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Abstract

Non-local dependencies occur when a head (e.g. a verb) and its dependent (e.g.
an argument) is separated by some intervening material which does not depend
on the same head. Because non-local dependencies play an important role in de-
termining predicate–argument structure of sentences, identifying them correctly is
essential for Natural Language Processing. However, this task appears to be rather
difficult, and for this reason, non-local dependencies have received only limited
amount of attention in the statistical parsing literature.

This thesis explores the problems identifying non-local dependencies poses
for statistical parsing technology. We argue that the difficulties are due to the
enlarged search space, an effect of the large amount of locally unresolvable ambi-
guities introduced by non-local dependencies. We show that the search space can
be efficiently reduced by taking lexical and local information into account. We
present several simple parsing models incorporating this knowledge.

We claim that non-local dependencies in English can be efficiently and accu-
rately recovered by an appropriate combination of shallow approaches. In par-
ticular, we show that a finite-state machine without explicit knowledge of phrase
structure information is able to detect heads participating in non-local construc-
tions with state-of-the-art accuracy. This machine is employed to constrain the
search space of a phrase-structure parser. The parser, when coupled with the
finite-state preprocessor, is fast and achieves the best reported results on recov-
ering non-local dependencies.

The accuracy of the system crucially depends on the way the parser and the
preprocessor are combined. We develop a novel probabilistic framework where
a preprocessor guides a parser through imposing soft constraints on the search
space. The parser takes not only the hypotheses of the finite-state machine into
account, but also incorporates the preprocessor’s probability estimate for these
hypotheses, and thus improves its own estimate for the given structure. This com-
bination method attains our goals: the system is simple and, at the same time,
efficient and accurate.
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Zusammenfassung

Als nichtlokale Abhängigkeiten bezeichnet man Fälle, in denen ein syntaktischer
Kopf (z.B. ein Verb) von seinem Dependenten (z.B. einem Argument) durch da-
zwischenliegendes Material, das nicht vom selben Kopf abhängt, getrennt ist.
Da nichtlokale Abhängigkeiten eine wichtige Rolle für die Bestimmung von
Prädikat–Argument Strukturen spielen, ist deren korrekte Erkennung eine Grund-
voraussetzung für die natürliche Sprachverarbeitung. Diese Aufgabe scheint je-
doch ziemlich schwierig zu sein, und deswegen wurde nichtlokalen Abhängigkei-
ten in der Literatur über statistisches Parsing nur wenig Beachtung geschenkt.

Diese Arbeit erforscht die Probleme, die das Erkennen nichtlokaler Abhängig-
keiten mit statistischen Parsing-Technologien mit sich bringt. Wir argumentieren,
dass diese Probleme von einem vergrößerten Suchraum herrühren, einer Folge der
großen Anzahl von lokal nicht aufzulösender Ambiguitäten, die von nichtloka-
len Abhängigkeiten hervorgerufen werden. Wir zeigen, dass der Suchraum durch
den Einbezug lexikalischer und lokaler Information effizient eingeschränkt wer-
den kann. Wir beschreiben mehrere einfache Parsing-Modelle, die solches Wissen
einbeziehen.

Wir behaupten, dass nichtlokale Abhängigkeiten im Englischen durch eine
angemessene Kombination von flachen Ansätzen effizient und mit hoher Genau-
igkeit entdeckt werden können. Insbesondere zeigen wir, dass ein endlicher Au-
tomat ohne explizites Wissen über Phrasenstrukturinformation in der Lage ist,
syntaktische Köpfe, die an nichtlokalen Konstruktionen beteiligt sind, mit einer
Genauigkeit, die dem Stand der Technik entspricht, zu entdecken. Dieser Auto-
mat wird benutzt, um den Suchraum eines Phrasenstrukturparsers einzuschränken.
Der Parser, verbunden mit dem endlichen Automat als Präprozessor, ist schnell
und erreicht die besten berichteten Ergebnisse für das Entdecken nichtlokaler Ab-
hängigkeiten.

Die Genauigkeit des Systems hängt entscheidend davon ab, wie Parser und
Präprozessor kombiniert werden. Wir entwickeln einen neuen statistischen An-
satz, in dem ein Präprozessor den Parser durch das Auferlegen weicher Einschrän-
kungen durch den Suchraum führt. Der Parser berücksichtigt dabei nicht nur die
Hypothesen des endlichen Automaten, sondern bezieht auch dessen Wahrschein-
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vi Zusammenfassung

lichkeitsschätzungen mit ein und verbessert damit seine eigenen Schätzungen für
eine gegebene Struktur. Diese Kombinationsmethode führt zum Erreichen unseres
Ziels: das System ist einfach und gleichzeitig effizient und genau.
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Chapter 1

Introduction

1.1 Motivation

Non-local dependencies occur when a head (e.g. a verb) and its dependent (e.g.
an argument) is separated by some intervening material which does not depend on
the same head. Such constructions have always been a major concern for linguis-
tic theories. As Sag (1982) puts it:

Few linguists would take seriously a theory of grammar which did not
address the fundamental problems of English that were dealt with in
the framework of ‘standard’ transformational grammar by such rules
as There-insertion, It-extraposition, Passive, Subject–Subject raising,
and Subject–Object raising. (Sag 1982, p. 427)

Such non-local phenomena including unbounded dependencies (Gazdar 1981) are
the topic of the present dissertation. Our goal, however, is not linguistic in nature:
we do not intend to argue for or against linguistic theories explaining the phe-
nomena. Instead, we investigate the difficulties non-local dependencies (NLDs)
present for parsing technology by designing more and more refined systems cap-
turing NLDs. Our design is guided by three criteria: accuracy, efficiency and
simplicity. Our final system combines simple and thus fast models to achieve
state-of-the-art accuracy in handling NLDs.

Although English is generally viewed as a strictly configurational language,
where arguments of a given predicate occur in well-defined neighbouring posi-
tions in the syntactic structure, it often exhibits dependencies which do not con-
form to this pattern. Specifically, some of the dependencies are non-local, as in
the following example:

(1.1)It is difficult to understand what I want to do.

1



2 Introduction

Here, the one-word phrase I, which is the immediate dependent (subject) of the
headword do, is separated from its head by the sequence “want to”, where neither
words in the sequence depend on do.

Identifying such dependencies is very important for a number of reasons. First,
non-local dependents are often semantic arguments and, as a consequence, they
should show up in the predicate–argument structure. Moreover, knowing the de-
pendency structure of the sentence, including both local and non-local dependen-
cies, might prove to be useful in a number of tasks, such as question answering,
information retrieval, machine translation, language modelling, lexical acquisi-
tion, etc.

For instance, translating the sentences

(1.2)I find it difficult to remember you.
I promised John to remember you.

with four online machine translation engines illustrates the importance of handling
NLDs (Table 1.1). Each sentence contains a non-local construction: the non-local
subject of remember is I. Crucially, the word remember is translated with re-
flexive verbs in both German and French, where the reflexive pronouns agree in
number and person with the (possibly non-local) subject of the clause. The verbs
in the correct translations, erinnern and rappeller or souvenir, should occur with
first person singular reflexive pronouns (mich and me). As it turns out, none of
the translation engines get both examples right: they use third person reflexive
pronouns (sich and se) instead of the first person ones. Incorporating a correct
analysis of NLDs would substantially improve the systems.1

Given the common belief that English generally conforms to phrase structure
rules enforcing locality, the frequency of non-local dependencies is surprisingly
high. In our development data, Section 0 of the Wall Street Journal corpus in the
Penn Treebank (Marcus et al. 1993, 1994), around three quarters of the sentences
contain NLDs. When looking at verbs, 22% of the verbal arguments and 31% of
the subjects are non-local. If our ultimate goal is to recover predicate–argument
structure, we cannot ignore NLDs: they do play an important role in the meaning
of the sentence.

The amount of attention devoted to NLDs in the statistical parsing community
lags far behind their importance, although recently the interest in them has con-
siderably increased (Chapter 3). With one notable exception, namely Model 3
of Collins (1997, 1999), which does handle a small subset of NLDs, the most

1The websites of the engines are:
SYSTRAN http://www.systransoft.com/
PROMT ONLINE http://translation2.paralink.com/
REVERSO http://www.reverso.net/
LOGO MEDIA http://www.logomedia.net



CORRECT Ger. Ich finde es schwierig, mich an Sie zu erinnern.
Ich versprach John, um mich an Sie zu erinnern.

Fr. Je le trouve difficile à me vous rappeler.
J’ai promis à John de me vous rappeler.

SYSTRAN Ger. Ich finde es schwierig, sich an Sie zu erinnern.
Ich versprach John, um mich an Sie zu erinnern.

Fr. Je le trouve difficile de se rappeler vous.
J’ai promis John pour me rappeler vous.

PROMT ONLINE Ger. Ich finde es schwierig, mich an Sie zu erinnern.
Ich versprach John, sich an Sie zu erinnern.

REVERSO Fr. Je trouve difficile de me vous rappeler.
J’ai promis à John de se vous rappeler.

LOGO MEDIA Ger. Ich finde es schwierig, sich an Sie zu erinnern.
Ich versprach John, mich an Sie zu erinnern.

Fr. Je le trouve difficile de se souvenir de vous.
J’ai promis à John de se souvenir de vous.

Table 1.1: Machine translation to German (Ger.) and French (Fr.) of the sentences
“I find it difficult to remember you.” and “I promised John to remember you.”
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popular probabilistic phrase-structure parsers simply ignore non-local dependen-
cies (Charniak 1996). They typically return a syntactic structure for the sentence
in (1.1) as illustrated in Figure 1.1. There are three important pieces of informa-
tion which are not straightforward to recover from such a representation:

(i) What is the object of do? The analysis suggests that do is intransitive: there
is no apparent indication of an object. How does this structure express that
the object is, in fact, what?

(ii) What is the subject of do? Again, it is not straightforward to find out that
it is actually I.

(iii) What is the subject of understand? How does the representation encode
that the subject is not in the sentence? How is the difference between the
verbs do and understand captured by the structure?

There are two possible explanations why researchers avoid addressing the
problem of non-local dependencies: either these constructions are very easy to
recover once we have a correct phrase-structure tree, and thus their recovery re-
quires no scientific effort, or it is very difficult to handle them, and therefore,
lacking an appropriate model, they are ignored for the sake of simplicity or ef-
ficiency. Johnson’s (2002) experiments appear to support the latter claim: even
if one knows the perfect phrase-structure, it is not straightforward to recover the
NLDs in the sentence. The fact that all recent attempts in the statistical parsing
literature employ more powerful grammar formalisms than a simple context-free
grammar also points in the same direction: handling non-local dependencies re-
quires extra generative power and, as a consequence, imposes an additional burden
on sentence processing.

The present dissertation challenges this view. We will show that a combina-
tion of very simple tools, such as a context-free parser and a finite-state machine,
can achieve the goal of recovering non-local (as well as local) dependencies effi-
ciently with state-of-the-art accuracy.

1.2 The problem

Employing phrase-structure grammars to recover non-local dependencies requires
a configurational representation of NLDs. In this scheme, verb phrases with an ex-
tracted object, for instance, must have a different structure from intransitive VPs:
either the non-terminals should be different or the tree itself has to have a differ-
ent shape (or both). In the corpus we use in our experiments, the Penn Treebank
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(Marcus et al. 1993, 1994), NLDs are represented with the aid of empty elements
(EEs) and co-indexation.

As an illustration, consider the tree in Figure 1.2.2 The idea underlying the
configurational representation is that the labelled tree in itself determines what a
predicate is and what its arguments are. For instance, an NP with a sister VP im-
mediately dominated by an S nonterminal is the subject of the main verb in the
VP. In the present example, the subject of want is I, by virtue of its position with
respect to the VP. Now, how does this scheme represent the fact that the subject
of do is also I? Looking at the tree we see that there is something sitting in the
subject position of the clause “to do”: an empty element acting as a placeholder
which indicates that do has a subject. This empty element is co-indexed with the
actual subject of do, that is, with the one-word phrase I.

In a similar vein, it is assumed that roughly every NP which is a sister of a verb
immediately preceding it is the (direct) object of the verb. In the figure, do ap-
pears to be followed by such an NP. This NP, however, contains only an EE as a
placeholder which is co-indexed with the actual direct object, what. Note, how-
ever, that not all empty elements are co-indexed: in the subject position associated
with understand, we observe such a placeholder. This configuration indicates that
understand does have a subject, but it is not in the sentence and gets arbitrary
interpretation.

Such a representation scheme suggests a natural division of the problem of re-
covering NLDs into two subtasks: we can regard the task of finding where EEs
occur and finding what they are co-indexed with (if with anything at all) as two
separate problems. Such a division of labour, as we will see throughout this the-
sis, turns out to be extremely useful. In what follows, we refer to the first task as
EE detection, whereas to the second one as antecedent recovery.3

Both EE detection and antecedent recovery appear to be challenging, albeit for
different reasons. In the case of EE detection, the problem is obvious: empty el-
ements are hidden, they do not appear in the input. Therefore, the parser has to
guess where EEs might or might not occur; in the worst case, it might end up posit-
ing an unbounded number of empty nodes (see e.g. Johnson and Kay 1994). This
is a problem since the parser might not even terminate, or at least it might be very
slow. Co-indexation also seems to be a fundamental problem, because it might

2For the sake of clarity, we abstract away from some minor details and complications in the pre-
sentation below.

3We use the term antecedent somewhat liberally in this dissertation referring to the co-indexed
material, even if it follows the EE, such as in the case of right dislocation.
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introduce extra generative power to the grammar.4 This suggests that handling
NLDs, i.e., parsing with empty elements, is a difficult task.

Are empty elements necessary for representing NLDs? Many linguistic theo-
ries, e.g. Head-Driven Phrase Structure Grammar (Pollard and Sag 1994) or Com-
binatorial Categorial Grammar (Steedman 2000), are able to analyse NLDs with-
out empty elements (although they still heavily rely on indices). Would parsers
designed for these frameworks also find it difficult to parse with NLDs? In the
present thesis, we argue that they would, because the problem roots much deeper
than the issue of how NLDs are represented. The difficulty that all parsers han-
dling NLDs have to face is the considerable increase in the search space: NLDs
introduce a large amount of local ambiguity which might only be resolved late in
the derivation. For instance, a verb might be ambiguous between intransitive or
transitive with an extracted object. Now, it is possible that the parser has to pro-
cess the whole sentence in order to decide for either alternative (cf. Section 2.2).
In practice, when given such a sentence as input, a parser handling NLDs has to
explore a search space twice as large as for a parser without the ability to deal
with NLDs. Should there be more sites with non-local ambiguity, the search space
would increase rapidly with the number of such sites.

The large search space, in general, has at least two unwelcome effects. The
first problem concerns efficiency: the larger the search space is, the slower the
parser runs. In fact, even parsers not designed to handle NLDs cannot afford to
explore their whole search space and require heuristic search to filter out unlikely
search states. The second problem concerns accuracy: the larger the search space
is, the harder it is for the parser to find the right solution. Therefore, if we man-
age to reduce the search space reliably, we have good chances to kill two birds
with one stone: we might have a more accurate and more efficient parser which is
able to handle non-local dependencies. In the present dissertation, we set out to
achieve exactly this goal.

1.3 Contributions

Our ultimate goal is to design a fast and accurate parsing architecture which re-
covers non-local as well as local dependencies. Our thesis is that this goal is best
achieved by a careful combination of simple systems. Specifically, we show
that a probabilistic combination of a finite-state preprocessor and a lexicalised
context-free parser is very successful at this task: the system handles non-local

4It is easy to write a grammar with indices that generates languages that are beyond context free,
provided we allow for an unbounded number of such indices.
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dependencies with state-of-the-art accuracy with only a small amount of overhead
in time and space.

Further contributions of the present dissertation are the following results:

• Recovering antecedents proves to be relatively easy; even an unlexicalised
PCFG parser is able to perform this task reliably and efficiently if an oracle
informs it about the sites where empty elements occur in the input.

• Finding sites for non-local dependencies can be efficiently and reliably a-
chieved without explicit knowledge of phrase structure information; we
present a finite-state machine, the trace tagger, which is able to find EEs
prior to parsing.

• Lexicalisation and local cues are the most important factors contributing to
the success of the trace tagger.

• Even the simplest combination of the preprocessor and the unlexicalised
parser outperforms the best reported results on the task of NLD recovery;
the resulting model is fast as well.

• We present a lexicalised parser which is able to handle the majority of NLDs.
This parser is a generalisation of Model 3 of Collins (1997, 1999) and it out-
performs the combination of the trace tagger and the unlexicalised model,
albeit only by a small margin.

• The trace tagger is more accurate at EE detection than the lexicalised parser,
because it explicitly takes into account information not available for the
parser. Specifically, non-local information as well as information cutting
across phrase boundaries play an important role in EE detection.

• We propose a general probabilistic architecture for combining a preproces-
sor and a parser; in particular, the architecture allows the preprocessor to
impose soft constraints on the parser and guide it during its search. When
tested on recovering NLDs, this system outperforms all previous systems by
a considerable margin.

1.4 Overview

In Chapter 2, we define in a data-oriented way what exactly we mean by non-
local dependencies in the present dissertation. Then, we discuss why processing
NLDs is a problem for any parsing algorithm based on any underlying linguistic
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framework. Section 2.3 presents a technique which enables us to reliably ap-
proximate NLDs with a context-free parser. We use this technique to convert the
original trees into trees without co-indexation; the new corpus, the Tracebank,
serves as our training and test data. Finally, we give a brief inventory of non-local
dependencies occurring in our corpus. A more detailed description of non-local
phenomena is presented in the Appendix.

Chapter 3 is devoted to a discussion of previous work addressing the prob-
lem: we review how machine learning approaches have been used for recovering
non-local dependencies.

Chapter 4, first, introduces the evaluation metrics we use throughout the the-
sis. Then, we present an algorithm recovering antecedents: this algorithm operates
on fully specified tree structures of the Tracebank. The main focus of the chap-
ter, however, is the design of an unlexicalised PCFG parser which is able to detect
NLDs. The performance of this parser turns out to be poor: it is inaccurate, slow
and cannot parse 40% of the test data. Interestingly, the same parser proves to be
accurate, fast and robust once it is informed where EEs occur. Therefore, we con-
clude that antecedent recovery is relatively easy and that the main bottleneck is
EE detection.

As a consequence, in Chapter 5, we present a system which provides the parser
with information about the EE sites. Since this module is a preprocessing unit be-
fore parsing, it is not allowed to use explicit phrase structure information. There-
fore, we cast the problem of detecting EEs as a tagging problem and develop a
finite-state tagger, the trace tagger to perform this task. The trace tagger achieves
state-of-the-art accuracy on the EE-detection task. We give a rigorous analysis of
its performance in order to isolate a handful of cues which contribute to its suc-
cess. These cues might be straightforwardly incorporated into other systems to
improve their accuracy.

Chapter 6 combines the trace tagger and the parser to perform the task of re-
covering NLDs accurately and efficiently. We use a simple pipeline architecture:
the best hypothesis of the tagger serves as the input to the parser. We also test the
combined architecture using a state-of-the-art probabilistic lexicalised parser, that
of Collins (1999). Interestingly, using this parser improves the scores only by a
few percent, although it is much more accurate at building phrase structure. The
reason for this, we argue, is lexicalisation: by using a lexicalised trace tagger we
implicitly lexicalise the unlexicalised parser. Further lexicalisation, i.e., employ-
ing a lexicalised parser, has only limited contribution: in a way, the trace tagger
and the lexicalised parser incorporate the same cues.

This observation, however, suggests that a lexicalised parser might be more
successful at detecting NLDs than its unlexicalised counterpart. Therefore, in
Chapter 7, we develop a lexicalised parser which is able to handle NLDs. Specifi-
cally, we generalise Model 3 of Collins (1997). This parser proves to be success-
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ful: it does not suffer from the problems exhibited by the unlexicalised parser.
Interestingly, the lexicalised parser is worse at detecting EEs than the trace tagger,
which shows that it still could benefit from consulting the tagger. However, the
parser turns out to be more accurate at recovering antecedents than the combined
model of Chapter 6. We argue that the problem is the rigid pipeline architecture.

Therefore, in Chapter 8, we present a general probabilistic framework to com-
bine shallow modules with a parser. In this architecture, the shallow module pro-
vides its k-best hypotheses, which guide the parser throughout its search. We use
this architecture to combine the trace tagger and the parser. Such a combination
method is successful: the system is more accurate at detecting NLDs than either of
its components. A further benefit of the architecture is the reduction of the search
space the parser has to explore. In another experiment, where a simple yet fairly
accurate NP chunker is combined with the parser, the search space is almost half
of the original size, yet the combined system is more accurate.

Finally, in Chapter 9, we draw our conclusions and sketch possible directions
for future research.

Chapters 4–7 are extensions of joint work with Amit Dubey (Dienes and
Dubey 2003a,b). These chapters largely follow the structure of the two papers,
and they contain a wider set of experiments and updated results.





Chapter 2

Non-local dependencies

Although the linguistic community has long been interested in non-local depen-
dencies (Chomsky 1957, 1965, 1977, Harman 1963, Ross 1967, Bresnan 1976,
Kaplan and Bresnan 1982, Gazdar 1981, Gazdar et al. 1985, Pollard and Sag 1994,
Hudson 1990, Steedman 1996, 2000, etc.), there is little consensus on what should
be regarded as a non-local dependency. Most theories agree that unbounded de-
pendency constructions, like the ones exemplified by WH-questions and relative
clause in English, qualify as such; but this is where the agreement ends. Chom-
skyan transformational grammar, for instance, treats passive and control as involv-
ing non-local dependencies, i.e., as movement (Chomsky 1965), whereas most
other formalisms do not. Others, for instance Hockenmaier (2003a,b), consider
auxiliary constructions (locally mediated) NLDs. Although this point of view
makes perfect sense under the assumption that the main verb depends on the aux-
iliary, it is a problematic claim if our theory views the auxiliary as the modifier
(i.e., dependent) of the main verb. In fact, Falk (2003) argues that some of the
auxiliaries in English are heads, while others are modifiers. Although we do not
think that such choices would alter our methodology or make the task consider-
ably easier or harder, they would definitely affect the actual scores we obtain.

Clearly, it is rather problematic to define the notion of non-local dependencies
on purely linguistic grounds independent of any theory: probably all linguistic
frameworks would classify considerably different sets of phenomena as NLDs.
Even if we accepted one underlying theory, the problem would not be solved,
since there are many debated theory-internal issues which might alter the notion
of non-locality. This indeterminacy would make it very difficult if not impossible
to compare the results presented here to other approaches based on even a slightly
different underlying linguistic framework.

Therefore, we are forced to take a different, more theory-natural position: in
the present work, we let our data define non-local dependencies. Over the years,
the Wall Street Journal part of the Penn Treebank corpus Marcus et al. (1993,

13
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1994) has emerged as a widely accepted benchmark for training and testing sta-
tistical parsers and other systems. Although the annotation scheme is clearly in-
fluenced by transformational-grammar, which treats non-local dependencies in
terms of movement and represents them with empty elements and co-indexation,
the data is now written in stone, which allows us to propose a fixed, theory-
independent, albeit corpus-specific, definition of non-local dependencies. In par-
ticular, we regard every dependency construction involving an empty element as
a NLD. As we discuss it in Section 2.4, this definition is rather broad and includes
phenomena such as unbounded dependencies, passive, raising and control, and
even some idiosyncratic constructions in the Treebank, such as empty units or el-
lipsis. Nevertheless, we adopt it as a working definition here, which facilitates
straightforward comparison with previous (Johnson 2002, Jijkoun 2003, Dienes
and Dubey 2003a,b) and possible future work.

It is important to emphasise, however, that we do not intend to argue for (or
against) the linguistic theory underlying the annotation. We also do not aim at
entering the discussion about the psychological reality and linguistic adequacy
of movement and empty elements. We regard these questions as representational
issues beyond the scope of the present enquiry, and focus our attention on the dif-
ficulties NLDs present for parsing technology instead. Nevertheless, we find the
metaphors of movements, empty elements, gaps, and traces as convenient ones to
describe the phenomena and use them frequently throughout this dissertation.

In Section 2.1, we introduce the general scheme the Penn Treebank employs
to represent non-local dependencies. Then, in Section 2.2, we discuss why non-
local dependencies are hard to parse regardless of how they are represented and
of the kind of parsing algorithm employed. In Section 2.3, we show how the orig-
inal annotation can be converted to a traceless scheme which can be parsed with
a context-free parser with only minimal loss of information. We refer to the mod-
ified corpus as the Tracebank. Finally, we give a brief overview of various kinds
of non-local phenomena as defined by our data. A more detailed inventory is pre-
sented in the Appendix.

2.1 Non-local dependencies in the Penn Treebank

In this dissertation, we follow the general practice of using the Penn Treebank
(Marcus et al. 1993, 1994) to train and test our models. Specifically, our train-
ing set of approximately 1 million tokens (around 40000 sentences) consists of
Sections 2–21 of the Wall Street Journal part of the corpus (WSJ02–21), whereas
the results are presented testing the systems on Section 23 (WSJ23, 56684 tokens,
2416 sentences) of the same part. Finally, we reserve Section 0 (WSJ00, 46451 to-
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Figure 2.1: The Penn Treebank representation of the sentence in (2.1).

kens, 1921 sentences) as a development set, to optimise parameters of the model
and to carry out error analysis.

One advantage of using the Penn Treebank (PTB) is that it not only describes
local syntactic structure but also handles non-local dependencies and thus repre-
sents predicate–argument structure (Marcus et al. 1994). To illustrate the anno-
tation scheme, let us return to our example from Section 1.1, repeated here for
convenience:

(2.1)It is difficult to understand what I want to do.

This sentence would be represented in the PTB as in Figure 2.1. There are several
things to observe. First, the PTB annotation scheme follows a structural represen-
tation of predicate–argument structure: every node without a special functional
label that is immediately dominated by a VP is the complement of the verb. Simi-
larly, every NP under an S node bearing the functional label -SBJ is the subject of
the sentence. Therefore, the subject of the verb want in the clause is I, because
it sits in the subject position of the corresponding S node. Similarly, by virtue of
its position in the phrase structure, the complement of the same verb is “to do”.
Hence, the subclause is associated with the following (partial) predicate–argument
structure (cf. Marcus et al. 1994):

(2.2)want(I,“to do”)

Now, this approach faces a problem when it comes to non-local dependencies:
how to represent entities that are arguments of more than one predicate? The an-
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notation scheme takes a relatively theory neutral stance and marks those places
where a constituent is interpreted but does not occur with an empty element * or
*T*.1 Thus, for instance, the clause “to do” has, in fact, a subject which happens
to be empty. In order to make the recovery of the argument possible, the annota-
tion scheme uses co-indexation: the phrase to be interpreted as the subject of the
clause bears the same index as the empty element. Consequently, the subject of
do in the present example is the constituent bearing the index 3, i.e., I. Similarly,
the direct object of do is what. The partial predicate–argument structure of the
sentence is:

(2.3)want(I,do(I,what))

Some of the empty elements (henceforth EEs, but sometimes referred to as
traces or gaps) are not co-indexed though, that is, they do not have an antecedent.
In the present example, for instance, the subject of the clause “understand what
I want to do” is not co-indexed – it gets an arbitrary interpretation: someone or
something. Thus, the predicate–argument structure of the clause is something
like:

(2.4)understand(*someone*,want(I,do(I,what)))

Finally, observe another EE-type, labelled as *EXP*: the annotation scheme
uses four further EEs to represent discontinuous structures. Discontinuity poses a
problem for the essentially context-free representation of the Treebank. To handle
the problem, Marcus et al. (1994) propose marking the relation between the parts
of the discontinuous material with an empty element co-indexed with the corre-
sponding part. In the example, since predicative uses of adjectives are viewed to
apply on the subjects,2 the clause “understand what I want to do” is viewed as
part of the subject, and therefore, it is co-indexed with an empty element which is
part of the subject. Now, the structure is parallel to structures without raising, and
the predicate–argument representation is assumed to be:

(2.5)difficult(understand(*someone*,want(I,do(I,what))))

In the present dissertation, we regard the task of recovering non-local dependen-
cies as consisting of three subtasks: (i) detecting where empty elements occur,
(ii) deciding whether they are co-indexed, i.e., whether they have an antecedent,

1In the annotation scheme, * roughly stands for PROs and *T* for WH-movement. In Section 2.4,
we give an overview of the various types of empty elements used in the Treebank.

2That is, in the sentence “The reader is tired”, the predicate is tired and its argument is the subject,
the reader.
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Type Percentage empty

Arguments 22%
Subjects 31%
Verbal complements 16%

Sentences 75%
Words 7%

Table 2.1: Various statistics of EEs in WSJ00.

and (iii) finding the antecedent if one is required. In fact, as we discuss in Sec-
tions 2.3 and 2.4, the type of the EE determines whether it has an antecedent or
not. Therefore, we treat the subtasks (i) and (ii) as one, and refer to it as EE detec-
tion. Finding the antecedents will often be called antecedent recovery. We often
use the term NLD site for the immediate environment where an EE occurs.

In Section 1.1, we argued that finding non-local dependencies is very impor-
tant for a number of tasks. Now, we are in the position to quantify this intuition.
Table 2.1 shows a handful of statistics describing the distribution of EEs. The
most important observation is the surprisingly high occurrence of EEs in seman-
tically “interesting” positions: more than one fifth of the total verbal arguments
is an EE, and almost one third of the subjects is empty. This shows that recov-
ering non-local dependencies is indeed very important if we define our aim as
reconstructing predicate–argument structure.

2.2 The problem with NLDs

Intuitively, the problem of parsing with NLDs is that the empty elements repre-
senting these dependencies are not in the input. Therefore, the parser has to hy-
pothesise where these EEs might occur – in the worst case, it might end up sug-
gesting exponentially many traces, rendering parsing infeasible (Johnson and Kay
1994). One apparent solution would be to adopt a linguistic theory which does
not treat non-local dependencies in terms of empty elements and co-indexation;
in fact, most modern (non-transformational) theories explicitly deny the existence
of empty elements.

We claim here, however, that the problem roots much deeper than this repre-
sentational question. As a matter of fact, in the present dissertation, we do not in-
tend to make any claim about the (in)appropriateness of analysing NLDs in terms
of movement, or about the psychological/linguistic (ir)reality of phonologically
empty elements. Instead, we are interested in the computational burden and diffi-
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Figure 2.2: A dependency graph with a re-entrancy for the sentence “I ate the
apple you bought.”

culties NLDs impose on broad-coverage parsing systems. We follow e.g. Briscoe
(1987) in using terms like movement, empty elements, traces, and gaps only as
convenient metaphors for non-local dependency constructions.

Although various linguistic frameworks disagree on how to represent and anal-
yse non-local dependencies, they all agree that these phenomena are challenging.
In fact, the presence of such constructions in the world’s languages is one of the
major driving force for proposing new linguistic theories which can handle non-
locality in a formal yet linguistically and maybe psychologically plausible way.
In the present section, we discuss why non-local dependencies are hard to process
efficiently with any parser using any underlying framework.

From the point of view of the dependency structure, NLDs are difficult because
they violate the assumption that dependency structures are represented as directed
trees. Specifically, NLDs give rise to re-entrancies in the dependency graph, i.e., it
is no longer a directed tree but a directed graph, with nodes possibly having multi-
ple parents (e.g. apple in Figure 2.2). Now, the parser has to explore a much larger
search space: in a tree the number of edges is always n−1 (where n is the number
of words in the sentence). On the other hand, in the case of the directed graph, the
parser does not know the number of edges in advance: it might lie anywhere be-
tween n− 1 and n2 − n. Moreover, observe the cyclic structure in Figure 2.2: the
presence of such structures makes it difficult to use a dynamic programming ap-
proach. Probability estimation for general directed graph structures also turns out
to be more complicated than for directed trees (Abney 1997).

Arguably, the search space is much more restricted by an actual grammar that
exploits, for instance, the knowledge that buy is a transitive verb and thus re-
quires a direct object. Nevertheless, the problem does not disappear. Consider the
following example:
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(2.6)When demand is stronger than suppliers can handle WH–ADVP and
delivery times lengthen WH–ADVP, prices tend to rise. (wsj_0036.mrg)

This sentence illustrates two complications: first, the subcategorisation frame of
a verb does not necessarily restrict where (some) NLDs may or may not occur,
since the extracted material might be an adjunct. Second, one non-local depen-
dent (when in the above example) might be associated with more than one head
down in the tree (lengthen and handle) – the parser has no means to infer this
before it actually processes both embedded verbs and the complementiser. The
situation might be exacerbated by the fact that the WH-word is optional in some
cases (e.g. in the sentence “The way he walks WH–ADVP is funny”).

In fact, the problem is that any parser either has to access an unbounded
amount of left and right context when making its decision, or keep a large amount
of ambiguity in memory until the whole sentence is processed (Briscoe 1987,
Maxwell and Kaplan 1995a). As an illustration, consider the following exam-
ples taken from (Briscoe 1987); WH–NP? marks ambiguous sites for extracted
WH-objects:

(a) (2.7)Who do you want WH–NP? to succeed WH–NP?

(b) Who do you want WH–NP? to replace WH–NP

(c) Who does Kim want WH–NP? to think that the boss expects the di-
rectors to replace Sandy (with WH–NP)

First, note that a top-down parser would ultimately fail analysing sentences
with NLDs in general, because they might contain left-recursion (e.g. in the case
of relative clauses). Therefore, we have to resort to a bottom-up or to a mixed pars-
ing strategy (Johnson and Kay 1994). However, all known polynomial parsers (for
CFGs) use a common underlying data structure, the chart, in essentially the same
way (Sheil 1976, cited by Maxwell and Kaplan 1995a). Therefore, without loss
of generality, we show that non-local dependencies are difficult for chart parsers.

An important property of a chart parser is that prior to the creation of an edge
spanning a sequence of words, all edges spanning substrings of these words are
created and stored (Kay 1986 (1980)). Consequently, by the end of the recogni-
tion process, all possible edges for all substrings of the input are built and stored.
The efficiency of the chart parser is due to the fact that equivalent edges are cre-
ated only once. “In the context-free case, two edges are equivalent if they span
the same substring and impose exactly the same requirements for further matching
the same rule” (Maxwell and Kaplan 1995a, p. 407).

Now, consider the sentence in (2.7a). It is ambiguous: the extracted object
might be the object of either want or succeed, both verbs being ambiguous be-
tween transitive and intransitive. Even if the sentence is globally unambiguous
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(as in 2.7b and c), the parser has to process the whole sentence before the local
ambiguity can be resolved. Initially, the parser creates two edges for want: an in-
transitive one and a transitive one. (A similar requirement holds for succeed as
well.) These two edges, however, behave identically with respect to most of the
context-free rules: they combine (locally) with exactly the same edges. Their dif-
ferent behaviour becomes apparent only later in the derivation, when we try to
combine them3 with who: one of them can be combined with this word, the other
one cannot.

In order to prevent the parser from treating the two edges as equivalent (even
though they appear to be equivalent as far as most context-free rules are con-
cerned), we have to keep them separate: we either associate a different nontermi-
nal label with these edges or use a special marker on the one with extraction to
indicate that the verb is not yet saturated. The latter solution captures the gen-
eralisation that both edges behave in the same way with respect to most of the
context-free rules. Regardless of how we keep the two edges , however, all the
edges dominating the verb want have to be doubled, although they are equivalent
with respect to the majority of the context-free rules (except for the one combining
them with who).

The situation further deteriorates when we join edges that cover both want and
succeed: since we still do not know which of the two verbs are transitive or in-
transitive, we have to keep all four possibilities.4 Again, these four edges behave
identically with respect to the other edges that can be combined with them, ex-
cept for the one dominating who. This means that we have to have four copies
of all the edges spanning both want and succeed. Should there be another verb
ambiguous between transitive or intransitive, we would be forced to have eight
copies of all the edges containing the sites. Clearly, with the possibility of hav-
ing even more sites and different extracted constituents (e.g. WH-adverbs as well
as WH-complements), the size of the chart grows enormously. It is, therefore,
not surprising that all parsing algorithms devised for the family of linguistically
motivated formalisms generating mildly context-sensitive languages have at least
O(n6) worst-case time-complexity in the number of words n (Vijay-Shanker and
Weir 1994). If large feature structures are associated with the nodes, the complex-
ity might easily increase to exponential (Maxwell and Kaplan 1995a).

There is a very important difference between local (e.g. PP-attachment) and
non-local ambiguities: in the former case, it never happens that two edges behave
in the same way with respect to all but one edge, i.e., they span the same words
and have the same non-terminal label. This means that even if the sentence is ex-
ponentially ambiguous, the parser has to store the ambiguous edge only once; the

3To be more precise, apparently equivalent edges dominating them.
4The example in (2.6) shows that we cannot discard any of them.
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exponential number of readings poses a problem only if we have to unpack all
possible analyses. Non-local dependencies, on the other hand, force us to keep
several edges apart, even though they span the same words and have the same
non-terminal label.

Let us conclude this discussion with a quote from (Kaplan and Maxwell 1995)
justifying the introduction of functional uncertainty in LFG, a device which is de-
signed to handle non-local dependencies.

Uncertainty specifications are a compact way of expressing a large
number of disjunctive possibilities that are uncovered one by one as
our procedure operates. It might seem that this is an extremely expen-
sive descriptive device, one which should be avoided in favor of ap-
parently simpler mechanisms. But the disjunctions that emerge from
processing uncertainties are real: they represent independent gram-
matical possibilities that would require additional computational re-
sources no matter how they were expressed. In theories in which long-
distance dependencies are based on empty phrase structure nodes and
implemented, for example, by gap-threading machinery, ATN HOLD

lists, and the like, the exact location of these empty nodes is not sig-
nalled by any information directly visible in the sentence. This in-
creases the number of phrase structure rules that can be applied. What
we see as the computational cost of functional uncertainty shows up
in these systems as additional resources needed for phrase structure
analysis and for functional evaluation of the larger number of trees
that the phrase structure component produces. (Kaplan and Maxwell
1995, p. 194)

2.3 Context-free parsing and NLDs

In the previous section, we argued that processing NLDs is or might be difficult
for any parser. But is it really difficult in practice? Which types of NLDs are dif-
ficult to process? What information could help a parser? In order to answer these
questions, we present experiments with various probabilistic context-free parsers.
The main motivation for choosing a PCFG parser is the relative simplicity of the
model: although parsers based on other frameworks might be considered to be
more adequate for handling NLDs, they usually allow a larger space of free pa-
rameters. It would be thus harder to determine the exact cause of the phenomena
we observe.

Moreover, we believe that it is methodologically more adequate to start with
a very simple system and understand why it does or does not work before mov-
ing to a more sophisticated one. This approach helps us understand the problem
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more thoroughly and keep the search space for possible solutions relatively small.
Given that many parsing algorithms for more sophisticated grammar formalisms
actually use a context-free backbone, our results with a PCFG might generalise to
these systems as well and help improve them.

Practical considerations also play an important role in our choice: PCFG mod-
els are straightforward to train from either labelled or unlabelled data; various
smoothing techniques are investigated to fight data sparseness; efficient algo-
rithms exist for finding the most probable parse; the resulting models are report-
edly robust and coverage does not constitute a problem. Furthermore, large re-
sources are available for training PCFGs, therefore no additional manual work is
necessary to create them or to develop a wide-coverage grammar. Finally, PCFGs
are very successful at handling surface dependencies in languages with relatively
fixed word order, such as English (Collins 1999, Charniak 2000).

In order to handle NLDs in a context-free parser, two issues are to be addressed:
empty elements and co-indexation. Treating empty elements in a parser does not
present any major problem as long as the they are dominated by a branching node.
Therefore, it is necessary to prune non-terminals dominating only empty material.
Afterwards, it is fairly straightforward to modify any parsing algorithm to posit an
empty node whenever a rule allows it. Note that by pruning non-branching empty
non-terminals we considerably restrict the positions where EEs might occur and
thus the search space the parser has to explore: the parser only hypothesises an
empty element when a rule forces it to do so.5

Co-indexation, on the other hand, is much more problematic. Indices in the
grammar might increase its generative power (Vijay-Shanker and Weir 1994). Un-
less we restrict where antecedents might occur, we might not be able to model
NLDs with a context-free grammar. Fortunately, there tend to be strong restric-
tions on possible sites for antecedents in English, with the exception of pseudo-
attachments (see below). In particular, the antecedent of an EE is required to
strictly c-command the EE in the vast majority of the cases, where strict c-
command is defined as:

(2.8)Strict c-command (Haegeman 1991, p. 122)
Node A strictly c-commands B if and only if
(a) A does not dominate B and B does not dominate A; and
(b) the first branching node dominating A also dominates B.

The above definition entails that on the path in the parse tree from the EE to its
antecedent, we always go up, except for the very last step which is downward.

As a consequence of this restriction, co-indexation can be compiled into the
rewrite rules: all the nodes that lie on the path from the EE to its antecedent get

5Pruning is done internally by our parsers.
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I VP–3

want S–3

NP–3

*–3

VP

to VP

sleep

Figure 2.3: Connecting the antecedent and the EE by enriching the representation
of nonterminals with the index.

the index (cf. Figure 2.3). Finding the antecedent of the EE is basically following
the index up to the point where it disappears – the nonterminal dominated by this
node is the antecedent for the EE.6

This approach, however, faces a problem: in principle, we could use any num-
ber (or any symbol) as an index, which means that the number of nonterminals
is potentially infinite. Grammars of this type with infinitely many nonterminals
generate languages that are not context-free (van Wijngaarden et al. 1975, Vijay-
Shanker and Weir 1994). This problem does not show up in the present setting,
however, since we extract our grammar from a finite training set, which ensures
that we always have a finite set of nonterminals (and rules). Still, the potentially
large number of nonterminals makes this approach virtually impossible to couple
with a probabilistic setting: the resulting model would tremendously overfit the
training data and would be incapable of generalisation – at least as far as NLDs
are concerned. Yet, observe that we do not rely on the index itself to find the an-
tecedent: we make use of the structure instead. Consequently, we can use the
same marker (gap) to thread the EE to its antecedent (Figure 2.4). This approach
is essentially what Collins (1997), following e.g. Harman (1963), Gazdar (1981),
Gazdar et al. (1985), proposes to handle WH-movement; some minor differences
are discussed in Section 7.2.2. This decision keeps the induced grammar context-
free and reduces the problem of overfitting.

This technique is perfect when we only have one EE-type, which is not the
case in the present situation. Consider the sentence in (2.1) and the correspond-
ing tree in Figure 2.1: the clause “what I want to do” would be, under the present
scheme, represented as in Figure 2.5. Such a representation would lose the in-

6As we discuss it shortly, this process is a bit more involved in the case of grammars with non-
binary rules.
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*

VP
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sleep

Figure 2.4: Connecting the antecedent and the EE by enriching the representation
of nonterminals with a uniform symbol (gap).

formation which EE is co-indexed with which antecedent: is the WH-word to be
interpreted as the subject or the object of do? To avoid this problem, we pro-
pose to use “typed” gap features, which indicate whether the EE is of type WH

(corresponding the label *T* in the PTB annotation, see below for an inventory of
EEs) or PRO (* in the PTB). This move also captures the insight that the distribu-
tion of the antecedents for WH-movement is different from that of the antecedents
for PROs, namely, they occur in different syntactic environments: WH-antecedents
are in non-argument positions (under an SBAR node), whereas PRO-antecedents
always occur in argument positions.

A further complication is due to the relatively shallow representation adopted
in the PTB: in many cases, nodes have more than two daughters. Such a situation
is shown in Figure 2.6 (the sentence is a simplified example from wsj_0044.mrg).
In order to find the correct antecedent, we have to know that the appropriate land-
ing site of the gap-variable on the VP node is an NP and not a PP. This information
is encoded in the original tree by virtue of the NP node dominating the EE PRO. In
order to be able to access this information locally, we include it on the gap vari-
ables as well as on the empty element. We refer to this scheme as using gap+
variables. Figure 2.7 shows the representation the example sentence in (2.1) gets
under the present scheme.

Although we adopt this approach throughout the present dissertation, we are
aware of three important limitations. First, we heavily rely on the assumption that
the antecedent strictly c-commands the corresponding EE. This is true of most
of the antecedents, except for the cases of pseudo-attachments (cf. Section 2.4).
Their antecedents more often than not do not strictly c-command them, that is,
in our walk from the EE to the antecedent, first we have to move up in the parse
tree, then more than one step down. Although there might be conceivable solu-
tions to this problem, for the sake of simplicity, we opt for not connecting EEs of
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Figure 2.5: Connecting the antecedent and the EE: one reason for introducing
typed gap variables.
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Figure 2.6: Connecting the antecedent and the EE: the reason for adding the label
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Figure 2.7: Connecting the antecedent and the EE: the use of gap+ features.

this type with their antecedents. This essentially means that the systems presented
here are incapable of handling this type of non-local dependency. Fortunately,
such NLDs only constitute less than 4% of all EEs, and 6.5% of the EEs requiring
an antecedent.

Apart from sentences with pseudo-attachment, there are 82 sentences in the
whole Treebank where the technique presented here fails. Figure 2.8 shows such a
sentence; the antecedent “the Fed”, co-indexed with the empty element *-1 in the
subject position of the clause “to bring down rates”, does not strictly c-command
the EE.

Another problem occurs when, at the node immediately dominating the an-
tecedent, there is more than one constituent with the same nonterminal label (e.g.
the two NPs in Figure 2.9). Here, we lose the information which of the NPs is
the antecedent: the one dominating she or the one headed by yesterday? In or-
der to cope with this problem, we can use the heuristics of selecting, for instance,
the rightmost NP as the antecedent (the algorithm employed for recovering the
antecedents is discussed in Section 4.2).

Finally, the scheme presented here cannot handle the cases properly where
multiple non-local dependencies of the same type occur, such as in the example:

(2.9)This is a problem which1 John2 is difficult to talk to 2 about 1.
(Pollard and Sag 1994, p. 159)

Here, the gap variables corresponding to the two non-local dependencies might
get mixed up, resulting in the incorrect interpretation where the dependent of to is



(S (S (NP-SBJ (NNP Bush)
(NN administration)
(NNS officials))

(VP (VBP are)
(VP (VBG looking)

(PP-CLR (TO to)
(NP-1 (DT the)

(NNP Fed)))
(S-CLR (NP-SBJ (-NONE- *-1))

(VP (TO to)
(VP (VB bring)

(PRT (RP down))
(NP (NNS rates))))))))

(, ,)
... )

Bush administration officials are looking to the Fed to bring down rates, and
financial markets seem to be expecting easier credit as well. (wsj_0072.mrg)

Figure 2.8: A problematic case for our gap-threading approach: the antecedent
does not strictly c-command the EE.
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Figure 2.9: A problematic case for our gap-threading approach: there is more than
one possible antecedent.
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which and the dependent of about is John. We discuss one attempt to solve this
problem in Section 4.2. It is important to note, however, that the problem is more
theoretical than practical in nature, since such constructions do not occur in the
development section at all; we conjecture that they are indeed infrequent in the
PTB.

In summary, in order to be able to handle non-local dependencies with a prob-
abilistic context-free grammar, we approximate co-indexation by compiling the
information about the non-local dependency into the nonterminals lying on the
path from the EE to its antecedent. This technique is a generalisation of Collins’s
(1997) approach: we are able to handle multiple types and instances of EEs. We
refer to this gap-threading scheme as the one with gap+ variables. In order to train
and test our context-free models, we modified the Treebank as described above.
This version of the Treebank is called the Tracebank. The labels for the EEs used
in this version are summarised in the next section.

This dissertation presents experiments employing the head-lexicalised PCFG

models of Collins (1997, 1999) and a generalisation thereof (Chapters 6–8). These
models require further annotations. First, for each phrase, the headword of the
phrase is detected (cf. Figure 2.10), using the head-finding rules from (Collins
1999) originally proposed by Magerman (1995). Second, the models require
the distinction between complements and adjuncts. They are determined us-
ing the complement rules presented in (Collins 1999, p. 174). Finally, Collins
(1999) extends the probability model to better capture non-recursive noun phrases
(baseNPs). This extension requires additional modifications to the Tracebank.
Specifically, the nonterminal labels for non-recursive NPs is changed to NPB, and,
for consistency reasons, “whenever an NP is seen with no pre or post modifiers, an
NPB level is added” (Collins 1999, p. 179). Thus, the final representation of the
clause “what I wanted to do” is given in Figure 2.10. Note, however, that these
modifications are applied only in tandem with the lexicalised models of Chap-
ters 6–8; the unlexicalised models of Chapters 4 and 6 use trees as presented in
Figure 2.7.

2.4 A brief inventory of EEs

In this section, we briefly describe the different types of EEs we use in the Trace-
bank and the kind of linguistic phenomena they intend to capture. For an exhaus-
tive description with examples, see Appendix A.

The PTB annotation scheme distinguishes six different types of empty ele-
ments (Marcus et al. 1994, Bies et al. 1995, p. 59):

• traces of A′-movement, including parasitic gaps (*T*)



SBAR–C

(what)

WHNP–H

what

S–CWH−NP

(want)

NP–C

NPB–H

I

VP–HWH−NP+NP−NP

(want)

V–H

want

S–CWH−NP+NP−NP

(to)

NP–CNP−NP

NP–NP

VP–HWH−NP

(to)

TO–H

to

VP–CWH−NP

(do)

V–H

do

NP–CWH−NP

WH-NP

Figure 2.10: A head-lexicalised tree in the Tracebank using the head and comple-
ment rules of Collins (1999).



30 Non-local dependencies

• traces of A-movement, controlled and arbitrary PRO (*)

• pseudo-attachments (*RNR*, *ICH*, *PPA* and *EXP*)

• placeholders for ellipsis (*?*)

• empty complementisers (0)

• empty units (*U*)

Arguably, some of these empty elements, namely empty complementisers and
empty units, do not represent non-local dependencies, yet we do include them
here. The main reason for this decision is to remain compatible with Johnson
(2002). Moreover, empty WH-complementisers might serve as antecedents for
WH-traces.

As we argued in the previous section, antecedent recovery and CFG-parsing
require the encoding of not only the basic type of an EE but also of the nonter-
minal label dominating it. Therefore, we substituted all occurrences of EEs in
the Treebank with the concatenation of their type and the nonterminal label.7 We
also replaced the different symbols for the different EEs with a more mnemonic
name as described in Table 2.2. For instance, since *T* mostly stands for WH-
construction, a *T* node dominated by an NP label is changed to WH–NP. In the
remainder of this section, we briefly summarise the syntactic constructions where
the different EE-types are used. For a more complete description and a handful
of examples, we refer the interested reader to Appendix A. The references in the
headers here correspond to the appropriate sections there.

WH–. . . (A.1.1 and A.1.3)

These empty elements, originally represented in the PTB with *T*, stand for traces
of A′ movement; they always have an antecedent. The most frequent EEs of this
type are WH–NP and WH–ADVP. They are used for handling:

• WH-questions (A.1.1, p. 179)

• relative clauses (A.1.1, p. 179)

• fronting, topicalisation (A.1.1, p. 180)

• tough-constructions (A.1.1, p. 180),

7In order to keep our results with Johnson’s (2002), the nonterminal label of empty units (*U*)
is not encoded. This is no problem for antecedent recovery, since empty units never have an-
tecedents.
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Notation Antecedent WSJ00

Here PTB Freq. Rel. freq.

WH–. . . *T* + 582 17.6%
TOP–S *T*8 + 233 7.0%
NP–NP * + 987 29.8%
PRO–NP * − 426 12.9%

PSEUDO–. . .

*PPA*
*RNR*
*ICH*
*EXP*

+ 127 3.8%

ELLIPSIS–. . . *?* − 37 1.0%
COMP–. . . 0 − 584 17.6%
UNIT *TU* − 334 10.1%

All 3311 100%

Table 2.2: Frequencies and relative frequencies of EEs in WSJ00.

• parasitic gaps (A.1.1, p. 181), and

• so-constructions (A.1.3, p. 183).

A typical example of usage is:

(2.10)(NP (NP answers)
(SBAR (WHNP that/which)

(SWH−NP (NP we)
(VPWH−NP encountered

(NPWH−NP WH−NP)))))

TOP–S (A.1.2)

Although the PTB annotation scheme uses the same symbol (*T*) when topicali-
sation of sentences occur, for the sake of clarity, we represent with TOP–S every
*T* which is immediately dominated by an S nonterminal. These EEs also have
an antecedent and are mainly used in quotations (A.1.2, p. 182):

8We use TOP–S to represent *T* traces if and only if the EE is immediately dominated by an S

node; otherwise the *T* is changed to WH–. . . .
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(2.11)(S ‘‘
(S (NP Willie)

(VP caught
(NP the ball)))

’’
(NP-SBJ Casey)
(VPTOP−S said

(STOP−S TOP−S))
.)

NP–NP and PRO–NP (A.2)

These EE-types are the most frequent ones in the Treebank. Originally, both of
them are represented with *. Some of them have an antecedent, however, while
others do not. Therefore, for the ease of reference, we use the label NP–NP for the
occurrences with antecedents, and PRO–NP for the ones without co-indexation.
They vaguely correspond to controlled and arbitrary PROs, respectively. There-
fore, we will often use PRO to refer to both of them. Their usage covers:

• passives (A.2.1, p. 184),

• reduced relatives (A.2.2, p. 185),

• empty subjects of infinitival clauses (A.2.3, p. 186),

• empty subjects of participial clauses and gerunds (A.2.4, p. 189), and

• empty subjects of as- and than-clauses (A.2.5, p. 192).

In the example (2.12b), observe the lack of threading gaps: PRO–NPs cannot have
antecedents, i.e., they are never co-indexed.

(a) (2.12)(S (NP Everyone)
(VPNP−NP seems

(SNP−NP (NPNP−NP NP−NP)
(VP to

(VP dislike
(NP Drew Barrymore))))))

(b) (NP (NP John ’s)
decision
(S (NP PRO−NP)

(VP to
(VP leave))))
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PSEUDO–. . . (A.3)

This label stands for pseudo-attach constructions. In the Tracebank, we merge the
four different types; in the list below, the original markers are given in brackets.
These EEs always have an antecedent, though it often does not strictly c-command
the EE.

• permanent predictable ambiguity, such as illustrated by the sentence “I saw
a man with a telescope.” (PTB:*PPA*, A.3.1, p. 194),

• shared constituents, right node raising (PTB:*RNR*, A.3.2, p. 194),

• discontinuous structures (PTB:*ICH*, A.3.3, p. 195), and

• it -extrapositon (PTB:*EXP*, A.3.4, p. 196).

The example in (2.13) shows the most frequent usage (discontinuous struc-
tures). Observe the lack of gap+ variables connecting the PSEUDO–SBAR element
and its antecedent “whom she at once recognized as Jemina Broadwood”.

(2.13)(S (NP (NP a young woman)
(SBAR PSEUDO−SBAR))

(VP entered
(SBAR (WHNP whom)

(SWH−NP (NP she)
(PP at

(ADVP once))
(VPWH−NP recognized

(NPWH−NP WH−NP)
(PP as

(NP Jemima Broadwood)
))))))

ELLIPSIS–. . . (A.4)

This empty element acts as a placeholder for an ellipsed predicate or a part thereof.
Even if the missing material is identical with another constituent in the sentence,
these EEs never have antecedents (cf. the example below). The annotators mainly
use this label as a last resort, although there are two constructions where they
regularly occur:

• comparative deletion (A.4, p. 196) and

• representing a missing VP after auxiliaries (A.4, p. 197).
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(2.14)(S (NP John)
(VP is

(ADJP (ADJP sillier)
(SBAR than

(S (NP I)
(VP am

(ADJP ELLIPSIS−ADJP)))))))

COMP–. . . (A.5)

These labels are inserted in SBAR constituents with a missing overt complemen-
tiser. There are three such labels: COMP–SBAR, COMP–WHNP, COMP–WHADVP.
The latter ones represent null WH-operators in relative clauses (A.5.2, p. 200).
None of the three labels have an antecedent, though COMP–WH. . . traces can serve
as antecedents for WH–. . . gaps:

(2.15)(NP (NP the bird)
(SBAR (WHNP COMP−WHNP)

(SWH−NP (NP I)
(VPWH−NP saw

(NPWH−NP WH−NP)))))

UNIT (A.6)

This label is used in conjunction with currency symbols, such as $ or FFr (French
francs), and marks the position in the string where they would appear if the phrase
were pronounced. The relevance of these empty elements is rather questionable,
and they in no way represent non-local dependencies. The only reason for in-
cluding them here is compatibility – we want to keep our results comparable with
those of Johnson (2002). For the same reason, we do not differentiate between
UNITS under NP and ADVP nodes. A typical example of usage is:

(2.16)(NP $ 5 UNIT)

Note

In this dissertation, we define every construction involving empty elements in
the PTB as representing a non-local dependency. Nevertheless, we are aware of
the deficiencies of this decision: some of the empty elements represent some id-
iosyncrasies in the annotation scheme and do not contribute to the meaning of the
sentence (e.g. empty UNITS). Therefore, apart from scores involving all EEs, we
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will also report results separately on a class of empty elements that we regard se-
mantically important, namely on the class containing WH–. . . and TOP–S gaps as
well as controlled and uncontrolled PROs (NP–NP and PRO–NP, respectively). In
the original annotation scheme, these empty elements are easy to recognise, since
they are represented as *T* and * traces.





Chapter 3

Previous work on applying
machine-learning techniques to
NLD-recovery

In this chapter, we review previous approaches to recovering non-local dependen-
cies using machine-learning techniques. Previous work falls into three different
groups based on the methodology they employ to handle NLDs. Most studies pro-
pose carrying out this task while parsing. Others attempt to recover NLDs after
parsing with a context-free parser not trained to deal with non-locality. The third
approach proposed does not rely on parsing at all, it operates with chunks instead.

The present work explores a fourth possibility: we detect NLDs prior to parsing
with a finite-state preprocessor, and use the parser to incorporate this information
into the parse tree. We also experiment with parsers that are designed to do both
EE detection and antecedent recovery during parsing (Chapters 4 and 7).

3.1 Statistical parsing with non-local dependencies

The problem of parsing with NLDs (discontinuities) is well studied (e.g. Proudian
and Pollard 1985, Johnson 1985, Vijay-Shanker 1987, Bunt et al. 1987, Covington
1990a,b, 1994, Reape 1991, van Noord 1991, Bunt 1991, 1996, Müller 1996). In
fact, most modern formal grammar formalisms come with implemented parsers.
The problem, however, is far from being solved. Although we can parse and re-
cover non-local dependencies, there are a couple of serious issues to address.

The first issue concerns efficiency. Exhaustive parsing does not appear to be
feasible even with PCFG parsers having only cubic worst-case time complexity
in the length of the sentence. The recognition problem with the unlexicalised
version of Tree-Adjoining Grammar or Combinatorial Categorial Grammar re-
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quires O(n6) time in the worst case, where n is the length of the sentence (Vijay-
Shanker and Weir 1994). In the case of Lexical Functional Grammar or Head-
Driven Phrase Structure Grammar, ensuring well-formedness restrictions on fea-
ture structures might further increase this complexity to exponential (Maxwell
and Kaplan 1995a). These results emphasise the need for good search strategies
to make parsing feasible with these grammar formalisms.

Second, the task of natural language parsing is not just deciding whether the
sentence is grammatical or not according to the grammar, but also producing the
most appropriate analysis for the input. Since the number of analyses might be
exponential in the number of words, as is the case, for instance, for PP-attachment
ambiguity in English (Church and Patil 1982), the approach of enumerating all
possible parses and letting another module select the right one is infeasible (Os-
borne 2000a, Johnson 2003): the parser has to perform this task while parsing.

Third, manually developed grammars tend to suffer from decreased coverage;
Baldwin et al. (2004) report 18% coverage for a large-scale HPSG grammar (En-
glish Resource Grammar Copestake and Flickinger 2000) on the British National
Corpus; for LFG, using the large-scale LFG grammar (Butt et al. 1999), Riezler
et al. (2002) report the coverage to be 75% on Section 23 of the Wall Street Jour-
nal. Since natural language shows a Zipfian behaviour, there is no hope for a
lexicalised grammar to achieve 100% coverage: in any large test corpus, there
will be unknown words. Therefore, it is necessary to introduce mechanisms that
handle this problem, which, in turn, further increase the ambiguity inherent in the
grammar.

Furthermore, a parser might be employed under circumstances where its in-
put is not grammatical or even ambiguous at the string level. For instance, pars-
ing sentences that come from an OCR system or a speech recogniser might in-
volve dealing with multiple, often corrupted input, occasionally associated with
the preprocessor’s probability estimation of the strings given the utterance or pic-
ture (confidence score). A parser has to be able to handle these inputs robustly
and should attempt to incorporate the confidence score.

Finally, manual development of large-scale grammars is time-consuming and
error-prone. Therefore, it is important to investigate automatic grammar induc-
tion, using either supervised or unsupervised learning. Automatically extracted
grammars, on the other hand, tend to extremely overgenerate, which increases
ambiguity even further. In fact, they usually produce many unacceptable analyses
which must be discarded as early as possible in the parsing process.

There might be several ways and heuristics to tackle all or some of these prob-
lems. We believe, however, that there is a universal, well-founded approach: using
probability theory to rank possible (partial) parses. In terms of probabilities, the
notion of the most appropriate parse can be formally defined: the most appropri-
ate parse is the one with the highest probability given the input (and possibly other
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information).1 The probability distribution over possible (partial) syntactic struc-
tures for the input can efficiently and accurately guide the parser in exploring the
search space of possible analyses. Probability theory allows a sound combination
of different modules, such as a preprocessor and the parser.

In what follows in this section, we review statistical parsing approaches to
handling NLDs. Most of the approaches assume an underlying grammar formal-
ism, ranging from context-free grammars to LFG, HPSG, TAG, CCG or to depen-
dency grammar. We organise the related work according to the formalisms they
are based on.

3.1.1 Probabilistic Context-Free Grammars

Although there is a large amount of literature on stochastic parsing of English
with CFGs using various parametrisation schemes (Sampson 1986, Haigh et al.
1988, Chitaro and Grishman 1990, Magerman and Marcus 1991, Magerman and
Weir 1992, Black et al. 1992a,b, Pereira and Schabes 1992, Schabes et al. 1993,
Jelinek et al. 1994, Magerman 1995, Charniak 1993, 1996, 1997, 2000, Collins
1997, 1999, 2000, Collins and Duffy 2002, Ratnaparkhi 1997, Johnson 1998, Hen-
derson 2003, Klein and Manning 2003, just to mention a few examples), none of
these studies try to model NLDs, with the exception of Model 3 of Collins (1997,
1999). In fact, most of these models ignore empty elements representing NLDs by
deleting them from both the training and the test data (Charniak 1996).

Model 3 of Collins (1997, 1999) captures a subset of NLDs, namely (a sub-
set of) the cases of extracted NPs. The probability model explicitly handles these
gaps: Collins employs the technique of enriching nonterminals with gap variables
(cf. Section 2.3), and trains his grammar with the extended set of nonterminals.
PARSEVAL scores for Model 3 are marginally higher than for Model 2, showing
that handling EEs also improves the parser with respect to phrase structure. Collins
(1997, 1999) reports 93.8%/90.1% precision/recall for detecting the correct sites
of these EEs, but he excludes infinitival relatives from this evaluation (where he
can only find the traces with 41%/18% precision/recall). According to the metrics
proposed by Johnson (2002) (cf. Section 4.1), Model 3 achieves 85.7% overall
F-score for detecting WH–NPs and 84.1% for recovering their antecedents.

The most important deficiency of Model 3 is that it only handles WH–NPs.2 In
particular, it cannot model multiple types and multiple instances of EEs (the lat-

1We interpret probabilistic parsing in a very broad sense here, where the probability of a parse
might depend on many types of both syntactic and extra-syntactic information ranging from in-
tonation to dialogue structure to pragmatics.

2In fact, it only handles a subset of them: it ignores reduced relative constructions, in which around
12% of WH–NPs occur. As it turns out, these cases are difficult for other approaches as well.
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ter occurring in the presence of coordination or parasitic gaps). Furthermore, it
assumes all EEs to be complements, hence it cannot treat extraction involving ad-
verbs (e.g. WH–ADVP). In Chapter 7 we discuss a possible extension of the model
to cover a wider range of NLDs; we postpone the detailed discussion of Model 3
to Section 7.1.

3.1.2 Probabilistic Discontinuous Phrase Structure Grammar

The most important limitation of using CFGs in handling non-local dependen-
cies is the continuity assumption present in the grammar formalism: the yield of
each non-terminal is taken to be a contiguous substring. There are several exten-
sions to CFG that relax this assumption while attempting to retain the simplicity of
context-free rules over a relatively small set of non-terminals (Blevins 1990, Bunt
et al. 1987, Bunt 1991, 1996). Plaehn (1999, 2000) presents such a model, Prob-
abilistic Discontinuous Phrase Structure Grammar, which is a parametrised (and
axiomatised) version of Discontinuous Phrase Structure Grammar (DPSG, Bunt
1996).

Informally, rules in DPSG are very similar to context-free rules. Consider, for
instance, a rule for relative clause adjunction: NP → NP RC expresses that the NP

constituent is rewritten as the non-terminal sequence NP RC. In CFG, the yield of
the outer NP is the concatenation of the yields of the inner NP and the RC, which
are presumed to be contiguous, and every terminal dominated by the inner NP pre-
cedes every terminal dominated by RC. In DPSG, the same rule imposes weaker
constraints: (i) only the leftmost child of the inner NP (and therefore the leftmost
terminal dominated by it) has to precede the leftmost child of the RC; (ii) it is pos-
sible that the yield of the outer NP is not contiguous, that is, some terminals not
dominated by the outer NP can intervene. In natural language, however, the set
of intervening material is rather restricted: therefore, DPSG requires the explicit
specification of this set. For instance, if we want to model right dissociation, such
as in the sentence

(3.1)I saw the man yesterday [RC who gave us an apple a week ago.]

we have to write NP → NP [ADVP] RC, which allows the relative clause being sep-
arated from the NP by an intervening adverbial.

Plaehn (1999, 2000) presents a possible parametrisation of the grammar and
also develops an agenda-based bottom-up chart parser returning the most probable
parse. He also describes supervised learning experiments with an automatically
extracted unlexicalised grammar on the German Negra corpus (Krenn et al. 1998).
The results he reports are slightly discouraging: the parser is rather slow and pars-
ing time appears to be exponential in sentence length. When compared to a PCFG

parser (trained on the same data minus empty elements), the PDPSG parser is 50
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times slower on sentences no longer than 15 tokens. Moreover, the PCFG parser
is 1.5% more accurate according to the PARSEVAL metrics, although it is not able
to handle discontinuity. No evaluation is given with respect to discontinuities.

3.1.3 Tree-Adjoining and Tree-Substitution Grammars

Another way of extending context-free grammars to cover non-locality is to allow
the grammar to manipulate not only local trees (represented by context-free rules),
but also larger fragments. This is the key idea behind Tree-Adjoining Grammars
(TAG, Joshi et al. 1975, Joshi and Schabes 1997) and Data-Oriented Parsing (DOP,
Scha 1990, Bod 1992, Scha et al. 1999). We discuss the two models in the same
section, because, apart from sharing the main idea, the grammar formalism un-
derlying the DOP model, Tree-Substitution Grammar (TSG), is a restricted form of
TAG. Therefore, many of the theoretical results in one framework translate to the
other. For example, Carroll and Weir (1997, 2003) show how closely related the
probability models for TAG and TSG are. Also, Sima’an (1996, 2003) shows that
finding the maximum probability (minimum weight) parse tree for any weighted
versions of TSG and hence of TAG is NP-hard.

TAG

The initial probability model for TAG was developed by Resnik (1992) and Sch-
abes (1992). The model parametrises TAG derivations, which define context-free
tree structures (Schabes and Shieber 1994). There are many ways to assign param-
eters to such a derivation tree; essentially, both Resnik (1992) and Schabes (1992)
estimate the probability of a local derivation tree by the product of the probabil-
ities of the daughter nodes (i.e., elementary and auxiliary trees) given the parent
node.3 Informally, the generation of the subtrees adjoined and substituted in an
elementary tree is a unigram Markov process conditioned on the elementary tree.
As a consequence, this model assumes independence between the generation of
subjects and objects of a given verb.

Carroll and Weir (1997, 2003) discuss further extensions to the probability
model, such as generating the derivation trees with a PCFG, which would cap-
ture dependencies between subjects and objects, or between adjuncts. Carroll and
Weir do not test their models empirically, but Chiang (2000, 2003), for instance,
incorporates their ideas into his TAG parser by assuming a bigram Markov model
generating auxiliary trees being adjoined at the same site.

3The models are a bit more complicated, since they define two separate probability distributions
for adjunction and substitution given the parent node. Furthermore, because adjunction is op-
tional, the model also has to assign probability to cases where no adjunction takes place.
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Hwa (1998) reports on large-scale grammar induction and parsing experiments
with stochastic Lexicalised Tree-Insertion Grammars (TIG, Schabes and Waters
1995, 1996), a restricted version of TAG, which allows limited amount of adjunc-
tion. The TIG is automatically induced from a treebank making use of bracketing
and is parametrised using the EM algorithm. Hwa (1998) employs a version of TIG

where nonterminal nodes are not labelled with their categories, that is, she mod-
els unlabelled bilexical dependencies. Moreover, the grammar is only lexicalised
to POS-tags. The main results of the paper are that the automatically induced TIG

is a better language model than the automatically induced Chomsky-normal-form
PCFG, and that grammar induction converges much faster for TIGs.

Chiang (2000, 2003) presents experiments with a properly lexicalised stochas-
tic TIG extracted from the PTB and parametrised using supervised learning. First,
he induces a lexicalised TIG grammar employing the same heuristics for finding
heads and complements as Collins (1997, 1999). As a second step, he reconstructs
the derivations in the training data using the extracted grammar. Model parameters
are obtained by maximum likelihood estimation and are subsequently smoothed.
The goal of the parser is set to finding the most probable derivation (as opposed to
the most probable parse, i.e., the sum of all derivations leading to the given parse).
The resulting model is compared to lexicalised context-free parsers: its accuracy
measured on the PARSEVAL metrics lies between the models of Collins (1996)
and Collins (1997). Although TIG is able to capture some non-local dependencies
(e.g. control constructions or short-distance WH-extraction), no results are given
concerning how good the parser is at finding them.

Another approach to parsing with TAG is supertagging (Joshi and Srinivas
1994, Srinivas and Joshi 1999), which is a two-step process: first a stochastic
tagger, the supertagger, associates a sequence of trees (either elementary or aux-
iliary ones) with each word in the input, then a linear-time, heuristic-based, non-
probabilistic parser assembles these trees into a possible parse (or partial parses, if
it cannot analyse the full sentence). In order to reduce the effect of tagging errors,
the supertagger is run in n-best mode. This approach requires a large-scale gram-
mar; Srinivas and Joshi (1999) experiment with a wide-coverage hand-written
TAG grammar (the XTAG grammar, Doran et al. 1994, XTAG Research Group
2001) as well as with a grammar automatically extracted from the PTB. Using the
XTAG grammar, Srinivas (1997) reports 93.8%/82.3% unlabelled precision/recall
for retrieving dependencies in WSJ20. It is not clear whether these dependencies
include non-local ones or not. He also evaluates the supertagger on a number of
tasks; the ones including NLDs are parentheticals and relative clauses, where the
supertagger finds the sites with 80.0% and 55.1% F-score, respectively.
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DOP

Although DOP is a restricted form of TAG, they differ in two important respects:
(i) they have different views on the grammar, and (ii) they employ different prob-
ability models. As for the grammar, the DOP model does not assume a grammar
a priori, since “human language production and perception works with past lan-
guage experiences, rather than with abstract grammar rules” (Bod and Kaplan
1998). This means that, ultimately, the best way to approach the task of parsing
a new utterance is to remember all previously heard utterances with their corre-
sponding analyses and retrieve the analysis or analyses which match the new ut-
terance. This extreme approach, however, fails because of the inherent sparseness
of utterances: since natural languages show a Zipfian behaviour, most of the new
utterances are genuinely new to the hearer, i.e., they do not occur in the previously
observed data.

In order to deal with data sparseness, the DOP approach decomposes the well-
formed analyses of previous utterances into smaller fragments. The novelty of the
DOP model with respect to other approaches is that this decomposition is not re-
stricted by a grammar framework: the fragments can be, for instance, subtrees
of arbitrary depth. Formally, DOP models define several decomposition operators
to cut well-formed trees into smaller elementary trees. These fragments, then, are
stored with their probabilities (there are different variations on how these probabil-
ities are estimated; see Bonnema 2003). One problem is the number of possible
elementary trees, which is exponential in the number of words in the sentence.
Goodman (1996, 2003) shows how to decrease the cardinality of the set of frag-
ments to linear in the number of words using PCFG-reductions, so that the resulting
grammar induces the same probability distribution over parse trees.

When it comes to parsing, the parser selects several fragments and re-
assembles them into a well-formed analysis of the new utterance. In order to
achieve this goal, a set of composition operators are defined; in the most popular
version, the only composition operator is substitution. Then, the best analysis is
chosen according to the probability model.

One way to parametrise this approach is to define a probability model over
possible derivations of analyses. Formally, the probability of an analysis R is the
sum of all possible derivations (d ∈ D(R)) leading to R:

P(R) = ∑
d∈D(R)

P(d) (3.2)

The probability of a derivation is the product of the probabilities of the tree frag-
ments involved in the derivation. Note that several different derivations might give
rise to one and the same analysis. Therefore, it does not suffice to find the most
probable derivation: the parsing algorithm has to determine all possible deriva-
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tions in order to calculate the probability of an analysis. This set might be expo-
nentially large in practice and thus this calculation might be very costly. In fact,
as Sima’an (1996, 2003) shows, finding the best analysis is an NP-hard problem.

There are several ways to go about this problem. The classic one, suggested
by Bod (1992), samples from the distribution of all possible derivations to esti-
mate P(R), instead of summing over all derivations. The samples can be derived
by Monte Carlo sampling, which turns out to be prohibitive for parsing the PTB,
or using the n-best Viterbi-derivations as a sample, with n being sufficiently large
(Bod 2000).

Another approach is to modify the criterion for the best parse: instead of find-
ing the most probable parse, one might search for the most probable derivation, or
even the derivation containing the smallest number of trees. Both approaches al-
leviate the complexity of the parsing problem. As Bod (1995a,b) shows, however,
the “maximum probability derivation” criterion performs significantly worse than
the “maximum probability parse” one. On the other hand, when using the “sim-
plicity” criterion, Bod (2000) reports results comparable with the accuracy under
the “maximum probability parse” criterion. Bod (2003) combines the two criteria
and reports around 1% improvement over the model presented in (Bod 2000).

Although the DOP model is perfectly capable of capturing NLDs (by simply
keeping the EEs present in the training trees), no evaluation is reported concern-
ing its performance with respect to them.

3.1.4 Unification-based grammars: LFG and HPSG

Currently, there are three widely accepted models for statistical parsing with uni-
fication-based grammar (UBG) formalisms such as LFG and HPSG. The first ap-
proach approximates a hand-written UBG with a CFG, and parametrises this gram-
mar (Briscoe and Carroll 1993, Eisele 1994, Brew 1995, Kiefer et al. 2002).
Although this technique is successful in practical applications, it is not without
its problems. As Abney (1997) notes, this model makes unwarranted indepen-
dence assumptions, that is, it fails to model context-sensitivity, hence it is not a
sound probability model for UBGs. To include the necessary amount of context-
sensitivity in the model, Abney (1997) proposes a parametrisation technique for
UBGs based on random fields (or log-linear) models. This second approach is fur-
ther elaborated by Mark Johnson, Stefan Riezler and their colleagues (Johnson
et al. 1999, Riezler et al. 2000, 2002, Johnson 2003). Both PCFG approximation
and log-linear models require a wide-coverage hand-written grammar and rank
possible analyses according to the probability model. The third approach, first in-
troduced by Bod and Kaplan (1998), develops a DOP model for LFG. This model
learns both the grammar and its parametrisation from an annotated corpus. Below,
we briefly discuss the three models.
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Context-free approximation

The main idea behind the context-free approximation of UBGs is to find a finite
context-free grammar which generates a superset of possible analyses. This CFG

is called the context-free backbone of the UBG. There are several ways of con-
structing this context-free grammar (cf. Briscoe and Carroll 1993, Eisele 1994,
Brew 1995), the most general approach may be the one presented by Kiefer and
Krieger (2000, 2002).

Once we have the context-free backbone for a given hand-written UBG, the
only thing to be done is parametrising the resulting CFG, i.e., inducing a prob-
ability model. One straightforward solution, employed by Eisele (1994), Brew
(1995), Kiefer et al. (2002), is to use the standard PCFG model (Booth and Thomp-
son 1973) and obtain the parameters via the EM algorithm (Dempster et al. 1977).
Briscoe and Carroll (1993) apply a supervised training technique and define their
probability model on the actions of their LR parser (this model bears strong re-
semblance to the model proposed by Ratnaparkhi 1997).

Since UBG formalisms are more powerful than CFGs,4 this approach can only
be an approximation. It is important to note, however, that although it might al-
low context-free trees that are ruled out by the UBG, all possible UBG-analyses
are generated by the CFG. The induced model is not a probability distribution
over the possible analyses licensed by the UBG, since malformed analyses might
get some probability mass, but all well-formed analyses get a probability higher
than 0. Consequently, this approach can be used to rank hypotheses according to
the probability model associated with the CFG and hence is applicable for parse
disambiguation.

This technique is quite successful in practical situations. Note that the con-
struction of the corresponding CFG can be carried out offline, thus performing a
large amount of costly (and usually failing) unifications in a preprocessing step.
As a consequence, a considerable speedup can be achieved at parsing time, since a
relatively cheap context-free parsing algorithm can be used to search the space of
possible analyses. Even though they have to deterministically replay unifications
after possible context-free backbones are constructed to filter out impossible read-
ings and get the well-formed analyses according to the UBG, Kiefer and Krieger
(2002) still report a 71.1% parse-time speedup for a realistic mid-sized grammar.

The second improvement context-free approximation brings about is a bet-
ter disambiguation capacity. Large-scale grammars tend to be very ambiguous:
Kiefer et al. (2002) report an ambiguity rate of 1.44 readings per sentence on
average for their mid-sized grammar, whereas for a larger-scale grammar used
by Baldwin et al. (2004), it rises to 64 analyses per sentence of length 10− 20

4It is easy to write a grammar which generates the language L = {ww|w ∈ {a,b}∗}, known to be
context-sensitive
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words. Using the PCFG probabilities to rank possible analyses proves to be valu-
able: Kiefer et al. (2002) achieve a 16% better score for disambiguation (measured
by the precision of ranking the correct analysis first) when they use the probabil-
ities returned by the PCFG parser than when they treat all analyses exactly likely
and choose from them randomly.

There are two important problems with the approach. First, the resulting CFG

is enormous. When converting the large-scale LinGO English grammar (Oepen
et al. 2002a,b,c) to a CFG, Kiefer et al. (2002) arrive at a grammar with 5537
nonterminals and 1.5M rule productions, although they only cover less than one
eighth of the lexical items present in the grammar. Reliable estimation of proba-
bilities for a PCFG of such a size calls for a large amount of training data, which
turns out to be a major bottleneck for the approach. Furthermore, the EM algo-
rithm used in training is very slow: each iteration requires re-parsing the training
corpus, which takes O(sN3) time in the worst case, where s is the number of sen-
tences and N is the number of non-terminals in the grammar.

The second problem is that context-free approximation is only an approxi-
mation. That is, the true probability for a given analysis might lie far from
the probability assigned to its context-free backbone (Eisele 1994). As Abney
(1997) points out, the problem with the PCFG-approximation technique is that it
introduces unwarranted independence assumptions; he, therefore, proposes a ran-
dom fields (log-linear) model which does not hinge on independence assumptions
and can model context-sensitivity present in UBG formalisms (see next Section).
Goodman (1997) and Schmid (2002) propose generative models for grammars
with feature structures, though the applicability of these approaches for modelling
LFG- or HPSG-style grammars is problematic. Goodman (1997) associates proba-
bilities with fully specified feature structures (usually becoming available only at
the end of a UBG-derivation process). Schmid (2002), on the other hand, augments
rules with probabilities, which “poses problems if the grammar is not rule-based
(like HPSG) or if the result of rule application is not uniquely defined (as with
functional uncertainty in LFG).”

The log-linear model

Abney (1997) proposes a parametrisation of UBGs based on random fields mod-
els which does not posit unwarranted independence assumptions. In this model,
(well-formed) analyses are represented with the aid of indicator features (cf. Sec-
tion 5.1.1): the model assigns weights to each feature; the probability of an
analysis is proportional to (the log of) the sum of the weights of the active fea-
tures for the input (with multiplicity). Relevant features are induced automati-
cally by adding (the combination of) atomic features to the feature space using
a greedy algorithm (Della Pietra et al. 1997). Atomic features can be freely de-
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fined – they are the means for capturing linguistic knowledge in the model. The
weights are determined by an iterative scaling algorithm (Darroch and Ratcliff
1972, Della Pietra et al. 1997) so that the induced probability distribution max-
imises the log-likelihood of the training data with respect to the empirical distri-
bution observed in the training set.

One drawback of Abney’s (1997) proposal is that it, in principle, requires the
enumeration of all possible analyses the UBG licenses – a set that might well be
infinite. Abney (1997) proposes Metropolis-Hastings sampling to counter this
problem, which, according to Johnson et al. (1999), turns out to be intractable for
realistic-sized grammars. Therefore, they modify the optimisation task by max-
imising the pseudo-likelihood of the syntactic analyses over the training corpus,
i.e., maximising the conditional likelihood of the analyses given the observed sen-
tences. This optimisation criterion only requires the enumeration of all possible
analyses for the sentences in the training data, which is computationally less de-
manding, but it may still be infeasible (Osborne 2000a). Note that this approach
also requires a (hand-written) grammar prior to training, which provides all pos-
sible analyses for the training and test data.

Johnson et al. (1999), using a handwritten LFG grammar, test their approach
on a small test set and report promising results. In experiments with a large-scale
HPSG grammar, Toutanova et al. (2002) compare a generative PCFG approxima-
tion and the random fields (conditional) model, and find that the conditional model
outperforms the generative one by 13% on the disambiguation task, even though
both of them employ the same features. This difference is less dramatic (3−5%)
when they use a richer PCFG representation encoding ancestor information in the
non-terminals (cf. Johnson 1998). Interestingly, Baldridge and Osborne (2003)
find that a log-linear model based on very simple n-gram features derived from
flattened tree representations is virtually as accurate as the one using linguisti-
cally motivated information.

Although the above approaches are promising, they remain relatively small
scale. The HPSG treebank they use contains only 5302 sentences of length 9.3
words on average (Oepen et al. 2002a,b,c). Since the underlying grammar is de-
veloped in parallel with the treebank, coverage is not a problem either.

The first attempts at large-scale parsing with UBGs using a random fields
model are presented in (Riezler et al. 2000) and (Riezler et al. 2002). They make
use of a hand-written LFG grammar (ParGram, Butt et al. 1999) to determine all
possible well-formed LFG analyses for the input. They employ a log-linear model
to disambiguate the analyses that takes both lexical and structural information into
account (at the level of c- and f-structures).

The novelty of the two models is that they do not require hand-annotated UBG

corpora to derive the parameters of the models. Riezler et al. (2000) employ an
EM-like algorithm to infer model parameters from unlabelled (incomplete) data.



48 Previous work

The singly iterative IM algorithm, described in detail in (Riezler 1999), combines
the iterative steps of the EM algorithm (Dempster et al. 1977) and the iterative
scaling algorithms employed for training log-linear models (Darroch and Ratcliff
1972, Della Pietra et al. 1997). This approach avoids the problem of chaotic con-
vergence behaviour of the EM estimation.

Riezler et al. (2000) claim that their model greatly benefits from training on
incomplete data: on a small evaluation set, they report 10% higher disambiguation
scores when the training is performed on a larger set of unlabelled (and ambigu-
ous) data than when they apply supervised training of the log-linear model on a
smaller set of unambiguous data. Note, however, that the lower accuracy in the
latter case might be attributed to the lack of negative examples in the training ma-
terial. Bouma et al. (2001) apply the same technique to their wide-coverage HPSG

grammar and find 7 − 14% improvement with respect to the uniform baseline
(depending on their test corpus). They also experiment with some hand-written
heuristic penalty rules and also with a bilexical dependency model, both of which
outperform the log-linear model by a relatively large margin, although the log-
linear model uses the same features.

In a different approach using partially unsupervised learning, Riezler et al.
(2002) propose a discriminative log-linear model to parametrise LFG analyses
produced by the hand-written grammar. They present the first successful large-
scale parsing project using a unification-based grammar formalism augmented
with probabilities to guide disambiguation.

Riezler et al. (2002) make extensive use of the existing annotation for the Penn
Treebank in a very elegant way. The labelled phrase-structure trees of the Tree-
bank can be viewed as partial (underspecified) LFG analyses and used to guide
the discriminative estimation. That is, they define the discriminative criteria with
respect to the “set of parses consistent with the WSJ annotations” (ibid.). Intu-
itively, this means that the training algorithm is to adjust the model parameters so
that most of the weight is put on the parses which are consistent with the brack-
eting present in the training data. This idea is very similar to that of Pereira and
Schabes (1992), who use the unlabelled bracketing of the training data to guide
the Inside-Outside algorithm.

Manually created grammars tend to suffer from the problem of relatively low
coverage. For example, the ParGram grammar (Butt et al. 1999) used by Riezler
et al. (2002) covers only 74.7% of the sentences. In order to raise the coverage
of the grammar, the authors rely on two robustness techniques. First, they aug-
ment the standard grammar with a FRAGMENT grammar which allows parsing
sentences into well-formed chunks, if the original grammar fails to produce an
analysis. When the FRAGMENT grammar is activated, the fewest-chunks heuris-
tics is used, i.e., partial analyses consisting of fewer chunks are preferred. The
second technique Riezler et al. (2002) apply is SKIMMING: whenever the parser
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spends too much time and/or memory on the analysis, it goes into skimming mode,
which restricts the amount of work on nodes not yet processed. This technique
ensures that the parser finishes its job in polynomial amount of time.

Riezler et al. (2002) evaluate their parsing model on approximately one third
of the standard test set from the Wall Street Journal (WSJ23). They manually
annotate 700 sentences from WSJ23 with LFG f-structures, which they also au-
tomatically convert to grammatical relations of Carroll et al. (1999). They re-
port 35−36% error reduction on this corpus when compared to a disambiguation
technique where they select a parse randomly from the available ones accord-
ing to the uniform distribution. Unfortunately, it is hard to compare this perfor-
mance to other parsers’ accuracy. Furthermore, no separate measures are given
for NLDs. In a different evaluation, Riezler et al. (2002) report performance on
the test set proposed by Carroll et al. (1999). Their system outperforms Carroll
et al.’s (1999) one by 1% on recovering unlabelled dependency relations. This
evaluation scheme includes NLDs as well as local dependencies.

Although the results attained by systems are very encouraging, they suffer
from the relatively large amount of manual work they presuppose: both ap-
proaches rely on a large-scale hand-written grammar, a resource which is as time
consuming to create as a treebank. Furthermore, Riezler et al. (2002) also pre-
sumes a manually bracketed treebank. Efficiency also seems to be a problem:
Riezler et al. (2000) report faster training than parsing and they resort to parsing
off-line.

Indeed, it is a serious bottleneck that both the estimation and the ranking pro-
cedures require the enumeration of all possible analyses licensed by the grammar
for the sentences in the training and test data. That is, in the worst case, the
(symbolic) parser might have to enumerate exponentially many analyses before
the stochastic procedures come into play. To alleviate the problem, Geman and
Johnson (2002) propose a dynamic programming algorithm which operates on
the Maxwell-Kaplan packed parse representation (Maxwell and Kaplan 1995a,b).
The speed of the algorithm crucially depends on the ordering of some internal vari-
ables. Unfortunately, finding the best ordering is an NP-complete problem; John-
son (2003), however, claims that there are “several efficient heuristics” which find
close-to-optimal ordering fast. In a different approach, Osborne (2000a) suggests
using an informative sample of the training corpus to estimate the parameters.

LFG-DOP

One problem with the approaches discussed above is that they require a manually
constructed grammar. LFG-DOP offers a method of inducing a probabilistic LFG

grammar from a corpus annotated with LFG structures (Bod and Kaplan 1998,
2003). As is the case for TREE-DOP (Section 3.1.3), LFG-DOP first defines a set
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of decomposition operators which divide the analyses into smaller fragments. In
this case, however, these operators are somewhat more complex, since they have
to take care of both the f- and the c-structures. Similarly, the composition op-
erator has to construct both the c-structure (tree substitution) and the f-structure
(recursive unification of attribute-value matrices).

There is no known efficient parsing algorithm for LFG-DOP which always re-
turns the highest probability analysis. Instead, parsing is a two-step process. First,
a chart parsing algorithm creates a compact representation of a superset of all pos-
sible analyses. This process ensures the well-formedness of the c-structure only.
Then, the most probable well-formed LFG analysis is derived during a disam-
biguation (chart-decoding) phase, where a large number of well-formed deriva-
tions are sampled from the chart using Monte Carlo sampling (Neal 1993). The
probability of these derivations are calculated on the fly. A further complication
is that the completeness of an LFG analysis can only be checked at the end of the
derivation. This involves further sampling at the end of the parsing process from
partially well-formed derivations. In order to ensure that this last sampling phase
finds the best well-formed LFG derivation, one has to keep the number of samples
reaching this phase high (around 10000). In this approach, there is a trade-off be-
tween accuracy and speed: the larger the sample size is, the more accurate and the
slower the parser is.

Bod and Kaplan (2003) report encouraging results on small corpora: the F-
score for recovering semantic structures is 87− 89%. Moreover, the LFG-DOP

model is reported to outperform the TREE-DOP model of Bod (2001), which
achieves state-of-the-art performance on the Wall Street Journal corpus.

Neumann (2003) presents a small-scale experiment with an HPSG-DOP parser,
and he finds that the DOP parser arrives at the same best derivation as a rule-based
HPSG parser in 68.6% of the cases (with 87% coverage). Since the rule-based
parser is not guaranteed to find the correct parse for the input and it is, in fact,
used to generate the training data for the DOP approach, it is rather difficult to in-
terpret these results; it seems that the DOP approach approximates the parser with
68.6% accuracy.

There are two major bottlenecks which make it difficult to use LFG-DOP in
practical situations. First, the parsing regime it employs is rather computation-
intensive and thus time-consuming. Second, it requires a large LFG-annotated
corpus, which up to this date is not available, although there are experiments try-
ing to infer f-structures from the Penn Treebank annotation making use of func-
tional labels present in the Treebank (Cahill et al. 2002).
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3.1.5 Combinatorial Categorial Grammar

Osborne and Briscoe (1997) define an initial probability model for stochastic cat-
egorial grammars. They compare two parametrisation schemes. The first one is a
maximum likelihood model, trained using the EM algorithm. The second model
is based on the minimum description length principle and Osborne and Briscoe
(1997) present a bottom-up greedy training algorithm which is much more effi-
cient than the EM algorithm. The second model is not only more efficient to train,
but outperforms the MLE model on a small manually annotated test set.

The existence of a large treebank annotated with CCG structures (Hocken-
maier and Steedman 2002a, Hockenmaier 2003a) allows both grammar induction
and supervised estimation of probability models for CCG. The CCGBANK is de-
rived from the Penn Treebank, and therefore the results reported on experiments
with this corpus are more or less comparable with other parsers’ scores on the
same corpus.5

Hockenmaier and Steedman (2002b) and Hockenmaier (2003a, Chapter 5) de-
scribe a generative model for normal-form derivations in CCG. The model is de-
fined on CCG derivation trees; it is essentially a context-free approximation of
CCG. The probability model is very similar to Model 2 of Collins (1997). As
a consequence, it only implicitly handles non-local dependencies. Hockenmaier
(2003a) reports slightly (0.4%) higher accuracy for unlabelled surface dependen-
cies (cf. Section 4.1) than Collins (1999), although it is not clear whether the
improvement is due to a more appropriate model or to cleaner training data.

Hockenmaier and Steedman (2002b) and Hockenmaier (2003a) also give an
informal analysis of the accuracy of their parser with respect to a handful of con-
structions with NLDs. Specifically, they inspect whether overt complementisers
occur with appropriate lexical categories, or whether special type-changing rules
apply. The results reported there are encouraging although it is difficult to assess
how good they are without reference to other approaches.

Hockenmaier (2003a) attempts to compare her results with those of Johnson
(2002) and Collins (1999) (Model 3) as well, although they are not strictly com-
parable. She reports the same accuracy on subject extraction as Collins (1999).
Since Johnson (2002) does not distinguish the cases of subject and object rela-
tives, the comparison of the two approaches is even more difficult. Hockenmaier
(2003a), however, conjectures that her model is more accurate at handling ex-
traction than Johnson’s, based on the fact that her model is highly accurate at
recovering subject extraction (96.2% F-score) and that the majority (78%) of the
extraction constructions in WSJ00 is of this type. For detecting control verbs (i.e.,

5During the semi-automatic conversion from the PTB to CCG structures, annotation errors in the
original Treebank are corrected (Hockenmaier and Steedman 2002a, Hockenmaier 2003a, Chap-
ter 3 and Appendix), therefore the models using the CCGBANK rely on cleaner training data.
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the empty subjects of the embedded clause without finding its antecedents), Hock-
enmaier (2003a) reports 76.2% F-score. Again, it is difficult to assess how this
figure relates to the scores reported by Johnson (2002).

One important shortcoming of the model presented above is that it fails to
model NLDs explicitly, and thus is subject to the criticism presented in Abney
(1997). To alleviate the problem, Hockenmaier (2003b) (also Hockenmaier 2003a,
Chapter 6) presents a generative model for predicate–argument structure based on
CCG analyses. This model explicitly handles NLDs (i.e., re-entrancies) by mod-
elling all word-word dependencies (as well as CCG derivations). In particular, it
allows a dependent to be conditioned on multiple heads.

There are two important difficulties when defining such a probability model.
The first one concerns the estimation of the probability of a word given multiple
heads, that is, of P(w|h1, . . . ,hn). In order to have a reliable estimate, Hocken-
maier (2003b) proposes a simple linear combination of the probabilities P(w|hi)
with equal weights:

P(w|h1, . . . ,hn) ≈
1
n ∑

i
P(w|hi) (3.3)

Clearly, several other estimation techniques could be used here.
The second problem, which as we have seen in the previous section constitutes

a problem for other approaches as well, is the design of an efficient parsing algo-
rithm. The problem is that a dynamic programming approach is hard to conceive
for the parsing problem: it might happen (indeed it does happen) that an otherwise
complete edge contains a headword whose argument slot is not filled. Such a sit-
uation arises, for instance, in the case of object relative clauses, where we cannot
calculate the inside probability of the edge representing the relative clause, since
the inside probability of its verb is not known until the head of its object is iden-
tified. This means we have to postpone the evaluation of this edge with respect
to other edges until all the heads are saturated, which might only happen late in
the derivation; in fact, we might only evaluate the probabilities at the end of the
derivation process. In the worst case, the dependency relations might turn out to
be circular, leaving the problem undecidable.

A similar problem arises due to the fact that constituents might depend on sev-
eral heads (the number of which we do not know in advance): even if we combine
a constituent with one head, we cannot evaluate its inside probability, since we
do not know whether the same constituent depends on other heads or not. Again,
in the worst case, we can only evaluate the analyses according to the probability
model at the end of the derivation. This might lead to the enumeration of expo-
nentially many analyses.

Indeed, as Hockenmaier (2003b) notes, parsing with this model turns out to
be infeasible without suitable heuristics for the beam search. Specifically, she
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proposes a very aggressive beam search strategy to cut the search space of the
parser; as a consequence, she can no longer ensure finding the highest probability
parse. Even with this strategy, Hockenmaier (2003b) could only parse sentences
of length less than or equal to 40 tokens.

Given the difficulties with the model, the results Hockenmaier (2003b)
presents are impressive: she reports 88.7% unlabelled F-score for retrieving pred-
icate argument structure (which is slightly (1.3%) worse than the score achieved
by Clark et al. (2002)). Unfortunately, this score is difficult to compare with our
results, since it includes dependency relations we do not include in our evaluation
(e.g. in auxiliary constructions, the dependency between the subject and the main
verb).

Hockenmaier (2003b) also presents a separate evaluation for non-local depen-
dencies. Unfortunately, since these dependencies do not always involve empty
nodes according to the original Treebank annotation (e.g. auxiliaries and coordi-
nation are treated as involving NLDs), these scores are not comparable with results
reported by other approaches for recovering NLDs (Johnson 2002, Jijkoun 2003,
Dienes and Dubey 2003a,b).

A third approach for handling NLDs with CCG is presented by Clark et al.
(2002). This approach crucially differs from the ones discussed above in that it
defines a probability model for the predicate–argument structure instead of mod-
elling CCG derivations. Another interesting feature of the approach is that it em-
ploys a supertagger (Clark 2002) as a preprocessing step. This supertagger assigns
a set of possible lexical categories to words and thus reduces the search space of
the parser. The parser, then, builds full CCG structures, exploiting the probability
model to further reduce the search space (using dynamic programming and beam
search).

Although the results are encouraging, albeit difficult to compare with non-CCG

approaches, the approach faces two problems. First, even with the beam search
strategy, the parser seems to run into efficiency and coverage problems: Clark
et al. (2002) report 89.2% initial coverage (with 8.7% of the sentences missing
due to time-out), which they manage to raise to 98% adjusting the parameters of
the parser for the unparsed cases.

The other problem concerns the probability model: Clark et al. (2002) adopt
the model of Collins (1996), which turns out to be unsound (i.e., the probabil-
ities are not proper maximum-likelihood estimations and the model is deficient,
Collins 1999). Moreover, they assume independence between the probability of
words filling the argument slots of the same head. They also normalise the proba-
bilities according to the number of dependencies occurring in the analysis, which
is a questionable approach (cf. Manning and Schütze 2001, p. 442f).
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3.1.6 Dependency grammars

Dependency structures are generally regarded as an alternative syntactic repre-
sentation to phrase structure; they might, in fact, be better suited as an intermedi-
ate representation facilitating the construction of semantic analysis by explicitly
encoding all predicate–argument relations, including non-local ones. Moreover,
modelling lexical affinities between heads and dependents proves to carry impor-
tant cues for parsing.6 These characteristics raised considerable interest in the
parsing community and several probability models have been proposed for de-
pendency grammars (DGs).

As it turns out, devising a parser and a probability model for dependency
grammars is rather complicated. The first bottleneck is the wide variety of dif-
ferent formalisations of dependency grammar (Hays 1964, Gross 1964, Gaifman
1965, Robinson 1970, Sgall et al. 1986, Mel’čuk 1988, Hudson 1990, Bröker
1997, Duchier and Debusmann 2001). Although all of these formalisms agree on
positing a connected dependency structure with one root, they greatly differ in fur-
ther details which have a great impact on the generative power of the formalism.
Specifically, there is a considerable amount of disagreement whether re-entrancies
and non-projective structures are permitted by the formalism. Allowing both is es-
sential for handling NLDs, but they considerably increase the generative power of
the grammar formalism.

Projectivity requires the dependency structure, when drawn above the words,
to be planar, i.e., the dependency links do not cross, and the root of the depen-
dency tree is accessible, i.e., it is not buried under a dependency link. Note that
projectivity is not a property of the dependency structure per se, rather it comes
into play when the dependency structure is linearised, that is, when word order
is determined. Non-projectivity, required for describing NLDs, is a powerful ex-
tension: even if it is restricted considerably on linguistic grounds, the recognition
problem for dependency grammars allowing it turns out to be NP-hard (Neuhaus
and Bröker 1997, Koller and Striegnitz 2002).

Re-entrancies, i.e., cases where a word depends on several other heads, is
a problem for statistical modelling: as we have seen in Section 3.1.4, this fea-
ture requires a more complicated probability model than simple relative frequency
counts (Abney 1997). Even with the appropriate probability model at hand, both
training and testing turns out to be time consuming. Furthermore, re-entrancies
make it difficult to use efficient dynamic-programming approaches.

These problems have led to important restrictions on possible dependency
structures. Specifically, almost all work on stochastic dependency parsing as-
sumes projective dependency structures, which prevents them from modelling

6This insight also led to the development of head-lexicalised PCFG models.



3.1 Statistical parsing with non-local dependencies 55

the majority of NLDs. This move, in fact, restricts the power of DGs to context-
free. More precisely, as Nivre (2002) shows, some of these projective dependency
grammars, namely the formalisations of Carroll and Charniak (1992) and of Eis-
ner (1996a,b), define languages that lie between context-free and regular.

The DG Carroll and Charniak (1992) present is very much like a CFG, with the
restrictions that

(i) the set of nonterminals is N = {S}∪{t̄|t ∈ T}, where T contains the terminal
symbols (words) and S is the start symbol; and

(ii) the rules are from the set {S → t̄|t ∈ T}∪{t̄ → αtβ|t ∈ T,α,β ∈ N∗}.

Carroll and Charniak discuss a scheme for automatic induction of DG rules from
unlabelled corpora and use the EM algorithm to parametrise the resulting set of
rules. They only present an informal evaluation and find that the unrestricted rule
induction algorithm performs rather poorly. Therefore, they impose six restric-
tions on the right-hand side of the rules given the left-hand side (such as pron does
not allow a verb on its RHS), and find that the grammar induced with restrictions
enforced is the correct one. Carroll and Charniak (1992) note the inability of their
grammar formalism to handle non-local constructions, such as WH-movement.

Another framework motivated by DG is Link Grammar (Sleator and Temper-
ley 1991). In Link Grammar, the lexical entry of each word specifies two ordered
sets of (labelled) connectors (the left and right connectors), called the disjunct. “A
word W with disjunct d = ((l1, . . . , lm),(r1, . . . ,rn)) can be linked to other words
by connecting each li to the right connectors of words to the left and also con-
necting each r j to left connectors of words on W ’s right. Links are only permitted
between matching connectors” (Grinberg et al. 1995). The connectors in the dis-
junct are ordered: the word connected to W by li is closer to W than the word
connected by li+1. A linkage for a sentence is specified by linking every connec-
tor of every word with a connector of a different word’s disjunct. A valid linkage
has to meet the criteria of

(i) connectivity (the graph of links and words is connected),

(ii) planarity (when drawn above the sentence, links do not cross),

(iii) ordering, and

(iv) exclusion (no two links connect the same pair of words).

Note that planarity is a slightly weaker restriction than projectivity: unlike projec-
tivity, it allows the root to be buried under a link. For example, in Figure 3.1a the
root “say” is buried under the link between “what” and “ate” ; the graph is planar,
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that is, the linkage is valid, though non-projective. This freedom allows capturing
some NLDs, but not all of them. For instance, the non-local dependency in Fig-
ure 3.1b cannot be expressed with a planar graph, the dotted link must cross other
links. The generative power of Link Grammar is context-free.

What did you say you ate yesterday?

(a) A planar but non-projective linkage

What did you say you talked about yesterday?

(b) A non-planar and non-projective linkage

Figure 3.1: The difference between planarity and projectivity.

Lafferty et al. (1992) define a generative probability model for Link Grammar.
The set of model parameters is P(W,d,O|L,R, l,r), where W is the word currently
being generated with its disjunct d. This generation process depends on the pos-
sible left and right connectors (l and r) connecting the word W with the words L
and R. Whether the word is actually linked with the word on the right or on the
left, or with both is defined by the orientation O. Lafferty et al. (1992) decompose
and approximate the probability in the following manner:

P(W,d,O|L,R, l,r)≈ P(W |L,R, l,r) ·P(d|W, l,r) ·P(O|d, l,r) (3.4)

They propose using the EM algorithm to estimate model parameters, given a hand-
written grammar. No experimental results are provided.

As Fong and Wu (1995) as well as Collins (1999) note, the decomposition
of the probabilities in this manner is problematic: implicitly, W is generated be-
fore it is known whether it attaches to L, R, or both. This assumption makes the
model very sensitive to sparse data without the possibility to back off to bigram
or unigram probabilities. To alleviate the problem, Fong and Wu (1995) propose
a different estimation of the model parameters:

P(W,d,O|L,R, l,r)≈ P(O|l,r) ·P(W |L,R, l,r,O) ·P(d|W, l,r,L,R,O) (3.5)
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where the last two terms can be further simplified once the orientation O is deter-
mined. They compare the two models in a small-scale experiment, inducing an un-
typed version of Link Grammar. They find that their model is able to find the cor-
rect parse in 68.75% of the cases, whereas Lafferty et al.’s (1992) model achieves
46.0% accuracy. No large-scale experiments are reported with Link Grammar.

Large-scale parsing experiments using corpus-induced dependency-based
grammars are presented by Collins (1996) and Eisner (1996a,b); here we focus
on Collins’s model and Eisner’s Models C and D, which are refinements of Mod-
els A and B. Model C is a generative model (very similar to Model 1 of Collins
1997, 1999), Model D is its conditional counterpart. Both authors restrict them-
selves to projective dependency grammars (although Collins (1996) does not state
this explicitly), where every word except the root depends on exactly one head
(that is, no re-entrancies are allowed). Projectivity forbids modelling NLDs. An
important difference between these approaches and Link Grammar is that here the
links are directed, pointing from the dependent to the head.

The main differences between Collins’s and Eisner’s models, apart from dif-
ferent parametrisation, are:

• Collins uses typed links, where the label for a dependency is derived from
the phrase structure: the label is a triple, the elements corresponding to the
nonterminal labels of the head, the dependent and the parent nodes; Eisner’s
parser produces bare-bones dependency structures.

• Collins employs separate probability models for tagging and NP chunking;
chunks are substituted by their heads in the dependency model.

• Collins’s parser takes intervening punctuation explicitly into account via the
distance measure it employs.

These differences turn out to be important as far as parsing accuracy is concerned.
In a large-scale experiment, using a dependency-based evaluation metrics, which
measures the percentage of words finding their correct tag and correct parent, Eis-
ner (1996a) reports 87.7% accuracy for Model C, 90.0% for Model D, and 92.6%
for the model of Collins (1996). This measure does not take NLDs into account.

Schneider (2003a,b,c) develops a probabilistic dependency parser which
allows non-projectivity in “specific, well-defined situations, such as in WH-
questions” (Schneider 2003c). In order to avoid combinatorial explosion, how-
ever, he restricts discontinuity to the minimum by handling most of the NLDs as a
post-processing step (cf. Section 3.2). The parser relies on a hand-written gram-
mar, and also employs a number of finite-state preprocessors, such as a tagger, a
rule-based chunker, a head-finder, and a lemmatiser. Schneider (2003a,b,c) de-
fines different probability models for each dependency relation and uses these
scores to guide the parser.
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The parser, trained on the PTB (WSJ02–24) is evaluated using the dependency
annotation scheme of Carroll et al. (1999) on their corpus. The results Schneider
(2003a) reports are very promising. When compared to Charniak’s (2000) parser,
it achieves 7− 10% better F-scores on the object and subject relations (although
the scores for Charniak’s (2000) parser might be compromised by the translation
process from treebank output to dependency structures (Preiss 2003)). On the
same grammatical relations, Schneider (2003a) reports a 3% improvement over
Briscoe and Carroll’s (1993) parser.

As for NLDs, Schneider’s parser covers NLDs involving WH–. . . , TOP–S as
well as NP–NP and PRO–NP traces. WH–NP and TOP–S EEs require special rules in
the grammar to deal with inversion, which depend on “linguistic non-standard
assumptions” (Schneider 2003a). NP–NPs and PRO–NPs are handled by post-
processing the output of the parser, an approach similar to Johnson’s (2002).
Schneider (2003b) presents an informal evaluation of his system with respect to
some constructions involving NLDs. The results, again, are promising, but hard to
compare with other approaches (due to different test data and different evaluation
scheme).

Further work on statistical parsing with dependency grammars include (Nivre
2002), which generalises Eisner’s (1996b) generative model. Samuelsson (2000)
develops a generative statistical model for dependency syntax; in this model cross-
ing dependencies are allowed, but re-entrancies are not. Neither authors test their
models experimentally. Zeman (1998, 2002) presents a dependency parser for
Czech, which allows neither non-projectivity nor re-entrancies. Dienes et al.
(2003) propose a probability model similar to STAG (Resnik 1992, Schabes 1992)
for a constraint-based dependency grammar formalism (Topological Dependency
Grammar, Duchier and Debusmann 2001), which allows non-projectivity and re-
entrancies. The model is not tested because it requires a grammar and extraction
of this type of grammar from corpora proves to be very difficult (Korthals 2002).

Summary

It is rather difficult to compare the results presented in this section: almost each
approach uses its own training and test set, as well as its own evaluation metric.
The outputs of various parsers are very different, which again prevents straightfor-
ward comparison. Nevertheless, there are certain tendencies which seem to apply
to most of the models. The increased ambiguity due to the presence of non-local
dependencies enlarges the search space the parser has to explore. Therefore, these
parsers tend to be slow thwarting their use in large-scale on-line applications such
as question answering or machine translation. Furthermore, most parsing mod-
els employ a more expressive grammar formalism to handle NLDs than a CFG.
These richer grammar formalisms, however, require labour-intensive manual (or
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semi-automatic) creation of treebanks or large-scale hand-written grammars, and
also have problems with coverage. Approaches remaining within the context-free
framework fail to model all types of NLDs.

3.2 Post-processing approaches

To overcome the problems with incorporating NLDs in a parser, Johnson (2002)
proposes a simple post-processing approach: first, he parses sentences with a
state-of-the-art parser not designed to handle NLDs (which, on the other hand,
is fast), then he attempts to re-introduce the EEs representing non-local depen-
dencies, using patterns automatically extracted from the training corpus. Jijkoun
(2003) augments Johnson’s (2002) algorithm with a machine learning approach to
handle ambiguous patterns. Similarly, Higgins (2003) presents another machine
learning approach which detects WH-gaps given the otherwise correct parse tree.

All these approaches suffer from the pre-processing setup: they are very sen-
sitive to errors the parser commits. Indeed, parsers not designed to capture NLDs
tend to make mistakes exactly in the environments that contain crucial cues for
the post-processing algorithms. Therefore, post-processing approaches are con-
siderably less accurate when tested on the output of a parser as opposed to testing
them on perfect trees.

3.2.1 Johnson (2002)

The underlying idea behind Johnson’s (2002) approach is simple but elegant: EEs
tend to occur in relatively restricted environments characteristic of the type of the
empty node. Even though parsers, such as the ones presented in Charniak (2000)
or Collins (1999), do not recover empty nodes, the characteristic environments
where these gaps occur are still present in their output. Therefore, Johnson au-
tomatically extracts the patterns (tree fragments) where EEs occur and reinserts
empty nodes whenever these patterns match.

Consider, for instance, the tree depicted in Figure 3.2a, containing EEs rep-
resenting non-local dependencies. The pattern Johnson (2002) extracts from this
subtree (Figure 3.2b) is the minimal set of connected local trees containing the EE

and all the nodes it is co-indexed with.7 If an empty node is not co-indexed, its
pattern is the minimal branching local tree containing it (that is, should the WH–NP

gap have no antecedent, the corresponding local tree would be a VP node domi-
nating it and not the NP node). A pattern p matches a subtree t if and only if t is an
extension of p ignoring empty nodes in p. For instance, the pattern in Figure 3.2b

7Note the strong resemblance of these patterns to elementary trees in TAG (modulo lexicalisation).
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Figure 3.2: The pattern matching algorithm of Johnson (2002).
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(a) PRO–NP

S

PRO–NP VP

(b) NP–NP
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NP1 VP

VBZ S

NP–NP1 VP

Figure 3.3: The most frequent patterns for NP–NP and PRO–NP according to John-
son (2002).

matches the tree in Figure 3.2c . If a pattern p matches a subtree t, it is possible to
substitute p for t, that is, to introduce the EEs and co-indexation into the subtree.
Thus, substituting the pattern of Figure 3.2b in the subtree of Figure 3.2c results
in the tree depicted in Figure 3.2a.

A pattern might match subtrees which actually do not contain empty elements.
Patterns which are more probable to raise a false alarm, i.e., which are more prob-
able to match subtrees without NLDs than with them, are discarded. It is also
possible that a tree might be matched with several patterns; in this case the algo-
rithm has to select one of the patterns, that is, one has to define a global ranking
of the patterns. Johnson (2002) reports on experimenting with several possible
ranking schemes, without considerable difference. Therefore, he uses a simple
criterion: the algorithm tries deeper patterns first.

Although this approach is relatively simple (and fast once we have the parse
tree!), it still performs surprisingly well. It has, however, two important limi-
tations. First, it is not robust enough with respect to parsing errors: Johnson
(2002) reports 7% better results when he applies the algorithm to gold-standard
trees stripped of EEs. Indeed, cases involving EEs seem to be difficult for the
parser Johnson employs (Charniak 2000), returning parse trees which do not
match the correct pattern. This behaviour affects adversely the accuracy of recov-
ering NLDs involving long-distance dependencies such as WH-movement, where
the parser might make several mistakes on the path between the EE and its an-
tecedent. The algorithm has considerably lower score on detecting corresponding
WH-complementisers as well.

The second deficiency of Johnson’s (2002) algorithm is the lack of lexicalisa-
tion. This limitation is manifest in the low scores for controlled and uncontrolled
PROs: even in the case of the gold-standard trees, the algorithm attains only 63%
and 57% F-scores, respectively. These scores further decrease when the input to
the pattern matching algorithm is the parser’s output. As an illustration, consider
the two most frequent patterns Johnson (2002) employs to detect PRO–NPs and
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(a) But it resists NP–NP yielding po-
litical ground.

S

NP

it

VP

VBZ

resists

S

NP–NP VP

yielding . . .

(b) But it means PRO–NP paying the
horse’s maintenance.

S

NP

it

VP

VBZ

means

S

PRO–NP VP

paying . . .

Figure 3.4: A problem for the pattern matching approach.

NP–NPs (Figure 3.3). The main difficulty is that pattern (b) contains pattern (a).
If a subtree matches both patterns, the algorithm always chooses the deeper one,
pattern (b), regardless of the lexical identity of the main verb. Now, consider the
examples in Figure 3.4: if we disregard lexical information, both trees have the
same structure as depicted in Figure 3.3b, but one of them contains an uncon-
trolled PRO–NP, the other one a controlled NP–NP. The cause of the different
behaviour is the different verbs: resists, along with other verbs such as begins,
starts, enjoys, likes, etc., requires its gerundial complement to have a referential
subject. On the other hand, verbs such as means, involves, prohibits, etc., tend
to have a gerundial complement with an uncontrolled PRO–NP subject. Johnson’s
(2002) unlexicalised pattern matching algorithm is unable to capture these gener-
alisations and wrongly assumes that both subtrees involve NP–NP empty nodes.

3.2.2 Jijkoun (2003)

Jijkoun (2003) attempts to improve upon Johnson’s pattern matching algorithm in
two respects. First, he pre-processes the Treebank before extracting patterns by
converting the phrase-structure trees of the Treebank into dependency trees using
the conversion algorithm described in Buchholz (2002). This step basically lo-
calises non-local dependencies; while WH-extraction involves many intermediate
nodes in Johnson’s approach, it only involves one such node in the dependency
structure. Non-local dependencies are dependency relations between two nodes
in the dependency tree not in immediate dominance relationship. The dependency
relations might have different possible labels NP-OBJ, NP-SUBJ , ADVP, etc., ex-
pressing the type of the predicate–argument relationship between the nodes.
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The move from phrase structure to dependency structure results in fewer, more
compact patterns: while Johnson employs approximately 9000 patterns often in-
volving a large number of nodes, Jijkoun ends up with 16 compact patterns cover-
ing 93.7% of the EEs. All of these patterns are ambiguous: they contain two nodes
that are either in non-local dependency relation of various types or not. This am-
biguity corresponds to situations where a pattern matches a subtree without an EE

in Johnson’s approach, or where a pattern subsumes another one.
The small number of ambiguous patterns, however, allows Jijkoun (2003) to

use a machine learning approach to disambiguate the patterns and determine the
type of the non-local dependency (if any). He employs a memory-based learner
(TiMBL, Daelemans et al. 2002) to perform this task. The learner takes both
structural features (such as the pattern, or whether the word already has a sub-
ject/object) as well as lexical (POS) features into account.

When evaluating the system on the perfect trees (after deleting NLDs), Jijkoun
(2003) reports 86% labelled F-score for recovering all non-local dependencies.
These results are around 10% better than the scores Johnson (2002) achieves on
gold-standard trees, though they are not strictly comparable. In particular, John-
son’s (2002) scores include, on the one hand, EEs that are very easy to detect
(e.g. empty UNITs). On the other hand, Jijkoun (2003) does not handle PRO–NPs
and empty WH-complemetisers, which appear to be problematic for Johnson’s ap-
proach (and, as a matter of fact, for our models as well).

Although Jijkoun’s (2003) results are very encouraging when testing his sys-
tem on perfect trees, his model faces immense problems when he applies it on
trees provided by a parser (that of Collins 1997, 1999). This is, in fact, not sur-
prising, since the algorithm he employs to convert phrase structure trees to de-
pendency structures heavily relies on functional tags and empty elements in the
gold-standard PTB annotations (Buchholz 2002). This information, however, is
not present in the output of the parser. There are several possibilities to rem-
edy the situation: one might enrich the nonterminals with functional labels and
train a parser with the richer set of nonterminals,8 or reinsert functional tags as a
post-processing step (Blaheta and Charniak 2000). Nevertheless, we suspect that
Jijkoun’s (2003) approach would still be subject to the same sensitivity to parse
errors around NLD-sites as Johnson’s (2002).

3.2.3 Higgins (2003)

A third post-processing model similar to Johnson’s and Jijkoun’s approach is pre-
sented by Higgins (2003). His algorithm detecting WH-gaps works in the fol-

8Interestingly, using functional labels in the parser seems to have a negative effect on parse accu-
racy (Klein and Manning 2003).



64 Previous work

lowing fashion: it starts at the node dominating a WH-complementiser; in each
step, a classifier emits symbols instructing the system to either recurse into the
nth daughter (RECURSE-n) or posit a WH-gap as the mth daughter (GAP-m). The
classification is done based on information about the WH-complementiser trigger-
ing the search for a gap, the depth of the recursion and structural relations such as
the nonterminal label of the parent, the current and the daughter nodes. Higgins
trains a feed-forward multi-layer perceptron to perform the classification task.

Higgins (2003) reports 92% precision for recovering the complete path lead-
ing to the WH-gap. These results are, however, not strictly comparable with those
of Johnson (2002) and Jijkoun (2003), since he uses a different split of the data
into training and test sets.

This approach has several deficiencies. First, it only covers WH-gaps, the de-
tection of which proves to be relatively easy for other models as well. Second,
the search for gaps is triggered by the presence of a WH-complementiser, which
is problematic in the case of empty WH-complementisers. It is not clear how the
algorithm could be modified to deal with such cases, i.e., to be applicable on the
output of a statistical parser which does not predict empty complementisers. Fur-
thermore, it is not clear how this approach could be extended to other EEs which
do not require a triggering WH-operator or other syntactic cue. Finally, this ap-
proach is also very sensitive to parsing errors.

3.3 Buchholz (2002)

Buchholz (2002) approaches the problem of reconstructing the grammatical re-
lations between a head verb and its dependents from a completely different per-
spective: she does not employ a parsing component. Instead, she uses a chunker
to preprocess the input, and a memory-based classifier to decide for each chunk
whether it is related to the verb(s) in the sentence. If it is, the classifier also at-
tempts to find the type of the relation (e.g. temporal NP, subject NP, etc.).

The setup is the following: first, a tagger assigns POS-tags to the words and a
chunker divides the input sentence into non-overlapping phrases (in most of the
experiments Buchholz (2002) reports, she uses tags and chunks from the gold-
standard), then a memory-based classifier classifies each chunk with respect to
each verb. The classifier uses a wide variety of information: the distance of the
focus chunk from the verb (counted in terms of chunks), the number of VP chunks
between the focus chunk and the verb, the verb itself, and selected information
about the focus chunk as well as about other chunks around the focus chunk (the
type of the chunk, the headword and headPOS of the chunk and the type of the
preceding preposition, if any). To evaluate the system, Buchholz uses tenfold
cross-validation on WSJ10–19.
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Apart from local dependencies, this model is able to find some non-local ones
as well. In particular, it handles NLDs represented with WH–. . . and NP–NP EEs
in the PTB. The system achieves 67.3% labelled F-score for finding the correct
label for the dependency relations between a verb and its non-local dependent(s)
(with 80.9% precision and 57.7% recall). The results are very promising, though
not strictly comparable with the ones presented here. On the one hand, the task is
more difficult, since Buchholz (2002) uses different (and smaller) training and test
sets and a richer set of labels (encoding the type of grammatical relation as anno-
tated in the Treebank). On the other hand, the input to her model already contains
the correct chunks and headwords, whereas we start from POS-tagged text only.
One very important advantage of Buchholz’s (2002) approach is its speed: since
it does not apply a parser, its complexity is linear in the size of the sentence.

We see three important deficiencies of this model. First, Buchholz does
not handle PRO–NP traces, which do play a considerable role in the predicate–
argument structure of the sentence. Second, the choices the system makes are
essentially local. Therefore, nothing prevents the model from assigning multiple
dependents with the same label to the same verb. Similarly, the system can asso-
ciate a chunk with several heads. Although such constructions are not impossible,
they arise only by virtue of coordination, which the approach does not handle. Fi-
nally, as we will see in Chapter 5, local cues around the extraction site (i.e., mostly
around the verb) are very strong and useful; Buchholz (2002) effectively ignores
these cues. Our conjecture is that the approach can be considerably improved us-
ing global search, and incorporating information about the environment the verb
occurs and about coordination.

Summary

As we have seen in this chapter, there is a wide range of different approaches to
applying machine learning techniques to recovering NLDs, with varying success,
although it is generally hard to compare them, since most of the approaches use
different evaluation metrics. We take the results presented in (Johnson 2002) as
our baseline. The models we develop in this dissertation achieve state-of-the-art
performance on the task of recovering non-local dependency relations according
to the evaluation metrics proposed by Johnson (2002).

Our goal, however, is not only to design the best possible system: we are also
interested in understanding the nature of the problem of recovering NLDs. It is
widely assumed that this task is rather difficult, requiring full parsing with a so-
phisticated grammar framework. But how difficult is it? Are all cases of NLDs
difficult to recover or can we isolate easy subproblems? What makes the easy
ones easy and the difficult ones difficult? Do we really need a sophisticated parser
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or would a simple PCFG do? Ultimately, do we need a parser at all? This disserta-
tion aims at answering these questions showing that the combination of relatively
simple shallow approaches manages to achieve state-of-the-art accuracy, provided
they are combined in an appropriate way.

In our present overview, we have seen two major bottlenecks: efficiency and
the availability of training material. Most of the approaches described above
which manage to achieve good results on finding NLDs seem to suffer from both
problems: they tend to be slow due to the increased parsing complexity the elabo-
rate grammar framework imposes on them, and they require considerable amount
of manually-annotated material, which is usually scarcely available. From this
point of view, our method couples with the approaches described in the previ-
ous two sections: we would like to explore how far one can get using existing
(labelled) training material and simple tools.



Chapter 4

Finding NLDs with an unlexicalised
parser

This chapter1 explores whether an unlexicalised PCFG parser is able to detect
NLDs. First, we introduce the evaluation metrics we use throughout this thesis.
We also show an algorithm recovering antecedents for EEs based on a parse tree
with gap+ variables (cf. Section 2.3). Then, we turn our attention to an unlexi-
calised PCFG parser designed to recover non-local dependencies. As we will see,
the parser is not successful at the task: it is inaccurate, slow, and cannot parse 40%
of the sentences. This is in accordance with our hypothesis that handling NLDs
is difficult. Interestingly, when the same parser is informed about the sites where
EEs occur, it can recover the antecedents with high accuracy. This shows that the
main complication is EE detection and not antecedent recovery.

4.1 Evaluation metrics

As we formulated the task in Section 1.2, recovering NLDs can be viewed as a
two-step problem: we first determine the sites where such NLDs occur, then, as
a next step, we find the dependents involved in the relation. In the representa-
tion scheme we adopted, finding the sites amounts to detecting where EEs occur,
whereas finding the dependents means recovering the antecedents (if any) for the
EEs in question. As we will see, it proves to be useful to keep these tasks separate,
even in the case of a system which performs both at the same time. Therefore,
we introduce two subtask-specific evaluation metrics: one for EE detection and

1This chapter is an extension of (Dienes and Dubey 2003b). It contains a more detailed discus-
sion of the antecedent recovery algorithm. We also introduce new dependency-based evaluation
metrics. The unlexicalised parser, however, is the same as in (Dienes and Dubey 2003b); I am
grateful to Amit for implementing it.

67
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one for antecedent recovery. Both metrics are based on (Johnson 2002). These
metrics only take string positions into account and do not evaluate dependency
structures. To assess the performance of various models on recovering depen-
dencies, we also introduce a dependency-based metric, following e.g. Lin (1995),
Carroll et al. (1998, 1999), Collins (1999).

Detecting empty elements

Following Johnson (2002), we say that an EE is correctly detected if (i) the type of
the EE is the same as in the gold standard and (ii) it occurs at the same position in
the string, i.e., between the same surface words. This metric is, in fact, an exten-
sion of the standard PARSEVAL measure (Harrison et al. 1991, Magerman 1995).
We report both precision and recall as well as the F-score, where:

Precision =
true positives

true positives+ false positives
=

true positives
hypothesised EEs

Recall =
true positives

true positives+ false negatives
=

true positives
EEs in gold standard

F-score =
2 ·Precision ·Recall
Precision+Recall

(4.1)

Johnson (2002) remains unclear how the positions in the surface strings are
defined as far as punctuation is concerned. When reporting PARSEVAL scores,
the punctuation marks are discarded; in the present dissertation, we follow this
practice. Thus, for example, in the sentence:

(4.2)1
It

2
is ,

3
therefore ,

4
difficult PRO–NP

5
to

6
explain

7
what

8
I

9
want

10
to

NP–NP
11
do WH–NP .

the three EEs occur before words 5, 11 and 12.
An important difference between Johnson’s (2002) metric and the one we

use here is that we make a distinction between controlled and uncontrolled PROs
(NP–NP and PRO–NP, respectively). In fact, telling these two EE-types apart proves
to be difficult. As a consequence, our metric is considerably harder than Johnson’s
and the scores are not fully comparable. However, when relevant, we also report
our results according to the more permissive metric.

Finally, we also report the precision/recall/F-score separately for the seman-
tically interesting group of EEs which consists of (controlled and uncontrolled)
PROs (NP–NP and PRO–NP), WH-traces (WH–. . . ) as well as topicalised sentences
(TOP–S). The scores for this group determine how good the system is at detecting
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EEs involved in NLDs important for constructing predicate–argument structure.
Unfortunately, Johnson (2002) does not report results for these cases separately.
Note, however, that we know both the precision and the recall of his algorithm for
a given EE-type, and we also know how many such EEs occur in the gold stan-
dard. It is easy to see that this enables us to determine the exact number of true
positives according to his algorithm as well as the number of EEs it hypothesises.
If P and R are the precision and the recall for a given EE-type, it follows from
Equations (4.1) that:

true positives = R · EEs in gold standard (4.3)

hypothesised EEs =
true positives

P

These formulae allow us to determine how Johnson’s (2002) algorithm performs
on groups of EEs. Whenever we use this trick to recover scores, we mark them
with a †.

Apart from getting an overall score for the group of WH/PRO/TOP EEs, we rely
on this trick in one further case: Johnson (2002) distinguishes COMP–SBARs when
they are immediately followed by an empty TOP–S label and other occurrences of
the label COMP–SBAR, and reports detection scores separately for them. Since we
do not see a motivation for this decision, we keep the two cases together and re-
port only one score for them using the trick above to convert Johnson’s (2002)
scores.

Recovering antecedents

The metric for antecedent recovery is very similar to the one we employ for eval-
uating EE detection. Specifically, we say that the antecedent of an EE is correctly
recovered, if and only if the following three conditions hold:

(i) the EE has the same type as in the gold standard;

(ii) the EE is at the same string position as in the gold standard (disregarding
punctuation);

(iii) provided the EE-type in question takes an antecedent, the antecedent spans
the same words as in the gold standard.

This metric is very stringent and requires a system to both recover antecedents and
build a largely correct parse tree. The first two conditions are the same as for EE

detection; therefore, if an EE is not (correctly) detected, the system is penalised.
The last condition requires finding the antecedent phrase correctly, including all
its modifiers. For instance, in the case of the sentence:
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(4.4)1
It

2
is ,

3
therefore ,

4
difficult PRO–NP

5
to

6
explain

7
what

8
the

9
man

10
in

11
a

12
nice

13
blue

14
shirt

15
with

16
flowers

17
on

18
it

19
wants

20
to NP–NP

21
do WH–NP .

the system has to return

(i) an EE of type PRO–NP preceding word 5, with no antecedent;

(ii) an EE of type NP–NP preceding word 21, with antecedent spanning [8,18];

(iii) an EE of type WH–NP preceding word 22, with antecedent spanning [7,7].

Observe that Johnson (2002) does make a distinction between controlled and
uncontrolled PROs when evaluating antecedent recovery, since the latter does not
have an antecedent while the former does. Therefore our results are straightfor-
wardly comparable with (Johnson 2002). As before, we also report scores for the
semantically important group of WH–. . . , PRO–NP, NP–NP, and TOP–S EEs; we
mark results inferred using Eq. (4.3) with †.

Finally, note that although in the present thesis we do not attempt to recover
pseudo-attachments, they are included in the two metrics discussed above; the
recall (and the F-score) of the system on these items is simply 0%. Since pseudo-
attachments amount to around 4% of all EEs, the maximal score we can achieve
on both metrics is 96% recall (≈ 98% F-score).

Dependency relations

The evaluation metric for antecedent recovery is both too crude and too stringent
at the same time. On the one hand, it requires the parser to recover the whole de-
pendent phrase without any mistakes, properly attaching all the modifiers. On the
other hand, it takes only the string position of an EE into account. Although the
position of an EE is a good indicator of the head, it is possible that the EE gets
attached to the wrong head eventually. Since the main motivation for detecting
EEs and recovering antecedents is to establish head–dependent relations involving
non-local phenomena, we also evaluate our systems according to this criterion.
Therefore, we adopt the evaluation metric proposed by Buchholz (2002): a non-
local head–dependent relation is correctly recognised if and only if

(i) the type of the EE is correctly identified;

(ii) the EE is attached to the correct headword; and

(iii) the head of the dependent is the correct word.
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6SBAR–C

(what)

WHNP–H

what

5S–CWH−NP

(want)

NP–C

I

4VP–HWH−NP+NP−NP

(want)

V–H

want

3S–CWH−NP+NP−NP

(to)

NP–CNP−NP

NP–NP

2VP–HWH−NP

(to)

TO–H

to

1VP–CWH−NP

(do)

V–H

do

0NP–CWH−NP

WH–NP

Figure 4.1: A head-lexicalised tree in the Tracebank [Figure 2.10].

This metric does not focus on string positions but evaluates dependency structures;
we refer to it as the head–dependent (HD) metric.

In order to successfully employ this metric, however, one has to determine
heads in the parser output. To identify heads, we apply the head-finding algorithm
discussed in Section 2.3. One drawback of this algorithm in the present situation
is that it is designed to retrieve surface heads only. Consider, for example, Fig-
ure 2.10 (repeated here as Figure 4.1): here, the infinitival to is marked as the head
of the embedded sentence. Such a definition of headness is useful when defining a
lexicalised probability model: clearly, want shows stronger preference for to than
for do. On the other hand, we are recovering NLDs in order to be able to build
the predicate–argument structure of the sentence. This representation requires the
knowledge of deep heads (the predicates). For instance, in the case of the above
example, the head of the empty element NP–NP should be do instead of to.

Finding deep heads, in general, might be complicated. Finding the deep
head associated with WH-traces, topicalisation (TOP–S) and PROs (NP–NP and
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1 proc find_deep_head(node) ≡
2

3 Return the head if this is not an S or VP

4 if node.nonterm 6= S ∧ node.nonterm 6= VP

5 return node.headword
6

7 Find leftmost VP

8 var vp = find_leftmost_vp(node.children)
9

10 if vp then return find_deep_head(vp) Recursive call
11 else return node.headword Innermost VP

Figure 4.2: The algorithm for finding deep heads.

PRO–NP), however, is simpler, since it is always the main verb. Therefore, we
restrict the use of the HD metric to these cases.

The recursive algorithm in Figure 4.2 returns the deep verbal heads starting
from a node. The main idea is simple: the deep head of a phrase which is not a
S or VP is the same as the surface head (line 4). In the case of S or VP nontermi-
nals, we have to recurse into the deepest VP via a chain of VPs. The innermost VP

dominates the deep headword (cf. also Eisner 1996a).
So far, we have only discussed evaluation metrics which assessed the accuracy

of finding and the attachment of EEs and their antecedents. In order to determine
how the parser performs on building the global structure for the sentence, we also
report on a measure evaluating the accuracy of the parser with respect to surface
dependencies (Lin 1995, Carroll et al. 1998, Collins 1999, Carroll et al. 2002). An
unlabelled surface dependency relation is defined as an ordered pair of the surface
head and the dependent: 〈wh,wd〉. This metric operates on phrase structure trees
and does not take NLDs into account. For instance, the surface dependencies ex-
tracted from the phrase structure tree in Figure 4.1 are the following:

(4.5)〈what,want〉, 〈want,I〉, 〈want,to〉, 〈to,do〉.

To detect the heads, we employ the same head-finding algorithm as we use in
creating the Tracebank (see Section 2.3).

We calculate both precision and recall for surface dependencies, and report the
F-score in the experiments presented throughout the dissertation. We also com-
bine the HD and surface dependency scores to arrive at a global measure capturing
both local and non-local dependencies; we provide the F-score according to this
metric as well.
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Finally, we also report labelled bracketing accuracy according to the standard
PARSEVAL measure (Harrison et al. 1991).

4.2 The antecedent recovery algorithm

The main motivation for the introduction of gap+ variables is that they indicate a
path from the EE to the antecedent. In the case of a non-binary-branching gram-
mar, however, this path only determines the node immediately dominating the
antecedent, but does not indicate which child the EE should be co-indexed with.
Moreover, a node might contain several gap+ variables, which further complicates
antecedent recovery, even in the case of perfect trees. This calls for a sophisticated
algorithm to recover antecedents.

The algorithm, presented in Figure 4.3, is applied after the best parse has been
selected. It works in a bottom-up fashion, and for each empty node the main re-
cursive function find_antecedent is called separately (lines 1 and 2). At every call,
the number of gap+ variables of type “gap” (e.g. WH-NP) are calculated for the par-
ent par of the current node node (p; line 6) and for all the children (ch; line 7).
If the parent has at least as many unresolved gap+ variables as its children, we
conclude that the current EE is resolved further up in the tree and call the same
algorithm for the parent (line 21). If, however, the parent has fewer unresolved
gaps (p < ch), the antecedent of the EE is among the children. Thus the algorithm
attempts to find this antecedent (lines 10–19). For an antecedent to be selected,
the syntactic category must match, i.e., an NP–NP must resolve to a NP. The algo-
rithm searches from left to right for a possible candidate, preferring non-adjuncts
over adjuncts. The node found (if any) is returned as the antecedent for the EE.
Finally, note that in line 8, we have to remove the threaded gap+ feature in order
to avoid confusion if the same parent is visited again while resolving another EE

(Dienes and Dubey 2003a).
Topicalised sentences present an additional problem requiring a slight compli-

cation of the algorithm (line 17). Generally, they behave in the same way as any
other empty element. However, as illustrated in Figure 4.4, when a parenthetical
contains an extracted S, the PTB-annotation assigns the topmost S node as the an-
tecedent. In such cases, i.e., when we have to drop a TOP-S gap variable and the
parent is a S and there is no child bearing the label S, the antecedent is taken to be
the parent node.

As an example, consider again the tree in Figure 4.1: how is the antecedent for
WH–NP found? The algorithm starts with node 0 (gap in line 2 of the algorithm).
The parent of this node (node 1) contains one gap+ variable on the parent and one
on the child as well. That is, p = ch, and thus we conclude that the antecedent
is not among the children of this parent. Therefore, the WH-NP gap variable is re-



1 foreach gap
2 do find_antecedent(“gap”,gap);
3

4 proc find_antecedent(“gap”,node) ≡
5 var par = node.parent;
6 p = number of gap+ features of type “gap” on par;
7 ch =sum of the gap+ features of type “gap” on par.children;
8 node.remove_one_gap(“gap”);
9 if p < ch

10 then Drop the gap here
11 ante =leftmost non-adjunct of par.children
12 allowed by “gap”(6= node);
13 return ante if ante;
14 ante =leftmost child of par.children
15 allowed by “gap”(6= node);
16 return ante if ante;
17 if “gap” == TOP–S ∧ par.nonterm == S

18 then return par;
19 return nil;
20 else Pass up the tree recursively
21 find_antecedent(“gap”,par).

Figure 4.3: The antecedent recovery algorithm.

“Now ,” says Joseph Napolitan, a pioneer in political television, “the idea is to
attack first, last and always.”

S1

ADVP

RB

Now

SINVTOP−S

VPTOP−S

VBZ

says

STOP−S

TOP–S1

NP

Joseph . . .

NP

the idea

VP

is to . . .

Figure 4.4: Additional problems with TOP–S.
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moved from node 0 and the function is called recursively on the parent (line 21).
Now, the WH-NP variables on node 2 and node 1 are compared – they are still the
same, therefore the WH-NP is removed from node 1 and the algorithm is called on
node 2, and so on. However, at node 5, the parent (node 6) does not contain any
WH-NP variables, therefore the gap has to be dropped and we enter the search in
lines 10–19. In this case, there is no additional complication, and the antecedent
is found: what.

Since the algorithm works in a greedy fashion accepting the first possible an-
tecedent for an EE, the order in which we loop through the gaps in lines 1 and 2 is
very important. Consider, for instance, the parse tree depicted in Figure 4.5, the
partial structure of the sentence:

(4.6)This is a problem which1 John2 is difficult to talk to 2 about 1.
(Pollard and Sag 1994, p. 159)

If the traces are ordered left to right, the algorithm first takes WH–NPA, the
complement of to. The first node where an EE should be dropped is the SBAR

node marked with the subscript 1: here the number of WH-NP variables on the
parent (1) is smaller than on its children (2). Since the algorithm now carries
WH–NPA, it finds its antecedent there, i.e., WH–NPA correctly gets co-indexed with
the empty WH-operator COMP–WHNP. In the following loop, the algorithm takes
WH–NPB and carries it up the tree. Now, since the previous run removed the WH-NP
variables corresponding to the WH–NPA trace, at the SBAR position marked as 1,
the number of WH-NP variables is the same on the parent as on the children (1).
Consequently, the algorithm keeps on carrying the EE higher up in the tree, un-
til it reaches the SBAR node marked as 2. Here, it has to drop the EE, and thus
correctly finds the antecedent: which.

Thus, the algorithm, processing EEs in right-to-left order, is capable of recov-
ering antecedents in a serial fashion. On the other hand, if the direction is changed
and the algorithm starts with the other gap WH–NPB, it associates the antecedents
with the EEs in the opposite order. This mode illustrates the cross-serial depen-
dencies familiar from Dutch (cf. e.g. Rambow and Joshi 1994, Steedman 2000).
Since English does not allow cross-serial dependencies, we set the order left-to-
right. It might be interesting to note, however, that in the development section
(WSJ00) we have not found any instances where the order plays a role.

Finally, in Figure 4.6, we illustrate how the antecedent recovery algorithm
handles parasitic gaps (Appendix A.1.1, page 181), and, as a matter of fact, coor-
dination. The key insight is that more than one EE can be dropped at a given node.
Specifically, at the SBAR node marked with the subscript 2, both WH–NP gaps are
to be dropped and hence they share the same antecedent: COMP–WHNP dominated
by the NP papers. Note that the algorithm also correctly identifies you as the sub-
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Figure 4.5: The importance of the order in which the gaps are looped through in the antecedent recovery algorithm.
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ject of the embedded gerundial clause by dropping the NP–NP gap at the S node
marked with 1.

Although the algorithm is simple and works in a greedy manner, it is very ac-
curate. Tested on the gold standard Tracebank trees containing the empty nodes
without co-indexation, it is able to recover the antecedents with an F-score of
96.2%, whereas the HD score for WH, PRO and TOP gaps is 99.5%. Note that
the algorithm crucially hinges on the assumption that the antecedent strictly c-
commands its EE, that is, the algorithm never has to descend into a daughter to
find the antecedent (Section 2.3). Although this assumption generally holds, it is
not appropriate in the case of pseudo-attachments, where the algorithm gives up
and (wrongly) assumes they have no antecedent. Fortunately, they only account
for 3.8% of all EEs.

4.3 Experiments with an unlexicalised parser

Having discussed how to recover the antecedents once we have a full parse tree
which contains EEs and follows the gap-threading schema introduced in Sec-
tion 2.3, in the remaining of the chapter, we present experiments with two un-
lexicalised PCFG parsers following (Dienes and Dubey 2003b).

4.3.1 The unlexicalised parsers

The INSERT model

There are two important modifications a simple unlexicalised PCFG parser re-
quires so that it can insert EEs and recover antecedents: (i) it has to be able to
thread gaps, and (ii) it should insert EEs. Both modifications are trivial. As for the
first one, we have to change the original nonterminal symbols to contain the gap-
variables as well. The second point requires the extension of the CYK-algorithm
so that it could handle unary rules as well.

We use a standard unlexicalised PCFG-parser (Charniak 1993), where the PCFG

probabilities are estimated in the usual way:

p(LHS → RHS|LHS) =
f (LHS → RHS)

f (LHS)
(4.7)

where f (x) is the frequency count of x in the corpus. The parser uses dynamic
programming (Viterbi-search) to arrive at the most probable parse tree given the
input. Since even with Viterbi-search the search space is too large to allow effi-
cient parsing, we augment the parser with beam thresholding (Goodman 1998):
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subtrees for a span with low relative probability with respect to the highest prob-
ability subtree for the given span are discarded from the search space. In order
to keep the number of independently tunable parameters low, no smoothing is
applied to the model. We refer to this model as the INSERT model.

Note that introducing unary rules that expand a nonterminal into exactly one
nonterminal might lead to an infinite loop. For instance, the rule

(4.8)VP →VP (PRO–NP)

could be applied on its own output, thus forcing the parser into an infinite loop.
This would indeed be a problem for a non-probabilistic parser. Viterbi-search, on
the other hand, ensures that a probabilistic parser does not suffer from the same
problem, provided the probabilities are obtained from a corpus. We prove this
statement informally here; for a formal proof we refer the reader to (Chi and Ge-
man 1998).

Infinite loops occur when there is a cyclic nonterminal sequence in the deriva-
tion which does not consume any nonterminals. Without a loss of generality, we
can assume that this sequence is in the following form (each Ai is a nonterminal):

A1 → A2 → . . . → Ak → A1 (4.9)

A probabilistic CYK-parser falls into an infinite loop, if and only if p(A1
∗−→

A1|A1) = 1, where ∗−→ is the transitive closure of the rewrite operator →. How-
ever,

1 = p(A1
∗−→ A1|A1) (4.10)

= p(A1 → A2|A1) · p(A2 → A3|A2) · . . . · p(Ak → A1|Ak)

holds if and only if each term

p(Ai → Ai+1|Ai) = 1 =
f (Ai → Ai+1)

f (Ai)
(4.11)

for all i = 1 . . .k (with Ak+1 = A1). This means that a potential infinite loop has
probability 1 if and only if all nonterminal symbols that appear in it does not oc-
cur in the LHS of any other rule; that is, once we enter a loop there is no possibility
to escape it. Our corpus, however, consists of finite strings; consequently, either
(i) there are no infinite loops at all or (ii) there is an “escape” from the loop, i.e.,
there exists a rule A j → β with nonzero frequency count, where β is a non-empty
sequence of terminals and/or non-terminals, j ∈ {1, . . . ,k} and A j+1 6= β. This
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entails that

p(A j → A j+1|A) =
f (A j → A j+1)

f (A j)
(4.12)

≤
f (A j → A j+1)

f (A j → A j+1)+ f (A j → β)

<
f (A j → A j+1)

f (A j → A j+1)
= 1

showing that p(A j → A j+1|A) < 1, an consequently, p(A1
∗−→ A1|A1) < 1. As a

consequence, Viterbi-search prevents the parser from falling into an infinite loop;
it will only create one edge with nonterminal label A1 for the span, since all other
such edges have lower probability.

The PERFECT model

As we will see it shortly, the INSERT model cannot cope with the task of recov-
ering NLDs. It is interesting to ask the question: which of the two subtasks are
difficult, EE detection or antecedent recovery? In order to answer this question,
we test the unlexicalised PCFG parser under another condition, where the parser
is not required to detect EEs: the correct EEs are supplied in the input (as separate
words). The task of the parser, in this case, is to build the correct structure, incor-
porating the EEs, and thread the gap+ variables to their antecedents. This model
is called the PERFECT model, since it uses the perfect information about the sites
where EEs occur.

4.3.2 Results

The main results for the two conditions are summarised in Table 4.1. The most
striking observation is the infeasibility of the INSERT model: with the beam set to
10000, the parser cannot parse 40% of the sentences, whereas successful parses
take, on average, 54 seconds2 and enumerate some 2.3 million edges per sen-
tence. Widening the beam to 40000 decreases the number of missed sentences
marginally, whereas parsing time rises to nearly 5 minutes per sentence. Even
with the large amount of search, the parser is not able to attain acceptable scores
when it comes to detecting NLDs. When we restrict our attention to the sentences
the parser eventually manages to parse, the F-score for EE detection is 44.3%
(precision 57.6%, recall 36.0%). Antecedent recovery scores are low accordingly:
precision 48.9%, recall 30.6%, and F-score 37.7%.

2This particular parser is around 3 times slower than the one used by Dienes and Dubey (2003b).
We are, however, interested in relative parsing times and not absolute ones.
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NOTRACE INSERT PERFECT

EE det. all – 44.3∗ 100
(F-score) WH/PRO/TOP – 47.1∗ 100

ANTE rec. all – 37.7∗ 89.7
(F-score) WH/PRO/TOP – 38.0∗ 89.5

HD accuracy WH/PRO/TOP – 42.7∗ 86.3

Time (s/sent) 9.3 54.8 8.5

Chart (edges/sent) 368k 2376k 327k

PARSEVAL ≤ 100 72.2 75.4∗ 78.0
(F-score) ≤ 40 73.7 75.8∗ 79.3

Surface deps. 79.3 81.8∗ 82.5
All deps. 77.1 80.5∗ 82.7

Missed sents. 0.3% 39.9% 0.5%

Table 4.1: Overall performance of the unlexicalised INSERT and PERFECT mod-
els.

In the PERFECT case, when the sites of the empty elements are known be-
fore parsing, only about 0.5% of the sentences are missed and average parsing
time goes down to 8.5 seconds per sentence. More importantly, the overall pre-
cision and recall for antecedent recovery is 89.7%3, whereas the HD score for the
semantically interesting cases is 86.3%.

4.3.3 Discussion

The result of the experiment where the parser is to detect non-local dependen-
cies is negative. Detecting EEs with an unlexicalised PCFG parser is infeasible:
the parser cannot parse a large fraction of the sentences, it is incredibly slow and
inaccurate at detecting EEs and at antecedent recovery. On the other hand, the
PERFECT model does not show the same problems at all: it is fast and accurate at
antecedent recovery: it achieves 89.7% F-score (86.3% HD score). What is the
reason for such a difference between the two parsing models?

3Dienes and Dubey (2003b) achieve a 91.4% F-score, but they fail to penalise the parser for not
handling pseudo attachments.

∗These results are reported on sentences the parser could parse.
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The reason cannot be due to the lack of smoothing: the model with perfect in-
formation about the EE-sites does not run into the same problem. Consequently,
the edges necessary to construct the required parse are available. Therefore, in the
INSERT case, it is the beam search that loses necessary edges due to unwanted lo-
cal edges having a higher probability. Doing an exhaustive search might help in
principle, but it is infeasible in practice. Clearly, the problem is with the probabil-
ity model: an unlexicalised PCFG parser is not able to detect where EEs can occur,
hence necessary edges get low probability and are, thus, filtered out (Dienes and
Dubey 2003b).

Another factor contributing to the inefficiency of the INSERT model is the
larger size of the non-terminal set. Recall that a CYK-parser has a worst-case
asymptotic runtime of O(n3|VT |

3), where |VT | is the number of nonterminals
(which are not preterminals). The O(|VT |

3) bound becomes important when the
parser inserts traces because there are 7.1 times more non-terminals than in the
case of a non-threading model. Three factors contribute to this larger nonterminal
set:

(i) nonterminals are augmented with gap+ information encoding the type of the
EE (i.e., S may become SWH−NP, SNP−NP, etc.);

(ii) we must include combinations of EEs as nonterminals may dominate more
than one pending EE (i.e. SNP−NP+WH−NP) and

(iii) a single gap+ variable may be repeated in the presence of co-ordination (i.e.
SNP−NP+NP−NP).

These three factors greatly increase the number of nonterminals, potentially reduc-
ing the efficiency of a parser that detects EEs. On the other hand, when EE-sites
are pre-determined, the effect of the number of nonterminals on parsing speed is
moot: the parser can ignore large parts of the grammar.

Interestingly, although the number of nonterminals is much higher when EEs
are threaded to their antecedents, the number of rules increases by only 22%. This
shows that the common practice of removing EEs before training also gives rise
to complicated rules. It turns out, that the difference is in fact due to the larger
number of different RHS in the case of the EE-threading approach.

The most important conclusion of the experiments with the unlexicalised
parser is that antecedent recovery is relatively easy (in English) once we know
where (and whether) EEs occur: the PERFECT model achieves almost 90% F-score
on recovering antecedents and 86.3% F-score on the HD metric for the semanti-
cally interesting EEs. Table 4.2 gives scores broken down according to EE-types.
It reveals that most of the cases are indeed easy for the parser, although there are
some difficult ones with low scores.
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EE Frequency Ante. rec.4 HD score4

ALL 3864 89.7 86.0
WH/PRO/TOP 2634 89.5 86.3

NP–NP 1148 81.7 79.4
COMP–SBAR 545 100.0 96.0
WH–NP 508 96.7 94.5
PRO–NP 477 100.0 92.9
UNIT 388 100.0 89.9
TOP–S 277 91.3 87.0
WH–ADVP 171 93.6 88.9
COMP–WHNP 107 100.0 100.0

Table 4.2: Antecedent recovery and HD scores for the unlexicalised PERFECT

model.

Most importantly, identifying the antecedents of NP–NP traces appears to be
difficult: the parser achieves only 81.7% F-score on this task. There are several
reasons why the parser is not so accurate finding the antecedent for this EE-type.
First, its antecedent as often as not is a complex noun phrase with pre- and post-
modification. Since the parser is not a very accurate one, it is highly likely to
commit an error in identifying the whole NP. A similar behaviour can be observed
for TOP–S traces as well, where the parser has to identify the whole subclause.

Another frequent type of errors concerning NP–NP involves control construc-
tions: the parser is unable to correctly decide whether the antecedent is the object
or the subject of the matrix verb (cf. Figure 4.7). As this decision depends solely
on the matrix verb and the parser is not lexicalised, it has no means to distinguish
the two constructions. Clearly, we would greatly benefit from lexicalisation, an
approach we will explore in Section 6.2 and Chapter 7.

A similar situation arises in the case of PRO–NP traces as well: although the
parser knows in advance where these EEs occur in the input, it often cannot attach
them properly, as is indicated by the low HD score for this EE-type. Frequently,
the problem is due to verbs in reduced relative constructions taking a small-clause
argument (i.e., a clause without a verb, Figure 4.8): the parser, having no access
to lexical information, wrongly assumes that the empty PRO–NP is an object of
the verb (named, in this case), instead attaching it to the head of the small clause.

4Since the parser does not have to detect the EEs in this case, the precision, the recall, and the
F-score are the same.
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Finally, observe the improvement in PARSEVAL scores in the case of models
handling EEs. As it turns out, incorporating NLDs into the parsing model greatly
increases its accuracy, despite the higher ambiguity rate of the grammar. This
shows that keeping the EEs is beneficial for retrieving not only predicate–argument
but also phrase structure.

As the experiment with the INSERT model has shown, however, the unlexi-
calised parser is not able to both detect EEs and recover their antecedents, the
bottleneck being detecting the sites. The parser would greatly benefit from the
external knowledge where EEs occur in its input. In the following chapter we ex-
plore whether we can perform this task prior to parsing, i.e., in a preprocessing
step using no explicit phrase structure information.

4.4 Related work

The literature on parsing with empty elements is very limited. Robert C. Moore
(p.c.) confirms our experience with the INSERT model: he also observed a similar
behaviour. Johnson and Kay (1994) discuss the problem of large (even infinite)
search space, due to the possibly unbounded number of empty elements. They
propose to limit this number using lexical information; they argue that the pres-
ence of EEs is always triggered by a lexical head. Although such a move would
clearly restrict the search space, Johnson and Kay (1994) do not present any prac-
tical evaluation how successful their method is. Note that our INSERT model does
not suffer from the problem of the unbounded number of EEs (the parser cannot
fall into an infinite loop), still it is inefficient.

Non-local dependencies can be viewed as discontinuous structures. Plaehn
(1999, 2000) reports similar efficiency problems with parsing with his unlexi-
calised probabilistic Discontinuous Phrase Structure Grammar.

Summary

This chapter centred around three main themes. First, we discussed various eval-
uation metrics we use throughout the dissertation. Second, we presented an al-
gorithm which takes trees in the Tracebank format and recovers antecedents, i.e.,
it approximates the co-indexation scheme of the original PTB. Finally, we devel-
oped an unlexicalised PCFG parser which is able to insert EEs. This parser turned
out to be inaccurate and inefficient. Interestingly, when the same parser is in-
formed about the sites where EEs occur, it becomes fast and reliable: it recovers
antecedents with 89.7% F-score (86.3% HD score). This shows that finding the
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antecedent for a given EE is easy: even the simplest parsing model, an otherwise
relatively inaccurate unlexicalised PCFG, can perform this task fairly reliably.



Chapter 5

The trace tagger

In the previous chapter, we have shown that even an unlexicalised PCFG parser
does considerably well at detecting NLDs provided it is reliably informed about
the sites where such NLDs occur. In this chapter, we address the question whether
finding the sites for NLDs is possible prior to parsing, i.e., without explicit infor-
mation about phrase structure.

The answer turns out to be positive, further supporting the claim that finding
the majority of NLDs in English is not that difficult. Specifically, we propose a
tagger, the trace tagger, that is able to find where EEs occur in the surface string
with state-of-the-art accuracy. The tagger is a probabilistic finite-state transducer,
returning the highest probability EE-sequence for each input sentence. The under-
lying probability model is a conditional maximum entropy model using both local
and long-distance features.

This chapter1 first shows how finding the sites for NLDs can be cast as a tag-
ging problem. Then, we introduce the probability model and the contextual fea-
tures employed therein. In the discussion, we analyse the performance of the
tagger and the errors it makes, determine which features prove to be helpful for
the task, and compare our results to previous work on the same task.

5.1 The tagger

Detecting empty elements can be regarded as a simple tagging task: we label
words according to the existence and type of empty elements preceding them. For
example, the word Sasha in the sentence

(5.1)Sam said COMP–SBAR Sasha snores.

1This chapter is an extension of Section 4 of (Dienes and Dubey 2003b). In particular, we use a
different search method in the tagger and give detailed error and feature analyses.
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gets the label EE=COMP–SBAR, whereas the word Sam is labelled with EE=* ex-
pressing the lack of an EE immediately preceding it. If a word is preceded by
more than one EE, such as to in the following example, it is labelled with the
concatenation of the two EEs, i.e., with EE=COMP–WHNP_PRO–NP:

(5.2)It would have been too late COMP–WHNP PRO–NP to think about on
Friday.

This task is very similar to named entity recognition (NER), where the prob-
lem is to detect whether a NP is a named entity and to classify named entities
into four classes: persons, locations, organisations, and names not belonging to
the three previous classes. NER is often viewed as a tagging task: NPs are tagged
with one of five labels: four representing the four classes and the fifth reserved for
NPs which are not named entities (Bikel et al. 1999, Tjong Kim Sang 2002, Tjong
Kim Sang and de Meulder 2003).

Despite the similarities, there are certain differences which might make our
task more difficult than NER. One of them is the extreme sparseness of the data.
First, the tagset size is larger than for NER: disregarding the complex, concate-
nated tags, there are 44 different EE-types, as opposed to the 5 NER-tags. How-
ever, with the concatenated tags representing adjacent EEs, the cardinality of the
tagset rises to 162. The number of the tags in itself would be no problem, since
taggers for agglutinative languages manage tagsets of a magnitude higher cardi-
nality (cf. e.g. Brants 1995, Hajič and Hladka 1998, Erjavec et al. 1999, Dienes
and Oravecz 2000, Hajič 2000, Tufiş et al. 2000, Oravecz and Dienes 2002). The
real problem is that more than 100 of the 162 tags occur less than 10 times in
the entire training corpus of 1M words. In NER, on the other hand, even the least
frequent tag occurs 5800 times in a corpus of approximately 255k words (Tjong
Kim Sang and de Meulder 2003).

A further complication is the sparseness of the EEs themselves: in our devel-
opment corpus WSJ00, out of the 46451 tokens only 3056 are preceded by one or
more EEs. That is, approximately 93.5% of the words are labelled with the EE=*
label. As a comparison, in the NER setting, only 83% of the words get the NONE
tag (Tjong Kim Sang and de Meulder 2003).2 Moreover, most of the EE-labels
are adjacent to EE=* tags, i.e., the previous label does not help predicting the next
one. These circumstances call for a conditional model. Indeed, a generative model
using the EE-tags as hidden states would be in essence a unigram model, where
the emission probabilities P(word|EE-tag) are not very informative. To overcome
the problem, one might try to incorporate some contextual information into the la-
bels themselves (cf. Osborne 2000b), but this approach is rather limited, since it
further increases the sparse data problem.

2In fact, only words within a NP can be named entities, which decreases the search space consid-
erably: only 73% of such words get the NONE tag.
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Another important difference between NER and the present task is the appar-
ent non-local nature of the problem. Cues such as the occurrence of a WH-word in
the sentence are important in detecting EEs. This situation calls for a model which
is able to combine not necessarily independent local and non-local features in a
principled way.

In this chapter, we present a tagger designed to overcome the above difficul-
ties. The tagger learns the distribution of EEs applying machine learning tech-
niques. Specifically, it is based on a conditional maximum entropy model, similar
to the one employed by Ratnaparkhi (1996) for part-of-speech tagging. In the re-
mainder of this section, after a brief introduction to maximum entropy models, we
present the details of the tagger.

5.1.1 Maximum entropy models

Maximum entropy (ME) and other related models, such as Conditional Random
Fields (Lafferty et al. 2001), have been reported to be successful in many super-
vised NLP tasks, including sentence boundary detection (Reynar and Ratnaparkhi
1997), POS-tagging (Ratnaparkhi 1996), named entity recognition (Malouf 2002b,
Florian et al. 2003), parsing (Ratnaparkhi 1997), parse selection (Johnson et al.
1999, Riezler et al. 2002, Toutanova et al. 2002, Baldridge and Osborne 2003),
text classification (Nigam et al. 1999), text segmentation (McCallum et al. 2000),
sentence extraction (Osborne 2002), machine translation (Och and Ney 2002),
etc. Their popularity and success might be attributed to three main features that
make ME models well-suited for NLP applications. Unlike many popular machine
learning approaches, such as Memory-Based Learning (Aha et al. 1991), Support
Vector Machines (Vapnik 1995, 1998) or Neural Nets (Rumelhart et al. 1986), ME

models explicitly model the probability distribution generating the data. Further-
more, they offer a principled way to combine various, not necessarily independent
sources of information. Finally, the principle of maximum entropy is very attrac-
tive: it prescribes us to use the model which (best) accounts for the seen data but
does not make further assumptions about unseen events.

Maximum entropy models were introduced into Natural Language Processing
by members of the IBM T.J. Watson Research Center in the early 1990s through a
number of influential articles (Lau et al. 1993, Berger et al. 1996, Rosenfeld 1996,
Della Pietra et al. 1997). In the presentation below, we closely follow (Berger
et al. 1996).

Let us start our introduction to maximum entropy models by defining what we
mean by supervised learning. We assume here that the phenomenon we want to
learn is controlled by a random process (it might be a deterministic one, though).
Our task is to find out what this random process is, i.e., to learn the underly-
ing probability distribution p. In order to achieve this goal, we observe how this
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process behaves by collecting a (large) number of samples: (x1,y1),(x2,y2), . . . ,
(xN,yN). Here, xi is the raw data and yi is the (linguistic) structure associated with
it. For example, xi can be a sentence, and yi is the correct parse tree. In our present
setting, xi is a sentence with a word marked as the target word, yi is the EE-label
of the target word. We call our set of samples the training data. The training data
can be summarised by its empirical probability distribution p̃, which is defined as

p̃(x,y) =
number of times (x,y) occurs in the sample

N
=

f (x,y)
N

(5.3)

where f (x,y) is the frequency count of (x,y) in the sample.
Recall that our task is to find the underlying probability distribution p that

generates the sample, that is, we are interested is p(x,y) for all possible x,y pairs.
If our sample is very-very large (i.e., N → ∞), the empirical distribution p̃ is the
same as the true probability distribution p. Unfortunately, the amount of training
data is very far from being large enough in most of the cases. In practice, we only
see a small fraction of possible (x,y) pairs: typically, a particular pair does not oc-
cur in the sample at all (especially if x is taken to be a sentence) or occurs at most a
few times (usually once). This problem is called data sparseness: we do not have
enough data to estimate the true probability distribution. That is, the observed
empirical distribution p̃ is very far from the underlying distribution p. Should we
take the empirical distribution to predict the behaviour of the random process, we
could not generalise to unseen cases: they have 0 probability according to p̃. That
is, our model would overfit the training data.

In order to avoid these problems and be able to generalise from the sample,
we decompose each data instance into smaller building blocks which, hopefully,
show a less sparse behaviour. In order to achieve this goal, we assume that the data
can be described in terms of (boolean) indicator features (or simply features) cap-
turing relevant aspects of the data with respect to the task at hand. For instance,
we might notice that PRO–NP EEs tend to precede infinitival to. In this case, we
define a binary feature capturing this observation:

f (x,y) =

{

1 if y = PRO–NP and the target word is to
0 otherwise

(5.4)

Similarly, we can define many other features that we conjecture to carry important
information.

With the help of the features f1, . . . , fn, we can describe those aspects of the
data that are relevant for the task and discard the rest. In other words, indicator
features impose a partition on the training data, where similar instances differ-
ing only in irrelevant aspects are assumed to be in the same partition. Although
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our training data is too small to reliably estimate the whole distribution, it might
be large enough to estimate the relevant aspects of the data.3 That is, our small
building blocks, the indicator features, occur often enough to be representative of
their relevance, which is expressed by the expected value p̃( f ) of each feature f
according to the empirical distribution p̃:

p̃( fi)
def
= ∑

x,y
p̃(x,y) fi(x,y) (5.5)

For instance, we might find that the expected value of the feature in (5.4) indicat-
ing that PRO–NP occurs before to is higher than the expected value of the feature
capturing the occurrence of the same EE before the word house.

Since we assume that the sample reasonably estimates the relevant aspects the
data, the expected value of each feature fi according to the underlying model p
has to be the same as the expected value according to the empirical distribution:

∑
x,y

p̃(x,y) fi(x,y) = ∑
x,y

p(x,y) fi(x,y) (5.6)

This means that we can constrain our search: the true model can only be among
those models that satisfy this condition (for each feature fi).

Although this approach is very attractive, we face a serious problem: calculat-
ing the right-hand side of the above equation requires us to sum over all possible
(x,y) pairs. In most NLP tasks, it is impossible to perform this summation. For
instance, if x stands for sentences and y for a possible syntactic analysis, the cal-
culation of the right hand side would require us to sum over all possible analyses
of all possible sentences.4

The above constraint is, in fact, very stringent: it requires the model to best
account for both the training sample and the data we did not observe. That is,
we expect it to be an accurate model of the joint probability distribution p(x,y).
Fortunately, in NLP we are more often interested in the conditional distribution:
p(y|x). For instance, when we encounter a sentence, we would like to know the
conditional probabilities of possible parses given the sentence in order to rank
them, and we are rarely interested in the marginal distribution p(x), i.e., in the
probability of the sentence itself.5 This allows us to relax the constraints: the un-

3In fact in many applications, this is not the case, and it is beneficial to apply smoothing to the
resulting model (Chen and Rosenfeld 1999, Curran and Clark 2003). We discuss the smoothing
technique we use in Section 5.1.3.

4Sampling might be helpful to overcome the problems (e.g. Abney 1997), although it might not
be feasible in real systems (Johnson et al. 1999).

5The most notable exception is the noisy-channel model (Shannon 1948), where we are interested
in the language model as well, i.e., in the marginal distribution. Johnson (2001) compares the ac-
curacy of joint and conditional models in parsing and POS-tagging and finds that the joint model
outperforms the conditional one, showing that marginal probabilities might still be important.
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derlying distribution p should only account for the seen training data (Lau et al.
1993, Rosenfeld 1996):

p̃( f )
def
= ∑

x,y
p̃(x,y) f (x,y) = ∑

x
p̃(x)∑

y
p(y|x) f (x,y)

def
= p( f ) (5.7)

This constraint requires us to sum over all possible analyses for sentences in the
training data which is much more feasible than summing over all possible sen-
tences (although this might still be intractable, Osborne 2000a).

To recapitulate, we can reformulate the task of finding the underlying prob-
ability distribution p as follows. Suppose that we are given n features f1, . . . , fn

which we assume to be relevant for describing the process. We are looking for a
model p, which satisfies the constraint in Eq. (5.7) for each feature fi. This model
is a member of the following set of probability distributions:

C = {p | p( fi) = p̃( fi) ∀i ∈ {1,2, . . .,n}} (5.8)

This set is not empty (p̃ ∈ C); it might, however, be very large, even infinite.
Which distribution should we chose from it?

If we have no prior knowledge about the distribution, it is reasonable to choose
the most uniform one accounting for the training data, that is, the distribution
which agrees with our observations but does not assume anything that is not
known. For instance, if we observe that our features f1 and f2 behave in exactly
the same way in our training data, there is no basis for selecting a distribution
which predicts that they behave differently on unseen data points. This principle
is the maximum entropy principle, which advises us to choose the least complex
hypothesis that can account for the seen data.

Uniformity can be expressed in terms of conditional entropy, defined by

H(p)
def
= −∑

x,y
p̃(x)p(y|x) log p(y|x) (5.9)

The most uniform distribution is the one that maximises the conditional entropy.
That is, we search for the distribution p?

ME ∈ C with maximum entropy:

p?
ME = argmax

p∈C

H(p) (5.10)

It can be shown that the above definition is sound in that p?
ME is well-defined: there

is always a unique distribution in any constrained set C which maximises the en-
tropy.

This approach has several nice properties. First, the optimal p?
ME has the fol-

lowing parametric form:

p?
ME(y|x) =

1
Z(x)

exp

(

n

∑
i=1

λi fi(x,y)

)

(5.11)
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with appropriate λi’s, where Z(x) is a normalising factor, defined as:

Z(x) = ∑
y

exp

(

n

∑
i=1

λi fi(x,y)

)

(5.12)

That is, in this model, each feature is associated with a weight, and the logarithm
of the probability of an event is proportional to the linear combination of the indi-
cator features:

log p?
ME(y|x) ∝ ∑

i
λi f (x,y) (5.13)

for any fixed x. The family of probability models with such a property is called
log-linear models. We refer to the set of log-linear models with indicator features
f1, . . . , fn as L.

Another important characteristics of the maximum entropy model p?
ME is that it

happens to be the model in the family L of log-linear models that best accounts for
the training data; that is, it is the model that maximises the likelihood of the train-
ing data. Formally, the log-likelihood of the empirical distribution p̃ as predicted
by the probability distribution p is defined as:

L(p)
def
= ∑

x,y
p̃(x,y) log p(y|x) (5.14)

Denote p?
ML the model in L that maximises the log-likelihood, that is:

p?
ML

def
= argmax

p∈L

L(p) (5.15)

With these definitions, p?
ME = p?

ML, i.e., the maximum entropy model in C is the
model in L that maximises the likelihood of the training sample.

Since the maximum entropy model happens to be a log-linear model as well,
it is very easy to calculate the conditional probability p?

ME(y|x) once we know
the feature weights λ1, . . . ,λn. But how can we determine the weights? Unfor-
tunately, there is no closed-form solution in the general case, therefore we have
to rely on numerical optimisation methods. The log-likelihood function L, how-
ever, behaves well in L: it is convex, hence all local maxima are global maxima
as well, i.e., there is a unique global maximum of the likelihood function.6 This
means that several general purpose optimisation methods can be applied to the
problem; Malouf (2002a) gives a comparison of a handful of such algorithms.

An algorithm specially tailored to log-linear models is the Generalised Itera-
tive Scaling (GIS) algorithm of Darroch and Ratcliff (1972), summarised in Fig-
ure 5.1. It starts with setting the parameters to 0 and calculating the expected

6This does not mean that there is a unique parameter set maximising the likelihood function. In
fact, there might be many of them (see Bancarz and Osborne 2002).
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1 set C = maxx,y ∑n
i=1 fi(x,y)

2 set t = 0
3 foreach i = 1, . . . ,n

4 set λ(0)
i = 0

5 calculate p̃( fi)

6 calculate L(p(0))
7 do
8 foreach i = 1, . . . ,n
9 calculate p(t)( fi)

10 set λ(t+1) = λ(t) +
1
C

log
p̃( fi)

p(t)( fi)
11 calculate L(p(t+1))
12 increment t
13 while (L(p(t))) not converges

Figure 5.1: The Generalised Iterative Scaling algorithm.

value of each feature according to the empirical distribution p̃ (lines 4–5). Then,
in line 6, it calculates the log-likelihood L(p(0)) of the training data according
to the initial uniform distribution. Lines 7–13 contain the iterative part of the
algorithm. In each iteration step (t), we calculate the expected value of each fea-
ture according to the probability distribution p(t), using the formula in Eq. (5.7)
(line 9). Then, each feature weight λi is updated in line 10 by an amount propor-
tional to the ratio of our objective p̃( fi) and the expected value according to the
current model p(t)( fi). Intuitively, in each iteration step, we change the model pa-
rameters so that the expected value of each feature according to our model gets
closer to what we observe in the training data. The algorithm terminates when
the log-likelihood of the data according to our model no longer improves (or at
least when the improvement is under a threshold). Note that the original algo-
rithm of Darroch and Ratcliff (1972) requires a slack feature fn+1 which ensures
that C = ∑n+1

i=1 fi(x,y), for all (x,y) pairs. Curran and Clark (2003), however, show
that this feature is not necessary.

Computationally the most expensive part of the algorithm is calculating the
expected value of each feature, which requires a double loop: for each training in-
stance x, we have to loop through all possible underlying structures y.7 That is,
the worst case complexity of each iteration is O(nNY ), where N is the size of the

7By possible underlying structures we mean both observed and unobserved ones. For instance, if
the underlying structure is a syntactic analysis of the given sentence, we have to loop through all
possible parse trees.
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training sample, n is the number of indicator features and Y is the average number
of possible analyses. In practice, training time might be prohibitive when we have
many indicator features (n is large) and/or many possible structures (Y is large).8

5.1.2 Features

In the ME approach, indicator features translate linguistic aspects of the data to
machine-learnable structures. Therefore, the task of designing the right feature
set is the most crucial part of the learning process, and requires a human expert.
The relevance and quality of the features have an immediate effect on the learner’s
capability to capture the necessary generalisations. However, one has to take not
only the linguistic side into account but also the characteristics of the learning al-
gorithm. Too many and too specific features result in overfitting the training data
and lead to decreased performance in the general case. Therefore, a fine balance
is to be attained: one has to select a relatively small amount of important features.

How does this happen in practice? Usually,9 we do not design individual fea-
tures, but rather feature templates (see, e.g. Ratnaparkhi 1996). Suppose, for in-
stance, that we hypothesise that the target word might be of importance for decid-
ing whether it is preceded by an EE or not (e.g. to is often preceded by PRO–NP).
In order to encode this intuition, we define a template: current_word=X, where
X is taken to be a variable. Then, while preparing our training data, we instantiate
several features by substituting the variable X with the current word:

current_word=to
current_word=house
. . .

We call each such feature a basefeature. The basefeatures are still not the fea-
tures the training algorithm manipulates. The indicator features discussed in the
previous section are pairs in the form of 〈label,basefeature〉:

f1: EE=* and current_word=to
f2: EE=PRO–NP and current_word=to
. . .
f101: EE=* and current_word=house
f102: EE=PRO–NP and current_word=house
. . .

8Goodman (2002) proposes a speedup for the GIS algorithm; unfortunately the memory require-
ment of the new algorithm is generally too high to be feasible.

9In what follows, we assume that we essentially have a labelling (tagging) task, where each word
is assigned a label from a relatively small fixed set.
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These features are usually automatically instantiated before the learning process;
the training algorithm, then, associates a weight with each such feature.

Now, let us turn our attention to the task at hand: detecting where EEs occur in
the input sentence. In the present setting, we employ two main types of features –
local ones (Tables 5.1 and 5.2) and non-local ones (Table 5.3).

Local features represent information about the words and their POS-tags oc-
curring in a window of 5 words around the target word (the (i + 1)th word in the
sentence). This five-word window corresponds to a trigram model, where we con-
sider both left and right trigrams around the focus word at the same time. Table 5.1
shows the “lexical” features, adopted from (Ratnaparkhi 1996), which encode the
surface form of the surrounding words. The motivation for using these features is
straightforward: many EEs co-occur with only a small set of trigger words. For ex-
ample, the empty SBAR complementiser (COMP–SBAR) mostly occurs after words
of utterance, such as said, says, explain, etc. Similarly, no empty complementiser
can be followed by what, and they only very rarely occur before the word that.

Although lexical features are often helpful, they prove to be too specific in
many other cases. Therefore, we also make use of the POS information of our in-
put (we assume POS-tagged input). The features encoding POS-tags in a window
of 5 words around the target word are less fine-grained than the lexical features,
but they are capable of capturing interesting generalisations (Table 5.2). For ex-
ample, many NP–NP traces representing passives are preceded by the sequence of
some form of be and the past participle of some (transitive) verb. Similarly, the EE

representing empty units (UNIT) always comes after a $-sign followed by some nu-
meric expressions, such as 123 or billion. Clearly, lexical features cannot capture
this generalisation, since the identity of the number is completely irrelevant and
the same number does not necessarily occur in the training set. Moreover, data
sparseness due to the high number of lexical entries prevents us from using bi-
grams of words, whereas features representing bigrams of POS-tags do not cause
any specific problem.

Finally, the observation that EE labels are generally preceded by the label “no-
empties” (EE=*) calls for a feature template encoding the identity of the previous
predicted label (li−1 = X ).

Local features, useful in the majority of the cases (cf. Section 5.3), are some-
times very restrictive. Frequently, interesting cues lie outside a window of five
words, or even if they are within this window, they do not span a contiguous inter-
val. Therefore, we employ further features, summarised in Table 5.3, to capture
these cues. All of these features are implemented as regular expressions, hence
the trace tagger can still be viewed as a finite-state machine.



wi = X ; wi−1 = X ; wi+1 = X
X is a prefix of wi, |X | ≤ 4
X is a suffix of wi, |X | ≤ 4
wi contains a number
wi contains uppercase character
wi contains hyphen

Table 5.1: Local lexical features at position i + 1. X is a variable representing a
word.

posi = X ; posi−1 = X ; posi+1 = X
posi−1 posi = XY
posi−2 posi−1 posi = XYZ
posi posi+1 = XY
posi posi+1 posi+2 = XYZ

Table 5.2: Local POS-related features at position i+1. X ,Y,Z are variables repre-
senting POS-tags.

Target Matching regexp Explanation

NP–NP BE (RB|RBR)* VBN passive
{

NP–NP

PRO-NP

}

RB* to RB* VB to-infinitive
N [,:] RB* VBG gerund

COMP–SBAR (V|,) !that* (MD|V) lookahead for that

WH–NP !IN







WP

WDT

COMP–WHNP







!WH–NP* V
lookback for pending
WH–NPs

WH–ADVP WRB !WH–ADVP* V !WH–ADVP* [.,:]
lookback for pending
WH–ADVP before a verb

Table 5.3: Non-local binary feature templates; the EE-site is indicated by
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passive

This feature is the generalisation of the feature discussed above capturing a
frequent site for passive NP–NP. The feature fires when a form of be is fol-
lowed by a past participle, separated by optional adverbs. Indeed, in many
cases, the passive verb is modified by adverbs, such as in the examples:

(5.16)is (VIS) n’t (RB) expected (VBN) NP–NP

are (VARE) more (RBR) easily (RB) rejected (VBN) NP–NP

to-infinitive

The feature captures the generalisation that in control constructions, the PRO

is followed by an infinitival to, which might be separated by adverbs from
both the EE and the infinitive. Examples are:

(5.17)NP–NP To (INF) further (RBR) load (VB) the stakes. . .
PRO-NP Just (RB) to (INF) say (VB) . . .

gerund

Similarly, many gerundial clauses start with adverbs. The regular expres-
sion matches a frequent environment where gerunds occur, such as in the
examples:

(5.18). . . schedule (NN) , (,) PRO–NP resulting (VBG) in. . .
. . . ideas (NNS) , (,) NP–NP frequently (RB) putting (VBG). . .

lookahead for that

This feature checks whether a complementiser that occurs between the cur-
rent verb and the next finite verb. The goal is to prevent the model from
proposing a COMP–SBAR label if there is an overt complementiser.

lookback for pending WH–NP

With the aid of this feature template, we can verify if the sentence is a rela-
tive clause or an embedded question with object extraction. Examples are:

(5.19)a project COMP–WHNP he heads (VBZ) WH–NP

which (WDT) most Americans previously had (VHAD) WH–NP

lookback for pending WH–ADVP

This regular expression matches frequent sites of extracted adverbs. It
searches for a WH-adverb (such as how, where, etc.) preceding the current
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main verb. In many cases, WH–ADVPs immediately precede punctuation,
although not necessarily the first one after the main verb of the clause:

(5.20)when (WRB) other foreign countries, notably Britain,

are acquiring more American assets WH–ADVP .

5.1.3 The model

Training

Even with very careful design of the feature set, ME models tend to overfit the
training data (Berger et al. 1996, Chen and Rosenfeld 1999, Curran and Clark
2003), therefore it is customary to apply some kind of smoothing or feature selec-
tion algorithm to increase the generalisation capability of the model. Two widely
applied methods are simple frequency cutoff (e.g. Ratnaparkhi 1996) and impos-
ing a Gaussian prior on the weights (Chen and Rosenfeld 1999). Although a
Gaussian prior, when compared to simple cutoff, is reported to produce slightly
superior models in NLP settings (Curran and Clark 2003), it requires a fairly ex-
pensive optimisation of the variance(s) associated with the features. Apart from
its simplicity, cutoff smoothing has a further advantage: it actually reduces the
number of features, hence it speeds up both training and testing and decreases
memory consumption. These considerations led us to apply frequency cutoff to
our tagging model.

Having decided to use a frequency cutoff to improve and/or speed up the
model, there are two important questions to address: (i) what do we mean by cut-
off? and (ii) what is the right cutoff value? As for the first question, we have two
options: we discard either low-frequency basefeatures or low frequency features
(i.e., 〈label,basefeature〉 pairs). The difference is subtle: deleting an infrequent
basefeature means that this particular aspect of the data is not important or reli-
able for making a choice. On the other hand, deleting individual features means
that the given label–basefeature combination is unlikely, although other labels are
more likely to co-occur with the given basefeature. Note that deleting infrequent
features also results in deleting infrequent basefeatures. In the experiments, we
take the approach of deleting infrequent features, even if the corresponding base-
feature is frequent.

Another problem is determining the right cutoff value. Increasing the cutoff
value has two effects: first, it decreases the number of (possibly uninteresting)
features and labels, hence it leads to a better and more compact model. On the
other hand, ignoring too many features results in losing interesting aspects of the
data and, ultimately, in the deterioration of the model. Figures 5.2 and 5.3 show
the effects of changing the cutoff value on the accuracy of the resulting model
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(evaluated on the development data, WSJ00), and on the number of basefeatures
and the number of labels. Cutoff values between 0 and 10 have no dramatic effect
on the accuracy of the resulting model, whereas the cutoff value of 10 practically
halves the number of features and labels, speeding up training and testing by a
factor of 2. With larger cutoff values, however, the resulting models start to dete-
riorate relatively fast. Therefore, in the experiments below, we set the cutoff value
to 10.

In the experiments described here, we use the standard training sections of
the Wall Street Journal corpus (WSJ02–21). After extracting the necessary infor-
mation from the training data, we applied our own implementation of a slightly
modified version of the Generalised Iterative Scaling (GIS) algorithm (for details,
see Curran and Clark 2003).

Testing

Our tagger is very similar to Ratnaparkhi’s POS-tagger (Ratnaparkhi 1996), with
one important difference: the input is POS-tagged text. In the experiments re-
ported here, we use the correct POS-tags from the Treebank. The tagger, then,
searches for the best label sequence (i.e., the best EE-sequence) given the sen-
tence that maximises the joint (or equivalently the conditional) probability of the
input and the sequence:

argmax
l1...ln

p(l1 . . . ln,〈w1, t1〉, . . .〈wn, tn〉)

= argmax
l1...ln

p(l1 . . . ln|〈w1, t1〉, . . .〈wn, tn〉) (5.21)

where lis stand for EE-labels, wis for words and tis for POS-tags. Now, we ap-
proximate the above probability with the product of probabilities of a given label
li occurring in a given context ci, where the context is represented by the features
described in Section 5.1.2:

p(l1 . . . ln|〈w1, t1〉, . . .〈wn, tn〉) ≈
n

∏
i=1

p(li|ci) (5.22)

Note that we assume independence between the contexts: the proper terms should
be p(li|c1 . . .ci). Our contexts, however, capture (a large part of) previous contexts
and under a trigram Markov assumption, they are in fact a reasonable approxima-
tion of the true probabilities.

The tagger performs a variant of beam search: k-best breadth first search. At
each point of time we maintain the k-best paths (label sequences) leading to the
given word. Although k-best breadth first search is not guaranteed to find the
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Model strict (Johnson 2002)

Baseline (unigram) 24.9 33.4
Baseline (trigram) 69.0 74.4
Trace tagger 79.6 83.2
(Johnson 2002) – 79.0

Table 5.4: The performance of trace detectors (labelled F-score) on the strict and
Johnson’s (2002) metrics.

highest probability path, it is fairly adequate in this setting, since our feature set
enforces mostly local decisions. Exceptions are the two “lookback” features: they
express interdependence between non-adjacent labels.10

In the implementation of the search algorithm, we use a priority queue of
maximal length k for storing competing analyses. The queue is implemented as a
singly linked sorted list, and since k is small, we employ incremental search to in-
sert new elements into the list. Therefore, the worst-case complexity of our tagger
is O(nlk2), where n is the sentence length, l is the number of labels. In the experi-
ments here, we used k = 3 setting, where k was optimised on the development set
(WSJ00).

5.2 Results

In the present section, we report the performance of the trace tagger on the stan-
dard test section, Section 23 of the Wall Street Journal corpus. We use the eval-
uation metrics for detecting EEs described in Section 4.3.2: an EE is correctly
detected if the type of the EE is correct and it occurs between the same words as
in the gold standard.

The performance of the trace tagger is compared to two baseline models as
well as to (Johnson 2002). One of the baselines is the most natural one: we inde-
pendently select the most probable label for each 〈word,POS-tag〉 pair; this model
amounts to a unigram hidden Markov model (HMM). The second baseline we
employ is slightly more sophisticated: we apply an HMM-tagger (Brants 2000).
However, as we argued in the previous section, one has to encode some contex-
tual information in the label itself, otherwise the hidden states would be uninfor-
mative. Therefore, in this model, labels (hidden states) are 〈POS-tag,EE-tag〉 pairs.

10Because of the existence of such features, standard Viterbi-search is not applicable. Dienes and
Dubey (2003b) try to approximate the probabilities with a Viterbi-like search (which treats paths
differing only in lookback information as equivalent), and report marginally worse performance
(with 0.5% worse overall F-score).
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EE Frequency Prec. Rec. F-score
Here Here Here Johnson

LABELLED 3864 87.8 72.8 79.6 –
UNLABELLED 3864 96.4 80.0 87.5 –
WH/PRO/TOP 2634 85.8 74.3 79.6 –

NP–NP 1148 88.1 80.2 84.0 –
COMP–SBAR 545 93.9 76.9 84.6 84.0†
WH–NP 508 91.8 75.2 82.7 81.0
PRO–NP 477 72.4 69.2 70.7 –
UNIT 388 99.7 93.5 96.5 92.0
TOP–S 277 93.9 88.5 91.0 88.0
WH–ADVP 171 80.4 45.6 58.2 56.0
COMP–WHNP 107 67.8 37.4 48.2 47.0

NP/PRO–NP 1625 91.5 84.6 87.9 82.0

Table 5.5: EE-detection results on WSJ23 and comparison with (Johnson 2002)
(where applicable).

In principle, this setting would imply that the tagger has to find both the correct
EE-labels and the correct POS-tags. To avoid such an unfair competition, the in-
put “words” are concatenations of words and POS-tags. Table 5.4 summarises the
results. Note that Johnson (2002) uses a slightly different evaluation scheme: he
does not distinguish bound and unbound PROs (NP–NPs and PRO–NPs). Table 5.4
shows results according to both metrics, where applicable.

According to our stricter metrics, the tagger achieves 87.5% unlabelled and
79.6% labelled F-score, clearly outperforming the baseline systems. Under John-
son’s (2002) metrics, the overall labelled F-score increases to 83.2%, which is
around 4% higher than the best reported result on the same task (Johnson 2002).
These results amount to 97.96−98.13% tagging accuracy.

5.3 Discussion

The success of the trace detector is surprising, especially when compared to John-
son’s algorithm which employs hand-written patterns on the output of a state-of-
the-art parser. The tagger can reliably detect NLD sites without explicit knowl-
edge of the phrase structure. This shows that, in English, non-local dependencies
mostly occur at well-defined sites, where local cues are generally strong.
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Interestingly, even the trigram baseline model performs quite competitively on
the task: it can detect EEs with 74.4% labelled F-score under Johnson’s (2002)
metric, which is only 4.6% worse than Johnson’s more sophisticated approach
using a parser. More importantly, the shallow approaches outperform the unlexi-
calised parser with quite a large margin (by 20− 30% F-score, cf. Table 4.1) on
the EE-detection task. What is the explanation of their success?

One important factor, as we will see in Chapter 7, is lexicalisation. Indeed, the
taggers described here model the frequencies of 〈word,EE-label〉 and 〈POS-tag,EE-
label〉 pairs, whereas this information is not available for the unlexicalised parser.
The other factor that plays an important role is the presence of long-distance cues,
from which the parser cannot benefit.

It is interesting to look at the system’s performance on a case by case basis. Ta-
ble 5.5 summarises the precision and recall for the detection of the most frequent
EE-types (the remaining cases add up to around 6% of the EEs). One striking
result is the considerably large gap between precision and recall of the tagger, a
behaviour Johnson (2002) also reports. Thus, we can refine our claim with respect
to detecting NLDs in English: most of the EEs occur at sites which are strongly
marked on the surface. The detection of these EEs is relatively easy requiring no
explicit phrase structure information. However, approximately one quarter of the
NLDs are truly difficult cases without no local and lexical cue.

Table 5.5 also compares Johnson’s (2002) results and the performance of the
trace tagger. Generally, the tagger outperforms the parser+post-processing archi-
tecture in the majority of the cases, but the difference is the most striking in the
case of the most frequent categories: the tagger is surprisingly accurate at de-
tecting PROs, although it has problems telling uncontrolled and controlled PROs
apart. The difference in categories with lower frequency is less prominent, al-
though the shallow approach is be more accurate at detecting empty units (UNIT)
and topicalised sentences (TOP–S) as well.

5.3.1 Error analysis

This section discusses the errors the trace tagger makes. Such a discussion is
important for two reasons. First, it might suggest further features helping trace
detection and, thus, might contribute to the further improvement of the system.
The second benefit of such an analysis is that it gives further insights into the dis-
tribution of EEs and NLDs in English by determining the occurrences where the
shallow approach fails due to either the lack of local cues or local and non-local
ambiguities. In order to avoid unfair optimisation on the test data, we carried out
the error analysis on the development section (WSJ00).
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NP–NP and PRO–NP

This group, covering around 50% of the EEs, proves to be the most challeng-
ing for the trace tagger as well as Johnson’s (2002) approach. Generally, as
the combined score in Table 5.5 shows, the tagger is fairly reliable in find-
ing PROs, but it cannot accurately distinguish them. The problem is that the
binding NP might be very far from the EE-site, which makes it invisible for
the model.

Another common source of error is reduced relative clauses. The lack of the
copular be, which is the most important cue in the case of passive construc-
tions, prevents the tagger from detecting the subject of such clauses:

(5.23)The company said Mr. Stronach will personally direct the re-
structuring, NP–NP assisted NP–NP by Manfred Ginglm,
president and chief executive.

Further cases where the tagger could not detect the EE properly include
prepositional verbs (the tagger wrongly predicts the EE before the preposi-
tion), to be to constructions and coordination:

(5.24)The declaration by Economy Minister Nestor Rapanelli is be-
lieved to be the first time such an action has been called for
NP–NP by an Argentine official of such stature.

(5.25)Michael Basham, deputy assistant secretary for federal fi-
nance, said the Treasury may wait until late Monday or even
early Tuesday to announce whether the autions are NP–NP

to be rescheduled.

(5.26)Saudi Arabia, for its part, has vowed to enact a copyright law
compatible with international standards and NP–NP to ap-
ply the law to computer software as well as to literary works,
Mrs. Hills said.

WH–NP and COMP–WHNP

The tagger detects extracted WH–NPs with high precision. Recall, however,
is considerably lower. A closer inspection of errors reveals that the tagger
finds the extracted WH-subjects easily, whereas extracted WH-objects prove
to be more difficult to detect. Indeed, in the case of subject WH–NPs local
cues are very strong: the EE almost always occurs before a verb and after the
complementiser who (followed by optional adverbs). One important excep-
tion is infinitival subject relative clauses without an overt complementiser,
such as:
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(5.27)The first Champagne COMP–WHNP WH–NP to crack that
price barrier was the 1979 Salon de Mesnil Blanc de Blancs.

In such cases the tagger generally predicts a PRO instead of the correct struc-
ture. Around 7% of the WH–NPs and one third of the COMP–WHNPs belong
to this class.

As for object WH–NPs, their site is generally less strongly marked on the
surface: frequently, the complementiser is missing (i.e., it is also an empty
element COMP–WHNP) and the only cue is the subcategorisation frame of
the preceding verb – information which is only implicitly available for the
tagger. Examples, such as

(5.28)Documents filed with the Securities and Exchange Commis-
sion on the pending spinoff disclosed that Cray Research Inc.
will withdraw the almost $100 million in financing
COMP–WHNP it is providing the new firm WH–NP if Mr.

Cray leaves or if the product-design project he heads is scrapped.

emerges as being very difficult for the tagger.

Clearly, the detection of object WH–NPs and COMP–WHNPs are strongly tied:
the detection of one of them entails the detection of the other. The low ac-
curacy of the COMP–WHNP detection indicates the difficulty of the problem.
Around two thirds of the COMP–WHNP cases and 15% of the WH–NPs occur
in such a construction.

The problem is further complicated when the WH–NP is extracted over
clause boundaries, as illustrated by the following sentences:

(5.29). . . a point COMP–WHNP he wants WH–NP to make . . .
. . . this law COMP–WHNP he tried to pass WH–NP .

(5.30). . . and the $2.25 billion COMP–WHNP Northeast says its bid
is worth WH–NP .

TOP–S and COMP–SBAR

The system is generally very reliable at finding sites for extracted sentences,
since most of these sites occur after verbs of utterance, such as said, says,
explained, etc. However, when these words are followed by a noun phrase,
the tagger can no longer decide, whether the following NP is the subject
of the verb (TOP–S), starts a new subordinate clause with an empty com-
plementiser (COMP–SBAR) or is simply an adjunct of the main verb. Com-
pare the following three sentences, especially the similarity of the local cues
around the underlined word said.
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(5.31)Although the purchasing managers’ index continues to indi-
cate a slowing economy, it isn’t signaling an imminent reces-
sion, said TOP–S Robert Bretz, chairman of the association’s
survey committee and director of materials management at
Pitney Bowes Inc., Stamford, Conn.

(5.32)Michaels Stores Inc., which owns and operates a chain of
specialty retail stores, said COMP–SBAR October sales rose
14.6% to $32.8 million from $28.6 million a year earlier.

(5.33)Sea Containers, a Hamilton, Bermuda-based shipping con-
cern, said Tuesday that it would sell $1.1 billion of assets and
use some of the proceeds to buy about 50% of its common
shares for $70 apiece.

Detecting the correct EEs in these cases would require a deeper understand-
ing of the sentence structure.

WH–ADVP

Extracted WH-adverbs have the worst detection results among the frequent
EE-types, even though they occur in very specific environments. First, most
clauses containing a WH–ADVP start with a WH-adverbial complementiser,
such as how, why, when, etc. This cue is captured by the feature performing
a lookback for such words. Moreover, a closer look at the data reveals that
WH–ADVPs mostly precede a punctuation mark, generally either a comma
or a full stop. Why is the accuracy of the tagger so low on such items, even
though they occur at sites with strong cues?

One complication in detecting WH–ADVPs is their different syntactic status:
previously discussed EEs were all complements, whereas WH-adverbs are
typically adjuncts, hence they are mostly optional and subject to weaker
lexical selection. Furthermore, according to the Penn Treebank representa-
tion scheme, WH-adverbs are preceded by complements and overt adjuncts.
Therefore, in addition to hypothesising a WH–ADVP, the tagger has to find
both the head and the end of the corresponding verb-phrase. As the fol-
lowing example shows, the head and the dependent WH–ADVP as well as
the corresponding WRB might be separated by several intermediate clauses
(i.e., verbs which, in principle, could also be heads) and commas:

(5.34)The bank stocks got a boost when Connecticut Bank & Trust
and Bank of New England said they no longer oppose pend-
ing legislation that would permit banks from other regions to
merge with Connecticut and Massachusetts banks WH–ADVP .
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(5.35). . . when other foreign countries, notably Britain, are acquir-
ing more American assets WH–ADVP .

The tagger, unaware of phrase constructions, cannot detect these structures
accurately, hence the low precision and recall figures. This EE-type is rela-
tively rare (4.5% of all EEs); on the one hand, this means that it is difficult
to reliably estimate their probability distribution, which is another reason
for the low score the tagger achieves on detecting them. On the other, their
sparsity entails that their impact on the overall score is also limited.

5.3.2 Feature analysis

In the previous section we explored which cases are difficult for the tagger and
why. As a complementary approach, we also investigate which features contribute
most to the accuracy of the tagger. Such an analysis reveals the relevant aspects
of the data and help determine important features which could eventually be in-
corporated into other systems aiming at detecting NLDs as well.

In the present section, we approach the problem in two different ways. First,
we carry out performance analysis: we study the improvement of the accuracy of
the tagger when we gradually turn on groups of feature templates. Second, us-
ing a ME-tagger allows us to take a more analytical approach: we can investigate
the weights associated with features. Informally, in a ME-model, a high positive
weight corresponds to strong positive correlation between the basefeature and the
label, whereas a low negative weight suggests strong negative correlation.

Table 5.6 gives the results of the experiments with different feature sets carried
out on the development data (WSJ00). We isolated three large groups of the fea-
tures: (i) POS-related features, generated by the templates described in Table 5.2;
(ii) lexical features (LEX, Table 5.1); and (iii) long-distance features (LDF, Ta-
ble 5.3). We ran experiments using five different combinations of the three groups.

The results are remarkable. First, the tagger using only POS-related features,
i.e., no lexical or long-distance information, performs surprisingly well and man-

Model F-score

LEX only 68.9
POS only 71.3
POS+LDF 73.4
POS+LEX 77.4
All 79.5

Table 5.6: Performance analysis of several feature types.
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ages to achieve 71.3% labelled F-score. Even this simple model outperforms
the baseline models (cf. Table 5.4), although it has no information about lexi-
cal 〈word,EE-label〉 probabilities. This shows that cues at the POS-level are very
strong for the detection of many NLDs. The model achieves accuracy compara-
ble to the full-fledged tagger on detecting NP–NPs, WH–NPs, UNITs and TOP–Ss,
whereas the performance on other EE-types is considerably lower. Handling
WH–ADVPs proves to be very difficult for this model, achieving 7.3% F-score on
detecting them.

Lexicalisation turns out to be equally useful for the task. The tagger employ-
ing lexical features only (in a window of three words!) achieves 68.9% labelled
F-score. The strength of the model lies in detecting COMP–SBARs and TOP–Ss
with high accuracy (83.5% and 88.0% F-score, respectively), showing that these
EEs occur only after a well-defined set of words. Interestingly, the detection re-
sults for the EEs substituting NPs (PRO–NP, NP–NP and WH–NP) is 5− 7% lower
than in the POS-only case, demonstrating that these elements are in many cases
lexically bound, but in other cases POS-information (and larger window size) fa-
cilitates their detection.

The combination of lexical and POS-information brings the strengths of the
two models together: the F-score rises to 77.4%, with most of the EEs almost as
accurately detected as by the tagger having all features turned on, with the excep-
tion of the WH–ADVPs: this particular model attains only 8% F-score on them.

Long-distance features remedy this situation by raising the accuracy on
WH–ADVPs to 58%. These features also improve the detection of the other EEs
by around 1%. Interestingly, when combined with the POS-features only, long-
distance features have a greater relative impact, showing that both lexical features
and long-distance features capture some overlapping characteristics of the data. In
fact, in certain cases, they seem to act against each other: the score for WH–ADVPs
is 7% higher when lexical features are not switched on.

In summary, performance analysis reveals that information in a relatively small
window (5 words) already contains valuable cues for the EE-detection task. POS-
features and lexical features are equally important, capturing both similar and dif-
ferent aspects of the data. The relative importance of the long-distance features is
considerably smaller (they improve the overall performance by around 2%), but
in the case of WH–ADVPs their contribution is more dramatic.

We can refine our feature analysis by looking at the weights assigned to in-
dividual features. However, inspecting feature weights in itself is not sufficient:
infrequent features tend to show a more extreme behaviour than frequent ones.
Therefore, we weighted the feature weights by the relative frequency of the given
features. This number is the expected weight of the given feature indicating how
much this particular feature contributes to the probability of events on average.
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In general, weights for long-distance features (cf. Table 5.3) tend to have a
high absolute value. In fact, they often have a low negative value when the asso-
ciated label is EE=*, whereas a high positive value when the label is their target
label. This shows that these features are indeed important in detecting EEs; how-
ever, they are very specialised, and therefore relatively infrequent, hence their rel-
atively small contribution to the overall score. Another interesting, and somewhat
unexpected, observation is the relatively strong dispreference for EEs following
words containing uppercase letters.

In the remaining of this section, we summarise the most important correlation
patterns for the most frequent EE-types. In the following, the feature 0pos rep-
resents the POS-tag of the word preceding the EE-site, whereas the feature 1pos
stands for the POS-tag of the following word. The complex feature 01pos thus de-
note the POS-tag sequence enclosing the EE, whereas -10pos the two preceding
POS-tags. Similarly, 0lex and 1lex refer to the preceding and following words,
respectively. The suffix and prefix features (suf1, suf2,. . . and pref1, pref2,. . . )
apply to the preceding word.

NP–NP and PRO–NP

In general, the long-distance features targeted at passive, infinitival, and
gerundial constructions show high correlation with the occurrence of these
EEs. There is one exception: PRO–NP EEs show relatively strong negative
correlation with passive constructions, indicating that the model properly
captured the generalisation that the patient of the verb undergoing passivisa-
tion has to occur within the sentence. POS-related features also play an im-
portant role in detecting PROs with the right context having slightly stronger
influence than the left one. Table 5.7 contains the first few most important
features for this class:

WH–NP

Table 5.7 summarises the most important features in detecting extracted
WH noun phrases. A key observation is the model’s specialisation towards
subject WH–NPs; object WH–NPs do not seem to occur in characteristic en-
vironments. The only exception is the long-distance feature performing
a lookback (wh=yes), which captures cues for detecting extracted objects.
It is also interesting to see how the model has generalised over triggering
WH-words: the feature capturing the two-letter prefix of the previous word
(pref2=wh) is the second most important cue for this class.

COMP–SBAR

Interestingly, neither the long-distance lookahead feature for non-occur-
rence of the word that (that=no) nor the feature capturing the word pre-
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NP–NP PRO–NP WH–NP

1pos=TO 1pos=VBG 0pos=WDT

toinf=yes toinf=yes pref2=wh
1lex=to 1pos=TO pref1=w
pass=yes 1lex=to wh=yes
0pos=VBN pos=VBN suf3=hat
1pos=VBG 01pos=IN+VBG 0pos=WP

suf2=ed suf2=ed suf4=that
suf1=d -10pos=NN+VBN 0lex=that
01pos=,+VBG 01pos=VBN+IN pref4=that
01pos=VBD+TO -10pos=NNS+VBN

Table 5.7: The most important features for detecting NP–NP, PRO–NP and WH–NP.

ceding the EE (said in many cases) proved to be the most important feature
in detecting empty SBAR complementisers. Instead, the feature expressing
that the following word should be a pronoun comes first in the list (Ta-
ble 5.8). In fact, the pronoun it has a strong a bias towards co-occurring
with COMP–SBARs. Similarly, many empty complementisers are followed
by the determiner the. The following list describes the most important cues
in order. Observe the generalisation pref2=sa from the trigger words: said,
says and say.

COMP–WHNP

This item shows very similar behaviour to COMP–SBARs; indeed, both of
them have similar syntactic functions. COMP–WHNPs are, however, not lexi-
cally anchored, therefore the most important features try to capture subordi-
nate clause boundary (Table 5.8). This task is fairly difficult, therefore there
are only three features that really show strong correlation with the occur-
rence of empty WH–complementisers (see previous table): COMP–WHNPs
tend to occur between a noun and a pronoun (in this order).

TOP–S

This category tends to occur at the end of the sentence, following the words
says or said. Table 5.8 shows the most important features for this class of
EEs.

WH–ADVP

Detecting adverbial WH-sites proves to be one of the most challenging cases
for the tagger (along with the detection of null WH-operators). Feature
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COMP–SBAR COMP–WHNP TOP–S

1pos=PRP 1pos=PRP pref2=sa
pref2=sa 01pos=NN+PRP -1lex=”
0lex=said 01pos=NNS+PRP -1pos=”
pref3=sai 1lex=.
suf3=aid 1pos=.
suf2=id 01pos=VBD+.
01pos=VBD+PRP 012pos=VBD+.+*EOS*
pref1=s -10pos=”+VBZ

1lex=it -210pos=,+”+VBZ

0pos=VBD 0pos=VBZ

that=no pref4=says
1lex=the lex=says

Table 5.8: The most important features for detecting COMP–SBAR, COMP–WHNP

and TOP–S.

weights also indicate the complexity of the task: there are only three fea-
tures which emerge as showing relatively strong correlation with the occur-
rence of this particular EE. The most important one of them is the long-
distance lookback feature for WH-adverbs such as how, when, etc. In-
deed, the performance analysis has also shown that including this feature
improves detection accuracy of WH–ADVPs from 7% to 58%.

WH–ADVP

wrb=yes
1pos=.
1lex=.

5.4 Related work

Employing a tagger to detect EEs or syntactic structure in general, shows similar-
ities with the supertagging approach of Srinivas and Joshi (1999) (cf. also Clark
2002). Indeed, the success of both models is due to the presence of local cues
which partly determine syntactic structure. Our task, i.e., finding EEs, is a subtask
in supertagging: finding the right elementary tree entails finding NLDs. Our pre-
diction is that supertagging would also greatly benefit from employing the features
that prove to be useful for the trace tagger.
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Another task which is similar is named entity recognition (e.g. Bikel et al.
1999). NER was the shared task of the 2002 and 2003 Conferences on Natural Lan-
guage Learning (CoNLL). The papers, (Tjong Kim Sang 2002, Tjong Kim Sang
and de Meulder 2003), introducing the task give a good overview of the field.
Maximum entropy models are very popular among the competing systems; condi-
tional models are reported to systematically outperform generative (HMM) models
(Malouf 2002b, Florian et al. 2003).

Buchholz (2002) also uses a shallow approach to recover local and non-local
dependencies. The input of her memory-based learner is chunked and POS-tagged
text. She reports 67.34% F-score according to our HD metrics (cf. Section 4.1),
with high (80.92%) precision and low (57.68%) recall.

Summary

In this chapter, we have shown that detecting empty elements is indeed feasi-
ble without explicit knowledge of phrase structure, i.e., before parsing. We have
developed a maximum entropy tagger, the trace tagger, which detects NLD-sites
accurately. In English, a relatively small window of five words contains reason-
able amount of information to determine where EEs occur. Both lexical and POS-
related features have proven to be useful for the task. The most difficult cases
for the tagger are telling controlled and uncontrolled PROs apart and detecting
WH-traces in adjunct position (mainly WH–ADVPs).





Chapter 6

The combined architecture

In the previous two chapters, we showed that (i) parsing with EEs is only feasi-
ble if the unlexicalised parser knows where EEs occur in its input, and (ii) a tagger
can provide this information fairly reliably prior to parsing. In this chapter,1 we
validate our two-step approach by combining the tagger and the parser. The com-
bination method is a simple pipeline: the best hypothesis of the tagger is the input
to the parser. We compare our results to Johnson’s (2002).

In this chapter, we also report experiments with a state-of-the-art lexicalised
parser, presented in (Collins 1997). Interestingly, although the lexicalised parser
is substantially more accurate at constructing phrase structure, the difference be-
tween the unlexicalised and the lexicalised parsers is small when it comes to an-
tecedent recovery. We discuss the reasons for such a behaviour.

6.1 The unlexicalised parser

Theoretically, the ‘best’ way to combine the trace tagger and the parsing algo-
rithm would be to build a unified probability model. However, the nature of the
models are quite different: the finite-state model is conditional, taking the words
as given. The parsing model, on the other hand, is generative, treating the words
as an unlikely event. There is a reasonable basis for building the probability mod-
els in different ways. As we argued in Section 5.1, a generative model for the
tagger is not appropriate: since most of the words are tagged as EE=*, the hidden
states of such a generative model would be uninformative. Although conditional
parsing algorithms do exist, they are reported to be difficult to train using large
corpora (Johnson 2001). Therefore, we employ a simple, non-probabilistic, ar-
chitecture here: the input to the parser is the output of the tagger, and the parser

1This chapter builds on both (Dienes and Dubey 2003a) and (Dienes and Dubey 2003b).

115
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INSERT PERFECT TAGGER

EE det. all 44.3∗ 100 79.6
(F-score) WH/PRO/TOP 47.1∗ 100 79.6

ANTE rec. all 37.7∗ 89.7 72.9
(F-score) WH/PRO/TOP 38.0∗ 89.5 70.4

HD accuracy WH/PRO/TOP 42.7∗ 86.3 67.8

Time (s/sent) 54.8 8.5 8.9

Chart (edges/sent) 2376k 327k 339k

PARSEVAL ≤ 100 75.4∗ 78.0 75.7
(F-score) ≤ 40 75.8∗ 79.3 77.0

Surface deps. 81.8∗ 82.5 81.0
All deps. 80.5∗ 82.7 80.9

Missed sents. 39.9% 0.6% 0.8%

Table 6.1: EE detection, antecedent recovery, HD score, parsing times, and missed
parses for the unlexicalised parser (INSERT, PERFECT and TAGGER models).

treats the suggestions of the tagger as 100% correct. We refer to this model as the
TAGGER model. Chapter 8 discusses a more sophisticated combination method.

The unlexicalised parser is the same as the PERFECT model of Section 4.3.1,
i.e., it does not insert EEs and treats the existing EEs in its input as separate words.
For the combined system, we report NLD-related scores (for antecedent recovery
and HD-relations) as well as parsing time, size of the search space measured by
the number of edges on the chart, and standard PARSEVAL scores.

Results

The results of the experiment are summarised in Table 6.1. The combined ap-
proach proves to be feasible: parsing time is only a little higher than in the case
of the PERFECT model, and the antecedent recovery score is 5% better than John-
son’s (2002) results. In the case of the semantically interesting EEs, the difference
between Johnson’s and our results increases to around 8%.

∗These results are reported on sentences the parser could parse.
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Discussion

The most important result of the experiments presented here is the success of
the combined model, showing that the appropriate combination of simple shallow
modules can efficiently and successfully solve a task which is generally consid-
ered to require more sophisticated tools. The most important effect of the trace
tagger is the reduction of the search space the parser has to explore. The parser,
using the hypotheses of the tagger, explores only 14% of the search space of the
INSERT model, which results in a sixfold speedup. Due to the decrease in the
size of the search space, beam search is more reliable at filtering edges, and the
TAGGER model is both more robust and more accurate than the INSERT model.

Our approach has several potential weaknesses which could have led to its
failure. An important problem with the architecture presented here is the rigidity
of the combination method. Indeed, the parser proves to be very sensitive to tag-
ging errors: whenever the trace tagger commits an error, it turns out to be difficult
for the parser to recover and produce a reasonable tree. In Chapter 8, we present a
novel probabilistic framework for the combination which overcomes this problem
keeping the search space of the parser relatively small.

Another critical point is that we work with a very simple parser, an unlex-
icalised PCFG model, even though lexicalised parsers reportedly perform better
than their unlexicalised counterparts (e.g. Magerman 1995, Charniak 1997, 2000,
Collins 1997, Ratnaparkhi 1997, etc.). In the next section, we present an experi-
ment using a lexicalised parser in the same setting as here.

Interestingly, when it comes to detecting non-local dependencies, our unlexi-
calised model still outperforms Johnson’s (2002) pattern matching algorithm, who
employs a state-of-the-art lexicalised parser. There are several crucial differences
between the two approaches which render our system more accurate despite the
use of a less accurate parser. First, we employ a parsing model which, albeit un-
lexicalised, is designed to capture non-local dependencies. Johnson, on the other
hand, adopts a parser which does not handle NLDs.

The second difference, which follows from the previous one, is that we de-
tect NLDs partly before, partly during parsing, whereas Johnson (2002) attempts
to do everything after the parser has finished its job. It turns out, however, that
the parser Johnson (2002) employs tends to get confused when trying to analyse
sentences with NLDs, and, as a consequence, the pattern triggering the detection
of an EE does not even occur. Indeed, Johnson (2002) reports a 9% decrease in
EE-detection score when he applies his pattern matching algorithm to the output
of the parser (as opposed to the perfect trees).

Third, Johnson (2002) offers one algorithm for both detecting EEs and recov-
ering antecedents. Our approach, on the other hand, hinges on the insight that
recovering antecedents requires structural information, whereas the occurrence of
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EE Frequency Prec. Rec. F-score

Here Here Here Johnson

ALL 3864 80.4 66.6 72.9 68.0

WH/PRO/TOP 2643 76.0 65.6 70.4 62.7†

NP–NP 1148 69.9 62.1 65.8 60.0

COMP–SBAR 545 93.2 78.0 84.9 84.0†

WH–NP 508 91.1 74.6 82.0 81.0

PRO–NP 477 69.9 67.1 68.5 50.0

UNIT 388 99.7 92.5 96.0 92.0

TOP–S 277 87.7 85.2 86.5 87.0

WH–ADVP 171 76.2 45.0 56.6 56.0

COMP–WHNP 107 68.3 38.3 49.1 47.0

Table 6.2: Antecedent recovery results for the unlexicalised TAGGER model and
comparison with Johnson (2002).

EEs is mainly restricted by local and lexical constraints. Therefore, we have devel-
oped separate specialised modules for the two tasks, each of which outperforms
Johnson’s (2002) all-in-one approach on the corresponding tasks.

Finally, though maybe most importantly, the combined TAGGER model pre-
sented here makes use of lexical information while recovering NLDs. Although
Johnson (2002) mentions that a simple lexicalisation method does not improve
the results of his algorithm, we have seen in the previous chapter (Section 5.3)
that lexicalisation plays an important role in EE detection: adding lexical features
to the model improves the detection score by around 6%. Indeed, there are many
different interacting cues at different levels which facilitate NLD recovery: the oc-
currence of grammatical function words (infinitival to, WH-adverbs, etc.), lexical
preferences (whether a verb is transitive or tends to co-occur with EEs, like the
words said, explained, etc.), local POS-sequences and structural (syntactic) infor-
mation. Johnson (2002) cannot incorporate all of these cues.

Table 6.2, comparing the scores for antecedent recovery attained by the un-
lexicalised TAGGER model and by Johnson’s (2002) algorithm, reveals that the
most important weakness of Johnson’s model is telling controlled and uncon-
trolled PROs (NP–NPs and PRO–NPs) apart. Indeed, even in the case of perfect
trees (!), Johnson (2002) reports 63% and 57% F-score for NP–NP and PRO–NP,
respectively. These results are considerably worse than the scores achieved by our
TAGGER model, which does not assume prior knowledge of phrase structure. As
we argued in Section 3.2.1, the main problem is the lack of lexicalisation: cer-
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tain verbs (e.g. means, involves) favour uncontrolled PRO–NPs while others (e.g.
begins, starts) show a strong preference for controlled NP–NP traces. Johnson’s
(2002) unlexicalised pattern matching algorithm is unable to incorporate this in-
formation.

Although we do lexicalise the unlexicalised parser to some extent when com-
bining it with the trace tagger, antecedent recovery might benefit from further
lexicalisation, i.e., from a lexicalised parser. Specifically, as we already discussed
it in Section 4.3.3, the unlexicalised parser cannot distinguish subject and object
control. Compare the structures in Figure 6.1, which are almost identical, except
for one label: in the case of subject control, the matrix verb is dominated by a
VPNP−NP nonterminal label, whereas in the case of object control, the dominating
nonterminal label is a VP. The choice between the two alternatives is exclusively
determined by the matrix verb. This information is not available for the unlex-
icalised parser. A lexicalised parser, on the other hand, is able to make use of
this cue. Therefore, we expect a lexicalised parser to be substantially more accu-
rate at antecedent recovery – at least, for NP–NP traces. To test this hypothesis,
we present experiments with a state-of-the-art lexicalised parser (Collins 1997,
1999).

6.2 Collins’s parser

We have seen that the preprocessing approach advocated here already outperforms
Johnson’s (2002) post-processing approach by a margin of 5% on antecedent de-
tection, even though we employ a fairly inaccurate (in terms of PARSEVAL scores)
unlexicalised PCFG parser. In order to further improve the results, we substi-
tute the unlexicalised parser with a state-of-the-art lexicalised one, with Collins’s
(1997) Model 2. On the PARSEVAL metrics, this model outperforms the unlexi-
calised parser by around 15% F-score.

In this section, we test the models with the lexicalised parser under two con-
ditions: under the PERFECT and the TAGGER ones. As before, we use the simple
pipeline architecture: the EEs are treated as separate words and the parser takes the
input to be 100% correct, regardless of whether the information about the EE-sites
comes from the gold standard or from the tagger. We defer the detailed description
of the parsing model to the next chapter.

We employ the parser described in (Collins 1999). The parser itself requires
only minor engineering modifications to incorporate handling EEs, such as allow-
ing a larger number of nonterminals and removing hard-coded constants. The
training algorithm, which extracts the necessary information from a treebank, on
the other hand, demands a number of small adjustments to handle EEs properly.
Furthermore, the original extraction algorithm used by Collins (1999) is barely
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Figure 6.1: Problems for the unlexicalised model: subject vs. object control
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NOTRACE PERFECT TAGGER

EE-det. all – 100 79.6
(F-score) WH/PRO/TOP – 100 79.6

ANTE-rec. all – 90.52 74.3
(F-score) WH/PRO/TOP – 90.4 72.3

HD accuracy WH/PRO/TOP – 89.0 71.3

Time (s/sent) 1.8 1.6 1.6

Chart (edges/sent) 14k 12k 13k

Fully constructed
edges (per sent)

434k 307k 331k

PARSEVAL ≤ 100 88.0 88.2 86.3
(F-score) ≤ 40 88.5 88.8 87.1

Surface deps. 90.7 90.0 88.6
All deps. 88.2 90.5 88.2

Table 6.3: Finding NLDs with a lexicalised parser: the PERFECT and the TAGGER

models.

documented, therefore our system, when tested under the same circumstances as
the original Model 2 in (Collins 1997, 1999), is slightly less accurate: it achieves
88.0% F-score on the PARSEVAL metrics. The parser uses beam search (Good-
man 1998) to prune its search space, with the beam set to 10000.

In the experiments, we report NLD-accuracy as well as PARSEVAL scores, pars-
ing time and the size of the search space. The latter is measured by the number
of fully constructed edges and by the size of the chart, i.e., the number of edges
remaining after the beam search.

Results

The main results of the experiments with the lexicalised parser are summarised in
Table 6.3. Lexicalisation does improve the results, but only by a margin of around
1− 2% (cf. Table 6.1), even in the case where the perfect information about the
occurrence of EEs is available for the parser (PERFECT model). The lexicalised

2Dienes and Dubey (2003a) report a slightly higher F-score, because they fail to discount pseudo-
attachments.
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EE Frequency Prec. Rec. F-score

Here Here Here UNLEX Johnson

ALL 3864 81.8 67.9 74.3 72.9 68.0

WH/PRO/TOP 2643 77.9 67.5 72.3 70.4 62.7†

NP–NP 1148 74.9 68.3 71.5 65.8 60.0

COMP–SBAR 545 93.9 76.9 84.6 84.9 84.0 †

WH–NP 508 89.6 73.4 80.7 82.0 81.0

PRO–NP 477 72.4 69.2 70.7 68.5 50.0

UNIT 388 99.7 93.6 96.5 96.0 92.0

TOP–S 277 83.9 79.1 81.4 86.4 87.0

WH–ADVP 171 73.2 41.5 53.0 56.6 56.0

COMP–WHNP 107 67.8 37.4 48.2 49.1 47.0

Table 6.4: Antecedent recovery results for the lexicalised TAGGER model and
comparison with Johnson (2002) and with the unlexicalised TAGGER model.

TAGGER model outperforms Johnson’s (2002) approach by 6.3% on the task of
antecedent recovery; in the case of semantically interesting NLDs, the difference
rises to almost 10%. Finally, PARSEVAL scores are only marginally higher un-
der the PERFECT condition than in the case of the model which does not handle
NLDs at all (NOTRACE model), whereas they are considerably worse when the
trace tagger is applied as a preprocessor (TAGGER model).

Discussion

The most unexpected result of the experiments presented in this section is the sur-
prisingly small difference between the lexicalised and the unlexicalised models
with respect to antecedent recovery: even though the lexicalised parser is consid-
erably more accurate according to the PARSEVAL metrics, it only outperforms the
unlexicalised parser by 1−2% when it comes to handling NLDs. A closer look at
the results (Table 6.4) shows that the increase is only due to better recovery scores
for controlled PROs (NP–NP): lexicalisation, in the case of the TAGGER models,
improves the score for this particular EE by approximately 6%.

When comparing the scores for antecedent recovery as well as for recovering
head–dependent relations (HD) in the case of the PERFECT models (Table 6.5), we
see a similar behaviour: as predicted, the lexicalised parser is more accurate at
finding the antecedents for NP–NP traces. Observe, however, that the lexicalised
PERFECT model is around 10% worse at recovering the antecedents for WH–ADVP

gaps. Examining the errors in the development set reveals that their main cause is
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EE Frequency Ante. rec.3 HD score3

LEX UNLEX LEX UNLEX

ALL 3864 90.5 89.7 87.7 85.9

WH/PRO/TOP 2634 90.4 89.5 89.0 86.3

NP–NP 1148 86.0 81.7 85.1 79.4

COMP–SBAR 545 100.0 100.0 97.4 96.0

WH–NP 508 96.9 96.7 95.9 94.5

PRO–NP 477 100.0 100.0 96.2 92.9

UNIT 388 100.0 100.0 87.9 89.9

TOP–S 277 90.6 91.3 89.5 87.0

WH–ADVP 171 84.8 93.6 83.6 88.9

COMP–WHNP 107 100.0 100.0 98.1 100.0

Table 6.5: Antecedent recovery and HD scores for the lexicalised and unlexicalised
PERFECT models.

the total confusion of the parser: the WH–ADVP elements get attached to the wrong
phrases and their antecedent WHADVP or COMP–WHADVP often ends up in a dif-
ferent clause. Why is the lexicalised parser less accurate than the unlexicalised
one in these cases? Why is the overall performance of the unlexicalised model so
close to the lexicalised one?

We see two main factors that come into play here. First, we argued in the pre-
vious section as well as in Section 5.3 for the importance of lexicalisation in the
task of EE detection. Collins’s parser models two types of statistics: monolexi-
cal ones and bilexical dependencies. While the parser is shown to only marginally
benefit from modelling bilexical dependencies (Gildea 2001), monolexical statis-
tics prove to be very important. For instance, Klein and Manning (2003) present a
lightly lexicalised parser incorporating this kind of lexical information only; their
parser is more accurate than early lexicalised ones. Similarly, as far as monolex-
ical statistics are concerned in the cases crucial for EE detection, we implicitly
lexicalise our unlexicalised parser by using a lexicalised preprocessor (or the ora-
cle). Consequently, the difference is relatively small between the lexicalised and
the unlexicalised models.4

The other reason for the relatively small benefit of using the lexicalised model
can be attributed to data sparseness. Using gap+ variables increases the number

3Since the parser does not have to detect the EEs in this case, the precision, the recall, and the
F-score are the same.

4The latter model would be better called lightly lexicalised.
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of nonterminals considerably (by a factor of 7.1), making it more difficult to reli-
ably estimate the parameters for the model. While this poses no problem for the
unlexicalised model, adding lexicalisation enhances the sparseness of the train-
ing data, especially in the case of infrequent EEs, such as WH–ADVP or TOP–S.
Furthermore, as we will see in Chapter 7, lexical information greatly restricts the
rules available for the parser. The lack of available alternatives may drive the
lexicalised parser towards a suboptimal (global) solution. In the case of the un-
lexicalised model, however, even the part of the grammar restricted by the tagger
is large enough to allow the parser to attach and thread the EEs correctly.

Another effect of data sparseness is that handling EEs does not seem to im-
prove the lexicalised parser as far as phrase structure and surface dependencies
are concerned: even the PERFECT model attains lower scores on the measure eval-
uating its accuracy for recovering surface dependencies (although the PARSEVAL

scores are marginally higher). The reason for such a behaviour is that the presence
of EEs dramatically restrict the rules the parser can apply, and given the low fre-
quency of EEs, the appropriate rule might not even occur in the training corpus at
all. Even if the necessary rule appears, it is usually infrequent and thus the estima-
tion for its probability is unreliable. This constellation drives the parser towards a
suboptimal solution.

When combining the trace tagger and the lexicalised parser, the drop in both
PARSEVAL and surface dependency scores is more remarkable: the TAGGER model
performs 1.5− 2% worse according to these measures. Apart from the lack of
available rules, the main reason is the rigid combination of the parser and the tag-
ger: whenever the tagger makes a mistake, the parser cannot properly incorporate
the (wrong) hypothesis into the parse tree, and is, thus, forced to come up with a
parse tree which contains more errors. We conjecture that this effect of the mis-
takes the tagger makes is present in the case of the unlexicalised models as well,
but they benefit more from the implicit lexicalisation discussed above.

Note, however, that having lower PARSEVAL scores than in the case of the NO-
TRACE model is not a problem in itself: although we lose some accuracy as far as
phrase structure and surface dependencies are concerned, we also gain non-local
dependency information which is unavailable to us when applying the NOTRACE

model. Indeed, when it comes to detecting both surface and deep (non-local) de-
pendencies, the TAGGER model is as accurate as the NOTRACE model.

Finally, observe the reduction of the search space the parser has to explore
when it is informed about NLD-sites: in the case of the TAGGER model, the parser
constructs 25% fewer edges than in the case of the NOTRACE approach. The size
of the chart also decreases by around 10%, which results in a 12% speedup. The
PERFECT model shows a similar behaviour.

In summary, lexicalisation does improve the results for recovering NLDs, but
only by a relatively small margin. There are two reasons for such a behaviour.
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First, handling NLDs increases the number of the parameters we have to estimate
and therefore aggravates the sparse data problem. To alleviate this problem, im-
proved smoothing techniques are required, the investigation of which is beyond
the scope of the present dissertation. The second main cause of the relatively mod-
est improvement lies in the rigid combination of the trace tagger and the parser.
In the next two chapters, we explore two possible remedies: in Chapter 7, we test
whether we need the preprocessor at all or the lexicalised parser in itself is able to
detect NLDs. As we will see, it is feasible to detect NLDs with a lexicalised parser,
but the results suggest that the parser might still benefit from consulting the trace
tagger, provided they are integrated in a more appropriate way. In Chapter 8, we
present a novel architecture to achieve this goal.

Summary

This chapter has presented a simple architecture combining the trace tagger and
the parser: the parser considers the hypotheses of the trace tagger correct and con-
structs a parse tree without inserting further empty elements. Although this simple
architecture is very rigid and makes the parser very sensitive to tagging errors, it
still outperforms Johnson’s (2002) approach on antecedent recovery by 5% even
if we employ an unlexicalised parser. Lexicalisation improves the scores by 1.5%.

We have discussed experiments both with a relatively inaccurate unlexicalised
and a state-of-the-art lexicalised parser. Interestingly, even though the lexicalised
parser is much more accurate at building phrase structure, it does only marginally
better when it comes to recovering non-local dependencies. The main reason, we
have argued, is that the two COMBINED models are not that different: we im-
plicitly lexicalise the unlexicalised parser by the preprocessing step, which makes
extensive use of lexical information. Data sparseness and the rigid combination
with the trace tagger have also been claimed to prevent the lexicalised parser from
improving the results by a larger margin.





Chapter 7

Finding NLDs with a lexicalised
parser

In this chapter,1 we investigate whether a lexicalised parser suffers from the same
efficiency and accuracy problems as the unlexicalised one (cf. Chapter 4). In Sec-
tion 5.3 we argued that the success of the trace tagger is to a large extent due to
lexicalisation: the tagger takes into account frequencies of 〈word,EE-label〉 and
〈POS-tag,EE-label〉 pairs, whereas this information is not available for an unlexi-
calised parser. Furthermore, in Section 6.2 we saw that a lexicalised parser only
marginally improves the scores when combined with the tagger. We claim that the
reason is, again, due to the lexicalised nature of the tagger: the lexicalised parser
contributes no further information to the model. In fact, we claimed that lexical-
isation might also hinder the parser when it comes recovering NLDs: it restricts
the number of available choices so drastically that the parser cannot incorporate
an EE, especially in the case of the TAGGER model when tagger makes a mistake.

However, this also suggests that a lexicalised parser would not suffer from the
same problems as the unlexicalised one when trying to detect EEs. Indeed, if lex-
icalised parsing with EEs is feasible, it might be possible that it even outperforms
the trace tagger, since a parser can make use of explicit phrase structure informa-
tion.

In this chapter, we investigate these claims. Although Collins (1997) presents
a model (Model 3) that can detect one EE-type (WH–NP), there is no probabilis-
tic phrase-structure parsing model that can handle all EE-types. Therefore, in this
chapter, we generalise Collins’s approach to several EE-types (Model 4), and test
the new parser in the same settings as we used for the unlexicalised INSERT model
in Chapter 4.

1This chapter is the extension of Section 5 of Dienes and Dubey (2003a).
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7.1 Model 3

Since our parsing model that handles several EE-types is a generalisation of
Collins’s (1997) Model 3, we present Model 3 in this section. First, we sketch
the probability model and, then, briefly describe the parsing algorithm. Finally,
we discuss the problems with Model 3. The first section closely follows (Collins
1999, pp. 168–175).

7.1.1 The probability model

In the following, we adopt Collins’s notation. In general, a lexicalised context free
rule has the following form:

P(h) → Ln(ln) . . .L1(l1)H(h)R1(r1) . . .Rm(rm), (7.1)

where upper-case letters stand for nonterminals, and lower-case ones represent
〈headword,head-POS〉 pairs (lexicalisation). P is referred to as the parent, H as
the head, whereas Li and R j are left and right modifiers, respectively.

In his generative model, Collins defines the probability of the rule as:

p(Ln(ln) . . .L1(l1)H(h)R1(r1) . . .Rm(rm)|P(h)) (7.2)

This probability can be expanded using the chain rule:

p(Ln(ln) . . .L1(l1)H(h)R1(r1) . . .Rm(rm)|P(h)) = (7.3)

ph(H|P(h)) ·
n

∏
i=1

pl(Li(li)|L1(l1) . . .Li−1(li−1),P(h),H) ·

m

∏
j=1

pr(R j(r j)|L1(l1) . . .Ln(ln),R1(r1) . . .R j−1(r j−1),P(h),H)

To handle the extreme sparsity of the data, Collins assumes independence between
the generation of the modifiers, i.e., he approximates this generation process as a
unigram Markov process. Hence, the terms in Eq. (7.3) are simplified as:

p(Ln(ln) . . .L1(l1)H(h)R1(r1) . . .Rm(rm)|P(h))≈

≈ ph(H|P(h)) ·
n

∏
i=1

pl(Li(li)|P(h),H) ·
m

∏
j=1

pr(R j(r j)|P(h),H) (7.4)

Note, however, that the unigram Markov process would give too high a probability
to too long sequences. To avoid this behaviour, Collins also generates STOP sym-
bols Ln+1 and Rm+1 after the generation of the left and right modifiers (cf. also
Brants 2000); once the STOP symbols are inserted, no more modifier is generated.
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In summary, the generation of the RHS given the LHS of a rule (7.1) is viewed
as a three-step process (Model 1):

1. Generate the head constituent H with probability ph(H|P(h)).

2. Generate the left modifiers L1(l1)...Ln+1(ln+1) as a unigram Markov process

with probability
n+1

∏
i=1

pl(Li(li)|P(h),H), where Ln+1 is the STOP symbol.

3. Generate the right modifiers R1(r1)...Rm+1(rm+1) as a unigram Markov pro-

cess with probability
m+1

∏
j=1

pr(R j(r j)|P(h),H), where Rm+1 is the STOP sym-

bol.

Due to the independence assumption between the generation of the modifiers,
this model fails to capture the difference between transitive, intransitive and di-
transitive verbs, as well as the difference between complements and adjuncts.
Clearly, some of the modifiers are obligatory, therefore the Markov process should
not stop before generating all of them (complements). To handle this problem,
Collins associates two subcategorisation frames (LC and RC) with each head: one
for the left and one for the right modifiers (Model 2). The subcat frames are mul-
tisets of nonterminal labels the head requires as obligatory complements. In this
model, complements have different non-terminal labels from adjuncts (NP–C and
NP, respectively). Whenever a complement compatible with the subcat frame is
generated, it is removed from the frame. The probability of generating a STOP
symbol is 0 if the corresponding subcat frame is not empty. In summary, the prob-
ability model is extended as:

ph(H|P(h)) · generate head
plc(LC(1)|P(h),H) · generate initial left subcat
prc(RC(1)|P(h),H) · generate initial right subcat
n+1

∏
i=1

pl(Li(li)|P(h),H,LC(i)) ·
generate left modifiers (and remove comple-
ments from subcat frame)

m+1

∏
j=1

pr(R j(r j)|P(h),H,RC( j))
generate right modifiers (and remove com-
plements from subcat frame)

(7.5)

This model is further improved by incorporating WH–NP traces (Model 3).
Model 3 assumes a similar gap-threading approach to the one we introduced in
Section 2.3: gap information is encoded in the non-terminal labels; we discuss
the differences in Section 7.2.2. Now, suppose that the LHS of a rule contains a
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gap. There are three ways the gap information can be passed to the RHS: (i) the
head takes the gap, (ii) one of the left modifiers takes the gap, or (iii) one of the
right modifiers takes the gap. To model this choice, Collins introduces one more
parameter G, which can have three values: Head, Left or Right. These values
determine how the gap is passed on to the dependent. If G=Head, the head non-
terminal in the RHS also has to contain a gap variable. In the case of Left or
Right, a gap feature is added to the left or right subcat frame. This gap feature
can disappear from the subcat frame if either a generated nonterminal contains a
gap variable or a TRACE symbol is generated. The TRACE symbol also counts as
an NP complement, therefore, it removes not only the gap feature but also a NP–C

from the subcat frame. In summary, the generation of the rule is the following:

ph(H|P(h)) · generate head
pg(G|P(h),H) · generate gap (G=H,L,R) if P has gap
plc(LC(1)|P(h),H) · generate initial left subcat & add gap if G=L
prc(RC(1)|P(h),H) · generate initial right subcat & add gap if G=R
n+1

∏
i=1

pl(Li(li)|P(h),H,LC(i)) ·
generate left modifiers (and remove comple-
ments and gap from subcat frame)

m+1

∏
j=1

pr(R j(r j)|P(h),H,RC( j))
generate right modifiers (and remove com-
plements and gap from subcat frame)

(7.6)

Thus, the probability of rule (2) in Figure 7.1 is calculated as follows:

ph(WHNP|SBAR, that) · pg(R|SBAR, that,WHNP) · (7.7)

plc({}|SBAR, that,WHNP) · prc({S–C}|SBAR, that,WHNP) ·

pr(S–Cgap(bought)|SBAR, that,WHNP,{S–C,gap}) ·

pr(STOP|SBAR, that,WHNP,{}) · pl(STOP|SBAR, that,WHNP,{})

Observe how the right subcat is extended with the gap feature and how this fea-
ture is removed when the child S–C(gap) is generated. Similarly, the probability
for rule (4) is estimated as follows:

ph(VP|VB,bought) · pg(R|VP,bought,VB) · (7.8)

plc({}|VP,bought,VB) · prc({NP–C}|VP,bought,VB) ·

pr(TRACE|VP,bought,VB,{NP–C,gap})

pr(NP–C(week)|VP,bought,VB,{}) ·

pr(STOP|VP,bought,VB,{}) · pl(STOP|VP,bought,VB,{})

Note that the generation of TRACE removes both the gap feature and the {NP–C}
requirements from the subcat frame.
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(3) S(gap) -> NP-C VP(gap)
(4) VP(gap) -> VB TRACE NP

Figure 7.1: An example with gap features (Collins 1999, p. 176).
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7.1.2 The parsing algorithm

Now, let us turn our attention to the parsing algorithm. Collins (1999) employs a
CYK-style bottom-up chart parser to construct the parse trees. The most probable
parse is found by dynamic programming augmented with beam search: subtrees
for a given span are pruned from the search space if their probability falls below a
threshold compared to the best probability edge for the span (cf. Goodman 1998).
Two edges are the same with respect to dynamic programming, if

(7.9)• they have the same nonterminal label

• they span the same words

• their heads are the same

• both of them are either active or passive

• their left and right subcat frames are the same, respectively.

The parser constructs the syntactic structure through the following procedures:

generate_unary

This function generates a parent node for a passive edge and it also generates
the corresponding left and right subcat frames as well as the gap variable, if
necessary.

generate_unary(edge E, label P)

H(+)

. . . .
p(edge) = X

⇒

P(−)&LC,RC ,G

H(+)

. . . .

p(newedge) =X · ph(H|P,h) ·

pg(G|P,h,H) · plc(LC|P,h,H) · prc(RC|P,h,H)

generate_trace

This procedure is responsible for generating traces as either a left or a right
modifier, provided the subcat frames allow gaps. If a trace is generated, an
NP–C and the gap feature is removed from the subcat frame.
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generate_trace(edge E)
P(−)&LC={gap,NP–C. . . }

. . H .
p(edge) = X

⇒

P(−)&LC={. . . }

TRACE . . H .

p(newedge) =X · pl(TRACE|P,h,H,LC)

generate_TOP

This function is very similar to generate_unary, but it also checks whether
the edge spans the whole sentence.

generate_STOP

This function generates STOP symbols on both sides, provided the subcat
frames are empty.

generate_STOP(edge E)

P(−)&LC,RC

. . . .
p(edge) = X

⇒
P(+)&LC,RC

. . . .

p(newedge) =X · pl(STOP|P,h,H,LC) · pr(STOP|P,h,H,RC)

join_2_edges

This function attaches a passive edge as a child to an active one, while
checking whether the edge fits the subcat frame. The function comes in
three versions depending on whether the head is to the left or to the right
and, if it is to the left, whether there is coordination or not.

join_2_edges(edge E1, edge E2)

Li(+)

p(edge1) = X

+ P(−)&LC,RC

. . L1 H .
p(edge2) = y

⇒ P(−)&LC,RC

Li . L1 H .

p(newedge) =X ·Y · pl(Li(li)|P,h,H,LC)
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Figure 7.2: The treatment of PRO subjects in Model 3 (Collins 1999, p. 184).

7.1.3 Discussion

Although Model 3 only deals with WH–NP traces explicitly, Collins (1999) in-
troduces another mechanism to handle PRO–NPs and NP–NPs in subject position.
Whenever a clause has an empty subject, the EE is removed and the subjectless
clause gets an SG label instead of the original S label (cf. Figure 7.2). In princi-
ple, we could use the SG labels to detect PRO subjects. Note, however, that this
approach neutralises the distinction between controlled and uncontrolled PROs: it
is impossible to determine whether the EE has an antecedent or not.

The main problem with Model 3 is that it is designed to handle WH–NP traces
only. Specifically, the following five problems should be remedied in order to
generalise the framework for a wider range of EEs:

(i) Model 3 expects all EEs to have antecedents, though some do not have any
(e.g. PRO–NP);

(ii) it cannot handle multiple types of EEs;

(iii) it does not allow multiple instances of EEs at a node;

(iv) it expects all EEs to be complements, though some are not (e.g. WH–ADVP);

(v) it cannot model EEs with dependents, for example COMP–. . . .

Figure 7.3 illustrates the case of an EE having no antecedent, where there is no
need for threading the gap feature (this representation is very similar to the SG-
notation). Figure 7.4 shows examples with several different EE-types. Observe
the node label SWH−NP+NP−NP representing multiple instances of gaps. Model 3
cannot handle these cases at all: it does not allow more than one gap variable on
a nonterminal. Moreover, it uses only one type to represent gaps, which prevents
it from telling which phrase is the antecedent of the NP–NP and which one is the
antecedent of the WH–NP trace (cf. Section 2.3).
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Figure 7.3: An EE with no antecedent.

SBAR

WHNPi

what

SWH−NP

NP j

I

VPWH−NP+NP−NP

V

want

SWH−NP+NP−NP

NPNP−NP

NP–NP j

VPWH−NP

TO

to

VPWH−NP

V

do

NPWH−NP

WH-NPi

Figure 7.4: Multiple types and instances of EEs.
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The lack of any distinction between adjunct and complement EEs is also a se-
rious problem: when an adjunct EE is generated (e.g. WH–ADVP), there is no cor-
responding ADVP–C in the subcat frame. Clearly, this distinction should also be
handled in a general model. Finally, EEs with complements are also problematic;
this problem, however, is more fundamental than the others, because the parser
is head-driven, that is, a head must be generated before any of its dependents are
attached. In the case of non-head EEs, the parser has to generate an EE only if a
head constituent requires it. In the case of empty heads, however, there is no such
restriction: the parser should hypothesise (several types of) empty heads every-
where in the input string; this behaviour would tremendously increase the search
space and slow down the parser.

7.2 Model 4

The problems with Model 3 call for a generalised treatment of EEs. In this section,
we propose an extension of the model to accommodate several different EE-types.
This model, Model 4, solves the first four problems discussed in the previous sec-
tion. In Section 7.2.2, we discuss how some heuristics can overcome the fifth
problem.

7.2.1 The probability model

Model 3 employs one gap feature to represent one instance of one EE-type. In the
generalised model, we have to deal with several types and possibly multiple in-
stances. In fact, gaps behave in a very similar way as complements: (i) the head
determines the list of possible EEs, and (ii) whenever a child containing pending
gaps is generated, the gaps are to be removed from the list. Therefore, we extend
the model with the left and right “gapcategorisation frames” (gapcat frames):
they are multisets of gaps required by the head. Gapcat frames are generated in a
fashion similar to subcat frames and they replace the gap variable G of Model 3.
We assume conditional independence between the generation of the subcat and the
gapcat frames as well as between the probabilities for the left and the right gapcat
frames. Therefore, in the new model, the probability of the RHS is estimated as:
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ph(H|P(h)) · generate head
plgc(LGC(1)|P(h),H) · generate initial left gapcat
prgc(RGC(1)|P(h),H) · generate initial right gapcat
plc(LC(1)|P(h),H) · generate initial left subcat
prc(RC(1)|P(h),H) · generate initial right subcat

n+1

∏
i=1

pl(Li(li)|P(h),H,LC(i)
,LGC(i)) ·

generate left modifiers (and remove
complements and EEs from sub-
cat/gapcat frames)

m+1

∏
j=1

pr(R j(r j)|P(h),H,RC( j)
,RGC( j))

generate right modifiers (and re-
move complements and EEs from
subcat/gapcat frames)

(7.10)

In this model, we encode in each nonterminal label the types and the number of
pending EEs dominated by the nonterminal (cf. Section 2.3). Whenever a child
with pending EEs is generated, the corresponding EEs are removed from the gap-
cat frame. Generating a STOP symbol when the gapcat (and the subcat) frame is
not empty receives null probability. Thus, for example, the probability of the rule

(7.11)VPWH−NP(to) → TO(to) VPWH−NP(do)

in Figure 7.4 is estimated as follows:

ph(TO|VPWH−NP, to) · (7.12)

plgc({}|VPWH−NP, to,TO) ·

prgc({WH−NP}|VPWH−NP, to,TO) ·

plc({}|VPWH−NP, to,TO) ·

prc({VP–C}|VPWH−NP, to,TO) ·

pl(STOP|VPWH−NP, to,TO,{},{}) ·

pr(VP–CWH−NP(do)|VPWH−NP, to,TO,{VP–C},{WH−NP}) ·

pr(STOP|VPWH−NP, to,TO,{},{})

Observe how the generated VP complement removes items from both the sub-
cat and the gapcat frames. The following example shows how the probability is
calculated when an EE is passed down on the head:

(7.13)SWH−NP(want) → NP(I) VPWH−NP+NP−NP(want)
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ph(VPWH−NP+NP−NP|SWH−NP,want) · (7.14)

plgc({}|SWH−NP,want,VPWH−NP+NP−NP) ·

prgc({}|SWH−NP,want,VPWH−NP+NP−NP) ·

plc({NP–C}|SWH−NP,want,VPWH−NP+NP−NP) ·

prc({}|SWH−NP,want,VPWH−NP+NP−NP) ·

pl(NP–C(I)|SWH−NP,want,VPWH−NP+NP−NP,{NP–C},{}) ·

pl(STOP|SWH−NP,want,VPWH−NP+NP−NP,{},{}) ·

pr(STOP|SWH−NP,want,VPWH−NP+NP−NP,{},{})

Note the empty gapcat frames and the difference between the number of gaps on
the parent and the head-child: this indicates that the antecedent of one of the EEs
(NP–NP) should be deposited among the children of the parent (NP(I ) in this case).
As a final example, the probability for the rule:

(7.15)S(to) → PRO–NP VP(to)

in Figure 7.3 is calculated as:

ph(VP|S, to) · (7.16)

plgc({PRO−NP}|S, to,VP) ·

prgc({}|S, to,VP) ·

plc({NP–C}|S, to,VP)) ·

prc({}|S, to,VP) ·

pl(PRO–NP|S, to,VP,{NP–C},{PRO−NP}) ·

pl(STOP|S, to,VP,{},{}) ·

pr(STOP|S, to,VP,{},{})

In this case, the right gapcat frame is not empty, although there is no gap fea-
ture on the parent nonterminal: the new model allows the generation of gaps with
such parents as well. Furthermore, observe how the generation of the PRO–NP

trace removes both the complement NP–C and PRO-NP requirements from the cor-
responding frames. Were the EE an adjunct (e.g. a WH–ADVP), the subcat frame
would not have changed: the new model allows manipulating the subcat and the
gapcat frames independently.

7.2.2 The parsing algorithm

Although the probability model has changed considerably, the parsing algorithm
requires only minor modifications to accommodate the new model. First, on each
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edge, we maintain two additional multisets: the left and the right gapcat frames.
To decrease the sparsity of the data, we distinguish only six different EE-types
in the gapcats (as opposed to the 44 possible types): NP–NP, WH–NP, PRO–NP,
TOP–S, WH–ADVP, and OTHER, the latter category containing all the EEs which are
not in the other five classes. With respect to the dynamic programming, we ex-
tend the notion of equivalent edges to incorporate gapcat frames: two edges do
not compete with each other if their gapcat frames differ (cf. 7.9). Furthermore,
we make use of a table containing which items each nonterminal removes from
the gapcat frame (e.g. SWH−NP+NP−NP removes a WH–NP and an NP–NP item).

One EE-type can show various different syntactic behaviour: even if an EE oc-
curs mostly in complement positions, sometimes it is an adjunct. In order to allow
for such a variation, we internally distinguish these EEs from each other: for the
parser (and, in fact, for the probability model as well) an adjunct EE is different
from a complement EE, even if their types are the same (e.g. WH–ADVP).

In the parsing algorithm itself, all functions should be modified to accom-
modate the left and right gapcat values in the probability model. Four functions
require further minor adjustments. First, the function generate_unary should
also generate the gapcats; the update rule for the inside probability changes to:

p(newedge) =p(oldedge) · ph(H|P,h) · (7.17)

plgc(LGC|P,h,H) · prgc(RGC|P,h,H) ·

plc(LC|P,h,H) · prc(RC|P,h,H)

Second, generate_STOP is modified to test whether the gapcat frames are empty.
Third, generate_trace should generate all EE-types: in each call it loops through
all (internal) EE-types and attempts to add each in turn to the original edge. It also
consults the table mentioned above to remove complement EEs from the subcat
frame. Finally, whenever a passive edge with pending gaps is combined with an
active edge, join_2_edges removes the pending gaps from the gapcat frame of
the active edge.

Notes

Although Model 4 is able to handle a wider range of EEs amounting to 68% of
all EE-tokens, it cannot deal with all types. The missing cases are (i) pseudo-
attachment and ellipsis, (ii) empty complementisers (COMP–. . . ), and (iii) empty
units (UNIT). The proper treatment of pseudo-attachment and ellipsis is beyond the
scope of the present dissertation; fortunately, they only account for approximately
4% of the EE-tokens.

The other two types, however, are much more frequent: they amount to 28%
of all EEs. Recall that the reason for not integrating them into the parsing model
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EE type structure without EE structure with EE

COMP–SBAR
SBAR

S

SBAR

COMP–SBAR S

UNIT
.

$ . .

.

$ . . UNIT

COMP–WHNP
SBAR

SWH−NP

SBAR

WH–NP SWH−NP

COMP–WHADVP
SBAR

SWH−ADVP

SBAR

WH–ADVP SWH−ADVP

Table 7.1: Detecting empty complementisers and units.

is that these EEs are heads, i.e., the context-free rules in a head-driven parsing
regime cannot impose any restrictions on generating them. However, the majority
of such EEs can be easily found in a post-processing step, once the phrase struc-
ture is built: Johnson (2002) reports 96% and 92% F-score for detecting empty
SBAR complementisers (COMP–SBAR) and empty units (UNIT) when the correct
parse tree is known. Table 7.1 shows when and how a parse tree should be mod-
ified in order to accommodate these two types, which amount to 24% of all EEs.
Our heuristics achieves 94.6% F-score for detecting UNITs when knowing the per-
fect tree, whereas the F-score for COMP–SBAR is 97.8%.

The majority of the remaining 4% is COMP–WHNPs and COMP–WHADVPs. Due
to the distinction between different types of gap+ variables on the nonterminal la-
bels, these two types are also easy to detect (cf. Table 7.1): our heuristics finds
them with 100% F-score, when applied to the perfect trees with the gaps removed.
Observe that our technique to handle these gaps is essentially the same as the pat-
tern matching approach proposed by Johnson (2002).

Finally, note the difference between Collins’s and our approach for threading
the gap variables: Collins (1997, 1999) threads the gaps one level higher, i.e.,
he also marks the SBAR nonterminal as having a pending WH–NP (compare Fig-
ures 7.5 and 7.4). There are several reasons why we do not adopt his approach.
First, such an approach would defeat the parsing algorithm: now we can remove
the pending gaps from the gapcat frames, whenever we encounter a nonterminal



(a) Who did you tell what you don’t like?

VPWH−NP

V

tell

WH–NP SBAR(WH−NP)

WHNP SWH−NP

(b) Who did you say you don’t like?
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(c) Who did you tell that you don’t like her?
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Figure 7.5: Difficult distinctions for the gap-threading approach of Collins (1997,
1999). In (a), the gap+ variable in brackets indicates where our gap-threading ap-
proach differs from Collins’s one: in this case we would not have a gap+ variable
on the nonterminal.
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with gap features. Had we threaded the gaps one level higher, we could not dis-
tinguish SBARs with real pending EEs (in case of long WH- or NP-movement) and
the ones that should deposit their traces on their daughters.

Second, adopting Collins’s approach would unnecessarily complicate the an-
tecedent recovery algorithm (cf. Section 4.1): it would require the algorithm to
look one level higher, to the grandparent node, to decide whether an EE should or
should not be deposited. For example, when depositing a WH–NP in Figure 7.4,
we would have to check whether the parent of the SBAR constituent has a gap vari-
able or not. Figure 7.5 shows two cases which would be difficult to distinguish. In
(a) we have two WH–NPs, both of them participating in short movement; (b) con-
tains only one such EE in long movement. In order to recover the antecedent
properly, it is not enough to look at the gap variables on the nonterminals: the
algorithm should examine the parse tree more carefully. In our gap threading ap-
proach, the SBAR constituent does not contain a gap variable in Figure 7.5a, hence
the two cases are easy to tell apart.

The final problem with Collins’s gap-threading approach concerns the proba-
bility estimation as well as the linguistic insights: the SBAR constituents in Fig-
ures 7.5a and 7.5c behave in the same way with respect to their heads, therefore
their probability estimation should be the same.

7.3 Experiments

We trained and tested Model 4 using the same training and test data as in previ-
ous chapters. The input to the parser is POS-tagged text with the perfect tags from
the Treebank. The parser is set up to insert EEs; henceforth, we refer to this ap-
proach as the lexicalised INSERT model. The EEs the parser is not able to handle
are detected using the heuristics discussed above.

Apart from standard NLD-related metrics (EE detection, antecedent recovery,
and HD-relations), we measure parsing time, the number of constructed edges, the
size of the chart and parse accuracy. Table 7.2 summarises the results. We also
compare Model 4 to the preprocessing approach using the lexicalised parser (cf.
Section 6.2) and to Johnson’s (2002) post-processing approach.

In summary, Model 4 proves to be feasible: it does not suffer from the prob-
lems we experienced in the case of the unlexicalised parser (Section 4.3), although
it needs more time and explores a larger search space than the preprocessing ap-
proach. Moreover, the INSERT model is outperformed by the trace tagger on de-
tecting EEs by a margin of 2.5− 3%. On the other hand, Model 4 achieves the
same accuracy for antecedent recovery. PARSEVAL scores also improve but are
still lower than for Model 2.



NOTRACE TAGGER INSERT

(Model 2) (Model 2) (Model 4)

EE-det. all – 79.6 76.7
(F-score) WH/PRO/TOP – 79.6 77.3

ANTE-rec. all – 74.2 73.2
(F-score) WH/PRO/TOP – 72.3 72.3

HD accuracy WH/PRO/TOP – 71.3 72.9

Time (s/sent) 1.8 1.6 2.9

Chart (edges/sent) 14k 13k 25k

Fully constructed
edges (per sent)

434k 331k 694k

PARSEVAL ≤ 100 88.0 86.3 87.3
(F-score) ≤ 40 88.5 87.1 87.9

Surface deps. 90.7 88.6 89.2
All deps. 88.2 88.2 88.6

Table 7.2: Finding NLDs with a lexicalised parser; comparison with the TAGGER

and the NOTRACE.
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EE Freq. Prec. Rec. F-score

Here Here Here Tagger Johnson

LABELLED ALL 3864 80.8 73.0 76.7 79.6 –

UNLABELLED ALL 3864 93.4 84.3 88.6 87.5 –

WH/PRO/TOP 2643 80.3 74.5 77.3 79.6 –

NP–NP 1148 83.5 78.8 81.1 84.0 –

COMP–SBAR 545 80.9 83.1 82.0 84.6 84.0

WH–NP 508 83.5 80.5 82.0 82.7 81.0

PRO–NP 477 65.0 60.8 62.8 70.7 –

UNIT 388 94.4 91.2 92.8 96.5 92.0

TOP–S 277 95.0 96.4 95.7 91.0 88.0

WH–ADVP 171 63.9 53.8 58.4 58.2 56.0

COMP–WHNP 107 51.2 41.2 45.6 48.2 47.0

Table 7.3: EE-detection results for Model 4 and comparison with Johnson (2002)
and the trace tagger.

7.4 Discussion

One of the principal results of the experiment with Model 4 is that it does not
show the same behaviour as the unlexicalised INSERT model. It is indeed feasi-
ble to detect EEs with a lexicalised parser: although the parser explores a larger
search space and requires more time to parse, it only fails in the case of 11 sen-
tences (< 0.5%) and parsing time is still relatively low. This shows that lexicalisa-
tion is very important for restricting the search space when it comes to detecting
NLDs (cf. also Johnson and Kay 1994). Note, however, that Model 4 only in-
serts a subset of EEs, namely the ones that do not have dependents. Is it possible
that EEs with dependents are the major cause of the infeasible behaviour of the
unlexicalised INSERT model? The answer turns out to be negative: when the un-
lexicalised model tries to insert WH and PRO traces only, it still fails in the case
of 35.1% of the sentences. Therefore, we conclude that lexicalisation is the most
prominent factor for the success of both Model 4 and the trace tagger.

Although Model 4 proves to be feasible, it still requires around 80% more time
to arrive at its solutions than the preprocessing approach. The slowdown is clearly
due to the larger search space it has to explore: the number of both the fully con-
structed edges and the edges on the chart is twice as high as in the case of the
preprocessing approach.
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EE Frequency Prec. Rec. F-score

Here Here Here TAGGER Johnson

ALL 3864 77.2 69.7 73.2 74.3 68.0

WH/PRO/TOP 2643 75.1 69.7 72.3 72.3 –

NP–NP 1148 74.5 70.3 72.3 71.5 60.0

COMP–SBAR 545 80.9 83.2 82.0 84.6 84.0

WH–NP 508 82.4 79.5 81.0 80.7 81.0

PRO–NP 477 65.0 60.8 62.8 70.7 50.0

UNIT 388 94.4 91.2 92.8 96.5 92.0

TOP–S 277 87.5 88.8 88.2 81.4 87.0

WH–ADVP 171 61.8 52.0 56.5 53.0 56.0

COMP–WHNP 107 51.2 41.1 45.6 48.2 47.0

Table 7.4: Antecedent recovery results with Model 4 and comparison with John-
son (2002) and the preprocessing approach using Model 2.

Moreover, the parser is not able to detect EEs as reliably as the tagger: the EE-
detection scores for Model 4 are 2.5−3% worse than those of the tagger. A closer
look at the results for individual EE-types (Table 7.3) shows that the tagger is bet-
ter at distinguishing PRO–NPs and NP–NPs. On the other hand, the parser detects
topicalised sentences (TOP–S) more accurately than the tagger. This shows that
the parser can make use of the whole sentence structure when deciding whether
to insert an EE or not.

Interestingly, the lexicalised INSERT model, although less accurate at EE de-
tection, performs the same on the antecedent-recovery metrics as the TAGGER

model, and outperforms it on the HD metrics. A look at the individual results (Ta-
ble 7.4) casts some light on the situation: although the tagger finds more EEs, the
parser is better at recovering the antecedents for its own hypotheses. Indeed, an-
tecedent recovery scores of the parser are higher for all EE-types with antecedents.
Another benefit of Model 4 over the TAGGER model is its higher parsing accu-
racy: it improves on the preprocessing architecture by 1% F-score according to
the PARSEVAL metrics. Furthermore, Model 4 fails to parse only 11 sentences,
whereas the preprocessing approach cannot produce an analysis for 24 sentences.

Observe that Model 4 achieves somewhat lower scores on the PARSEVAL met-
ric as well as on detecting surface dependencies than Model 2. We attribute this
behaviour to sparser data: since the size of the nonterminal set is 7.1 times larger,
we have to estimate more parameters from the same amount of data. Furthermore,
as we argued in the previous chapter, EEs, due to their low frequency, restrict the
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set of available rules. In the worst case, the rule necessary to complete the correct
structure does not appear in the training set. When evaluated on all dependencies,
however, Model 4 does outperform Model 2.

Comparing Models 3 and 4 reveals that Model 4 is around 3.7% less accu-
rate at detecting WH–NP traces, and the antecedent recovery score is also 3.1%
lower for this particular EE. The explanation is again data sparseness; the price
of detecting all EEs is that we lose some accuracy on certain constructions when
compared to specialised models, because we have to partition our data into smaller
sets, which makes the probability estimation less reliable.

Finally, note that Model 4 makes an important simplifying assumption, as far
as bilexical dependencies are concerned: it does not model these dependencies for
NLDs. In particular, the lexical head of an EE is taken to be TRACE instead of
the head of the co-indexed constituent. There is a good reason for this simplifica-
tion: generally, the real headword is not yet available when the parser generates
an EE, therefore a bottom-up parser cannot take it into account (but see Hock-
enmaier 2003b). Fortunately, this simplification causes no problem in practice:
Gildea (2001) shows that incorporating bilexical information improves Collins’s
(1997) model by only 0.5% (in terms of the PARSEVAL score).

In summary, Model 4 has both positive and negative characteristics. It is
slower than the preprocessing approach and less accurate at detecting EEs. This
suggests that it could benefit from consulting the trace tagger. On the other hand, it
is more robust and can recover antecedents more reliably that the TAGGER model.
Moreover, the parse trees are more accurate according to the PARSEVAL measures.
We claim that the reason for this behaviour is the rigid combination method of the
TAGGER model. Can we combine the trace tagger and the parser in a more appro-
priate way to bring the strengths of both systems together? In the next chapter, we
present a novel probabilistic architecture which achieves this goal.

7.5 Related work

There is relatively little work in the parsing literature specialising on handling
NLDs; most research in this area is closely tied up with developing efficient pars-
ing algorithms for deeper grammar formalisms, such as HPSG, LFG, TAG or CCG

– the review of these approaches is beyond the scope of the present discussion. In
general, however, the major bottleneck in using these formalisms for large-scale
parsing is their limited coverage and lack of robustness (Uszkoreit 2002). They
usually can only parse a subset of our test set, which hinders comparison with the
present work.

To our knowledge, the only probabilistic approaches to explicitly handle a
wide range of NLDs with a parser is presented by Clark et al. (2002) and Hock-
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enmaier (2003b), who use Combinatorial Categorial Grammar as their underlying
linguistic framework. Interestingly, their models face similar problems as ours:
they are much slower than the model not handling EEs explicitly (Hockenmaier
and Steedman 2002b) and they also achieve slightly lower scores for surface de-
pendencies. Unfortunately, both papers use a theory-dependent definition of non-
local dependency, which is not compatible with our definition. In particular, they
treat auxiliary constructions and coordination as non-local dependencies, which
forbids straightforward comparison.

Summary

In this section, we have proposed a generalisation of Collins’s (1997) Model 3
which can handle a wider range of EEs. We have also discussed reliable heuris-
tics to handle the majority of the remaining EEs not integrated into the parser.
The lexicalised model does not suffer from the efficiency and accuracy problems
of the unlexicalised model, showing the importance of lexicalisation for the task.
We have compared the new model with the lexicalised TAGGER approach of Sec-
tion 6.2 and found that it outperforms the preprocessing approach on recovering
antecedents, although it does worse on detecting EEs. It is also more robust and
more accurate at detecting phrase structure than the TAGGER model, although it
does not reach the robustness and accuracy of Model 2 of Collins (1997, 1999),
due to sparser data and a much larger search space.





Chapter 8

A general architecture for combin-
ing external modules with a
parser

In the previous section, we observed an interesting situation: although the TAG-
GER model outperforms the lexicalised INSERT model by 2.5− 3% on EE detec-
tion, it does no better at recovering antecedents for the semantically interesting
cases. Such a situation arises due to the lack of proper communication between
the tagger and the parser: when the tagger makes a mistake or suggests an EE

which is hard to incorporate into the parse tree, the parser gets confused or even
fails. The principal problem is the lack of a closer (probabilistic) integration of the
two modules: since the parser regards the output of the tagger as 100% reliable, it
cannot override the decisions the tagger makes.

In this chapter, we propose a general probabilistic architecture for combining
different external modules with a parser. The modules return their k-best hy-
potheses with their probability distribution and the parser takes this guidance into
account in order to arrive at an optimal solution. This approach has not only the
benefit of increasing accuracy, but it also speeds up the parser by reducing the
search space it has to explore.

After discussing the motivations for designing such a combined architecture,
we develop the probability model in Section 8.2.1. In Section 8.2.2, we present
the required modifications to the parsing algorithm of Section 7.2. To evaluate the
framework, we present two experiments: first, in Section 8.3, we explore how the
model fares on detecting NLDs. Second, we illustrate the success of the approach
when combining an NP chunker with the parser.

149
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8.1 Motivation

Stochastic parsing models assign probabilities to syntactic structures, typically to
trees (or, in general, to directed graphs). The task of a probabilistic parser, then,
is to find the maximum probability structure T that is compatible with the input:

argmax
T∈T(S)

p(T ) (8.1)

where T(S) is a set of trees (structures) compatible with the input sentence S.
The problem is, however, that we do not know the probability p(T ). In-

deed, this probability depends on innumerable factors, both linguistic and extra-
linguistic ones. For example, it might depend on the topic of the conversation, our
mood, our interlocutor, even on the weather outside (if it is raining, we tend to
use the word sun more often). Even if we assume that only linguistic factors are
at play, there are many more of them that we can reasonably incorporate into the
model: the data (especially the relatively small amount of annotated data) is too
scarce for deriving reliable probability distributions (sparse data problem). There-
fore, a parsing model cannot use the “true” probability p(T ), but has to estimate
it from a corpus.

The quality of the parsing model greatly depends on the quality of this es-
timation. Parsing models, however, are general-purpose models: they perform
POS-disambiguation, chunking, prepositional phrase attachment, word sense dis-
ambiguation (at least as far as subcat frames are concerned), etc. While it is rea-
sonable to solve all these tasks in one architecture, specialised models might use
a different, more specific estimation technique (and even more data) and, thus,
might have a better estimation for parts of the structure. For example, our trace
tagger estimates the sites of NLDs more reliably. Similarly, a module specialised
in NP chunking might outperform the parser in finding chunks. The parser would
potentially benefit from incorporating external information from such modules.

Another potential benefit of combining external modules and a parser is higher
parsing speed. As we have seen in Section 4.3.1, the parser is much faster if it is
informed about the sites where NLDs occur. The speedup is the result of a much
smaller search space: the parser no longer has to postulate EEs basically every-
where, it only has to explore the fraction of the search space that is compatible
with the hypotheses of the trace tagger. Similarly, one would expect higher speed
when combining the parser with an NP chunker: the parser would only have to
build structures which do not cross NP boundaries.

In this chapter, we develop a novel architecture for combining external mod-
ules with a statistical parser, achieving the two goals discussed above: the com-
bined system is more accurate and faster than the parser alone. In the design, we
aim at satisfying the following criteria:
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flexibility the parser may select suboptimal solutions according to
the probability model of the external module (second/third/. . . -
best hypotheses);

independence if one module changes, the other does not have to be
retrained;

generality a wide range of external modules can be combined with
the parser; the only requirement is that they return their k-best
hypotheses, accompanied with their estimated probabilities;

simplicity the parser needs only minor modifications allowing
straightforward implementation.

In the next section, we describe the architecture and the modifications in the pars-
ing algorithm required for accommodating the changes. The subsequent sections
present two experiments with the new system.

8.2 The architecture

In this section, we develop a general probabilistic architecture which combines
several external modules with a parser. The modules are required to return their
k-best hypotheses for the input, associated with their probabilities. In order to
keep the presentation simple, we describe how one such module can be inte-
grated with the parser: the generalisation of the approach to several modules is
straightforward. First, we focus on the probability model, then we describe how a
(bottom-up) parser can be implemented to accommodate the combination.

In this section we use the concept of (in)compatibility of the hypotheses pro-
vided by the external module and by the parser. The actual definition of compat-
ibility is task dependent (cf. Sections 8.3 and 8.4), but in general, a hypothesis
of the external module is incompatible with a given subtree if they exclude each
other: there is no possible parse tree (independent of the grammar) which can ac-
commodate both. For example, the hypotheses of the trace tagger and the parser
are incompatible, if the parser predicts an EE where the trace tagger does not (or
vice versa).

8.2.1 The probability model

In what follows, we use p(T ) to represent the “true” probability of a parse tree
T , that is, the probability given the state of the world. As we argued in the pre-
vious section, this probability can only be estimated in practice; pp(T ) denotes
the probability estimation according to the parser’s probability model. Our task
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is to improve on this estimation, making use of the information the external mod-
ule provides; pc(T ) denotes the (improved) estimation according to the combined
architecture.

Our first observation is that the maximal probability tree also maximises the
joint probability p(T,S) for a given sentence S and, since S is fixed, the conditional
probability p(T |S) as well (p(T,S) = p(S)p(T |S)):

argmax
T∈T(S)

p(T ) = argmax
T∈T(S)

p(T,S) = argmax
T∈T(S)

p(T |S) (8.2)

where T(S) denotes the set of parse trees for the given sentence S. In practice, the
parser tries to find the tree with maximal probability according to its own estimate,
that is, the tree which maximises pp(T |S).

Now, suppose that X is a partition of the event space, that is, it is a set of
mutually exclusive events that cover the whole probability mass:

∑
x∈X

p(x) = 1, and p(xi,x j) = 0 for all xi 6= x j(∈ X). (8.3)

Then, using the law of total probability, p(T |S) can be rewritten as

p(T |S) = ∑
x∈X

p(T,x|S) = ∑
x∈X

p(x|S)p(T |x,S) (8.4)

We can regard the elements of X as all possible analyses for the sentence ac-
cording to the external approach. For example, X can stand for all possible EE

sequences or all possible NP-chunk sequences. At a first sight, it is not clear how
such a choice could help us: the set X can be very large and we do not know
the probabilities p(x|S) and p(T |x,S). However, it is reasonable to assume that
our external module returns a fairly reliable estimation for p(x|S), at least for the
k-best hypotheses (henceforth we use pe(x|S) to indicate the probability distribu-
tion according to the probability model of the external module). We also take k to
be large enough, so that that the bulk of the probability mass is distributed among
the k-best hypotheses of the external module, the set of which is henceforth re-
ferred to as Xk. Then, we can estimate p(T |S) by replacing the sum of all possible
external analyses by the sum of the k-best analyses in Eq. (8.4):

p(T |S) ≈ ∑
x∈Xk

pe(x|S)p(T |x,S) (8.5)

In the above formula, however, there is still an unknown term, p(T |x,S), which
seems to be even more difficult to estimate than the original term p(T |S). Note,
however, that certain trees are not compatible with x, that is, T and x cannot co-
occur. For instance, if T contains an empty element where it is not hypothesised
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by the external module, then the two hypotheses are incompatible, thus, the cor-
responding probability p(T |x,S) is 0.

Now, the only remaining question is: what to do when the structure is compat-
ible with x? Without further simplifying assumptions, we exacerbate the problem:
the probability P(T |x,S) is more difficult to estimate since a corpus annotated with
phrase structure trees does not suffice: we have to take into account how the ex-
ternal module analyses this corpus. As a consequence, the sparse data problem is
further aggravated. In order to remedy the situation, we propose to use the parser’s
probability estimate pp(T |S) whenever the tree is compatible with x, that is, we
assume independence between the parser and the external module, whenever T
and x are compatible:

p(T |x,S) ≈

{

0 if T is incompatible with x
pp(T |S) if T is compatible with x

(8.6)

With this approximation, Eq. (8.5) can be considerably simplified. First, we only
have to take into account the hypotheses x ∈ X of the external module compati-
ble with the parse tree T ; C(T ) denotes the set of these hypotheses. In the case
of these hypotheses, however, the estimation in Eq. (8.5) contains a common term
pp(T |S). Therefore, it can be stated in a much simpler form: we define the prob-
ability pc(T |S) of a parse tree T given the sentence S according to the combined
probability model as

pc(T |S)
def
=

1
Z(S)

· pp(T |S) · ∑
x∈C(T)∩Xk

pe(x|S) (8.7)

where

Z(S)
def
= ∑

T∈T(S)

(

pp(T |S) · ∑
x∈C(T)∩Xk

pe(x|S)

)

(8.8)

is a normalising factor ensuring that pc be a proper probability distribution given
the sentence S.

One way to interpret Eq. (8.7) is to regard the external module as a weighted
filter on the parser: it filters out parse trees that are incompatible with the mod-
ule’s hypotheses. Note that if all the hypotheses are compatible with a given tree,
we get back the probability according to the original parsing model. Another way
to look at the above equation is to treat the normalised sum as a prior encoding
the knowledge of the external module.

As before, the parser searches for the syntactic structure maximising the con-
ditional probability given the sentence. The difference, however, is that it takes
the combined estimation pc into account, instead of pp. Since Z(S) is fixed for a
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given sentence S, the search criterion may be further simplified:

argmax
T∈T(S)

pc(T |S) = argmax
T∈T(S)

(

pp(T |S) · ∑
x∈C(T)∩Xk

pe(x|S)

)

(8.9)

An additional minor complication is that our parsing models presented in this dis-
sertation are generative, that is, they return the joint probability pp(T,S), as op-
posed to the conditional probability pp(T |S). To get the conditional probability,
one has to renormalise the joint distribution by a factor of pp(S), the calculation
of which requires summing over all possible trees T yielding the sentence S, i.e.,
over each element of the set T(S), which might be very large. Fortunately, pp(S)
is constant (given S), therefore, it does not affect the rank of a given tree. That is,
pc(T |S) and pc(T |S) · pp(S) are maximised by the same tree T , hence we can use
the joint probability pp(T,S) in the above formula.

In summary, in the new model, we search for the optimal syntactic structure
T̂ , defined by

T̂
def
= argmax

T∈T(S)

(

pp(T,S) · ∑
x∈C(T)∩Xk

pe(x|S)

)

, (8.10)

where

• pp is the probability distribution according to the parser’s model,

• pe is the probability distribution according to the external module,

• T(S) is the set of syntactic structures T that yield the sentence S,

• Xk is the set of the k-best hypotheses according to the external module, and

• C(T ) is the set of external hypotheses compatible with the parse tree T .

8.2.2 The general parsing algorithm

In this section, we discuss the modifications the parsing algorithm requires to in-
corporate the changes to the probability model. As we shall see, the proposed
architecture allows straightforward integration with a bottom-up parser. In what
follows, we treat pp(T,S) as the inside probability of a subtree T .

First, note that the estimation in Eq. (8.7) can also be used for substructures,
not only for fully specified trees. A second observation is that incompatibility is
a monotonic relation: if a substructure is incompatible with an external hypothe-
sis x, then every structure containing the given substructure is also incompatible
with x. Specifically, if a substructure is incompatible with all external hypotheses,



8.2 The architecture 155

it cannot be used in any trees, i.e., we can safely discard it from the search space.
This is how the combined model achieves search space reduction.

Now, suppose that the bottom-up parser creates a new edge T combining
T1, . . . ,Tn, using the appropriate rule N → N1 . . .Nn. The inside probability of
this edge according to the new model is

pc(T |S) =
1

Z(S)
· pp(T,S) · ∑

x∈C(T)∩Xk

pe(x|S) (8.11)

where Z(S) is a constant (given the sentence S) and pp(T,S) is the inside proba-
bility according to the old model, calculated as

pp(T,S) = pp(N → N1 . . .Nn|N) ·
n

∏
i=1

pp(Ti,S) (8.12)

Therefore, the only additional complication the novel estimate introduces is
the calculation of the sum. In fact, once we know the set of compatible external
hypotheses, C(T )∩Xk, this calculation is trivial. Determining the compatibility
set, on the other hand, might add a considerable amount of overhead, depending
on the task. Note, however, a crucial property of the model: since incompatibility
is monotonic, the set of compatible hypotheses with T is a subset of the compat-
ibility set of Ti for all i = 1 . . .n. That is, this set is a subset of the intersection of
all compatibility sets corresponding to T1 . . .Tn:

C(T ) ⊆
n
⋂

i=1

C(Ti) (8.13)

Consequently, we might reasonably expect that the parser has to determine com-
patibility for only a couple of hypotheses, and thus the overhead introduced by
this calculation is compensated for by the filtering effect.

In our present implementation, we extended the parsing algorithm of Sec-
tion 7.2 to incorporate the new combined architecture. On each edge, we maintain
an additional data structure, the set of compatible hypotheses C(T ), as a bitvec-
tor. This facilitates fast calculation of an upper bound for the compatibility set
C(T )∩Xk. Whenever the parser modifies a structure or builds a new one, it calls
a function check_compatible which determines this set.

An important question to consider is when to call this function. In general,
structure building routines in a statistical parser are fairly expensive and they
hardly discard edges before they are completely built. Compatibility check, how-
ever, removes edges without building them entirely. Therefore, it should be ex-
ecuted as early in the derivation as possible, before additional calculations and
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actual probability lookup (which turns out to be the most expensive operation of
the parser). In this way it can exercise its pruning power to a greater extent.

Further optimisation can be achieved by noticing that not each operation can
change the set of compatible hypotheses. Therefore, in these cases, there is no
need for the expensive calculations. However, this optimisation step is specific to
the given module; we will discuss it separately in Sections 8.3 and 8.4. The def-
inition of equivalence of two edges with respect to dynamic programming is also
task specific; we will return to it in the relevant sections.

In summary, we have shown that the new probability model is straightforward
to integrate into the original PCFG parsing model. Although checking the compat-
ibility of a subtree and an external hypothesis might be expensive, we predict that
the parser performs this operation relatively infrequently, introducing only limited
computational overhead. On the positive side, the new probability model allows
discarding edges (even if they have high probability according to pp), which re-
duces the search space and, as a consequence, parsing time. We expect this effect
to counter the extra time needed for the calculations to determine the compatibility
set.

8.3 Finding NLDs

In the previous section, we have outlined a general probabilistic architecture to
combine external modules with a parser. Our main claim is that a parser benefits
from the external information: the combined system is both faster and more ac-
curate. To substantiate this claim, we test the new architecture on two tasks: on
NLD detection and baseNP chunking. In the present section, we explore the com-
bination of the trace tagger with the parser. In the next section, we use a simple
baseNP chunker to guide the parser.

8.3.1 Setup

In the following experiments, we combine the trace tagger described in Chapter 5
and the parser of Section 7.2. The tagger returns its k best hypotheses; in the ex-
periments below, we set k = 3, since larger k does not improve the accuracy of the
tagger (cf. Section 5.1.3). Both the parser and the tagger are trained independently
on the standard training set of the Treebank (Sections 02–21).

The parser is modified to accommodate the new architecture as described in
the previous section. One important issue concerns the definition of compatibility.
There are several more permissive definitions, but we take the strictest approach:
a substructure T is compatible with an EE-sequence x, if and only if the EEs in T
and x match exactly. Exact match is counted in a similar way as in the case of
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Action Compatibility?

generate_unary NO

generate_trace OPT

generate_STOP NO

generate_TOP YES

join_2_edges YES

Table 8.1: Actions of the parser and compatibility check.

lgaps(T )=lgaps(T1) T rgaps(T )=rgaps(T2)

T1

lgaps(T1) wb . . . wi rgaps(T1)

T2

lgaps(T2) wi+1 . . . we rgaps(T2)

Figure 8.1: Checking compatibility when executing join_2_edges.

the evaluation metric for EE detection: EEs should occur between the same words
with the same label. That is, the sets of EEs between two adjacent content words
should be the same in T as in x. More lenient definitions could substitute exact
match with subset relations.

Now, let us turn our attention to the actual implementation. Table 8.1 sum-
marises the actions of the parser as presented in Section 7.2. How can we check
whether a subtree (edge) T is compatible with a hypothesis using dynamic pro-
gramming? Our invariant is that the compatibility of gaps inside this edge are
verified. If we maintain this invariant throughout the derivation, gaps inside the
sentence are checked by the end of the parsing process. After we constructed
edges with the start symbol TOP that span the whole sentence, we also have to test
whether the sets of gaps at the beginning and at the end of the sentence are com-
patible with the hypotheses of the trace tagger. This last step can be done when
the function generate_TOP is executed.

None of actions of the parser, with the exception of join_2_edges, change
the span of a subtree, hence they cannot affect the invariant. Consequently, there
is no need to call the function check_compatible while executing these actions.
On the other hand, when the parser joins two edges T1 and T2, gaps on the right
boundary of the left edge (rgaps(T1)) and on the left boundary of the right edge
(lgaps(T2)) are covered by the new edge T (Figure 8.1). Therefore, the compat-
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ibility of these EEs should be verified, that is, the set of EEs occurring between
words wi and wi+1 according to some external hypothesis should be the same as
rgaps(T1)∪ lgaps(T2). If, for each edge, we maintain the two sets rgaps and
lgaps, this test is trivial.

The parsing algorithm can be further optimised if we call a permissive version
of the function check_compatible whenever a new EE is generated: the gener-
ated gap should be in the EE-set according to some external hypothesis. This test
prevents the parser from generating EEs not compatible with any hypothesis at an
early stage. This additional process, however, does not change the set of possible
syntactic structures: edges covering incompatible EEs would be discarded later in
the derivation during strict compatibility check. Table 8.1 summarises the above
observations.

A final issue to address is the equivalence of two edges with respect to the
dynamic programming. We say that two edges are equivalent if they behave in
the same way concerning the context-free rules (cf. 7.9) as well as the function
check_compatible. The latter entails that the sets of the left and right gaps, re-
spectively, should be the same for the two edges. That is, two edges T1 and T2 are
equivalent with respect to the dynamic programming, if the following conditions
hold:

(8.14)• T1 and T2 have the same nonterminal label;

• they span the same words;

• their heads are the same;

• both of them are either active or passive;

• their left and right subcat frames are the same, i.e.,
lc(T1) = lc(T2) and rc(T1) = rc(T2);

• their left and right gapcat frames are the same, i.e.,
lgc(T1) = lgc(T2) and rgc(T1) = rgc(T2); and

• their left and right gapsets are the same, i.e.,
lgaps(T1) = lgaps(T2) and rgaps(T1) = rgaps(T2).

8.3.2 Experiments

In order to compare our architecture with the TAGGER and the INSERT models,
we used the same settings as in Chapters 6 and 7. We measured the accuracy
for EE detection and antecedent recovery, parsing time, the size of the chart and
PARSEVAL-scores. The results are summarised in Table 8.2. On NLD-related
tasks, the COMBINED model clearly outperforms both the TAGGER and the IN-
SERT models by a considerable margin. When compared to Johnson’s (2002)



8.3 Finding NLDs 159

TAGGER INSERT COMBINED

EE det. all 79.6 76.7 79.6
(F-score) WH/TOP/PRO 79.6 77.3 81.3

ANTE rec. all 74.3 73.3 75.8
(F-score) WH/TOP/PRO 72.3 72.3 75.8

HD accuracy WH/TOP/PRO 71.3 72.9 75.5

Time (s/sent) 1.6 2.9 2.4

Chart (edges/sent) 13k 25k 19k

Fully constructed
edges (per sent)

331k 694k 469k

PARSEVAL ≤ 100 86.3 87.3 87.1
(F-score) ≤ 40 87.1 87.9 87.7

Surface deps. 88.6 89.2 89.6
All deps. 88.2 88.6 89.2

Table 8.2: Comparison of the TAGGER and INSERT models with the COMBINED

model on finding NLDs.

results, the COMBINED model achieves approximately 14% higher F-score on an-
tecedent recovery for the semantically important EEs (7.8% higher score for all
EEs).

As predicted, the size of the search space lies between that of the TAGGER and
of the INSERT models. Although PARSEVAL scores for the COMBINED model are
still 0.2% lower than the scores for the standalone parser, the former system is
more accurate at recovering surface dependencies.

We further investigated the pruning effects of the COMBINED model by vary-
ing the beam and plotting the accuracy for EE detection and antecedent recovery,
as well as parsing time and the size of the chart (Figures 8.2–8.4).

8.3.3 Discussion

The most important result of the experiments is that the COMBINED architecture
outperforms both the TAGGER and the INSERT models. Indeed, the parser man-
ages to incorporate the information from the shallow module to improve its own
accuracy. In particular, it outperforms the parser-only architecture on both EE
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EE Frequency Precision Recall F-score

COMB INS COMB INS COMB INS

ALL 3864 82.5 77.2 70.1 69.7 75.8 73.3
WH/PRO/TOP 2643 81.9 75.1 70.6 69.7 75.8 72.3

NP–NP 1148 78.9 74.5 71.6 70.3 75.7 72.3
COMP–SBAR 545 78.6 80.9 83.7 83.1 81.7 82.0
WH–NP 508 91.6 82.4 77.8 79.5 84.1 81.0
PRO–NP 477 74.7 65.0 68.1 60.8 71.3 62.8
UNIT 388 94.4 94.4 91.2 91.2 92.8 92.8
TOP–S 277 87.8 87.5 85.9 88.8 86.9 88.2
WH–ADVP 171 85.9 61.8 46.2 52.0 60.1 56.5
COMP–WHNP 107 70.4 51.1 35.5 41.1 47.2 45.6

Table 8.3: Antecedent recovery for the COMBINED and the INSERT models.

detection and antecedent recovery by around 3− 4%, while HD accuracy is also
2.6% better.

Table 8.3 compares antecedent recovery scores for the COMBINED and INSERT

models. The most important effect of the trace tagger is the increase in precision,
which improves for almost all EEs. Indeed, the overall precision is 5% higher,
and in the case of the semantically interesting EEs, the difference attains almost
7%. Recall, on the other hand, did not improve so dramatically, although it is a bit
higher on average.

The increase in precision affects the semantically important EEs to the great-
est extent. In particular, the scores for both controlled and uncontrolled PROs
improve considerably: the COMBINED model achieves 4.4% higher precision and
3.4% higher F-score on NP–NPs than the INSERT model. The differences in pre-
cision and in F-score for PRO–NPs are 9.7% and 8.7%, respectively. In the case
of this EE, recall also improves considerably, by 7.3%. These results are, in fact,
not surprising, since the trace tagger is already more accurate at detecting these
EEs than the INSERT model. A further improvement concerns unbounded depen-
dencies: the F-score for both WH–NPs and WH–ADVPs rises by 3.1% and 3.6%,
respectively.

Interestingly, the new architecture also manages to improve on the results of
the tagger when detecting the EEs it is designed to detect (TOP–S, WH–. . . , NP–NP
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Figure 8.2: Parsing time as a function of the size of the beam.

and PRO–NP):1 the labelled F-score increases by 1.7% on these items. This indi-
cates that, in certain cases, the parser chooses the second or third best hypothesis
of the trace tagger. As a consequence, both precision and recall increases (by
2.0% and 1.4%, respectively). Moreover, the COMBINED model no longer suffers
from the rigidity of the TAGGER model: the number of failed sentences decreases
(from 24 to 5, whereas the parser of the INSERT model cannot parse 11 sentences),
and the resulting trees are of better quality (the overall PARSEVAL scores increase
by 0.8%).

Another indication of the flexibility of our approach emerges when the parser
is integrated with a shallow module of worse quality. Specifically, we used the
tagger with only POS-related features switched on (cf. Tables 5.2 and 5.6 in Chap-
ter 5). Recall that this particular tagger detected EEs with 71.3% labelled F-score,
which means that the TAGGER approach with the rigid combination scheme could
maximally achieve this score. The COMBINED architecture, however, manages to
outperform it by 5.3% (!), achieving 76.6% labelled F-score on the EE-detection
task. This suggests that further improvement of the tagger could further amelio-
rate the combined architecture.

An additional benefit of the integrated approach is its speedup over the INSERT

model: the search space of the parser is efficiently pruned by the external mod-

1Recall that all the other EEs are inserted based on the parse tree, using very simple heuristics (cf.
Section 7.2.2); indeed, scores for COMP–SBARs and UNITs are 2− 3% worse here than for the
tagger.
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ule. Indeed, parsing time decreases by around 17% despite the extra calculations
verifying compatibility requires (cf. Figure 8.2). Moreover, the size of the chart
(after beam search) is only 76% of the original chart, and the COMBINED model
still manages to detect NLDs more accurately. The pruning effect of the shallow
module is even more underlined when looking at the number of fully constructed
edges: the new architecture reduces their number by one third. On the other hand,
the COMBINED model behaves as predicted with respect to the TAGGER model: it
is more robust and more accurate, but it explores a larger part of the search space
and, thus, it is slower.

A final improvement the integrated architecture achieves concerns the quality
of the edges on the chart (cf. Figures 8.2–8.4). Figure 8.3 shows that, for exam-
ple, the COMBINED model attains the same result on antecedent recovery with the
beam of 1000 as the parser-only approach with the widest beam. With the beam
set to 1000, the chart contains only 8579 edges (roughly one third of the size of
the chart in the case of the INSERT model with the widest beam of 20000) and,
on average, requires 1.1 second to parse a sentence (although it fails on around
49 sentences, i.e., roughly on 2% of the sentences). This shows that the probabil-
ity estimate for the edge probabilities is better: the high probability edges are the
ones needed to detect NLDs.

The only metric where the INSERT model outperforms the COMBINED one, al-
beit only by a small margin, is the PARSEVAL measure. Nevertheless, since the
score for surface dependencies is higher for the latter model than for the INSERT

model, we do not regard this as a problem. In fact, this discrepancy between the
PARSEVAL and dependency scores underline the difference between phrase struc-
ture and dependency structure (cf. also Carroll et al. 2002); our goal is to recover
the latter.

In summary, the experiments presented in this section support our claims: the
COMBINED model is both faster and more accurate than the INSERT model, show-
ing that incorporating information from external modules can indeed improve the
parser. The new architecture no longer suffers from the rigidity of the combina-
tion: the COMBINED model is more robust and more accurate than the TAGGER

model. Are these results specific to the task of finding NLDs, or do they translate
to other tasks as well? In the next section, we present another experiment with
similar results.

8.4 BaseNP chunking

8.4.1 Motivation

Dividing a sentence into non-overlapping phrases is called text chunking:
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(8.15)[VP Dividing ] [NP a sentence ] [PP into ] [NP non-overlapping
phrases ] [VP is called ] [NP text chunking ]

The usefulness (and psychological plausibility) of chunking as a preprocessing
step prior to parsing was first emphasised by Abney (1991). In his model, a chun-
ker divides the sentence into various types of chunks, and the parser attaches these
chunks to each other. The advantage of this approach lies in higher parsing speed:
the parser does not need to build the internal structure for the chunks. Moreover,
chunking also reduces the ambiguity rate the parser has to deal with, since it ex-
cludes edges from the search space crossing chunk boundaries.

Applying a machine learning method to the general chunking task was first
proposed by Ramshaw and Marcus (1995), who use a transformation-based
learner (Brill 1992, 1995). They also cast the task as a tagging problem: words are
labelled with the tags I, O or B, depending on whether they are inside, outside or
at the beginning of a phrase, respectively. The sentence above gets the following
tag sequence according to this scheme:

(8.16)DividingI–VP aI–NP sentenceI–NP intoI–PP non-overlappingI–NP
phrasesI–NP isI–VP calledI–VP textI–NP chunkingI–NP

Note that the B tag is only used if a word starts a phrase immediately following a
phrase of the same type. Tjong Kim Sang and Veenstra (1999) experiment with
other tagging schemes for chunking. Chunking was a shared task at the CoNLL-
2000 conference; Tjong Kim Sang and Buchholz (2000) give a good overview of
various approaches to chunking. An observation of special importance here is that
most of these approaches incorporate trigram information into their models.

A special chunking task is baseNP chunking, first introduced by Church (1988).
BaseNPs, also called non-recursive NPs, are noun phrases which themselves do not
contain a NP, except perhaps in a specifier position (a possessive NP, e.g., John’s
book). As Collins (1999) notes, baseNPs considerably differ from other phrases,
at least as far as their representation in the PTB is concerned. First, the head in a
baseNP has a different role than in other phrases: in many cases, a non-recursive
NP has the structure NPB->NN NN NN where the first noun modifies the second in-
stead of the third one, which is the head (e.g. pet food volume, vanilla ice cream,
etc.). The second difference is the strongly marked nature of the left boundary of
a baseNP: after having generated a determiner, in general, the parser should stop
generating left modifiers. Other phrases do not show a similar behaviour.

Recall that Collins (1997, 1999) defines a unigram Markov model to generate
dependents of a given head and parent (cf. Section 7.1.1). However, this model
is inadequate when it comes to baseNPs, since it cannot properly incorporate the
specialties mentioned above. Therefore, Collins (1999) proposes a different prob-
ability model for baseNPs, where the generation of a (left) modifier depends on
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not the headword but on the previously generated (left) modifier. Specifically, in
the case of baseNPs, Eq. (7.4) is modified as:

p(Ln(ln) . . .L1(l1)H(h)R1(r1) . . .Rm(rm)|NPB(h)) ≈

≈ ph(H|NPB,h) ·
n

∏
i=1

pl(Li(li)|NPB,Li−1(li−1)) ·

m

∏
j=1

pr(R j(r j)|NPB,R j−1(r j−1)) (8.17)

where L0 = R0 = H and l0 = r0 = h.
This model essentially is a bigram Markov model. However, as noted above,

most approaches to chunking use trigrams instead of bigrams (Tjong Kim Sang
and Buchholz 2000). Consequently, one could expect higher chunk accuracy
when employing a trigram model. In this section, we will explore such a com-
bination: we combine a trigram baseNP chunker and the parser using the general
probabilistic architecture. Our baseline is the standalone parser, which finds the
correct baseNP chunks with precision 93.8% and recall 94.2% (94.0% F-score).

8.4.2 The chunker

As discussed above, (baseNP) chunking can be viewed as a tagging task. In fact,
it is very easy to adapt our maximum entropy tagger developed in Section 5.1 to
handle the new tagging (chunking) task; we only have to modify the feature tem-
plates: since baseNP chunking does not require long distance features, we only
use trigram lexical and POS-related features (see Tables 5.1 and 5.2 on page 97).

In chunking, the previous tags have a larger impact than in the case of detect-
ing EEs. Therefore, we employ features encoding the two previous labels (l−1, l−2

and their concatenation, l−2l−1). Wider context, however, requires more search.
Thus, we widen the beam and do 8-best search (as opposed to the 3-best search
we use in the trace tagger). Features occurring less than 5 times are removed from
the event space.

When measured on the standard test set of Ramshaw and Marcus (1995), our
chunker achieves 92.4% precision, 92.9% recall and 92.7% F-score.2 In the fol-
lowing experiment, however, we use a much larger training set and make use of
the correct POS-tags. Therefore, the performance of the chunker rises consider-
ably: it attains 94.4% precision and 94.7% recall (94.5% F-score) on our test set
(WSJ23).

2For a comparison with other approaches, visit http://lcg-www.uia.ac.be/~erikt/
research/np-chunking.html.
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8.4.3 The setup

On the baseNP chunking task, our simple chunker outperforms the parser
(Model 2) by 0.5% F-score, therefore, we can expect some improvement when
combining the external (shallow) module with the parser. In the present setting,
the chunker returns its 8-best hypotheses. Both the parser and the chunker are
trained independently on the standard training set (WSJ02–21).

As before, the crucial question is how we define compatibility of a partial
parse tree with a chunk sequence. This problem, however, turns out to be more
complicated this time than it is in the case of finding NLDs. The reason is evident:
even though the chunker is implemented as a tagger, in the combination with the
parser, we not only have to verify the presence or absence of some elements, but
we also have to compare structures. As we will see shortly, it is straightforward
to implement a function which tests whether the parser’s baseNP hypotheses are
compatible with the chunker’s suggestions. On the other hand, ensuring that the
parser hypothesise a baseNP wherever the chunker suggests one is more compli-
cated.

First, let us turn our attention to the former problem and design a compatibility
check procedure which is called whenever a parser suggests a baseNP. Clearly, ev-
ery word dominated by a baseNP nonterminal should be inside a baseNP. This can
be easily verified whenever we attach a new word (phrase) to the baseNP. More-
over, in the case of left modifiers, for example, the previous attachment cannot
be the beginning of a baseNP:3 a sequence of ...I B I... is impossible within
a non-recursive NP. These operations can be performed whenever two edges are
joined (join_2_edges), and they ensure that all hypothesised baseNPs are also
parts of baseNPs according to the chunker.

It might happen, however, that the parser proposes shorter baseNPs than the
chunker. Therefore, whenever the parser generates STOP symbols to terminate a
baseNP, we have to make sure that the words at the edges according to the parser
are also at the edges according to the chunker. This can be done when the action
generate_STOP is executed. In summary, the parsing algorithm requires the fol-
lowing extensions in order to guarantee that the baseNP hypotheses according to
the parser form a subset of the chunker’s hypotheses:

generate_STOP
Check whether the left edge of the baseNP is the beginning of
a baseNP according to the chunker. Similarly, at the right edge,
check for the end of a baseNP.

join_2_edges
If the parent is NPB, then verify that (i) the modifier being at-

3BaseNPs containing a possessive NP require a special treatment.
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(a) The correct structure
NP

NPB

NN NN

CC NPB

NN NN

(b) The parser’s hypothesis
NP

NN NN CC NPB

NN NN

Figure 8.5: A problematic case for checking compatibility.

tached is inside a baseNP according to the chunker; and (ii) the
previously attached modifier is not at the beginning (or end if it
is to the right of the head) of a baseNP.

The problem of ensuring that the parser finds all baseNPs is more difficult.
Figure 8.5 illustrates the complications: the parser fails to assign the correct sub-
structure to the first two nouns. How to spot such incompatibilities? The safest
solution would be to inspect the whole the parse tree whenever the TOP symbol is
generated. However, this could be too late to test compatibility: by then, the cor-
rect alternative might have been discarded from the search space. Moreover, such
a late test would not improve the efficiency of the parser. Another approach could
be performing compatibility check when a word is attached to a phrase: the prob-
lem is, however, that baseNPs might dominate virtually any phrases, apart from an
NP. That is, when we attach a word to, say, an ADJP, we do not know yet whether
this ADJP is in a baseNP or not, and, as a consequence, we cannot test whether this
word is in a baseNP or not.

However, it turns out that Figure 8.5 shows a typical problem: the parser
wrongly attaches a terminal to a NP and not to a NPB. It is easy to avoid such
a situation: before the parser tries to join a terminal with a NP, it has to check
whether the word in question is outside a baseNP according to the chunker. The
required modifications are summarised below.

generate_unary
join_2_edges

If the parent is a NP and the dependent is a terminal, check
whether the latter is outside a baseNP according to the chunker.

Checking compatibility with the baseNP chunker requires no additional data struc-
tures and no modifications to the definition of equivalence of edges with respect
to the dynamic programming.
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CHUNKER PARSER COMBINED

precision 94.4 93.8 94.7
Chunks recall 94.7 94.2 94.9

F-score 94.5 94.0 94.8

Time (s/sent) 0.03 1.8 1.1

Chart (edges/sent) – 14k 7k

Fully constructed
edges (per sent)

– 434k 148k

PARSEVAL ≤ 100 – 88.0 88.3
(F-score) ≤ 40 – 88.5 88.7

Surface deps. – 90.7 91.0

Table 8.4: Comparision of the parser and the combined architecture on baseNP

chunking.

8.4.4 Experiments

In the experiments, the parser (which does not insert NLDs this time) and the
chunker are trained independently on the standard training set and the combined
architecture is tested on WSJ23. We report chunk and parse accuracy, as well as
the size of the chart and parsing time. The results are summarised in Table 8.4. In
summary, the combination improves both chunk and parse accuracy of the parser,
whereas parsing time drops considerably by 40%, due to the smaller number of
constructed edges.

8.4.5 Discussion

The combination of the chunker and the parser has the most dramatic effect on
the number of constructed edges: even though both chunk and parse accuracy im-
prove, the number of fully constructed edges in the combined model is around
one third of their number in the original parser. Accordingly, the chart is much
smaller: around half the size as for the original model. This shows that the qual-
ity of the constructed edges is much better: with fewer hypotheses, the combined
architecture attains better performance. Clearly, the most important benefit of the
combination is early filtering of the edges: the original parser hypothesises many
phrases that cut across baseNP boundaries, which results in constructing a large
number of unnecessary edges.
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It is interesting to note that the combined architecture also manages to outper-
form the chunker on the chunking task. As in the case of recovering NLDs, this
result shows that the parser indeed selects second/third/. . . -best hypotheses from
the chunker’s suggestions.

8.5 Discussion

In the previous sections, we have shown that the COMBINED models work in prac-
tical situations. However, there is a step which can be criticised from a theoretical
point of view: the independence assumption of Eq. (8.6). Indeed, this assump-
tion could have led to the failure of the approach. On the practical side, however,
there are several reasons why it is useful and even necessary. First, without the
independence assumption, the parser and the external module would no longer
be independent: changing the external module would entail retraining the parser.
Moreover, it is not clear how the probability p(T |x,S) could be reasonably esti-
mated: in the training data, we always have the perfect hypotheses, thus we cannot
learn the mistakes of the external module. Furthermore, an approach solving the
above problem would need much more training data, a requirement that is hard to
achieve. Therefore, problematic as is from theoretical point of view, the indepen-
dence assumption is necessary to combine the models in a feasible way.

Another question is whether the probabilistic integration is important at all:
do the prior probabilities pe(xi|S) actually contribute to the accuracy of the sys-
tem? Otherwise, we could have an even simpler combination, assuming a flat
prior or even no prior at all. We reran both experiments using both a flat prior
and no prior: the resulting models proved to be marginally worse and slower than
the probabilistic combination. This observation shows that knowing the prior dis-
tribution does improve the system, but the main effect of the combined approach
is filtering. As a consequence, the new architecture allows the combination of
non-probabilistic external modules with the parser, by simply assuming a uniform
probability distribution on the output of the external modules.

Another possible problem is the definition of compatibility. In the examples
above, the notion of compatibility is straightforward. There might occur cases,
however, when it turns out to be more complex. For example, combining a top-
down approach with the bottom-up parser might be tricky: the compatibility check
should be postponed until a fairly late stage in the parsing process. In fact, even in
the combination of the trace tagger and the parser, we face the same problem: we
cannot decide whether the hypotheses of the parser and the tagger are compatible
until we try to combine the edges neighbouring the EE-site (join_2_edges). Nev-
ertheless, the architecture only hinges on the monotonicity of the incompatibility
relation: if a sub-structure at a point is incompatible with an external hypothe-
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sis, then all structures containing this sub-structure are incompatible. In the worst
case, incompatibility can be defined on full parses only: as a consequence, the
architecture would not do any filtering while parsing, but it would remain consis-
tent.

Although we presented the architecture as an external module helping a
bottom-up parser, it can be stated more generally. First, it is not tied to any pars-
ing algorithm or even parsing formalism. Actually, it is not tied to parsing, either.
The formulation in Eq. (8.7) can be applied in a wide variety of different settings.
The only important requirement is that the compatibility set C(T ′) for each struc-
ture T ′ should be a subset of C(T ), where T is a substructure of T ′. Therefore the
most general formulation would be as follows:

• Denote Xk = {x1, . . . ,xk} a set of mutually exclusive events with a probabil-
ity distribution pe, so that ∑k

i=1 pe(xi) ≈ 1 (the external module; the events
stand for external hypotheses).

• Denote T = {t1, . . .} a set with a partial ordering relation < and a proba-
bility distribution pp (the parser; tis are substructures, ti < t j iff t j can be
reached from ti with a finite number of actions by the parser).

• Let c : T → P(Xk) be a function, so that c(t j) ⊆ c(ti) ⊆ Xk whenever ti < t j

(the monotonic compatibility function).

• Then we estimate the probability of a structure ti as

pc(ti) =
1
Z
· pp(ti) · ∑

x∈c(ti)

pe(x) (8.18)

This formulation makes the approach very general and applicable in several
stochastic NLP systems aiming at combining different sources of information.
Note, however, that the roles of the parser and of the external module are not
symmetric: the external module is regarded as a preprocessor, guiding the parser.
This design choice hinges on the assumption that parsing is more time-consuming
than getting the external hypotheses. As a consequence, information mainly flows
from the preprocessor towards the parser. Nevertheless, since the parser some-
times selects solutions suboptimal according to the external module’s probability
model, there is a limited flow of information from the parser towards the external
module. The development of an architecture where the two modules have equal
roles is deferred for future work.
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8.6 Related work

The underlying idea of employing shallow modules as a preprocessing step be-
fore parsing to improve accuracy, coverage and/or parsing speed is very common:
most statistical parsers use POS-tagged input so that they can fall back to the POS-
tags supplied whenever they do not have a reasonable estimate for it. Ratnaparkhi
(1997, 1998) integrates his tagger (Ratnaparkhi 1996) into a parsing model, in
order to avoid errors due to the parser’s commitment to one POS-sequence. Su-
pertagging generalises the idea: the search space of the parser is reduced by ini-
tially assigning a small number of elementary syntactic structures to each word
(Srinivas and Joshi 1999, Clark 2002, Clark et al. 2002). Note, however, that
these approaches all assume that the preprocessor is basically a tagger: there is
one label associated with each word.

Work generalising to one-to-many correspondence between input structures
and words is relatively scarce in the field of statistical parsing. Collins (1996,
1997) uses a different probability model for baseNPs, which basically amounts to
incorporating a baseNP chunker into the parsing model. Ratnaparkhi (1997, 1998)
also integrates a general chunker into his parsing model. Brants (1999a,b) gen-
eralises the idea by using not only base chunks but basically chunks of arbitrary
depth. These chunks act as filters on partial context-free trees: they prune unlikely
sequences of partial structures. These approaches, however, fail to generalise be-
yond chunks.

In order to improve robustness and decrease parsing speed, integrating exter-
nal (shallow) modules with a symbolic (deep) parser has been attracting increas-
ing interest as well. Prins and van Noord (2001) combine n-best hypotheses of
part-of-speech tagger with Alpino, a wide-coverage HPSG parser. The tagger acts
as a filter on the parser. Daum et al. (2003) employ both a tagger and a chunker
as sources of filter constraints in a constraint based framework. Crysmann et al.
(2002) propose a general, non-probabilistic architecture to integrate shallow and
deep NLP modules using a multilevel XML annotation scheme. In this framework,
Frank et al. (2003) combine a probabilistic topological parser (Becker and Frank
2002) with a symbolic HPSG parser (Callmeier 2000). They use various confi-
dence scores derived from the stochastic parser to facilitate the search of the deep
parser. However, they do not design a general framework to use such scores.

Summary

This chapter has presented a new general probabilistic architecture to combine dif-
ferent external modules with a parser. We have shown through two experiments
that the new architecture both improves the accuracy of the model and speeds up
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parsing by reducing the search space of the parser. Another important character-
istics of this architecture is that the parser does not require re-training when a new
module is added. Finally, in certain cases, the combined architecture improves on
the accuracy of the external module as well, showing mutual interaction between
the parser and the external module.



Chapter 9

Conclusions

The main thesis presented in this dissertation is that non-local dependencies in En-
glish can be efficiently and accurately recovered by an appropriate combination of
shallow approaches. In particular, we have shown that (i) it is possible to detect the
majority of NLD-sites with state-of-the-art accuracy without explicit knowledge of
phrase structure; and (ii) even an unlexicalised PCFG parser can find the non-local
dependents once it is informed whether a head participates in such a construction.
These insights have led us to propose a two-level architecture where a finite-state
machine provides a parser with the information about NLD-sites. In order to make
the parser more robust with respect to the errors the finite-state machine commits,
we have developed a probabilistic framework in which the preprocessor imposes
soft constraints on the parser and thus efficiently guides it towards an optimal so-
lution without forcing it to stick to erroneous decisions of the preprocessor.

Although our last system achieves the best reported results on identifying
non-local dependencies in English (see Table 9.1), the problem is far from being
solved. Indeed, accuracy, especially recall, should be improved. There are several
avenues for future research that might prove useful for improving the scores. We
plan to incorporate more, especially non-local and external, information. It is also
essential to fight data sparseness. One line of attack might be reducing the number
of parameters the parser has, for instance, by using a lightly lexicalised parser or
even a finite state machine. Another possible way to go about the problem is mak-
ing use of unlabelled data, by either applying co-training or unsupervised learning
techniques.

The themes underlying the present research point further than the actual task
of recovering NLDs. One of the most salient issues has been the reduction of the
search space the parser has to explore. We have argued throughout the disserta-
tion that reliable reduction of the search space improves both the accuracy and the
efficiency of the parser. No doubt, preprocessing has always been regarded as a
means of search space reduction. The present work, however, extends the standard
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UNLEX LEX

NOTRACE TAGGER PERFECT NOTRACE TAGGER INSERT COMBINED PERFECT

EE det. all – 79.6 100 – 79.6 76.7 79.6 100
(F-score) WH/PRO/TOP – 79.6 100 – 79.6 77.3 81.3 100

ANTE rec. all – 72.9 89.7 – 74.3 73.3 75.8 90.5
(F-score) WH/PRO/TOP – 70.4 89.5 – 72.3 72.3 75.8 90.4

HD accuracy WH/PRO/TOP – 67.8 86.3 – 71.3 72.9 75.5 89.0

Time (s/sent) 9.3 8.9 8.5 1.8 1.6 2.9 2.4 1.6

Chart (edges/sent) 368k 339k 327k 14k 13k 25k 19k 12k

PARSEVAL ≤ 100 72.2 75.7 78.0 88.0 86.3 87.3 87.1 88.2
(F-score) ≤ 40 73.7 77.0 79.3 88.5 87.1 87.9 87.7 88.8

Surface deps. 79.3 81.0 82.5 90.7 88.6 89.2 89.6 90.0
All deps. 77.1 80.9 82.7 88.2 88.2 88.6 89.2 90.5

Table 9.1: Summary of the models.
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approaches in several respects. First, our architecture defines a more flexible in-
terface between the preprocessor and the parser, where the parser can select from
multiple hypotheses of the preprocessor and take the preprocessor’s probability
estimation into account. Second, the architecture allows incorporating not only
shallow but any type of information that might help the parser. Finally, it opens
up the possibility of combining probabilistic and symbolic approaches.

We have claimed that this architecture is general enough to accommodate
many tasks and the combination of several modules. Although we have success-
fully applied it in two experiments, exploring its usefulness and possible limita-
tions requires further research. Even in parsing, there are many possible modules
that can eventually help the parser, from a POS-tagger or a general chunker to
systems specialised in named-entity recognition, word-sense disambiguation, re-
solving PP-attachment ambiguity, etc. Another interesting line of future research
is providing the parser with higher-level information about the dialogue struc-
ture or world knowledge in order to prevent it from proposing readings that the
dialogue system cannot handle or that are unlikely according to the state of the
dialogue/world (cf. Gabsdil 2004).

Our second underlying theme concerns system design. One approach to attack
a difficult problem is to employ a powerful apparatus to solve it; let us call this
design top-down design. The other approach, the one we advocate here, is the op-
posite: start with a simple framework and after understanding why it fails, extend
it to cover the problem at hand. We call this design technique bottom-up design.
Although we might eventually end up with the same powerful system as in the
case of the top-down approach, there are three main reasons why we believe the
bottom-up design is superior.

The first reason concerns parsing technology and efficiency. In the search for
an adequate system, we might stop our hill-climb earlier and find a simpler and
often more efficient architecture with the same (or even better) accuracy as the
more complicated one. In a statistical NLP setting, simplicity frequently entails
fewer parameters, which can be estimated more reliably than in the case of a com-
plicated model with more parameters. That is, by adopting the bottom-up design
technique, we make better use of the existing labelled data. Moreover, simpler
models are usually easier to estimate from unlabelled data.

Second, employing a powerful framework prevents us from gaining important
insights into the nature of the task at hand, since a more involved system offers
many possible solutions to a problem. Simpler approaches, on the other hand, al-
low for a more restricted set of solutions, and thus force us to thoroughly investi-
gate the causes of the difficulties. This way we can acquire a deeper understanding
of the task, and of language in general.

Third, the bottom-up approach naturally supports the combination of various
simple modules. Modularity is useful in many respects. Modular systems are
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easier to design, implement, debug and maintain. They might also allow paral-
lel computing and thus speed up the system. A further benefit of modularity is
the independence of the modules: they can be separately updated if a more accu-
rate version is available. Finally, a modular design permits the combination of a
wide variety of information sources, and it might be an adequate model of human
sentence processing.

The success of many relatively simple approaches to difficult tasks such as
word sense disambiguation, statistical machine translation, or even parsing, sup-
ports the bottom-up design. Ultimately, we believe that many “hard” tasks can
be successfully tackled with relatively simple systems, especially when combined
with statistical approaches. This dissertation has been an illustration of this claim.



Appendix A

A detailed inventory of empty
elements

This appendix gives a detailed inventory of EEs as they are used in the Penn Tree-
bank. We follow the annotation guidelines (Bies et al. 1995) in the present dis-
cussion and the examples are from the same source unless otherwise indicated. In
the presentation below, however, we use the notation of Chapter 2.

Recall that the PTB annotation scheme distinguishes the following types of
empty nodes:

*T* trace of A′-movement, including parasitic gaps

(NP *) arbitrary PRO, controlled PRO and trace of A-movement

*PPA* pseudo-attach: permanent predictable ambiguity

*RNR* pseudo-attach: right node raising

*ICH* pseudo-attach: interpret constituent here

*EXP* pseudo-attach: expletives

*?* placeholder for ellipsed material

0 null complementiser, including null WH-operator

*U* empty unit

Table 2.2 on page 31 shows how these labels map to our labels for empty elements.
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A.1 WH–. . . and TOP-S: traces of A′-movement

The use of this EE-marker loosely corresponds to A′-movement (cf. Haegeman
1991), although it also covers parasitic gaps. There are two main types of such
EEs: (i) traces of topicalisation and (ii) traces of WH-movement. S-level con-
stituents in these constructions are always topicalised, whereas lower level con-
stituents (NPs, ADVPs, PPs, etc.) tend to occur in WH-extraction. The PTB annota-
tion scheme uses *T*-n to represent these kinds of EEs, regardless of their type.
In order to have more mnemonic names, we use a different label (TOP–S) for top-
icalised sentences. Note further that some non-sentential constituents do occur
in topicalised positions; they are nevertheless represented with WH–. . . EEs here.
Finally, it is important to emphasise that these EEs always have an antecedent.
Table A.1 shows the distribution of the various EEs in this group as observed in
the development set (WSJ00): WH–NP, TOP–S, WH–ADVP, and WH–PP are far the
most common EEs of this type. There are a handful other WH–. . . traces in the
training set, but they do not occur in the development section. Below, we give an
exhaustive description where WH–. . . and TOP–S gaps occur in the Treebank.

Type Number

WSJ00 train

WH–NP 438 8661
TOP–S 233 4141
WH–ADVP 120 2560
WH–PP 24 447
WH–ADJP 0 72
WH–VP 0 58

All 815 15939

Table A.1: The distribution of various WH–. . . and TOP–S traces in WSJ00 and
the training set.

A.1.1 WH–NP

This EE-type represents NP-traces either undergoing A′ movement (i.e., when the
NP ends up in a non-argument position, cf. Haegeman 1991, Chapter 7) or being a
parasitic gap (cf. e.g. Pollard and Sag 1994, Section 4.5). Table A.2 at the end of
this section gives detailed statistics on the distribution of WH–NP traces in WSJ00.
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WH-questions

The NP is extracted either from an argument (A.1a) or a non-argument (A.1b) po-
sition. It also includes vacuous subject movement, such as in (A.1c) (example
taken from wsj_0041.mrg).

(a) (A.1)(SBARQ (WHNP1 what
(SQ are

(NP-SBJ you )
(VP thinking

(PP-CLR about
(NP WH−NP1)))))

? )

(b) (SBARQ (WHNP-1 Which day)
(SQ did

(NP-SBJ you)
(VP get

(ADVP-DIR there)
(NP-TMP WH−NP1)))

? )

(c) (SBARQ (WHNP1 Who)
(S (NP-SBJ WH−NP1)

(VP ’s
(VP telling

(NP the truth))))
? )

Relative clauses

Relative clauses are adjoined to a NP and get an SBAR label (as opposed to the
SBARQ label of the WH-questions). There are three main types of such con-
structions: with an overt that or a WH-complementiser (A.2a), with a null com-
plementiser (in this case the null complementiser represented by the empty ele-
ment COMP–WHNP is taken to be the antecedent; cf. A.2b), and infinitival relatives
(which are, in fact, subcases of relatives without overt complementiser; A.2c and
d). In the cases of overt complementisers and infinitival relatives, the extracted NP

is either a subject or an object in the embedded clause; null WH-complementisers
in finite subclauses are allowed only in object extraction.

(a) (A.2)(NP (NP answers)
(SBAR (WHNP1 that/which)

(S (NP-SBJ we)
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(VP encountered
(NP WH−NP1)))))

(b) (NP (NP answers)
(SBAR (WHNP1 COMP−WHNP)

(S (NP-SBJ we)
(VP encountered

(NP WH−NP1)))))

(c) (NP (NP a movie)
(SBAR (WHNP1 COMP−WHNP)

(S (NP-SBJ PRO−NP)
(VP to

(VP see
(NP WH−NP1)))))))

(d) (NP (NP bloodhounds)
(SBAR (WHNP1 COMP−WHNP)

(S (NP-SBJ WH−NP1)
(VP to

(VP trail
(NP the assassins))))))

Fronting

Generally, fronted arguments are represented in the PTB as in (A.3a), with the
corresponding EE co-indexed with the topicalised constituent. There are, how-
ever, some additional complications with fronting. First, as illustrated in (A.3b),
if the fronted argument is left-dislocated, i.e., it is associated with a resumptive
pronoun, no EE is involved. Furthermore, if the fronted NP is an adjunct (A.3c),
no trace is involved as long as the adjunct originates in the same clause. On the
other hand, adjunct NPs originating in a lower clause leave a trace (A.3d).

(a) (A.3)(S (NP-TPC1 This)
(NP-SBJ every man)
(VP contains

(NP WH−NP1)
(PP-LOC-CLR within

(NP him))))

(b) (S (NP-TPC John)
,
(NP-SBJ I)
(VP like
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(NP him)
(NP-ADVP a lot)))

(c) (S (NP-TMP Yesterday)
(NP-SBJ John)
(VP called

(NP us)))

(d) (S (NP-TMP-TPC1 Yesterday)
(NP-SBJ I)
(VP think

(S (NP-SBJ John)
(VP called

(NP us)
(NP-TMP WH−NP1)))))

Tough-constructions

In the case of tough-constructions (cf. e.g. Pollard and Sag 1994, Section 4.4), the
empty element is co-indexed with a null WH-operator (A.4).

(A.4)(S (NP-SBJ Cars)
(VP are

(ADJP-PRD tough
(SBAR (WHNP1 COMP−WHNP)

(S (NP-SBJ PRO−NP)
(VP to

(VP pay
(PP-CLR for

(NP WH−NP1)))))))))

Parasitic gaps

A parasitic gap occurs whenever an extracted NP is an argument of two or more
verbs (cf. e.g. Pollard and Sag 1994, Section 4.5). The PTB annotation scheme
represents parasitic gaps by introducing two WH–NP gaps with the same index
(A.5a). Coordination is handled in a similar fashion (A.5b).

(a) (A.5)(SBARQ (WHNP1 Which papers)
(SQ did

(NP-SBJ2 you)
(VP file

(NP WH−NP1)
(PP without
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(S-NOM (NP-SBJ NP−NP2)
(VP reading

(NP WH−NP1)))))))

(b) (VP tells
(NP you)
(SBAR (WHNP1 what)

(S (NP-SBJ the characters)
(VP are

(VP (VP thinking
(NP WH−NP1)

and
(VP feeling

(NP WH−NP1))))))))

Type all subject object

WH-questions 9 9 0

Relatives 427 332 95
that 331 293 38
empty 63 – 63
infinitival 33 29 4

Fronting 0 0 0

Tough 2 – 2

Parasitic 0 0 0

All 438 341 97

Table A.2: The distribution of the WH–NP traces in WSJ00.

A.1.2 TOP–S

These EEs represent topicalised subclauses if they precede their matrix verb. This
constellation mostly occurs with quotations in the PTB. The tree in (A.6a) shows
the basic case. If the quotation is discontinuous, the interrupting material is an-
notated as a parenthetical (PRN) and the EE is co-indexed with the whole sentence
(A.6b). Finally, note that the annotation scheme requires an EE only if (part of)
the quotation appears before the matrix verb (cf. A.6c).
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(a) (A.6)(S ‘‘
(S-TPC1 (NP-SBJ Willie)

(VP caught
(NP the ball)))

’’
(NP-SBJ Casey)
(VP said

(S TOP−S1))
.)

(b) (S1 ‘‘
(NP-SBJ Willie)
’’
(PRN ,

(S (NP-SBJ Casey)
(VP said

(S TOP−S1)))
,)

‘‘
(VP caught

(NP the ball))
.
’’)

(c) (S (NP-SBJ Casey)
(VP said

‘‘
(S (NP-SBJ Willie)

(VP caught
(NP the ball))))

.
’’)

A.1.3 WH–ADVP, WH–PP, etc.

These EEs occur in very similar syntactic constructions as WH–NPs. There is a
further construction specific to WH–ADVPs which we refer to as so-constructions
(A.7a and b). Table A.3 shows the distribution of these EEs in WSJ00.

(a) (A.7)(SINV (ADVP-PRD-TPC1 So)
(VP is

(ADVP-PRD WH−ADVP1)
(NP its balance sheet)))
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(b) (SINV (ADVP-LOC-PRD-TPC1 Here)
(VP are

(ADVP-LOC-PRD WH−ADVP1)
(NP the figures)))

Type WH–ADVP WH–PP

WH-questions 2 0

Relatives 112 18
overt comp. 82 17
infinitival 30 1

Fronting 0 6

So-constructions 6 –

All 120 24

Table A.3: The distribution of the WH–ADVP and WH–PP traces in WSJ00.

A.2 NP–NP and PRO–NP: traces of NP-movement,
controlled and arbitrary PRO

These types of EEs are the most frequent ones in the PTB corpus; many phenom-
ena are indeed analysed in terms of NP-movement and PROs. The most important
difference between the two types of EEs (NP–NP and PRO–NP) is whether they
are co-referential with a NP within the sentence or not. The original annotation
scheme represents both with a *, the only difference being the presence or absence
of the index indicating co-reference. In order to avoid confusion, we use two dif-
ferent labels: NP–NP stands for the co-indexed version (*-n), whereas PRO–NP

represents the type without co-indexation (*). Generally, both of them participate
in similar syntactic constructions, therefore we present them together below, indi-
cating restrictions on their occurrence in the given environments. Table A.4 at the
end of this section summarises the distribution of the NP–NP and PRO–NP traces.

A.2.1 Passives

Although the treatment of passivisation in terms of movement, or even account-
ing for it as a syntactic process, is disputed (e.g. Sag 1982, Pollard and Sag 1994),
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the PTB annotation scheme follows the transformational grammarian approach to
passivisation. Under this view, passivisation is a syntactic process which involves
the movement of the (direct) object of the verb from object to subject position.
The (surface) subject is co-indexed with its trace. The NP undergoing movement
is the object of either a verb (A.8a) or a preposition (A.8b). These constructions
also include “small clauses” (Haegeman 1991, p. 50f) with passive verbs (A.8c, a
simplified example from wsj_0021.mrg).

(a) (A.8)(S (NP-SBJ1 John)
(VP was

(VP hit
(NP NP−NP1)
(PP by

(NP-LGS a ball)))))

(b) (S (NP-SBJ1 (NP kid ’s) cars)
(VP are

(ADVP-TMP often)
(VP paid

(PP-CLR for
(NP NP−NP1))

(PP by
(NP-LGS their parents)))))

(c) (S (NP-SBJ the country)
(VP wants

(S (NP-SBJ1 half the debt)
(VP forgiven

(NP NP−NP1)))))

A.2.2 Reduced relatives

These cases might as well be viewed as passive constructions. However, the EE

is never co-indexed with the corresponding NP, which “reflects an understanding
of the relationship between the NP and the reduced relative as post-modification
rather than predication” (Bies et al. 1995, p. 70).

(a) (A.9)(NP (NP an agreement)
(VP signed

(NP PRO−NP)
(PP by

(NP-LGS everyone))))
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A.2.3 Subjects of infinitival clauses

There are several syntactic constructions where the subject of an infinitival clause
is a PRO, which is either co-indexed with a NP in the sentence or is not controlled.
These EEs always appear under an NP–SBJ node.

VP and ADJP complement clauses

These instances include raising and control constructions, affecting both verbal
(A.10a–c) and adjectival complements (A.10e). Also, infinitival complements of
semi-auxiliaries (supposed to, ought to, have to, about to, etc.) are represented
as having an empty subject (A.10d). The subject of the infinitival clause is co-
indexed with the controlling NP.

(a) (A.10)Raising

(S (NP-SBJ1 Everyone)
(VP seems

(S (NP-SBJ NP−NP1)
(VP to

(VP dislike
(NP Drew Barrymore))))))

(b) Object control

(S (NP-SBJ Ford)
(VP persuaded

(NP1 Zaphod)
(S (NP-SBJ NP−NP1)

(VP to
(VP run

(PP-CLR for
(NP president)))))))

(c) Subject control

(S (NP-SBJ1 Zaphod)
(VP promised

(NP Ford)
(S (NP-SBJ NP−NP1)

(VP to
(VP run

(PP-CLR for
(NP president)))))))
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(d) Semi-auxiliaries

(S (PP Of (NP course))
,
(NP-SBJ1 regulators)
(VP would

(VP have
(S (NP-SBJ NP−NP1)

(VP to
(VP approve

(NP (NP Columbia ’s)
reorganization)))))))

(e) ADJP complement clauses

(S (NP-SBJ1 This climb)
(VP is

(ADJP-PRD likely
(S (NP-SBJ NP−NP1)

(VP to
(VP be

(ADJP-PRD difficult)))))))

Adverbials

Examples include, for instance, purpose clauses (A.11a), semi-complement
clauses (A.11b), resultative clauses (A.11c), etc. Again, the subjects are co-
indexed with the appropriate NP.

(a) (A.11)purpose clause

(S (NP-SBJ1 The public)
(VP did n’t

(VP come
(PP-DIR to

(NP the market))
(S-PRP (NP-SBJ NP−NP1)

(VP to
(VP play

(NP a game)))))))
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(b) semi-complement clause

(S (NP-SBJ1 Skilled ringers)
(VP use

(NP their wrists)
(S-CLR (NP-SBJ NP−NP1)

(VP to
(VP advance or retard

(NP the next swing))))))

(c) resultative clause

(S (NP-SBJ1 (NP London ’s)
Financial Times 100-share index)

(VP shed
(NP 40.4 points)
(S-ADV (NP-SBJ NP−NP1)

(VP to
(VP finish

(PP-CLR at
(NP 2149.3)))))))

Infinitives inside NPs

These include complement clauses of nouns (A.12a) and subjects of infinitival
relative clauses (A.12b). These empty subjects are not co-indexed with a NP,
therefore they are represented with PRO–NP gaps. If it is the subject of the infiniti-
val relative clause that undergoes WH-extraction, the subject WH–NP is co-indexed
with the (empty) WH-complementiser (A.2d).

(a) (A.12)(NP (NP John ’s)
decision
(S (NP-SBJ PRO−NP)

(VP to
(VP leave))))

(b) (NP (NP a manual)
(SBAR (WHNP1 0)

(S (NP-SBJ PRO−NP)
(VP to

(VP write
(NP WH−NP1))))))
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Further examples with PROs as subjects of infinitival clauses involve imper-
ative subjects (A.13a) and subjects of tough-constructions (A.13b, cf. also A.4).
Here, the subject is an arbitrary PRO (PRO–NP).

(a) (A.13)(S (NP-VOC Kris)
,
(NP-SBJ PRO−NP)
(VP go

(ADVP-DIR home))
!)

(b) (S (PP for (NP Zaphod))
,
(NP-SBJ that steak)
(VP is

(ADJP-PRD ready
(SBAR (WHNP1 0)

(S (NP-SBJ PRO−NP)
(VP to

(VP eat
(NP WH−NP1))))))))

A.2.4 Subjects of participial clauses and gerunds

The annotation scheme does not attempt to make a (theory-based) distinction be-
tween gerunds and other present participles. -ing clauses are labelled as a VP when
a complement of (various forms of) be, as an S–NOM in subject and prepositional
object positions, as an S if a verbal complement, and as an S–ADV/TMP/LOC/etc.
if the clause is a verbal or sentential modifier. The -ing clauses labelled as S (i.e.,
S, S–NOM and S–ADV/etc.) require either an overt or a null subject. In the case
of null subjects, the co-referent is co-indexed with the EE, “if it is clear to the
annotator that the two are coreferent” (Bies et al. 1995, p. 70). Examples include:

VP complements

They may occur both with and without co-indexed empty subjects (A.14a and b,
respectively).

(a) (A.14)(S (NP-SBJ1 I)
(VP stopped

(S (NP-SBJ NP−NP1)
(VP eating

(NP chocolate)))



190 A detailed inventory of empty elements

(PP-PRP for
(NP Lent))))

(b) (S (NP-SBJ A Texas legislator)
(VP proposes

(S (NP-SBJ PRO−NP)
(VP color-coding

(NP (NP (NP drivers ’)
licenses)

(PP of
(NP drug offenders)))))))

PP complements

“Null subjects of gerund complements of PP modifiers of NPs are coindexed only
if there is a particularly strong coindexed interpretation or the PP appears to be
part of some «fixed phrase»” (Bies et al. 1995, p. 98).

(a) (A.15)(S (NP-SBJ the company)
(VP has

(NP (NP no intention)
(PP of

(S-NOM (NP-SBJ PRO−NP)
(VP tapping

(NP its short-term
bank lines)))))

(PP-TMP for
(NP (NP a good part)

(PP of
(NP 1990))))))

(b) (S (PP In
(NP (NP addition)

(PP to
(S-NOM (NP-SBJ NP−NP1)

(VP having
(NP high price-earnings

ratios))))))
,
(NP-SBJ1 most)
(VP pay

(NP puny dividends)))
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Adverbials

They may occur as VP-level and sentence level adjuncts (A.16a and b).

(a) (A.16)(S (NP-SBJ1 She)
(VP left

,
(S-ADV

(NP-SBJ2 NP−NP1)
(VP offended

(NP NP−NP2)
(PP by (NP-LGS their remarks))))))

(b) (S (NP-SBJ1 Borough Presidents)
,
(SBAR-ADV while

(S (NP-SBJ NP−NP1)
(VP retaining

(NP (NP membership)
(PP-LOC in

(NP (NP the Board)
(PP of

(NP Estimate))))))))
,
(VP lose

(NP their housekeeping functions)))

Subjects

The gerundial clause gets an S–NOM–SBJ label and its PRO subject is mostly not
co-indexed (A.17a) even if its referent is in the sentence (you in A.17b). Some ex-
amples involve controlled PRO subjects, though (A.17c, simplified example from
wsj_0766.mrg).

(a) (A.17)(S (S-NOM-SBJ (NP-SBJ PRO−NP)
(VP Taking

(NP Iwo Jima)))
(VP was

(NP-PRD no easy feat)))

(b) (S (S-NOM-SBJ (NP-SBJ PRO−NP)
(VP Eating

(NP chocolate)))
(VP is
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(ADJP-PRD good
(PP for

(NP you)))))

(c) (S (NP-SBJ1 she)
(VP admits

(SBAR that
(S (S-NOM-SBJ

(NP NP−NP1)
(VP venturing

(PP inside the house)
(VP was

n’t
(NP such a great idea))))))))

A.2.5 Subjects of as- and than-clauses

A PRO is used as a “placeholder” subject in clauses introduced by than or as if
they lack an overt subject. The PRO subject may be arbitrary (A.18a–c) as well
as controlled (A.18d). Note the wide variety of the constructions: comparatives
(A.18a and b), sentential adjuncts (A.18c), verbal complements (A.18d).

(a) (A.18)(S But
(NP-SBJ there)
(VP may

(VP be
(NP-PRD (NP less)

(ADVP-LOC there)
(SBAR than

(S (NP-SBJ PRO−NP)
(VP meets

(NP the eye))))))))

(b) (NP (NP as little)
(SBAR as

(S (NP-SBJ PRO−NP)
(VP is

(ADJP-PRD consistent ...)))))

(c) (S (NP-SBJ Primerica)
,
(SBAR-ADV as

(S (NP-SBJ PRO−NP)
(VP expected)))



A.3 PSEUDO–. . . : pseudo-attach 193

,
(ADVP also)
(VP acquired ...))

(d) (NP (NP Items)
(VP listed

(NP1 PRO−NP)
(PP-CLR as

(S-NOM (NP-SBJ NP−NP1)
(VP being

(PP-PRD in
(NP short supply)))))))

Type NP–NP PRO–NP

Passive 380 –
VP 377 –
PP 3 –

Reduced relative – 152
VP – 150
PP – 2

Subjects 607 274
infinitival 383 146
participial 220 120
than/as 4 8

All 987 426

Table A.4: The distribution of NP–NP and PRO–NP in WSJ00.

A.3 PSEUDO–. . . : pseudo-attach

The PTB annotation scheme uses the pseudo-attach function to represent vari-
ous syntactic constructions: (i) predictable structural ambiguity, (ii) shared con-
stituents, (iii) discontinuous phrases, and (iv) extraposed clauses. These empty
elements are the most difficult to handle: unlike in the case of other EEs, they can
be dominated by virtually any nonterminal label, the antecedent typically does not
c-command the EE (cf. Section 2.3), and they often pose a problem for existing
linguistic theories as well. Fortunately, they are relatively infrequent, constituting



194 A detailed inventory of empty elements

only 3.8% of the EEs in the development section (WSJ00). Below is an exhaustive
list of pseudo-attach constructions. In the annotation scheme, we do not distin-
guish them from each other, and use the PSEUDO–. . . label uniformly. Pseudo-
attachment always involves co-indexation. Table A.5 at the end of this section
summarises the distribution of various pseudo-attach constructions in WSJ00.

A.3.1 Structural ambiguity

To represent this kind of pseudo-attach, the original PTB annotation scheme uses
the label *PPA*, which stands for “permanent predictable ambiguity.” This label
is used only in the “cases in which one cannot tell even from context where a con-
stituent should be attached. The default is to attach the constituent at the more
likely site [. . . ] and then to pseudo-attach it at all other plausible sites” (Bies et al.
1995, p. 102). In the example below (A.19), for instance, the phrase on the printer
might be attached to either the forms, the class or the forms, or it could modify
directly the verb changes as a PP-adverbial. Note that *PPA*s are very rare in the
Treebank, since “finding potential ambiguities is difficult and time-consuming,
especially when reading in context” (ibid., p. 103).

(A.19)(S (NP-SBJ PRO−NP)
(VP Use

(NP this option)
(SBAR-TMP (WHADVP2 when)

(S (NP-SBJ the operator)
(VP changes

(NP (NP (NP the class)
or
(NP (NP the forms)

(PP-LOC1 on
(NP the printer))))

(PP-LOC *PPA*1))
(PP-LOC *PPA*1)
(ADVP-TMP WH−ADVP2))))))

A.3.2 Shared constituents

These cases involve shared constituents in right node raising constructions, i.e.,
where a constituent should be interpreted simultaneously at more than one place.
The original annotation scheme uses the label *RNR* to indicate these cases.

(A.20)(S But
(NP-SBJ2 our outlook)
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(VP (VP has
(VP been

(ADJP-PRD *RNR*1)))
,
and
(VP continues

(S (NP-SBJ NP−NP2)
(VP to

(VP be
(ADJP-PRD *RNR*1)))))

,
(ADJP-PRD1 defensive)))

A.3.3 Discontinuous structures

This type of pseudo-attach is the most common in the Treebank, and it is used
to indicate a constituency of elements separated by intervening material (discon-
tinuous phrases). Hence its label: *ICH*, which stands for “interpret constituent
here.” Typical use of this EE-type involves heavy shift and other adjunction phe-
nomena.

(a) (A.21)(S (NP-SBJ (NP a young woman)
(SBAR *ICH*1))

(VP entered
(SBAR1 (WHNP2 whom)

(S (NP-SBJ she)
(PP-TMP at

(ADVP once))
(VP recognized

(NP WH−NP2)
(PP-CLR as

(NP Jemima Broadwood)))))))

(b) (S (NP-SBJ2 (NP Nothing)
(PP *ICH*1))

(VP was
(S (NP-SBJ3 NP−NP2)

(VP to
(VP be

(VP seen
(NP NP−NP3)))))

(PP1 but
(NP water))))
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A.3.4 It -extraposition

This EE-type is used in cases where the clausal subject of a sentence is extraposed
and is replaced by an expletive it. The PTB annotation scheme refers to these
instances with the label *EXP* (expletive).

(A.22)(S (NP-SBJ (NP It)
(SBAR *EXP*1))

(VP is
(ADJP-PRD clear)
(PP to

(NP me))
(SBAR1 that

(S (NP-SBJ this message)
(VP is

(ADJP-PRD unclear))))))

Type Number

*PPA* 2
*RNR* 22
*ICH* 75
*EXP* 28

All 127

Table A.5: The distribution of various pseudo-attachments in WSJ00.

A.4 ELLIPSIS–. . . : placeholder for ellipsed material

This EE, labelled as *?* in the original scheme, acts as a placeholder for an el-
lipsed predicate or a part thereof. Although, in general, this EE is used by the
annotators as a last resort, there are some constructions characteristic of ELLIPSIS.
Note that even if the missing material represented by this EE is often identical to
another constituent in the sentence, they are never co-indexed. Below we give a
list of common constructions involving ELLIPSIS.

Comparative deletion

The ellipsed part of a complement clause is marked with ELLIPSIS–. . . . The EE

might be dominated by nodes labelled with a –PRD functional tag (A.23a), but
also by an NP (A.23b), by a VP (A.23c), or even by a clausal S label (A.23d).
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(a) (A.23)(S (NP-SBJ John)
(VP is

(ADJP-PRD (ADJP sillier)
(SBAR than

(S (NP-SBJ I)
(VP am

(ADJP-PRD ELLIPSIS−ADJP)))))))

(b) (S (NP-SBJ the Controller)
(VP will

(VP have
(NP (NP the opportunity)

(PP for
(NP (NP greater usefulness)

(PP to
(NP good government))

(SBAR than
(S (NP-SBJ he)

(VP has
(NP ELLIPSIS−NP)
(ADVP-TMP now)

)))))))))

(c) (S (NP-SBJ Bill)
(VP eats

(NP (NP more hotdogs)
(SBAR than

(S (NP-SBJ Mary)
(VP does

(VP ELLIPSIS−VP)))))))

(d) (S (NP-SBJ the steel strike)
(VP lasted

(ADVP-TMP (ADVP much longer)
(SBAR than

(S (NP-SBJ he)
(VP anticipated

(SBAR COMP−SBAR

(S ELLIPSIS−S))))))))

Missing VP after auxiliaries

Examples of ellipsed VPs after auxiliaries include VPs in the second conjunct
(A.24a), VPs in subordinate clauses (A.24b) and in as do constructions (A.24c).
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(a) (A.24)(S (S (NP-SBJ She)
(ADVP-TMP rarely)
(VP sings))

,
so
(S (NP-SBJ I)

(VP do n’t
(VP think

(SBAR COMP−SBAR

(S (NP-SBJ she)
(VP will

(VP ELLIPSIS−VP

(NP-TMP tonight)))))))))

(b) (S (NP-SBJ PRO−NP)
(VP Call

(S (NP-SBJ it)
(ADJP-PRD anecdotal))

(SBAR-ADV if
(S (NP-SBJ you)

(VP will
(VP ELLIPSIS−VP))))))

(c) (S (NP-SBJ (NP Warner)
and
(NP Mr. Azoff))

(VP declined
(NP comment)
,
(SBAR-ADV as

(SINV did
(NP-SBJ MCA)
(VP ELLIPSIS−VP)))))

A.5 COMP-. . . : empty complementisers

This label is inserted in SBAR constituents without overt complementisers. It
comes in two flavours: (i) null WH-operators (COMP–WH. . . ) and (ii) subordi-
nators for tensed complement clauses (COMP–SBAR). Neither of them has an an-
tecedent; the original PTB annotation scheme represents both with the label 0.
Table A.6 summarises the distribution of various COMP–. . . EEs in the develop-
ment section (WSJ00).
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A.5.1 COMP–SBAR

It introduces most tensed complement clauses without an overt complemen-
tiser. The clause can be a complement of adjectives (A.25a), a verbal comple-
ment (A.25b) or a nominal complement (A.25c). A very frequent occurrence of
COMP–SBAR involves quotations, where the annotation appears to be rather unre-
liable. Consider, for instance, the examples in (A.25d) and (A.25e): they appear
to have similar structure, nevertheless (A.25d) does not contain a COMP–SBAR for
no apparent reason.

(a) (A.25)(S (NP-SBJ I)
(VP ’m

(ADJP-PRD sure
(SBAR COMP−SBAR

(S (NP-SBJ he)
(VP ’ll

(VP be
(ADVP-LOC-PRD here)
(NP-TMP any minute))))))))

(b) (S (NP-SBJ I)
(VP believe

(SBAR COMP−SBAR

(S (NP-SBJ you)
(VP are

(ADJP-PRD ELLPSIS−ADJP))))))

(c) (S (PP in
(NP the event

(SBAR COMP−SBAR

(S (NP-SBJ Congress)
(VP does

(VP provide
(NP (NP this increase)

(PP in
(NP federal funds)

))))))))
,
(NP-SBJ the State Board)
(VP should ...))

(d) “The refund pool . . . may not be held hostage through another
round of appeals,” Judge Curry said. (wsj_0015.mrg)
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(S (S-TPC1 (NP-SBJ the refund pool)
(VP may not
... ))

(NP-SBJ Judge Curry)
(VP said

(S TOP−S1)))

(e) ”In Asia, as in Europe, a new order is taking shape,” Mr. Baker
said. (wsj_0043.mrg)

(S (S1 In Asia ...)
(NP-SBJ Mr. Baker)
(VP said

(SBAR COMP−SBAR

(S TOP−S1))))

A.5.2 COMP–WH. . .

These empty WH-operators introduce two types of relative clauses: finite relative
clauses without an overt WH-complementiser and infinitival relative clauses. They
are always antecedents of the corresponding WH–. . . traces.

Finite relatives

The null complementiser is labelled COMP–WHNP if it corresponds to who, that
or which (A.26a), whereas it is labelled as COMP–WHADVP if it stands for where,
when, why or how (A.26b).

(a) (A.26)(NP (NP the bird)
(SBAR (WHNP1 COMP−WHNP)

(S (NP-SBJ I)
(VP saw

(NP WH−NP1)))))

(b) (NP (NP the place)
(SBAR (WHADVP1 COMP−WHADVP)

(S (NP-SBJ I)
(VP put

(NP the book)
(ADVP-PUT WH−ADVP1)))))
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Infinitival relatives

Here COMP–WHNP is used for extracted NP subjects and objects (A.27a), whereas
the empty WH-operator is labelled COMP–WHADVP when it can be paraphrased as
in which, for which, at which, etc. (A.27b).

(a) (A.27)(NP (NP a movie)
(SBAR (WHNP1 COMP−WHNP)

(S (NP-SBJ PRO−NP)
(VP to

(VP see
(NP WH−NP1))))))

(b) (S (NP-SBJ That)
(VP ’s

(NP-PRD (NP a good way)
(SBAR (WHADVP1 COMP−WHADVP)

(S (NP-SBJ PRO−NP)
(VP to

(VP keep
(ADJP-PRD warm)
(ADVP-MNR WH−ADVP1))))))))

Type Number

COMP–SBAR 456
COMP–WHNP 98
COMP–WHADVP 30

All 584

Table A.6: The distribution of empty complementisers (COMP–. . . ) in WSJ00.

A.6 TU: empty units

This empty element, represented in the original annotation scheme with *U*,
“marks the interpreted position of a unit symbol, such as $, # (British pounds),
FFr (French francs), C$, US$, HK$, A$, M$, S$, and NZ$. It may also appear
after % or even cents, when convenient” (Bies et al. 1995, p. 80). The “inter-
preted position” is where the symbol would appear when the text is pronounced
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(A.28a–c). There is one notable exception shown in (A.28d). Observe the some-
what unintuitive choice of annotation: generally, the numbers and the currency
sign are attached immediately to the NP, unless they are followed by the words
million, billion, etc. (A.28b) or they are modified or participate in a conjunction
(A.28c).

(a) (A.28)(NP C$ 5 UNIT)

(b) (NP (QP C$ 5 million) UNIT)

(c) (NP (QP between $ 5 and $ 15) UNIT)

(d) (NP a
(ADJP $ 5-a-share UNIT)
increase)
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Dan TUFI Ş, Péter DIENES, Csaba ORAVECZ and Tamás VÁRADI (2000). Prin-
cipled hidden tagset design for tiered tagging of Hungarian. In Proceedings of
the Second International Conference on Language Resources and Evaluation,
LREC2000, 1421–1426. Athens, Greece.

Hans USZKOREIT (2002). New chances for deep linguistic processing. In Pro-
ceedings of the 19th International Conference on Computational Linguistics,
xiv–xxvii. Taipei, Taiwan.

Vladimir VAPNIK (1995). The Nature of Statistical Learning Theory. Springer,
Berlin, Germany.

Vladimir VAPNIK (1998). Statistical Learning Theory. Wiley, Chichester, UK.

K. VIJAY-SHANKER (1987). A Study of Tree-Adjoining Grammars. Ph.D. thesis,
University of Pennsylvania, Philadelphia, PA.

K. VIJAY-SHANKER and David J. WEIR (1994). The equivalence of four exten-
sions of Context-Free Grammars. Mathematical Systems Theory, 27:511–546.

Adriaan VAN WIJNGAARDEN, B. J. MAILLOUX, J. E. L. PECK, Cornelis H. A.
KOSTER, Michel SINTZOFF, C. H. LINDSEY, Lambert G. L. T. MEERTENS and
R. G. FISKER (1975). Revised report on the algorithmic language ALGOL 68.
Acta Informatica, 5:1–235.

XTAG RESEARCH GROUP (2001). A lexicalized tree adjoining grammar for
english. Tech. Rep. IRCS-01-03, IRCS, University of Pennsylvania.

Daniel ZEMAN (1998). A statistical approach to parsing of Czech. Prague Bul-
letin of Mathematical Linguistics, 29–37.

Daniel ZEMAN (2002). Can subcategorization help a statistical dependency
parser? In Proceedings of the 19th International Conference on Computational
Linguistics, 1156–1162. Taipei, Taiwan.


