 for details).

Assuming that no other indicators of semantic equivalence are available, we would therefore
like to adopt the constraints implicit in the word alignment and assume it in toto as an opti-
mal semantic alignment. This can be achieved by defining a binary similarity function that
distinguishes “semantically related” from “unrelated” words as follows:

sim(ws, wt) =

{
1 if ws and wt are word-aligned

0 else
(6.6)

Evidently, the optimisation of a binary similarity function is trivial: the product A of the
similarities sim(ws, wt) will be 1 as long as all word pairs are aligned, and 0 otherwise (see
Equation (6.3)). As a result, the word alignment is an optimal semantic alignment itself:1

Â = {(ws, wt) | ws and wt are word-aligned} (6.7)

Given (6.7), the target labelling function for word-based models is:

at(r) = {wt ‖ ∃ws ∈ as(r) : ws and wt are word-aligned} (6.8)

Word-based projection models can be easily derived for different language pairs without
recourse to any corpus-external resources. Unfortunately, as discussed in Section 2.2.2, auto-
matically induced word alignments are often noisy, and therefore lead to errors in annotation
projection. Contributing phenomena are – as discussed in Section 4.4.1 – monolingual colloca-
tions, the inconsistent translation of function words, and the multi-word expressions which are
difficult to model in a single word-based account.

As an example for the application of word-based projection, consider again Figure 6.1.
Using Equation (6.7), the word alignment links can be interpreted as the following semantic
alignment:

Â = {(Kim, Kim), (promised, versprach), (to, zu), (time, pünktlich)} (6.9)

1Note that all subsets of a given word alignment are also optimal.
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The resulting German role labelling function is as follows:

at = {Speaker → {Kim}, Message → {pünktlich, zu}} (6.10)

The projection of the Speaker role produces the intended labelling for German; however, the
Message role is projected onto an incomplete set of German words, due to gaps in the word
alignment (e.g., the English words be and on are not aligned with any German words).

The large number and varied nature of such word alignment-related errors precludes their
correction by general heuristics, which furthermore would have to be re-developed for new
language pairs. We will therefore address these errors on a fundamental level, by integrating
structural information into the alignment process.

6.3.2. Constituent-based Projection Model

In our second model family the linguistic units are constituents. Consequently, role pro-
jection is based on semantic alignments between source (Us = {c1

s, c2
s, . . . }) and target

(Ut = {c1
t , c2

t , . . . }) constituents, as opposed to words.2 This has two main effects:

Meaningful target spans. The target spans which can receive role annotations are guaran-
teed to be constituents, in contrast to word-based models, where annotations are pro-
jected on arbitrary word spans. This introduces a bias towards linguistically meaningful
spans for role annotations.

Increased robustness. Constituents can be aligned correctly even if only a subset of its yield is
correctly word-aligned, whereas in word-based models, missing alignments or alignment
errors invariably result in wrong semantic alignments, and thus in projection errors. This
renders projection more robust to alignment noise.

In general, the additional level of structure increases the expressive power of the framework;
it is now possible to explore a wider range of classes of admissible alignments and to define a
more plausible similarity function. Our intuition for the similarity function is that it should
capture the extent to which two constituents c1 and c2 from the two languages express the
same semantic content. We approximate this by measuring the word overlap between the
constituents c1 and c2, using the Jaccard coefficient. Let yield(c) denote the set of words in
the yield of a constituent c, and al(c) the set of words in the other language aligned to the yield
of c. Then:

o(c1, c2) =
|al(c1) ∩ yield(c2)|

|al(c1) ∪ yield(c2)|
(6.11)

Note that this formula is asymmetric; it will consider how well the projection of some con-
stituent al(c1) matches the constituent c2 in the other language, but not vice versa. In order to
take both target-source and source-target correspondences into account, we model the actual

2Constituents can be either recursive (the output of a parser) or non-recursive (the output of a chunker).
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similarity between a pair of source and target constituents cs, ct by measuring word overlap in
both directions and taking the mean:

sim(cs, ct) = (o(cs, ct) + o(ct, cs))/2 (6.12)

As an example, consider the two nodes labelled S1 in Figure 6.2. We first compute the overlap
between the source node and target node (o(cs, ct)): The alignment of the source node’s
yield consists of two words (pünktlich, zu), which are both in the yield of the target node;
therefore, the size of their intersection is 2. Their union is given by the yield of the target
constituents (size 3), resulting in o(cs, ct)=2/3. Analogously, the target node’s projection
covers 2 of the 4 tokens of the source node, so that o(ct, cs) =1/2. The final similarity score is
therefore sim(cs, ct) = 7/12≈ 0.58.

We next discuss the most important parameter in constituent-based models, namely the
choice of the class of admissible alignments A. The latter allow us to examine in more detail
the tradeoff between expressive and corrective models. On the one hand, more permissive
alignments (e.g., which allow one-to-many correspondences such as constituent mergings or
splittings) have a higher expressive power, being able to model a wider range of translational
divergences. Their downside is that they have a relatively small corrective power, since they
rely exclusively on the information provided by the similarity measure. On the other hand,
more restrictive alignment models (e.g. which allow only one-to-one alignments between units)
cannot capture translational divergences – but due to the bias introduced by the constraints of
the model, they can correct errors in the word alignment to a larger extent.

On an ideal corpus, with ideal word alignments, permissive models would presumably work
best, being able to capture a great range of translational divergences. In practice, however, noise
in the data cannot be disregarded. We will therefore consider three general increasingly restric-
tive classes of admissible alignments (total alignments, edge covers, and perfect matchings) by
limiting the class of admissible alignments, thereby imposing constraints on the alignments.
Examples of bipartite graphs corresponding to these three classes of admissible alignments are
shown in Figure 6.3. For each class, we discuss efficient algorithms to solve the corresponding
optimisation problem3.

Total Alignments

We first consider the relatively permissive class of total alignments which only requires that
each source constituent be linked to some target constituent. In graph-theoretic terms, this
means that total alignments must contain at least one edge (cs, ct) for each source constituent
cs. We consider total alignments as an obvious first choice for semantic role projection: they
guarantee that every source role will be projected onto some target span (i.e., no source roles

3Of course, we may choose to impose no constraints on the alignment at all. In this case, however, the empty
alignment will be optimal, since we do not require for any constituent to be aligned.
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Figure 6.3.: Constituent alignments modelled as bipartite graphs and role projections resulting
from different specifications of the class of admissible alignments (Us, Ut: sets of
source and target constituents; r1, r2: two semantic roles). Left: total alignment;
middle: edge cover alignment; right: bijective alignment

can be left unaligned). The search for an optimal total alignment corresponds to the following
optimisation problem:

Â = argmax
A is total function

∏
(cs,ct)∈A

sim(cs, ct) (6.13)

Total alignments do not impose any constraints on the target nodes, which can therefore
be linked to an arbitrary number of source nodes. Consequently, all alignment links are
independent of each other, and we can assemble a globally optimal alignment by combining
locally optimal alignment links. These in turn can be obtained by linking each source node to
its maximally similar target node:

Â = {(cs, ct) | cs ∈ Us ∧ ct = argmax
c ′

t∈Ut

sim(cs, c
′
t)} (6.14)

We argue that the resulting alignment is optimal by informally showing that all three possible
structural modifications to A do not yield total alignments with higher scores. If we removed
a link for a source constituent cs, the alignment would no longer be total. Alternatively,
we could replace an existing link (cs, ct) with another link (cs, c

′
t); however, sim(cs, c

′
t)

cannot be higher than the original sim(cs, ct), else the link (cs, ct) would not have been
created in the first place. Finally, adding a link is guaranteed to produce an alignment with
a lower score given that the score is a product of similarity scores (Equation (6.13)). The
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time complexity of this optimisation procedure is quadratic in the number of constituents:
O(|Us||Ut|) = O(max(|Us|, |Ut|)

2).
An example of a total alignment is shown in Figure 6.3 (left) where all source nodes have

links to some target node. Total alignments can model one-to-many alignments, albeit only
asymmetrically in the target-source direction. In Figure 6.3, target nodes (1) and (3) are inserted
and target nodes (2) and (4) are the result of merging source nodes (1)–(2) and (3)–(6), respec-
tively. The example highlights a potential shortcoming for total alignments; due to the nature
of the our optimisation procedure, there is a tendency to form alignments primarily with target
constituents whose similarity scores are high. In practice this means that potentially important,
but idiosyncratic, target constituents with low similarity scores are often left unaligned.

Alignments as Edge Covers

A linguistically implausible feature of total alignments is their asymmetry: translational shifts
can be modelled on the target side but not on the source side. To remedy this, we next consider
edge covers, a symmetrical class of admissible alignments. An edge cover is a subgraph of a
bipartite graph where each node is adjacent to at least one edge. Interpreted as a semantic
alignment, an edge cover alignment is somewhat more restrictive than a total alignment. It
forces all source and target constituents to participate in an alignment. This is illustrated in
Figure 6.3 (middle), where all source and target nodes are adjacent to an edge (i.e., alignment
link). Of course, this means that edge covers cannot model unaligned nodes on either side – each
node will be aligned to something. On the other hand, one-to-many alignments can be modelled
in both directions. In Figure 6.3 source nodes (3) and (4) are merged into target node (4).
Optimal edge cover alignments can be obtained as solutions of the following optimisation
problem:

Â = argmax
A is edge cover

∏
(cs,ct)∈A

sim(cs, ct) (6.15)

Unlike total alignments, optimal edge cover alignments have to be obtained using global
optimisation, since the alignment links are no longer independent of one another. Algorithms
for computing optimal edge covers have been investigated by Eiter and Mannila (1997) in the
context of distance metrics for point sets. They show that minimum-weight edge covers can
be reduced to minimum weight perfect matchings (see below) of an auxiliary graph with two
partitions of size |Us| + |Ut|. Thus, minimum weight edge covers can be computed in time
O((|Us| + |Ut|)

3) = O(max(|Us|, |Ut|)
3), roughly cubic in the number of constituents.

Alignments as Perfect Matchings

Finally, we consider an class of alignments which are even more constrained than edge covers,
namely perfect matchings. A perfect matching is an edge cover in which each node has exactly
one adjacent edge. Semantic alignments with this property can be thought of as bijective
functions: each source constituent is mapped to one target constituent, and vice versa. An
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example of a perfect bipartite matching is given in Figure 6.3 (right). Note that the target side
contains two nodes labelled (e), a shorthand for “empty” node. Since bi-sentences will often
differ in size, the resulting graph partitions will have different sizes as well. In such cases, we
introduce empty nodes in the smaller partition to enable perfect matching. Empty nodes are
assigned a similarity of zero with all other nodes. Alignments to empty nodes (such as for
source nodes (3) and (6)) are ignored for the purposes of projection.4

Being bijective, the resulting alignments cannot model one-to-many relations at all; on the
other hand, perfect matchings introduce strong competition between nodes and thus have a
high corrective power. Unaligned nodes can be modelled only indirectly by aligning nodes in
the larger partition to dummy nodes on the other side (see the source side in Figure 6.3 where
nodes (3) and (6) are aligned to (e)). Optimal perfect matching alignments are defined as:

Â = argmax
A is perfect matching

∏
(cs,ct)∈A

sim(cs, ct) (6.16)

Perfect matchings can be computed efficiently using algorithms for network optimisation (Fred-
man and Tarjan, 1987; time O(|Us|

2 log |Us| + |Us|
2|Ut|)). Furthermore, perfect matchings are

equivalent to the well-known linear assignment problem, for which many solution algorithms
have been developed (e.g., Jonker and Volgenant, 1987; time O(max(|Us|, |Ut|)

3)). The compu-
tation of perfect matchings is approximately cubic in the number of constituents, similar to
edge cover alignments.

6.3.3. Noise Reduction

As discussed in Section 1.3, noise elimination techniques are generally considered important in
annotation projection to obtain accurate projections. The models presented above differ with
respect to their robustness to noise. Constituent-based models will be generally less sensitive
to noise, since syntactic information will tend to compensate for alignment errors. Word-based
models will be more error-prone since they rely solely on automatically obtained alignments
for effecting the projection. Below we introduce several filtering techniques that either correct
or discard erroneous alignments.

Convex complementing. According to our definition of projection (see Equation (6.2)), the
span of a projected role r corresponds to the the union of all target units that are aligned to
source units labelled with r. This definition is sufficient for constituent-based projection models,
where roles rarely span more than one constituent but will yield many wrong alignments. For
word-based models, where roles will typically span several source units (i.e., words), the target
span of a role will often be a non-contiguous set of words due to errors and gaps in the word

4Technically, empty nodes can also be introduced into Edge Cover models. However, this will not lead to a proper
account of unaligned nodes: due to their low similarity with everything else, empty nodes will only be aligned
as a “last resort”.
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alignment. We can repair non-contiguous projections to a certain degree by applying a “convex
complementing” heuristic to the output of the word alignment. Without recourse to syntactic
information, the heuristic simply fills gaps in a target role span. Let pos return the index of a
word token t in given sentence. We define convex complementing as:

acc
t (r) = {u | min(pos(a(r))) 6 pos(u) 6 max(pos(a(r))} (6.17)

Convex complementing repairs missing alignments in a general fashion without being model
specific. It is thus applied to all projection models developed in this chapter. This is not the
case for the techniques which are limited to particular model classes.

Word filtering. This technique removes words from a bi-sentence prior to projection, ac-
cording to certain linguistic or alignment-based criteria. We apply two intuitive instantiations
of word filtering in our experiments. The first filter removes non-content words from the
bi-sentence, i.e., all words which are not adjectives, adverbs, verbs, or nouns. The motivation
is similar to the part of speech-based filters used in the context of the projection of frame-
evoking elements (Section 4.4.2): content words show a higher translational consistency than
non-content words, and their tokens thus have a higher probability of being correctly aligned.
As a result, content-word links provide more reliable, but possibly incomplete, guidance for the
alignment of constituents.

The second filter removes all words which remain unaligned in the output of the automatic
word alignment. This filter follows up on the observation from Section 2.2.2 that the main prob-
lem of statistical word alignment models, especially of intersective models, is not incorrectness,
but incompleteness. As a result of missing links, the similarity metric (Equation (6.12)) tends
to overestimate the denominator, punishing long constituents. By removing unaligned words,
only words that are truly aligned to a different constituent are counted as negative evidence.

Argument filtering. Our last filter applies only to constituent-based models defined over full
parse trees. Previous work in shallow semantic parsing has demonstrated that not all nodes in a
tree are equally probable as semantic roles for a given predicate (Xue and Palmer 2004). In fact,
assuming a perfect parse, there is a “set of likely arguments”, to which almost all semantic roles
roles should be assigned. We assume that the set of likely arguments can be characterised as
the set of all constituents which are direct children of some ancestor of the predicate, provided
that (a), they do not dominate the predicate themselves and (b), there is no sentence boundary
between the constituent and its predicate.

This definition is structurally similar, but different from Chomsky’s definition of govern-
ment (Chomsky 1981): Government assumes a deep (e.g., binary branching) syntax tree and
characterises the non-subject complements of a predicate. In contrast, our argument filter
assumes a treebank-style flat constituent structures as provided by current probabilistic parsers.
In such an analysis, the non-subject complements are just siblings of the predicate; our defi-
nition concentrates on retrieving arguments outside the maximal projection of the predicate,
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Kim versprach, pünktlich zu kommen

S1
VP2

NP3

S4

Figure 6.4.: Filtering of unlikely arguments (predicate in boldface, argument candidates after
filtering in boxes).

such as topicalised elements, or the subjects of control constructions (for verbs) and support
constructions (for nouns and adjectives). It can be extended slightly to accommodate coor-
dination. We use argument-based filtering to reduce target trees to a set of likely arguments.
This is illustrated in Figure 6.4, where the tree nodes VP2 and S4 are removed (compare with
Figure 6.2). As a result, only the target nodes NP3 and S1 participate in the optimisation
problem. During optimisation, the small number of target nodes resulting from this filter leads
to increased competition between source nodes.

Filter combinations. The filters described above can be used in isolation or in combination.
For example, a constituent-based model can be constructed that uses convex complementing,
argument-based filtering and both instantiations of word-based filtering. A word-based model
can benefit from convex complementing and the filter which removes unaligned words. Non-
content words could also be removed provided that information about parts of speech is
available. We evaluate the effect of different filtering techniques on the quality of the resulting
projections in Section 7.2.

6.4. Summary

This chapter has developed a framework for the induction of semantic roles for new languages
within the annotation projection paradigm. The main difficulty of this task is the identification
of linguistically plausible target word spans which correspond to source constituents, a problem
which we have termed semantic alignment (Sections 6.1 and 6.2).

Our framework (Section 6.3) formalises the computation of a semantic alignment as an
optimisation problem. When no bracketing information is available, the result is a simple
word alignment-based projection. With bracketing information, however, the alignment can be
computed as an optimal matching in a bipartite, weighted graph, whose nodes correspond to
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constituents, and whose edge weights are given by lexical similarity. This model uses syntactic
information to restrict the search space to plausible word spans, and thus has the potential of
correcting errors and omissions in the word alignment. The relative weight of the bracketing
information can be varied by considering different types of matchings, exploring the tradeoff
between more corrective and more expressive matchings. In addition, we have defined a small
number of filtering techniques which either repair or eliminate alignment errors.
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In this chapter, we provide an experimental evaluation of the framework developed in Chap-
ter 6. We project semantic roles from English onto two different target languages, French
and German, using the EUROPARL sample described in Section 3.3 as parallel corpus, and
comparing different classes of admissible alignments and filtering methods. In addition, we
contrast projection from gold-standard annotation in the source language with projection from
automatically obtained annotation.

We begin by detailing our general experimental setup (Section 7.1). Next, we present the actual
experimental evaluation for the language pairs English–German (Section 7.2) and English–
French (Section 7.3). After reviewing related work (Section 7.4), the chapter concludes with a
general discussion (Section 7.5).

7.1. Experimental Setup

In this section, we discuss our parameter exploration procedure, give details on the data, and
explain our evaluation measure.

7.1.1. Evaluation as Model Selection

A practical implementation of the projection framework presented in Chapter 6 has to make
choices for the three parameters introduced in the last chapter: (a) the linguistic units employed,
(b) the class of admissible alignments, (c) the choice of filter for eliminating noise from the
word alignment. We consider the following instantiations for each parameter:

• Units: words, non-recursive constituents (i.e., chunks), recursive constituents

• Admissible alignments: Total alignments (Total), Edge covers (EdgeCover), Perfect
matchings (PerfMatch)

• Filtering: None, remove non-aligned words (NA), remove non-content words (NC),
remove non-arguments (Arg)

These choices lead to a substantial model space, in which we seek to identify the best-performing
model. For these reasons, both Experiment 1 (for the language pair English–German) and
Experiment 2 (for the language pair English–French) are structured as follows:
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Condition 1: Gold standard roles. In this condition, we use manually annotated semantic
roles for English. The task of the projection models is to induce semantic roles for
German, which are evaluated against German gold standard roles. In order to isolate
the best performing models, we follow best practice in machine learning and split our
corpus randomly into a development and test set (each 50% of the data).

Step 1: Model selection. In Step 1, we evaluate the model space exhaustively on the de-
velopment set using different combinations of unit, filter, and admissible alignment
together with intersective (automatically produced) alignments.1 All models use
the convex complementing heuristic discussed in Section 6.3.3, which attempts to
repair wrong alignments. Also, we do not present results for combinations of filters;
in preliminary experiments, these yielded inferior performance to individual filters.

Step 2: Model validation. In Step 2, we validate these findings by applying the best-
performing models from Step 1 on the test set. We use intersective and manual
word alignments to gauge the extent to which alignment errors influence the overall
performance, and particular model classes.

Condition 2: Automatically assigned roles. In this condition, the semantic role input is
taken from the output of a state-of-the-art automatic shallow semantic parser. Again,
roles are projected onto German and evaluated against German gold standard roles.
We repeat Step 2 of Condition 1, i.e., the model validation step on the test set, both for
intersective and manual word alignment. In this way, we both assess the impact of using
noisy input data for annotation projection, and test whether the model selection on gold
standard data carries over to noisy input data.

Experiment 2 differs from this outline in that two resources, namely a chunk-based syntactic
analysis, and a manual word alignment, were not available for French. In consequence, we
omit the consideration of chunk-based models, and compare all models on the basis of the
intersective word alignment only.

7.1.2. Data sources

Corpus and Annotation. All our models are evaluated on the trilingual parallel sample
corpus (English–German–French). As described in Section 3.3, this corpus was annotated
manually with semantic roles. The annotation was performed independently for each language.
We also obtained automatic semantic role annotation for the English side of the corpus, using
the shallow semantic parser for English by Giuglea and Moschitti (2004) (see Section 7.2.2 for
details).

1Note that not all combinations of the parameters listed above are possible: (1), the different admissible alignments
are only applicable to constituent-based models (which either use chunks or full constituents); (2), the filter that
removes non-arguments (Arg) can only be used with a model whose linguistic units are recursive constituents.
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Word alignment. For English–German, we used both the intersective word alignment cre-
ated by GIZA++ and a manually corrected word alignment (see Section 2.2.2). For English–
French, only the automatic intersective alignment was available.

Syntactic analysis. For constituent-based models, we experimented with recursive and
non-recursive constituents. English sentences were parsed with Collins’ (1997) parser and
Abney’s (1996) chunker. For German, we used Dubey’s (2004) parser and the chunker developed
by Schmid and Schulte im Walde (2000). For French, we only had a full parser (Bourigault et al.
2005) at our disposal. Further details on these tools can be found in Section 2.3.1.

Since the parsers are operating out of domain, which is known to degrade parsing accu-
racy (Gildea 2001), we obtain an additional assessment of the quality of the recursive syntactic
analyses. Since full manual evaluation is beyond our means, we consider a task-specific cor-
relate of analysis quality, namely the degree to which the manually annotated semantic roles
in our corpus correspond to single constituents. The choice of this agreement mirrors the
intuition that almost all semantic roles correspond to single constituents when manual syn-
tactic annotation is provided (Erk et al. 2003). Deviations from this rule indicate errors in the
syntactic analysis. Syntax–role agreement can also be motivated from a projection point of
view, since multi-constituent roles require multiple alignments to be correct, and are thus more
prone to errors.

The actual agreements on the sample corpus are as follows: In the English text analysed
with Collins’ (1997) parser, 93% of all roles correspond to single constituents (98% to one or
two constituents). In the German text, parsed with Dubey (2004), the numbers are 88% for
one constituent, and 95% for up to two constituents. For French, only 82% of the roles were
assigned to single constituents; however, 93% correspond to one or two constituents. These
numbers indicate that the bracketing for English is best suited for our purposes, followed by
German, and finally French. However, all parsers show solid performance in identifying spans
that correspond to potential roles, which gives them a good chance of supporting the task at
hand.

7.1.3. Evaluation

Evaluation measure. We measure model performance using labelled precision, recall, and
F-Score in the “Exact Match” condition in which both the label and the span of a projected role
have to match the gold standard annotation for the target language to count as a true positive.2

We also assess whether differences in performance are statistically significant using stratified
shuffling (Noreen 1989), an instance of assumption-free approximative randomisation testing
(see Yeh (2000) for a discussion).

2We do not consider the second plausible evaluation condition, Headword Match, due to the higher manual effort
involved with correcting automatic head word identification.
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Model Precision Recall F-Score
No Filter 45.6 44.8 45.1
NA Filter 45.6 44.8 45.1
NC Filter 36.4 31.7 33.9

Table 7.1.: Experiment 1, Condition 1: Model comparison for word-based models (intersective
word alignment, development set)

Baseline. As a baseline, we will use the simplest model family, namely word-based projection
models. This model family does not require syntactic analysis, but relies exclusively on word
alignments for the projection, and has linear time complexity. The use of more elaborate
linguistic information in the form of constituent-based models is only warranted if they can
deliver significant improvements over word-based models.

Upper bound. In Section 3.3, we have estimated the inter-annotator agreement for the
monolingual portions of our corpus. We obtained 0.83 for German, and 0.72 for French in
the Span Match condition which measures annotation of the same roles with the same span.
As discussed in Section 3.3, these numbers represent an upper bound for the performance of
a shallow semantic parser within these languages. It is more difficult to determine a ceiling
for the cross-lingual projection task, since in addition to inter-annotator agreement, we have
to take into account the effect of cross-lingual divergence. Our annotation study did provide
an estimate of the cross-lingual role divergence (Role Parallelism, see Table 3.3 on page 48).
Unfortunately, this number also incorporates inter-annotator disagreement on roles, since the
sentences in the main corpus are only annotated by a single coder.

Without a better way of gauging the effect of cross-lingual divergence, we resort to using
the monolingual upper bounds: In Condition 1, where manually annotated data is used as
input for projection, we adopt the monolingual inter-annotator agreement (Span Match) as an
upper bound; in Condition 2, where automatically annotated roles are used, the accuracy of the
shallow semantic parser, evaluated against the English gold standard, is used.

7.2. Experiment 1: Language Pair English–German

7.2.1. Condition 1: Projection from Gold Standard Roles

In Condition 1, we use the manually annotated gold standard roles as English input for the pro-
jection process. As outlined above in Section 7.1, we first discuss our results on the development
set. The best model instantiations are next evaluated on the test set.
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Model Prec Rec F-Score
WordBL 45.6 44.8 45.1
Total 48.5 41.9 45.0
EdgeCover 51.6 45.1 48.1

N
o

Fi
lte

r

PerfMatch 51.8 41.3 46.0
UpperBnd – – 83.0

Model Prec Rec F-Score
WordBL 45.6 44.8 45.1
Total 47.7 38.2 42.4
EdgeCover 49.7 44.4 46.1

N
A

Fi
lte

r

PerfMatch 53.0 43.9 48.0
UpperBnd – – 83.0

Model Prec Rec F-Score
WordBL 36.4 31.7 33.9
Total 45.3 32.0 37.5
EdgeCover 48.3 41.1 44.4

N
C

Fi
lte

r

PerfMatch 50.4 41.0 45.2
UpperBnd – – 83.0

Table 7.2.: Experiment 1, Condition 1: Model comparison for chunk-based models (intersective
word alignments, development set)

Step 1: Model Selection on the Development Set

Word-based models. The results of the word-based models, which we consider as our
baseline, are summarised in Table 7.1. Without using any linguistic information or noise
filtering, we obtain a modest F-Score of 45.1% (No Filter). Removing non-aligned words
(NA Filter) does not alter this performance. This is not surprising, since non-aligned words
are not taken into account in word-based models (see Equation (6.7)). As an example, recall
the projection error discussed in Section 6.3.1, where the purely word-based projection of the
source role Message in Figure 6.1 (to be on time) results in the incomplete target role span
(pünktlich zu).

Removing non-content words (NC Filter) yields significantly worse results (p < 0.01). This is
also expected since the word-based models cannot recover words in the target span that have
been deleted by a filter. The convex complementing heuristic which we apply to all models can
fill gaps in the interior of a role, but still requires that the leftmost and the rightmost word of
each role’s target span are aligned correctly. Spans like the Message span in Figure 6.1 thus
cannot be repaired.

Chunk-based models. We next examine constituent-based models utilising chunks as lin-
guistic units. Here we can consider different categories of admissible alignments as well as
different filtering techniques3. The results for chunk-based models are summarised in Table 7.2.

3Recall that we cannot apply the argument filter since it requires recursive syntactic analysis.
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Generally, we observe that global graph-based models outperform the word-based baseline
(WordBL). Without any filtering, EdgeCover yields significantly better results than WordBL,
Total and PerfMatch (p < 0.01). When the NA filter is applied, PerfMatch significantly outper-
forms all other models (p < 0.01). Finally, the NC Filter does not seem to benefit chunk-based
models. Here, EdgeCover and PerfMatch yield comparable F-Scores (around 45%; the difference
is not statistically significant) but are significantly outperformed by EdgeCover and PerfMatch
in the No Filter and NC Filter conditions, respectively (p < 0.05).

The overall modest performance of chunk-based models can be explained by the fact that
almost all roles span more than one chunk. In fact, in the English gold standard corpus roles
span on average almost 5 chunks, thus introducing a large margin for projection errors. In
addition, roles assigned to PPs and VPs often do not correspond to chunk boundaries. The
following bi-sentence presents a common problem for chunk-based models (syntactic structure
in round brackets, semantic roles in square brackets):

(7.1) A director has publicly stated that [(Clause the future of the plant is in doubt)]Message.

Ein
A

Direktor
director

hat
has

öffentlich
publicly

erklärt,
declared,

[(NP

[(NP

die
the

Zukunft
future

der
of the

Anlage)
plant)

sei
is

ungewiss]Message.
uncertain]Message.

Ideally, we would like to project the English Message role, which spans the clause the future
of the plant is doubt, onto the complete German clause die Zukunft der Anlage sei ungewiss.
However, since there is no German chunk corresponding to this clause, a model using Total
alignments will link the English clause to the single best candidate, namely the noun phrase die
Zukunft der Anlage, resulting in an incomplete role span for German.

This effect can be alleviated – to a small degree – by choosing more restrictive alignments. As
shown in Table 7.3, we obtain better results for EdgeCover alignments in the No Filter condition.
Recall that EdgeCover forces every source unit to be aligned, thus delivering better recall and
precision over Total alignments in the No Filter condition. When the NA Filter is applied, which
removes non-aligned material, even more restricted alignments become profitable so that the
one-to-one alignments produced by PerfMatch yields performance gains over EdgeCover.

Full Constituent-based models. Table 7.3 shows the results for constituent-based models
when a full parser is employed. First, observe that these models yield substantially better overall
results than word- or chunk-based models, with F-Scores ranging between 58.8% and 67.2%.
All filter and alignment combinations are significantly better (p < 0.01) than either WordBL or
the two best chunk-based models (EdgeCover (No Filter) and PerfMatch (NA Filter)).

Note that filtering generally improves the resulting projections. In the No Filter condition, all
constituent-based models (i.e., Total, EdgeCover, PerfMatch) yield comparable performance
ranging from 58.8% to 60.4% (the differences are not statistically significant). In the NA Filter
condition, the best model is PerfMatch. It is significantly better than Total and EdgeCover
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7.2. Experiment 1: Language Pair English–German

Model Prec Rec F-Score
WordBL 45.6 44.8 45.1
Total 65.8 55.9 60.4
EdgeCover 64.2 55.8 59.7

N
o

Fi
lte

r

PerfMatch 68.0 51.8 58.8
UpperBnd – – 83.0

Model Prec Rec F-Score
WordBL 45.6 44.8 45.1
Total 74.1 56.1 63.9
EdgeCover 69.0 61.6 65.1

N
A

Fi
lte

r

PerfMatch 73.3 62.1 67.2
UpperBnd – – 83.0

Model Prec Rec F-Score
WordBL 36.4 31.7 33.9
Total 64.3 47.5 54.6
EdgeCover 67.7 57.2 62.0

N
C

Fi
lte

r

PerfMatch 71.6 55.6 62.6
UpperBnd – – 83.0

Model Prec Rec F-Score
WordBL 45.6 44.8 45.1
Total 69.7 60.6 64.8
EdgeCover 69.4 60.4 64.6

A
rg

Fi
lte

r
PerfMatch 80.3 47.8 59.9
UpperBnd – – 83.0

Table 7.3.: Experiment 1, Condition 1: Model comparison for full constituent-based models
(intersective word alignments, development set)

in the same condition (p < 0.01) and all constituent-based models in the No Filter condition
(p < 0.01). Although the NC Filter delivers improvements over No Filter, its performance is
worse when compared to the NA or Arg Filters. The Arg Filter yields results comparable to NA
and the highest precision among all models (PerfMatch 80.3%). The latter is offset by a relatively
low recall (PerfMatch 47.8%). Recall that the Arg Filter removes all nodes from the target tree
except for those deemed likely arguments. With only a few nodes left, PerfMatch enforces a
strong competition among source nodes for links to target nodes, resulting in a high-precision
alignment. On the other hand, roles assigned to constituents erroneously removed by the
Arg Filter (e.g. due to parser errors) cannot be recovered, and therefore recall is low.

Mirroring our observations for chunk-based models, we also find an interaction between
the filtering scheme and the optimal admissible alignment for full constituents. Cross-lingual
syntactic differences occur often in the unfiltered condition and call for the modelling of one-to-
many relationships. In consequence, the more restrictive models have low recall (compare for
example Total’s recall of 55.9% to PerfMatch’s recall of 51.8%). The situation is different for the
filtering conditions, since filtering out, e.g., non-aligned words makes the two syntactic trees in
the source and target bi-sentence more similar. In this situation, the weaker expressive power
of restrictive alignments (PerfMatch) is sufficient for modelling purposes, and their higher
corrective power leads to more precise alignments. Thus, we find that PerfMatch performs best
in conjunction with the NA and NC Filters.

In sum, we find that the restrictive models (EdgeCover and PerfMatch) outperform the
permissive models (Total) when filtering takes place. The best overall model is PerfMatch in
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7. Experimental Evaluation

Model Prec Rec F-Score
WordBL 45.7 45.0 45.3
Total (Arg Filter) 72.3 63.1 67.4
EdgeCover (NA Filter) 71.9 64.6 68.1
PerfMatch (NA Filter) 75.5 63.5 69.0

In
te

rs
ec

ti
ve

UpperBnd – – 83.0

Model Prec Rec F-Score
WordBL 61.6 60.4 61.0
Total (Arg Filter) 72.5 68.6 70.5
EdgeCover (NA Filter) 71.2 69.1 70.1
PerfMatch (NA Filter) 75.2 67.2 71.0M

an
ua

l

UpperBnd – – 83.0

Table 7.4.: Experiment 1, Condition 1: Comparison of the best full constituent-based models on
the test set (intersective and manual word alignments)

the NA Filter condition. In general, we find that EdgeCover and PerfMatch make similar errors
(90% overlap). Differences arise mostly when roles span more than one constituent, e.g., due to
misparses. Consider as an example the sentence pair:

(7.2) The Charter is [NP an opportunity to bring the EU closer to the people].

Die
The

Charta
Charter

ist
is

[NP

[NP

eine
a

Chance],
chance],

[S

[S

die
the

EU
EU

den
to the

Bürgern
citizens

näherzubringen].
to bring closer].

Ideally, the English NP would be aligned to both the German NP and S. EdgeCover, which can
model one-to-many-relationships, acts “confidently” and aligns the NP to the German S to
maximise the overlap similarity, incurring both a precision and a recall error. PerfMatch, on the
other hand, cannot handle one-to-many relationships, acts “cautiously” and aligns the English
NP to a empty node, leading only to a recall error. This means that even though EdgeCover’s
analysis is partly right, it will be judged worse than PerfMatch, given the current evaluation
method.

Step 2: Model Validation on the Test Set

Our experiments on the test set focus exclusively on models employing full constituents as
linguistic units, since this model family has outperformed word-based and chunk-based models
by a large margin on the development set. We combine each class of admissible alignments with
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7.2. Experiment 1: Language Pair English–German

the filtering condition that has worked best on the development set. We verify the performance
of these models on the test set, using both intersective and manual word alignments.

Our results are summarised in Table 7.4. When intersective alignments are used (top half),
we find that the PerfMatch alignment model yields the highest overall F-Score, followed by
EdgeCover and Total.4 Both PerfMatch and EdgeCover are significantly better than Total and
WordBL (p < 0.05). Considering that two of the three best-performing models use the NA Filter,
and that PerfMatch shows the highest precision and recall, we conclude that the best and most
robust choice is a constituent-based model with PerfMatch alignment and the NA Filter.

The bottom half of Table 7.4 shows results for the same models, using manually annotated
word alignments (see Section 7.1 for details). A comparison of these numbers with the results
from the top half indicates by how much the performance of the projection models improves
when perfect word alignments are available. First, note that the performance of WordBL
increases sharply from F=45.3% to F=61.0%. In contrast, the performance of constituent-based
models increases only by 2%–3% F-Score. Performance differences between Total, EdgeCover
and PerfMatch are small and not statistically significant. The pronounced improvement of the
baseline model underlines the important role of bracketing to correct errors from automatic
word alignments. Conversely, models using bracketing information are bound to profit less
from cleaner word alignments.

Note that gold standard word alignments alone do not lead to perfect role projection. Even
though the impact of bracketing information is less dramatic, it still considerable (around 10%
F-Score). The models using manual word alignments also still perform substantially below
the upper bound. This holds for both constituent-based (10% F-Score below) and word-based
(20% F-Score below) models. Analysis of the projection output identified two main sources
of errors: genuine cases of cross-lingual divergence and parsing errors. As an example of
cross-lingual divergence, consider the case of pronominal adverbs in German. Many German
verbs such as glauben (“believe”), which subcategorise for a prepositional phrase, exhibit a
diathesis alternation: if the PP has a propositional content, the prepositional phrase X glaubt
an Y (“X believes in Y”) can be replaced by the corresponding pronominal adverb daran plus
an embedded clause: X glaubt daran, dass Y (“X believes that Y”). Even though the pronominal
adverb forms part of the complement clause (and therefore also of a role assigned to this clause),
it has no English counterpart. Thus, it does not occur in the word alignment, and will therefore
not be recoverable in the projection model. Another example is shown below where English
has chosen to elide a constituent in an ellipsis, while German does not:

(7.3) We
Wir

claim
behaupten

X
X

and
und

[we]Speaker

—
say
sagen

Y
Y

The word alignment (correctly) aligns the German pronoun wir with the first English we and
leaves the second occurrence unaligned. Since there is no corresponding German word for the

4Our results on the test set are slightly higher in comparison to the development set. The fluctuation reflects
natural randomness in the partitioning of our corpus (compare also the differences between development and
test set in Experiment 2, Section 7.3).
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7. Experimental Evaluation

Evaluation condition Prec Rec F-Score
All predicates 78.1 55.8 65.1
Verbs only 78.1 62.4 69.4

Table 7.5.: Evaluation of Giuglea and Moschitti’s (2004) shallow semantic parser on the English
side of our parallel corpus (test set)

second we, projection of the role filled by the second we fails.
The remaining errors can be mostly traced back to bracketing errors. When the boundaries

of constituents do not correspond to role boundaries, projection becomes problematic. In fact,
this is often the case when attachment decisions are involved (see Example (7.2)). Additional
compounding factors in this respect are the rather flat syntactic analysis which Dubey’s (2004)
parser provides for German, and the fact that both the English and German parser are trained
on newspaper text, but are applied to transcriptions of spoken text.

7.2.2. Condition 2: Projection from Automatic Roles

In Condition 1, we used manually annotated roles on the English side as input for the projection.
Although this setup allows to study the projection framework in detail without worrying about
the provenance of the semantic role annotation, it is far from realistic. If annotation projection
is to be used for the creation of large scale semantic resources for new languages, then the source
side of the parallel corpus will have to be annotated using an automatic role assignment system.
In this section, we assess the extent to which the noise in automatically assigned semantic roles
impacts the quality of projected alignments, using role annotations obtained from a shallow
semantic parser as the input for projection.

We trained a state-of-the-art shallow semantic parser developed by Giuglea and Moschitti
(2004) on the FrameNet (release 1.2) corpus. The system treats the assignment of semantic
roles as a classification task on constituents, which is modelled with a support vector machine.5

We used Giuglea and Moschitti’s “standard” features and not the “extended feature set” which
is based on PropBank and would have required us to produce a PropBank analysis of the entire
FrameNet corpus. In their paper, Giuglea and Moschitti report an accuracy of 85.2% on a
held-out part of the FrameNet corpus, using the “standard” feature set.

We applied the shallow semantic parser to the English side of our parallel corpus to obtain
semantic roles, treating the frames as given.6 Table 7.5 shows an evaluation of the shallow
semantic parser’s output on our test set against the English gold standard annotation. Since

5We are grateful to Ana-Maria Giuglea and Alessandro Moschitti for letting us use the system. See Giuglea and
Moschitti (2006) for the description of the current release.

6This decomposition of frame-semantic parsing is common practice in shallow semantic parsing (cf. Section 1.2).
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7.2. Experiment 1: Language Pair English–German

Model (Intersective Word Alignment) Prec Rec F-Score
WordBL 41.3 29.2 34.2
PerfMatch (NA Filter) 73.7 45.9 56.6
UpperBnd 78.1 55.8 65.1

Model (Manual Word Alignment) Prec Rec F-Score
WordBL 49.2 34.9 40.8
PerfMatch (NA Filter) 73.5 47.6 57.8
UpperBnd 78.1 55.8 65.1

Table 7.6.: Experiment 1, Condition 2: Performance of best constituent-based model on the test
set, using automatically labeled semantic roles as input

Giuglea and Moschitti’s (2004) implementation can currently handle only verbs, we assessed
the performance for the complete test set and the subset of verbal predicates (87.5% of instances
in the test set). The overall performance (65 and 69% F-Score, respectively) is lower than what
Giuglea and Moschitti report, but this is expected since our test set differs from the training
data in vocabulary, which affects the lexical features, and suffers from parsing errors, which
affects the syntactic features. The difference between the complete and verbs-only data sets
amounts to 4% F-Score, which are entirely due to the recall missed through unassigned roles
for nouns and adjectives. In the following, we report results on the complete test set (including
nouns and adjectives) in order to make our evaluation comparable to Experiment 1.

Using the automatically annotated roles as input, we performed projection in the same
manner as in Experiment 1. Table 7.6 shows results for PerfMatch (NA Filter), the best projection
model from Experiment 1, comparing the performance for intersective and manual word
alignments.7 The performance of this informed model is contrasted to the word-based baseline,
and to the performance of the shallow semantic parser, which can be seen as an upper bound
of the quality achievable by projection in Condition 2.

Performance on automatically annotated input is approximately 11% F-Score lower than
on manual annotation (compare Table 7.6 and Table 7.4). WordBL yields 34.2% F-Score and
PerfMatch 56.6% (both on intersective alignments). Note that PerfMatch outperforms WordBL
by 22.4%, indicating that the advantages of constituent-based models become even more
pronounced on noisy input data. Similarly to Experiment 1, we observe that manual alignments
boost performance for WordBL, but bring relatively small gains for PerfMatch (approximately
2% F-Score).

In order to assess how much errors in the automatic labelling affect projection, we split

7A more detailed comparison of the alignment models verified that the ranking from Condition 1 indeed carries
over: The combination PerfMatch with NA Filter significantly outperforms all other models in Condition 2
(p < 0.05).
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7. Experimental Evaluation

Band (Intersective) Prec Rec F-Score
Error 0 85.8 75.1 80.1
Error 1 77.4 35.5 48.7
Error 2+ 39.1 17.3 24.0

Band (Manual) Prec Rec F-Score
Error 0 87.4 77.8 82.3
Error 1 76.4 37.8 50.6
Error 2+ 35.6 16.5 22.5

Table 7.7.: Experiment 1, Condition 2: PerfMatch’s performance by errors rate in automatic
semantic role labelling per frame (Error 0: no labelling errors, Error 1: one labelling
error, Error 2+: two or more labelling errors)

the shallow semantic parser’s output into three bands: (a) instances with no role labelling
errors (Error 0, 36% of the test data), (b) instances with one labelling error (Error 1, 34%
of the test data), and (c) instances with two or more labelling errors (Error 2+, 31% of the
test data). Table 7.7 shows PerfMatch’s projection performance for each of these bands when
intersective and manual alignments are used. As can be seen, when the output of the shallow
semantic parser is error-free, projection performance is relatively good, reaching 80.1% F-Score
(intersective). The more errors are found in the automatic output, the worse projection results
we obtain. Interestingly, we find that PerfMatch is to a certain degree robust to noise, delivering
projections with high precision even in the face of imperfect data (see Error 1 in Table 7.7). The
low recall values for bands Error 1 and 2+ are a result of the semantic parser’s low recall. Note
that the projection of noisy data (Error 2+) is actually worse for manual alignments than for
intersective alignments: manual word alignments provide very strong evidence for semantic
alignments, which faithfully reproduce the semantic parser’s errors in the target language.

In sum, these results are encouraging: They show that projection can yield role annotations
from automatically annotated roles with almost the same precision as from manually annotated
roles. The restrictive PerfMatch alignment model with its “cautious” strategy (see Section 7.2.1)
appears especially suited for this type of input data. Moreover, the shallow semantic parser
we employ is not optimised for the EUROPARL corpus, only assigns roles to a subset of our
test corpus, and uses a basic feature set. Considering a more elaborate feature space would
presumably increase the semantic parser’s accuracy further (see Giuglea and Moschitti (2004)
for details). However, this was outside the scope of the present evaluation whose aim was to
determine the prospects of projection using a state-of-the-art shallow semantic parser off the
shelf, without spending effort on possible optimisations within that system.
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7.3. Experiment 2: Language Pair English–French

Model Precision Recall F-Score
No Filter 53.3 48.3 50.7
NA Filter 53.3 48.3 50.7
NC Filter 32.5 28.6 30.4

Table 7.8.: Experiment 2, Condition 1: Model comparison for word-based models (intersective
word alignment, development set)

7.3. Experiment 2: Language Pair English–French

The purpose of this experiment is to determine how well the results we obtain for the language
pair English–German generalise to another language pair, English-French, which involves a
target language from a different language family: French is a Romance language, while English
and German are both Germanic languages.

7.3.1. Condition 1: Projection from Gold Standard Roles

In this condition, we use English gold standard roles as input for the projection process. The
projected roles are evaluated against the French gold standard. As in Experiment 1, we first
compare all possible model instantiations on the development set (Step 1).

Step 1: Model Selection on the Development Set

Word-based models. The results for the word-based baseline models are summarised in
Table 7.8. The results are broadly similar to those for German: Without filtering (No Filter),
projection works moderately well, yielding an F-Score of 50.7%. Again, due to the nature of
the word-based projection model, removing non-aligned words (NA Filter) does not alter this
performance. The removal of non-content words by the NC Filter results a sharp performance
drop to 30.4%, similar to German. This decrease, which is statistically significant at p < 0.01,
results predominantly from the removal of role-initial or role-final non-content words such as
prepositions (par des mafias) or determiners (un exemple) which cannot be recovered by the
convex complementing heuristic.

In total, the performance of the word-based models is around 5% F-Score better for French
than for German, which is reflected in both higher precision and recall values. We ascribe
this difference, at least with respect to recall, to the more similar word orders of English and
French, which lead to a less sparse word alignment. In fact, the intersective alignment for
English–German for our sample contains 12.812 alignment links, while the English–French
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7. Experimental Evaluation

Model Prec Rec F-Score
WordBL 53.3 48.3 50.7
Total 57.2 50.2 53.5
EdgeCover 60.0 52.3 55.9

N
o

Fi
lte

r

PerfMatch - 60.9 49.6 54.7
UpperBnd – – 72.0

Model Prec Rec F-Score
WordBL 53.3 48.3 50.7
Total 68.1 50.2 57.8
EdgeCover 65.9 59.7 62.6

N
A

Fi
lte

r

PerfMatch 68.9 58.7 63.4
UpperBnd – – 72.0

Model Prec Rec F-Score
WordBL 32.5 28.6 30.4
Total 60.5 36.6 45.6
EdgeCover 66.8 57.6 61.9

N
C

Fi
lte

r

PerfMatch 69.4 56.6 62.3
UpperBnd – – 72.0

Model Prec Rec F-Score
WordBL 53.3 48.3 50.7
Total 71.4 58.1 64.1
EdgeCover 71.5 58.3 64.2

A
rg

Fi
lte

r

PerfMatch 84.2 47.3 60.6
UpperBnd – – 72.0

Table 7.9.: Experiment 2, Condition 1: Model comparison for full constituent-based models
(intersective word alignments, development set)

alignment consists of 15.517 links.8

Recall that no chunk analysis is available for French; we therefore continue directly to consider-
ing full constiuent-based models.

Full Constituent-based models. Table 7.9 shows the results for constituent-based models
for French when a full parser is employed. By and large, our observations correspond well to
the results we obtained in Experiment 1 for German (compare Table 7.3). Constituent-based
models substantially outperform word-based models for both languages. For French, we obtain
F-Scores of up to 64.2%, an improvement of 13.5% F-Score over the word-based models.

All constituent-based models significantly outperform the corresponding baseline for the
filtering scheme (p < 0.05). In fact, all models but one significantly outperform the best word-
based model, NA Filter. The low performance of the exception, Total Alignment with NC Filter,
is due to the overly aggressive NC Filter which removes crucial words, and whose errors cannot
be alleviated by the comparatively lenient Total Alignment (see the discussion of admissible
alignment classes in Section 6.3.2).

In parallel to German, we find that filtering almost universally improves resulting projections.
In the No Filter condition, all constituent-based models yield comparable performance ranging
from 53.5% to 55.9%. Using the NC filter results in a substantially higher performance of up to

8Compare our similar observations in Section 5.1.2.
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7.3. Experiment 2: Language Pair English–French

62% F-Score (with the exception of the Total Alignment model mentioned above). Both the NA
and Arg Filters lead to even higher, and more consistent, improvements than the NC Filter. All
models for these two filters outperform their counterparts in the No Filter condition highly
significantly (p < 0.01). These two filters also lead to the two globally best models for French,
namely PerfMatch with NA Filter (63.4% F-Score), and EdgeCover with Arg Filter (F-Score
64.2%).

Application of the Argument Filter not only leads to the best overall model, but also to
the model with the highest precision (PerfMatch ArgF) at 84.2%. This is the same model
instantiation that obtained the highest precision for German (80.3%). The models however
share the problem of low recall (47.3% for the French model).

Some differences between French and German arise through the more fragmented nature of
the French parses: Recall from Section 7.1.2 that we found a higher incidence of syntax–role
mismatches (i.e., semantic roles that could not be assigned to a single constituent) in the French
data compared with German. This means that reliance on the syntactic bracketing is more likely
to yield wrong projections for French, and correspondingly, the results for French are generally
somewhat lower in absolute numbers. For example, the best French model (64.2% F-Score)
trails the best German model (67.2%) by 3% F-Score. However, compared to the results for
word-based models, this absolute difference is rather small. In addition, these results should be
interpreted in relation to the upper bound for projection. This ceiling is also considerably lower
for French (72%), an effect which can at least be partly attributed to the fragmented nature of
the parses (cf. Section 7.1.3). In this context, the results for French look more favourable, with
the best model only 8% below the upper bound, while the difference is 16% for German.

The properties of the syntactic analysis for French bracketing also lead to interesting changes
in the relative performance of alignment models and filters. As for alignment models, we
find that the best model is either EdgeCover or PerfMatch, which underlines the benefits of
using a more restrictive alignment model for French as well. However, EdgeCover outperforms
PerfMatch in a number of French settings, which does not happen in German. The reason is that
PerfMatch cannot produce correct projections for roles which span more than one constituent
in the French gold standard. They can, however, be modelled by EdgeCover. In consequence,
PerfMatch consistently exhibits a better precision, but worse recall than EdgeCover. Depending
on the relative size of the two effects for a particular filtering condition, either one can result in
a better overall F-Score. On the level of filtering procedures, another difference to German is
that the Arg Filter models are competitive to the NA Filter models. This observation can be
traced back to the overall lower recall and precision level for French where the increases in
precision for the Arg Filter outweigh the accompanying losses in recall.

Step 2: Model Validation on the Test Set

In this step, we verify the performance of the best-performing models for each class of admissi-
ble alignments on the test set. Note that only the intersective word alignment is available for
French (cf. Section 2.2.2).
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Model Prec Rec F-Score
WordBL (NA Filter) 50.6 48.1 49.3
Total (Arg Filter) 68.3 57.9 62.7
EdgeCover (Arg Filter) 68.1 57.9 62.6
PerfMatch (NA Filter) 66.2 60.3 63.1
UpperBnd – – 72.0

Table 7.10.: Experiment 2, Condition 1: Comparison of the best full constituent-based models
on the test set (intersective word alignment)

Table 7.10 lists our results. We find that the performance of all models is between 0.5 and
2% lower than on the development set.9 Otherwise, the advantage conferred by syntactic
information remains unchanged: all constituent-based models outperform the word-based
baseline by most than 13% F-Score. The difference is highly significant (p < 0.01).

We obtain the best result, 63.1% F-Score, for the PerfMatch model with NA Filter, the same
model which performed best on the German test set. The two best models on the French
development set (Total and EdgeCover with Arg Filter) perform numerically worse, but the
difference of 0.5% F-Score is not statistically significant. In total, the test set corroborates our
observations on the development set. In particular, application of both the NA Filter and the
Arg Filter reliably result in well-performing models.

7.3.2. Condition 2: Projection from Automatic Roles

In this condition, as in Section 7.2.2, we use noisy English role annotations from the output of
a shallow semantic parser as input to the projection process. As we have argued above, this
condition is important to gauge the feasibility of role projection for practical (i.e., large-scale)
scenarios, since usually no manual annotation will be available for large parallel corpora even
in the source language.

We re-used the automatic annotation for English produced for the first experiment with
Giuglea and Moschitti’s (2004) shallow semantic parser as input for projection. Recall that
the shallow semantic parser’s performance (65.1% F-Score) can be seen as an upper bound for
projection quality. In parallel to Experiment 1, we focus on the projection model which we
found to perform best on manual input data in Condition 1, namely PerfMatch with NA Filter.10.

The results are shown in Table 7.11. Again, we contrast the performance of the constituent-

9This is the inverse of the pattern we observed for the language pair English–German, where results on the test
set were slighly better. We take this as evidence that there is no systematic bias in the split of our corpus in
development and test set.

10Again, further analysis showed that this setting outperforms all other models.
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7.3. Experiment 2: Language Pair English–French

Model (Intersective Word Alignment) Prec Rec F-Score
WordBL 54.6 38.9 45.4
PerfMatch (NA Filter) 70.2 48.3 57.2
UpperBnd 78.1 55.8 65.1

Table 7.11.: Experiment 2, Condition 2: Performance of best constituent-based model on the
test set, using automatically labeled semantic roles as input

Band (Intersective) Prec Rec F-Score
Error 0 80.7 73.6 77.0
Error 1 73.8 38.3 50.4
Error 2+ 39.8 20.5 27.1

Table 7.12.: Experiment 2, Condition 2: PerfMatch’s performance by errors rate in automatic
semantic role labelling per frame (Error 0: no labelling errors, Error 1: one labelling
error, Error 2+: two or more labelling errors)

based model to the word-based baseline and to the performance of the shallow semantic parser
as an upper bound. In comparison to the results for Condition 1 on the test set (see Table 7.10),
the quality of the projection decreases somewhat, but the effect is surprisingly small: Overall
performance both for the word-based baseline and the PerfMatch model drops by 5 to 6%
F-Score. Furthermore, we find this effect results entirely from a decline in recall. Crucially, the
precision even increases slightly when automatically annotated role information is projected.

A comparison of these results for French with the corresponding figures for German (see the
top half of Table 7.6) shows that the overall quality is very similar for both languages, with even
a slight advantage for French (57.2% over 56.6% F-Score). French shows a slightly higher recall,
but lower precision. We attribute this effect to the less sparse word alignment (cf. Condition 1),
which supports the projection of more (both correct and erroneous) role information.

The find the same, very similar picture across languages in the more detailed analysis of
projection quality in relation on annotation errors, which is shown for French in Table 7.12. The
overall stratification is very similar to German (cf. Table 7.7). The projection results are very
clean for frames with no labelling errors. With one error, precision is still above average, while
recall is below. For two labelling errors, both recall and precision degrade clearly. The smaller
amount of variance between bands for French – the Error 0 band is 3% F-Score worse than
for German, while the Error 2+ band is 3% F-Score better – can again be attributed to word
alignment differences.

In sum, the result for Condition 2 cast a more favourable light on French than the results for
Condition 1 (listed in Tables 7.4 and 7.10), where results for German surpassed results for French
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by a substantial margin. The fact that these differences are confined to the “clean” projection of
manually annotated data suggests that they reflect predominantly differences in the manual
annotation process. Recall that the inter-annotator-agreement was 83% F-Score for German,
but only 72% for French. The lower agreement for French, which can in turn be traced back to
the lower agreement between syntactic and semantic bracketing, makes projection considerably
harder, as witnessed by the lower upper bound. In contrast, we find virtually no difference in
Condition 2, where projection quality is currently limited primarily by the performance of the
shallow semantic parser (65% F-Score). In this situation, the noise in the source data outweighs
the differences between the target annotations.

Thus, the experimental results we obtained for Condition 2 correspond well to the predictions
from our study on instance-level parallelism in Chapter 3, where we found that German
and French role annotations correspond to English approximately equally well. In fact, the
differences we encounter between the two target languages are attributable either to differences
in the syntactic analysis (overall lower performance for French in Condition 1), or to differences
in the statistical word alignment (higher recall and lower precision for French). At the current
state of the art in shallow semantic parsing, the performance penalty for French is even masked
completely by errors in the automatic source annotation. However, we would expect the effect
to become measurable once the performance of shallow semantic parsing attains the same level
as the inter-annotator agreement in the target language.

7.4. Related Work

Cross-lingual induction of semantic roles. The study in the literature closest to our work
is Johansson and Nugues (2006), who induce frame-semantic role annotations for Swedish
also using annotation projection. However, their study relies solely on word alignment for
projection, comparable to our word-based projection models. The shortcomings of these
alignments are addressed by complementing them with a number of specific heuristics for
the language pair English–Swedish. Johansson and Nugues do not evaluate their projected
data directly, but concentrate on using them for the induction of a shallow semantic parser for
Swedish. Their method yields good results; however, this may be attributable at least partly to
the very close relationship between Swedish and English, verified empirically in Koehn (2005).
Unfortunately, the identification of heuristics to correct word alignment has to be repeated
for every new target languages, and presumably becomes much harder for less closely related
languages.

A completely different strategy was presented by Fung and Chen (2004), who proposed
an ontology-based method to induce FrameNet-style roles for Chinese. In a first step, they
map English FrameNet entries to concepts listed in HowNet11, an on-line ontology for Chinese,
without making use of parallel texts. In a second step, they search for monolingual Chinese
sentences containing predicates instantiating these concepts, and label their arguments with

11See http://www.keenage.com/zhiwang/e_zhiwang.html.
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FrameNet roles. While Fung and Chen report high accuracy values, their method relies on the
existence of an ontology for the target language whose design decisions do not clash with the
frame distinctions made by FrameNet (Ellsworth, Erk, Kingsbury, and Padó 2004; Ruppenhofer
et al. 2005). Such resources are presumably rare, and compliance with the FrameNet principles
is difficult to assess.

A third approach was recently proposed by Pitel (2006). Using parallel bilingual corpora, he
constructs a bilingual vector space containing content words of both the source (English) and
target languages. Within this space, he locates clusters of English lemmas corresponding to the
head words for some frame element in the FrameNet example annotations. Target language
lemmas within the same cluster are presumed to be typical head words of the frame element
in the target language, and can subsequently be used to identify instances of this FE in target
language text. Unfortunately, this purely lexical approach on its own appears to be insufficiently
discriminative. The three major problems are (a), frame elements which cannot be represented
by a semantically coherent class of words (such as Message, which can have almost any head
word), (b), pairs of frame elements with very similar semantic representations (such as Buyer
and Seller), and (c), role instances in the target language filled by semantically light material
such as anaphors or pronouns (this, we). Nevertheless, the lexical information provided by
the bilingual vector space might provide an interesting complement to the more structural
projection model presented in this thesis.

Unsupervised induction of semantic roles. An alternative strategy for inducing semantic
role information “from scratch” is provided by unsupervised induction methods, which do
not require annotated corpora. A small number of studies develop such methods, but all of
them are forced to constrain the roleset they consider to make the induction feasible. For
example, Swier and Stevenson (2004, 2005) train a shallow semantic parser for 16 universal
semantic roles. They initialise the parser by extracting syntax-semantics mapping rules from
the VerbNet (Kingsbury and Kipper 2003) verb lexicon, and refine it iteratively. They first assign
roles to all unambiguous role instances in a parsed, but semantically unannotated, corpus,
and then use these instances to estimate a simple probability model which serves to label the
ambiguous cases. Unfortunately, the initial reliance of the approach on a large verb lexicon
makes its application to low-density languages difficult; in addition, generalisation to larger
sets of semantic roles is likely to result in sparse data problems.

A completely unsupervised method was recently proposed by Grenager and Manning (2006),
who induce semantic role annotation using the Expectation Maximisation algorithm. The
model is able to label syntactically annotated corpora with six indexed semantic roles, and
does so with a high accuracy. However, the role annotations carry only limited information:
the role labels do not provide any semantic interpretation (they merely serve to distinguish
the roles), and do not generalise across verbs. Thus, the semantic roles provided by the model
are more accurately characterised as generalised grammatical functions that abstract over
diathesis alternations. While generalisation over surface phenomena is a worthwhile task, this
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representation does not currently offer a semantic characterisation of the predicate-argument
structure as usually provided by semantic roles (cf. Section 1.1).

Semantic alignment. On the modelling level, we have proposed a framework for com-
puting semantic alignments which express translational equivalence between constituents
of bi-sentences. Semantic alignments are formalised as bipartite graphs and the search for
the best alignment as an optimisation problem. The view of alignment as graph matching
is relatively widespread in the machine translation literature on word alignment (Melamed
2000; Matusov, Zens, and Ney 2004; Tiedemann 2003a; Taskar, Lacoste-Julien, and Klein 2005).
Despite individual differences, most approaches cast word alignment as a maximum-weight
matching problem (cf. Section 6.3), where each pair of words in a bi-sentence is associated
with a score representing the desirability of that pair. The alignment for the bi-sentence is
the highest scoring matching under some constraints, for example that matchings must be
one-to-one. Our work applies graph matching to the level of constituents and considers a larger
class of constraints (see Section 6.3.2) than previous approaches. For example, Taskar et al.
(2005) examine solely perfect matchings and Matusov et al. (2004) only edge covers.

The task of aligning constituents of bi-sentences has also been addressed by a number of
studies investigating the extraction of phrase-level translation patterns from parallel tree-
banks. However, most of these models only search for pairs of constituents which are perfectly
word-aligned to one another, a strategy that is infeasible for automatically obtained word
alignments (Kaji, Kida, and Morimoto 1992; Imamura 2001). Other papers address word align-
ment errors by couching constituent alignment as an optimisation problem, but use greedy
search techniques which are not guaranteed to find an optimal solution (Matsumoto, Ishimoto,
and Utsuro 1993; Yamamoto and Matsumoto 2000). Meyers, Yangarber, and Grishman (1996)
impose structural constraints on the alignment which exclude non-isomorphic parts of the
source and target trees from the alignment.12 While this constraint gives the alignment a
very strong corrective power (cf. Section 6.3.2), it appears to be most appropriate for similar
languages, similar parsing schemes, and high-quality parse trees. When these conditions are
not met, it is liable to align only small parts of the two trees. In contrast, the framework we
have proposed in this thesis does not explicitly enforce the preservation of dominance relations.
We nevertheless obtain high precision alignments, which indicates that such constraints are not
strictly necessary in practice.

In this thesis, we have evaluated the semantic alignment models on the semantic role projec-
tion task, but we believe that semantic alignments show promise in the context of statistical
machine translation as well, especially for systems that use syntactic information to enhance
translation quality. For example, Xia and McCord (2004) exploit constituent alignment for
rearranging sentences in the source language so as to make their word order similar to that
of the target language. They learn tree reordering rules by aligning constituents heuristically

12Formally, they require that for each pair of alignment links (c, c ′) and (d, d ′), the alignment maps the lowest
common ancestor of c and d onto the lowest common ancestor of c ′ and d ′.
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with a heuristic local optimisation procedure similar to our “Total” admissible alignment class.
A similar approach is described in Collins, Koehn, and Kučerová (2005); however, there, the
rules are manually specified and the constituent alignment step reduces to inspection of the
source-target sentence pairs. The different admissible alignment models presented in this
thesis could be easily employed for the reordering task common to both approaches. In other
work, the rewrite rules are not used as a preprocessing step (e.g., to reorder source strings) but
form part of the translation model itself (Gildea 2003, 2004). Constituent alignments are learnt
by estimating the probability of tree transformations, such as node deletions, insertions, and
reorderings. These models have a greater expressive power than the models presented here;
however, this implies that approximations have to be used to keep the computation feasible.

7.5. General Discussion

In Part III of this thesis, we have presented a general framework for the cross-lingual projection
of semantic roles. The framework centers around the notion of semantic alignment which
can be parameterised for different units (linguistic entities) of projection. We discussed two
broad instantiations of the framework, namely word-based and constituent-based models. We
showed that the search for semantic alignments can be formalised as an optimisation problem.
Specifically, bi-sentences are conceptualised as bipartite graphs where optimal alignments
correspond to a minimum-weight subgraph meeting certain requirements. Solutions to the
search problem can be obtained efficiently with well-known graph optimisation methods. In
addition, we have introduced a small number of filtering techniques which either repair or
eliminate alignment errors. We have evaluated this framework on two different language pairs,
namely English–German and English–French.

The proposed framework is both intuitive and general. We can explore a wide variety of
models by imposing constraints on the shape of the alignments. This results in models which
differ in terms of their expressive and corrective power. Restrictive models can better overcome
errors in the word alignment by guiding the search towards linguistically reasonable solutions,
but unfortunately cannot account for translational divergences such as one-to-many or many-
to-many alignments. We have derived four models that exemplify our projection framework.
The models are summarised in Table 7.13 and vary along the following dimensions: the linguistic
units employed (LingUnit), the similarity measure (Similarity), the set of admissible alignments
(AlignModel), their expressive (ExpPower) and corrective power (CorPower). We also mention
the time complexity of their computation (Complexity) in the number of units in the bi-
sentence.

We found that the use of constituent information obtained from the output of a full parser
yields substantial improvements over word alignments or chunks. Although word-based models
could offer a starting point for low-density languages for which parsers are not available, the
noisy and often fragmentary nature of word alignments makes it difficult to deliver accurate
projections. Chunk-based models perform generally better than word-based ones; however,
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LingUnit Similarity AlignModel ExpPower CorPower Complexity
words binary word alignment (x) (x) linear
constituents overlap total high low quadratic
constituents overlap edge cover medium medium cubic
constituents overlap perfect matching low high cubic

Table 7.13.: Framework instantiations ((x): depending on word alignment)

they also tend to produce incomplete role spans. Our experiments also compared and contrasted
three types of semantic alignment models differing in their corrective and expressive power
(total, edge covers, and perfect matchings). We found that the perfect matching alignment, the
most restrictive model which enforces one-to-one alignments, delivers the highest performance
reliably for both language pairs. This suggests that it is more beneficial to choose a more
restrictive alignment model that ignores translational divergence, but has the power to correct
wrong word alignments. As a side effect, the performance of constituent-based models increases
only slightly when manual word alignments are used, which means that role projection yields
near-optimal results with automatic word alignments.

As far as different elimination techniques for alignment noise are concerned, we find that
removing non-aligned words yields the best results most consistently across different experi-
mental conditions and target languages, in particular in combination with the PerfMatch class
of admissible alignments. This filter is independent of the language pair or the underlying
linguistic representations in question and could be potentially useful for projection models
beyond the ones we have considered.

Finally, experiments with an shallow semantic parser (Giuglea and Moschitti 2004) demon-
strate that the projection approach delivers satisfactory results even for noisy input, notably
preserving high precision in the induced role annotation. Thus, our framework already at
present holds promise for large-scale resource creation. Future improvements in shallow
semantic parsing have the potential to lead to still better projection results.

Comparing the results for German and French, we find material agreement between the two
target languages. Performance is somewhat superior for German when manual role annotation
is used as input. However, this difference is almost entirely attributable to technical factors,
notably the recall of the statistical word alignment, and the agreement between syntactic
bracketing and role spans. The differences furthermore cease to be noticeable when noisy
input data is used, and performance becomes virtually identical for both target languages.
This corresponds well to the estimates we obtained for instance-level semantic parallelism
in Chapter 3, lending further support to the predictive value of the degree of instance-level
parallelism for the performance of actual projection.

The projection framework developed here is useful for other semantic role paradigms besides
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FrameNet, or indeed for other annotations of semantic nature. Potential applications include the
projection of PropBank roles (provided the grounding problem discussed in Section 3.2.3 can
be solved), discourse structure, or named entities. As mentioned in Section 7.4, the alignment
models discussed here could be used in machine translation for the reordering of constituents.
An important direction for future work lies in investigating the use of projected annotations for
training semantic parsers for the target language (Johansson and Nugues 2006).

Another important avenue of future work concerns the role of bracketing information in
the target language. We assume that accurate projection of a semantic role is considerably
simplified when the syntactic analysis for the target sentence contains a single constituent
corresponding to the “ideal” role span. This hypothesis is supported by two observations: first,
the large improvement for using recursive constituents (which usually contain ideal spans)
over chunks results (which do not); and second, the difference in Condition 1 between German
(whose full syntactic analysis almost always offers such constituents) and French (where this
is true in a smaller portion of cases). In contrast, the global shape of the parse tree (such as
the depth of the analysis) appears to play a negligible role, since filtering has the potential of
making trees more similar. Unfortunately, broad-coverage full parsers are not yet available
for many potential target languages. We will therefore explore alternative ways of inducing
potential role spans for target sentences. Since we do not require hierarchical structure, it might
be sufficient to construct pseudo-constituents, either by combining chunks (which are available
for a larger number of languages), or by using completely unsupervised aligned-based learning
techniques (Geertzen 2003).

A final option which we have not considered in this thesis is the use of the complete corpus as
context to improve alignment. Our current framework optimises the constituent alignment for
each sentence individually, and requires the class of admissible alignments to be chosen by the
user. While the class of perfect alignments appears to be a robust choice, it has not been optimal
for every experimental condition. A strategy which might overcome both of these limitations at
the same time is to approach constituent alignment with fertility-based alignment models such
as the IBM word alignment models 3–5 (Brown et al. 1993). These models treat the number
of alignment links for each source item as a hidden variable, whose value can be estimated
together with the other parameters of the model from the corpus itself (see Section 2.2.1 for
details). In our case, such a fertility-based model would determine alignments that optimally
explain the patterns found in the data. The two central problems which would have to be solved
for the application of such a scheme are (a), that word alignment models are designed for
aligning (linear) sequences, while constituents are arranged in trees; and (b), that a suitable
representation for individual constituents has to be found. Such a representation has to provide
enough information to distinguish between constituents (which rules out the use of mere
phrase types), but has to allow for the identification of similar patterns across sentences (which
precludes the use of complete yields).
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7.6. Summary

In this chapter, we have performed an experimental evaluation of the framework for the
projection of semantic roles which we have developed in Chapter 6. We have used the trilingual
parallel sample corpus whose construction was described in Section 3.3 to induce frame-
semantic role information for two target languages, namely German and French.

The results of the experiments have verified the fundamental feasibility of role projection
through annotation projection both for German (Section 7.2) and French (Section 7.3), and
the main insights hold equally for both languages. First, role projection profits substantially
from accurate bracketing information in the target language to recognise linguistically sensible
word spans onto which roles can be projected. Results attain between 64% and 70% F-Score.
Second, high-quality role projection is feasible even under comparatively noisy conditions,
such as when using automatically constructed word alignment, and using input roles from a
shallow semantic parser. Projection is notably able to maintain a high precision of over 70%,
with F-Scores at around 57%. This is a promising result in particular with respect to resource
induction for target languages, since arguably precision is more central for this purpose than
recall.

138



Part IV.

Further Directions and Conclusions





8. Beyond Frame Instance Parallelism:
Frame Group Paraphrases

8.1. Motivation

The overall aim of this thesis is to develop methods for the cross-lingual induction of frame-
semantic information to create frame and role annotation for new languages. Part III has
presented a projection-based models for the transfer of semantic role information. However,
as we have established in Section 3.2.2, simple role projection is only possible when frame
instance parallelism holds, i.e., when the predicate in the source language evokes the same
frame as its aligned translation. The underlying reason is that frame-semantic roles are defined
for individual frames (cf. Section 1.1.1). As a result, the methods presented in Part III are
not applicable to all bi-sentences in a parallel corpus, or rather, run the risk of producing
wrong annotations when applied indiscriminately to all parallel sentences. This limits the
applicability of our methods to structurally similar languages with a large number of exactly
parallel semantic structures (see Chapter 3 for discussion).

In consequence, this chapter is concerned with analysing and modelling cases where frame
instances are not parallel. It addresses the following three questions:

• Are there patterns in frame instance non-parallelism?

• Can we obtain these patterns from a corpus automatically?

• Can we exploit these patterns for role projection?

We will argue that the answer to the above questions is yes. We provide a definition of such
patterns, which represent translational equivalences between frames or frame combinations
and mappings between corresponding roles. We call these patterns frame group paraphrases,
and they are based on frame groups, sets of adjacent frames. We provide an algorithm which
acquires frame groups from a parallel corpus (Section 8.3), and evaluate it on a small subset of
EUROPARL (Section 8.4).

In this study, we lay the foundations for identifying and modelling frame group paraphrases.
The methods described here, although developed to be fully automatisable, have so far only
been applied and evaluated manually, which results in a very limited evaluation scenario.
In Section 8.5, we sketch how frame group paraphrases can be coupled with projection by
integrating them as two steps in a general bootstrapping process. We conclude with a review of
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Frame name Abbrev. Definition
Cause change of position
on a scale

Ccpos A Cause affects the position of an Item on
some scale.

Change of position on a
scale

Cpos An Item’s position on a scale changes.

Causation – A Cause causes an Effect.

Table 8.1.: Most important FrameNet frames used in Chapter 8 and their definitions (names of
semantic roles for each frame printed in small caps)

related work (Section 8.6) and a general discussion, with a focus on the generalisability of our
approach (Section 8.7).

8.2. Frame Group Paraphrases

8.2.1. An Example of Frame Non-Parallelism

Recall from Section 1.1.1 that the definition of frames has both a conceptual and a structural
component. Slightly simplified, the structural criterion for the inclusion of a predicate in a
frame is that its valency allows it to realise all semantic roles belonging to that frame. Thus, it
is evident that translation pairs which differ substantially in their valency cannot be analysed
using the same frame. In the following example, an English transitive verb (increase) is
translated as an adjective, höher (higher), which leads to frame non-parallelism:

(8.1)

[The drought]Cause has increased [tea prices]Item. (Ccpos)

Die
The

Dürre
drought

hat
has

zu
to

höheren
higher

[Teepreisen]Item

[tea prices]Item

geführt.
led.

(Cpos)

The problem is that the transitive verb increase has the ability to express both an Item, whose
value changes, and the Cause of this change. It therefore has to be analysed as an instance of a
causative frame, Cause_change_of_position_on_a_scale (Ccpos). Its German translation,
as an adjective, can only only realise the Item role due to its restricted valency. Thus, it is
analysed as evoking the stative counterpart of Ccpos, the Change_of_position_on_a_scale
frame (abbreviated Cpos).1

With the German predicate only able to realise the Item role, the question arises what
happens to the second English role, Cause. Of course, one possibility is that the translation
is “lossy” and that the role is not translated at all. An example for such a case is Example 3.2,

1The definitions of the most important frames used in this chapter are provided in Table 8.1.
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[The drought] increased [tea prices]. 

[Die Dürre] hat [zu höheren [Teepreisen]] geführt.

Cause change of position on a scale

Cause Item

Change position on a scale

Item

Causation

Cause
Effect

Figure 8.1.: Analysis of the bi-sentence from Example (8.1): Non-parallelism on the level of
individual frames

repeated here for convenience, where the German Cognizer role does not occur in English
due to the choice of the passive voice:

(8.2) So I ask that [Ireland]Content be remembered in this particular case.

Ich
I

möchte
would like

deshalb
therefore

darum bitten,
to ask

dass
that

[man]Cognizer

[one]Cognizer

in
in

diesem
this

speziellen
particular

Fall
case

auch
also

[an Irland]Content

[of Ireland]Content

denkt.
thinks.

This is, however, not what happens in Example 8.1. Figure 8.1, which shows a complete frame-
semantic reference analysis for the example, reveals that the German translation introduces an
additional predicate, führen (to lead), with its own frame, Causation, and two roles Cause and
Effect. It is this new frame which provides the missing role: The German Causation.Cause
role2 corresponds exactly to the English Ccpos.Cause which cannot be realised within the Ger-
man Cpos frame. Interestingly, the second role provided by Causation, Causation.Effect, is
filled by the phrase zu höheren Teepreisen, whose head modifier, höher, evokes the Cpos frame.
This link is an additional indicator for a close relationship between the two German frames
Causation and Cpos.

2In the following, we will use the notation Frame.Role when roles of different frames with the same name need
to be distinguished.
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In Chapter 3, we have introduced instance-level parallelism of frames and roles as prere-
quisite for frame-semantic annotation projection. From this perspective, the bi-sentence in
Figure 8.1 poses a real challenge. We find neither frame-instance parallelism (the frames do not
correspond), nor role-instance parallelism (which is conditional on frame-instance parallelism).
In consequence, the methods developed in Parts II and III are not applicable to this sentence
pair. Nevertheless, we have the clear intuition that these two sentences are parallel. They
describe the same state of affairs, and they mention the same participants, despite the fact that
they do not use the same frames.

Non-parallelism on the frame level is actually a moderately frequent phenomenon, as we have
established quantitatively through the evaluation of our manually annotated sample corpus in
Section 3.3, where we found around 30% frame instance non-parallelism for both language pairs
English–German and English–French. As we have discussed in the analysis of translational
shifts (Section 5.7), non-parallelism arises very naturally from the fact that translation does
not necessarily proceed word by word; the resulting restructuring of the sentence often breaks
instance-level parallelism by changing frames or re-distributing predications among adjacent
frames. This is exactly what happens in Figure 8.1, where the Cause role is once expressed
by the Ccpos frame, and by the Causation frame. Not being able to model such cases of
non-parallelism therefore limits the coverage of frame-based projection methods on parallel
corpora.

8.2.2. Frame Groups and Frame Group Paraphrases

We propose to address the problem of frame non-parallelism by generalising the notion of
frame-instance parallelism (cf. Section 3.2.3), which underlies role projection, from individual
frames to so-called frame groups. A frame group is a set of adjacent frames. The assumption
that motivates this step is the intuition that the “redistribution of predications” such as the
movement of the Cause role from the Ccpos to the Causation role in Figure 8.1 is a largely
local phenomenon, which can be modelled in terms of the local semantic context. In this
chapter, we consider in particular frame groups of size two, which represent the simplest
possible form of frame groups that is more powerful than individual frames.3

Our hope is that two-frame frame groups will provide a level of description on which
parallelism takes places significantly more often than for individual frames. This idea is
illustrated in Figure 8.2: We find two frame groups in the two halves of the bi-sentences: in
English, a singleton frame group {Ccpos}, and in German, the frame group {Cpos,Causation}.
Our intuition is that these frame groups correspond to one another, effectively forming a frame
group paraphrase: they describe the same state of affairs, i.e., translationally equivalent, and
thus parallel, chunks of predicate-argument structure. A frame group paraphrase can also be
thought of as two frame groups that can be used alternatively.

We now proceed to making the concepts of frame groups and frame group paraphrases

3This assumption will be discussed in Section 8.7.
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[The drought] increased [tea prices]. 

[Die Dürre] hat zu höheren [Teepreisen] geführt.

Frame Group
{Cause change of position on a scale}

Cause Item

Frame Group {Causation,
Change position on a scale}

ItemCause

Figure 8.2.: Analysis of the bi-sentence from Example (8.1): Parallelism on the level of frame
groups

more precise. First, we consider the definition of frame groups. Clearly, allowing every pair
of frame instances in a sentence to form a frame group is too lenient and would result in
overgeneration, i.e., the emergence of frame groups which cannot model parallelism in bi-
sentences. As mentioned above, our intuition is that frame groups are aimed at capturing
local redistribution of semantic material; therefore, we require frames in a frame group to be
adjacent, with no intervening frames.

Frame Group. We define a frame group to be a set of one or two frames. It contains one
frames called the base frame. If it contains two frames, the frame that is not the base
frame is called the embedding frame. The embedding frame must have one designated
role, whose semantic head4 is either the FEE of the base frame, or has the FEE of the base
frame as a modifier. This role is called the embedding role; all other roles of the frame
group are called free roles.

This definition can be illustrated in Figure 8.1: Ccpos is the base frame, and Causation is the
embedding frame. The role Causation.Effect is the embedding role: Its span is the phrase zu
höheren Teepreisen. The embedding role thus “glues together” the two individual frames which
act as partial descriptions of the complete state of affairs. For the sake of clarity, our figures
depict the embedding role as pointing to the base frame instead of its span.

4Syntactic and semantic head can differ in the case of transparent nouns: In “he drank a pint of milk”, the syntactic
head is “pint”, while the semantic head is “milk”.
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Note that our present definition of embedding still depends on the existence of syntactic
relations between the embedding role and the FEE of the base frame. A more general charac-
terisation is currently emerging in the form of frame dependency graphs, dependency graphs
which contain non-lexical nodes labelled with frames intervening between predicates and their
arguments. Frame dependency graphs have been adopted as the desired output format at the
SEMEVAL 2007 task on frame-semantic structure extraction (Baker, Ellsworth, and Erk 2006).

We next describe frame group paraphrases, pairs of frame groups which describe the same
state of affairs in two languages. Our intuition is that such pairs of frame groups need to express
predications of the same entities; informally, they must “talk about the same things”. We also
introduce the possibility of restricting the correspondence to a set of relevant participants,
which makes it possible to derive “lossy” paraphrases as well which preserve only a subset of
the original participants.

Frame Group Paraphrase. We define a frame group paraphrase as a pair of frame groups
(f, f ′) on both sides of an aligned bi-sentence, whose base frames are evoked by one
source and one target predicate which are translationally equivalent. Furthermore, given
a set of relevant roles, which form a subset of the free roles of f, it must hold that the
translational equivalent of each relevant role of f is labelled by a free role of f ′, and vice
versa. If all free roles of f are relevant, we call the frame group paraphrase full, otherwise
we call it lossy.

According to this definition, and assuming that word alignment can be used as an indicator of
translational equivalence, the example in Figure 8.1 shows indeed a full frame group paraphrase.
The two base frames, Ccpos and Cpos, are evoked by the predicate pair increased/höher, and
the free (and thus relevant) roles of Ccpos are mapped as follows: Ccpos.Item to Cpos.Item,
and Ccpos.Cause to Causation.Cause.

The most immediate application of frame group paraphrases in the context of this thesis is
that they allow us to state a generalised definition of instance-level parallelism:

Instance Parallelism for Frame Group Paraphrases. Instance parallelism for frame group
paraphrases holds if for all pairs of source and target predicates that are translationally
equivalent in a parallel corpus, these predicates evoke a known frame group paraphrase.

This definition subsumes the “classical” cases of frame instance parallelism as defined in Section
3.2.2, since individual frames are also frame groups, but its coverage is greater, encompassing
also frame groups of size 2 like the case in Figure 8.2. In parallel to classical frame instance
parallelism, it implies role instance parallelism. This property is guaranteed by the definition
of frame group paraphrases, which requires that the free roles of the two frame groups involved
correspond to one another. In the rest of this chapter, we will abbreviate the term of instance
parallelism of frame group paraphrases as FGP instance parallelism.

What is still left to be shown, of course, is that this defining instance-level parallelism on
the level of frame groups represents an improvement over the old definition on the level of
individual frames in Section 3.2.2. This argumentation involves several steps:
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• First, note that the definition above mentions “known frame group paraphrases”; there-
fore, we need to develop a technique to automatically acquire frame group paraphrases
from annotated bi-sentences. An algorithm for this task is presented in Section 8.3.

• Next, Section 8.4 provides an evaluation of the degree of FGP instance parallelism, as
Section 3.3 did for frame instance parallelism. We assert that frame group paraphrases can
indeed improve the coverage over frame instance parallelism (Section 8.4.3). Importantly,
Section 8.4.4 provides a complementary qualitative evaluation which verifies that the
acquired frame group paraphrases are actually paraphrases, i.e., describe equivalent
states of affairs.

• In Section 8.5, we address the main limitation of our acquisition algorithm, namely that it
requires frame-semantic analyses for both languages to acquire frame group paraphrases.
We sketch how this problem can be solved by interleaving frame group acquisition with
annotation projection, using the methods developed in Parts II and III.

8.3. Corpus-based Acquisition of Frame Group Paraphrases

As mentioned in the last section, the new definition of instance-level parallelism requires a set
of known frame group paraphrases, i.e. frame groups that can be used interchangeably. In an
ideal world, frame group paraphrases would be included in the lexical information encoded
in FrameNet. However, due to the high effort involved in manually identifying and encoding
frame group paraphrases, only preliminary steps exist in this direction. FrameNet provides
some frame group paraphrases for singleton frames through the frame hierarchy (such as the
Ride Vehicle – Operate Vehicle example discussed in Section 3.1.1), but currently does not
include information on frame groups with more than one frame.

A promising strategy for obtaining frame groups is their automatic acquisition from a parallel
corpus, such as EUROPARL, when it is annotated with FrameNet frames and roles on both
sides. The word alignment in bi-sentences can be adopted as an approximation of translational
equivalence.5 This section presents an algorithm for this task, which produces a set of frame
group paraphrases for a given target frame group.

5Alignment and preprocessing can be automatised as seen in Chapter 2. As for obtaining the frame-semantic
analysis for both sides, see Section 8.5.

147



8. Beyond Frame Instance Parallelism: Frame Group Paraphrases

1: Given: target frame group ft and a set rel ⊂ roles(ft) of relevant free roles
2: Given: a set B of base frames with role mappings mt

3: Set the set of paraphrases P = {ft}; mt(ft) = {(r, r) | r ∈ rel
4: while P changes do
5: for aligned frame group instances f1,f2 do
6: if f1 ∈ P and base(f2) ∈ B then
7: m is the word alignment-induced role mapping m from f1 to f2.
8: if range(mt(f1)) ⊆ dom(m) and

mt(f1) ◦m and mt(base(f2)) coincide on the intersection of their domains then
9: P = P ∪ {f2}, where mt(f2) = m(f1) ◦m

10: end if
11: end if
12: end for
13: end while

Figure 8.3.: Iterative matching for frame paraphrase acquisition

8.3.1. The Iterative Matching Algorithm

Notation. To describe the algorithm concisely, we will need to introduce some notation. First,
we will need to distinguish frames and frame groups (types) from their instances in a given
sentence. Given a frame (group) instance f with roles r1, r2, . . ., we will write f for the frame
(group) type with the role types r1,r2 that it instantiates. Two frame groups are called aligned
if the FEEs of their base frames are word-aligned.

We describe correspondences between the roles of two frame groups by their role mappings:
Writing roles(f) for the set of free roles of a frame group f, a role mapping m : roles(f1) ⇀
roles(f2) is a partial mapping from roles of a frame group f1 to roles of a frame group f2.
Given two aligned frame group instances f1, f2, the word alignment-induced role mapping
m : roles(f1) ⇀ roles(f2) is the role mapping that maps each role r1 to a role r2 if and only if
r1 and r2 are aligned according to the word alignment-based methods developed in Chapter 6.

The Algorithm. The algorithm is shown in Figure 8.3. It has two parameters. The first is the
target frame group ft, the frame group for which frame group paraphrases are to be acquired,
and the set of relevant roles which have to be filled in all paraphrases. The second is a set of
base frames that have already been identified as partial paraphrases of the target frame groups,
which do not fill all relevant roles of the target frame group, such as Cpos for Ccpos. Base
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8.3. Corpus-based Acquisition of Frame Group Paraphrases

frames thus introduce the necessary knowledge to focus paraphrase acquisition on plausible
frame groups. However, if nothing is known about base frames for the target frame group, a
simplified version of the algorithm can also be produced by removing all checks for consistency
with the base frames (see below). Note that in a real-life corpus this is likely to result in a noisier
set of paraphrases.

The algorithm iteratively extends a set P of known frame group paraphrases for the target
frame group ft, along with the role mappings which link paraphrase roles to target roles. It
proceeds by browsing the corpus and identifying instances of aligned pairs of frame groups
(f1,f2) where f1 is already a known paraphrase of ft, but f2 is not. Provided that the three
conditions enumerated immediately below hold, the frame group f2 is added to the set of
paraphrases for ft. The role mapping between ft and f2 is constructed by combining the
(known) role mapping between ft and f1 with the word alignment-induced role mapping
between f1 and f2.

1. The base frame of f2 is based on one of the partial paraphrases for the target group.
(Line 6)

2. f2 must realise all the roles that f1 does, i.e., all relevant roles. (Line 8)

3. The role mapping between ft and f2 is consistent with the known role mapping for the
partial paraphrase base(f2). (Line 8a)

The first condition ensures that f2 is a plausible paraphrase for ft. The second condition is
necessary to guarantee that all relevant roles of the target frame group are found. The third
condition rules out inconsistent role mappings. Conditions (1) and (3) can be dropped if no
base frames are known.

A worked example. Figure 8.4 shows a small bilingual corpus on which we will demonstrate
how frame group paraphrases are acquired iteratively with our algorithm. We initialise the
algorithm with the singleton group {Ccpos} as target frame group. We look for full paraphrases,
using {Cause,Item} as relevant roles. Since the target frame group is a singleton, there is
no embedding frame. The only partial paraphrase we initially know is the base frame Cpos,
with the role mapping {Ccpos.Item→ Cpos.Item}. This captures the intuition that causative
change of position can be paraphrased by change of position plus some embedding frame.

In the first iteration, we can only derive “direct” paraphrases, i.e., frame groups that are
directly aligned to the target frame group in some bi-sentence. We cannot identify a paraphrase
in the first bi-sentence, This development requires an increase in cost/Diese Entwicklung führt
zu höheren Kosten: Even though it contains a Ccpos frame, this particular instance does not
realise all relevant roles. In consequence, condition (2), which ensures the completeness of ac-
quired frame groups, fails. However, the algorithm works for the second sentence, The drought
increased tea prices/Die Dürre hat zu höheren Teepreisen geführt. It leads to the addition of the
frame group {Cpos, Causation} to the paraphrase list, with the role mapping {Ccpos.Item→
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Figure 8.4.: Example corpus to illustrate the iterative matching algorithm.
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Cpos.Item, Ccpos.Cause→ Causation.Cause}. The third sentence cannot be captured, since
it does realise the Cause role.

In the second iteration, the algorithm can now analyse the first sentence, using the paraphrase
{Cpos, Causation} acquired from sentence 2 in the first iteration. Since we find it here
aligned to the frame group {Ccpos, Requirements}, the latter is also added to the set of
paraphrases. This is an example of a “second-order” paraphrase that has been obtained via a
direct paraphrase of the target frame group. The role mapping is constructed by functional
composition of the (known) mapping from {Ccpos} to {Cpos, Causation} with the (new) word
alignment information in the sentence. This results in the following role mapping: {Ccpos.Item
→ Ccpos.Item, Ccpos.Cause → Requirements.Dependent}. The algorithm still cannot
analyse the third example in the second iteration. In the third iteration, no new frame group
paraphrases are acquired, and the algorithm terminates.

In conclusion, our algorithm has successfully identified full paraphrases in sentences 1 and 2.
No full paraphrases was found in Sentence 3, since this instance does not realise all relevant
roles. If necessary, the lossy paraphrase in sentence 3 can be obtained easily by running the
algorithm another time, deleting the Cause role from the list of relevant roles.

8.4. Experimental Evaluation

8.4.1. Setup and Data

This section evaluates the usefulness of frame group paraphrases to model parallelism of
predicate-argument structure on a real-world corpus. We decided to use a manually anno-
tated corpus sample in order to assess the fundamental feasibility of our approach without
interference from the noise that necessarily arises from state-of-the art automatic shallow
semantic parsing. An additional consideration was that instances of translations across parts
of speech (such as increase–höher) constitute an especially interesting phenomenon, since they
systematically involve changes in valency across languages. Unfortunately, almost all current
shallow semantic parsers for FrameNet concentrate exclusively on verbal predicates for English.
It therefore turned out to be almost impossible to obtain bilingual, accurate frame-semantic
analyses for instances of cross-POS translation pair and their contexts.

Data Choice. We finally decided to analyse a single translation pair for which we expected
frame instance parallelism to break down systematically.

Specifically, we investigate the English predicate introduced in Example (8.1), namely increase.
This predicate exhibits large variation: It can be used either as a verb or a noun. The verb
reading furthermore can be used both transitively and intransitively. As shown below, the
transitive verbal usage evokes the causative Ccpos frame, even if the Cause role is not realised
overtly (Example (8.3)), while the intransitive verbal and nominal usages evoke the stative Cpos
frame (Examples (8.4) and (8.5)).
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8. Beyond Frame Instance Parallelism: Frame Group Paraphrases

Frame Name Definition
Allotment∗ An Allotment_Event distributes a Theme.
Means∗ An entity or state of affairs represents a Means to achieve an Effect.

Table 8.2.: Definition of self-constructed frames

(8.3) There is a desire to increase public spending. (Ccpos)

(8.4) By 2010, emissions will increase by 6%. (Cpos)

(8.5) An increase in road traffic in no way automatically implies more pollution. (Cpos)

To maximise the incidence of translation instances that cross the part-of-speech boundary, we
paired increase with its most frequent German adjectival translation, namely höher (higher).
Due to its restricted valency, höher can only evoke the stative Cpos frame:

(8.6) Wenngleich
Even though

der
the

Welthandel
world trade

einen
a

höheren
higher

Wohlstand
prosperity

zur
as

Folge
consequence

hat.
has.

(Cpos)

Corpus Construction. We used the complete English-German EUROPARL bitext with the
automatic lemmatisation and syntactic analysis described in Section 2.3. We applied the
automatic intersective word alignment (cf. Section 2.2.2) to find all instances of the translation
pair increase–höher. This resulted in 122 bi-sentences, which form our sample corpus. For
all sentences of this corpus, two annotators hand-corrected word alignment and syntactic
structure, and manually assigned FrameNet frames for both languages. All decisions were
made unanimously. In analysing the sentences, we detected two frame gaps in FrameNet 1.3 and
constructed two new frames in accordance with FrameNet frame construction principles. In
the following, these frames are marked with an asterisk. Their definitions are given in Table 8.2.

8.4.2. Method

We applied the iterative matching algorithm (Figure 8.3) to the sample corpus in the same
fashion as in the example in Section 8.3.1. We looked for full paraphrases of the target frame
group Ccpos, with the relevant role set {Item, Cause}. We assumed one base frame, Cpos, with
the role mapping {Ccpos.Item→ Cpos.Item}. We now describe how the algorithm acquired
paraphrases incrementally.

Iteration 1. The algorithm identified new paraphrases only on the German side, since the
only paraphrase available for matching, Ccpos, occurred solely on the English side. This
resulted in 10 embedding frame types, of which 3 occurred more than once (Causation,
Giving, Requirements).
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English German Frequency
Cpos (36 n, 13 v, 24 adj/part) Cpos (adj) 73
Ccpos (49 v) Cpos (adj) 49

Table 8.3.: Cross-lingual breakdown of single frame pairs evoked by increase/höher.

Iteration 2. Frame group paraphrases were now being found on either side, which led to the
identification of four more frame paraphrases. In total, 8 embedding frames occurred
more than once (the additional ones are Cognitive_connection, Commerce_pay,
Deciding, Means∗, and Request), and 4 exactly once.

Iteration 3. No new frame paraphrases were found; the algorithm reached a fixpoint for P.
However, some additional instances of known paraphrases were found, resulting in a
total of 10 frame group paraphrases which were attested in the corpus more than once
(Purpose was the only addition to this group), and 3 with one attestation.

8.4.3. Quantitative Evaluation

In this section, we perform an empirical test of the hypothesis that frame group parallelism
holds for a greater number of bi-sentences than parallelism of individual frames.

We first assess the coverage of the baseline hypothesis, namely frame instance parallelism
(cf. Chapter 3), which predicts that all aligned source–target predicate pairs in the corpus
evoke the same frame. To test this hypothesis, Table 8.3 lists the frame pairs evoked by the
translation pair increase/höher in the sample corpus. Not surprisingly, the results show that
there is a significant amount of frame mismatch: All German instances are adjectival, and
therefore evoke the Cpos frame. This corresponds well to the English nominal and adjectival
(past participle) cases; however, the majority of verb instances in English is transitive, and
invokes the (mismatching) Ccpos frame. The first line of Table 8.3 shows that frame instance
parallelism can account only for 73 of 122, or roughly 60%, of all cases.

We next investigate an alternative hypothesis, namely whether the frame group paraphrases
acquired by our iterative matching algorithm show a high coverage. Table 8.4 shows the
frequencies of the different cross-lingual patterns (frame groups or individual frames) which
we observed in the corpus. Since the identification of paraphrases for the current dataset
hinges on the existence of Cause-like frame elements, we organised the table according to the
existence of realised Cause roles on either side. The rightmost column in the table indicates for
each pattern whether it has been acquired by our algorithm, and can therefore be modelled
successfully by FGP instance parallelism. Successful acquisition is denoted by ’+’, failure by ’-’.

The first row (0+0) covers examples where a Cause exists neither in English nor in German.
Slightly more than half of all instances (65 of 122) fall into this category. About two thirds are
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Cause English German Frequency Success
0+0 Cpos Cpos 45 (+)

Ccpos n.c. Cpos 20 (+)
1+1 Cpos Frame Group Cpos FG 22 +

Ccpos Cpos FG 14 +
Ccpos FG Cpos FG 9 +

1+0 Cpos FG Cpos 4 -
Ccpos Cpos 2 -
Ccpos FG Cpos 3 -

0+1 Cpos Cpos FG 2 -
Ccpos n.c. Cpos FG 1 -

Table 8.4.: Cross-lingual breakdown of frames and frame groups evoked by increase/höher (FG:
as base frame of frame group; n.c.: instances without realised Cause role; Success:
Successfully acquired Frame Group Paraphrase).

simple matching Cpos cases, but one third consists of German Cpos frames that correspond
to Cause-less English Ccpos frames, such as infinitives and participle constructions without
subject. The 0+0 cases were not retrieved in our experiment, since they do not realise a
Cause role, and thus cannot constitute full paraphrases. They are therefore set in parentheses.
However, as discussed in Section 8.3.1, they could be acquired by a simple repetition of the
experiment, looking for lossy paraphrases with only {Item} as the set of relevant roles.

The second row (1+1) contains examples where a Cause exists in both languages (45,
i.e., about 40%) and for which our algorithm established full paraphrases by identifying
matching Cause roles. In German, the Cause is always contributed by an embedding frame,
since höher cannot introduce one itself; in English, the Cause is realised either directly in
Ccpos, or is provided by an embedding frame. All of the 1+1 cases but one could be analysed as
frame group paraphrases of Ccpos by our algorithm. The sentence that could not be handled
will be discussed in Section 8.7.6

The lower half of the table shows 12 cases (10%) where a Cause exists on one side only. 11
cases are instances of proper cross-lingual divergence: In 9 cases, an English Cause does not
have a German counterpart, and vice versa in 3 cases. We interpret this asymmetry as a slightly
stronger preference in German to conceptualise situations as events without an overt Cause
(e.g. “es entsteht” - it arises). Clearly, our algorithm failed to acquire paraphrases for these
cases, due to the role mismatch.

In total, we find that our algorithm acquires frame group paraphrases that account for parallel

6Six of the 45 instances would be problematic to identify in a real-world scenario, though. Their Cause roles are
not directly word-aligned, but have to be recovered by anaphora resolution.
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Frame Cause FE Embedding FE Frequency
(German)

Accomplishment Agent Goal 1
Allotment∗ Allotment_event Theme 1
Attempt_suasion Addressee Content 1
Cognitive_connection Concept_1 Concept_2 5
Causation Cause Effect 15
Commerce_pay Buyer Money 2
Deciding Cognizer Decision 1
Giving Donor Theme 3
Means∗ Means Effect 3
Purpose Means Goal 3
Request Speaker Message 3
Requirements Dependent Requirement 5

Table 8.5.: Identified frame paraphrases for Ccpos which contribute a Cause role

structure in all 0+0 and 1+1 cases, 110 of 122 or roughly 90% of all instances. Compared to
the result for simple frame instance parallelism (60% of instances), we find that FGP instance
parallelism covers substantially more instances.

8.4.4. Qualitative Evaluation

This section addresses the question of how felicitous the frame group paraphrases acquired
from the corpus are, i.e., how well they express similar states of affairs. Table 8.5 lists the
13 frames our matching algorithm identified as embedding frames in frame group paraphrases
for the target frame group Ccpos as well as their frequencies. In addition, Table 8.6 lists
normalised surface forms for all paraphrases we obtained.7

All frames listed in Table 8.5 provide a role which our iterative matching algorithm has
mapped onto the Cause role of the Ccpos frame. Therefore, it makes sense to evaluate how well
these frames express causation, in addition to a general assessment of how well they paraphrase
Ccpos. To do so, we compare our paraphrases to a standard account of the linguistic realisation
of causativity from the area of cognitive linguistics, namely Talmy (2000). Talmy performs
a cognitively motivated study on the expression of causal relationships in natural language,
and concludes that causation is ubiquitous in our conceptualisation of reality. In consequence,

7The slightly larger number of German expressions does not necessarily mean that there is more variation in
German; this is merely a reflection of the experimental setup which allows English to express the complete state
of affairs as a single frame (Ccpos), which is not possible in German.
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Frame English German
Accomplishment – C erreicht höheres I
Allotment∗ – C sieht höheres I vor
Attempt_suasion C is encouraged to increase I C zu höherem I anspornen
Cognitive_connection C helps to increase I; I is not

unrelated to increasing C; C
means increasing I

höheres I hat mit C zu tun; das mit C
verbundene höhere I; C gewährleis-
tet höheres I; C bedeutet höheres I

Causation C leads to increasing I; C
brings increasing I; C pro-
duces increasing I; increas-
ing I results from C; C has
the effect of increasing I

C führt zu höherem I; C hat höheres
I zur Folge; C bewirkt höheres I;
C ruft höheres I hervor; höheres I
entsteht durch C; C bedingt höheres
I; C bringt höheres I

Commerce_pay – C leistet höheres I
Deciding C decides to increase I C legt höheres I fest
Giving C gives higher I; C provides

higher I
C zahlt höheres I ein; C verleiht
höheres I; C stellt ein höheres I zur
Verfügung

Means C is a measure to increase
I; C is an instrument to in-
crease I

C ist Massnahme für ein höheres I;
C ist Instrument für ein höheres I

Purpose C is intended to increase I Ziel von C ist höheres I; Zweck von
C ist höheres I

Request C demands a higher I; C’s re-
quest for a higher I

C fordert höheres I

Requirements C necessitates a higher I; C
requires a higher I; C needs
a higher I

C ist notwendig für höheres I; C
bedarf höheren Is; C macht ein
höheres I erforderlich

Table 8.6.: List of English and German paraphrases for Ccpos identified by iterative matching
(C = Cause; I = Item).

causal relationships are not only present when they are expressed overtly, but form part of the
understood meaning of many other predicates. Depending on the properties of these meaning
components, he distinguishes different causation situations.

Talmy’s basic causative situation describes the overt expression of causativity, where one
event results from another event. This situation is described by the Causation frame, the
most frequent embedding frame in our corpus sample. A check of the expressions in Table 8.6
confirms that all of these instances are straightforward paraphrases of Ccpos.
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Next, five of the frames in Table 8.5 are related to Talmy’s agentive causation: The frame Ac-
complishment (an Agent achieves a Goal) is just agentive causation itself; Attempt_suasion
and Request can be classified as caused agency; Purpose and Allotment∗ (some Theme is
allotted to an intended Recipient through some Allotment_event) can be grouped under
purpose and uncertain fulfilment. Disregarding modality issues, these frames can also still be
accepted as general paraphrases of Ccpos.

An interesting, but less straightforward, embedding frame is Cognitive_connection (a
Concept_1 contributes to an Concept_2). While structurally very similar to Causation, the
frame Cognitive_connection does not imply that the Concept_1 is the most important fac-
tor in bringing about the Concept_2. The frequent use of Cognitive_connection provides
an empirical handle on the problem of gradience in causation: In almost all real-world states of
affairs, more than one cause is involved in bringing about an effect, and intuitions may diverge
on whether a given cause is seen as especially prominent (warranting a Causation frame) or
not (warranting a Cognitive_connection frame). Talmy notes (p. 544) that “one of the more
significant issues wanting attention pertains to the existence of gradience in causative concepts”,
but does not offer a detailed analysis. Our study, and the methods we have developed, offer an
approach to pursue this direction of research: Through exploiting the cross-lingual differences
in conceptualisation, it would be possible to conduct a corpus-based study of this gradient
causativity and inspecting the expressions which evoke Cognitive_connection in Table 8.6.

The remaining five embedding frames are less applicable as general paraphrases, showing an
increasing degree of context dependence. This mirrors the general pattern that we found in
Section 5.7 when analysing translational shifts, which is not very surprising. In that discussion,
we established that translations often differ with respect to the verbalisation of separate, but
frequently co-occurring events, where – at least in certain contexts – a mention of one of the
events carries a strong default assumption that the other event takes place as well.

For three of the five frames, there is still a fairly general relation between the two events,
namely one of prerequisite, or, symmetrically, consequence. These are the Means∗ (something
is a Means for achieving an Effect), Requirements and Deciding. Even though they do
not directly fall into any of Talmy’s groups, they show considerable similarity to the purpose
and uncertain fulfilment class, with the difference that what is described is just an intention,
while it is unclear that the following causing event itself takes place. For example, in the
general parliamentary context from which EUROPARL is drawn, Deciding for an increase of
something to happen has the default consequence that the increase will take place, making the
Cognizer of the Deciding event effectively a Cause.

The last two frames, Giving and Commerce_pay, express paraphrases for a specific situ-
ation type, namely situations of transfer where the Item is a money-related concept such as
payment, premium, contribution. In this context, an increase of the Item can be paraphrased
as being caused by the person or entity providing the money.8. However, this relationship is too
idiosyncratic to be explained well within Talmy’s typology of causality.

8Of course, this mirrors – as discussed above – a simplified view of the causal chain.
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In sum, we find that the majority of frame group paraphrases acquired by our algorithm are
acceptable general paraphrases, and fit well with Talmy’s (2000) classification of causation. One
of the somewhat problematic paraphrases, Cognitive_connection results from a semantic
problem, gradience of causation, which is presumably especially prominent in our sample. We
identified one more general problem, namely that we acquired situation-specific paraphrases,
an effect that is very similar to the translation shifts we discussed in Section 5.7. This problem
makes it necessary to provide a means of determining the applicability of a paraphrase for
a given sentence, when using automatically acquired frame groups for role projection (see
Section 8.5 below). Our first observation is that the most frequent paraphrases (cf. Table 8.5)
are all general. In conjunction with the skewed frequency distribution (the three most frequent
paraphrases account for about 60% of all cases), this suggests that a simple frequency cutoff
can be useful to separate general from specific paraphrases. A more principled, but also more
tentative, strategy could take advantage of information present in the FrameNet database: It
can be checked whether the headwords of roles assigned by potential frame groups are in fact
likely fillers of these roles. Such a check can take place by comparison to the role’s selectional
preferences (cf. the discussion of the monetary transfer situation above). In English, selectional
preferences can be obtained directly from the annotated example sentences in the FrameNet
database (Gildea and Jurafsky 2002); they can be projected onto other languages e.g. using
Pitel’s (2006) approach (see Section 7.4 for a discussion).

8.5. Cross-lingual Transfer as a Bootstrapping Cycle

At the outset of this chapter, we motivated our interest in frame groups with their potential
use in a projection scenario, analogously to Parts II and III. However, the algorithm we have
presented in Section 8.3 presupposes the existence of a parallel, bilingual corpus which provides
frame-semantic annotation both for the source and the target languages. This seems to run
counter to the idea of projection, where we assumed previously that nothing was known about
the semantic structure of the target language; or rather, that all information about the target
language could be obtained from the source language, and transferred to the target language
by taking advantage of frame instance and role instance parallelism.

However, it is exactly this parallelism assumption which we have generalised in this chapter
to frame group paraphrases. As we have seen in the Section 8.4, this allows us to cover a
considerably higher portion of translation pairs. The price we pay is that we have to provide
more knowledge: Frame group paraphrases can be interpreted exactly as descriptions of
the variation in overt frame-semantic structure over which we aim to generalise, and this
information is best acquired from parallel bi-sentences with frame-semantic analysis for both
languages.

Fortunately, this does not necessarily require manual frame-semantic annotation in the
target language. In a nutshell, what we propose is to set up a bootstrapping cycle which
interleaves (generalised) projection, the induction of monolingual shallow semantic parsers, the
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application of these shallow semantic parsers, and the acquisition of frame group paraphrases.
The fundamental idea here is to use shallow semantic parsing to generalise markup from “easy”,
i.e., frame-parallel and role-parallel instances to non-parallel instances from which frame group
paraphrases can be acquired. We now describe the individual steps in detail:

Step 1: Projection. As usual, we assume that we have a parallel corpus whose source side
is annotated with frames and roles. In this step, we restrict ourselves to projecting
semantic information for two cases: (a), parallel frames, and (b), parallel known frame
group paraphrases. The cases of type (a) can be handled with the methods developed
in Parts II and III. The cases of type (b) require new methods; however, since in the
first iteration of the bootstrapping cycle no frame group paraphrases are available, we
defer the description of projection for type (b) to below. In any case, the result of this
step is a partially annotated corpus in the target language in which all frame-preserving
translations are analysed. For example, a translation of to lead to results in the analysis
of führen zu as FEE for the Causation frame; analogously, the translation pair higher –
höher causes höher to be recorded as FEE for Cpos.

Step 2: Training and application of shallow semantic parsers. In this step, the annota-
tion projected in Step 1 is used to annotate other examples of the same predicates in the
target language. To this purpose, well-understood supervised learning techniques to
induce shallow semantic parsers can be used (see Section 1.2 for details). The crucial
contribution of this step is, as noted above, that it can provide annotation for those target
instances whose semantic structure is not parallel to their translation on the source side.
For example, an analysis will be constructed for the predicates höher and führen on the
German side in Figure 8.1.

Step 3: Acquisition of frame group paraphrases. After successful completion of Step 2, we
have a partially annotated bilingual corpus, in which the semantic structures of the source
and target sides will disagree for a number of bi-sentences; again, Figure 8.1 is an example.
These instances can serve as input for the acquisition of frame group paraphrases.

The completion of the cycle results not only in a set of frame group paraphrases available.
When the cycle starts over, the case (b) of Step 1 introduced above applies for the first time:
projection can now also take place for predicates whose translation is not frame-preserving, but
forms part of a frame group. Note that we are now no longer projecting roles frame by frame,
as laid out in Section 3.2.3, but frame group by frame group. Therefore, determining whether
projection can take place requires checking whether the projected frames and roles make up a
well-formed frame group, as defined in Section 8.2.2. In the following, we sketch the necessary
checks, assuming that we have a frame group paraphrase (f1, f2) and a bi-sentence (s, t).

1. The frame group f1 is evoked in the source sentence s, and its base frame is evoked by a
source predicate p.
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2. p is aligned to a target predicate which can evoke the base frame of f2.

3. If f2 also consists of an embedding frame, t must contain a predicate that can evoke this
embedding frame, and there must be a constituent which (a), is a plausible realisation of
the embedding role, and (b) whose semantic head is either the FEE of the base frame, or
has the FEE of the base frame as a modifier.

The third condition is aimed at verifying that any embedding frame provides a proper embed-
ding role for the base frame (cf. the definition of frame groups in Section 8.2.2). This check
is difficult to perform properly, since embedding roles in frame groups, such as the Effect
role in Figure 8.1 (page 143), are not part of the role mapping – they simply do not have to have
a corresponding role. Therefore, information about the embedding role cannot be projected
when frame group paraphrases apply. Condition 3 is therefore currently phrased heuristically,
using monolingual information on the target side to emulate the structural check, but clearly
requires more research.

In the bootstrapping cycle sketched above, frame group projection and shallow semantic
parsing can be seen as complementary means of extending the coverage of single-frame projec-
tion: Shallow semantic parsing exploits the available monolingual evidence, and frame group
projection exploits bilingual evidence. This suggests the bootstrapping cycle can succeed in
a “cautious”, as opposed to a “greedy”, fashion: The availability of two strategies to extend
the set of known frame annotations means that both can restrict themselves to processing
(i.e., projecting and labelling) those examples which can be treated with the highest confidence.
This strategy has thus a good chance of avoiding “contamination” of its datasets, a pervasive
problem with bootstrapping approaches (Riloff and Jones 1999).

8.6. Related Work

The twofold nature of frame group paraphrases as characterisations of synonymous or near-
synonymous phrases, and as descriptions of translational equivalence, means that related work
falls into two broad categories, one related to each aspect.

Paraphrase identification. In recent years, the acquisition of paraphrases from large parallel
datasets has received a lot of attention. Usually, paraphrases were identified using distributional
evidence on different linguistic levels from surface strings (Barzilay and Lee 2003; Bannard
and Callison-Burch 2005) to syntactic structures (Pang, Knight, and Marcu 2003). To our
knowledge, our study is the first one to assess the potential of using semantic structures to
characterise paraphrases. One important benefit of characterising paraphrases in terms of
frame groups is that each frame itself is an abstract representations of a number of surface
realisations, of which the paraphrases shown in Table 8.6 are mere examples. It is therefore
possible to create paraphrases unseen in the training data.
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An important difference of the current study to almost all other paraphrase studies, with the
exception of Bannard and Callison-Burch (2005), is that we use bilingual corpora to identify
paraphrases. This is crucial for applicability, since bilingual parallel corpora are much less
scarce than monolingual parallel corpora. Nevertheless, this does not mean that we can only
acquire cross-lingual paraphrases. Due to the high degree of concept-level parallelism of frames
(cf. Section 3.2.1), frame group paraphrases are a substantially language-independent para-
phrase model. By using the FEE lists from frame-semantic lexicons, language-specific surface
instances for these paraphrases can be generated. Using one lexicon results in monolingual
paraphrases; several lexicons lead to cross-lingual paraphrases. It is a matter of further research
to determine whether the same paraphrases arise from monolingual and cross-lingual parallel
corpora, or whether there is variation.

The central criterion with which we identify frame group paraphrases is that all relevant
roles have to be filled. This criterion is similar to the “matching argument slots” method used
by Barzilay and Lee (2002, 2003). However, the background is different: Barzilay and Lee use
multiple sequence alignment on several raw comparable corpora, identifying argument slots
as stretches with high variability across corpora. Since comparable corpora do not allow for
direct structural matching, matches between argument slots are then induced from similarities
between fillers for these sequences found in texts from a short time span (e.g., a few days).

Clearly, a major difference between such paraphrase induction methods and ours is that they
are framework-neutral, which has important consequences on two different levels.

Status of induced argument slots. Empirically induced argument slots do not necessarily
correspond to semantic arguments in the sense of FrameNet; they rely more on the
quality and properties of the assumed corpora. For example, Barzilay and Lee’s heuristic
of identifying arguments as stretches of high variability might miss argument slots which
show little variation, e.g. due to low overall frequency. Thus, there is no guarantee that
argument slots are identified consistently across diathesis alternations. On the other
hand, place and time expressions are likely to be identified as arguments, while they are
not “Core” elements in the sense of FrameNet (cf. Section 3.2.1).

Applicability. On the other hand, much fewer resources are necessary with a completely data-
driven approach: all Barzilay and Lee require for the induction of paraphrases is a large
number of comparable corpora, while our method requires bilingual frame-semantic
analyses. While this makes theory-neutral paraphrase induction methods definitely more
easily applicable to new languages, note that the bootstrapping cycle sketched above
(Section 8.5) is aimed at alleviating exactly this problem.

Transfer-based machine translation. The aim of transfer-based machine translation is to
construct translation models for specific language pairs by identifying a level of representation
where translational equivalences can be represented compactly as correspondences between
structures of either language (Hutchins and Somers 1992). The underlying assumption is
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that such correspondences are easier to specify on syntactic or semantic structures than
on the surface structure itself, since these levels provide a higher degree of instance-level
parallelism, while fully language-independent representations (i.e., interlinguas) are difficult, if
not impossible, to obtain.

As in our study, it is usually assumed that these correspondences can be obtained from
contrastive analyses of bilingual corpora. One instance of transfer-based machine translation
which is close in spirit to our approach is Dorna and Emele (1996), who model English-German
translations with correspondences between sets of argument relations of a Neo-Davidsonian
event semantics (Dowty 1989). In fact, a number of Dorna and Emele’s motivations for transfer
on the semantic level, such as the preservation of correct predicate-argument relations, and the
mismatch between lexical items and semantic entities, arise naturally from the frame-semantic
analysis we assume.

However, our aim is clearly more modest than full-fledged transfer-based machine transla-
tion. Our representation on the frame level is much weaker than Dorna and Emele’s full logical
analyses. They also introduce a calculus to express directed transfer, which is not possible in
our current framework, which only identifies matching chunks of predicate-argument structure
that can be used interchangeably. Importantly, their transfer approach was integrated into
a large-scale MT system (the Verbmobil system) which could use the output of the transfer
component to generate target language text. In contrast, generation from frame-semantic
representations is a research question that has yet, to our knowledge, to be addressed.

8.7. General Discussion

Our pilot study has made three main simplifying assumptions: we have limited our attention
to frame groups of size two, assumed perfect linguistic analyses, and concentrated on one
translation pair. These assumptions cannot be upheld if our methods are to be applied for
automatic, broad-coverage frame group paraphrase acquisition. In this section, we discuss
the consequences, with the understanding that the empirical evidence on which we base our
discussions is limited.

We first consider the size of frame groups. Recall that in our current study, for which we only
used frame groups of size 2, we were able to acquire frame group paraphrases which accounted
for 90% of all bi-sentences. In Section 8.4.3, we noticed that all bi-sentences which could not be
analysed were cases of role mismatch, except for one. This instance is shown in Figure 8.5 and
illustrates the limits of the current definition of frame groups. The German sentence can be
paraphrased as The regulation will enable the drawing of higher pensions. In contrast to the
instances we have previously seen, there is not only redistribution of existing semantic material,
but introduction of new material (marked in bold in the transcription). On the level of frame
analysis, the German frame group corresponding to the English frame Ccpos thus consists of
three frames: the frame Cognitive_Connection embeds an intermediate frame, Receiving,
which in turn embeds Cpos.
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[Die Verordnung] wird [den Bezug [höherer [Renten]]] ermöglichen.

[The regulation] will increase [the size of pensions].

CPOS

Item

Causal_connection

Effect

Cause

Receiving

Theme

Cause change position on a scale

Cause Item

Figure 8.5.: A problematic bi-sentence: German frame group of size >2

In principle, our algorithm and our definition of frame groups is capable of dealing with
frame groups of more than two frames, provided that the definition of embedding can be
suitably generalised (see Padó and Erk (2005)). However, it is not clear whether such a gener-
alisation is indeed desirable. The example in Figure 8.5 is already a fairly specific paraphrase
which is only applicable if the Item in question is scheduled for a transfer in connection with
its change of scalar position. We speculate that larger frame group paraphrases in general
would tend to model more context-specific paraphrases. In sum, we have currently no evidence
that allowing larger frame groups would significantly increase the yield of generally applicable
frame group paraphrases.

The second assumption mentioned above is the idealisation of linguistic analyses. Clearly,
an automatic application of our algorithm will encounter problems introduced by errors in
parsing, semantic analysis, and word alignment. While we do not rely much on the syntactic
structure per se, syntactic errors can in turn lead to errors in the semantic analysis. Also,
errors in word alignment can lead to incomplete role mappings. Still, we are confident that our
algorithm is applicable to noisy data, since it pursues a “high precision, low recall” strategy: It
imposes strong checks on potential frame group paraphrases (cf. Section 8.3), especially the test
for matching roles. Since noise tends to break systematic matches, we can be fairly confident
that if a given frame group paraphrase meets all conditions, it is in fact correct. As discussed in
Section 8.6, contamination is therefore not a large issue. This high-precision strategy is feasible
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because it can exploit corpus redundancy: Since our algorithm works on the level of individual
instances, one correct analysis in the whole corpus is in principle enough to acquire a frame
group paraphrase.

With respect to applying the algorithm to more data, we feel that the good performance
of the algorithm in this study is a promising result. We do not foresee any difficulties, on the
part of the algorithm, in applying it other translation pairs. The most serious limitation for
wide-coverage frame group paraphrase acquisition appears to be the availability of high-quality
shallow semantic parsers which can analyse all predicates in free text. This problem can be
further divided into two parts: (i), missing coverage of predicates which can be described
with existing FrameNet frames; and (ii), missing frames in FrameNet. While a number of
approaches have been proposed for (i), it currently appears that (ii) can only be addressed by
further lexicographic efforts (compare also the discussion in Section 5.5).

8.8. Summary

This chapter has provided first steps towards providing an account of translation pairs with
non-parallel frames. These cases cannot be treated by the standard annotation projection-
based methods discussed above, despite representing a considerable portion of all corpus
instances. Even though cases of non-parallel frames in their entirety constitute a very difficult
and heterogeneous class, our intuition is that local rearrangements of semantic material during
translation are a frequent reason for frame instance non-parallelism that can be modelled
relatively straightforwardly.

To capture this class of cases, Section 8.2.2 has introduced the concept of frame group para-
phrases, groups of up to two connected frames on either side of a bi-sentence which describe
the same state of affairs by virtue of having corresponding sets of semantic roles. Section 8.3 has
provided a semi-supervised algorithm for identifying new frame group paraphrases in parallel,
word-aligned corpora. Next, in Section 8.4, we have verified, within the limits of a manual pilot
study, that the acquired frame group paraphrases (a), can model the parallelism of a higher
number of translations than individual frames; and (b), can be seen as language-independent
paraphrase templates, all of which are linguistically interpretable. Building on these results,
Section 8.5 has outlined how parallelism on the level of frame group paraphrases can be used to
extend annotation projection to cases of translation pairs with non-parallel frames. Sections 8.6
and 8.7 conclude with discussing related work and our results.

In sum, this chapter demonstrates that the annotation projection approach proposed in this
thesis is not confined to treating only the relatively easy cases of frame-preserving translations.
It can in fact account for translations involving a higher degree of deviation from the source
expression as well.
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In this chapter, we summarise the main results of this thesis, discuss the relation between
the projection methods proposed in this thesis and manual annotation, and outline issues for
future research.

9.1. Contributions

Large role-semantic resources, which are necessary to train shallow semantic parsers, exist
only for English and a small number of other languages (see Section 1.1). In this thesis, we have
developed methods that alleviate this resource scarcity by automatically constructing frame-
semantic annotations for languages other than English. Our models make use of annotation
projection, a framework which uses parallel corpora to transfer linguistic annotations from a
source to a target language. Our methods are suitable even for resource-poor target languages,
since the only prerequisites of basic annotation projection are (a), a parallel corpus, and (b),
automatically obtainable word alignments.

We have successfully evaluated our methods using the English FrameNet database to obtain
frame-semantic resources for two target languages, German and French. We have found that
the semantic generalisations made by frame semantics carry over to a considerable degree
from English to other languages. This is particularly encouraging, since it means that it is
possible to apply the projection methods developed in this thesis for automatically creating
frame-semantic resources for many other languages. To the degree to which this property holds
for other role-semantic frameworks, our methods can be used for their projection as well (see
Section 3.2.3 for a discussion).

Semantic parallelism. We have verified empirically that frame-semantic annotation exhibits
a high degree of cross-lingual parallelism, that is, a large majority of corresponding pairs of
source and target predicates in an aligned corpus agree in their frame (i.e., semantic class)
and set of semantic roles. On a trilingual sample corpus (English – French – German) with
independent annotation for each language, we found a degree of cross-lingual instance-level
parallelism of around 70% for frames. For matching frames, around 90% of the semantic
roles agreed. This result demonstrates that the central precondition of high-quality annotation
projection, namely a high degree of cross-lingual parallelism on the instance level, is met in
practice.
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Frame Projection. We have shown that it is possible to induce a small, high-precision frame-
semantic predicate classification relatively quickly by combining word alignments with a small
number of shallow filters. At a size comparable to the English FrameNet database, the induced
classifications yield reasonable precision (approximately 70% for German and 65% for French).
The classifications can serve for a number of tasks in the target language, notably to generally
alleviate sparse data issues with class-based smoothing (Lapata et al. 2001), and to restrict role
projection to instances where it is appropriate, i.e., instances with parallel frames.

The main problem in the projection of semantic classes is to distinguish instances where
the target predicate of a translation pair preserves the frame evoked by the source predicate
(e.g., give – geben (give)) from instances where this is not the case (e.g., give – bekommen
(receive)). This task benefits most from morphosyntactic and distributional information, such
as the translational entropy of the translation pair (Melamed 1997). Syntactic information is not
necessary for this task, since the single-word alignment between source and target predicate is
sufficient to guide the projection process. Furthermore, the projection of frames suffers more
from precision errors than from recall errors in the word alignment, since the redundancy
in the corpus can make up for missing alignment links to a large degree, but erroneous links
weigh down on precision.

Semantic Role Projection. We have also found it feasible to use word alignments as pri-
mary information source for the cross-lingual projection of semantic role annotations. The
induced role annotations can be used as training data for shallow semantic parsers, which can
subsequently provide role-semantic analyses for free text in the target language.

The role projection task requires different types of knowledge from frame projection. It
relies predominantly on the semantic alignment, i.e., the identification of counterparts for
role-labelled source word spans in the target sentence. The main obstacle for this task is posed
by gaps in the word alignment (i.e., missing links), since these lead to the projection of roles to
incomplete spans in the target sentence. We have alleviated this effect by introducing bracketing
information from automatic parsers into the projection process, to help enforce projection onto
complete constituents. This has led to an improvement in the precision of projected roles from
around 50% (using just word alignments) to up to 80% for both German and French.

We have found this scheme to be most effective when roles could be projected onto sin-
gle constituents. This requirement rules out shallow chunk-based analyses that do not offer
constituents spanning complete embedded sentences or complex NPs. Moreover, our exper-
iments have indicated that the syntactic formalism used to represent tree structures does
not seem to have a large effect on projection: we were able to compute high-precision align-
ments between constituent-based Penn Treebank-style analyses for English, the combined
constituent/dependency-based TIGER analyses for German, and dependency-inspired analyses
for French. An important factor for the success of our methods are our filtering mechanisms
which reduce syntactic trees to their essentials and thus make them more similar.

One potential drawback of our method is its reliance on full parse trees. Fortunately, full
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parsers are becoming increasingly available for a wide range of languages. This development
is driven both by refined techniques for inducing parsers from small treebanks (see e.g. the
CoNLL 2006 shared task on multilingual dependency parsing (Buchholz and Marsi 2006)) and
by successes in unsupervised parsing (see e.g. Klein and Manning (2004)). In consequence,
we expect that the reliance of role projection on full parse trees will cease to limit the range of
possible target languages in the future.

Importantly, our experiments have demonstrated that role projection can even tolerate noisy
input, such as role annotations produced by a shallow semantic parser. When we used a state-
of-the-art shallow semantic parser (Giuglea and Moschitti 2004), precision of the projected
roles remained constant, with losses confined to recall. This is a promising result, since high
precision is arguably more vital for resource induction than high recall. Even in this condition,
precision of the projected roles remained above 70% for both French and German.

Translational Divergences. We have also attempted to provide an account of translation
pairs with non-parallel semantic classes. The latter cannot be treated by the standard an-
notation projection-based methods discussed above, although they represent a considerable
portion of all corpus instances. Semantically non-parallel translation pairs form a very difficult
and heterogeneous class, but we have identified a subclass of these cases, called frame group
paraphrases, to which a generalised version of annotation projection can be applied. We have
provided a semi-supervised algorithm for the identification of new frame group paraphrases
which is again based on word alignments, and have outlined how it can be integrated in a
bootstrapping cycle with standard annotation projection for parallel cases. In a manual pilot
study, our algorithm has been able to acquire almost all frame group paraphrases, thus covering
a substantial majority of all translations in our sample. The acquired frame group paraphrases
can be seen as language-independent paraphrase templates, all of which are linguistically
interpretable.

Our study of frame group paraphrases thus demonstrates that the annotation projection
approach proposed in this thesis is not confined to treating only the relatively easy cases of
frame-preserving translations. It can in fact account for translations involving a higher degree
of deviation from the source expression as well. In addition, it can capture deep lexical-semantic
information in the form of paraphrase templates.

9.2. Projection vs. Manual Resource Creation

There is ongoing interest in the computational linguistics community to develop role-semantic
resources for a larger range of languages.1 Projection methods are likely to play an important
role in this endeavour because of their potential to substantially reduce the amount of human
effort necessary; however, the quality of projected annotations still trails manual annotation.

1This interest is documented by the Global FrameNet group as well as by other events such as the Romance
FrameNet Workshop in 2005 and the Scandinavian and Baltic FrameNet Workshop in 2007.
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It is therefore an important practical question how projection methods can support manual
resource creation most effectively.

In the initial phase of such a resource creation projection, projection methods can be used to
create a repository of frame-semantic annotations in the target language automatically, without
manual effort. Such a dataset is crucial to survey the challenges of the task and to prepare
a smooth setting for manual annotation, in particular if there is no prior experience with
frame-semantic annotation for the target language. Notably, projected data can be used to
identify phenomena and predicates in the target language which are problematic with respect
to the generalisations made by FrameNet (cf. Section 3.1.1), and to extract lists of predicates
suitable for manual annotation.

In the annotation phase itself, projected annotations can be exploited using two broad
strategies. The first possibility is to treat them as annotation proposals, all of which have to be
reviewed by some human annotator (Swift, Dzikovska, Tetreault, and Allen 2004). Alterna-
tively, projected annotations can be employed directly to train a shallow semantic parser (cf.
Section 1.2) which is able to analyse target language texts beyond the parallel corpus used for
projection (Johansson and Nugues 2006). Such shallow semantic parsers can be subsequently
improved through active learning (Cohn, Atlas, and Ladner 1994). These two strategies can be
implemented in a large number of different ways; the optimal choice in each situation depends
on the requirements and goals of the particular project, and on the amount of manpower
available for annotation or correction.

9.3. Avenues for Future Work

We have already discussed some directions for future work in individual chapters. At this point,
we outline two more general avenues for research which generalise different aspects of the
bilingual annotation projection paradigm we have adopted in this thesis.

Annotation projection involving more than two languages. In this thesis, we have con-
centrated on using bitexts. A natural generalisation is to consider multitexts, i.e., parallel
corpora for more than two languages. While multitexts are rarer than bitexts, their number
is steadily increasing, at least in the areas of politics, economy, and international newswire.
Recall that the EUROPARL corpus itself is a multitext comprising 11 languages. Multitexts have
already been exploited for example by Kuhn (2004) in the context of grammar induction, where
he uses evidence from word alignment between multiple languages to bias the unsupervised
recognition of constituents in a source language.

For the purposes of annotation projection, a very simple way of taking advantage of a
multitext is to retain one designated source–target language pair, and to use the other languages
to provide additional redundancy. The idea is similar in nature to classifier combination in
machine learning, where several classifiers with different “views” on a problem (e.g., using
different feature sets) can be combined to obtain a single, more accurate solution to the
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problem (Dietterich 2000). In our scenario, the different “views” are contributed by the
additional languages, or more specifically, by the projections of an instance of source language
annotation into these languages. A comparison and combination of these views has the potential
of making the projection more robust by alleviating errors in individual languages on all levels,
e.g., word alignment, part-of-speech tags, or syntactic structure.

On the level of semantic classes, this idea can be instantiated concretely by generalising the
filtering procedures from Section 4.4.2, notably the reliability filter, to model properties of
translation pairs over the complete multitext. In the bitext situation, we found a correlation
between translational reliability and the frame-preservation of the translation pair that was
strong, but not perfect. Our hypothesis is that being able to estimate translational reliability for
more than one language pair in the multitext will allow an even more accurate identification of
frame-preserving translations.

As for semantic roles, the alignment model which we have found to yield the best and most
robust optimal alignments, namely weighted bipartite matching (Section 6.3), can also be
generalised to the multilingual case. Solutions to the resulting weighted multipartite matching
problem are sets of alignment links that connect not pairs, but tuples of constituents from the
different languages of the multitext. Here as well, our hypothesis is that an alignment computed
on multiple languages is more reliable than a bilingual one. Note that the multipartite matching
problem is NP-complete (Karp 1972); however, there exists a large body of work on algorithms
which solve NP-complete problems efficiently enough for practical applications (see e.g. Althaus,
Karamanis, and Koller (2004)).

Bidirectional information flow. Throughout this thesis, we have limited our attention to
standard annotation projection in the sense that we transferred information in one direction,
from the source to the target language. However, it is worthwhile to investigate strategies which
feed projected information back into the source language.

This idea can be applied particularly easily to semantic classes. Its most naive application is
to project induced predicate classes from the target language back onto the source language, and
thus to obtain new and previously unknown frame-evoking elements in the source language.
In this way, it represents a first step towards addressing the coverage problems associated with
FrameNet that we have found to hamper unidirectional projection (cf. Section 4.4.1).

The bidirectional projection of semantic classes can be repeated in the form of a bootstrap-
ping cycle, i.e., projection is performed alternately in either direction, with each projection
step adding to the set of known frame-evoking elements for its target language. Unfortunately,
this strategy runs the well-known risk of data contamination, i.e., the acquisition of wrong
FEEs at some stage which misdirect succeeding iterations (Riloff and Jones 1999). A promising
alternative is to cast the bidirectional flow of semantic class information as a clustering problem
in a bipartite graph (Bollobás 1998). In this model, the partitions of the graph correspond to the
source and target language predicates. The incomplete predicate classification for the source
language imposes a clustering on a subset of the nodes of the first partition. Corpus-derived
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9. Conclusions

word similarity information can now be used to extend this clustering both to other nodes
of the same partition (i.e., unknown source predicates), and to nodes of the other partition
(i.e., target predicates). This approach does not rely on the existence of large linguistic resources,
as monolingual methods for the extension of frame-semantic predicate classifications usually
do (see Section 4.2). It should thus be applicable more easily to a wide range of languages.

170



Part V.

Appendix

171





A. Guidelines for the Evaluation of
Projected FEE Candidates

(These are the original English guidelines given to annotators.)

A.1. Introduction

The theory of Frame Semantics holds that it is possible to define so-called frames, representa-
tions of prototypical situations, and that for each frame there is a set of words (lexical units,
usually verbs, nouns or adjectives) which can evoke this frame. Each frame specifies a set of
semantic roles (frame elements) which conceptually represent the participants and objects
relevant for the situation depicted by the frame. Consider as example the definition of the
Frame Arriving given in Table A.1. When a token of the frame’s lexical units in actual text

Definition An object Theme moves in the direction of a Goal
Frame Elements Goal (Go): Goal is any expression that tells where the Theme

ends up, or would end up, as a result of the motion.
Theme (Th): Theme is the object that moves.

Lexical units approach.n, approach.v, arrival.n, arrive.v, come.v, enter.v, en-
trance.n, get.v, make.v, reach.v, return.n, return.v, visit.n, visit.v

Table A.1.: Example definition for the frame Arriving

evokes a token of this frame, it is called a frame-evoking element (FEE) of that frame token.
The frame elements (roles) can then be used to characterise the entities in the linguistic context
of the FEE by describing which entity “fills” which semantic role. For example, in the sentence

• [Peter]Theme came [home]Goal late.

the FEE “came” introduces the Frame Arriving known from above. “Peter” fills the role of
Theme since he is the one moving, and “home” fills the role of Goal since this is where he ends
up. Note that not all frame elements have to be realised with an occurrence of a frame; in the
example

• [Mary]Theme returned from her trip.
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(again Frame Arriving), the Goal is not realised overtly. What is important is that it could, in
principle, be added to the sentence (“...to her hometown”).

Often, lexical units are polysemous in terms of frames, that is, they may be able to evoke
different frames in different constructions. Examples:

• Ich frage mich, wie spät es ist. (Frame Cogitation)

• Ich frage ihn nach einer Zigarette. (Frame Request)

• Ich frage ihn, was er gestern gemacht habe. (Frame Questioning)

Note that FrameNet is not complete; but in general, it is at least possible to determine that some
example does not evoke a given frame, even if the “right” frame it should evoke does not exist
(yet).

A.2. The Annotation Task

The present study attempts to automatically determine which words can evoke which frames in
a new language (the target language) by taking into account knowledge about another language
(the source language). Currently, we will concentrate on English/German and English/French.

The output of the computer program is a list which contains, for a number of frames, target
language FEE candidates and their English supports, i.e. the words that the FEE candidate is
supposed to be a translation of. The following is an example for frame Attempt:

versuchen try, attempt
Versuch attempt, try
bemühen try, attempt

The task of the annotator is first to decide whether the FEE candidate is appropriate for the
frame (see below for a definition of appropriateness) or not; and if not, to determine the type of
error. For an overview of the decision process, see Figure A.1.

The annotator can use the list as described above, and a list of concordances which list for
every FEE candidate-support the first concordance in the corpus.

Annotate the tag directly after the FEE candidate, separating candidate and tag by one
space.
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Is FEE candidate 
appropriate for 

frame?

Annotate OK
Is the FEE candidate a 
translation of a wrong 
sense of a Support?

Annotate Poly

yes no

yes

Annotate No

Is FEE candidate part of 
target language MWE, or 
can it translate a source 

language MWE?

Annotate MWE

noyes

no

Figure A.1.: Decision Tree for the FEE candidate annotation

A.2.1. Decision 1: When Is a FEE Candidate Appropriate for a Frame?

A FEE candidate is appropriate (Annotation OK) for a frame if two conditions are fulfilled:

1. It has parallel semantics to (at least one of) its supports and

2. It can evoke the frame

Parallel Semantics

A FEE candidate corresponds to a support if it is a reasonable translation, i.e. if they can
introduce the same semantics into a sentence. In case of doubt, this can be checked with a
bilingual dictionary (although dictionaries usually don’t list all the possible translations), or
with the concordances provided (although these contain only the first co-occurrence of FEE
candidate and support, and should be treated with caution).

Usually, in order to introduce the same semantics, the FEE candidate and support both have
to be either (a) single-word predicates or (b) the semantic heads of multi-word expressions
(MWE). However, they do not need to be the same part of speech.

I take multi-word expressions to be expression whose meaning is not compositional (i.e. to
push up the daisies is a MWE, but to raise a question is not. In German, it usually makes sense
to treat particle verbs and noun compounds as MWEs).

MWEs have to be treated depending on their meaning:
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• FEE candidates are appropriate if they are the semantic head of the MWE, i.e. the mean-
ing of the MWE is (nearly) the same as the meaning of the single candidate word, i.e. if
they are the semantic head of the multi-word expression.

This case occurs for this frequently for nouns and adjectives in frames that denote events
where one has to add a “light” verb for syntactic reasons, but where the noun still retains
the main semantic contribution. In the following example, Siedepunkt is appropriate for
the Apply_Heat frame, because it can be used in the phrase zum Siedepunkt.n bringen,
where “bringen” only adds aspectual information:

Siedepunkt boil Apply_Heat → OK

• However, the FEE candidate is not appropriate if the frame can only be evoked by the
combined semantics of all words of a multi-word expression.

This frequently happens for idiomatic expressions, as for the following, where “den Löffel
abgeben” has nothing to do with “Löffel” any more:

Löffel die Dying → MWE

Evoking a Frame

The FEE candidate has to be able to introduce the Frame, as defined on the FrameNet website 1

under FN data / frames (disregarding any syntactic definitions for English). An example for a
clear case:

kochen cook Cooking_creation → OK

It is also okay if a FEE candidate is very specific, as long as it conforms to the definition of the
frame:

Verkehrslärm noise Sensation → OK

It also sometimes happens that the semantic structure of the example sentences is rather
parallel, but that the predicate has undergone a change of perspective:

erhalten give Giving → OK

1http://www.icsi.berkeley.edu/\~framenet/)
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As long as the meaning is the same, this should be fine. If the semantic structures diverge too
much, No should be annotated (see below).

There might be problems, though:

• Frame definitions: Some frame definitions tend to be vague. In that case, it may also help
to browse the annotation examples for the lexical units of that frame on the FrameNet
web site (FN data / lexical units) to get a better feeling of which examples are actually
annotated with the current frame. Still, often there is a grey area in which it is unclear
whether the FEE candidate is still appropriate or not.

• MWEs: Recall that MWEs evoke a frame if the FEE candidate is the semantic head, and
only minor (non-frame-changing) information is added by the additional elements of
the MWE.

• Semantic association: The automatic methods used for the current task tend to bring up
associated, but not synonymous words as candidates; FEE candidates are not appropriate
if they are just semantically related to the support. In the following example, Pfanne is
not appropriate for the Frame Apply_Heat because in order to make it evoke the frame,
you have to add a lexical unit that could evoke the frame itself (such as braten in der . . . ).

Pfanne fry Apply_Heat → No

A.2.2. Decision 2: Does the FEE Candidate Result from a Wrong English
Sense?

A FEE candidate is a result of a wrong English sense of a support (Annotation Poly) if

1. It has parallel semantics to (at least) one of its supports and

2. It corresponds to a sense of the support which cannot evoke the current frame.

With regard to parallel semantics, see Section A.2.1.

Other Sense of English Support

Poly stands for polysemy error (i.e. an error introduced by additional senses of the support):
This happens frequently, because of the incompleteness in FrameNet and the resulting problems
for frame disambiguation.

This frequently happens for verbs. For example, the verb “raise” which can evoke
Cause_change_of_scalar_position also has different sense, as in “raise a question”:

stellen raise Cause_change_of_scalar_pos.→ Poly
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The differences may be more subtle, though. As an example, consider the frame Abusing and
the German FEE candidates for the support abuse:

Missbrauch abuse Abusing → OK

Misstand abuse Abusing → Poly

The frame definition of Abusing makes specific reference to domestic violence. Since Misstand
cannot be used in the domestic violence sense, but is a translation of a more general sense of
abuse as “a state of exploitation”, it is not appropriate for that frame and receive the label Poly.
On the other hand, “Missbrauch” can be used in that sense can should receive the label OK.
Poly is also appropriate if the meaning of the FEE candidate goes into the general direction

of the frame, but does not quite fit. Example:

Wachstum increase Cause_change_of_scalar_pos.→ Poly

Wachstum does not indicate Causation; rather, it is inchoative; therefore, Poly is the right label.

A.2.3. Decision 3: Are Misaligned Multi-word Expressions Involved?

A FEE candidate is the result of a misaligned multi-word expression (Annotation MWE) if

1. The FEE candidate and its supports are not semantically parallel and

2. At least one of them is part of a multi-word expression

Recall that MWEs are only expressions which receive their meaning only by virtue of their
specific combination of words. Therefore

• Phrases whose meaning is compositional are not MWEs

• Compounds, particle verbs, idioms are MWEs

Clearly, MWEs can occur both in English and in the target language. English MWEs lead
to target FEE candidates which are not translations of their English supports. As an example,
consider the following example:

Kettensäge chain Accoutrement → MWE
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where Kettensäge is most probably a translation of the English multi-word expression chain
saw. This happens frequently for German compound nouns.

Target-language MWEs lead to FEE candidates which cannot evoke the frame alone. Consider
the example

werfen raise Communication_response → MWE

where the German FEE candidate is missing its particle; it should read einwerfen instead.

A.2.4. The Rest: Noise

This leaves an incoherent set of remaining cases, which mostly fall into one of the following
categories and should be annotated with No (for Noise):

• Misalignments not involving proper MWEs. This is rather frequent and involves all kinds
of words that co-occur frequently enough:

Frage raise Communication → No

tief veiled Accoutrements → No

• Lemmatiser errors

Reisekost travel Travel → No

• Cases where the alignment is OK, but the aligned words introduce different concepts (i.e.
when the translation is too liberal)

Behauptung accusation Suspiciousness → No
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B. Guidelines for the Frame-Semantic
Annotation of the EUROPARL Sample

Note: This is an English translation of the original German guidelines given to annotators.
It is a simplified variant of the annotation guidelines that were used in the SALSA project at
Saarland University (Burchardt et al. 2006b) in early 2005.

B.1. Introduction

B.1.1. Frame Semantics

Frames describe prototypical situations, including the associated participants and props. For
example, the frame Request in the following table describes a situation in which a question
or demand is put forward. This frame can be introduced by English words such as urge,
request and German words such as fordern, auffordern, Forderung. These words are called
frame-evoking elements (FEEs), and are printed boldface in the examples. Table B.1 shows the
participants for Request situations: a Speaker, who utters the question; the Addressee of
the question; and the Message, the part of the sentence expressing the content of the question.
The message can be replaced by a Topic, a short characterisation of the question’s subject area.
Finally, the Medium can express the way in which the question was transmitted.

Being based on (sets of) participants, frame semantics is a theory of semantic roles: The
frame elements introduced above constitute the roles. They describe the semantic arguments
of verbs, nouns, and adjectives, and are specific to frames. This means that Frame Semantics is
located somewhere between two extremes:

• On one side, there are “classical” thematic role theories. These theories assume a small
set of roles such as Agent, Patient, Theme, Experiencer which are applied to the
describe the arguments of all verbs equally. However, there is little consensus on the
exact set of roles.

• On the other side, some theories have introduced verb-specific roles. This means that
every verb introduces its own roleset. While this makes annotation more manageable,
this model does not straightforwardly allow any generalisation across word boundaries.

Frame Semantics appears to constitute a realistic “middle way”.
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FE Example
Speaker Pat urged me to apply for the job.
Addressee Pat urged me to apply for the job.
Message Pat urged me to apply for the job.
Topic Kim made a request about changing her appointment.
Medium Kim made a request in her letter.

Table B.1.: The frame Request

B.1.2. FrameNet

The FrameNet project in Berkeley1 is concerned with constructing a lexicon for the English base
vocabulary that provides a frame-semantic description for each word. In particular, FrameNet
provides the following resources:

• A list of frames. The description of each frame contains a characterisation of the proto-
typical situation represented by the frame, a description of the frame elements, like the
ones shown in Table B.1, and information about possible syntactic realisations of frame
elements in English.

• A lexicon of English predicates (predominantly verbs, nouns, and adjectives) that can
evoke frames. All appropriate frames are listed for every word, together with some
annotated example sentences from the British National Corpus2 which are chosen to
illustrate “typical” usages of particular predicate-frame combinations.

Important: Frame semantics assumes that frames have cross-lingual validity, at least to a
certain degree. Thus, most of the frames developed by FrameNet for English can also be
used for the annotation of German. Consequently, the SALSA project (which is concerned
with frame-semantic annotation for German), has produced (incomplete) lists with German
frame-evoking elements for frames, which can be used as guideline for the annotation of the
parallel corpus (see Section B.2.2).

Important: Unfortunately, the FrameNet lexicon is incomplete both in terms of words (some
words are not listed at all) and in terms of the different word senses (for some words, only
rather marginal senses are listed in FrameNet). See also Section B.3.

1Homepage: http://www.icsi.berkeley.edu/~framenet/
2http://www.natcorp.ox.ac.uk/
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Figure B.1.: English syntactic tree (Collins parser)

B.1.3. Syntax

The sentences which are to be annotated with semantic roles have already received a syntactic
analysis (constituent structure). A constituent is the set of words dominated by a common
node. Figure B.1 shows an example of an English syntax tree. The inner nodes of the syntactic
tree are shown as circles, and the words of the sentences are the squares at the bottom (the
terminals). Syntactic categories are indicated by node labels. For example, the subject of the
sentence is the NP (nominal phrase) And those who T have remained.

This example already contains a special terminal symbol, namely T, which stands for Trace.
Such nodes appear at places where another constituent would be located, had it not been
displaced to some other position in the sentence. This can happen for a variety of phenomena,
such as relative clauses, ellipses, coordinations, or control constructions. German syntax trees
look similar, but are flatter and do not use traces.

Important: To generalise over this difference, traces should not be annotated (see Section B.2.3).

Important: The syntactic structure of the corpus was produced automatically and can contain
errors. For example, German sentences often have the right local structures, but they are
assembled to complete sentences in the wrong way.

Important: Section B.5 contains a list explaining the most important syntactic categories in
English and German syntax trees we use.
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Figure B.2.: Choosing a corpus and adding frames

B.2. Annotation Procedure

B.2.1. Starting the Annotation Tool

The annotation tool is available on all linux servers at the institute. It runs on sun servers as
well, but is rather slow (not recommended). To start the tool, enter the following commands:

[pado@impack] (.../CE/pado) $ cd /proj/llx/Software/SALSA/
[pado@impack] (.../Software/SALSA) $ ./salsa.sh

Then log in with your account name.

B.2.2. Annotation of a New File

Annotation with the annotation tool proceeds file-wise: each individual file is a subcorpus.
Every subcorpus contains all relevant occurrences of a frame-evoking element (FEE, predicate).
Thus, the annotation proceeds FEE-wise.

You can load a new file by clicking on the file’s symbol in the “work” folder of the “user”
window (lower left on the screen). During loading, a warning about the TIGER corpus pops up,
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which can be ignored.
For every subcorpus, the annotation tool keeps a list of available frames that can be anno-

tated in this subcorpus. At the outset, when a new subcorpus is being loaded, the list is empty –
the first thing that has to be done is to add frames. There are two main sources of “appropriate”
frames for German and English predicates:

• For English words, the FrameNet website lists all known frames for predicates:
http://www.icsi.berkeley.edu/~framenet/

• A list with German words and matching frames can be found on the page
http://www.coli.uni-saarland.de/~pado/pub/annotation/German_
fees_frames.txt3

Important: Due to the methodology of FrameNet, the list of frames on the FrameNet website
is incomplete for virtually every English lemma. A workaround is to browse the German list
for plausible translations of the missing senses, and to use the frames listed there. (Besides, this
is a good opportunity to get acquainted with the FrameNet resource and to become aware of
the different senses of the current FEEs.)

Technically, adding frames works by opening the “Corpus” menu and activating the menu
items “Edit Frames” / “Add Frames”. This opens a dialogue window in which frames can be
added to the current list. As soon as the list contains at least one frame, you can right-click on
any word in the sentence, and the resulting context menu will contain the command “Evoke
Frame”. Figure B.2 shows the window for subcorpora selection (left) and the dialogue window
for adding frames (right).

B.2.3. Annotation of Individual Sentences

Annotation of individual sentences proceeds in three steps:

Step 1: Identification of the FEE

First, the relevant FEE (i.e., the current instance of the lemma that is the name of the subcorpus)
has to be identified.

Step 2: Frame Annotation

The second step consists in choosing the right frame, i.e. determining which conceptual situa-
tion is described by the current FEE. In most cases, the appropriate frame can be found in the
list of possible frames for that word:

3Due to inconsistencies in the FrameNet database, two of the frames in the German list are not accessible through
the list of frames on the FN website. However, they can be accessed indirectly through the pages of the FEEs
they evoke. This concerns the frames Discussion (discuss) and Reliance (rely).
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Figure B.3.: Selection of an appropriate frame from the context menu

• The list of lexical units on the FrameNet webpage (English)

• The list of FEE-frame-combinations on my webpage (German)

(The URLs are given in Section B.2.2 above.)
Often, more than one frame is available for a given word. The following resources can

support the decision process:

• The frame description on the FrameNet website which contains a textual definition of
the frame’s meaning as well as the list of available frame elements for this frame

• The FEE lists mentioned above (can be used for paraphrase tests, see below)

• The annotated FrameNet example sentences (English only)

For example, the German FEE fragen can introduce at least the following frames:

• Questioning. FrameNet definition: The words in this frame have to do with a Speaker
asking an Addressee a question which calls for a reply (as opposed to making a request
which calls for an action on the part of the Addressee).
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– Example: Vor vielen Jahren schwärmte ich von diesem ersten meiner Lieblingsfilme,
als einer der Zuhörer mich fragte, ob Fellinis Film Einfluss gehabt habe auf die
Titelgebung eines Stueckes – The Road – , das gerade seine Uraufführung erlebt
hatte .

• Request. FrameNet definition: In this frame a Speaker asks an Addressee for something,
or to carry out some action.

– Example: Immer wieder fragt die junge Frau nach einem Arzt, besteht darauf,
untersucht zu werden .

• Cogitation. FrameNet definition: A person, the Cognizer, thinks about a Topic over a
period of time. What is thought about may be a course of action that the person might
take, or something more general.

– Example: Das frage ich mich manchmal selbst.

Some more detailed hints:

• It is generally a good idea for FEEs which can introduce more than one frame to try and
paraphrase the sentence with FEEs which can only evoke a single frame f. If the sentence
cannot be paraphrased with FEEs particular to f, it is highly probable that f is not a good
description for the sentence.

• The list of a frame f’s frame elements provided by FrameNet can be compared to the
subcategorisation of the current predicate. For example, if the current predicate can have
an object (realised or unrealised) which does not correspond to any frame element of f, f
is not appropriate. Using this argumentation, we can exclude the frame Feeling for the
sentence “Sie empfanden die Entscheidung als unfair” since “die Entscheidung” cannot
be mapped onto any frame element of Feeling.

• There are cases in which it is very difficult to make a decision between two frames, since
they correspond to different meaning components of the current sentence. For example,
consider the frames Awareness (to have a fact in his/her mental representation, as a
belief or as knowledge) and Certainty (to be certain of a fact). The sentence “Ich glaube,
dass X”, without additional context, has elements of both meaning components. In such
a case, it helps to:

1. Browse the annotated examples for either frames and check whether examples
which work analogously to the current sentence are annotated for one frame only.
(i.e. if one of the meaning components is classified by FrameNet as purely inferred.)

2. If this is not the case, a decision should be made which of the meaning components
is dominant in the example at hand. If the example “ich glaube X” focuses on
expressing the content of the belief/knowledge (like “ich weiss”), Awareness is
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more appropriate; if the main information is about the degree of certainty of the
belief (like “ich bin sicher, dass”), it is a case of Certainty.

Unfortunately, these are case-to-case decisions for which no guidelines can be provided
and which are completely in the annotator’s power. Section B.6 lists the most notoriously
difficult frame distinctions and provides paraphrases of the meaning components the
individual frames emphasise.

On a technical level, right clicking onto the word node and then selecting “Invoke Frame” shows
a list of all available frames for the current subcorpus (cf. Section B.2.2; if “Invoke frames” is
not displayed in the menu, no frames have been made available for the subcorpus yet); clicking
on a frame name then finally introduces the frame.

Important: Frame assignment can also be difficult for other reasons, the most important ones
being gaps in FrameNet (no suitable frame is available), and multi-word expressions (the
meaning arises from the combination of several words at once). Section B.3 discusses these
cases.

Step 3: Annotation of Frame Elements

As soon as a frame has been chosen, the annotation tool displays it as a rectangle above the
sentence that is “anchored” to the frame-evoking element, and the frame elements are shown
as smaller rectangles hovering around the frame. Frame elements are assigned by dragging
them onto a syntactic constituent and releasing. Before releasing, the tool highlights in blue
the subtree corresponding to the current constituent, i.e. the part of the sentence the role is
being assigned to.

Fundamentally, all frame elements which can be recognised with certainty should be anno-
tated. Sometimes, several plausible annotation options exist and it is difficult to choose one
over the other. The following criteria can be used to decide such cases:

• Annotate maximally and locally. In principle, exactly the lexical material that belongs
to some role should be annotated as part of it. Optimally, the complete lexical material is
located below one, the so-called maximal, constituent. Problems arise through sentential
constructions that allow more than one expression to refer to the same semantic entity.
Examples of such constructions are relative pronouns, relative clauses, pronouns, and so
on. As an example, consider Figure B.1, where the victims that have been attacked are
referred to by three different expressions: a pronoun (those), a relative pronoun (who),
and an empty element or trace (T), plus the constituents dominating these words. Which
is the correct annotation choice?

To answer this question, apply the locality principle:

Search from the FEE outward in the tree, and annotate the first suitable con-
stituent, unless it is a trace.
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Figure B.4.: Selection of a span for a semantic role

In more concrete terms, this means first testing whether the sister nodes of the FEE
are potential FEs. If not, test the sister nodes’ children and do so recursively. Only if
none of these is suitable, climb one node up from the FEE and test its sisters and their
descendants. Repeat until suitable constituent is found (or FE remains unaligned). Put
more simply, choose the suitable constituent with the shortest path to the FEE.

In the example in Figure B.1, that would be the NP with the yield “those who T have
remained”, and whose path to the FEE is ADJP-UCP-VP-S-NP.

This example demonstrates one important side effect of the locality principle alluded to
in the first sentence of this paragraph, namely maximality: choose the complete lexical
material belonging to a node. This is enforced by locality, since all syntactic subtrees are
traversed in a top-down sequence, so that nodes higher up (maximal constituents) are
more likely to be chosen.

• Traces cannot act as frame elements The only exception to the locality principle is the
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Figure B.5.: Error in the syntactic structure

case of “empty” elements. As an example, consider again the frame Self_Motion
in Figure B.1. Here, the trace “T” is a placeholder for the entity that moves (the role
of Self_Mover); but traces should not be annotated. In the example, the two other
realisations of the Self_Mover are “who” and “those”. Since “who” is closer to the
FEE“remain”than “those”, the relative pronoun “who” is annotated as FE.

• Every frame element occurs at most once. No frame element occurs necessarily; there
may be frames which don’t have a single realised frame element (example for FEE “eat”:
“Eating is fun.”). On the other hand, multiple occurrences of frame elements are licensed
only in quite specific syntactic conditions, namely when the lexical material of a role is
distributed over several syntactic constituents (see next item).

• Errors in the syntactic structure. Since the syntactic structure was created automatically,
it can contain errors. Figure B.5 shows the relevant bits of an example sentence for the
FEE “accused”: “Mr President” is just an address and does not semantically form part
of the role of Accused. This leads to a conflict between two principles: on one hand,
maximal constituents should be annotated; on on the other, exactly the relevant lexical
material should be annotated.

In such cases, the “maximal constituent” criterion is demoted, and consequently the
complete NP is not annotated as Accused. Instead, the two words “country” and “rap-
porteurs” have to be annotated individually with the same role. On a technical level,
this can be achieved by dragging the FE box over the first word to assign it. A further
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right click on the frame box makes a context menu appear with an entry called “Add
Element/<FE name>”. Choosing this entry adds a new instance of the FE which can then
be assigned to the second word, and so on. Figure B.5 shows the resulting annotation.

Important: Section B.4 contains further instructions for the annotation of problematic frame
elements.

B.2.4. Finishing the Annotation of a File

When a file is annotated completely, save it first. Then move the file to the “out” folder. To do so,
left click on the “document arrow” symbol at the bottom left (let the mouse hover over buttons
for about two seconds to get a description).

Once a corpus has been moved to the “out” folder, it cannot be modified any more. At the
same time, this means for me that I can start evaluating. Therefore, please put only properly
finished files into the “out” folder.

B.3. Linguistic difficulties – Frame Choice

As described in Section B.2.2, the frame-predicate lists for English and German may propose
more than one frame for a give predicate, and a decision has to be made. However, it is also
possible that none of the proposed frames is appropriate. There are two main reasons for this:

B.3.1. Gaps in FrameNet

We assume here that the predicate is an individual word which introduces some meaning
by itself and is understood literally (for more information on multi-word expressions and
metaphors, see Section B.3.3). However, FrameNet does not list the evoked meaning. An
example of this type is the English verb have, for which FrameNet lists only Giving_birth, as
in have a child. Clearly, this does not do for sentences such as He had three dollars.

There are two possible scenarios: either a frame exists for this meaning, and it is only the
lexical unit that is missing in the frame (lexical gap), or no frame exists in FrameNet which
describes this meaning (conceptual gap). These two cases can be distinguished by looking up
related cases in the provided resources, either monolingually by searching synonyms in the
FrameNet predicate list, or cross-lingually by searching translations in the SALSA predicate
lists. If synonyms and/or translations exist and evoke a frame that is appropriate, that frame
can be used (lexical gap). If, however, there appears to be a conceptual gap in that there
aren’t any synonyms or translations, please add a new frame called Unknown (uppercase U,
lowercase nknown) for the current predicate (menu entry “Corpus/Edit Frames/Add Frame”)
and annotate it.

The example above (He had three dollars) can be handled by finding the synonyms possess,
own, which lead to the frame Possession; this is the case of a lexical gap. In contrast, there
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is currently no FrameNet frame for the “social behaviour” sense of treat as in He treated
the conductor badly., as can be seen by the absence of synonyms like behave. This is a real
conceptual gap.
Important: For lexical gaps, it is especially important to check if the frame identified through
synonyms is really appropriate; maybe it is not listed for the predicate for a reason. A specific
problem in this respect are occasional differences between the definition of a FrameNet frame
and the annotated example sentences. Sometimes, the definition is narrower and does not
even license the annotated example sentences. For example, the definition of Departing states
that the frame is only meant to describe physical movements; however, the annotation set also
includes examples such as He had WITHDRAWN behind his shield of self-possession, a clear
metaphorical usage. When in doubt, the general tendency for the purposes of the present
annotation is to interpret the frame definition more liberally, i.e., in line with the annotated
example sentences. This makes it possible to annotate as many EUROPARL instances as
possible using FrameNet frames instead of Unknown.

B.3.2. Frames: Definitions vs. Example Sentences

For some frames (especially frames about movement and/or cognitive processes), there is a
mismatch between the frame definition and the example sentences. Usually, the frame definition
refers to very concrete instances and appears to restrict the use of the frame to literal instances
of physical movement and human cognition/perception. In contrast, the lexical units of such
frames often appear in more abstract or “generalised” instances. Examples are

• John’s freedom disappeared

• Let’s look ahead!

• to distance oneself from something

All of these cases are not “literal” usages of the respective frames, but are annotated as instances
in FrameNet nevertheless. In the present annotation, generalised uses are to be annotated with
matching frames whenever they are backed by example sentences even if the frame definition
is phrased more restrictively.

B.3.3. Multi-word Expressions and the Problem of Readings

There are easy cases, and there are difficult cases. Whenever the frame is introduced by the
literal reading of a single word (such as fire) plus possibly a particle (pick up) or a reflexive
pronoun (sich fragen), frame annotation is usually (comparatively) easy, despite missing frames
in FrameNet.

In contrast, multi-word expressions (MWEs) which introduce frames are often troublesome.
They can be grouped into three broad categories: support verbs, metaphors, and idioms. They
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can be distinguished primarily by the differences in the relationship between their literal or
compositional reading and their nonliteral or understood reading.

• Support verbs: These are usually the combination of a noun (or a prepositional phrase),
which is the “semantic center” of the expression, and a verb which only contributes a
specific nuance of the meaning, e.g., perspectivisation or aspect.

– Examples: Risiko scheuen/eingehen, to undergo/perform an operation

One criterion for recognising support verbs is that the meaning of the “semantic center”
and the complete expression are (almost) the same:

– Example: Peter underwent an operation – Peter’s operation

• Metaphors: Metaphors are expressions which have a literal as well an understood mean-
ing, and where both levels are recognisable.

– Examples: Perot läuft im weissen Haus gegen eine Wand, Perot walks against a brick
wall in the White House

Here, the literal meaning “to walk against a wall” can be described using the frame
Motion; the understood meaning “not succeed, get stuck” introduces the frame En-
counter_obstacle. Knowledge of the literal frame helps to understand the understood
frame.

• Idioms: Similar to metaphors, idioms have an “understood” meaning; however, the
relation to the original literal meaning is not present any longer. Often, idioms are “fixed”
expressions which cannot be modified, while metaphors (as the example above shows)
can be made up on the fly.

– Examples: zugrunde gehen, to push up the daisies

This is evidently an instance of the Dying frame; even though, diachronically speaking,
there will have been a “literal” meaning evoking the frames Motion and Cause_motion,
respectively, these are not necessary to understand the intended meaning - they do not
even help.

Such multi-word expressions are problematic especially because they are very difficult to
distinguish from one another: Even though there are clear-cut cases, there are also large “grey
areas”.

• Is unter Druck setzen / to put under pressure still a support verb construction, since the
semantics is determined mostly by “under pressure”, and the verb contributes only the
aspect? Or is it already an idiom?
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• Is Flagge zeigen (“to show one’s flag”) in the sense of “to show one’s loyalty” an idiom,
or a metaphor? Annotators who have a picture of a ship showing its flag in mind will
presumably argue for the metaphor analysis, others might tend towards idiom.

For the purpose of the present annotation, therefore, all multi-word expressions are treated in
the same manner:

1. Decision: It is a single-word FEE or a multi-word FEE?

• Single-word FEEs are annotated with their normal frame, according to the standard
rules

• All multi-word FEEs are, in principle, to be annotated with their understood mean-
ing. Note that the search for understood meanings can take a long time, since
neither the English nor the German frame lists are necessarily helpful. Often, it
helps to come up with paraphrases of the understood meaning which are them-
selves “literal” and can be looked up in FrameNet.
Be aware that choosing a frame is the most important part of your annotation –
and in the case of multi-word expressions, definitely the most difficult. Therefore,
please take extra care to be consistent in your decisions.
If no frame that applies can be found, or if you run out of time (I recommend that
you do not spend more than a quarter of an hour on any single instance), please
annotate Unknown (cf. Section B.3.1).

B.4. Linguistic difficulties – Frame Elements

B.4.1. Which Frame Elements to Annotate?

It is possible for more frame elements show up in the description of a frame on the FrameNet
web page or its annotated example sentences than are available for actual annotation in the
annotation tool. The reason for this is that FrameNet distinguishes

• Core frame elements which express central concepts of the situation in question, and are
therefore frame-specific, and

• Additional frame elements such as location, time, etc., which are applicable to a large
range of situations, and are thus not specific to particular frames

This distinction is shown in the FrameNet definitions of individual frame elements by their cat-
egorisation as either core or peripheral/extrathematic. Only core elements are made available
for annotation by the annotation tool; and only core elements are to be annotated. This means
that Time, Place, Means, Manner, are not to be annotated. Exceptionally, Place, Direction,
and Path are core elements of movement-type frames since they express central concepts of
movements.
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B.4.2. Certain and Uncertain Frame Elements

As mentioned in Section B.2.3, only frame elements recognised as certain are supposed to be
annotated. At times, this is an issue of interpretation, in particular when it comes to nouns,
but also for more complex verbal constructions. Consider the following example for the Frame
Commerce (FEE kaufen):

• Example: Besitzer von Einfamilienhäusern, [NP die vor 1994 [VP gekauft haben]]

In this sentence, the author has not realised the direct object of gekauft, the thing bought. It is
rather probable that the goods in question are the single-family homes, but this interpretation
is defeasible: In a sufficiently specific context, for example one that talks about the stock market
and its interaction with the housing market, this interpretation can be overridden, and the
sentence can be interpreted as talking about the purchase of stocks.

Guideline: FEs are to be annotated if they are reasonable in neutral context, i.e. if they are
instantaneously understood. In the case above, Einfamilienhäuser can therefore be annotated
as the Goods FE of Commerce.

B.4.3. Particular Syntactic Constructions in German

There are a couple of syntactic constructions in German which may lead to problems in the
assignment of semantic roles and which are therefore discussed here. This list may not be
complete.

• mit constructions. Consider the following example:

– Example: Mit Donnerstag, 9 Uhr, wurde ein unglücklicher Termin gewählt.

Is Mit Donnerstag, 9 Uhr, a frame element? We do not treat it as such – mit phrases are
mostly best seen as depictives, complements that provide a more detailed description of
the proper frame element ein unglücklicher Termin. This can also be seen by considering
a possible paraphrase:

– Example: Es wurde ein unglücklicher Termin gewählt, und zwar Donnerstag, 9 Uhr.

In this form, it is even clearer that the mit phrase is just an addition.

• Reflexives. There are different uses of reflexives in German. If they realise proper
arguments of predicates they have to be annotated; if not, not. The “argumenthood”
can be tested by replacing the reflexive pronoun with another NP: if this is possible, the
reflexive fills a proper argument slot.

– Example: Er rasiert sich−→ Er rasiert Peter.
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This works, therefore sich fills a frame element.

– Example: Das Brot verkauft sich gut 6−→ Das Brot verkauft ihn gut.

This does not work – sich is not a proper argument. Note that sometimes the replacement
works, but the meaning changes in the process. This is taken as negative evidence for
argumenthood:

– Ich frage mich, ob X. (Cogitation) 6−→ Ich frage Peter, ob X. (Questioning)

B.5. Reference: Important Syntactic Categories

English

• ADJP: adjectival phrase

• ADVP: adverbial phrase

• NP(B): nominal phrase

• PP: prepositional phrase

• S(BAR): sentence

• VP: verbal phrase

• WHNP: wh-question phrase

German

• AP: adjectival phrase

• NP: nominal phrase

• PN: proper noun

• PP: prepositional phrase

• S: sentence

• VP: verbal phrase

• VZ: infinitival phrase with “zu”

In addition, the German trees contain categories with names of the form “C<x>”. These are
“coordinating” nodes, i.e. nodes which directly dominate two nodes of the category “<x>”,
typically linked by an “and” or “or”. For example, “CS” is a sequence of two conjoined sentences
(“S”).
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B.6. Reference: (Some) Difficult Frame Distinctions

• Achieving_first / Invention: Achieving_first covers, in addition to feats achieved for
the first time, inventions of concrete artifacts. Invention focuses on conceptual break-
throughs.

• Awareness / Certainty: Awareness stresses the content of a believing/knowing/thinking
event; Certainty stresses the degree of (un-)reliability.

• Getting / Receiving: In Receiving events, the transfer is initiated volitionally by the Giver.

• Hostile_Encounter / Quarreling: If the situation is an obvious communication situation
in which the participants exchange verbal arguments, Quarreling is the right frame; all
other cases are covered by Hostile_Encounter.

• Judgment_Communication / Notification of Charges: Notification_of_Charges refers
specifically to the situation in the judicial court; Judgment_Communication covers all
verbal accusations.
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