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Abstract

In this thesis, we present a novel approach for modeling textual entailment using lexical-
semantic information on the level of predicate-argument structure. To this end, we
adopt information provided by the Berkeley FrameNet repository and embed it into an
implemented end-to-end system. The two main goals of this thesis are the following: (i)
to provide an analysis of the potential contribution of frame semantic information to the
recognition textual entailment and (ii) to present a robust system architecture that can
serve as basis for future experiments, research, and improvement.

Our work was carried out in the context of the textual entailment initiative, which
since 2005 has set the stage for the broad investigation of inference in natural-language
processing tasks, including empirical evaluation of its coverage and reliability. In short,
textual entailment describes inferential relations between (entailing) texts and (entailed)
hypotheses as interpreted by typical language users. This pre-theoretic notion captures
a natural range of inferences as compared to logical entailment, which has traditionally
been used within theoretical approaches to natural language semantics.

Various methods for modeling textual entailment have been proposed in the litera-
ture, ranging from shallow techniques like lexical overlap to shallow syntactic parsing
and the exploitation of WordNet relations. Recently, there has been a move towards
more structured meaning representations. In particular, the level of predicate-argument
structure has gained much attention, which seems to be a natural and straightforward
choice. Predicate-argument structure allows annotating sentences or texts with nuclear
meaning representations (“who did what to whom”), which are of obvious relevance for
this task. For example, it can account for paraphrases like “Ghosts scare John” vs.
“John is scared by ghosts”.

In this thesis, we present an approach to textual entailment that is centered around
the analysis of predicate-argument structure. It combines LFG grammatical analysis,
predicate-argument structure in the FrameNet paradigm, and taxonomic information
from WordNet into tripartite graph structures. By way of a declarative graph matching
algorithm, the “structural and semantic” similarity of hypotheses and texts is com-
puted and the result is represented as feature vectors. A supervised machine learning
architecture trained on entailment corpora is used to check textual entailment for new
text/hypothesis pairs. The approach is implemented in the SALSA RTE system, which
successfully participated in the second and third RTE challenge.

While system performance is on a par with that of comparable systems, the intu-
itively expected strong positive effect of using FrameNet information has not yet been
confirmed. In order to evaluate different system components and to assess the potential
contribution of FrameNet information for checking textual entailment, we conducted
a number of experiments. For example, with the help of a gold-standard corpus, we
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experimentally analyzed different factors that can limit the applicability of frame se-
mantics in checking textual entailment, ranging from issues related to resource coverage
to knowledge modeling problems.
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Ausführliche Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit einem neuen Ansatz zur Modellierung na-
türlichsprachlicher Folgerungsbeziehungen (“Textual Entailment”) mithilfe lexikalisch-
semantischer Information auf Ebene der Prädikat-Argument-Struktur. Zu diesem Zwecke
verwenden wir Information aus der Berkeley FrameNet-Datenbank und betten diese in
ein von uns implementiertes “end-to-end” System ein. Die zwei Hauptbeiträge dieser
Dissertation sind (i) die Untersuchung des potentiellen Beitrages von Framesemantik zur
Modellierung von Textual Entailment und (ii) die Präsentation einer robusten Systemar-
chitektur als Basis für zukünftige Untersuchungen, Experimente und Weiterentwicklun-
gen.

Eine Motivation dieser Arbeit die Erkenntnis, dass derzeitige, “flache” Verfahren
des automatischen Informationszugriffes, wie stichwortbasierte Suche im WWW, den
menschlichen Benutzer nicht optimal beim Zugriff auf die vorhandene Flut von na-
türlichsprachlicher Information unterstützen. Wir zeigen, dass Textual Entailment ein
geeignete Grundlage ist, in einer Vielzahl von Anwendungen intelligentere, semantische
Verfahren zu implementieren, die typische Fehler flacher Verfahren vermeiden.

Textual Entailment ist ein unlängst eingeführtes, prä-theoretisches Konzept, das –
kurz gesagt – gerade die Arten von Folgerungsbeziehungen zwischen Sätzen (dem “en-
tailenden” Text und der “entailten” Hypothese) beschreibt, die typische Sprecher für
gewöhnlich herstellen. Es versteht sich als Erweiterung des logisches Entailmentbe-
griffes, welcher über viele Jahre der vorherrschende Folgerungsbegriff in Ansätzen zur
Formalisierung natürlichsprachlicher Bedeutung war, dabei jedoch nur einen kleinen,
eher uninteressanten Teil dessen, was Menschen zu folgern in der Lage sind, abbildet. Die
seit 2005 jährlich stattfindenden “Recognizing Textual Entailment” (RTE)-Wettbewerbe
bieten die Möglichkeit, formale Modelle von Textual Entailment auf Grundlage von Ko-
rpusdaten zu entwickeln und zu evaluieren.

In der Literatur werden verschiedenste Verfahren zur Modellierung von Textual En-
tailment vorgeschlagen, die zum Beispiel von Maßen der Wort-Übereinstimmung, syn-
taktischem Parsing und WordNet Relationen Gebrauch machen. Hierbei geht der Trend
in letzter Zeit hin zu stärker strukturierter, semantischer Information und weg von irrel-
evanten Oberflächenmerkmalen. Die Ebene der Prädikat-Argument-Struktur hat dabei
eine gewisse Aufmerksamkeit erlangt, da sie eine natürliche und folgerichtige Wahl zu
sein scheint. Prädikat-Argument-Strukturen beschränken sich auf die Modellierung von
Kernbedeutungen (“wer tut wem was”) und können zum Beispiel Paraphrasen wie “Peter
hat Angst vor Gespenstern” und “Gespenster ängstigen Peter” erklären. Verschiedene
Studien haben gezeigt, dass Variationen auf dieser Ebene einen nennswerten Teil der
Inferenzen in den vorhandenen RTE-Korpora ausmachen.

Ein zentraler Beitrag dieser Arbeit ist das von uns entworfene und implementierte
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SALSA RTE-System, welches erfolgreich am zweiten und dritten RTE-Wettbewerb teil-
genommen hat. Es ist das erste System, welches als semantische Hauptinformation
Beschreibungen der Prädikat-Argument-Struktur von Text und Hypothese verwendet.
Im System werden grammatische Informationen einer LFG-Grammatik, Prädikat-Ar-
gument-Struktur im framesemantischen Paradigma und taxonomische Information aus
WordNet in dreigeteilte Graphstrukturen zusammengeführt. Wir folgen dabei der LFG-
Projektions-Architektur, indem die Information der einzelnen Analysebenen getrennt
repräsentiert und durch Projektionen verlinkt wird. Nach verschiedenen Schritten, bei
denen die Bedeuntungsinformation weiter verdichtet und normalisiert wird, werden die
Graphen von Hypothese und Text unter verschiedenen Gesichtspunten miteinander ver-
glichen und das Ergebnis als Merkmalsvektoren repräsentiert. Für den Vergleich der
Analysen von Hypothese und Text haben wir ein Graph-Matching-Verfahren konzip-
iert und implementiert, welches die “strukturelle und semantische” Überlappung beider
auf eine deklarative Art und Weise beschreibt. Die Merkmalsvektoren dienen einer
maschinellen Lernarchitektur als Eingabe, die auf RTE-Korpora trainiert wird, um Tex-
tual Entailment auf unbekannten Korpora zu bestimmen. Die gesamte Systemarchitek-
tur ist offen angelegt und für Erweiterungen vorbereitet. Wir illustrieren zum Beispiel,
wie Hintergrundwissen aus der SUMO-Ontologie integriert werden kann und zeigen, wie
Negation und Modalität approximativ behandelt werden können.

Forschung im Bereich Frame-Semantik hat sich in den letzten Jahren vorwiegend mit
der automatischen Annotation von Text beschäftigt. Ein Resultat dieser Forschung
ist Shalmaneser, der semantische Parser, den wir in unserer Arbeit verwenden. In
Anwendungs-Szenarien ist Frame-Semantik nur in geringem Umfang eingesetzt worden.
In dieser Arbeit zeigen wir zunächst anhand einer Handannotation eines RTE-Korpus’,
dass die Abdeckung von FrameNet auf den RTE-Korpora gut ist. 92% der relevanten
Prädikate werden durch vorhandene Frames beschrieben. Um mit automatischen Sys-
tem bestmögliche Abdeckung zu erreichen, haben wir unter Ausnutzung der sehr guten
Abdeckung von WordNet das Detour System entwickelt, welches Lücken im FrameNet-
Lexikon ausgleicht und in Kombination mit Shalmaneser im SALSA RTE-System Ein-
satz findet.

In einer ausführlichen Evaluation untersuchen wir die Performanz des SALSA RTE-
Systems, mit besonderem Hinblick auf die Frage, was der derzeitige und potentielle
Beitrag von Frame-Semantik zum Erkennen von Textual Entailment ist. Ein Resul-
tat ist, dass die automatische frame-semantische Analyse einen manuell erzeugten Gold
Standard noch nicht gut annähert. Darüberhinaus zeigen wir, dass selbst auf der
manuellen Frame-Annotation von Text und Hypothese der einfache Vergleich von über-
einstimmenden Frames, Rollen und Rollenfüllern keinen substantiellen Beitrag zur En-
tailmententscheidung liefert. Als entscheidendes Manko zeigt sich hier das Fehlen von
Ähnlichkeitsmaßen für Frames und Frame-Annotationen. Für die Erzeugung solcher
Maße ist die FrameNet-Hierarchie, welche verschiedene Relationen zwischen Frames
kodiert, unerlässlich. Bis dato gibt es jedoch keine automatischen Methoden, die diese
geeignet interpretieren. Im Ausblick skizzieren wir Möglichkeiten hierfür, wie auch für
den erweiterten Einsatz der Hierarchie zur Analyse längerer Texte, was für RTE von
zunehmend größerem Interesse ist.
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Introduction and Background
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1. Introduction

With the rapid growth of intranets and the World Wide Web, more and more text doc-
uments are available (only) in electronic form. Information access has become a central
challenge in this context. Due to the vast number of documents, computational models
of information access using natural language processing techniques are indispensable. In
order to satisfy the needs of human users, intelligent, meaning-based processing deserves
special attention – a view that is supported by the vision of a “Semantic Web”. Yet,
current technologies such as search engines or prototypical question answering systems
typically consider semantic information only in limited ways.

In theoretical and computational semantics, truth-conditional logic formalisms have
been the standard framework for modeling natural language meaning over the last
decades. Reasoning for natural language processing has been conceived as being more
or less equivalent to logical reasoning (e.g. Blackburn, Bos, Kohlhase, and de Nivelle,
2001; Monz and de Rijke, 1999). For example, inferential relations between natural
language sentences have been modeled in terms of logical entailment. Still, so far we
have hardly seen any robust and broad-coverage semantic analysis system that provides
“deep” semantic representations within any major computational semantics framework.

At the same time, large-scale lexical semantic resources such as WordNet (Fellbaum,
1998) have been developed and put to use for approximate semantic modeling in proto-
type applications. However, existing approaches tend to develop semantic frameworks
that fit their very particular needs (e.g. a surface-near representation in Harabagiu,
Moldovan, Pasca, Mihalcea, Surdeanu, Bunescu, Girju, Rus, and Morarescu (2000) or a
statistical measure in Mohit and Narayanan (2003)). This makes it difficult to evaluate
and compare the performance of different approaches and systems, in particular if they
implement different tasks.

More recently, the seminal paper Monz and de Rijke (2001) and the Recognizing Tex-
tual Entailment (RTE) initiative (Dagan, Glickman, and Magnini, 2006) have set the
stage for the broad investigation of inference in natural-language processing. The new
framework for textual inference lays emphasis on realistic scenarios and empirical eval-
uation of coverage and reliability. The notion textual entailment is used to stress its
foundation in natural language, in contrast to logical entailment. Textual entailment
captures the intuitive concept of entailment typical natural language users have. RTE
is a promising candidate for a semantic framework that is useful for a wide range of
natural language processing tasks. Therefore, the development of computational models
has become an active field of research.

In this thesis, we argue that predicate-argument structure, describing natural lan-
guage semantics on a medium level of complexity, is well-suited for modeling textual
entailment on real text. We present the SALSA RTE system, an end-to-end system for
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modeling textual entailment, based on frame-semantic information provided by Berkeley
FrameNet.

This chapter is structured as follows. We first shortly review current information
access tasks and point to problems related to missing semantic analysis (Section 1.1).
Section 1.2 introduces textual entailment as a realistic semantic inference scenario that
can be used in many application. Section 1.3 is concerned with the question how to
model textual entailment, demonstrating the appeal of predicate-argument structure.
Finally, in Section 1.4, we summarize the contributions of this thesis and present its
structure in Section 1.5.

1.1. Background: Issues of Automatic Information Access

By automatic information access, we refer to a variety of different tasks having in com-
mon that a human interacts with a machine to access information from a collection
of natural language documents stored in electronic form. Scenarios include key-word
based search, where the user wants to access, e.g., all documents containing the word
dianetics or information extraction, where the user wants, e.g., a table filled with infor-
mation about earthquakes such as time, place, and magnitude, gathered from all relevant
documents.

It is in the nature of the task that the user is interested in the meaning conveyed
by the documents. However, as automatic access of natural language meaning is a
difficult task, current information access systems often only roughly approximate it.
The most prominent systems on the market are search engines like Google or Yahoo
implementing document retrieval, a special case of information retrieval (IR). Within
these systems, minimal linguistic processing is performed, mostly to identify content
words like nouns and verbs (“terms”) within indexed documents. The frequencies of the
terms occurring in documents are then taken as clues to their meaning. In a standard
IR set-up (Baeza-Yates and Ribeiro-Neto, 2000), terms within queries are compared to
terms in the indexed documents and relevance of the documents is assessed on the basis
of statistical frequency measures. In fact, this method has established itself as “best
practice” and is used within a number different applications.

These “shallow” approaches work well if the documents to be queried exhibit a certain
level of redundancy. Redundancy here means that a variety of potential user query terms
occurs either within one document or across equivalent documents. If this is the case,
different user queries can be matched with a suitable document. The Wikipedia entry
about the former German chancellor Gerhard Schröder can be accessed with all queries
given below as the respective search terms all occur on the page.

(1.1) Ex-Bundeskanzler Schröder

(1.2) Bundeskanzler Schröder

(1.3) Kanzler Deutschland Schröder

4



1.2. Textual Entailment – A Framework for Modeling Natural Language Inference

However, such approximative approaches do not scale – as soon as the documents
to be found are rare (higher recall is needed), or there are documents with different
meaning that contain the same terms (higher precision is needed), these approaches
perform badly or fail. For example, if one searches the World Wide Web for information
about the business deal where BMW took over Rover, using the query (1.4), more than
half of the ten best hits returned by the state-of-the-art Yahoo search engine report on
another, more recent business deal where Rover was sold again. While (1.5) is a snippet
from a relevant document, (1.6) is from an unwanted document.

(1.4) BMW bought Rover.

(1.5) German motor company BMW had bought Rover in 1994 and the series
follows the sometimes fraught relationship between the two.

(1.6) Ford bought Land Rover from BMW in 2000, and have held onto the rights to
buy the Rover name, a right they are now exercising.

A related problem occurs in the answer retrieval component of question answering
systems (cf. Voorhees, 1999). Such systems typically use standard IR techniques to
retrieve answer candidates from a given document collection (e.g., Harabagiu et al.,
2000). If a user asks a question like (1.7), such a system uses a query pattern like (1.8)
in order to derive relevant documents. With this pattern, both source documents (1.9)
and (1.11) can be retrieved. Yet, only (1.11) contains the right information. Depending
on which of the source documents is chosen, either the correct answer (1.12) or the false
answer (1.10) is derived by the system.

(1.7) How many inhabitants has Slovenia?

(1.8) Slovenia * ?NUMBER * Inhabitants

(1.9) The capital of Slovenia is Ljubljana, with 270,000 inhabitants.

(1.10) Slovenia has 270,000 inhabitants.

(1.11) Slovenia, with its 1.95 million inhabitants, will be the fifth smallest state to
join the EU, reports Le Monde (France).

(1.12) Slovenia has 1.95 million inhabitants.

1.2. Textual Entailment – A Framework for Modeling Natural
Language Inference

Above, we have indicated that current “shallow” information access techniques do not
meet the requirement to be “intelligent”, suffering from the limited expressivity of term-
based IR. For example, systems systematically return wrong results in cases, where query
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terms merely co-occur in documents as they cannot determine the relations between the
underlying concepts.

Checking the system results and the respective original sentences from the document
collection for semantic plausibility would make it possible to sort out false hits. Intu-
itively, it must be ensured that the system results somehow follow from the evidence
contained in the retrieved documents. A semantic notion which models such a “follows
from” relation is that of entailment. Applied to the given examples, (1.9) does not entail
(1.10) while (1.11) entails (1.12). Likewise if we consider sentence (1.4), we see that it
is entailed by (1.5) but not by (1.6). Checking entailment can be used to distinguish
between plausible and implausible system results not only in these examples. Crouch,
Condoravdi, de Paiva, Stolle, and Bobrow (2003) argue that being able to model en-
tailment relations between sentences is a minimal, necessary criterion of (automatic)
language understanding.

The question is, how such an entailment relation can be modeled. Traditionally, logic
has been used as a formal model of natural language semantics. Therefore, entailment
between natural language sentences has been understood as being largely equivalent to
logical entailment (see, e.g. Blackburn et al., 2001). However, this logic-based approach
has never been implemented in realistic scenarios. First of all, designing a logic-based
processing architectures meets with a number of severe difficulties and secondly, the
strict notion of logical entailment has shown to cover only a part of what humans judge
as inferable (we will elaborate this in Chapter 2).

Starting from the observation that the logical approach has led to a narrow view on
inference in natural language semantics, Monz and de Rijke (2001) in their seminal paper
propose (i) to develop heuristic, approximative computational semantic methods on the
basis of available resources and (ii) to evaluate these methods in an empirical, corpus-
based fashion. The authors exemplify both ideas with a simple heuristic method for
entailment checking using basically a statistical measure known from IR (idf – inverse
document frequency). The proposal of Monz and de Rijke (2001) has more recently been
take up by the PASCAL recognizing textual entailment (RTE) initiative (e.g. Dagan
et al., 2006), which introduced the notion of textual entailment and provided an informal
definition hereof.

The general idea behind the pre-theoretic notion of textual entailment is to model
“prototypical entailment” as performed by humans. The RTE initiative also launched
a series of challenges, where the task is to compute entailment judgments for sentence
pairs provided by corpora. For example, (1.13)-(1.14) is a so-called text-hypothesis pair
from such a corpus.1

(1.13) Everest summiter David Hiddleston has passed away in an avalanche of Mt.
Tasman.

(1.14) A person died in an avalanche. (TRUE)

1Throughout this thesis, examples marked TRUE or FALSE are from the corpora of the Recognizing
Textual Entailment Challenge (Dagan et al., 2006; Bar-Haim, Dagan, Dolan, Ferro, Giampiccolo,
Magnini, and Szpektor, 2006; Giampiccolo, Magnini, Dagan, and Dolan, 2007a) if not indicated
otherwise.
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Textual entailment holds between an entailing text (T) and an entailed hypothesis
(H) if the meaning of the hypothesis follows from the meaning of the text as interpreted
by a typical language user. In (1.13)-(1.14), textual entailment holds, as indicated by
the label TRUE. In this case, the hypothesis also follows from the text in a logical sense.
However, in many cases, where an inference is plausible rather than logically justified,
textual entailment deviates from logical entailment. Consider example (1.15)-(1.16).

(1.15) The anti-terrorist court found two men guilty of murdering Shapour Bakhtiar
and his secretary Sorush Katibeh, who were found with their throats cut in
August 1991.

(1.16) Shapour Bakhtiar died in 1991. (TRUE)

Most humans would probably accept the “default” inference that (1.16) follows from
(1.15). This inference is not strict in a logical sense. It is defeasible as it may also be
the case that Bakhtiar died before 1991 and that his dead body was found only in 1991.
Therefore, logical entailment does not hold, while textual entailment does. In Chapter 2,
we will discuss the notion of textual entailment at length. Overall, if applied to real data,
the textual entailment scenario is more natural and realistic than the traditional, logical
approach. At the same time, the informal definition of textual entailment is a challenge
for the development of computational models, as can be seen in the comparably low
accuracy achieved by the majority of existing systems.

1.3. Modeling Textual Entailment with Predicate-Argument
Structure

Various methods for modeling textual entailment have been proposed in the literature,
ranging from shallow techniques like measuring lexical overlap, to syntactic parsing and
the exploitation of WordNet relations (see Bar-Haim et al., 2006, for an overview).
Recently, there has been a move towards more structured meaning representations, ab-
stracting away from semantically irrelevant surface. In particular, the level of predicate-
argument structure, which seems to be a natural and straightforward choice, has gained
much attention (e.g. Bobrow, Crouch, King, Condoravdi, Karttunen, Nairn, de Paiva,
and Zaenen, 2007; Delmonte, Bristot, Piccolino Boniforti, and Tonelli, 2007). Predicate-
argument structure allows annotating a sentence or text with nuclear meaning repre-
sentations (“who did what to whom”). It is not concerned with problems of “deep”
semantic analysis such as modality, negation, or scope ambiguity.

The notion of predicate-argument structure refers to semantic arguments on the level
of meaning (representations). Semantic approaches dealing with predicate-argument
structure are concerned with the question of (i) how to describe the semantic valency of
predicates and (ii) how to map syntactic arguments onto semantic arguments. A typical
notion used in this context are semantic (thematic) roles. The most well-known roles
are probably the traditional, generic roles like agent or patient, which are annotated
in the example sentences below.
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(1.17) [BMW]agent has bought [Rover]patient.

(1.18) [BMW]patient was bought by [Rover]agent.

While the meaning of both sentences is quite dissimilar, the surface strings are almost
identical. Also, the syntactic analyses are relatively similar – both have in common
that BMW is the subject, differing in the syntactic position assigned to Rover. A
comparison of the semantic roles reveals that the meaning of these sentences is in fact
different. Agent and patient roles are assigned to different entities across the sentences.
The underlying reason is that (1.18) is a passive sentence, where syntactic and thematic
roles are assigned “cross-over”, e.g., the syntactic subject becomes the semantic patient.

This simple example was made up only for illustration. Current approaches to pre-
dicate-argument structure typically use more elaborate types of markup. The most
prominent resources are PropBank (Palmer, Gildea, and Kingsbury, 2005) and FrameNet
(Baker, Fillmore, and Lowe, 1998). PropBank information allows to map alternative
syntactic representations of the same lexical expression to one and the same predicate-
argument structure. It has predominantly been used for for the study of role labeling
methods (e.g. Gildea and Hockenmaier, 2003; Pradhan, Ward, Hacioglu, Martin, and
Jurafsky, 2005). As thematic roles are lemma-specific in PropBank, it is not clear
to what extent PropBank can help to recognize entailment in pairs such as (1.13)-
(1.14). FrameNet, on the other hand, abstracts over individual lemmas and groups
words evoking the same situation type into so-called frames. Lemmas belonging to
the same frame share thematic roles, which supports the recognition of entailment for
sentence pairs containing verbs which belong to the same frame.

We propose to apply frame semantic information to the task of recognizing textual
entailment. Several studies (e.g.,Litkowski (2006); Bar-Haim, Szpektor, and Glickman
(2005); Clark, Harrison, Thompson, Murray, Hobbs, and Fellbaum (2007)) indicate that
the level of granularity offered by FrameNet is relevant for modeling many phenomena
which occur in the current textual entailment corpora. For example, Bar-Haim et al.
(2005) show that 31% of the RTE-2 positive dataset involves paraphrase at the predicate
level. These numbers are comparable to those obtained in the RTE-2 ARTE annota-
tion (Garoufi, 2007), which demonstrates that at least 20% of the positive examples in
the RTE-2 challenge test set can be treated by inferences at the frame level (such as
nominalizations and argument variations). In this thesis, we will demonstrate that frame
semantic analysis –in combination with other resources– provides a relevant contribution
to the task at hand.

As illustration, Figure 1.1 and Figure 1.2 show frame semantic analyses of (1.13) and
(1.14), respectively. The figures –like similar figures in this thesis– were generated with
the SALTO tool (Burchardt, Erk, Frank, Kowalski, Pado, and Pinkal, 2006b), which
was mainly designed for manual frame annotation, but can also be used as a viewer
for automatically generated annotations (see Chapter 3 for details). In Figure 1.1 and
Figure 1.2, both the verb die and the phrasal verb pass away evoke the frame Death.
The thematic roles point to constituents of the respective sentences. For example, the
protagonist role of Figure 1.2 points to the filler A person and the cause role points to
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Figure 1.1.: Frame semantic analysis of text (2.4).

Figure 1.2.: Frame semantic analysis of hypothesis (1.14).

an avalanche. This type of semantic normalization not only provides access to relevant
parts of the sentences but also identifies the parts which should correspond for entailment
to hold. In this case, the fillers of both roles are compatible.2 In non-entailed cases like
(1.19)-(1.20), the frame semantic annotation can reveal the difference in meaning. Here,
BMW appears in two incompatible roles, as buyer in one case and as seller in the
other case.

(1.19) [Ford]buyer bought [Land Rover]goods from [BMW]seller [in 2000]time . . . .
(frame: Commerce buy)

(1.20) [BMW]buyer bought [Rover]goods.
(frame: Commerce buy)

FrameNet can also contribute to RTE by suggesting not so straightforward, inferential
relations via the frame hierarchy defined by FrameNet. As an example, consider the
pair (1.21)-(1.22) from the RTE-3 development corpus, where entailment can only be
established by linking being arrested and being detained.

2The analysis of the compatibility of, e.g., the fillers of the cause roles (an avalanche vs. an avalanche

of Mt. Tasman) goes beyond the analysis of predicate argument structure and has to be achieved by
other means, e.g., string comparison as a very first approximation.
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Figure 1.3.: Making use of frame relations.

(1.21) T: El-Nashar was detained July 14 in Cairo. Britain notified Egyptian
authorities that it suspected he may have had links to some of the attackers.

(1.22) H: El-Nashar was arrested in Egypt. (TRUE)

As can be seen in Figure 1.3 on the bottom, the main verbs of both sentences evoke
different frames (Detaining vs. Arrest). Also, the roles are slightly different (Hold-
ing location vs. Place). Yet, both frames are defined to inherit from a common
ancestor, Inhibit movement. This makes it is possible to come up with a uniform
analysis of both sentences.3

While the above examples illustrate the intuitive appeal of using FrameNet frames to
model textual entailment, frames so far have only rarely been used for this task or for
comparable natural language processing tasks. Exceptions are Narayanan and Harabagiu
(2004), who use frames as additional, optional feature in a question answering system
if available and Fliedner (2007); Frank, Krieger, Xu, Uszkoreit, Crysmann, Jörg, and
Schäfer (2006), who both use it for question answering in limited domains. A main
reason of why FrameNet is not used more often is probably the incompleteness of the
Berkeley FrameNet database (see Section 3.3.4 for details). One of the aims of this
thesis is to explore FrameNet’s interoperability with other resources for alleviating this
coverage issue.

3Again, the information that Cairo and Egypt are in fact compatible has to be provided by other
sources.
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1.4. Contributions

In this thesis, we demonstrate that frame semantic information can successfully be inte-
grated into an end-to-end system for checking textual entailment. To this end, we present
the SALSA RTE system, which is intended as a basis for future research on both frame-
based inference systems and lexical-semantic approaches to textual entailment. The
system achieved competitive results in RTE challenges. Within several experiments, we
thoroughly evaluated the system’s performance and pinpoint prerequisites needed for
further achievements. Our main contributions are:

(i) An architecture for checking textual entailment based on LFG grammatical and
frame semantic analysis, implemented in the SALSA RTE system.

(ii) Interfaces between FrameNet and WordNet (“Detour system”), as well as between
FrameNet and the SUMO ontology.

(iii) The design of several experiments for evaluation of frame-based RTE systems,
including the FATE corpus.

(iv) A worked-out study of how to use frame semantics for discourse analysis.

Part of this thesis has been collaborative work and some parts of it have been pub-
lished before elsewhere: (Burchardt and Frank, 2006; Burchardt, Reiter, Thater, and
Frank, 2007, (i)), (Burchardt, Erk, and Frank, 2005a; Reiter, 2007, (ii)), (Burchardt
and Pennacchiotti, to appear; Burchardt, Pennacchiotti, Thater, and Pinkal, submitted,
(iii)), and (Burchardt, Frank, and Pinkal, 2005b, (iv)).

1.5. Structure of this Thesis

In Chapter 2, we will elaborate on the concept of textual entailment, which is a pre-
theoretic notion so far. We present its main characteristics and set it in relation to
logical entailment. We also present the Recognizing Textual Entailment (RTE) Chal-
lenge, the respective corpus data, and give an overview of existing approaches to the task
of modeling textual entailment. In a small survey, we illustrate linguistic phenomena
occurring in the RTE data and report quantitative studies on the nature of the informa-
tion that effects entailment in the RTE corpora. We show that lexical-semantics level
of predicate-argument structure is especially interesting for modeling textual entailment
although existing systems integrate this kind of knowledge only in very limited ways.

Chapter 3 gives an overview of the state of the art in natural language analysis to an
extent we consider relevant for modeling textual entailment. Our primary focus will be
on the lexical-semantic level of predicate-argument structure. We start from grammat-
ical analysis and proceed to lexical semantic approaches like WordNet, PropBank, and
FrameNet. At the end of the chapter, we introduce knowledge ontologies like SUMO,
which provide information that goes beyond classical natural language (semantic) anal-
ysis and can be helpful in certain cases to confirm or reject entailment.
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Two problems impede the usability of components we chose as candidates for our
model of textual entailment – a severe problem is the limited coverage of FrameNet
and another issue is the absence of suitable natural language interfaces for accessing the
information contained in knowledge ontologies like SUMO. Chapter 4 will be concerned
with these problems. In order to use FrameNet as an interface to SUMO, we will report a
method for a semi-automatic linking of both resources, which we apply, however, only for
evaluation purposes. An important contribution that will be used in the SALSA RTE
system is the combination of WordNet and FrameNet we implemented in the Detour
system. Making use of the good coverage of WordNet, this helps alleviate FrameNet’s
coverage problem.

In Chapter 5, we present our main contribution – a frame-based approach to textual
entailment and its implementation in the SALSA RTE system. We will detail all three
stages of the architecture – linguistic analysis, semantic refinement, and matching of
text and hypothesis (“entailment reasoning”). The linguistic analysis integrates LFG
grammatical, frame semantic, and ontological information. For each of text and hypoth-
esis, we construct a tripartite graph structure, which is held together by two so-called
projections. The analyses are further refined, e.g., by integration of knowledge from dif-
ferent levels of analysis. Based on these linguistic analyses, in the entailment reasoning
stage, first the “structural and semantic overlap” of text and hypothesis is computed
in a robust, declarative way and the result is represented in a structure we call match
graph. In a second step, feature vectors are derived and the entailment decision is made
by a state-of-the-art statistical classifier trained on entailment corpora.

A detailed evaluation of the SALSA RTE system is presented in Chapter 6. After
presenting its results in RTE challenges, we inspect system behavior and report various
experiments for quantitative and qualitative evaluation we performed. One experiment
compares the performance of the linguistically informed system against a shallow baseline
in different conditions. In another experiment, we assess the potential for modeling
entailment of the system and of frame semantic analysis in general on the basis of a
manually constructed gold standard corpus

One result of this thesis is that it will be necessary for further achievements to access
information coded in FrameNet’s hierarchy, which cannot be interpreted automatically
so far. In Chapter 7, we will elaborate problems of and prospects for the usage of
the FrameNet hierarchy for natural language processing. To guide future research, we
will illustrate issues of the current structure in detail and describe how to arrive at
dense frame semantic analyses of multi-sentence fragments with a worked out case study.
Chapter 8 will conclude our thesis.
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This chapter is concerned with the concept of textual entailment, which we have intro-
duced above as a versatile inference task useful for many natural language processing
applications. For a start, we will shortly review the classic notion of logical entailment
and point to problems that occur when it is used as model for natural language infer-
ence (Section 2.1). In Section 2.2, we will introduce the notion of textual entailment.
We discuss its characteristics and clarify its relation to logical entailment. Section 2.3
presents the Recognizing Textual Entailment (RTE) Challenge and describes the RTE
corpus data, which was compiled from “real-world” sources. In Section 2.4, we will
survey linguistic phenomena occurring in the datasets, followed by a brief discussion of
the data. In Section 2.5, we will report system results of the third RTE challenge and
present selected existing approaches to the task of modeling textual entailment in detail.
Section 2.6 shortly summarizes this chapter.

2.1. Logical Entailment

Traditionally, logic has been used as a framework to model natural language semantics.
Correspondingly, entailment between natural language sentences has been understood
as more or less equivalent to logical entailment. Logical entailment is a relation between
sets of logical formulae, defined in model-theoretic semantics as follows:

If ∆ is a set of sentences, we say that ∆ logically entails a sentence φ (∆ |= φ)
if and only if every model of ∆ is also a model of φ.

In short, the models determine the truth conditions for the logical sentences involved.
Different models represent different (possible) states of affairs. Therefore, the definition
above can be paraphrased that for ∆ |= φ to hold, the truth of all sentences in ∆ has to
correlate with the truth of φ under any possible circumstances – it must be impossible
to construct a model that makes all sentences in ∆ true while φ is false.

The general architecture of the logical approach to checking entailment between nat-
ural language sentences is displayed in Figure 2.1. First, the natural language sentences
under consideration are translated into logical representations, typically in the style of
Montague (1973). It is then checked whether logical entailment between the logical rep-
resentations holds or not. This can be done, e.g., with theorem proving techniques. The
result is assumed to carry over to the original question whether the sentences stand in
an entailment relation. A prototype implementation of such an architecture is described
in Blackburn et al. (2001). This logical approach to natural language semantics has a
number of advantages that result from properties of logical formalisms. A central point
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Natural
Language

NL sentence “entails” NL sentence

Logic Logical sentence |= Logical sentence

Figure 2.1.: Logical approach to natural language entailment.

is the possibility of providing a formal, model-theoretic interpretation of logical formu-
lae (Tarski, 1983). This makes it possible to capture (natural language) meaning in a
mathematically sound way.

However, the entailment relations that can be established in a naive and most straight-
forward way typically do not correspond to the types of entailment observed in real
datasets. One such straightforward example is the entailment between (2.1) and (2.2),
as shown in (2.3).

(2.1) John drinks and (John) drives.

(2.2) John drinks.

(2.3) {drink(john) ∧ drive(john)} |= drink(john)

A more realistic sentence pair is (1.13) and (1.14) (repeated below as (2.4) and (2.5)).
Predicate logic translations of both sentences are found in (2.6) and (2.7), respectively.
In order to prove entailment in a neat way, we chose a Davidsonian translation, using
event variables for treating modifiers (cf. Davidson, 1967). Tense is ignored.

(2.4) Everest summiter David Hiddleston has passed away in an avalanche of Mt.
Tasman.

(2.5) A person died in an avalanche.

(2.6) ∃x, e(everest summiter(dh) ∧ pass away(e, dh) ∧ in(e, x) ∧ avalanche(x)∧
of(x,mt))

(2.7) ∃x, y, e(person(y) ∧ die(e, y) ∧ in(e, x) ∧ avalanche′(x))

For proving logical entailment between (2.6) and (2.7), additional knowledge is needed.
First, a so-called meaning postulate is needed to relate pass away and die. Second, the
fact that everest summiters are persons has to be made explicit (alternatively, one could
add the fact that David Hiddleston is a person person′(dh)). The knowledge is provided
by (2.8) and (2.9), respectively.

(2.8) ∀e, x(pass away′(e, x) → die′(e, x))
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(2.9) ∀y(everest summiter(y) → person(y))

These axioms effectively constrain the models under consideration to those that obey
this knowledge. The final entailment statement that can logically be proved is this:

{ (2.6) ∧ (2.8) ∧ (2.9) } |= (2.7)

Issues of the Logical Approach

The logic-based approach to natural language semantics has never established for the-
oretical as well as practical reasons. As Blackburn et al. (2001) already point out, it
does not easily scale. First, the translation of real-world sentences into logic is diffi-
cult because of issues such as ambiguity or vagueness (e.g. Pinkal, 1995). Second, even
for decidable fragments of predicate logic, computation is expensive and requires huge
amounts of additional knowledge. The type of additional knowledge that can be needed
ranges from linguistic knowledge, e.g., about word meaning, to non-linguistic background
knowledge, sometimes called world knowledge. This dependency on additional knowl-
edge is problematic as it is an open question how the knowledge can (automatically) be
acquired. Moreover, even if vast amounts of such axioms would be available, efficient
processing would probably be impossible.

A fundamental problem is that logic inference often exhibits a too high level of pre-
cision and strictness as compared to human judgments (cf. Bos and Markert, 2006). It
possible to model elementary inferences on this precise level. But many many pragmatic
aspects that play a role in “everyday inference” cannot be accounted for. Inferences
which are plausible but not logically stringent cannot be modeled in a straightforward
way. Consider example (1.15)-(1.16) again (repeated below as (2.10)-(2.11)).

(2.10) The anti-terrorist court found two men guilty of murdering Shapour Bakhtiar
and his secretary Sorush Katibeh, who were found with their throats cut in
August 1991.

(2.11) Shapour Bakhtiar died in 1991.

While humans easily make the plausible “default” inference that (2.11) follows from
(2.10), it is not logically entailed. Therefore, this inference cannot be treated in a
standard logic setup. Different adjustments to standard logic such as default logic or
non-monotonic logic have been proposed to capture defeasible notions of entailment.
However, these formalisms are typically very complex, not implemented, and also suffer
from the other issues of logical approaches mentioned above.

All in all, there is a conflict between the well-understood, precise theoretical concept
of logical entailment on the one hand and an empirical notion of entailment that is based
on language user’s intuition on the other hand. It has never been shown how the conflict
can be resolved.
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2.2. Textual Entailment

Starting from observations about the practical intractability of logical approaches and
the narrow view on inference they represent, Monz and de Rijke (2001) in their program-
matic paper develop the idea of an empirical, corpus-based approach to computational
semantics. The authors present an implementation and evaluation of a rather simple
method of approximating entailment using word overlap measures. Although Monz and
de Rijke (2001) admit that their approach might compute topic overlap rather than
proper entailment, they set the stage for a broad investigation of inference in natural
language information access tasks. The idea of a new, empirical approach to entailment
got a wider recognition when the Recognizing Textual Entailment (RTE) initiative (Da-
gan et al., 2006) introduced the notion of textual entailment and set up the ongoing
series of RTE challenges.

Below, we introduce the notion of textual entailment (Section 2.2.1). Section 2.2.2
characterizes textual entailment in detail and in Section 2.2.3, we set it in relation to
logical entailment.

2.2.1. The Notion of Textual Entailment

Textual entailment is a pre-theoretical notion, described by Dagan et al. (2006) as a
directional relationship between a pair of natural language texts – an entailing text (T)
and an entailed hypothesis (H). Entailment1 holds if the meaning of the hypothesis can
be inferred from the meaning of the text as interpreted by a typical language user. The
authors state that this somewhat informal definition relates to the common practice
of evaluating, e.g., question answering systems, by having human judges rate system
results.

This scenario circumvents the discrepancy between observable human behavior and
the inference mechanism in the logic-based approach by defining entailment directly on
the textual level. Capturing an intuitive notion of natural language entailment was not
the only motivation of the RTE initiative. Another motivation was the observation that
existing approaches tend to develop and use (approximative) semantic frameworks that
fit their very particular needs (e.g., what is called logical form in Harabagiu et al. (2000)
or a layered semantic representation in Crouch, Condoravdi, Stolle, King, Everett, and
Bobrow (2002)). One disadvantage of this parallel development is that it is difficult to
evaluate and compare the performance of related approaches and systems. Dagan et al.
(2006) state that “different applications need similar models of linguistic variability”
and propose textual entailment as “task that captures major semantic inference needs
across applications”.

2.2.2. Characteristics of Textual Entailment

Although textual entailment lacks a formal definition, some further specifications of the
notion are provided by the RTE initiative, as we will detail below.

1From here on, by entailment we mean textual entailment if not otherwise indicated.
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Probability and Pragmatics

One characteristic property of textual entailment is described in the annotation guide-
lines for the annotators of the RTE corpora (Dagan et al., 2006):

“cases in which inference is very probable (but not completely certain) are
still judged at True.”

The inclusion of highly probable, prototypical inferences is intuitively appealing and at
the same time challenging for modeling textual entailment. This observation is supported
by a short annotation experiment on a randomly chosen subset of 10 pairs from the
RTE-1 corpus, which we performed during a reading circle at our department. A central
result was that it is relatively easy to decide whether textual entailment holds while it
often remained controversial why this is the case. In particular, it seems difficult to tell
whether an inference is strict or just plausible. One of the examples discussed in this
experiment is (2.12)-(2.13).

(2.12) Researchers at the Harvard School of Public Health say that people who drink
coffee may be doing a lot more than keeping themselves awake - this kind of
consumption apparently also can help reduce the risk of diseases

(2.13) Coffee drinking has health benefits. (TRUE)

Most participants agreed that textual entailment holds although the respective state-
ment in the text is embedded in multiple modality contexts, marked in boldface above.
Still, human judges, who are familiar with journalists writing and who accept the Har-
vard School of Public Health as authority, consider the modal expressions a matter of
a style of cautious formulation. Interestingly, after an extensive discussion of the exam-
ple, some of the participants in our experiment tended to revise their initial acceptance
of this pair as entailed. Another example of such a “probabilistic” entailment pair is
(2.14)-(2.15).

(2.14) As a real native Detroiter, I want to remind everyone that Madonna is from Bay
City, Mich., a nice place in the thumb of the state’s lower peninsula.

(2.15) Madonna was born in Bay City, Mich. (TRUE)

This example clearly shows a pragmatic aspect of textual entailment. In general be
from X does not entail being born in X. However, in order to make sense of the given
sentence pair, humans interpret Bay City as Madonna’s place of birth in (2.14). At the
same time, we observe converse examples like (2.16)-(2.17).

(2.16) Iraq’s representative to the United Nations, Nizar Hamdoun, announced today,
Sunday, that thousands of people were killed or injured during the four days of
air bombardment against Iraq.
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(2.17) Nizar HAMDOON, Iraqi ambassador to the United Nations, announced that
thousands of people could be killed or wounded due to the aerial bombardment
of Iraq. (FALSE)

Here, the hypothesis is in fact logically entailed by the text (if we ignore the report
context) –kill implies possibly kill– but pragmatic principles seem to block entail-
ment.

Text Must Explain Hypothesis

Another feature of textual entailment is that it only holds if the statement in the text
licenses the statement in the hypothesis, or as the annotation guidelines in Dagan et al.
(2006) put it:

“In principle, the hypothesis must be fully entailed by the text. Judgment
would be False if the hypothesis includes parts that cannot be inferred from
the text.”

This constrains entailment pairs to be semantically highly related. Moreover, there
must be a “proof” of the hypothesis on the basis of (mainly) the assumptions given in
the text. This constraint explains, why (2.18)-(2.19) does not count as entailed although
both statements are true in isolation.

(2.18) The European Union is an economic heavyweight, but it is not a monolith. It
works for the good of its own members but it also takes into account the global
good.

(2.19) European Union expands its membership. (FALSE)

Admissible Background Knowledge

The quotation above does not explicitly comment on whether additional knowledge may
be used to establish entailment. It therefore remains a little unclear how “cannot be
inferred from the text” has to be interpreted as it is common practice to make use of
some sort of background knowledge for related inference tasks. In their discussion, Dagan
et al. (2006) make the impact of background knowledge more explicit in the following
statement.

“Furthermore, the criteria defining what constitutes acceptable background
knowledge may be hypothesis dependent. For example, it is inappropriate
to assume as background knowledge that the national language of Yemen is
Arabic when judging example 1586, since this is exactly the hypothesis in
question. On the other hand, such background knowledge might be assumed
when examining the entailment “Grew up in Yemen” “Speaks Arabic”.”

The example mentioned is displayed below.
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(2.20) The Republic of Yemen is an Arab, Islamic and independent sovereign state
whose integrity is inviolable, and no part of which may be ceded.

(2.21) The national language of Yemen is Arabic. (TRUE)

Actually, we find the given argument difficult to interpret as it is not clear what
“assume as background knowledge” precisely means. However, as long as there is no
(formal) theory of textual entailment, which makes it possible to somehow mark or
delimit what knowledge is needed for a given inference, discussion of this and related
matters is relatively arbitrary if not pointless.

2.2.3. Logical vs. Textual Entailment

On a very abstract level, the two phenomena logical entailment and textual entailment
capture the same relation between two “statements” A and B. A (textually) entails B
if B “follows from” A. In the case of textual entailment, A and B are natural language
sentences and entailment is an empirical phenomenon that relies on human judgment.
Logical entailment defines a relation between logical sentences within a formal system
based on the concept of truth and truth conditions.

In Section 2.1, we have argued that logical entailment does not lend itself for capturing
a considerable part of natural language inference. While some inferences can be enabled
by the inclusion of additional knowledge, defeasible inferences cannot be modeled at all.
In fact, the reduction of natural language inference to a truth functional problem sets
the focus on the less challenging part of the phenomenon. The gap between the empirical
phenomenon and the reach of the formal model is immense.

Textual entailment fills this gap. It sets aside any formal model and captures all types
of inferences a typical language user would make “by definition”. This makes it possible
to study the phenomenon of natural language inference in its entirety and moreover to
perform empirical evaluation.

At the same time, the lack of a formal definition of textual entailment poses new
challenges for theoretical study of natural language semantics as well as for the design of
actual systems. We think that the design of “natural” textual entailment examples (and
corpora) that support system development is one of the critical issues. In principle, the
two-sentence scheme allows for coding a wide range of inferential relations from simple
paraphrases to intricate algebra story problems. While the main objective in the design
of positive examples is to represent inferences humans are typically capable of, finding
criteria for the design of good negative examples is more difficult. Possible options
include random sentence pairs, typical false conclusions humans make, or unintended
system results. The latter option has been pursued in the design of existing RTE corpora.
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2.3. The Recognizing Textual Entailment Task

The notion of textual has been introduced together with the ongoing series of PASCAL
Recognizing Textual Entailment (RTE) Challenges.2 The first RTE challenge took place
in 2005 and since then, there have been annual follow-up challenges (Dagan et al., 2006;
Bar-Haim et al., 2006; Giampiccolo et al., 2007a). Below, we present the RTE task
(Section 2.3.1) and the respective corpora (Section 2.3.2).

2.3.1. The Task

The scheme of the RTE challenge has not changed much over time. Participants are
provided with development corpora containing 800 sentence pairs with annotation of
the entailment value (TRUE/FALSE) and the subtask – in the current RTE-3 corpus
(Giampiccolo et al., 2007a) question answering (QA, e.g., Moldovan, Harabagiu, Paşca,
Mihalcea, Goodrum, Gı̂rji, and Rus, 1999), information retrieval (IR, e.g., Baeza-Yates
and Ribeiro-Neto, 2000), information extraction (IE, e.g. Sundheim, 1991), and summa-
rization (SUM, e.g., Mani, 2001) in equal shares.

The task is to predict correct entailment judgments on a test corpus of the same size as
the development corpus. Accuracy is measured as the percentage of correctly classified
pairs. True and false entailments are balanced in the corpora, therefore the baseline of
guessing is 50% accuracy. Optionally, confidence measures can be handed in as well,
which are then taken into account in a second measure, average precision (see Bar-Haim
et al., 2006, for details). We postpone an overview of participating systems and detailed
results until Section 2.5.

2.3.2. The Textual Entailment Corpora

The corpora provided for the RTE challenges are compiled using “real-world” sources
with the aim of representing a certain range of phenomena as described, e.g., by Bar-
Haim et al. (2006):

“Our main focus in creating the RTE-2 dataset was to provide more “real-
istic” text-hypothesis examples, based mostly on outputs of actual systems.
[. . . ] The examples represent different levels of entailment reasoning, such as
lexical, syntactic, morphological and logical.”

In general, pairs where entailment holds correspond to success cases of existing sys-
tems, and non-entailed pairs to cases of failure. Bar-Haim et al. (2006) describe how the
text-hypothesis pairs for the four different marked subtasks were compiled by human
annotators. In brief, the procedures were the following:

Information Extraction Relations to be extracted from two existing IE tasks such as “X
works for Y” were taken as templates for hypotheses. Relevant news articles were
collected as texts. Given these texts, actual IE systems then generated positive

2www.pascal-network.org/Challenges/RTE/
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and negative hypotheses by instantiating “X” and “Y”. Additional entailment pairs
were compiled manually, Bar-Haim et al. (2006) give as example An interpreter
works for Afghanistan as non-entailed hypothesis generated for the text An Afghan
interpreter, employed by the United States, was also wounded. Finally, more pairs
were generated manually for relations from domains such as sports, entertainment,
or science.

Information Retrieval Hypotheses –formulated in propositional form– were adapted and
simplified from existing IR datasets. Entailing text were taken from the datasets,
non-entailing texts were retrieved using search engines.

Question Answering Questions from existing datasets and answer texts generated by
QA systems were used. The answer texts serve as texts. The questions are trans-
formed into hypotheses by re-formulating them as affirmative sentence and “plug-
ging in” an answer term which has been extracted from the answer text. For
example, from the question How many inhabitants does Slovenia have? and the
answer text In other words, with its 2 million inhabitants, Slovenia has only 5.5
thousand professional soldiers, the hypothesis Slovenia has 2 million inhabitants
is generated.

Summarization Texts and Hypothesis are drawn from news document clusters reporting
on the same event and the respective output of summarization systems. Annotators
were instructed to choose one sentence generated by a system per pair if possible.
Hypotheses for both entailed and non-entailed pairs were simplified until fully
entailed by the chosen text.

The generated text-hypothesis pairs were judged at least by two of the challenge
organizers. The average agreement is reported as 89.2%. Bar-Haim et al. (2006) name
as main cases of disagreement cases where i) the text gives approximate numbers and
the hypothesis exact ones, ii) the text states a proposition in a report context and
the hypothesis the proposition itself, and iii) the hypothesis “makes a slightly stronger
statement” than the text. 18.2% of the initial pairs were removed due to disagreement.
In a subsequent stage, the organizers again removed 25.5% of the sentence pairs which
were judged as too controversial, difficult or redundant (similar to other pairs). Text
correction was limited to a minimum in order to provide a realistic sample.

Table 2.1 displays corpus examples from all subtasks – a positive and a negative en-
tailment pair per task. From inspection of these and other examples, we could, however,
not derive substantially different characteristics of the pairs across the subtasks. This
might be taken as further evidence for the similarity of the needs of different applica-
tions. Still, the results of existing RTE systems show varying performance on different
subtasks. We will come back to this in Chapter 6.
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ID Text Hypothesis Value Task
1 Claude Chabrol (born June 24, 1930) is

a French movie director and has become
well known in the 40 years since his first
film, Le Beau Serge, for his chilling tales
of murder, including Le Boucher.

Le Beau Serge was directed
by Chabrol.

YES IE

5 The Communist Party USA was a small
Maoist political party which was founded
in 1965 by members of the Communist
Party around Michael Laski who took
the side of China in the Sino-Soviet split.

Michael Laski was an oppo-
nent of China.

IE

201 Berlin has a new landmark. Among the
cranes which still dominate the skyline
of Europe’s newest capital now stands
a chancellery, where the head of gov-
ernment Gerhard Schroeder will live and
the German cabinet will hold its regular
meetings.

New buildings have been
erected in Berlin.

YES IR

202 The Reichstag building in Berlin was
constructed to house the Reichstag, the
original parliament of the German Em-
pire. It was opened in 1894 and housed
the Reichstag until 1933.

New buildings have been
erected in Berlin.

NO IR

401 It marked the first official visit of Iran’s
President Mahmoud Ahmadinejad to
Saudi Arabia as he spoke with its leader,
King Abdullah. Both leaders have
expressed concern over sectarian ten-
sions in Iraq, fearing they could spread
through the Middle East.

The President of Iran is Mah-
moud Ahmadinejad.

YES QA

403 King Abdullah and Ahmadinejad were
believed to be focused on finding ways
to end the political standoff in Lebanon
between Hezbollah, backed by Iran, and
the government of Fouad Siniora, sup-
ported by the United States.

The President of Iran is Mah-
moud Ahmadinejad.

NO QA

603 The most common technology in mini-
mills, thin steel slab casting was devel-
oped by SMS and put into use by NU-
COR.

SMS developed a new steel
casting process.

YES SUM

601 NUCOR has pioneered a giant mini-mill
in which steel is poured into continuous
casting machines.

Nucor has pioneered the first
mini-mill.

NO SUM

Table 2.1.: Textual entailment examples (from RTE-3 corpus).
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2.4. Linguistic Properties of RTE Corpora

The corpus examples in Table 2.1 indicate the variety of types of inferences that po-
tentially relate text and hypothesis. For example, in pair 401, we observe a systematic
linguistic variation between an appositive formulation and a copula construction (X, Y
of Z vs. X is the Y of Z ). In contrast, in pair 201, considerable background knowledge is
needed to infer from cues such as crane or now stands a chancellery that new buildings
in fact have been erected.

Textual entailment is an inference task on free text. In principle, a considerable num-
ber of linguistic phenomena can be encoded into the text/hypothesis scheme. Therefore,
it is difficult to a priori delimit the levels of linguistic analysis that can be involved in
the entailment decisions. From a practical perspective, a driving question is which levels
of analysis, techniques, and resources are best suited to treat a broad range of examples
in an effective way.

Before we discuss existing approaches to textual entailment in the next section, we
will have a closer look at the data. In Section 2.4.1, we will provide a survey of typical
levels of analysis and phenomena we observed in the data. Subsequently, we will report
results of more exhaustive studies (Section 2.4.2). In Section 2.4.3, we will refer to a
discussion in the community concerning the appropriateness of the RTE corpus data and
finally discuss some issues we encountered.

2.4.1. Survey of Linguistic Levels and Phenomena

As has been noted frequently, one of the most indicative features for textual entailment
as implemented by the RTE corpora is string identity. This means, in many positive
pairs, the decisive part of the hypothesis occurs literally in the text while this is not
the case in negative pairs. Therefore, the lexical baseline measuring string overlap on
content words is already fairly high, at more than 60% on the current corpora. As
we will see, lexical overlap indeed is a good measure for entailment on the given data.
Yet, the precision and also the recall that can be reached with a surface overlap feature
is limited. Starting from surface phenomena, we will now illustrate a broad range of
linguistic phenomena occurring in the RTE dataset.

In this context, we will extend the notion of entailment slightly. While entailment
is originally defined on the sentence level, we assume that it is also possible to identify
“entailment relations” between smaller parts of text and hypothesis like predications or
concepts. We might, e.g., say that car entails vehicle.

Surface Overlap

As has been shown by Garoufi (2007) and others, in positive entailment cases the hy-
pothesis is often a substring of the text. Example (2.22)-(2.23) exhibits 100% surface
overlap, i.e., all words of the hypothesis occur in the text.

(2.22) There are currently eleven (11) official languages (EU languages) of the
European Union in number.
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(2.23) There are 11 official EU languages. (TRUE)

As the sentence pairs were designed to be “realistic”, they include surface differences
like bracketing, spelling variants, e.g., of dates or numbers, abbreviations or even typos.
This can be a challenge for “deeper” approaches as minor surface differences can lead to
unwanted consequences on deeper levels of analysis, e.g., different parses or even parse
errors can lead to divergent or missing semantic representations.

Syntax and Grammar

A relatively frequent pattern in the RTE data is syntactic or grammatical variation like
passivization or appositive vs. copula constructions as illustrated by (2.24)-(2.25).

(2.24) The Arabic-language television network Al-Jazeera reports it has
received a statement and a videotape from militants.

(2.25) Al-Jazeera is an Arabic-language television network. (TRUE)

The true entailment example above again involves a high degree of lexical overlap.
But it can also be the case that measuring overlap leads to wrong predictions. One
such difficult example is the negative pair (2.26)-(2.27), which exhibits a high degree of
overlap.

(2.26) Oscar-winning actor Nicolas Cage’s new son and Superman have sth. in
common [. . . ].

(2.27) Nicolas Cage’s new son was awarded an Oscar. (FALSE)

A fine-grained syntactic analysis is required to detect that the subjects of both pred-
ications (Oscar-winning actor and was awarded an Oscar) are different – at least in
the most probable reading of (2.26). This would correctly indicate the absence of an
entailment relation. The identity of the predications has to be established by a lexical
semantic analysis.

Lexical Semantics and Paraphrases

Semantic phenomena in the textual entailment data often reside within the area of lexical
semantics. Lexical variations on the word level such as synonymy or hypernymy as in
(2.28)-(2.29) occur frequently. Likewise, one can observe variation on the phrase level
as in (2.30)-(2.31).

(2.28) A Union Pacific freight train hit five people.

(2.29) A Union Pacific freight train struck five people. (TRUE)

(2.30) Satomi Mitarai died of blood loss.
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(2.31) Satomi Mitarai bled to death. (TRUE)

Another type of example is (2.32)-(2.33). In this particular case, the multi-word
expression give up one’s right to X is synonymous to abdicate in (2.33) as X meets the
additional condition of being an official position. And furthermore, it has to be known
(or assume) that Edward VIII in fact was King and not only designated for the throne.

(2.32) [O]n December 10th 1936 King Edward VIII gave up his right to the
British throne.

(2.33) King Edward VIII abdicated on the 10th of December, 1936. (TRUE)

What is special about this type of example is that expressions in text and hypothesis
mutually disambiguate each other. Still, this kind of reasoning goes for the most part
beyond what we consider feasible with the available linguistic and knowledge resources.

Modality

The organizers of the RTE challenge try to avoid “relatively delicate logical issues”
(Dagan et al., 2006) in the construction of the entailment corpora. Some phenomena
like modality, which are typically discussed in the realm of logic, are nevertheless found
relatively frequently in the data (cf. Pennacchiotti, 2007). Proper treatment of examples
like (2.34)-(2.35) requires checking modality expressions for compatibility.

(2.34) U.S. Secretary of State Condoleezza Rice said Thursday that North Korea
should return to nuclear disarmament talks [. . . ].

(2.35) North Korea says it will rejoin nuclear talks. (FALSE)

In this example, entailment can be rejected because of a modality mismatch – shall
does not entail will.

Reasoning and Background Knowledge

The last class of examples we want to present requires the use of background knowledge
and reasoning capabilities, which go beyond the linguistic phenomena we sketched above.
In the case of (2.36)-(2.37), geographical knowledge is needed to relate Chernobyl with
the USSR and the outside the ex-USSR with Great Britain. Contamination has to be
related to repercussions and it has to be inferred that the text is in fact talking about
the Chernobyl disaster, which is mentioned only in the hypothesis.

(2.36) Busby countered, telling The Iconoclast, the point is that material from
Chernobyl which is 1,800 miles to the east of Great Britain traveled to
Great Britain and contaminated Wales, Scotland, and various parts of
the United Kingdom. [. . . ]
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(2.37) The Chernobyl disaster had repercussions outside the ex-USSR.
(TRUE)

Temporal reasoning is also necessary for pairs like (2.38)-(2.39), although it is supposed
not to be by the creators of the corpora. In this example, it is critical to infer from the
fact that lifting the ban again would lead to extinction that having the ban is efficient
for preventing extinction.

(2.38) Definitely do not lift the ban on ivory, it will drive the species to near
extinction again. Elephant numbers should be controlled but what has ivory
got to do with it? It is a barbaric trade and should be banned permanently.

(2.39) The ban on ivory trade has been effective in protecting the elephant
from extinction. (TRUE)

It should be clear from the discussion of examples above, that it is not possible to
isolate a single source of information as “solution” to the problem of detecting textual
entailment. As has been argued (e.g. Litkowski, 2006), integrated approaches are needed.
Existing approaches typically integrate different knowledge sources and layers of analysis.

2.4.2. Quantitative Studies of Linguistic Factors in Textu al Entailment
Corpora

Recent annotation studies have been concerned with the question of what levels of anal-
ysis and phenomena determine the entailment decisions in the RTE datasets. Bar-Haim
et al. (2005) compare the purely lexical level against the lexical level plus syntactic infor-
mation and report that the latter outperforms the former. The authors also argue that
the paraphrase level is of special interest and suggest experiments on the lexical-semantic
level as options for future research.

A thorough classification and annotation of linguistic phenomena involved in textual
entailment decisions is provided by Garoufi (2007). The author presents a manual anno-
tation of the subset of positive entailment pairs from the RTE-2 test corpus. She shows
that phenomena on the level of lexicon, syntax, and discourse are frequently found and
that for many examples, some sort of reasoning is necessary. Figure 2.2 from Garoufi
(2007) shows the distribution of phenomena that have been observed in the positive
pairs of the RTE-2 test corpus. Without going into detail, the chart shows that many
high-valued features are from the area of grammar and lexical semantics (Nominals3,
Genitive, Apposition), as well as concerning co-reference. Another prevalent feature is
the reasoning feature, which subsumes a variety of inferences that require knowledge
which goes beyond what is captured by the linguistic features considered.

3The feature Nominal describes relations between NPs.
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Figure 2.2.: Entailment feature distribution on the positive subset of the RTE-2 test set
(from Garoufi, 2007).

2.4.3. Discussion of the Data

The RTE task and corpora have been criticized, mostly for the weak definition of textual
entailment and for problematic examples encountered in the corpora. A more funda-
mental discussion took place between (Zaenen, Karttunen, and Crouch, 2005; Crouch,
Karttunen, and Zaenen, 2006) and Manning (Manning, 2006). Zaenen et al. (2005)
propose to include (and annotate accordingly) more examples of “classical” phenomena
like implicatures or examples involving quantifier monotonicity – phenomena that had
been studied intensively in the logic-based approach to natural language semantics. At
the same time, they criticize the unclear situation concerning the use of background
knowledge (“world knowledge”) in the RTE task and suggest to define more precisely
which knowledge is allowed or needed. Manning (2006) in contrast defends the design
of the RTE task and points out that the ideas of Zaenen et al. (2005) are not realistic
and would lead to a much less natural and useful resource. He also argues that trying
to further pinpoint the question of what precisely is world knowledge and where it can
be used is doomed to failure. In his article, he also gives the following interpretation of
textual entailment:

“One way of thinking about whether an hypothesis follows from a text is: if a
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person asked you for a piece of text that establishes a certain hypothesis, then
would showing them the given text satisfy the person. From an operational
perspective, thus seems just what we want.”

While we agree with Manning’s view in general, we think that this operational defini-
tion of textual entailment can be used to justify entailment pairs we consider debatable.
One such example is (2.40)-(2.41) from the RTE corpus:

(2.40) Albert Sabin developed an oral, attenuated (live) vaccine, which, with Salk’s
discovery, brought polio under control.

(2.41) Polio is under control in the world. (TRUE)

The example is from the IR section and is judged as true textual entailment. However,
in general, the fact that a disease was brought under control at some time in the past does
not entail that the disease is still globally under control. Still, if we imagine a situation
like the one Manning described – someone asks a medical expert to confirm that polio is
under control and the expert cites (2.40) without any further comment, one is inclined
to believe that this in fact confirms the statement. But in this situation, decisive factors
are the trustworthiness of the expert and the fact that he does not mention recent cases
of Polio in addition the information provided by the text.

We prefer the narrower, original definition of textual entailment. As a consequence,
we would have either included this as a negative example or maybe deleted it during
corpus revision.

2.5. Related Approaches to Textual Entailment

Textual entailment has a pragmatic character and it is defined only informally. There-
fore, it cannot be computed directly. Textual entailment is typically approximated in-
stead. While first attempts have been made to come up with precise solutions to se-
lected sub-problems (e.g. MacCartney and Manning, 2007; Bobrow et al., 2007), the
most widely used approach is to measure similarity between text and hypothesis (cf.
Pennacchiotti, 2007) in a supervised learning scenario. In Section 2.5.1, we will present
the typical system architecture which is instantiated by most current approaches to tex-
tual entailment. An overview of participating systems and results of the current, third
RTE challenge will be given in Section 2.5.2. We will then present three of the best
performing systems of the second RTE challenge (Bos and Markert, 2006; Tatu et al.,
2006; Hickl et al., 2006a) in detail (Section 2.5.3). In Section 2.6, we draw conclusions
from the discussion of related works.

2.5.1. A General RTE Architecture

The typical architecture instantiated by most approaches and systems for recognizing
textual entailment is the pipeline architecture displayed in Figure 2.3 (cf. Bar-Haim
et al., 2006). In a preprocessing and analysis step, text and hypothesis are linguistically
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2.5. Related Approaches to Textual Entailment

Figure 2.3.: General RTE architecture (from Bar-Haim et al., 2007).

analyzed. The respective levels of analysis range from tokenization (e.g., Adams, Nicolae,
Nicolae, and Harabagiu, 2007) over dependency parsing (e.g., Herrera, Penas, Rodrigo,
and Verdejo, 2006) to logical analysis (e.g., Bos and Markert, 2006). In a second step,
text and hypothesis are compared. Again, a variety of techniques is used, e.g., lexical
alignment (e.g., Hickl et al., 2006a) or transformations on tree kernels (e.g., Zanzotto,
Pennacchiotti, and Moschitti, 2007). Overall, the most common comparative measures
and techniques used are surface-based – lexical overlap (unigram, N-gram, subsequence),
lexical substitution (WordNet, statistical), syntactic matching/transformations, as well
as the study of lexical-syntactic variations (“paraphrases”). Sometimes, explicit tech-
niques for detecting mismatch are also used. (cf. Vanderwende and Dolan, 2005). As
concerns “deeper” semantic computation, logical inference is used by some approaches
(see below).

The typical result of the comparative stage is a feature vector representing similarity
measures of text and hypothesis. Usually, the entailment decision is made by a machine
learning component, trained on the RTE training corpora.

While first research have touched the impact of additional material in the hypothe-
sis (e.g. MacCartney and Manning, 2007; Bobrow et al., 2007), it is difficult to make
generalizations about how it influences the textual entailment decision.

2.5.2. Results of the Third RTE Challenge

Table 2.3 from (Giampiccolo et al., 2007b) gives an overview of the systems that partici-
pated in the third RTE challenge, the latest finished competition by the time of writing.
The table and also provides a broad classification of techniques and resources used by
the respective systems. Although we will not comment it in detail, the table illustrates
the variety of components used by different systems and it also shows the variance in
system performance.

23 international groups participated in the challenge – 12 from Europe, 10 from the
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2. Textual Entailment

Average accuracy Best result

SUM 67.9 84.5
IR 60.8 74.5
QA 58.2 70.5
IE 52.2 73.0

Table 2.2.: RTE-3 per task analysis (from Bar-Haim et al., 2007).

USA and Canada, 1 from Australia. The SALSA RTE system, listed under Burchardt
in the table, was one of two German contributions. Overall, systems’ accuracy ranges
between 49% and 80%, averaging at 60% (median 59%). This result indicates the diffi-
culty of the task, seen the baseline of 50% for guessing (and about 60% for measuring
lexical overlap). What is notable is that most systems perform in a range between 59%
and 66% while two systems designed by a private company score considerably better,
namely at 71% and 80% (Tatu and Moldovan, 2007; Hickl and Bensley, 2007). This shows
that there is room for improvement concerning the resources available in the research
community.

A per-task analysis of system results is given in Table 2.2. The average results differ
considerably. However, it is still an open question whether this is due to idiosyncrasies
in the corpora or whether this indicates, e.g., relative difficulty of the subtasks. We will
come back to this in Chapter 6

All in all, the results of the third challenge were slightly better than in the previous
challenges. One novelty in this challenge was the inclusion of comparably longer texts.
While the first two challenges presented single-sentence pairs, now 10% of the texts con-
sisted of more than one sentence and it is under discussion whether to move towards a
general, more realistic multi-sentence setting in the future. As concerns system perfor-
mance on the longer texts, Giampiccolo et al. (2007a) report a slight drop in accuracy
as compared to single-sentence texts (average accuracy 58.7% vs. 61.9%).

2.5.3. Selected Systems

An in-depth discussion of all currently existing approaches to textual entailment is be-
yond the scope of this thesis. Below, we present three of the best performing systems of
the second RTE challenge (Bos and Markert, 2006; Tatu et al., 2006; Hickl et al., 2006a),
two of which also participated in the third challenge (Hickl and Bensley, 2007; Tatu and
Moldovan, 2007, see Table 2.3). Inspection of these systems is also relevant as they show
a variety of methods and techniques that have been used for the task at hand.

Bos and Markert (2006)

The authors present a hybrid system consisting of a “shallow” component based on word
overlap and a “deep” component based on semantic analysis. We will focus on the deep
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Adams 0.6700  X X    X X   
0.6112 0.6118 X  X   X  X X 

Bar-Haim 
0.5837 0.6093  X  X   X  X  

Baral 0.4963 0.5364 X    X    X 

0.6050 0.5897 X  X    X   Blake 
  0.6587 0.6096 X  X    X   

0.5112 0.5720  X   X X     Bobrow 
  0.5150 0.5807 X   X X     

0.6250  X  X X      
Burchardt 

0.6262           

0.5500   X    X    
Burek 

0.5500 0.5514          

0.6050 0.6341 X  X  X  X X  Chambers 
  0.6362 0.6527 X  X  X  X X  

0.5088 0.4961  X   

 
 X    X 

Clark  
0.4725 0.4961  X    X    X 

Delmonte 0.5875 0.5830 X  X X X   X  
0.6563  X X X       

Ferrandez 
0.6375           

0.6062  X X     X   
Ferrés 

0.6150  X X     X   
0.5600 0.5813 X  X    X   

Harmling 
0.5775 0.5952 X  X    X   

Hickl 0.8000 0.8815 X X   X  X X X 

0.6913  X  X      X 
If tene 

0.6913  X  X      X 

0.6400  X X     X   
Li 

0.6488           

Litkowski   0.6125           
Malakasiotis  0.6175 0.6808  X     X   

Marsi 0.5913    X      X 

0.5888  X X X    X   
Montejo-Ràez 

0.6038  X X X    X   
0.6238  X X X    X   

Rodrigo 
0.6312  X X X    X   

0.6262  X X       X 
Roth 

0.5975    X     X  
0.6100 0.6195 X X     X   Settembre 

  0.6262 0.6274 X X     X   

0.7225 0.6942 X    X   X X Tatu 
  0.7175 0.6797 X    X   X  

0.6650    X    X   
Wang  

0.6687           

0.6675 0.6674 X  X    X   Zanzotto 
  0.6575 0.6732 X  X    X   

7

Table 2.3.: RTE-3 results and system components (from Giampiccolo et al., 2007b).
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component. Using the CCG parser (Bos, Clark, Steedman, Curran, and Hockenmaier,
2004), input sentences are transferred into Discourse Representation Structures (DRSs),
the semantic representations used in the DRT framework (Kamp and Reyle, 1993).
Figure 2.4 shows an analysis of the sentence pair (2.42)-(2.43) (from Bos and Markert,
2006).

(2.42) Mr. Fitzgerald revealed he was one of several top officials who told Mr. Libby
in June 2003 that Valerie Plame, wife of the former ambassador Joseph
Wilson, worked for the CIA.

(2.43) Valerie Plame is married to Joseph Wilson.

Although going into the details of semantic representation and DRT is not possible
here, we want to point out, that these representations deviate from standard DRT. For
example, named entities are treated in a uniform way with the named predicate and
a so-called neo-Davidsonian representation (going back to Davidson, 1967) is used for
coding argument structure by way of semantic roles like agent or theme.

For checking whether entailment holds, Bos and Markert (2006) translate the DRSs
into logical formulae and generate what they call “relevant background knowledge” on
the basis of WordNet (see Section 3.3.1) and 115 hand-coded axioms. Then they use
both theorem proving and model building for generating different entailment measures.
This includes checking, e.g., whether direct logical entailment holds between text and
hypothesis or whether the background knowledge is consistent with text and hypothesis.
One problem of any direct check of entailment is the strictness of the logical setting –
it is not possible to have a notion of, e.g., almost entailed. To this end, the authors
use model building. They compare the domain size of the text (including background
knowledge) with the domain size of text and hypothesis. The idea behind is that an
entailed hypothesis should not be very informative with respect to the text. Thus the
more the domain size grows when adding the hypothesis, the less likely entailment holds.

The different resulting measures for theorem proving and model building are then
input to a machine learning component. The results reported by Bos and Markert
(2006) indicate that the domain size measure is the only informed, semantic feature
selected by the machine learner. Overall system accuracy was at 61% at the second
RTE challenge.

Example and discussion. The analysis of (2.42)-(2.43) in Figure 2.4 can be used to
illustrate some disadvantages of this logical approach. First of all, especially the structure
representing the information contained in the text is relatively complex. In contrast, the
decisive information is provided in the text by a relatively simple apposition (printed
in boldface in (2.42)). In the DRS representation, this information is embedded within
different substructures (encircled in the figure). Moreover, the analysis of the apposition,
i.e., the identification of Valerie Plame and wife as referring to the same referent is
achieved in a complex way – the discourse referent x12 refers to Valerie Plame, x15

stands for Joseph Wilson and x14 represents the the wife of the latter. x12 is correctly
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2.5. Related Approaches to Textual Entailment

DRS T: DRS H:

Axiom:

Figure 2.4.: DRSs of (2.42)-(2.43) and axiom used for establishing entailment (from Bos
and Markert, 2006).
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2. Textual Entailment

set equal to x14 within an extra DRS. Yet, this is not a case of reference resolution, but
proper semantic construction.

Figure 2.4 also shows one of the axioms needed to establish the entailment rela-
tion here. The axiom is intended to encode the information that wife(X,Y) entails
married to(Y,X). Yet, it is provided in an idiosyncratic manner. In the right side of
the axiom, it is stated that there is a “marry-event” (x3) which is in a “to” relation
to the wife of its patient (to(x3, x1), patient(x3,x2), of(x1,x2)). Bos and Mark-
ert (2006) themselves state the problem that large-scale coverage cannot be reached by
manual generation of such axioms. While the authors speculate that the given axioms
might be taken for bootstrapping, we doubt that this kind of information can fully
automatically be acquired, e.g., from given resources or corpora.

Bos and Markert (2006) work within the “classical” logic paradigm of natural language
semantics. Yet, the authors themselves point out that it does not perform better than
their lexical baseline system computing word overlap. In fact, both systems succeed in
modeling by and large the same sentence pairs. This is supported by the true positive
examples the authors presented at their RTE workshop presentation, including (2.44)-
(2.45) below. In this example, all material of the hypothesis is literally contained in the
text.

(2.44) On Friday evening, a car bomb exploded outside a Shiite mosque in
Iskandariyah, 30 miles south of the capital.

(2.45) A bomb exploded outside a mosque. (TRUE)

Overall, our impressions is that this direct translation of natural language into logic
translates one highly complex system into another complex system without making ap-
propriate generalizations for the given task. Apart from the problem of generating ap-
propriate representations, the limited flexibility of the logical approach, i.e., the binary
decision (logically) entailed/non-entailed, introduces problem that have to be tackled.

Cogex (Tatu et al., 2006)

The authors, members of LCC corporation, participated with their COGEX system
in the second RTE challenge. This system is based on the resolution prover COGEX
(Moldovan, Clark, Harabagiu, and Maiorano, 2003), which was designed for processing
data in a special logic-like format called logic form (Moldovan and Rus, 2001). This for-
mat was designed as intermediate representation level between natural language surface
and standard “deep” semantic representation formats. In the RTE system, two variants
(“layers”) of logic form are generated, one coding constituent-based information and
one coding dependency information. The running example in Tatu et al. (2006) is (2.46)
below. The two logic forms on the respective layers provided in Tatu et al. (2006) are
displayed in Figure 2.5.

(2.46) Gilda Flores was kidnapped on the 13th of January 1990.
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2.5. Related Approaches to Textual Entailment

Constituency. Gilda NN(x1) & Flores NN(x2) & nn NNC(x3, x1, x2) &
human NE(x3) & kidnap V B(e1, x9, x3) & on IN(e1, x8)& 13th NN(x4) &

of NN(x5) & January NN(x6) & 1990 NN(x7) & nn NNC(x8, x4, x5, x6, x7) &
date NE(x8)& THM SR(x3, e1) & TMP SR(x8, e1) &

time TMP (BeginFN(x1), 1990, 1, 13, 0, 0, 0) &
time TMP (EndFN(x1), 1990, 1, 13, 23, 59, 59) & during TMP (e1, x8)

Dependency. Gilda F lores NN(x2) & human NE(x2) & kidnap V B(e1, x4, x2) &
on IN(e1, x3) & 13th NN(x3)&of IN(x3, x1) & January 1990 NN(x1)

Figure 2.5.: Two different logic forms (from Tatu et al. (2006)).

These logic forms contain syntactic and semantic information. For example, kidnap

V B(e1, x9, x3) indicates a ditransitive verb and THM SR(x3, e1) states that x3 (rep-
resenting Gilda Flores) fills the semantic role theme of the event denoted by the verb.
Another feature of these representations is that time is modeled fairly explicitly – the
special predicates like BeginFN in fact are classes of the SUMO ontology (see Sec-
tion 3.4.1), generated by hand-coded rules.

Apart from the information contained in these logical forms, the COGEX system also
generates additional axioms at the subsequent proof stage. The main types of axioms are
sketched below. Based on the words occurring in text and hypothesis, so-called lexical
chains are generated using eXtendedWordNet (Moldovan and Novischi, 2002). These
include lexical relations such as synonymy or hyponymy, or relations between Named
Entities and the respective adjectives like Nicaraguan and Nicaragua. By way of re-
write rules, linguistic knowledge is used, e.g., to decompose compound nouns or provide
normalized representations of coordinations. The last type of axioms codes semantic and
background knowledge, e.g., that the Pope is the head of the Roman Catholic Church.
The authors state that 310 hand-coded axioms were re-use from previous projects and
73 have been manually added for the task of checking entailment.

Moreover, the system implements a so-called semantic calculus to increase the connec-
tivity of the semantic analyses. The respective 82 axioms model, e.g., spatial knowledge
or transitivity of kinship/causation/isa relations, or implement temporal reasoning.

The COGEX prover used in the subsequent proof step is capable of generating proofs
of different “strictness”. If a strict proof is not found, constraints on arguments can be
relaxed and arguments from the hypothesis can be dropped completely if they cannot be
proven from facts in the text. Most importantly, this relaxation proceeds in a weighted
manner and the complete proofs is also scored. This proof score provides a measure of
the difficulty of proving the hypothesis from the text.

In a parallel module, Tatu et al. (2006) also implement a lexical alignment algorithm,
which computes the edit distance between text and hypothesis based on a cost function
(deletion costs 0, insertion costs depend on the type of word, etc.).
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Overall, the system achieved an accuracy of 74% at the RTE-2 challenge. The au-
thors state that the constituent-based logic form is primarily responsible for the overall
score. Yet, the combination of the constituent-based, the dependency-based, and the
alignment based scores outperforms the individual results (no individual figures have
been published).

Discussion. The system of Tatu et al. (2006) it contains a multitude of modules for
specific tasks including a database containing a large number of axioms. Moreover, the
“logical” prover used is tailored towards the task at hand. It is more flexible than usual
theorem provers, offering the possibility to turn non-proofs into proofs by dynamically
relaxing the goal and to score proofs. This complex system architecture can extract
and process relevant information from the textual data with considerable success. At
the same time, even this huge system designed with a lot of manual effort and using
established technology performs less than 15% better than a simple lexical baseline.
The question is, to what extent this approach scales and how much accuracy can be
reached in the same manner (the system performed slightly worse at RTE-3, contrary
to the general tendency). Unfortunately, the documentation is not verbose in parts
such that the reader is largely left uninformed about how certain functionalities are
implemented. One general question is whether comparable performance can be achieved
without having access to the manpower, technology, and proprietary resources used here,
e.g., if developing a system for a new language.

Groundhog (Hickl et al., 2006a)

The best performing system in the RTE-2 challenge was the Groundhog system presented
by members of the LCC company (Hickl et al., 2006a). An overview of the system com-
ponents is given in Figure 2.6. In the central part of the system, a lexical alignment is
computed to identify those portions of text and hypothesis, which most probably belong
together. The respective parts also serve as input to a module which derives “para-
phrases” from the WWW in order to check whether there exist phrase-level alternations
of one of text and hypothesis or both that match. A key feature of this approach is
that a huge amount of extra training-data is generated and used at different steps. The
final entailment classification is based on features extracted from the different sources.
Below, we will sketch the main system components.

Linguistic analysis. The system performs an extensive linguistic analysis of text and
hypothesis on different levels including a powerful named-entity recognizer distinguishing
150 categories (locations, sports events, persons, etc.) and tools for linking and resolving
referential expressions such as anaphora, relative pronouns, or co-referent nouns. As in
Tatu et al. (2006)’s system, time expressions including deixis are normalized and their
order is computed. After syntactic parsing, a lexical semantic analysis in terms of
predicate-argument structure based on PropBank (see Section 3.3.3) is computed by a
statistically trained semantic role labeling system. Finally, heuristics are used to mark
polarity and factivity of predicates embedded under respective markers. For example,
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Figure 2.6.: Architecture of Groundhog system (from Hickl et al., 2006b).

in the case of negation or verbs like refuse, the embedded predicates are marked false.
In the case of non-factive speech act verbs like deny or claim and verbs marking belief,
intentions, etc., the embedded predicates are marked as unresolved, i.e., neither definitely
true nor false. Also, constructions that are known to trigger conventional implicatures
such as nominal appositive or non-restrictive relative clauses are analyzed by appending
the respective implicature to the sentence. An example from Hickl et al. (2006b) is
(2.47)-(2.48) below.

(2.47) Shia pilgrims converge on Karbala to mark the death of Hussein, the prophet
Muhammad’s grandson, 1300 years ago.

(2.48) Shia pilgrims converge on Karbala to mark the death of Hussein 1300 years ago
AND Hussein is the prophet Muhammad’s grandson.

Lexical alignment. In order to identify compatible material in text and hypothesis,
the approach uses machine learning to compute lexical alignment based on (i) statistical
features, (ii) lexico-semantic features such as WordNet distance, and (iii) string-based
features such as Levenshtein distance. The alignment classifier is trained in two steps.
First, 10.000 word pairs from texts and hypotheses of the RTE-2 development set are
classified by human annotators as either positive or negative instances of lexical align-
ment. The resulting data is then generalized by training another classifier on 450.000
alignment pairs extracted from additional entailment corpora generated by the authors
(see below).

Additional entailment corpora. The Hickl et al. (2006a) group generated more than
100.000 additional positive entailment pairs by grouping news headlines with the re-
spective first sentences in the style of Burger and Ferro (2005). Additional filtering, e.g.,
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Training Set Accuracy

RTE-2 Dev. 65.25%
25% LCC Corpora + Dev. 67.00%
50% LCC Corpora + Dev. 72.25%
75% LCC Corpora + Dev. 74.38%
100% LCC Corpora + Dev. 75.38%

Table 2.4.: Impact of training data (from Hickl et al., 2006a).

removing those sentence pairs that do not share any NP resulted in an accuracy of 91.8%
assessed on a random sample of 2500 pairs. Negative pairs were acquired in two ways. A
first set was generated by selecting 100.000 pairs of subsequent sentence from documents
that mention the same named entities; a second set was generated by gathering 20.000
sentence pairs that are linked by “contrastive” discourse connectives such as although or
in contrast. The accuracy of these pairs was assessed to be at about 95%. The impact of
this additional training material on the overall system performance is shown in Table 2.4
(from Hickl et al., 2006a) displaying performance without and with different percentages
of the additional training data. Indeed, the amount of training data is an important
factor in the overall system result.

Paraphrase acquisition. The component of the system, which is most successful on its
own according to Hickl et al. (2006a) is the acquisition of paraphrases. Unfortunately,
details of the component are not provided. The two lexical alignments with the highest
confidence as well as “matching instances” from the large corpus described above are
used to generate Google queries. The results are then somehow clustered. The general
idea is to test whether there exist paraphrases of text or hypothesis within the same or
within “near” clusters.

Entailment decision and results. The entailment classifier used by Hickl et al. (2006a)
works on four different types of features, which are displayed in Table 2.5. Overall, the
system was the most successful system in the RTE-2 challenge with an accuracy of 75%.
Table 2.6 (from Hickl et al., 2006a) displays the performance of several combinations of
the feature types described above. First of all, compared to the performance of concur-
rent systems, the three best features alone already perform very well. Yet, combination
always results in considerable improvement. The semantic feature adds about 2% pre-
cision to the overall result (e.g., from 73.62% to 75.38%).

Discussion. Hickl et al. (2006a)’s system follows a corpus-based approach. As in Tatu
et al. (2006)’ system, text and hypothesis are extensively linguistically analyzed by
various specific sub-modules. They are then compared on different comparably “shallow”
levels, e.g., on the lexical level, on the level of predicate-argument structure, or on the

38



2.6. Summary of this Chapter

Features Description

Semantic The two so-called semantic features count cases of boolean truth-value
mismatch as well as polarity mismatch based on the assignment of
factivity and polarity, respectively.

Paraphrase Features derived from the paraphrase clusters measuring, e.g., whether
there is a paraphrase available for text or hypothesis and whether the
paraphrases match.

Dependency Several features check whether entities and their arguments in hypoth-
esis and text are classified consistently according to the PropBank ar-
gument position. For example, one feature measures strict match while
another conflates ARG1 and ARG2 (cf. Section 3.3.3).

Alignment Alignment features include the length of the longest common substring
of hypothesis and text or the number of chunks from the hypothesis
that do not have a match in the text.

Table 2.5.: Features used by Hickl et al. (2006a)’s system.

+Alignment +Dependency +Paraphrase

Semantic 58.00 66.25 71.25 75.38
Paraphrase 65.88 69.13 73.62
Dependency 62.50 68.00
Alignment 65.25

Table 2.6.: Performance of different feature combinations (from Hickl et al., 2006a).

paraphrase level. Logical phenomena are approximated only in a limited way (e.g.,
polarity). A crucial factor this system relies on is the availability of training data. In
fact, it is trained on 200.000 sentence pairs rather than the 800 pairs provided by the
organizer’s of the RTE challenge. We think that the dynamic usage of Google and the
creation of huge corpora makes it difficult to compare the results of this system with
that of other systems based on the RTE data and other, stable resources. At the same
time, the question is what is the upper bound of precision that can be reached in such
a statistical manner (at RTE-3, the system performed 5% better as on RTE-2, in-line
with the general tendency).

2.6. Summary of this Chapter

In this chapter, we have shed light on different aspects of textual entailment. We have
set it in relation to logical entailment and have provided an overview of the linguistic
phenomena that can be observed in the currently available entailment corpora.

Textual entailment presents itself as a pre-theoretic notion, defined on pairs of texts.
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While this makes it possible to generate corpora with realistic inference problems, the
question of how to model this intuitively clear concept best in terms of natural language
processing is largely open. We have presented an architecture that has established as
best practice, where text and hypothesis are first linguistically analyzed on various layers.
In a subsequent processing step, their similarity is computed and the final entailment
decision is made by a statistical classifier. We have discussed three different approaches
in more detail, a logic-based approach (Bos and Markert, 2006), one approach based
on an intermediate level of semantic information (Tatu et al., 2006), and one largely
corpus-based approach (Hickl et al., 2006a).

From the overview of systems presented in Table 2.3 as well as from the inspection
of selected systems, it is evident that the task of detecting textual entailment requires
access to different levels of analysis and detailed modeling of different issues rather than
implementing one sophisticated “textual entailment algorithm”. Bos and Markert (2006)
combine a “shallow” component having high coverage with a semantic component, which
exhibits high precision. The system includes knowledge supplied by WordNet and by
manually generated rules. Tatu et al. (2006) and (Hickl et al., 2006a) both comprise a
multitude of components dealing with different phenomena on different levels of analysis.

While logic-based approaches including resources like WordNet can be successful
within their limits, approximative modeling on the level of paraphrase and alignment
has proven to work fine if enough training data is available. Predicate-argument struc-
ture has been used in the context of RTE only in limited ways so far. Apart from Hickl
et al. (2006a), semantic role labeling is used on a small scale by Delmonte et al. (2007);
Bobrow et al. (2007), where abstract labels like agent or patient are applied.

In this thesis, we will pursue the idea of applying the elaborate semantic role concept
of FrameNet to the task of modeling textual entailment. Like related approaches, we
will combine it with information from other levels of linguistic analysis, in the first place
grammatical analysis and lexical-semantic information from WordNet. We will present
a graph matching algorithm that identifies related material in hypothesis and text. Our
approach has been implemented in the SALSA RTE system, whose architecture instan-
tiates the general scheme presented in Figure 2.3. The system participated in the second
and third RTE challenge. It is listed in Table 2.3 as Burchardt.
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Resources

The aim of this Chapter is twofold. First of all, it gives an overview of the state of the
art in natural language analysis to an extent we consider relevant for modeling textual
entailment. Secondly, as we want to implement our model, the respective resources are
introduced.

Establishing textual entailment relations can depend on factors operating on very
many levels of linguistic analysis. However, to arrive at a concise model, we will restrict
ourselves to using mainly a combination of grammatical and lexical semantic analysis.
Both are highly relevant for modeling textual entailment as implemented by the currently
available data. Still, a remaining class of textual entailment cases rely on additional
extra-linguistic knowledge, as provided by knowledge ontologies. We will discuss the
integration of this kind of knowledge in Chapter 4.

This Chapter is structured as follows. Section 3.1 gives a brief overview on the differ-
ent levels of linguistic analysis. Section 3.2 is about syntactic parsing and grammatical
analysis. Section 3.3 deals with lexical semantic analysis, in particular with frame se-
mantics as implemented by the Berkeley FrameNet project. Section 3.4 gives an overview
of knowledge ontologies.

3.1. Levels of Linguistic Analysis

Three large areas of natural language analysis are syntax, semantics and pragmatics.
Syntactic analysis studies linguistic entities (words, constituents, sentences) as formal
objects and describes their structural properties. Semantic analysis studies the (poten-
tial) meaning of language entities while pragmatics deals with the communicative use
of language. The levels are usually seen as being dependent on each other – seman-
tic analysis depends on syntactic analysis while pragmatic analysis requires a semantic
analysis.

Each area is concerned with particular phenomena and aspects of natural language and
thus requires special kinds of knowledge and suitable processing techniques. Although
we will not deal with all levels at the same depth, Table 3.1 gives an overview of these
areas, central sub-areas, and characteristic phenomena.

With respect to processing, the sub-areas in Table 3.1 are roughly ordered in terms
of rising difficulty. This is also mirrored in the declining availability of resources. For
example, basic syntactic processing is supported by quite efficient and reliable tools.
Lexical and sentence semantic processing is to some extent supported by resources and
tools while pragmatic analysis today remains a predominantly theoretical issue.
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Phenomena

Syntax

Morphology and
word level pro-
cessing

Tokens, lemmata, parts of speech, abbreviations,
measures, dates, named entities

Constituent
Structure

Constituents, subcategorization, agreement

Grammatical
Analysis

More abstract dependencies and functional rela-
tions between constituents

Semantics

Lexical Concepts, concept relations (synonymy, hy-
ponymy), predicate-argument structure

Compositional
(Sentence)

Truth, factivity, modality, negation, implication,
quantification

Discourse Text coherence (anaphora, definite descriptions,
nominal chains), rhetorical structure

Pragmatics

“Systematic” Presuppositions, Implicatures

“Spontaneous” Reliability of source (“trustful re-
interpretation”), performance effects

Table 3.1.: Areas of linguistic and semantic analysis.

In our model for textual entailment, we will focus on lexical semantic information
complemented with grammatical analysis, which subsumes more shallow syntactic anal-
ysis. Although compositional semantics and discourse phenomena do not play a central
role in the given corpus data, we will include an approximative treatment of the phe-
nomena we identify based on information provided by the deep syntactic analysis. Still,
the model we will present is flexible and open for extensions in this direction. Finally,
pragmatics has a huge impact on textual entailment, which must not be neglected. In
line with other current approaches to textual entailment, we will treat the pragmatic di-
mension implicitly by using a statistical component, which we train on annotated textual
entailment examples.

Extra-Linguistic Knowledge. Arguably, an important factor impacting most levels of
language analysis and processing is extra-linguistic knowledge like ontological knowledge.
However, it is an open question how to clearly distinguish between linguistic knowledge,
which is acquired as part of a speaker’s competence as a speaker and knowledge, which
is based on, e.g., past experiences or observation of the world. In practice, it is often
intuitively plausible and reasonable to make a division at some point. For example, the
fact that an apple is a fruit is probably linguistic knowledge and would thus be included
in a natural language semantic resource. But the fact that apples are rich in vitamins
and thus healthy is more likely to be included in a knowledge ontology. Yet, this division
should not be confused with the division between strict and defeasible knowledge (the
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former typically being easier to formalize in a logical framework). As modeling textual
entailment requires linguistic as well as ontological knowledge to variable degrees, we
will do without a precise boundary and concentrate on the question of how to access the
required knowledge.

3.2. Syntactic Analysis

Syntactic analysis focuses on the structural properties of natural language, taking words
and phrases, particularly sentences, as the object of study. On this level of analysis,
first of all well-formedness conditions for the combination of linguistic entities are ex-
plored. Moreover, syntactic analysis is the basis for most kinds of semantic analysis, as
implemented in a so-called syntax-semantics interface.

While semantic analyses (see Section 3.3) generalize over linguistic surface structure to
provide meaning representations on a more abstract level, different levels of abstraction
can be identified also within syntactic analysis, ranging from being relatively “surface-
near” to being more semantically oriented. Throughout this thesis, we will focus on
the “deeper” syntactic levels of grammatical analysis (Section 3.2.2). Still, we will also
touch the “shallow” level of basic syntactic parsing (Section 3.2.1), as it forms the basis
for the deeper analysis.

Syntactic processing for recognizing textual entailment. In the last decade, progress
has been made in robust, corpus-based probabilistic parsing for English (e.g. Char-
niak, 2000; Collins, 1999). At the same time, deep grammatical frameworks such as
LFG, HPSG, TAGs or CCG have considerably improved in coverage and robustness,
benefiting from progress in statistics-based processing (Riezler, King, Kaplan, Crouch,
Maxwell, and Johnson., 2002; Copestake and Flickinger, 2000; XTAG Research Group,
2001; Clark, Hockenmaier, and Steedman, 2002). Existing approaches to recognizing
textual entailment mostly include some sort of syntactic analysis –even if they do not
generate a semantic representation– because entailment relations can to some degree be
modeled by comparing the syntactic structure of text and hypothesis (e.g. Zanzotto,
Moschitti, Pennacchiotti, and Pazienza, 2006). As we will detail in subsequent chapters,
grammatical analysis is suited for modeling a considerable number of entailment rela-
tions, especially in cases where linguistic alternation phenomena such as passivization or
appositions are involved. We will also devise a frame-semantic projection from a gram-
matical analysis (see Frank and Erk, 2004), where the grammatical structures do not
only serve as anchor for the semantic descriptions. Their coarse-grained, approximative
semantic characterization of text and hypothesis will also serve as a fall-back for cases
where the semantic analysis is missing or wrong, e.g., for problems of disambiguation or
lacking coverage.

3.2.1. Basic Syntactic Analysis

A standard syntactic analysis comprises a morphological analysis and parsing. Morpho-
logical analysis studies the regularities within words, and provides, e.g., a classification
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Figure 3.1.: Syntactic analysis of (3.1) with Collins parser.

of the part of speech and the lemma of a word. For example, directed in (3.1) is a
transitive verb with the lemma direct.

(3.1) Chabrol directed “Le Beau Serge”.

The typical result of the process of parsing a sentence is its constituent (phrase) struc-
ture, where the words are grouped into phrases such as noun or verb phrases according
to the rules of a context-free grammar. Figure 3.1 shows an analysis in terms of a parse
tree generated by the Collins parser (Collins, 1999) for (3.1) (only branching categories
are shown). The sentence (S) is analyzed as consisting of the noun Chabrol and a verb
phrase (VP), which in turn consists of the verb directed and the (basic) noun phrase
(NPB) Le Beau Serge. The phrases are usually named after the so-called head, which is
most important for the phrase in terms of syntactic properties. The head of the sentence
is the main verb.

We will use syntactic analyses as provided by the Collins parser because the Shal-
maneser system for automatic frame semantic analysis (see Section 3.3.4) is trained on
these structures. In parallel, we will use the LFG parser of Riezler et al. (2002) as it
also provides grammatical analyses (see Section 3.2.2).

Ambiguity

A main issue within syntactic analysis is ambiguity. Typically, more than one syntactic
structure can be assigned to a given sentence. A standard example is the possibility
to attach a modifier to the main verb or to a preceding noun. The problem is that in
syntactically parallel cases, one or the other may be the preferred analysis. For example,
(3.3) and (3.2) have a parallel structure, but the phrases headed by with modify different
entities.

(3.2) John bought a car with his first 10.000 Dollars.

(3.3) John bought a car with a removable top.

In (3.2), the buying event is modified and in (3.3) the car. Therefore, the syntactic
structures should be different, in (3.2), the noun phrase should span only a car and
in (3.3), a car with a removable top should be one noun phrase. Figure 3.2 shows the
intended parse results.
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Figure 3.2.: Syntactic analysis of (3.2) and (3.3).

Two central problems relate to this type of ambiguity. First, the number of potential
syntactic structures generated may become large for longer sentences since the number of
alternatives for all ambiguities multiply. Second, the disambiguation requires accessing
the sentence meaning, i.e., semantic processing. In order to keep syntactic and semantic
processing apart, two options are (i) either not to resolve the syntactic ambiguity and
to further process all possible analyses in parallel, hoping that subsequent semantic
processing steps will facilitate the disambiguation, or (ii) to somehow select “the best”
analysis and discard the alternatives. The first option is implemented in approaches using
underspecification, the latter option is often realized by inducing stochastic models and
deriving heuristics for automatic disambiguation. In the parsing architecture we use,
both options are supported, as well as mixed forms, e.g., working on only the n best
parses. We will provide more details below.

3.2.2. Grammatical Functions and LFG

In addition to the comparably shallow, surface-near syntactic analysis shown above, an
analysis in terms of grammatical functions makes it possible to define a more meaning-
oriented view on syntax and to link the syntactic entities to more abstract meaning
representations. Examples of surface phenomena that are abstracted over on this level
are word order or sentence mood. Within linguistics, grammar theory is a huge research
area. While the observable phenomena are relatively clear, the existing theories and
computational models differ. Two current major approaches are Head-Driven Phrase
Structure Grammar (HPSG, Pollard and Sag, 1994) and Lexical-functional Grammar
(LFG, Bresnan, 2001). Instead of adhering to a particular theory, we will however
concentrate on the widely accepted notion of grammatical functions and use an existing
LFG Grammar to generate the respective analyses.

Grammatical Functions

A common observation is that the different parts of a sentence have different functions in
contributing to the overall meaning. This idea is captured in the notion of grammatical
functions, the most familiar ones being subject, predicate, and object. These functions
are defined on the sentence level. In (3.4), the predicate is shave, the subject is John,
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and the object is Bill.

(3.4) John shaved Bill.

Towards semantic construction. Grammatical functions serve as important clues for
assigning semantic representations to surface structure elements. To give a simplified
example, a syntax-semantics interface could generate a predicate-logic semantic repre-
sentation like shave(john, bill) for (3.4) by taking the stem of the predicate as logical
predicate and filling the argument slots with appropriate representations of the subject
and the object. Yet, the interaction between surface form, grammar, and semantics can
be much more complicated than in the simple example (3.4). Just to illustrate this point,
consider (3.5).

(3.5) John shaved himself.

Assuming that the reflexive pronoun has been identified to refer to John, this sentence
can be analyzed parallel to (3.4), resulting in the representation shave(john, john).
However, (3.6) and (3.7) have to receive different semantic analyses, although the gram-
matical structures are also identical.

(3.6) John is asking Mary whether to take along an umbrella.

(3.7) John is asking himself whether to take along an umbrella.

While both Mary and himself are the direct object of ask, only the former should fill
a semantic argument slot. Here, a semantic disambiguation is needed to determine the
intended reading of ask (ask1(john,mary,whether) vs. ask2(john,whether)). While
these examples suggest that there is more to a “real” semantic construction than a
grammatical analysis, grammatical functions are a useful level of abstraction for the
design of syntax-semantics interfaces. They are also useful to describe cases where the
linguistic surface form structurally differs from the semantic argument structure. For
example, in (3.8), John fills a semantic argument position of buy while being only the
syntactic subject of promise.

(3.8) John promised to buy the tickets.

This phenomenon called (subject) control occurs with a number of verbs following
the same pattern – the subject position of the embedded verb is “shared” with the
subject of the matrix sentence. Such systematic non-local relations and a number of
other linguistic variations can be modeled using grammatical functions. Therefore, they
will play an important role in our approach to textual entailment.
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Arguments and modifiers. A common distinction which can also be expressed in terms
of grammatical functions (of mostly verbs) is that between arguments (complements),
which are obligatory for forming a meaningful clause and modifiers (adjuncts), which
provide more general, circumstantial information. One test for argumenthood is whether
the respective constituent can be left out. For example, for the transitive verb direct,
both the director and the piece of art are arguments. Leaving out either typically results
in an ungrammatical sentence, as in (3.9) through (3.11). In certain contexts, however,
arguments can also be left uninstantiated as in (3.12).

(3.9) Chabrol directed Le Beau Serge.

(3.10) * Directed Le Beau Serge.

(3.11) * Chabrol directed.

(3.12) Before he became producer, Chabrol had directed for 25 years.

For the task of recognizing textual entailment, both proper arguments and circum-
stantial information may be needed to approve or reject an entailment judgment. For
example, (3.13) is not entailed by (3.12) because the time spans where Chabrol directed
differ, irrespective of what he directed. Therefore, both arguments and complements
have to be considered.

(3.13) Chabrol directed for 35 years.

Alternations

Often, (almost) identical meaning can be expressed with different sentences. For exam-
ple, (3.14) through (3.16) all convey the information that John Smith is the head of the
department in different syntactic constructions.

(3.14) John Smith is the head of the department. [He called me this morning.]

(3.15) John Smith, the head of the department, [called me this morning.]

(3.16) The head of the department, John Smith, [called me this morning.]

These examples belong to a class of regular alternations, which can be explained on
the basis of a grammatical analysis alone. In other words, for these cases, it neither
matters what the single words mean, nor what kind of semantic representations are used
– the analyses have to be identical. For the given kind of variation, both the predicative
formulation “x is the Y” and the appositive formulations “x, the Y,...” or “The Y, x”
should receive a semantic analysis like Y (x), e.g., head of department(john smith).

A large number of so-called diathesis alternations such as dative shift or passivization
have been discussed in the literature (e.g. Levin, 1993). They can be seen as a kind of
semantic normalization. Since textual entailment is concerned with determining to what
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Figure 3.3.: LFG analysis of (3.17) – c-structure (left) and f-structure (right).

degree two sentences are compatible in meaning, such alternations are important clues
within the entailment decision.

We will now introduce LFG, the grammar framework we will use. As a further illus-
tration of alternations, we show how active-passive diathesis can be treated within LFG.
In subsequent chapters, we will discuss more and different types of alternations. As
example sentence, we take (3.17) from the RTE-3 test corpus, the passive formulation
of (3.9).

(3.17) “Le Beau Serge” was directed by Chabrol.

LFG

Within LFG, the two main levels of analysis are the constituent level, captured in the
so-called c-structure and the functional level represented by the so-called f-structure. We
will mostly be concerned with the f-structures, which are centered around dependency
analyses in terms of grammatical functions. An LFG analysis of (3.17) is displayed in
Figure 3.3. The c-structure on the right contains basically the same type of informa-
tion as we have seen in the Collins parse of (3.9) in Figure 3.1. Apart from the pure
constituent structure, additional grammatical features such as finiteness or voice are
attached to the verbal constituents. The verb phrase was directed by Chabrol has been
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Figure 3.4.: Abbreviated f-structures for (3.9) (left) and (3.17) (right).

recognized as being in passive voice (VP[pass,fin]). The corresponding f-structure is
shown on the right of Figure 3.3. It contains attribute-value structures for the function-
ally relevant parts of the sentence, in this case the subject (SUBJ) with the predicate
(PRED) feature value Serge and the oblique argument (OBL-AG) with the predicate feature
value Chabrol.

For building syntax-semantics interfaces, the feature values are of special interest, espe-
cially those of the predicate (PRED) feature. Throughout this thesis, we will refer to both
the values of the predicate features and also the complete corresponding attribute-value
structures as (LFG) predicate. The main predicate of (3.17) is direct(Chabrol, Serge),
e.g., or for short direct.1 Apart from grammatical functions, f-structures also provide
information about grammatical features such as sentence mood and tense, as well as
case and number of nouns, determiner types, or types of proper names. We will make
use of this information where appropriate.

In order to illustrate how the passive diathesis is accounted for in LFG, Figure 3.4
displays abbreviated f-structures for (3.17) and (3.9). The meaning of an active sentence
and the respective passive formulation are for the most part the same. Yet, the surface
realization of the arguments is different. The latter is reflected in different functional
analyses of both sentences in the given f-structures, e.g., the subject being Chabrol in
one case and Le Beau Serge in the other. The main predicates for both sentences are in
fact identical – the LFG analysis has taken care of the alternation.

LFG Parsing Architecture

We use the state-of-the-art LFG parser of Riezler et al. (2002) for syntactic processing. It
is based on a hand-coded LFG grammar. A comparative evaluation in Kaplan, Riezler,
King, Maxwell III, Vasserman, and Crouch (2004), e.g., shows that it achieves similar
parse times, but higher f-scores compared to Collins (1999). The parser includes a
named entity recognizer and a morphological guesser to be able to treat names and

1Note that the contribution of the PP by Chabrol to the semantic representation is the semantic head
Chabrol and not the syntactic head by. Most of the time, semantic and syntactic head are identical.
From now on, by head, we refer to the semantic head.
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other unknown words. Another feature which makes the parser robust –supported by
LFG’s functional paradigm– is the possibility of partial parsing. If a sentence cannot
fully be analyzed, the system provides a fragmentary analysis using a special grammar.
As the relevant information needed for a textual entailment decision is often contained
in a (local) part of a long sentence, a fragmentary analysis of this part can suffice to
provide the necessary information. More details on the LFG architecture can be found
in Kaplan et al. (2004).

With regard to the problem of ambiguity, the LFG system offers both options we dis-
cussed in Section 3.2.1 – either (i) not to resolve the syntactic ambiguity and to further
process all possible analyses in parallel or (ii) to select “the best” analysis and discard
the alternatives. For (ii), the system includes a stochastic disambiguation component.
It supports (i) by representing alternatives (in particular on the level of f-structures) in
a packed representation format. The re-write system by Crouch (2005), which can be
used for subsequent processing, enables working on the packed structures in an elegant
and efficient way. As we use this re-write system in our recognizing textual entailment
setting, e.g., for projecting semantic analyses and for matching text and hypothesis, it
would in principle be possible to work on all analyses of text and hypothesis in parallel.
Disambiguation could then take place when text and hypothesis are matched, e.g., by
selecting the best fitting analyses, or by computing some kind of mean over all analyses.
However, to reduce the number of parameters of the model, we use the stochastic dis-
ambiguation component and work on the most probable syntactic analysis for the time
being.

3.3. Lexical Semantic Analysis

Within natural language semantics, a standard approach is to represent sentence mean-
ing as a logical formula, typically of predicate logic. For example, translations of the
two sentences (3.18) and (3.19) in the style of Davidson (1967) are given in (3.20) and
(3.21).

(3.18) John passed away in an accident.

(3.19) John died.

(3.20) ∃e∃x (pass away(e, j) ∧ in(e, x) ∧ accident(x))

(3.21) ∃e die(e, j)

These logical representations are normally generated along a syntactic analysis in
the way Montague (1973) proposed. This kind of analysis, often called compositional
semantics, is traditionally mostly concerned with those words and constructions that
determine the logical structure of the formula, e.g., introducing logical connectives or
scope and modality operators. Open-class words like pass away or accident in the
examples above are typically not further analyzed.
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Logic-based compositional semantic analysis has a number of theoretically appealing
properties. It is amongst others possible to provide concise, truth-conditional interpre-
tations of the formulae and to use deduction calculi to model inference processes. But
in practice, when it comes to processing real-world sentences, this type of analysis faces
a number of problems. First, it is difficult to automatically construct an appropriate
logical formula for naturally occurring sentences, ambiguity being a central problem.
Second, for many tasks like determining that (3.21) can be inferred from (3.20), infor-
mation about the meaning of expressions like pass away and die and their relation is
needed, e.g., in the form of axioms like (3.22).

(3.22) ∀e∀x(pass away(e, x) → ∃e2(die(e2, x)))

A complementary approach to natural language semantics, where the meaning of
open class content words such as the noun accident or the verb die is focused, is the
area of lexical semantics. Lexical semantics typically regards only the word level or
local syntactic structures like, e.g., the level of predicate-argument structure. Lexical
interpretation, i.e., assigning meaning to words in a given sentence is largely concerned
with word sense disambiguation, i.e., selecting the appropriate concept among multiple
readings of surface words, e.g., chair as a piece of furniture vs. a professorship and with
identifying relations between predicates and their arguments.

Part of lexical semantics is the study of alternations and generalizations on the level
of predicates and argument structure, which are important factors in identifying textual
entailment relations. Such generalizations range from lexical variation (buy ≡ purchase)
over argument realization (marry(X,Y)≡ marry(Y,X)≡ marry(Y

⊕
X)) to more involved

relations between complex events (buy(X,Y,Z) ≡ sell(Y,X,Z)).
In subsequent chapters, we will develop and evaluate a model for textual entailment

which is to a large extent based on lexical semantic information. As we will see, the
type of inference that is found in the currently available textual entailment corpora is
often based on “local” lexical knowledge rather than on the logical structure of the some-
times relatively long sentences. Moreover, lexical semantic analysis is typically scalable
by adjusting the granularity and depth of analysis. Note, however, that compositional
semantics and lexical semantics are not opposed. They are complementary – a compre-
hensive description of a sentence meaning would contain both information about (con-
tent) word meaning and about the logical relations between the different propositions,
entities and properties. Likewise, the fact that compositional semantics is mostly based
on logical representation and that most lexical semantic approaches we will discuss do
not use logic-based representations is not a fundamental difference between both types
of analysis. Their difference is rather the focus of attention. While a prominent task
in compositional semantics is to construct comparably few grammar rules that generate
the intended logical formulae for given sentences, lexical semantics is concerned with
issues related to the potential amount of information that could be contained in open
class word meaning representations. To take up the example from above, one could ask
what the (defining/relevant/typical/. . . ) properties of dying are or accidents are and
how they should be captured. Follow-up questions are how to acquire, store, and access
the information in an efficient way.
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Lexical meaning can be described along many dimensions and at varying levels of
granularity. For example, the meaning of a word can be characterized w.r.t. other words
(e.g. lexical relations in WordNet (Miller, Beckwith, Fellbaum, Gross, and Miller, 1990)
or verb alternation classes in Levin (1993)), it can be decomposed into primitive semantic
predicates, (e.g. kill = CAUSE(BECOME(NOT(ALIVE))), see Lakoff, 1972; Schank, 1973;
Jackendoff, 1990), or described w.r.t its semantic arguments (e.g. in terms of predicate-
argument structure as in the Prague Dependency Treebank, PropBank, or FrameNet,
see Žabokrtský, 2000; Kingsbury, Palmer, and Marcus, 2002; Baker et al., 1998). As
we want to be able to implement and empirically evaluate our model, we will focus on
those frameworks which provide resources for English with non-trivial coverage. They
typically model only partial aspects of lexical meaning like concept relations in WordNet
and VerbOcean or predicate-argument structures in PropBank and FrameNet. We will
present these approaches in turn, and in subsequent chapters, we will show how to
combine them in order to be able to access the needed information at different levels of
granularity.

3.3.1. WordNet

Hierarchical inheritance structures (IS-A-hierarchies, ontologies, terminologies, semantic
networks) have proven efficient and maintainable for representing huge amounts of struc-
tured knowledge. Semantic networks had their advent in the field of psycho-linguistic
studies (Collins and Quillian, 1969). Originally designed by psycholinguists as an on-
line dictionary being organized in a new, semantically-oriented way (Miller et al., 1990),
WordNet has become the largest lexical-semantic resource for English. We will first
describe its structure and then show how the information it contains can be accessed
and used for natural language processing.

Structure of WordNet

WordNet includes nouns, verbs, and adjectives/adverbs. We will concentrate on nouns
and verbs, which are modeled in two separate subsumption hierarchies. The hierarchies
are structured by the hypernymy relation, which is paraphrased as “is a” for nouns and
“is one way of” for verbs. A number of other relations that hold either between synsets
(see below) or between words are also represented (e.g. antonomy, meronymy), but we
will focus on the hypernymy relation. The hypernyms of the first reading of cat are
displayed in Figure 3.5. This reads as a cat is a feline, a feline is a carnivore, etc. As
the hypernymy relation is transitive, it also reads, e.g, a cat is a vertebrate or a cat is
an entity.

Each node in the hierarchy is called a synset (“synonym set”), which is the basic unit
in WordNet. A synset is a set of synonymous, lemmatized words or collocated multi-
word units such as true cat. It represents what is often called a concept in semantic
literature.

At the same time, each synset containing a given lemma represents one word sense
(or reading) of the lemma. As illustration, Table 3.2 lists all synsets for the verb buy.
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{cat, true cat}

=> {feline, felid}

=> {carnivore}

=> {placental, placental mammal, eutherian, eutherian mammal}

=> {mammal}

=> {vertebrate, craniate}

=> {chordate}

=> {animal, animate being, beast, brute, }

creature, fauna}

=> {organism, being}

=> {living thing, animate thing}

=> {object, physical object}

=> {entity}

Figure 3.5.: WordNet hypernyms of cat#n#1.

Within each part of speech, the synsets are ordered according to frequency. The first
synset represents the most frequent sense. So, the most frequent reading of buy is the
one synonymous to purchase and the least frequent is the sense of “being worth”. We
will use the abbreviation buy#v#1, e.g., to refer to the first synsets of the verb buy.

Compared to other resources, WordNet has a very good coverage. The current Word-
Net database contains about 150,000 words organized in over 115,000 synsets. Similar,
typically smaller, resources are available for various languages, such as GermanNet for
German (Hamp and Feldweg, 1997).

Using WordNet for Natural Language Processing

In recent years, WordNet has proven useful in many different settings and applications.
It can be said to be one of the most successful linguistic resources these days. As
the machine readable information WordNet provides may seem relatively sparse at first
sight, this success might be a bit surprising. Consider Table 3.2 again. From a machine
perspective, the gloss and examples are not (easily) accessible. The information that
remains is that the verb buy has five senses and that the first sense is synonymous to
purchase and the second sense to corrupt, etc. An obvious problem is that senses three
to five cannot be distinguished straightforwardly. Leaving this disambiguation problem
aside, even if it has been determined that an occurrence of buy belongs to the first
synset, the information provided by WordNet may not be what one would expect from a
meaning representation of the concept of buying – there is no connection to concepts like
humans, money, goods, ownership or the like and no mention of transactions involved.

The information that can be accessed includes that buy is a synonym of purchase and
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Synset Gloss Example

{buy, purchase} (obtain by purchase; acquire by
means of a financial transaction)

”The family purchased a
new car”

{bribe, corrupt,
buy, grease one’s
palms}

(make illegal payments to in ex-
change for favors or influence)

”This judge can be
bought”

{buy} (acquire by trade or sacrifice or ex-
change)

”She wanted to buy his
love with her dedication to
him and his work”

{buy} (accept as true) ”I can’t buy this story”

{buy } (be worth or be capable of buying) ”This sum will buy you a
ride on the train”

Table 3.2.: WordNet senses of the verb buy.

that get and acquire are hypernyms. Moreover, sister terms, i.e., other troponyms2 of
get like rent or win can be accessed. They represent related –yet different– concepts,
which must not be confused with buying.

This implicit, approximative semantic characterization of concepts, which can be read
off WordNet’s clear structure, combined with the high coverage, are a key to its success.
For many applications, these semantic generalizations seem to be sufficient, an example
being query expansion in question answering. If a user query contains the words in
(3.23), the alternative query (3.24) can be generated varying the verb using synonymy
information. (3.25) can be generated using hypernymy information. Likewise (3.26),
varying the object.3

(3.23) buy, CDs, Berkeley

(3.24) purchase, CDs, Berkeley

(3.25) get, CDs, Berkeley

(3.26) buy, records, Berkeley

Accessing Semantic Information from WordNet. WordNet can in general be used to
approximately model semantic similarity (and thus dissimilarity) of terms by making
use of the meaning postulates represented by WordNet’s relations. For example, Bos
(2005) reports a technique of generating logical axioms along the lines of the relations.

2Troponymy is the inverse of hypernymy for verbs, paraphrased as “particular ways to”.
3Some named entities like Berkeley or Beethoven are also included in WordNet. They are related

to their super-concepts via the INSTANCE relation. In the given example query, Berkeley, however,
should be present and not be replaced by, e.g., city.

54



3.3. Lexical Semantic Analysis

Axioms like ∀x.cat(x) → mammal(x) are licensed by the hypernymy relation, while, e.g.,
∀x.cat(x) → ¬bigcat(x) is licensed as both are sister terms. In a related approach, called
eXtended WordNet, Moldovan and Rus (2001) parsed WordNet’s glosses and translated
them into a formal representation format they call logic form. An example is the logic
form (3.28) of the sentence (3.27).

(3.27) The Earth provides the food we eat every day.

(3.28) Earth : n #1(x1) provide : v #2(e1, x1, x2) food : n #1(x2) we(x3)
eat : v #1(e2, x3, x2;x4) day : n #1(x4)

WordNet’s structure can also be used to generate qualified similarity judgments, taking
into account that, e.g., the concept of cat is more similar to that of mammal than to
that of a physical entity. More than 20 different similarity measures have been proposed
in the literature, starting from simple (hypernymy) path distance up to measures that
include (preprocessed) information from the synsets’ glosses (e.g. Resnik, 1995; Lin,
1998; Moldovan and Rus, 2001). Implementations of these semantic distance measures
are available in the Perl CPAN archive4.

Word Sense Disambiguation. WordNet is often used as an interface layer between nat-
ural language resources or between natural language and knowledge resources. Examples
include linking WordNet and FrameNet or linking WordNet and the SUMO ontology (Shi
and Mihalcea, 2005; Niles, 2003). Here, WordNet mainly serves as a reference for sense
disambiguation.

Word sense disambiguation, i.e., assigning synsets to words occurring in text, has been
studied intensively for quite a while (see Agirre and Edmonds, 2006, for an overview),
e.g., in the context of the Senseval task (Kilgarriff and Rosenzweig, 2000). However, only
few implemented systems are available, such as the one by Patwardhan, Banerjee, and
Pedersen (2005). This system is rule-based and follows the common strategy of trying to
determine the sense of a target word within a context window of words surrounding it.
This works well in cases where context information is available, e.g., the noun director
is disambiguated correctly by the system for (3.29), but not so well for cases like (3.30),
where no appropriate context words such as movie are available.

(3.29) Claude Chabrol (born June 24, 1930) is a French movie director and has
become well-known in the 40 years since his first film, Le Beau Serge.

(3.30) Claude Chabrol is the director of Le Beau Serge.

Another class of related systems uses stochastic techniques to learn the appropriate
senses from corpora. As word sense disambiguation is usually a resource-intensive and
hard task, often, a simple, yet effective approximation is used – the so-called first sense
heuristics (see e.g. McCarthy, Koeling, Weeds, and Carroll, 2004). The idea is to always
assign the first and thus most probable sense to a given word.

4http://search.cpan.org/dist/WordNet-Similarity/
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{sell}

=> {exchange, change, interchange}

=> {transfer}

Figure 3.6.: WordNet hypernyms of sell#v#1.

Limitations

Lexical semantic networks like WordNet are especially well-suited for coding subsump-
tion relations between concepts which are denoted by referential common nouns. Facts
like the one that all cats are mammals (see Figure 3.5) or that all cars are vehicles can
be coded in a compact way. For verbs denoting events, this scheme is more problem-
atic because events have more internal structure –they happen at a time and a place,
participants are involved, they have pre-conditions, sub-parts, and consequences– (see
Fellbaum, 1990), which is mirrored in the argument structure of the respective predicates.
These features are disregarded in taxonomies like WordNet. Consequently, WordNet’s
verb hierarchy is by far not as deep as that for nouns, e.g., Figure 3.6 displays the
hypernyms of sell#v#1 (exchange or deliver for money or its equivalent).

Likewise, relations between complex event-denoting predicates (buy vs. sell) cannot
easily be represented on the level of words/senses alone. Another limitation of WordNet
is the separation of parts of speech. For example, relations between nouns and verbs are
not represented in a semantically motivated manner, but only on the basis of derivational
morphology. For example, there is a direct link between seller and sell, but not between
vendor and sell.

3.3.2. Role Semantics

A central issue in capturing the semantics of verbs is to describe how syntactic argu-
ments of the verbs participate in semantic descriptions of the event or state they denote,
known as argument linking. In earlier times, a number of related approaches have tried
to define a set of semantic roles (also known as thematic roles, case roles, thematic
relations or case relations), which describe the relations of verbs and their arguments
in a general and compact way. For example, Fillmore (1968) develops a system of so-
called case frames, formulated in terms of a small set of universal concepts like Agentive,
Instrument, or Factitive. Language-specific rules transform the case frames into syntac-
tically correct surface realizations. Different surface realizations like aspectual variations
or passivization are explained by different rule applications. Related approaches (e.g.
Gruber, 1965; Jackendoff, 1972) differ, e.g., in the number of roles which are assumed
and in the way they are identified and described.

However, a convincing “natural set” of thematic roles, which is generally applicable,
has never been found. Problematic examples, which speak against the assumption that
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a small set of universal roles exists, are reciprocal verbs like resemble, where one role
would apply twice:

(3.31) [John]Theme? resembles [Mary]Theme?.

In fact, Fillmore himself soon became one of the critics of this approach and identified
as another problem of this approach the amalgamation of grammatical and semantic in-
formation. Fillmore (1982) states that on the one hand semantic generalizations between
related words such as buy and sell cannot be represented in a principled way while at
the same time semantic distinctions cannot be captured, e.g. the distinction between a
goal and a receiver in current terms.

Starting from the observation that more flexibility is needed in the argument linking
process, Dowty (1991) proposed to use what he calls proto roles. These roles like proto-
agent or proto-patient are a kind of cluster concept, where individual verb arguments
have different “degrees of membership”. The proto roles are characterized by a number
of semantic features such as volitional involvement or causally effected by the event and
in the linking process, the arguments with the most agentive properties are assigned the
agent role, and likewise for other proto roles.

A different approach has been pursued especially in the context of building resources
containing semantic role information. Instead of defining a small set of universal roles,
the two large resources for English, PropBank and FrameNet (Kingsbury et al., 2002;
Baker et al., 1998), define specific role sets for single verbs in the case of PropBank and
for collections of verbs (and also nouns and adjectives) in the case of FrameNet. Later,
we will use FrameNet as semantic resource in our approach to textual entailment. Below,
we first give an overview of PropBank and then argue why FrameNet is better suited for
our needs. We then present FrameNet’s methodology in some detail.

3.3.3. PropBank

In the PropBank (“Proposition Bank”), Kingsbury et al. (2002) provide a manual an-
notation of all verb instances of the Penn Tree Bank corpus (Wall Street Journal, 1 M
words) with semantic role information. PropBank is based on the observation that classes
of verbs can occur in different pairs of syntactic frames, which are in a way meaning-
preserving (diathesis alternations, e.g., Levin, 1993; Kipper, Dang, and Palmer, 2000).
The underlying assumption is that such syntactic alternations are interesting because
they reflect semantic properties of the verbs. The aim of PropBank is to provide a se-
mantic annotation which enables studies of such alternation phenomena (Palmer et al.,
2005).

Structure of PropBank

An important design decision is that PropBank does not attempt to group verbs to
classes. Instead, (most) verbs are treated as separate entities. Modeling generalizations
over different predicates is not supported. A second characteristic of PropBank is that
the role labels, which are chosen for a given class, do not attempt to provide a semantic
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buy.01 sell.01 market.01

Arg0: Buyer Arg0: Seller Arg0: Seller
Arg1: Thing bought Arg1: Thing sold Arg1: Thing Sold
Arg2: Seller Arg2: Buyer Arg2: Buyer
Arg3: Price paid Arg3: Price paid Arg3: Attribute
Arg4: Benefactive Arg4: Benefactive Arg4: Benefactive

Table 3.3.: PropBank rolesets.

characterization or even formalization of the respective roles. In view of the problems
related to providing a uniform set of semantic roles, the roles used in the PropBank are
defined for single verb senses as explicated in (Palmer et al., 2005, p. 4):

“An individual verb’s semantic arguments are numbered, beginning with 0.
For a particular verb, Arg0 is generally the argument exhibiting features
of a prototypical Agent (Dowty, 1991) while Arg1 is a prototypical Patient
or Theme. No consistent generalizations can be made across verbs for the
higher numbered arguments [. . . ].”

Annotation. Example annotations from PropBank for the verb sell are given in (3.32)
and (3.33). The annotations show how the active/passive alternation is accounted for by
using Arg1 consistently for the patient-like “goods role”, although Marginal operations. . .
is the surface subject of the passive sentence.

(3.32) A company spokesman declined to comment and said that [the officials]Arg0
who [sold]rel [shares]Arg1 wouldn’t comment.

(3.33) [Marginal operations and assets]Arg1 have been [sold]rel.

The annotation is guided by a collection of so-called rolesets which define all potential
roles that can apply for a given verb sense.

Rolesets. The corresponding roleset for the verb say is displayed in Table 3.3 in the
middle column. In addition to a providing a list of all possible arguments for a verb sense,
mnemonics (“descriptors”) are provided for the annotators. However, the descriptors
“have no theoretical standing” (Palmer et al., 2005). Apart from these verb-specific
roles, a small set of general roles like temporal modifiers can be applied to any verb, as
can be seen in (3.34), where roles like ArgM-TMP are annotated.

(3.34) [They]Arg0 [may]ArgM-MOD [also]ArgM-DIS [eventually]ArgM-TMP[sell]rel

[the shares]Arg1 [to third parties]Arg2-to, but the outside investors who own the
remaining 60% of Coldwell Banker have the right to first refusal.
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In Table 3.3, we contrast the rolesets of sell and market to given an example for the
missing generalization of roles across predicates. The label Arg3 is used for the price of
the goods in the case of of sell, but for the product category in the case of market, as
can also be seen in annotated examples like (3.35) and (3.36).

(3.35) They sell the Crimson 710 [for 6.500 EUR]Arg3.

(3.36) They market the Crimson 710 [as a true high-end product]Arg3.

The missing generalization becomes even more obvious comparing the rolesets of buy
and sell in Table 3.3. Almost none of the commonalities between both events are cap-
tured – Arg0 always marks the agentive participant, which is the seller in one case and
the buyer in the other. Note that the Arg4s also differ, in a situation where John bought
a car from Mary, the beneficent roles in (3.37) and (3.38) are different.

(3.37) [John]Arg0 bought [the car]Arg1 [for his mother]Arg4.

(3.38) [Mary]Arg0 sold [the car]Arg1 [for her mother]Arg4.

Usage and Limitations

PropBank currently provides annotations, rolesets, and also syntactic realization pat-
terns (framesets) for about 3.300 verbs. So far, it has predominantly been used for its in-
tended application of studying role labeling methods (e.g. Gildea and Hockenmaier, 2003;
Pradhan et al., 2005). Due to the (semantically) theory neutral approach, PropBank has
rarely been used for tasks which require modeling complex semantic interactions, e.g.,
for information access or even in multi-lingual context. Exceptions, where PropBank has
been used in limited ways, are (Surdeanu, Harabagiu, Williams, and Aarseth, 2003; Qiu,
Kan, and Chua, 2006). Moreover, as PropBank does neither group predicates, nor guar-
antee generalizations of role labels across predicates, it is not obvious how to integrate
PropBank with information on a conceptual layer. Although, e.g., WordNet could pro-
vide the information that sell#3 and market#3 are closely related (direct hypernyms),
the problems remain how to represent this information in PropBank’s flat structure and
how to ensure a sound role inventory.

For modeling textual entailment, it is important to capture relations across differ-
ent verbs, as the verb used in text and hypothesis are often not identical. Therefore,
PropBank’s type of analysis only covers some of the data, namely those cases in which
the verb is identical. For example, the relation between the passive sentence (3.39) and
(3.40) from the RTE-2 corpus can be established using PropBank. The Arg labels can
be used to identify the corresponding semantic roles and additional sources can then be
accessed to check the compatibility of the role fillers.

(3.39) Before reconstruction began, [the Reichstag]Arg1 was wrapped by [the
Bulgarian artist Christo and his wife Jeanne-Claude]Arg0 in 1995, attracting
millions of visitors.
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(3.40) [Christo]Arg0 wraps [German Reichstag]Arg1

(3.41) [They]Arg0 sell the dvd as a special edition [for 20 $]Arg3.

(3.42) [They]Arg0 market the dvd [as a special edition]Arg3.

However, cross-predicate variation is a frequent phenomenon in textual entailment, as
can be seen in (3.41) entailing (3.42). Arg0 and Arg1 roles should be reliably comparable
across verbs, in this case identifying the agent. However, the fact that the Arg3 label is
assigned to semantically different roles, could be taken as evidence here that both sen-
tences are not compatible in meaning because 20 $ and special edition are incompatible.
This is however misleading. Moreover, complex relations like the one between buy and
sell are not represented at all. Neither are variations across different parts of speech
such as nominalizations. So, PropBank would probably be of limited applicability for
our purpose. Instead, we will use FrameNet as semantic framework.

3.3.4. FrameNet

The Berkeley FrameNet Project (Baker et al., 1998) is concerned with the construction
of a resource which –like PropBank– provides a role semantic characterization of a core
vocabulary of English, exemplified by annotated instances. However, FrameNet’s ap-
proach differs from that of PropBank in a number of important points. First, FrameNet
is based on a semantic paradigm, namely frame semantics (see Petruck, 1996, for an
overview), which goes back to Fillmore (1976). As one consequence, semantic relations
among similar predicates and across complex situations like buy and sell are repre-
sented. Second, FrameNet annotates not only verbs, but also nouns, adjectives, and
constructions. Third, instead of annotating one particular corpus, which bears the risk
of missing relevant configurations, FrameNet annotation proceeds in a lexicographic,
top-down fashion – first, the semantic classes to be annotated are chosen, and then,
representative example sentences from different corpora are annotated. We will give a
short introduction to Frame Semantics and then describe the current FrameNet Project
and the data they provide in detail.

Frame Semantics

While Fillmore is well-known for his work on case grammar, he soon realized a number
of problems with this kind of approach (see Section 3.3.2). In (Fillmore, 1982, p.p. 115),
he reports how the idea of a new type of semantics developed:

“[I]t came more and more to seem that another independent level of role
structure was needed for the semantic description of verbs in particular lim-
ited domains. One possible way [. . . ] [is] deriving sets of truth conditions for
a clause from semantic information individually attached to given predicates;
but it seemed to me more profitable to believe that there are larger cognitive
structures capable of providing a new layer of semantic role notions in terms
of which whole domains of vocabulary could be semantically characterized.”
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Fillmore calls these conceptual structures frames and develops the theory of frame
semantics. Fillmore (1985) compares frame semantics to lexical field theory and argues
that most words can only be understood with reference to related words from the same
domain, which typically stand in paradigmatic relations (e.g. Thursday, week-end ; be-
friedigend vs. ausreichend [German school grades]). Another, related observation is that
language learning proceeds “scenario-driven” (Fillmore, 1977). These characteristics of
(lexical) semantics are reflected in a double function that the frames fulfill – on the one
hand, they bundle related words, on the other hand, they define the events which have
to be referred to in order to make sense of the words. In (Lowe, Baker, and Fillmore,
1997, p. 3), frames are described to:

“have many properties of stereotyped scenarios—situations in which speakers
expect certain events to occur and states to obtain. In general, frames encode
a certain amount of ‘real-world knowledge’ in schematized form.”

Framing principles. Fillmore (1985) states that frames exist largely independently
from language and are related to notions like schema, script, scenario, ideational scaf-
folding, cognitive model, or folk theory as known from literature in natural language
understanding, cognitive psychology, or artificial intelligence. He sees frames as tools for
the description and explanation of lexical and grammatical meaning. Semantically op-
posing words like up and down typically constitute one frame. The question as to what
a frame precisely circumscribes can be a pragmatic decision (Fillmore, 1985, footnote on
p. 229):

“[. . . ] sharing semantic content is no guarantee of membership in a single
interpretive frame. In my view, such words as skip, hop, leap, etc., reflect
separate frames, each representing its own schema of pedal locomotion. There
is no context-free frame within which these terms occupy different ’slots’,
though such a frame could easily exist if there arose, for sports purposes,
say, a need for stipulating precise distinctions among them.”

Important notions adopted from cognitive psychology are focus and background, which
are used to explain, e.g. how buy and sell describe identical events while profiling
either the buyer or the seller. Another notion adopted from related fields is that of
prototypicality. Frames are meant as describing prototypical situations and actual uses
may well deviate.

Frames and Frame Elements. Each frame is associated with a set of semantic roles
or frame elements (FEs) in FrameNet terminology, that represent the participants or
propositions involved. Table 3.4 shows the definition of the frame Statement from the
database of the FrameNet project with the (core) FEs speaker, message, addressee,
and topic. The frame definition also comprises a natural-language description of the
situation which is described, as well as a list of target words that potentially evoke a
frame are given in the form of so-called lexical units (LUs), triples of a lemma, a part

61



3. Linguistic Analysis and Ontological Resources

Frame: Statement

This frame contains verbs and nouns that communicate the act of a speaker
to address a message to some addressee using language. A number of the
words can be used performatively, such as declare and insist.

speaker The Speaker is the person who produces the Message (whether spo-
ken or written). It is normally expressed as the External Argument
of predicative uses of the target word, or as the Genitive modifier
of the noun.

message The Message is the FE that identifies the content of what the
Speaker is communicating to the Addressee. It can be expressed as
a clause or as a noun phrase.

topic The Topic is the subject matter to which the Message pertains. It
is normally expressed as a PP Complement headed by ”about”, but
in some cases it can appear as a direct object.

C
or
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medium Medium is the physical entity or channel used by the Speaker to
transmit the statement.

L
ex

.
U

n
it
s acknowledge.v, acknowledgment.n, add.v, address.v, admission.n, admit.v, af-

firm.v, affirmation.n, allegation.n, allege.v, announce.v, announcement.n, as-
sert.v, assertion.n, attest.v, aver.v, avow.v, avowal.n, . . .

Table 3.4.: A (partial) frame definition.

of speech, and the frame. A feature of frames is that words of different parts of speech,
e.g., deverbal nouns and the respective verbs are represented together.

Linking information is also given in the FrameNet database, e.g., that the speaker
can be realized as external object or by-PP in the case of say. Here, one can see
how FrameNet defines a semantic role concept – by referring to linguistic entities and
concepts/scenarios at the same time.5

Like PropBank roles, Frame elements are local to particular frames (Baker et al., 1998),
although their names are sometimes used in multiple frames. As notation, we will some-
times use the frames as prefix to distinguish roles, e.g., we will write Giving.donor and
Transfer.donor to distinguish the donor roles of Giving and Transfer. FrameNet
distinguishes a number of different FE types, which we will describe below.

An interesting theoretical question is how a frame and its roles relate, e.g., which
of both is primary. In fact, both are linked in a “chicken-egg relationship” – a huge
part of the frame identity is constituted in the roles it has and the roles themselves

5Fillmore (1977) describes these two levels as being a “general representation of all of the essential
aspects of events” and “a particular perspective on an event of the type dictated by a case frame”,
respectively. This distinction is also mirrored in the current FrameNet resource in the distinction
between non-lexical frames such as Commerce goods transfer and perspectivized, lexicalized
frames Commerce buy and Commerce sell, which are annotated with linking information.
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are meaningless without the frame and the associated linking information. From a
machine perspective, frames and roles alone are a kind of markup that cannot be further
interpreted. In line with Fillmore’s original theory, it is important to describe for a
given sentence why the utterer chose frame X (and LU y) and which roles are realized
by which constituents. We will try to elaborate this interplay of a frame and its roles
by looking at the task of semantic interpretation, i.e., assigning the correct frame (and
roles) to a given verb (and its arguments).

Semantic interpretation. Sometimes, properties of the role fillers can be used to dis-
ambiguate the frame and sometimes, intrinsic knowledge of the frames and the given
filler is needed to choose the right frame. For example, FrameNet distinguishes the
frames Remembering experience, which relates to procedural memory and Remem-
bering information, which relates to declarative memory. Both frames can be evoked
by the verb remember.

(3.43) I remember [how I managed to unlock the screw]experience.
(Remembering experience)

(3.44) I remember [that I managed to unlock the screw]mental content.
(Remembering information)

(3.45) Who remembers [me being a total dork and going up to everyone saying ”Hey,
I’m Ashley Hunt from Chicago”!?!]experience.
(Remembering experience)

(3.46) Bill remembers [her as smarter than she is]mental content.
(Remembering information)

Clear indications as to which of both frames fits is given in the distinction between
remember how and remember that as in (3.43) and (3.44). In contrast, it is much
harder to distinguish (3.45) and (3.46) (from the FrameNet corpus), where the surface
realization of the role fillers do not contain any clues. Here, reference to the frame
definition is needed. Finally, the LUs are another important factor in the characterization
of a frame. In the running example, e.g., the complex verb look back can only evoke
Remembering experience, but not Remembering information.

It really is the interplay between the frame definition, the defined roles, the linking
information, and the (grounding in) target words, which characterizes a frame.

Frame inheritance. Not only the words that evoke frames form a “net” structure.
The frames themselves can inherit from each other, e.g. to express elaboration between
concepts. Multiple frame inheritance (“blending”) makes it possible to describe meaning
decomposition as has been shown for some example frames in Fillmore and Atkins (1998):
A Conversation frame inherits from both Reciprocity and Talk. In turn, the
frame Quarrel inherits from the Conversation frame and a Contention frame
which maps Reciprocity into “Opposition”. Berkeley FrameNet defines a number of
so-called frame relations, which are discussed in detail below.
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The Berkeley FrameNet Project

The Berkeley FrameNet project has been creating a huge database of frame descriptions
and annotated example sentences for an English core vocabulary. In 1997, the Berke-
ley FrameNet-1 project (Baker et al., 1998) started to implement the central ideas of
frame semantics by developing methods and tools for a frame-based description of the
syntactic and semantic valency of English words. In this first project phase, a number
of semantic domains like Health Care, Perception, Motion were selected to guide
the definition of new frames – much in the spirit of the original frame semantics. In the
ongoing FrameNet-2 project (Fillmore, Wooters, and Baker, 2001), the frames are de-
fined separately without reference to semantic domains. Additionally, a more elaborate
way of linking frames via different frame relations (see below) has been put to use.

The FrameNet project concentrates on what Fillmore called cognitive frames, but
does not make any further claims about the cognitive status of frames. FrameNet de-
liberately aims at a coarse grained level of verb sense distinctions as it has been noted
that other resources’ distinctions are sometimes overprecise, containing pragmatic and
world-knowledge aspects. On the other hand, FrameNet intends to maximally separate
the semantic roles per (newly defined) frame first and then to eliminate redundancy at
a later stage. The current FrameNet database contains more than 800 frames of general
conceptual classes, e.g. Awareness, Commercial transaction, or Theft with more
than 10.000 LUs and 135.000 annotated example sentences.

Types of Frame Elements. FrameNet distinguishes between different FE types, which
indicates their status within the given frame. FrameNet distinguishes between core,
peripheral (non-core), extrathematic, and core-unexpressed FEs. They are defined in
Ruppenhofer, Ellsworth, Petruck, and Johnson (2006) as follows. A core frame element
is one that instantiates a conceptually necessary component of a frame, while making
the frame unique and different from other frames. Peripheral FEs mark such notions as
time, place, manner, means, degree, and the like. They do not uniquely character-
ize a frame, and can be instantiated in any semantically appropriate frame. Peripheral
frame elements do not introduce additional, independent or distinct events from the main
reported event. In contrast, extra-thematic frame elements situate an event against a
background of another state of affairs, either of an actual event or state of the same type,
as illustrated with Iteration, or by evoking a larger frame within which the reported
state of affairs is embedded. The value core-unexpressed is a special notational short-
hand. It is assigned to FEs that behave like core frame elements in the frame where they
are marked as core-unexpressed but which, counter to expectation, may not be used for
annotation in descendants of that frame. Frame elements marked as core-unexpressed
will thus not necessarily be listed among the FEs in descendant frames.

Examples of core (3.47), peripheral (3.48), and extrathematic (3.49) role annotations
from the FrameNet corpus are given below.

(3.47) [“I am engaged”]message, [she]speaker announced happily. (Statement)

(3.48) “I am engaged”, she announced [happily]manner. (Statement)
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(3.49) [For many years]iteration, he walked to the forum alone. (Self motion)

Not all frame elements are always overtly realized. They can remain unexpressed like
the message in (3.50).

(3.50) [Pat]speaker already told [me]addressee []message. (Statement)

Semantic types. More recently, FrameNet has started to assign so-called semantic
types to FEs in order to add information like selectional preferences. For example, the
semantic type sentient is assigned to the speaker of Statement. For the LUs, no
further semantic type information such as WordNet senses or the like is available.

Frame relations (“FrameNet hierarchy”). In the current FrameNet database, different
types of frame-to-frame relations are specified. The two central frame relations are the
Inheritance and Subframe (formerly: Composition) relation, which are complemented by
the Uses relation. The relations Causative of, Inchoative of, Precedes and Perspective on
have been added more recently (Petruck, Fillmore, Baker, Ellsworth, and Ruppenhofer,
2004; Ruppenhofer et al., 2006).

Frame inheritance Frame inheritance is a relation between a parent frame and a child
frame where the latter is an elaboration of the former. Any semantic character-
ization, in particular the role inventory of the parent applies to the child frame
as well, possibly being more specific. The child frame can also define additional
roles or characteristics. Often, inherited roles are renamed. For example, the
frame Arrest inherits the roles agent and patient from the frame Inten-
tionally affect (renamed into authorities and suspect), and adds the roles
charges and suspense.

The Subframe relation The Subframe relation is used to model abstract “scenario frames”,
such as Criminal process or Employment. Scenario frames represent complex
events with subframe relations holding between the scenario frame and frames
that describe (temporally ordered) sub-events. For example, the frame Crim-
inal process has the subframes Arraignment, Arrest, Sentencing, and
Trial. Subframes usually inherit roles from their super frame, e.g. charge
and defendant of Arraignment inherit from the respective roles of Crimi-
nal process.

Precedes This relation can be used to further specify a temporal order on sub-frames
in a complex scenario, e.g., Being employed precedes Quitting.

The Uses relation The uses relation holds between a specific frame and a more schematic
frame that it references. For example, Commerce buy uses Commerce goods-
transfer because “An act of buying is not a complete transfer but it cannot be
fully understood other than against the background of a goods transfer that is part
of a commercial transaction.” (Ruppenhofer et al., 2006).
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Perspective on The relations is described in Ruppenhofer et al. (2006) as: “This rela-
tion (new in Release 1.3) is a refinement of the more general Using relation [. . . ].
The use of this relation indicates the presence of at least two different points-of-view
that can be taken on the neutral frame. For example, the Measure scenario, in
which an Entity’s value for some attribute is described, can be viewed either
from the point-of-view of exact measurement (e.g. ”Joey weighed 7 pounds.”) or
as a relative measure (e.g. ”Joey was heavy.”). The FEs in the two cases are quite
different, so the words should not be included in the same frame, but they do make
reference to the same scene.”

Causative of and Inchoative of The annotation of FrameNet with relations between
causative, inchoative and stative frames has only begun. Examples 3.51 through
3.53 evoke frames, which stand in the respective relations.

(3.51) They raised the oil price. (Cause change of scalar position)

(3.52) The oil price is rising. (Change position on a scale)

(3.53) The oil price is high. (Position on a scale)

We will discuss the ontological status of the different relations forming FrameNet’s
graph structure in the end of the next section.

Using FrameNet for Natural Language Processing

As FrameNet is a semantic resource which has proven to be largely language-independent
(Boas, 2005), a number of projects are investigating the use of FrameNet frames for
languages other than English, such as Spanish (Subirats and Petruck, 2003), Japanese
(Ohara, Fujii, Ohori, Suzuki, Saito, and Ishizak, 2004), or German in the SALSA project
(Erk, Kowalski, Padó, and Pinkal, 2003). So far, most attention has been spent on
manual and automatic frame semantic annotation, e.g., SALSA extends the German
TIGER treebank (Brants, Dipper, Hansen, Lezius, and Smith, 2002) with frame semantic
annotations (Burchardt, Erk, Frank, Kowalski, Pado, and Pinkal, 2006a), and devised
automatic annotation methods we will present below.

FrameNet has –until today– been used in applications only in restricted ways, the main
reason probably being its limited coverage (see below). For example, in the context of
Question Answering, Narayanan and Harabagiu (2004) use it as additional feature if
available and Frank et al. (2006) use it in a closed domain.

As for resources like WordNet, the semantic information provided by FrameNet is
in the first place provided for human inspection and interpretation. Although most
information is also provided in a machine-readable format (the glosses are still plain
text), additional effort is needed to automatically access and process it. We will now
show what kind of semantic generalizations FrameNet can provide, then turn to the
question of automatic frame annotation and finally discuss some issues concerning to
the immediate utility of the information.
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Figure 3.7.: Frame-based normalization over part of speech (direct vs. director).

Semantic generalization. A frame analysis of a predicate and its arguments captures
linguistic variations on a semantic level, which goes beyond the kinds of variations which
can be treated, e.g., on grammatical grounds. It is, among others, possible to provide a
normalization over different parts of speech as illustrated in in Figure 3.7. As a matter
of course, both sentences displayed get an identical frame semantic analysis. The verb
direct in the left sentence evokes the frame Behind the scenes which talks about the
film business. The production role has been assigned to the noun phrase Le Beau
Serge, the artist role to the prepositional phrase by Chabrol. The nominal formulation
on the right receives an identical frame analysis.6 In fact, this sentence pair was taken
from a textual entailment corpus (slightly shortened). Entailment can be confirmed here
straightforwardly using frame semantics and the “built-in” knowledge about prototypical
situations.

(3.54) through (3.57) illustrate how frame analysis provides a normalization over a
number of linguistic alternatives of formulating the same content – varying lexicalization,
parts of speech, and voice. The sentences are taken from the WWW and talk about the
same event – the takeover of the Rover company by BMW. They all involve the frame
Commerce buy, which is displayed in Table 3.5.

(3.54) [BMW]buyer bought [Rover]goods [from British Aerospace]seller.

(3.55) [Rover]goods was bought [by BMW, which financed the new Range Rover]buyer.

(3.56) [BMW’s]buyer purchase [of Rover]goods [for $1.2 billion]money was a good
move.

6The question as to whether the preposition of is included in the production role filler or not is a
matter of taste as the semantic head is Le Beau Serge. However, for deeper semantic analysis, as well
as for building syntax-semantics interfaces and for lexicographic research, this information might be
relevant.
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Frame: Commerce buy

These are words describing a basic commercial transaction involving a buyer and
a seller exchanging money and goods, taking the perspective of the buyer. The
words vary individually in the patterns of frame element realization they allow.
For example, the typical pattern for the verb BUY: BUYER buys GOODS from
SELLER for MONEY. Abby bought a car from Robin for $5,000.

buyer The Buyer wants the Goods and offers Money to a Seller in ex-
change for them.

goods The FE Goods is anything (including labor or time, for example)
which is exchanged for Money in a transaction.C

or
e

F
E

s

seller The Seller has possession of the Goods and exchanges them for
Money from a Buyer.

money Money is the thing given in exchange for Goods in a transaction.
rate In some cases, price or payment is described per unit of Goods.

P
er

ip
h
.

F
E

s

...

L
U

s buy.v, purchase.v, purchase ((act)).n . . .

Table 3.5.: Definition of Commerce buy.

(3.57) [BMW, which acquired [Rover]goods in 1994]buyer, is now dismantling the
company.

By the way, the last example, (3.57), also shows nested frame elements, where the
goods role is embedded within the buyer role, as is the frame-evoking target word.
With frame semantics, it is also possible to generate nested frame structures, e.g., the
message of a Statement frame typically contains frame-evoking words itself. Likewise,
it is possible to have frame roles which point to words within other (frame’s) roles as in
the example above. By now, the potential of frame (element) nesting has been addressed,
e.g., in Burchardt et al. (2005b) and Pado and Erk (2005), but it has not been intensively
studied so far. We will show some examples of how it can be used in inferences for
discourse analysis in Chapter 7.1.2.

Automatic Frame Assignment

In this section we will discuss the automation of frame and role assignment. Typically,
the assignment of frames and the assignment of roles are seen as two separate, subsequent
tasks. We will discuss both in turn.

Frame assignment. Frame assignment can be seen as a word sense disambiguation
task comparable to the task of assigning WordNet synsets (see Erk, 2005). A target
expression may be listed as a lexical unit of several frames. Each of these frames can be
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seen as a sense of the target expression. For example, the verb skim.v is listed as a lexical
unit for four frames (all examples are from the FrameNet corpus, partly abbreviated):

(3.58) Reading: Skimming a chapter for its main idea may be done over coffee.

(3.59) Removing: Remove the vanilla pod, skim the jam, and let it cool.

(3.60) Scrutiny: She skimmed through the newspaper clippings.

(3.61) Self motion: We skimmed across the surface of that sodding lake whilst all
around us gathered the dark hosts of hell.

The frames Reading, Removing and Self motion constitute clearly distinguished
senses of skim.v. Reading and Scrutiny are somewhat harder to distinguish as far as
skim.v is concerned, even though they describe different situations in general. In this
example, the number of senses listed for the verb in FrameNet is comparable in number
to the sense distinctions made in WordNet. However, as we will detail in Chapter 4,
automatic frame assignment is a big issue in cases where FrameNet’s coverage is not
that good.

Role assignment. Role assignment is probably the easier of the two tasks. The chal-
lenge is to identify and model the syntactic and possibly semantic clues that are needed
to assign role labels to the constituents which fill argument positions of a given frame
target. So far, much research has been conducted in this direction (e.g. Gildea and Ju-
rafsky, 2002; Baldewein, Erk, Pado, and Prescher, 2004), prominently in the context of
Senseval-3 (Mihalcea and Edmonds, 2004).

Available tools. A system, which combines both automatic frame and role assignment
is the Shalmaneser system by (Erk and Pado, 2006). The performance of shalmaneser
as reported in Erk and Pado (2006) is quite good, exceeding 0.90 accuracy on frame
assignment, 0.90 F-Score on role recognition, and 0.80 in role labeling. The system
use statistical classification and is available pre-trained on the FrameNet corpus. It
is part of a flexible “tool-box” for semantic parsing, which includes an interface to
the Collins parser. In fact, Figure 3.7 shows frame semantic analyses generated by
Shalmaneser. Shalmaneser outputs SALSA/TIGER-XML, an easy to use format for
representing among other things syntactic and frame semantic information (Erk and
Pado, 2004).

Limitations of FrameNet

Two main issues which impair the (immediate) usability of FrameNet are its limited
coverage and the difficulty of interpreting the different types of frame relations.

69



3. Linguistic Analysis and Ontological Resources

Coverage. The FrameNet workflow proceeds in a top-down fashion – one frame is
created at a time. First, a frame and its LUs are created and then, representative
corpus instances are annotated. As the process is labor-intensive, FrameNet will remain
incomplete in several respects for the next future. Three types of coverage problems can
be distinguished:

Missing LUs: A frame does not (yet) list all relevant words which can evoke it. For
example, bargain is not listed in FrameNet at all, although it would fit in one sense
in the frame Make agreement on action. Because of FrameNet’s top-down
approach, this type of missing coverage should not occur in theory.

Missing frames: This type of missing coverage occurs if there are prototypical situa-
tions which are not described by any existing frame. For example, in the current
FrameNet release, there is no frame covering the meaning of strategy in the sense
that an actor has a specific plan or scheme of how to fulfill a goal. Still, there is the
frame Project which overlaps the missing frame, and there is the very general
frame Intentionally affect, the missing frame would probably inherit from.

Missing frame relations In contrast to ontologically organized resources like WordNet,
many frames in FrameNet have been defined but not yet included in the inheritance
hierarchy. Approximately 40% of the frames in the current database are unique
beginners in this sense – although some are related to other frames via relations
other than inheritance.

The problem of missing senses is pervasive and is especially challenging for systems
being trained for automatic frame assignments. To take up the example from above
again, the adjective strategic is currently only listed for the frame Weapon. To illustrate
the problem, in Burchardt et al. (2005a), we also found that only 10.7% of the then
available 8000 LUs were ambiguous at all, and the baseline for the disambiguation task
(assign each LU its most frequent frame) was already at 93% f-score. This is a problem
of the FrameNet corpus, not of the FrameNet approach as such, as experiments with a
snapshot of the German SALSA corpus have confirmed (Erk, 2005). Also, some frames
have no annotated examples, and hence cannot be learned in a supervised learning
setting, among them important frames like the Possession frame for have.v.

As we will detail in Chapter 4, the coverage problem can be alleviated using WordNet’s
larger coverage to heuristically assign frames to senses, which would remain uncovered
otherwise. We will also touch the somewhat broader issue of how the SUMO knowledge
ontology can be used to cover gaps in FrameNet.

Impact of different relation types. Within natural language processing tasks, it is often
necessary to measure semantic similarity between, e.g., known classes of entities and a
new entity occurring in a text. Already in the case of nouns –which often refer to
relatively concrete objects– it is not easy to define a comprehensive measure, as can be
seen in the vast number of such measures which have been defined for WordNet. A main
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Figure 3.8.: Frame relations of Commercial transaction (screenshot of FrameNet’s
FrameGrapher).

difficulty is how to delimit concepts or concept clusters in the face of different levels of
granularity of sense distinctions, which can be found in given resources.

Modeling semantic similarity for events is a bigger challenge, as they form a heteroge-
neous class. If we look at FrameNet, we find frames that have different ontological status
in that they describe, e.g., complex events (Commercial transaction), sub-events
(Commerce goods-transfer), linguistic perspectives on events (Commerce buy),
or partial aspects of events (Reciprocality). Additional complexity is introduced by
the fact that the semantic roles have to be taken into account as well. This overall
complexity surfaces in the different types of frame relations, which have to be inter-
preted in different ways. Without awareness of the impact of different relation types,
it is impossible to derive clear similarity judgments. As illustration, consider the two
related sentences, (3.62) and (3.63), which instantiate the frames Commerce buy and
Commerce pay, respectively.

(3.62) [John]buyer bought [a car]goods [from Mary]seller [for 10.000$]money.
(Commerce buy)

(3.63) [John]buyer paid [Mary]seller [10.000$]money [for a car]goods.
(Commerce pay)

As can be seen in Figure 3.8 on the bottom, both frames are connected via perspec-
tivization links up to Commerce goods-transfer and Commerce money-transfer,
respectively. At this level, there are two possible further (pairs of) links – subframe
links to Commercial transaction and inheritance links to Transfer. Without go-
ing into detail here, depending on which relation is considered, contradictory evidence
can be generated concerning the similarity of the sentences. We will come back to this
in Section 7.1.
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Sumo
class

Killing Death
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(=>

(and

(instance ?KILL Killing)

(patient ?KILL ?OBJ))

(exists (?DEATH)

(and

(instance ?DEATH Death)

(experiencer ?DEATH ?OBJ)

(causes ?KILL ?DEATH))))

(=>

(and

(instance ?DEATH Death)

(experiencer ?DEATH ?AGENT))

(holdsDuring

(FutureFn

(WhenFn ?DEATH))

(attribute ?AGENT Dead)))

T
ra

n
sl

it
er

at
io

n if ?KILL is an instance of killing and
?OBJ is a patient of ?KILL,

if ?DEATH is an instance of death and
?AGENT experiences ?DEATH,

then there exists ?DEATH so that
?DEATH is an instance of death
and ?OBJ experiences ?DEATH and
?KILL causes ?DEATH

then Dead is an attribute of ?AGENT
hold during after the time of existence
of ?DEATH

Figure 3.9.: SUMO axioms.

3.4. Ontological Resources

In the introduction of this Chapter, we stated that additional ontological knowledge
is sometimes needed in the course of natural language processing. After introducing
central linguistic resources, we can now substantiate this observation. For example, to
establish a relation between the textual entailment pair in (3.64)-(3.65), it is necessary
to relate murder and dead, i.e., to access the knowledge that being murdered results in
being dead.

(3.64) John Lennon was murdered by a deranged fan in New York City on 8
December 1980 after he returned home from a recording session.

(3.65) John Lennon is dead.

However, neither FrameNet nor WordNet provides the necessary information. A frame
analysis provides the frames Killing for murder and Dead or alive for dead. But
they are not related via any frame relations. In WordNet, murder is a hypernym of kill,
which stands in the causes relation to die. But no relation exists between die and dead.
As derivationally related forms of die, only dead as noun and deadness are represented.

A provisional solution to this problem of missing ontological knowledge in natural
language processing systems is to try and manually add it for re-occurring cases, as,
e.g., Bos and Markert (2006) do. However, the coverage that can be achieved this way
is limited, and the result might not easily be re-usable. A more principled solution
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is to extract the needed information from available knowledge sources like the SUMO
ontology (see below). In SUMO, the missing link to relate, e.g., murder and dead can
be found in the combination of two axioms displayed in Figure 3.9. In short, the left
axiom states that killing someone causes his death and the right axiom states that one
is dead after ones death.

3.4.1. Upper Ontologies

Knowledge is often coded in the form of ontologies. As the amount of knowledge which
can be coded is of course immense, a common division is made between upper (level)
ontologies (top-level ontologies) representing general knowledge which is applicable in
many domains and domain ontologies representing domain-specific knowledge. While
providing an in-depth survey of available ontologies goes beyond the aim of this thesis, a
general observation we made is that domain ontologies tend to contain a high proportion
of “nominal” concepts (geographical names, types of weapons, biomedical terms, etc.)
while upper ontologies contain a much larger proportion of “verbal” concepts (typical
situations, events, scenarios). As the task of recognizing textual entailment as specified
by the given data does not relate to a specific domain and as we are especially inter-
ested in using semantic information on the level of predicate-argument structure, we will
concentrate on upper level ontologies.

Ontologies are basically hierarchically organized graph structures. Their definitorial
part typically consists of classes (concepts) that are connected via relations such as
inheritance or instantiation. Other relations such as causes in the axiom displayed
in Figure 3.9 on the left can provide further, non-hierarchical links between classes.
Concrete facts are coded as individuals instantiating one or more classes and they can
be linked to other individuals via the admissible relations. Most available ontologies are
coded in some variant of first order logic. Although reasoning in general is undecidable,
axiomatic information like the fact that being murdered implies being dead can be
integrated in logic-based natural language processing systems as Bos and Markert (2006)
have shown.

Yet, within this thesis, we will concentrate on the question of how to access onto-
logical knowledge via natural language interfaces in order to enrich the analyses we get
using linguistic resources. We will include ontological knowledge in our model for tex-
tual entailment and thus provide “ready-made” input for future research on logic-based
processing, e.g., using theorem proving.

Accessing Ontological Knowledge

Knowledge ontologies are mostly studied and developed within the knowledge engineer-
ing or artificial intelligence community. Consequently, the design and structuring prin-
ciples are made for representing information on a conceptual level rather than on the
level of word meaning as linguistic resources do. A fundamental problem limiting the
usability of ontologies in natural language processing is that knowledge ontologies often
do not provide a link to natural language. In fact, mostly not even annotated (example)
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sentences are available. In other words, syntax-semantics interfaces, which provide a link
between language and conceptual knowledge, are needed. They are a key requirement
for any further research concerning the extraction and application of the knowledge con-
tained in ontologies. We will discuss this issue in detail in Chapter 4. A first step towards
a syntax-semantics interface is formed by the mappings from WordNet synsets to ontol-
ogy classes, which exist for several ontologies, most notably DOLCE, Cyc, and SUMO,
which we will present below. Another well-known “linguistically motivated ontology”,
the Generalized Upper Model (Bateman, Henschel, and Rinaldi, 1995), a descendant of
the Penman Upper Model, does not provide a mapping to WordNet.

Dolce

The DOLCE (“Descriptive Ontology for Linguistic and Cognitive Engineering”) ontol-
ogy was developed within the WonderWeb project (Masolo, Borgo, Gangemi, Guarino,
Oltramari, and Schneider, 2003). It is formalized in first-order logic with modals and
time; 1.000 of WordNet 1.6’s noun synsets have been linked to it. The developers call
DOLCE a foundational ontology and intend it to be a starting point and a reference for
a whole library of ontologies for various purposes within a “Semantic Web” scenario.
Gangemi, Guarino, Masolo, Oltramari, and Schneider (2002) describe its main purpose
as:

“[. . . ] to negotiate meaning, either for enabling effective cooperation among
multiple artificial agents, or for establishing consensus in a mixed society
where artificial agents cooperate with human beings.”

DOLCE has been used in a study, which detected some inconsistencies in WordNet 1.6.
Moreover, some proposals for a re-structuring of the noun taxonomy have been made
(Oltramari, Gangemi, Guarino, and Masolo, 2002). However, for the kind of automatic
processing we intend, DOLCE seems less suitable. One reason is the level and fine-
graininess of the analysis, which may be due to the “cognitive bias” of DOLCE (Masolo
et al., 2003):

“DOLCE has a clear cognitive bias, in the sense that it aims at capturing
the ontological categories underlying natural language and human common-
sense. We believe that such bias is very important for the Semantic Web
(especially if we recognize its intrinsic social nature [. . . ]). We do not com-
mit to a strictly referentialist metaphysics related to the intrinsic nature of
the world: rather, the categories we introduce here are thought of as cogni-
tive artifacts ultimately depending on human perception, cultural imprints
and social conventions (a sort of “cognitive” metaphysics).”

An illustration of the types of categories DOLCE assumes is given in the analysis
(3.66) which is discussed in Gangemi et al. (2002).

(3.66) This rose is red.
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The DOLCE analysis of (3.66) involves three individuals (called particulars here),
reflecting the way in which qualities are modeled in DOLCE, assuming the existence of
qualities and quality regions:

1. A Non-agentive Physical Object representing the rose (rose1),

2. the color of rose1, a Physical Quality (qtc(rose1)), and

3. the color quale of qtc(rose1) which is a point in the red color space
(ql(qtc(rose1)) = color#1).

Without going into more detail, the type of information provided here is very different
from the semantic information we get from the linguistic resources. It is hard to imagine
how information on this fundamental level can automatically be integrated with a com-
parably shallow natural language semantic analysis. Moreover, it is not obvious how a
syntax-semantics interface for DOLCE could be designed.

Cyc

The Cyc (from “encyclopedia”) project (Lenat, 1995) was initiated by Doug Lenat in
the mid-1980’s and as of today is the largest endeavor attempting to formalize everyday
common sense knowledge. Cyc used to be an expensive commercial product and only a
small part, OpenCyc, was freely available which did not suffice to assess the usability of
Cyc.

By the time of writing this thesis, a much larger version of OpenCyc has been released,
complemented by ResearchCyc which includes a database of 300.000 concepts connected
by 26.000 relations, and access tools including some sort of natural language parser.
Because this is a very recent development, it was not possible to discuss this resource
here, but we intend future research in this direction.

SUMO

Among the upper ontologies, SUMO is currently the most promising one. SUMO (Niles
and Pease, 2001), the “suggested upper merged ontology” models objects and processes
and implicitly provides a coarse characterization of relevant roles for each concept, as well
as sortal constraints for roles. Both types of information are provided within inference
rules (axioms). For example, the axiom of the class Death displayed in Figure 3.9 on the
right constraints the filler of the experiencer role (represented by the variable ?AGENT)
to be dead after the event.

SUMO contains about 1000 concepts and is complemented by the “mid-level” ontol-
ogy MILO (Niles and Terry, 2004) containing another 1500 concepts.7 For our purposes,
SUMO is especially interesting because the conceptual classes for events are “compat-
ible” with FrameNet frames, as they often describe prototypical situations and their
participants. SUMO explicitly defines an asymmetric relation type CaseRole which can

7Henceforth, by SUMO we mean a combination of SUMO and MILO.
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Super classes Sister classes

Entity

Physical

Process

InternalChange

BiologicalProcess

PhysiologicProcess

OrganismProcess

Death

Birth

Breathing

Death

Digesting

Ingesting

LayingEggs

Mating

RecoveringFromIllness

Replication

Figure 3.10.: Partial SUMO class hierarchy for Death.

be linked to FrameNet roles. The latter point is important as SUMO itself does not
provide a full natural language interface. At least, the SUMO concepts are linked to
WordNet synsets (Niles and Pease, 2003).

Structure of SUMO. The basic ontology consists of classes hierarchically related by the
subclass and instance relations. For example, Figure 3.10 on the left shows the super
classes of Death. It might be surprising that Process is a subclass of Physical. The
idea behind this classification is that processes are “physical reality” in that they occur
at a certain place and time. Figure 3.10 on the right shows the sister concepts of Death,
i.e., all subclasses of OrganismProcess. Here, one can observe a certain inhomogeneity
in terms of importance of the classes and also a partiality as there are more organism
processes one can imagine. A reason for imbalance in SUMO is the fact that it is in
fact a blend of a number of freely available ontologies and that it was “constructed with
reference to very pragmatic principles” (Niles and Pease, 2001). Imbalance in granularity
and coverage limitations, however, are issues one must accept if it comes to modeling
large amounts of knowledge.

Both hierarchical relations subclass and instance are instances of BinaryRelation8.
The class BinaryRelation is also instantiated by various other, non-hierarchical rela-
tions like inverse or properPart which connect classes along various dimensions. The
relations are further classified as to whether they are transitive, reflexive, and the like.
For us, the subclass CaseRole of BinaryRelation is of special interest. This class is in-
stantiated by relations like agent, patient, or destination which seem to correspond
to the linguistic concept of semantic role we have discussed in Section 3.3.2. SUMO
provides 18 instances of CaseRole, some of which are very general like agent; others are
much more specific like invadingVirus or gainsControl. The concept of CaseRole,

8More precisely, subclass and instance are instances of BinaryPredicate which is an instance of
both BinaryRelation and Predicate. However, the status of Predicate is not documented. We will
therefore stick to the more general BinaryRelation.
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(=>

(and

(instance ?JOIN JoiningAnOrganization)

(agent ?JOIN ?AGENT)

(patient ?JOIN ?ORG)

(instance ?AGENT Agent)

(instance ?ORG Organization))

(member ?AGENT ?ORG))

Figure 3.11.: SUMO axiom of class JoiningAnOrganization.

however, does not cover all relations which correspond to the linguistic concept of se-
mantic role. Some SUMO relations such as represents, which links the proposition
of class Communication to the class Proposition, are not included in CaseRole, but
inherit directly from BinaryRelation.

SUMO Axioms. Figure 3.11 shows another example SUMO axiom providing informa-
tion, which is needed, e.g., to establish the entailment relation in (3.67)-(3.68), namely
the information that after joining an organization, one is member of the organization.

(3.67) T: Olson, 62, previously worked as a partner at Ernst & Young LLP, before
joining the Fed board in 2001, to serve a term ending in 2010.

(3.68) H: Olson is a member of the Fed board. – Yes (IE)

The axioms are given in prefix notation. The example is a conditional statement
with a conjunction of five conditions in the antecedent, which have to be met for the
inference to hold – The event itself, represented by the variable ?JOINmust be an instance
of the class JoiningAnOrganization and the agent and patient (represented by the
variables ?AGENT and ?ORG) must be instances of the classes Agent, and Organization,
respectively. The consequent of the statement expresses that the agent and the patient
stand in a member relation after the event. SUMO contains roughly 4.000 axioms. The
number and usefulness of axioms per class again differs, a problematic example being
the axioms for the class Transfer. While one axiom states that the agent and patient
must not be equal, four remaining axioms relate to different aspects related to blood
transfer – information one would rather expect in a domain ontology.

WordNet-SUMO linking. SUMO had originally been linked to WordNet version 1.6
(Niles and Pease, 2003), but the linking has constantly been updated to meet the current
WordNet version. Three types of links have been used to characterize different relations
of SUMO classes and concepts denoted by WordNet synsets – synonymy, hypernymy, and
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instantiation. In the case of synonymy, both concepts are (almost) identical in meaning
like the synset plant#2 and the class Plant. An example for a hypernymy relation is
the link between the synset nunnery#1 and the SUMO class ReligiousOrganization,
which is broader in meaning, also covering non-christian organizations. An example
of instantiation is the synset brain death#1 which instantiates the SUMO class Death

rather than being a subclass.

Using SUMO for natural language processing. So far, only parts of SUMO have been
used in natural language processing applications, e.g., Tatu and Moldovan (2006) base
their temporal reasoning on the respective SUMO classes, which in turn are based on
Allen (1984). However, a prerequisite for using resources like SUMO on a large scale
within natural language processing is the availability of proper syntax-semantics inter-
faces. While the existing WordNet interface makes it possible to assign SUMO classes
to predicates, the information which is included in the axioms, i.e., relations between
classes and their arguments, as well as sortal information, cannot be accessed in this
way. In Chapter 4, we will detail how we can link SUMO and FrameNet in order to use
FrameNet as a natural language interface to SUMO.
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4. Combining Lexical and Ontological
Resources

In this chapter, we explore how the coverage issues which impair the usability of FrameNet
can be attenuated by combining it with other resources, in particular with WordNet and
the SUMO upper ontology.

We will explore the interoperability of the resources as follows. 4.1 will shortly illus-
trate the coverage issues and give an impression of the potential of interaction between
FrameNet and other resources. In Section 4.2, we will show how the large coverage of
WordNet can be used to successfully define a Detour to FrameNet that is able to account
for missing LUs (incomplete lexicon). To some extent, the problem of missing frames
(senses) is also tackled as this approach can assign abstract frames to words for which a
specific frame is missing. This problem will be brought up in Section 4.3 again, where we
integrate FrameNet and the SUMO knowledge ontology. As a first step, we will discuss
the possibility of linking FrameNet and SUMO such that the former can be used as a
natural language interface for the latter. In the future, we envisage a standalone natu-
ral language interface to SUMO to access background knowledge in general to possibly
bridge gaps in FrameNet’s coverage in particular.

4.1. Interoperability of FrameNet with Other Resources

The Berkeley FrameNet repository is incomplete in several respects. In Section 3.3.4,
we identified missing LUs (incomplete lexicon) and missing frames (senses not covered)
as major types of incompleteness. The problem of coverage is manifest. In a study we
conducted on the 574 sentences of the RTE-1 development corpus (Dagan et al., 2006),
with an average of 16.24 words/sentence, the statistically trained Shalmaneser system
yielded an assignment of only 2.7 frames and 3.6 FEs per sentence.

To get an impression of coverage issues and the potential of interaction between
FrameNet and other resources, consider Figure 4.1, which provides an analysis of (4.1).

(4.1) John is tasting wine.

The lower part of the figure shows a straightforward frame analysis of the sentence
on the basis of the current Berkeley lexicon. The middle shows a frame analysis using
the Detour approach (see below), based on the WordNet synsets displayed in the upper
middle of the figure. The top of the figure shows a SUMO analysis based on the existing
WordNet-SUMO linking.

In the FrameNet repository, the verb taste is annotated for three frames: Appear-
ance, Perception experience, and Perception active. The latter frame describes
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SUMO Ingestion Beverage

Organism Drinking Wine

WordNet taste#v#2 wine#n#1

FrameNet Detour Ingestion Intoxicants

FrameNet Perception active

John is tasting wine.

agent

patient

perceiver phenomenon

ingestor ingestibles

Figure 4.1.: Analyses of (4.1).

“perception words whose perceivers intentionally direct their attention to some entity or
phenomenon in order to have a perceptual experience.” It covers the given situation, but
is still very general. A more specific frame is Ingestion, but it cannot be assigned since
the taste is not (yet) annotated as LU for this frame. The noun wine is not included in
the FrameNet lexicon at all. This might also be the case of a missing LU or even of a
missing frame.

Both issues can be accounted for by taking a “Detour via WordNet”. Given the synsets
taste#v#2 and wine#n#1, the frames Ingestion and Intoxicants can be assigned (the
two second best frames suggested by the Detour for wine are Food and Substance).1

The frames Ingestion and Intoxicants describe only some aspects of the sentence’s
core meaning. A SUMO analysis –triggered by the same WordNet synsets as the Detour–
provides the additional information that drinking is a kind of ingestion where the “pa-
tient” is a beverage and that wine indeed is a beverage. Yet, the figure suggests a link
between the patient of Drinking and Wine by conflating different types and tokens
to improve readability. Actually, the instances of Drinking and Wine triggered by the
respective synsets are (initially) unrelated. What is missing is an automatic way of
arriving at a fully linked SUMO analysis for a given sentence.

Analysis of this simple sentence illustrates is that information which is potentially rel-
evant for inference tasks like checking textual entailment is not provided by one resource

1The Detour itself can only suggest frames, the roles have to be assigned otherwise, as indicated by the
dashed lines.
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or on one level of description alone. Some information is accessible only in their interplay.
In the past, some attempts for linking the given resources have been reported. Related
work includes a semi-automatic linking of WordNet, VerbNet, and FrameNet reported
in Shi and Mihalcea (2005). It treats only verbs and is based on older versions of the
resources. Scheffczyk, Pease, and Ellsworth (2006) manually linked FrameNet’s semantic
types to appropriate SUMO classes, thus focusing on role fillers. This is complementary
to the task of linking frames and SUMO classes we will describe below.

4.2. A WordNet Detour to FrameNet

In this section we present an approach of using WordNet in order to attenuate FrameNet’s
coverage issues, in particular that of missing LUs. Missing LUs are a severe issue for
statistically trained systems, which fail if they encounter a word that is not annotated
in FrameNet. The Detour is rule-based and uses WordNet to generalize over a given
target word in order to compensate for the missing LU and to assign the appropriate
frame. The central algorithm exploits the fact that sense discrimination in WordNet
is in general more fine-grained than in FrameNet. So, the assignment task is a often
a “many-to-one” problem. In general, there are a number of WordNet-related words
available for a given target that are listed in FrameNet’s LUs for the intended frame.
We first present the main algorithm and then evaluate the implemented Detour system.

4.2.1. The Detour Algorithm

As an illustration how WordNet-based frame assignment works, consider (4.2).

(4.2) Ostriches bury their heads in the sand.

For the target word bury, the word sense disambiguation system of Patwardhan et al.
(2005) determines the correct WordNet synset bury#v#3 (“place in the earth and cover
with soil”). While bury is not yet listed in FrameNet’s LUs, several WordNet “relatives”
of this target are listed as LUs for the frame Placing (e.g. lay, put, place). Using this
information, we can access this frame. As there are other frames containing some of the
related words (e.g. Attack is evoked by set and lay), a weighting mechanism is used to
determine the best fitting frame(s). In the given example, Attack is correctly weighted
much lower than Placing by the weighting algorithm of the Detour main algorithm.

The complete Detour algorithm is described below. Pseudo code can be found in
Figure 4.2.

1. For a given target word2, a set of WordNet relatives containing all synonyms and
hypernyms plus the respective antonyms3 of these words is computed.

2In the following, by word, we either mean a word sense, e.g., if WordNet distances are mentioned, or
an unambiguated lemma, e.g., as occurring in an LU.

3The inclusion of antonyms is effective here because words and their antonyms are typically LUs of the
same frame such as rise and fall for Change position on a scale.
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2. All candidate frames evoked by the WordNet relatives are computed. These are
all frames that have any of the respective words as LU.

3. In order to select the best frame(s), all candidate frames are weighted according
to the function explained below.

For a given target word and a frame F out of the candidate frames, the weighting
function basically sums over all of the target word’s WordNet relatives that evoke F

(wn relative ∈ Evoking(F )):

Weight(F ) =
1

|Evoking(F )|
∗

∑

wn relative∈Evoking(F )

similarity(wn relative, target word)

spreading factor(wn relative)

Main factors of the weighting function are the similarity between the target word and
the WordNet relative and what we call the spreading factor of the WordNet relative. As
a normalization, the the number of WordNet relatives evoking the frame (|Evoking(F )|)
is factored out. Details for these factors are provided below.

Similarity We take the square of the inverse of the WordNet path distance between
the target word and the WordNet relative as similarity measure. The longer the
path between a WordNet relative and the target word, the lower the similarity
and thus the weighting for F . Other similarity measures can easily be plugged
in in the implementation as modules from the Perl CPAN archive mentioned in
Section 3.3.1 are used.

Spreading factor By spreading factor of a WordNet relative we mean the number of
frames evoked by that word. It indicates how much evidence the word provides
for a frame F under consideration. If there is more than one frame evoked by
the word, F only gets the respective share. For example, go is listed as LU for
three frames (Motion, Compatibility, Name bearing) and thus has spreading
factor 3. In the weighting of either frame, go thus only contributes a share of 1/3.

Normalization The absolute number of WordNet relatives evoking a frame is factored
out by a division of the summed weight over the WordNet relatives by the number
of relatives (|Evoking(F )|). This makes the weights comparable across different
runs of the algorithm.

4.2.2. The Detour System

The Detour algorithm has been implemented in the publicly available Detour system.4

To arrive at a dense frame annotation in applications, we combine Shalmaneser (see
Section 3.3.4) and the Detour system. Figure 4.3 shows an automatic Frame assignment
for (4.3) combining Shalmaneser and the Detour system.

4search.cpan.org/∼reiter/FrameNet-WordNet-Detour/, an online demonstrator can be accessed at
www.coli.uni-saarland.de/∼albu/cgi-bin/FN-Detour.cgi
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1. WordNet relatives = {w | w ∈ Target synset} ∪ {w | ∃ Synset :
hypernym(Synset, T arget Synset) ∧ w ∈ Synset}

WordNet relatives = WordNet relatives ∪ {w′ |
∃ w ∈ WordNet relatives ∧ antonym(w′, w)}

2. forall F in Frames

Evoking(F ) = {}
end
forall F in Frames, forall W in WordNet relatives:

if W is a LU of F then
Evoking(F ) = Evoking(F ) ∪ {W}
spreading factor(W ) += 1

end
end, end

3. forall Synset, Synset′:
similarity(Synset, Synset′) = ( 1

WordNet Path Distance(Synset,Synset′))
2

end
forall F in Frames:

Weight(F ) = 1
|Evoking(F )| ∗

∑
wn relative∈Evoking(F )

similarity(wn relative,target word)
spreading factor(wn relative)

end

4. Return frame(s) with highest weight.

Figure 4.2.: Complete Detour algorithm.

(4.3) A July 31 bombing at Hebrew University in Jerusalem killed nine people,
including five Americans.

The frame Attack has been assigned by the Detour system (indicated by a small
flag in Figure 4.3), the frame Killing and both semantic roles have been assigned by
Shalmaneser. This automatic analysis is close to optimal. It would be perfect if the
core-role Killing.cause role had been assigned to the bombing by Shalmaneser.

4.2.3. Evaluation

In this section, we evaluate the Detour system on FrameNet data and against the
FrameNet-WordNet verb sense mappings of Shi and Mihalcea (2005).

Experiments on FrameNet data

For proper evaluation of the system, we would need a “realistic” gold standard – a corpus
where target words are annotated with their WordNet sense and with correct FrameNet
frame(s). Additionally, in order for the Detour to be effective, (many of) these words
should be missing in the FrameNet lexicon.
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Figure 4.3.: Analysis of (4.3) using the Detour system plus Shalmaneser.

Frames per synset
none 1 >1

Total 13% 71% 16%

Result contains
gold standard

- 38% 7%

Table 4.1.: Frame assignment of detour-only system (FrameNet corpus).

As such a resource does not exist, we performed an evaluation using held out examples.
To this end, we took the FrameNet example sentences (“FrameNet corpus”) as gold-
standard and ran the system in a detour-only mode that simulates a situation in which
the respective target words are missing in FrameNet. This effectively forces the algorithm
to take the detour via synonyms, antonyms, and hypernyms. We have evaluated on
roughly 80.000 frame-annotated instances (60.000 verb, 20.000 noun, 20.000 adj./adv).

Instead of using an external word sense disambiguation system, we followed the first
sense hypothesis and assumed the first, most frequent, WordNet synset for each target
word. Two reasons for doing so are first, that using available word sense disambiguation
systems did not show a clear effect and second, that the computational complexity of
the experiments was reduced drastically.

Results

Table 4.1 shows the system’s performance on the FrameNet corpus. The first row shows
in how many cases no, one, or more than one frame was assigned, thus measuring recall.
The second row indicates whether the gold standard frame is contained in the system
result, which is a weak measure of precision.

The detour-only system has high recall – In 87% of the cases, it is able to assign one
or more frames to a target word unknown in FrameNet. For the complete data set, the
overall precision in terms of containment of the gold standard frame is at 45%. If we

86



4.2. A WordNet Detour to FrameNet

Gold standard Frames assigned by system Frequency

Invention 19
Intentionally create 12

Manufacturing Building 11
Cause to start 5
Getting 4
Transformation 1

Table 4.2.: Frames assigned by detour-only system.

consider only cases where frames were assigned, precision is at 51%.
Note that in all these cases, statistically trained systems would not be able to assign

any frame at all. The Detour successfully assigns the gold standard frame in almost
half of the cases. Moreover, the remaining cases are not necessarily severe errors – it is
still to be determined how close these assignments are to the gold standard. Since there
is no formal measure of frame distance, we inspected sample data manually. Table 4.2
lists the gold standard Manufacturing together with frames the Detour suggests.
Most of the frames are either from the same domain as the gold standard frame or
semantically compatible. Inspection of more examples revealed that the Detour frames
are semantically closely related in many cases, often only differing in aspect, perspective
or specificity (e.g. Choosing vs. Deciding, Amounting to vs. Adding up, or
Travel vs. Motion).

In addition to the detour-only condition, we also tested the “unimpaired” system on
the FrameNet corpus. Coverage goes up to 96%. For 83% the gold standard frame is
contained in the set of assigned frames (for 67% the gold standard frame is unambigu-
ously assigned). This result indicates that the system introduces a significant amount
of noise – one potential error source being the missing word sense disambiguation. But
as long as we do not have a formal measure of frame distance, it is hard to determine
how often frames which have been assigned instead of the gold standards are true er-
rors. For example, as we have discussed in context of (4.1), the gold standard frames for
taste are Perception active, Perception experience, and Appearance. But we
would not consider it an error if the Detour assigned Ingestion to taste in (4.4) from
the FrameNet corpus, although this frame is not in the gold standard.

(4.4) Samples of wine were tasted to demonstrate what made a ’good’ wine.

Experiments With a Manually Verified Resource

Shi and Mihalcea (2005) provide a manually verified annotation of a sample of 3,094
verbs from FrameNet LUs with WordNet synsets. As this makes it possible to test the
Detour without the issue of disambiguation, we also evaluated it against this annotation.
Table 4.3 lists the results of running the detour system on the respective verbs, again in
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Gold standard contained in
1st result 1st ∪ 2nd result

Full system 83% 96%

Detour-only 49% 64%

Table 4.3.: Precision of Detour system compared to (Shi and Mihalcea, 2005).

full mode and in the limited detour-only mode. The table also shows the figures for a
relaxed task, where the second best results of the Detour are also taken into account.

Compared to the evaluation the FrameNet data described above, precision is only
slightly better (e.g. 49% vs. 45% in detour-only mode). The relaxed task leads to an
improvement of precision by roughly 14% in both modes. This latter result indicates
the Detour weighting mechanism can still be optimized as many gold-standard frames
are contained in the result weighted only second best. Again, there is no measure that
allows an analyses as to how much worse higher weighted result are in these cases.

Comparable performance of the Detour on non-disambiguated FrameNet data and on
the manually verified data by Shi and Mihalcea (2005) might indicate low quality of
the latter. In order to asses the reliability of the manually corrected annotation, we
inspected a small random sample of 20 verbs (see Reiter, 2006, for details). In 70%
of the cases, the frames heuristically assigned by Detour seemed similar or better than
the manually approved frames. Only in 30% of the cases, the frame(s) assigned by the
Detour were worse than the one assigned by Shi and Mihalcea (2005). More experiments
will be needed before it is possible to draw final conclusions.

Length of the Detour

To asses the effect of the detour-only mode, we compare the full system and the detour-
only version on unseen text. We measure the WordNet path distance between the target
synset and the synset(s) that finally evokes the frame. This allows an estimation of the
“length” of the detour. We distinguish three cases:

Synonymy: The frame evoking synset is the target synset.

Direct hypernymy: The frame evoking synset is a direct hypernym of the target.

Transitive hypernymy: The frame evoking synset is a transitive hypernym of the target.

We ran both system versions on 560 sentences (3.800 instances of nouns, verbs, and
adjectives) of the first development set of the RTE-1 (Dagan et al., 2006) data. Table 4.4
gives an overview of the distribution of the distance between the respective target synset
and the synset(s) that finally triggered the frame assignment. The effect of switching
from full to detour-only mode is a 21% drop of synonym cases. Two thirds of these cases
move to the direct hypernym class. So, in the detour-only system, in almost two thirds

88



4.2. A WordNet Detour to FrameNet

Synonym Direct hypernym Transitive hypernym

Full system 54% 18% 27%

Detour-only 33% 31% 35%

Table 4.4.: Distance between frame evoking and target synset (RTE data).

of all cases, the frame evoking synset is a synonym or direct hypernym of the target. For
the remaining transitive hypernym cases, we also computed the average WordNet path
distance between frame evoking synset and target, which is about 3 for both system
modes. As the WordNet verb hierarchy is typically not very deep, the frames we assign
in this category are comparably general. For example, for the target life#n#6 which is
the synset for the lifespan of e.g. a battery, we assign the frame Quantity, evoked by
measure#n#3.

4.2.4. Discussion

Different types of missing coverage in FrameNet have different practical impact on the
task of assigning a frame to a given lemma. In cases where a suitable frame is avail-
able, the Detour can “bridge” missing LUs. This naturally enlarges the choice space
for the disambiguation task. For example, the noun bank is only annotated for the
frame Relational natural features, i.e., in the river bank meaning. Given the
synset bank#n#2, the Detour adds the competing frames Institutions, Organiza-
tion, Businesses, Intentionally create (via establishment), and Aggregate (via
group). As we have shown, the Detour weighting algorithm can select the best fitting
frame in many cases.

Moreover, the Detour can sometimes (heuristically) account for missing frames by
assigning more general or strongly related frames. For example, there is no frame that
describes a concept of acting strategically in order to reach some specific goal. The De-
tour assigns the frame Project to strategy#n#1 because the related words plan#n#1,
program#n#2, and scheme#n#1 are listed for this frame. Although this is not a 100%
fit, it might suffice for approximate semantic modeling.

A remaining issue is the treatment of cases, where only very few WordNet relatives
are available for a target word, or cases, where WordNet relatives evoke very many
frames. In both cases, evidence for all frames is typically low. We have conducted first
experiments for improving precision by including various thresholds into the weighting
algorithm. But as soon as they become effective, a large amount of recall is traded with
no clear optimal setting (see Reiter, 2007).

In cases, where there is no fitting frame available in FrameNet for a word (sense)
under consideration, the Detour should not suggest any frame (even if the target is
annotated for some frame in another reading). This is a problem for the Detour (as is
for related systems like Shalmaneser as well). While it should in principle be possible to
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devise thresholds that constrain the frame assignment if there is too little evidence, it is
hard to find a clear boarder between rare positive cases and errors/noise. It would be
helpful to have some control mechanism to correctly reject uncovered targets in advance.
First investigations of this problem are reported in Erk (2006) under the heading outlier
detection.

Future efforts should also be directed to the improvement of external word sense
disambiguation systems. In certain cases, close WordNet relatives map to distinct frames.
Thus, errors in the initial assignment of synsets immediately affect the quality of frame
assignment.

To conclude this section, as frames are general conceptual classes and thus to a large
extent language-independent, the method described carries over to other languages that
dispose of a counterpart of WordNet and FrameNet LU lists. We have tested our system
on the German GermaNet (Hamp and Feldweg, 1997) with German LUs from SALSA.
However, as both resources are currently much smaller than WordNet and the English
FrameNet lexicon, the results have to be taken with some care.
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SUMO classes Human Removing Artifact Substance

agent origin patient

WordNet senses gardener 1 empty 1 bucket 1 soil 2

The gardener empties the bucket of soil.

? ? ?

Figure 4.4.: WordNet/SUMO analyses.

4.3. Interfacing FrameNet and SUMO

Throughout this thesis, we approach the phenomenon of textual entailment using nat-
ural language analysis mainly on the levels of grammatical description and lexical se-
mantics. As we have argued, for a comprehensive model of textual entailment – like for
many other natural language processing tasks – it will at some point be necessary to
include additional, ontological knowledge. In this section, we will take SUMO as a typ-
ical representative of an upper level knowledge ontology and explore ways of accessing
the knowledge contained. For a full integration of the type of knowledge provided by
knowledge ontologies, we have to address two subtasks:

Natural language interface As the ontologies are developed in the context of knowledge
engineering, they typically do not have a (full) natural language interface. SUMO,
e.g., only provides access to its classes via the existing WordNet linking (Niles
and Pease, 2003). The axioms cannot be automatically accessed so far. Once we
can provide full SUMO analysis of natural language phrases and sentences, we can
enrich frame semantic analyses with additional knowledge contained in SUMO. For
example, we can heuristically derive “bridging inferences” from the axioms.

Reasoning In order to fully benefit from this knowledge, however, additional state-of-
the art reasoning capabilities are needed as the ontological knowledge is mostly
given as some variant of predicate logic.

Approaching both tasks would go far beyond the scope of this thesis. In the following
we want to approach the first task by showing how FrameNet can be used as an interface
to SUMO and how both resources could be linked with manageable manual effort.
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(=>

(and

(instance ?REMOVE Removing)

(origin ?REMOVE ?PLACE)

(patient ?REMOVE ?OBJ))

(and

(holdsDuring

(BeginFn

(WhenFn ?REMOVE))

(located ?OBJ ?PLACE))

(holdsDuring

(EndFn

(WhenFn ?REMOVE))

(not

(located ?OBJ ?PLACE)))))

Figure 4.5.: SUMO axiom from class Removing.

4.3.1. Accessing SUMO

Figure 4.4 illustrates the issue of accessing the information contained in SUMO for the
simple sentence (4.5).

(4.5) The gardener empties the bucket of soil.

What is displayed is the current state of the art – The headwords are mapped to ap-
propriate WordNet senses, which in turn are linked to SUMO concepts, via the available
WordNet-SUMO mapping. However, the SUMO axioms for Removing refer to partici-
pants like agent or patient and origin as, e.g., in the axiom displayed in Figure 4.5.
But the axioms cannot be filled with the appropriate arguments since information about
the regularities of the mapping between linguistic surface and SUMO arguments is not
yet available.

In contrast, FrameNet defines a frame Emptying and also provides linking informa-
tion for the respective roles in the form of syntactic realization and valency patterns as
displayed in Table 4.5 for the verb empty. From these valency patterns we can read off
that the pattern “X empties the Y”, where the agent is realized as external NP (sub-
ject) and the source as (direct) object NP is the most frequent usage of the verb empty
in the FrameNet annotations. The pattern instantiated by (4.5) is the second pattern
in the table. If we now had the information that the frame Emptying is compatible in
meaning with the SUMO class Removing and that the frame elements agent, source
and theme map to the SUMO relations agent, origin, and patient, respectively, we
can build a syntax semantics interface for SUMO. Consequently, a linking of both re-
sources would make it possible to automatically access SUMO axioms as we can use
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Number Agent Source Theme

(14) NP Ext NP Obj INI –

(1) NP Ext NP Obj PP[of] Dep

(2) CNI – NP Ext INI –

(1) CNI – NP Ext PP[of] Dep

(1) CNI – NP Obj INI –

(1) CNI – NP Obj PP[of] Dep

(1) PP[by] Dep NP Ext INI –

Table 4.5.: FrameNet valency patterns for the verb empty (frame Emptying).

available frame assignment methods.
The interface would enable accessing those SUMO classes that have a counterpart

in FrameNet. As a next step, one should generalize this to a standalone interface for
SUMO, which can then also be used to provide analyses for predicates which are not
covered by FrameNet.

Our plan for the rest of this section is to present a semi-automatic approach for
linking FrameNet frames and roles to SUMO classes and relations. We will also present
preliminary evaluation results derived from an exemplary linking of a sample of frames
and roles. However, our focus will more be on exploring the feasibility of this endeavor
than on presenting an ultimate result. As it is a natural division, we will treat the linking
of frames to classes and roles to relations separately and discuss both subtasks in this
order.

4.3.2. Linking Frames and SUMO Classes

Linking frames and SUMO classes is the easier part of linking both resources as we can
draw back upon the existing WordNet-SUMO mapping. Still, as FrameNet does not
(yet) provide a sense disambiguation for the lemmas in the LUs in terms of WordNet,
we are facing a disambiguation problem again. A more fundamental problem is that
we do not have any SUMO- (and frame-) annotated gold standard which we could use
to evaluate and refine the mapping to be devised. For the time being, we therefore
propose a straightforward mapping where disambiguation is based on redundancy. As
illustrated in Figure 4.6, we can map a given frame Frame X onto one or more SUMO
classes (Class X, . . . ) by taking all possible WordNet synsets for all of the frame’s LUs
and following the existing WordNet-SUMO mapping. The best class is determined by
a majority voting. By design, this method generates one or more SUMO class for all
frames that have at least one LU that is contained in WordNet. This applies to most
frames (715 out of 795).

In order to obtain a qualitative evaluation and also to address the question of how
both resources relate, we automatically generated SUMO classes for 50 randomly selected
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FrameNet WordNet SUMO

synset 1a

Frame X LU 1 synset 1b Class X

LU 2 synset 2a Class Y

... synset 2b
...

synset 2c

Figure 4.6.: Mapping frames to SUMO classes.

frames and manually checked the result. Table 4.6 lists the results for all frames that
have been mapped to SUMO classes. The other half of the frames has been mapped
to SUMO attributes and relations, which have a different ontological status in SUMO.
For the qualitative comparison, we will restrict ourselves to those frames that map to
SUMO classes, as they are most similar to frames. We classified the relation between
the frame and the assigned class into four categories as can be seen in Table 4.6. The
three categories “same range”, “frame broader”, and “class broader” describe relations
where the frame and the class either overlap fully or to a high degree. Almost 80%
of the cases fall into these categories. 20% of the cases relate frames and classes that
are not (or only loosely) related in meaning. Most of these errors are due to noise or
disambiguation problems and can probably be largely eliminated by refinement of the
mapping algorithm, e.g., by introducing a weighting mechanism like the one used in the
Detour. Some errors like the mapping of the frame Finish competition to the much
more specific class Game are harder to prevent. The frame contains a number of LUs
like tie and draw, which are linked to Game via the WordNet-SUMO mapping, but both
differ on the level of specifity in a way that we consider the mapping inadequate.

Overall, results of automatically mapping frames to SUMO classes are very promising.
More research will be needed to find out to what extent the mapping of frames to other
SUMO objects such as relations and attributes are plausible (see Reiter, 2006, for a
discussion).

4.3.3. Linking Roles and SUMO Relations

The mapping of frame semantic roles to SUMO relations is a “many-to-few” mapping
as the number of role-like relations in SUMO is in the magnitude of tenth while the
number of frame elements is in the magnitude of thousands. As it would be a huge effort
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Frame Class Same
Range

Frame
Broader

Class
Broader

Miss

Activity ongoing IntentionalProcess x
Keeping x

Becoming Process x

Calendric unit TimeInterval x

Cardinal numbers Device x

Change position on
a scale

Increasing x

Choosing Selecting x

Cooking creation Cooking x

Education teaching Communication x
Learning x

Finish competition Game x
Lost (Attr.)
Won (Attr.)

Intentionally act IntentionalProcess x

Intentionally create ContentDevelopment x
Creation x
Manufacture x

Judgment communi-
cation

Communication x

Leadership Guiding x

Locative relation Process x

Moving in place Motion x
Rotating x

Origin Nation x

Personal relationship SocialInteraction x

Political locales City x

Position on a scale Collection x

Scrutiny Investigating x

Self motion Walking x

Statement Stating x

7 10 6 6

Table 4.6.: Automatic frame - SUMO class mapping.

to manually map all roles, we suppose to make use of FrameNet’s and SUMO’s hierarchy
to reduce the number of items to be linked. Our idea for a semi-automatic approach is
to link both resources only on the top level of the respective hierarchies.
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FrameNet SUMO SUMO (simplified)

Objective influence
dependent entity

IntentionalProcess

patient

patient

Transitive action
patient

Maneuver

Intentionally affect
patient

Attack

patient

Attack
victim

Figure 4.7.: Mapping frame elements to SUMO relations.

If we only link the most general ancestor of a given frame element to a suitable top-
level relation in SUMO, it should be possible to induce mappings for frames elements
of more specific frames as illustrated in Figure 4.7 (left and middle). After mapping
the Objective influence.dependent entity role to IntentionalProcess.patient

(lower dashed arrow), we should be able to induce a mapping between more specific roles
and relations, e.g., Attack.victim and Attack.patient (dotted line).

As the relations in SUMO we consider comparable to semantic roles form a small,
universal set, which is used at all levels of specifity (see below), we can further simplify
the linking effort on the SUMO side by mapping top-level FrameNet roles directly to
SUMO relations like patient in Figure 4.7 on the right. This patient can then directly
be accessed, e.g., by the class Attack in a concrete link triggered by the frame Attack.

The quantitative dimension of the linking task can be adjusted to the user needs –
Linking a considerable portion of roles can be achieved with moderate effort making use
of the hierarchy; a complete linking is a larger effort. More concretely, if we restrict
ourselves to core frame elements, the current FrameNet database (Release 1.3) contains
1527 root elements, i.e., frame elements that do not “inherit” from any other frame
element. Figure 4.8 schematically displays a number of frames A . . . Z with their
respective elements a1 . . . z3. The frame elements printed in boldface are root elements.
As we want to gain from inheritance, we will focus on those frames that are hierarchically
linked to other frames. In the example displayed in the figure, we would thus disregard

96



4.3. Interfacing FrameNet and SUMO

Level
0

A1 A2 Z1 Z2 Z3

Level
1

B1 B2 B3 C1 C2 C3 C4

Level
2

D1 D2 D3 D4 E1 E2 E3 E4 E5 F1 F2 F3 F4 F5

Figure 4.8.: Frame element inheritance.

frame Z for the time being. In FrameNet, 499 of the 795 frames are linked via inheritance
or subframe relations, the two hierarchical relations which are relevant in this context.
Of these 499 frames, 57 frames are root frames, i.e., they do not inherit from another
frame, like the frame A in the figure.

If we map the 167 root elements of the root frames to SUMO, we cover 925 core
elements and 98 non-core elements via inheritance. In the running example, by linking
a1, we cover a1, b1, d1, c1, e2, and f1, for instance. For FrameNet, the ratio of linked
elements to covered elements is about 1:6. The core elements covered are roughly 2/3
of all core elements (1472) defined by the 499 linked frames. Here, one can see a huge
gain of using the hierarchy. If we continue the linking iteratively on deeper levels of the
hierarchy, the ratio of linked to covered elements naturally decreases. In FrameNet, the
ratio on the “first inheritance level” (frames B and C in Figure 4.8) is 1:1.6 (307 linked
root elements cover 505 elements). Consequently, if a complete coverage of all (core)
elements of the hierarchically linked frames or even all frames is intended, more effort is
needed.

So far, we have assumed that all frame elements have a counterpart in SUMO. In fact,
in a respective study on a set of 142 root frame elements, only 69 could successfully be
linked to counterparts in SUMO, 73 remained unlinked. Still, the majority of (inher-
ited) core elements (1.83 of 2.94 on average) had been linked. As one would expect,
some frame elements have been linked to multiple relations. For our sample of 50 anno-
tations from the FrameNet corpus we discussed in the previous section, we generated 13
different frame element mappings onto one or more SUMO role. The mappings, which
can be found in Table 4.7, are by and large appropriate. The multiple mapping for
Becoming.entity shows the difficulty of deciding for a unique relation. The FrameNet
database defines this frame element to be the ”Entity which undergoes a change, end-
ing up in the final state or final category”. The role patient is defined as ”a
participant [. . . ] that may be moved, said, experienced, etc.”, experiencer as ”[the
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Frame Element Counterpart in SUMO

Statement.message represents

Statement.speaker agent

Judgment communication.evaluee experiencer

Choosing.cognizer agent

Intentionally create.created entity patient

Political locales.locale located

Self motion.goal destination

Self motion.time time

Self motion.source origin

Self motion.self mover agent, patient

Becoming.entity patient, experiencer

Expectation.cognizer agent

Scrutiny.cognizer agent

Table 4.7.: Frame elements mapped to SUMO.

experiencer] experiences the Process”. From these definitions, one can only speculate
about how the usage of the roles is intended precisely.

The reasons why frame elements remain unlinked are heterogeneous. One type of
incompatibilities are frame elements which are based on linguistic considerations that
do not fit into the ontological categories in SUMO. For example, the frame Intention-
ally act has two core roles, agent and act. The former can be linked to agent in
SUMO. The latter has no counterpart in SUMO. In FrameNet, it is also often absorbed
in more specific descending frames as illustrated in (4.6) and (4.7). The frame Inten-
tionally create inherits from Intentionally act, but it does not provide a role
like act.

(4.6) [John]agent [produces jazz records]act. (Intentionally act)

(4.7) [John]creator produces [jazz records]created entity. (Intentionally create)

Issues related to the role concept in SUMO. Until now, we have treated SUMO rela-
tions as more or less direct counterpart of semantic roles in FrameNet. Yet, the “role
concept” in SUMO differs, which leads to some problems for the kind of mapping we
envisage. In SUMO, the relations we consider compatible with the concept of seman-
tic roles do not have a special status – a common class representing just them cannot
be found. Many role-like relations like agent and patient are instances of the class
CaseRole, but CaseRole’s documentation restricts it to physical objects. The relation
causes, for instance, is not in the class CaseRole, but in BinaryPredicate, a super-
class of CaseRole. BinaryPredicate, however, also contains more “technical” relations
structuring SUMO.
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Communication ContentDevelopment Communication

communicator agent agent

medium patient? patient

message patient?

topic

Table 4.8.: SUMO classes related to frame Communication.

Moreover, relations are not “defined” on certain classes. Instead, they are simply
used within axioms referring to a given classes. As the axioms of mother classes are
inherited by subclasses, the roles applicable to a more general class should also apply at
more specific classes. However, no information is provided on how axioms and relations
behave precisely in the course of inheritance.5

In order to get an overview of the “role-like” propertied used in actual SUMO ax-
ioms, we semi-automatically extracted candidates from the axioms. It turned out that
only a relatively small inventory of 14 relations is used: agent, attends, causes,
destination, experiencer, instrument, located, origin, patient, realization,
refers, represents, result and subProcess.

All in all, the SUMO role concept based on a small set of widely applicable relations is
somehow comparable with the linguistic concept of “case roles” and in fact the problems
that occur here unfortunately confirm this impression. As we will see, the interpretation
of, e.g., what a patient is in fact differs for different classes, which makes the linking
decisions much more difficult. As a problematic example, we want to discuss the issues
arising if we want to link the frame Communication to any of its two candidate classes
Communication or ContentDevelopment. The frame defines the core elements listed in
Table 4.8 on the left. First of all, in both cases, only two of the core roles have suitable di-
rect counterparts in SUMO. The communicator can consistently be mapped to agent.
Mapping the other roles is more involved. In the case of ContentDevelopment, the
problem is that the patient relation points to the class ContentBearingObject which
covers both, medium and message. Therefore, deciding for linking one or the other is
difficult. In the context of the class Communication, the patient is clearly used in the
sense of a medium. Here, the issue of consistently capturing a rich and diverse concept of
semantic roles using a small set of universals shows up. The issue becomes even more se-
vere if we take inheritance in SUMO into account. The upper part of Figure 4.9 displays
a central axiom of the class Communication. For better readability, the role relations
are displayed as a graph in the lower part of the figure together with some role relations
of two (transitive) superclasses ContentBearingPhysical and SocialInteraction. A
first observation is that the message of the communication, which seemed to be missing,
is “embedded” under the medium – the refers relation of the patient points to the mes-

5As a consequence, if, e.g., a class like Vehicle uses a property price and a subclass Car also does,
both prices’ values could be different for a concrete instance of the latter.
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(subclass Communication ContentBearingProcess)

(subclass ContentBearingProcess ContentBearingPhysical)

(subclass Communication SocialInteraction)

(=>

(instance ?COMMUNICATE Communication)

(exists (?PHYS ?ENTITY ?AGENT1 ?AGENT2)

(and

(refers ?PHYS ?ENTITY)

(patient ?COMMUNICATE ?PHYS)

(instance ?AGENT1 CognitiveAgent)

(agent ?COMMUNICATE ?AGENT1)

(instance ?AGENT2 CognitiveAgent)

(destination ?COMMUNICATE ?AGENT2))))

Communication ContentBearingPhysical SocialInteraction

?AGENT1 ?PHYS ?AGENT2 ?AGENT1 6≡ ?AGENT2

?ENTITY ?THING

agent
patient

destination

refers

represents

agent agent

Figure 4.9.: SUMO class Communication.

sage. Yet, in the superclass ContentBearingPhysical, the message is realized directly
by the relation represents. The superclass SocialInteraction in turn uses two agent

relations, which should correspond to agent and destination in Communication. It is
unclear, however, which agent corresponds to what. Summing up, we encounter a vast
number of direct, indirect or inherited role-like relations for the class Communication

and a stricter modeling is needed to arrive at a consistent overall picture.

4.3.4. Discussion

Our general impression is that the knowledge contained in SUMO and FrameNet bear
enough resemblance and offer sufficient connecting factors to be tightly linked. While
it should not be too too difficult to access knowledge contained in the SUMO axioms
to provide semantic information not contained in FrameNet, some theoretical questions
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regarding, e.g., the relation between frames and SUMO attributes have to be further
investigated. A wider research question concerns a common representation of knowledge
contained in FrameNet and in SUMO. While SUMO is logic-based, where, e.g., variables
denote events and objects like (patient ?BUY ?OBJECT), the basic unit in FrameNet
are frames, roles, and possibly complex strings as fillers like the red car in the yard for
the goods in a Commerce situation, and there is no standard translation into logic
available.

Our first results in linking FrameNet and SUMO are promising. The mapping of frames
onto classes can be automated. A considerable number of Frame Elements can also be
mapped onto SUMO relations with moderate effort. Yet, for now, a more comprehensive
linking of roles would have to be conducted “locally”, i.e., on the roles a given frame
and a given class. So, currently, we cannot fully exploit the possibility of reducing the
manual effort by utilizing the hierarchical structures. It would certainly be helpful if not
indispensable to annotate a corpus with SUMO classes and relations to be able to study
role relations in more detail, in particular if inheritance is involved. This corpus could
then also annotated with frames and roles for a contrastive comparison.

4.4. Summary of this Chapter

This chapter has been concerned with interoperability of FrameNet with other resources
pursuing the overall goal of alleviating different coverage issues. We presented the Detour
system that accounts for missing LUs within existing frames. It successfully manages to
assign correct or approximate frames in many cases by making use of WordNet’s better
coverage. It is used in the SALSA RTE system we present in the next section. We also
explored combining FrameNet with the SUMO ontology to use the former as a natural
language interface for the latter. A tight linking would allow to access “world knowledge”
from SUMO that goes beyond what FrameNet provides. Ultimately, it would also be
helpful to derive a standalone SUMO interface to cover gaps in FrameNet’s coverage.
We have shown that both resources bear enough resemblances for the semi-automatic
algorithm we proposed for linking to work. Still, some details have to be resolved,
especially within the structure of SUMO, before one arrives at the representations and
coverage that would support large-scale automatic systems like the SALSA RTE system.
We therefore only include SUMO classes in the SALSA RTE system (by way of the
existing WordNet mapping) and leave a full integration of SUMO for future work.
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In this Chapter, we describe the main contribution of our thesis – an approach to textual
entailment, which was implemented in the SALSA RTE system. In previous chapters,
we have introduced textual entailment, a promising inference framework to be used
in natural language processing applications. We argued that the level of predicate-
argument structure is well suited for representing interesting commonalities and diver-
gences between text and hypothesis pairs while being manageable in terms of complexity.
FrameNet turned out to be the most promising resource for the given task out of available
large resources capturing predicate-argument structure for English. It models variation
across predicates in a principled way and also contains some amount of background
knowledge – about typical situations, their participants, and relations. Still, FrameNet
so far has not been used for the task of modeling entailment (or comparable open do-
main inference tasks). Coverage issues are probably the main reason. We have explored
possibilities of interfacing FrameNet with related resources in order to alleviate cover-
age problems. The combination with WordNet implemented in the Detour system has
proved the most successful.

In this chapter, we will present an approach to textual entailment that is centered
around frame semantics, projected from a grammatical analysis. We show how graph-
based meaning representations of texts and hypotheses can be constructed that contain
information from LFG, FrameNet, and WordNet. The hybrid graphs keep the different
information sources separate. Still, interaction between the different layers is exploited
for a number of refinements and normalizations. Textual entailment “reasoning” is done
in a two-step procedure. First, a graph matching algorithm detects and marks compat-
ible parts in the meaning representations of hypothesis and text. Second, a statistical
model is trained on textual entailment corpora to decide entailment. The system design
is prepared for future extension. It includes some additional information derived from
the SUMO knowledge ontology and also approximates a few “deep” semantic phenomena
like negation and modality.

This chapter is structured as follows. In Section 5.1, we will give an overview of the
basic architecture of our system. In Section 5.2, we will describe the linguistic analysis of
text and hypothesis. Section 5.3 is concerned with the matching algorithm for computing
the directed overlap of the hypothesis with the text. Section 5.4 deals with the machine
learning architecture.

5.1. Basic Architecture

Textual entailment is typically treated with a combination of information from different
sources (see Section 2.6). Our focus is on predicate-argument structure. The linguistic
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Linguistic analysis
Text:

LFG + frames
Hypothesis:

LFG + frames

Determining overlap
of H and T

Rule-based matching: Match graph

Feature extraction

Entailment decision Machine learning: TRUE/FALSE

Figure 5.1.: Basic architecture of the SALSA RTE system.

analysis component of the SALSA RTE system is centered around frame semantics (see
3.3.4), which describes predicate-argument structure. The level of grammatical functions
serves as basic layer. It accounts for a number of more syntax-near variations, which
are indicative for textual entailment (see Section 3.2.2). The respective analyses are
provided by the wide-coverage, deep grammatical LFG framework.

Figure 5.1 gives an overview of the concrete modules and architecture of the SALSA
RTE system. It instantiates the standard RTE architecture described in Section 2.5.1.
The main stages are (i) a linguistic analysis of text and hypothesis, (ii) the computation
of the “structural and semantic overlap” of hypothesis and text, and (iii) a statistical
entailment decision. In-line with related approaches, we approximate textual entailment
by comparing “meaning representations” of hypothesis and text. The basic assumption
is that the more of the meaning of the hypothesis is covered by the text, the more
probable entailment holds.

In this chapter, we describe the approach and implementation. We will discuss the-
oretical considerations and practical issues as well as implementation details in one go.
Our principal focus is on the question as to whether it is possible to successfully cen-
ter an architecture for recognizing textual entailment around frame semantic analysis.
More precisely, (i) whether it is practically feasible to integrate frame semantic and LFG
information in a real system that has sufficient coverage, and (ii) whether it is possible
to identify patterns in the LFG/frame analysis that support or reject entailment. With
regard to statistical feature modeling, we are interested in gathering insights and ob-
serving tendencies rather than striving for optimized performance. In this component,
we follow current “best practice” and rely on standard machine learning tools.

5.2. Linguistic Analysis

In this section, we will present the details of the system’s linguistic analysis component
(see Figure 5.1). Text and hypothesis are both analyzed separately. The linguistic anal-
ysis itself can be divided into two main stages, which are displayed in Figure 5.2. Below,

104



5.2. Linguistic Analysis

Input sentence(s)

LFG
f-structure

Shalmaneser/Detour
frames & roles

WordNet WSD
synsets, SUMO classes

Integration

F-structure with
semantic projections

Enrichment

Additional rule-based frame
assignment and normalization:
named entities, peripheral
roles, modality, co-reference

Figure 5.2.: Linguistic analysis.

we will explain these stages in detail. In the first stage (Section 5.2.1), information,
which is generated by different sources in isolation (LFG, Detour, Shalmaneser, WSD
system), is integrated into one layered representation format. In the second stage (Sec-
tion 5.2.2), this integrated linguistic analysis is further enriched and normalized. Finally,
Section 5.2.3 gives a short overview of the technical realization of the component.

5.2.1. Integration of Linguistic Analysis Components

The three primary types of linguistic analysis are provided by resources we have intro-
duced in Chapter 3 – (i) an LFG analysis by the XLE parser, (ii) a frame semantic
analysis by the Shalmaneser and Detour systems, and (iii) WordNet synsets and SUMO
classes by components of Patwardhan et al. (2005); Niles (2003). The three analysis
tools are run independently and in parallel on the input. The primary output for a
given sentence consists of (i) LFG c-structure and f-structure, (ii) Collins parse with
frames, and (iii) ontological information in tuple form (word, synset, SUMO class).

These different types of information are only partly compatible. We created an inter-
face, which uses LFG f-structure as backbone and follows the LFG projection strategy to
integrate all information into a uniform representation, which keeps the different layers
apart.

Within LFG, c-structure and f-structure are linked by a so-called projection. This
architecture has been extended to a semantic projection, e.g., by Halvorsen and Kaplan
(1988); a frame-semantic projection has been proposed by Frank and Erk (2004). In
the SALSA RTE system, we implemented a frame semantic projection and generalized
this approach by devising a second projection from the frame semantic layer onto the
ontological layer. The resulting structure is a tripartite graph like the one shown in
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F-structure Frame Semantics Ontology

estimate

pres Coming to believe

declarative estimate#v#1

f(0) s(45) s(64)

Reasoning

f(23) s(59) s(99)

pers

we

pred

tense
stmt type

synsem link

synsem link

subj

ont

ont

agent

wordnet

sumo

frame

cognizer

pron type
pred

Figure 5.3.: Analysis of We estimate.

Figure 5.3 for the small fragment We estimate of (5.1).

(5.1) We estimate that the Big Bang happened 20 years ago.

The left-hand side of Figure 5.3 shows a graph representation of (most parts of) an
f-structure for the given fragment (the dotted edges can be ignored for the moment).
Nodes representing f-structure predicates are labeled with indices of the form f(n). The
first two words of (5.1) are represented by the nodes f(0) (= predicate estimate) and
f(23) (= predicate we). Both are linked via a subj edge because that the latter is
the grammatical subject of the former. Both predicates are additionally annotated with
grammatical information via edges to nodes labeled with atomic values such as pres for
the tense of the verb.

The dotted edge labeled synsem link represent the projection from f-structure to
frame semantics. Semantic nodes are labeled s(m), e.g., the semantic node projected
by the main predicate is s(45). Like for the f-structure nodes, features of the semantic
nodes are represented as edges to atomic values. For example, Coming to believe is
the frame of s(45). Semantic roles are represented as re-entrances like the cognizer

edge pointing from s(45) to s(59), the semantic node projected by we. In the case of
this pronoun, the semantic projection is “empty” as no (frame) semantic information is
available.
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The semantic nodes are linked to ontological information via a second projection
(ont). For example, the ontological node projected by s(45) is s(64). It provides the
corresponding WordNet synset (estimate#v#1) and SUMO class (Reasoning). As the
design of a reasoning module for SUMO knowledge is beyond the scope of this thesis,
an integration of a FrameNet-SUMO role mapping like the one presented in Chapter 4
(the gray part in the figure) is left for future work.

We generate a tripartite graph like the one we have shown above for each text and
hypothesis.1 More formally, each graph consists of a set of nodes Nodes and a set of
edges Edges such that:

Nodes = G ∪ F ∪ O (5.2)

(G = grammatical nodes, F = frame-nodes, O = ontological nodes)

Edges = FF ∪ SP ∪ SR ∪ OP ∪ OK

FF ⊆ G × G (f-structure features)

SP ⊆ G × F (semantic projection)

SR ⊆ F × F (roles)

OP ⊆ F × O (ontological projection)

OK ⊆ O × O (ontological knowledge)

This formalization will be relevant in Section 5.3, when we describe the matching
algorithm comparing hypothesis and text.

Interface Design

Interfacing the two central layers of the model, LFG and frame semantics, is difficult and
error-prone. The task is to port the frame and role annotation generated by Shalmaneser
onto LFG f-structures. As both types of information are linked to different syntactic
parses (Collins vs. LFG c-structure), issues range from different tokenization and treat-
ment of abbreviations, numbers, etc. to different syntactic analysis caused by ambiguity
or fragmentary parses. Figure 5.4 shows an example of a fragmentary LFG c-structure
and the corresponding Collins parse. Shalmaneser assigned the FE employer to the
prepositional phrase (PP) for the Les Paul Legacy of the Collins parse. In the corre-
sponding LFG parse, however, the company name has not been completely recognized.
Therefore, a matching prepositional phrase cannot be found in the LFG parse.

A fundamental design decision concerns the interface layer used for exchange between
the different resources. Three natural choices are given below.

Syntactic constituents A straightforward idea is to induce a mapping of corresponding
syntactic constituents of both parses. This works fine if the parses are by and large

1While the basic linguistic components work sentence-based, it is straightforward to extend this type
of representation to multi-sentence fragments. In the system implementation, the respective graphs
representing single-sentences are tied together with a new top node. We will discuss further potential
of frame semantics for extending semantic analysis across sentence boundaries in Chapter 7.
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Figure 5.4.: Collins parse and fragmentary LFG c-structure.

the same, i.e., (i) both parsers exhibit the same level of granularity and (ii) both
parsers analyze actual sentences similarly. Neither of these conditions is met if we
compare the Collins and LFG parser. The c-structures are more fine-grained than
the relatively flat Collins parses. Moreover, differences in parse results are found
relatively frequently. Above, we have already illustrated a problem that can occur
in case of a fragmentary parse. Comparable problems can occur, e.g., if ambiguities
are resolved differently.

Head words/lemmas Another option is to use the head words of the constituents that
realize frames and roles in the Collins parse to find corresponding words (predi-
cates) in the LFG c-structures (f-structures). While this is robust with respect to
different parses, information about the exact yield of the original constituents can
get lost.

Surface spans As parsers typically provide span information, it is also possible to use
this as interface layer. One problem is that different parsers exhibit systematic
differences, e.g., regarding the question of how punctuation such as hyphenation
is counted. Another problem are actual parse errors, which lower the robustness
of this approach.

We have weighted all options against each other. For the given parsers, using head
words/lemmas works best. As we focus on the (semantic) head words of role fillers
anyway, the danger of “cutting off” peripheral parts of the role fillers’ yield is not an
issue at all.
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To conclude this part, implementing the ontological projection was less difficult. As it
is realized as a subsequent step to the semantic projection, most problematic cases have
been treated within the semantic projection already. In short, if the semantic projection
succeeds, the ontological projection typically also does.

5.2.2. Enrichment and Normalization

In this section, we will be concerned with the second processing step of the linguistic
analysis component (see Figure 5.2) – enrichment and normalization of the analyses.
Newly extracted or refined information can be represented in two ways:

1. New information can be included by generating, deleting or modifying existing
types of representations such as frames, SUMO classes, or LFG f-structure ele-
ments. This has the advantage that subsequent processing steps, which treat these
structures according to their “standard interpretation”, need not be adjusted. An
example where we proceed like this is the introduction of new frames based on
information from the LFG named entity recognizer.

2. Alternatively, special operators can be introduced in the graph for marking certain
phenomena. In order for them to become effective, it is necessary to provide a
suitable “operational interpretation” in subsequent reasoning steps. The treatment
of modality will follow this scheme – modality markers are introduced on certain
nodes in the graph and in the subsequent comparison of hypothesis and text,
matching is blocked if modalities are incompatible.

In this section, we will demonstrate a number of enrichments and normalizations of
both types. In Chapter 2, we have argued that the levels of linguistic analysis and phe-
nomena observable in textual entailment data that can influence the entailment decision
are manifold. A comprehensive treatment of all of them is currently out of reach. In
our refinement stage, we focus on special treatment of the topics listed below. Their
choice is motivated on the one hand by the existence of respective corpus examples. On
the other hand, we chose topics for which suitable information is provided by the given
resources.

• Named Entities

• Peripheral roles

• Temporal order of events

• Modality

• Co-reference

This list is incomplete, of course. The architecture is open to and prepared for future
extension. Technically, all refinements have been realized using the XLE re-write system.
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Figure 5.5.: Semantic enrichment: named entities.

For illustration, we will present some of the respective re-write rules where appropriate.
The complete re-write grammar we generated consists of roughly 500 lines of code,
containing about 45 rules and 20 templates and macros. The XLE system automatically
expands this hand-written code into 400 basic re-write instructions.

Named Entities

FrameNet defines a frame People, which is evoked by words like woman or fellow
referring to human beings. Proper names are not listed in the LUs for this frame. In
order to provide a uniform semantic representation, we assign this frame to individuals
referred to by proper names as well. To this end, we use information provided by the
LFG parser’s named entity recognizer. Figure 5.5 on the left shows an initial frame
analysis of (5.3) by Shalmaneser, where Larsson is not assigned a frame.

(5.3) Henrik Larsson leaves Sweden.

The LFG named entity recognizer tags the respective predicate as human. On the
basis of this information, we generate an enriched frame semantic representation. It is
displayed in Figure 5.5 on the right. Larsson evokes a People frame and the name
modifier Henrik is the filler of the person role. Technically, this is achieved by two
rewrite rules. Simplified versions of the rules are displayed below.2 The rules are trig-
gered when their antecedent, i.e., the part above the arrow (==>) is met. A + indicates
that the fact must be present in the analysis (e.g. +’S::’(X,SemX)). In the simplest
case, the facts on the right of the arrow are added to the analysis.

+human(X,+), nsem_proper_type(X,name)

+’S::’(X,SemX)

==> frame(SemX,’People’), ’Person’(SemX,SemX).

2Throughout this section, most rules displayed have been simplified for better readability.
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This first rule is triggered if an f-structure node X has the property human and the value
name is found under a certain path, which is “hidden” in the macro nsem proper type.
In the consequent of the rule, a new People frame is assigned to the semantic projection
(S::) of this f-structure node. A self-referential person role pointing back to the frame
is generated, too (not shown in the figure above). This facilitates later access of all
constituent parts of the name. A second rule translates all LFG name modifiers into
person roles of the frame:

+frame(SemX,’People’), +’S::’(X,SemX),

+name_mod(X,Set), +in_set(Y,Set), +’S::’(Y,SemY)

==> ’Person’(SemX,SemY).

It is triggered if a People frame SemX already exists and its respective f-structure
node X is connected to another node Y via a name modifier (name mod) edge. This
configuration is found in the example above after the first rule has generated the People
frame. Henrik is analyzed as name modifier of Larsson by the LFG. In such a case, a new
person role is generated that connects the semantic projections of both nodes (SemX,
SemY). In the figure, the result is the person role between s(27) and s(41).

We designed comparable rules that translate various other types of information pro-
vided by the named entity recognizer into frame semantics. For example, in (5.3) above,
the information that Sweden is a location triggers the generation of a Locale frame, as
can be seen in Figure 5.5 as well.3 Other examples are the frames Business, triggered
by the category company, Leadership, triggered by title, or Political locales,
triggered by country and city. The complete grammar snippet for treating named
entities is listed in Appendix B.

Peripheral Roles

In Section 3.2.2, we observed that modifiers like temporal adverbials can be equally
important for entailment decisions as proper arguments. The same holds for the level
of semantic arguments, where peripheral semantic roles can be as important as core
roles for the detection of entailment. However, in the FrameNet corpus peripheral roles
like time are underrepresented, i.e., annotated much less systematic than core roles like
agent. This observation can be underpinned by comparing the FrameNet annotation
with an RTE corpus we manually annotated for evaluation purposes (see Section 6.4.1).
Table 5.1 contrasts the distribution of a selected set of frame elements in the FrameNet
corpus with the distribution in the RTE corpus (in the table, we have conflated frame
elements from different frames like Practice.agent and Daring.agent into agent
in order to show the general tendency).

In the RTE annotation, peripheral roles are annotated much more often than in the
FrameNet annotation. For example, the place role is annotated about three times as

3A normalization, which can also be seen Figure 5.5, is that we provide a uniform grammatical analysis
as explained in Section 3.2.2 – passivization is normalized using “deep” subject dsubj and “deep”
object dobj functions.
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Role type Role name Percentage in FrameNet
annotation (322337 roles)

Percentage in RTE anno-
tation (3346 roles)

Core
Agent 4.4 3.6
Theme 3 2.5

Periph.
Time 1.6 6.1
Place 0.9 3.2

Extrath.
Internal cause 0.2 0
Iteration 0.01 0

Table 5.1.: Distribution of selected roles.

often as in the FrameNet corpus (3.2% vs. 0.9%) while the percentage of core roles such
as theme is comparable (2.5% vs. 3%). As a consequence of this imbalance in the
FrameNet corpus, Shalmaneser, which is trained on this data, is not able to assign the
peripheral roles as reliably as core roles.

LFG provides a semantic classification of modifiers, which we can use to recover the
central peripheral roles time and place on grounds of LFG adjunct classes time and
loc. The implementation comprises several rules and rule macros. We will show one of
the five respective rules and macros as an example below.

(+adjunct(X,Y) | +obl(Z,X) ),

+ptype(Y,sem),

((+psem(Y,PS), +in_set(’loc-dir’,PS)) | (+psem(Y,PS), +in_set(’loc’,PS))),

+obj(Y,Z),

+ntype(Z,NT), +nsem(NT,NS), +proper(NS,PR), +proper_type(PR,location),

+’S::’(X,SemX), +’S::’(Y,SemY)

==> location(SemX,SemY).

This rule treats cases, where a proper name within a prepositional phrase has been
recognized as the name of a location as in (live) in Tokyo. In brief, this rule fires if a
predicate X has an adjunct or oblique argument Y, which is a locative preposition like
in (| represents disjunction). Moreover, the object of the preposition (Z) has to be
classified as a proper name of type location. In this case, we add the information that
the semantic projection of Y (SemY) fills the location role of the semantic projection
of X (SemX).

The manual creation of such rules is relatively time-consuming as it requires insight
into a number of LFG-specific details on the one hand and at the same time inspection
of a large number of examples is needed in order to cover the most frequent cases. For
future development of this or comparable systems, tools supporting the task of defining
such rules would be very helpful, possibly with a graphical user interface. Another option
could be to try to extract and learn such rule patterns from (manually) annotated data.
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A Larger Pattern for RelativeTime

Even though the RTE corpora are assumed not to require reasoning about time, some re-
lated approaches implemented special components for modeling, e.g., temporal sequence
of events (e.g., Tatu et al., 2006, see Section 2.5.3). While it is not a central aspect in
FrameNet either, there is a frame Relative time, which describes relative order be-
tween two events. On this basis, we implemented an analysis of relational time adverbs
such as when or during.

The example also illustrates how a compact rule template can translate complete con-
structions into complex frame configurations. In the code snippet below, the respective
rule template (operator ’::’) is listed together with some of the predicates that trigger
it.

time_adjunct(TimeAdjunct) ::

+pred(X,TimeAdjunct),

+adjunct(X,Set), +in_set(Y,Set)

+obj(Y,Z),

’S::’(X,SemX), ’S::’(Y,SemY), ’S::’(Z,SemZ)

==> time(SemZ,SemX), frame(SemY,’Relative_timeDEF’),

’Focal_occasion’(SemY,SemX), ’Landmark_occasion’(SemY,SemZ).

time_adjunct(after).

time_adjunct(as).

time_adjunct(before).

...

The result of an application of this template is probably best explained by way of an
example. Figure 5.6 shows a partial analysis of (5.4). The frame Relative time is as-
signed to as, the focal occasion is (the news) come(s) and the landmark occasion
is (doctors) warn(ed). Incidentally, this figure also shows our representation of multi-
ple frame assignment. We assume LFG’s way of representing sets, with the predicate
in set. This can be seen for warn, which is linked to two frames.

(5.4) The news comes as doctors in Hong Kong warned that people who survive Sars
may suffer permanent lung damage and may suffer a relapse.

Note that we are still concerned with semantic analysis and refinement. Implemen-
tations of temporal reasoning would be situated in subsequent processing components.
Along these lines, it is possible to model other more complex relations between frames
like causation, given that the respective information is either already provided by LFG
or can be acquired elsewhere. Ideally, theoretical work on textual entailment would
substantiate and inspire work on future extensions of this type.

Modality

While phenomena like quantification or scope ambiguities do not play a central role in the
current textual entailment data, modality occurs relatively frequently, but is typically
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Figure 5.6.: Semantic enrichment: RelativeTime.

neglected by existing systems (Pennacchiotti, 2007). By the time of writing of this thesis,
Nairn, Condoravdi, and Karttunen (2006) published an approach for a “shallow”, yet
comprehensive treatment of modality on the level of dependency trees. In fact, what
we had implemented can be seen as a simplified variant hereof. Instead of modeling the
interaction between embedded modal operators within a sentence, we only consider one
operator at a time and later compare the operators of text and hypothesis. Inspired
by the two classical operators of modal logic, we introduce three different modality
operators:

box This operator represents logical necessity. It is triggered by predicates such as must,
have to or fut, the LFG marker for will/shall-future.

dia The diamond operator represents logical possibility, triggered by can, may, or might.
In conditional if-then construction, we also mark both parts as dia.
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Figure 5.7.: Analysis of example (5.5).

neg This operator marks negation.

Every node embedded under a node introducing a modality is marked with the re-
spective label described above. For example, in Figure 5.7, an analysis of (5.5), the
modality of type dia is introduced by the node f(3). Therefore, nodes f(4)-f(11),
as well as the semantic nodes s(35)-s(88) are marked dia. At the same time, the
nodes f(17) for mayor and the corresponding frame Leadership are outside the modal
scope and thus unmarked. In the comparison of hypothesis and text, we later check
whether the modalities of potentially corresponding nodes and edges are compatible
(see Section 5.3.7).

(5.5) The mayor announced he would allow gay nuptials.

Formally, we extend the set of nodes of the graphs by elements of Mod = {box, dia, neg}
and extend the set of edges by edges M from any node to these atomic values (M ⊆
Nodes × Mod).

Co-reference

Co-reference refers to a number of linguistic phenomena that have in common that the
referents of certain linguistic expressions are identical. While some tasks like pronoun
resolution in general or the identification of nominal chains are intricate, a number of
regular phenomena can be treated on the basis of a grammatical analysis. It is, e.g.,
possible to model appositions like in (5.6), where one entity is referred by different
descriptions. Likewise, the antecedent nouns for relative pronouns like in (5.6) can be
identified.
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(5.6) US Federal Reserve boss, Alan Greenspan, sees increased US trade
protectionism and ever-larger budget deficits as the biggest threats to the US
economy.

(5.7) Scientists have discovered a gene that produces a hormone that raises the life
expectancy in mice by 30 percent.

LFG marks appositive constructions as parenthetical. In the system, this informa-
tion triggers a respective re-write rule. We then represent these phenomena by intro-
ducing a special operator, coref, which links the respective f-structure nodes. Thus,
the set of edges in the formal graph model is extended by edges Cor connecting LFG
f-structure nodes (Cor ⊆ G × G).

Still, it would be beneficial to have a general treatment of pronouns, as well. For the
time being, we have implemented a rough heuristics, which marks all preceding nouns of
a pronoun as possible antecedents with another special operator. As there has been some
recent progress in the performance and availability of broad-coverage pronoun resolution
systems (e.g., Morton, 2000; Uryupina, 2007), inclusion of an external pronoun resolution
system would be an option for future works.

5.2.3. Implementation of the Linguistic Analysis Componen t

The linguistic analysis component is for the most part implemented in the XLE rewrite
system of Crouch (2005), which is a convenient interface to f-structure information.
The architecture is modular such that it is easy to change or replace certain modules.
For exchange with other components like Perl Scripts or Prolog programs we need for
subsequent computations, we transform the XLE internal format into a simple Prolog-
like format we call FEF (Frame Exchange Format). This format is not only well suited
for manual inspection, it also makes it easy to share data. An example FEF is presented
in Appendix C. Incidentally, figures like 5.6 in this section are screenshots from a
FEFViewer, we designed.4

5.3. Determining Directed Overlap of Hypothesis and Text

After text and hypothesis have both been analyzed linguistically, they are interpreted
with respect to their potential entailment relation (see Figure 5.1). This “entailment rea-
soning” includes among other things an interpretation of the special operators marking
modality and co-reference. We take directed overlap of hypothesis and text as entail-
ment measure. It is computed by a graph matching algorithm. Section 5.3.1 introduces
the notion of directed overlap as entailment measure. In Section 5.3.2, we present the
graph matching strategy and then go through different match types from LFG node
matching (Section 5.3.3) to semantic role matching (Section 5.3.6). We finally illustrate
how context-dependent inferences on background knowledge can be incorporated into
the matching architecture in Section 5.3.8.

4Thanks to Alexander Koller, who implemented the FEFViewer.
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5.3.1. Directed Overlap as Entailment Measure

Textual entailment is typically approximated via some sort of “semantic similarity”
between text and hypothesis (cf. Pennacchiotti, 2007). This is effectively often imple-
mented by computing a variant of directed overlap of (meaning) representations of text
and hypothesis.5 The overlap is directed for two reasons. First, textual entailment is
a directed notion – on a conceptual level, an occurrence of vehicle in the hypothesis
is covered by an occurrence of car in the text, but not vice versa. This directedness
immediately carries over to the computation of overlap. Schematically, (car,vehicle)
would belong to the overlap of a given hypothesis and text, while (vehicle,car) would
not.

Second, it is decisive how much material of the hypothesis can be related to material
in the text. Ideally, one would use meaning representations that establish a linear
correlation of overlap and entailment. This would mean that the more material of
the hypothesis overlaps with the text, the more probable entailment holds. The only
issue would be finding an appropriate threshold for the entailed/non-entailed decision.
Yet, the question of how different types of information precisely contribute to the task
of detecting textual entailment is largely an open research question. We allow access to
all information we have represented on the different analysis layers and use statistical
techniques such as feature selection to identify the most relevant factors.

5.3.2. Matching Strategy

We compute overlap between hypothesis and text by detecting matches between nodes
and edges. The matching process is implemented in the re-write system we used for
the processing of the linguistic analyses, too. The matching result is stored in a third
structure we call match graph. Matching nodes and edges in text and hypothesis license
new nodes and edges in the match graph. In the following, we will distinguish elements
of the three graphs by subscripts text|hyp|match.

Structure of the match graph. The match graph is a collection of matching nodes,
which can be connected by edges. Formally, we represent it by two sets Nodesmatch and
Edgesmatch. Each element of Nodesmatch is a triple of the form < matchTY PE, ntext, nhyp >,
which represents the type of match and and a pair of matching nodes – one from the
text and one from the hypothesis such as < matchframe, s(23), s(45) >. These triples
are the nodes of the match graph. Their design makes it possible to trace back (i)
which are the two original nodes and (ii) what type of matching licensed the node. The
edges in Edgesmatch consist of pairs of matching nodes. They are also labeled with a
match type. The match graph is the union of all different types of matching nodes and
matching edges:

5As the concept of textual entailment is theory-neutral, some approaches leave implicit what is com-
puted precisely. Formal notions that are used alternatively to overlap include embedding and align-

ment.
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Text Hypothesis

n2text n2hyp

n1text n1hyp

edget edgeh

Figure 5.8.: Edge match requires matching nodes.

Nodesmatch := NMlfg pred ∪ NMlfg coref ∪ NMlfg anaph ∪ NMlfg wn ∪ NMframe id ∪
NMframe rel ∪ NMframe detour ∪ {< dummy, nn, nn >}

Edgesmatch := EMlfg all ∪ EMlfg subcgf ∪ EMlfg modgf ∪ EMrole strict ∪ EMrole

Below, we will present the different match types one by one. Incidentally, the “dummy”
node in Nodesmatch serves as target node for matching FE edges with unmatching fillers
(see below).

The matching process. Edges can only match if both source and target node match.
This configuration is illustrated in Figure 5.8, where dotted lines represent node matches.
For this dependency, the matching process is divided into two subsequent steps – first
all node matches are established and then edges are matched. We do not prevent nodes
and edges in text and hypothesis from matching multiple other nodes. This matching
strategy is declarative in contrast to procedural approaches that implement, e.g., a top-
down strategy which embeds the hypothesis into the text using a tree editing algorithm.
We understand the match graph as a collection of factors possibly relevant for entailment.

Node and edge matches represent different aspects and degrees of similarity. We clas-
sify matches according to their levels of analysis, e.g., grammatical or semantic. Where
appropriate, we define different matching conditions, e.g., two frames can match exactly
if their names are identical, but two frames can also match heuristically if they are related
via a frame relation. The different match types are represented by different labels of the
matches recorded in Nodesmatch and Edgesmatch such as < matchframe−id,Ntext,Nhyp >.

All three graphs, the match graph and the original graphs of text and hypothesis are
input of the subsequent feature extraction component. Later, we will see that the size of
connected sub-graphs in the match graph is a good indicator for entailment. This could
be taken as a starting point for the development of “textual entailment algorithms”.
Below, we will detail the matching process, focusing on central match types related to
LFG f-structure, frame semantics, and the treatment of modality.
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5.3.3. LFG Node Matching

On LFG f-structure level, we measure the “lexical and structural” similarity of hypothesis
and text. To this end, we consider matching nodes (predicates) and matching edges
(features). Node matches of different types are established under the conditions below.
Different match types are defined as follows:

Identity If two predicate nodes in text and hypothesis are identical, the matching nodes
are included in NMlfg pred as described formally below:

< matchlfg pred, ntext, nhyp > ∈ NMlfg pred if ntext ∈ Gtext, nhyp ∈ Ghyp and
pred(ntext) = pred(nhyp)

6

Note that description of the graphs of hypothesis and text like Gtext refer to defi-
nition (5.2).

Structural relatedness This covers cases where two nodes in either text or hypothesis
are labeled as co-referential in constructions like appositions or relative clauses, as
explained above. A node from the respective sentence can be identified to match
both the identical phrase and the co-referential one. For example, a node labeled
invasion in the hypothesis can be matched with the nodes invasion and which in
the text, if they occur in the relative construction invasion, which was sponsored
[. . . ]. The co-reference can occur either in text or hypothesis:

< matchlfg coref , ntext, nhyp > ∈ NMlfg coref if ntext ∈ Gtext, nhyp ∈ Ghyp and
(∃nt ∈ Nodestext : (coref(nt, ntext) ∧ label(nt) = label(nhyp))) ∨
(∃nh ∈ Nodeshyp : (coref(nh, nhyp) ∧ label(nh) = label(ntext)))

Anaphoric relatedness This match type considers nodes which are marked as co-refe-
rential by the preliminary treatment of anaphora. As in the case of structural
relatedness above, a node can match both, the antecedent and the anaphora in
the paired sentence. The definition is similar to the one for structural co-reference
above, only the match type is NMlfg anaph here and the predicate tested for is
ant set instead of coref .

Semantic relatedness In order to allow some semantic variation, this type of node
matching is triggered whenever two dissimilar predicates are related in WordNet
with a path length of at most 2 in the hypernym hierarchy. This method flexibly
abstracts away over part of speech and particular readings in terms of synsets.
It effectively determines the shortest path between two lemmas in WordNet. For
example, this allows to relate use (estrogen) and take (estrogen).

6As the only purpose of this notation is to provide clarity, we keep it semi-formal and leave out
definitions of self-explanatory elements like the function pred, which returns the predicate values of
f-structure nodes.
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< matchlfg wn, ntext, nhyp > ∈ NMlfg wn if ntext ∈ Gtext, nhyp ∈ Ghyp and
WN distance(pred(ntext), pred(nhyp)) ≤ 2

In the implementation, WordNet distance (WN distance) between identical lem-
mas is set to infinite, thus preventing spurious matches. It is computed in an
undirected manner, thus measuring similarity rather than entailment. A future
possibility is to experiment with a directed notion.7

The latter two match types (anaphoric and WordNet relatedness) are “weaker” than
the first two in the sense that they are based on heuristics. This bears the danger
that arbitrary matches between nodes of text and hypothesis are established. To avoid
over-generation, we constrain these match types in such a way that they only apply if
a subsequent edge match is justified. This prevents unrelated nodes from completely
different parts of text and hypothesis from matching. So, after edge matches are estab-
lished, spuriously matching nodes have to be removed. To this end, we define a new set
of matching nodes Nodes′match, where the unwanted nodes do not occur:

Nodes′match := Nodesmatch − {< matchlfg wn, ntext, nhyp > ∈ Nodesmatch|
¬∃Edge ∈ Edgesmatch :
(from(Edge,< matchlfg wn, ntext, nhyp >) ∨ to(Edge,< matchlfg wn, ntext, nhyp >)}

In short, the new definition of matching nodes requires that each node of match type
lfg wn in the match graph has an incoming or outgoing edge. The predicates to and
from select the match node triples that constitute the endpoints of the edge. Match
nodes licensed by anaphoric relatedness are treated analogously.

5.3.4. LFG Edge Matching

Feature (edge) match is triggered only if both the node annotated with the feature and
the node representing the value match. We distinguish the following three types of
feature matches:

All This category marks all matching edges (“features”) from LFG analysis. Edge
matching LFG nodes is defined as follows:

< matchlfg all, < m1, n1text, n1hyp >,< m2, n2text, n2hyp >> ∈ EMlfg all if
< m1, n1text, n1hyp >∈ Nodesmatch, < m2, n2text, n2hyp >∈ Nodesmatch and
∃edget ∈ FFtext, ∃edgeh ∈ FFhyp :

7Already in the undirected variant, the number of WordNet matches is low, e.g., in the RTE-2 test set
containing 800 sentence pairs, we count 85 occurrences (that meet the further condition of licensing
a new edge, see below). Features of this low frequency are typically ignored by machine learners.
Therefore, it will be necessary to combine this feature with other, related features to become effective
in machine learning.
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from(edget, n1text)∧ to(edget, n2text) ∧ from(edgeh, n1hyp)∧ to(edgeh, n2hyp) ∧
label(edget) = label(edgeh)

Basically, two matching nodes must be found such that the respective original
nodes in text and hypothesis are connected by an edge with identical label (see
Figure 5.8 for a graphical display). Note again that description of the graphs of
hypothesis and text like FFtext refer to definition (5.2).

Subcategorized This match type marks only the governable LFG functions, including
normalized grammatical functions subj, obj, dsubj, dobj, as well as oblique
arguments and complements obl, comp, xcomp.

The formal definition is like the one above, but the match type is EMlfg subcgf

and the additional constraint is added that label(edget) (= label(edgeh)) must be
in {subj, obj, dsubj, . . . }.

Modifying This marks only the modifying “semantic functions” adjectives, modifiers,
and possessive relations (adj, mod, poss). Again, the definition is like the one
above. The match type is EMlfg modgf and the constraint is that label(edget) (=
label(edgeh)) must be in {adj,mod, poss}.

All different match types are represented separately such that it is possible, e.g., to
derive interdependencies among them in the statistical model.

5.3.5. Frame Matching

In the simplest case, a frame in the hypothesis is matched with a frame with an identical
label in the text. For frame semantic nodes, the matching is defined as:

< matchframe id, ntext, nhyp > ∈ NMframe id if ntext ∈ Ftext, nhyp ∈ Fhyp and
frame(ntext) = frame(nhyp)

This applies only in cases, where a frame in the hypothesis and in the text are identical,
which is a very strong condition. First of all, according to classical entailment, a frame in
a hypothesis might be more general than a frame in the text. For example, “X is walking”
entails “X is moving”, and indeed, the respective frames Self motion and Motion
stand in an inheritance relation. This pattern should apply to textual entailment, too.
Therefore, we added a match type based on hierarchical information, checking direct
inheritance:

< matchframe rel, ntext, nhyp > ∈ NMframe rel if ntext ∈ Ftext, nhyp ∈ Fhyp and
superframe(frame(nhyp), frame(ntext))

Moreover, as different frames often highlight certain meaning components of situations
(e.g. Ellsworth, Erk, Kingsbury, and Pado, 2004), it can easily happen that the frames
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assigned in text and hypothesis differ slightly while being largely compatible in meaning.
Therefore, a more realistic matching condition would also identify highly similar frames
as matching. Ideally, the reliability of the match could be calculated from the “semantic
distance” of the two frames under consideration.

To date no frame semantic distance measures have been defined. In the absence of
a reliable existing frame distance measure, we implemented a straightforward, heuris-
tic assessment of frame distance. Given two frames, the algorithm checks whether
one frame is reachable from the other via FrameNet’s Inheritance, Subframe, and Us-
ing relations. It measures frame similarity in an undirected manner for these three
relations. The algorithm also checks whether the two given frames stand in a Cau-
sation or Inchoative of relation like the frames Cause change of scalar position,
Change of scalar position and Position on a scale, respectively. This is done
in a directed way. The resulting match types are added to the match graph:

< matchframe detour, ntext, nhyp > ∈ NMframe detour if ntext ∈ Ftext, nhyp ∈ Fhyp and
¬superframe(frame(nhyp), frame(ntext)) ∧
detourRel(frame(nhyp), frame(ntext))

Example relations from the textual entailment corpora that are derived by this algo-
rithm include, e.g., Speak on topic vs. Topic, as well as Dead or alive vs. Death.
We will come back to the algorithm again in the evaluation of Shalmaneser and Detour
in Section 6.4.

5.3.6. Role and Filler Matching

To reduce computational complexity, role matches are established simply by checking
identity of role names. Extension of the role matching mechanism to compatible roles
with different names (of non-identical, related frames) is non-trivial in the re-write sys-
tem. This would require access to the FrameNet hierarchy at compute time (or extensive
pre-compilation). It is left for future work.

Given that two roles match, we distinguish two different match types according to
whether the fillers also match:

Strict match This condition holds if two frames match and the names of the roles under
consideration are identical in hypothesis and text. The role fillers must also match.
The formal definition is this:

< matchrole strict, < m1, n1text, n1hyp >,< m2, n2text, n2hyp >> ∈ EMrole strict if
< m1, n1text, n1hyp > ∈ Nodesmatch, < m2, n2text, n2hyp > ∈ Nodesmatch,

rolet ∈ SRtext, roleh ∈ SRhyp and
from(rolet, n1text) ∧ to(rolet, n2text) ∧ from(roleh, n1hyp) ∧ to(roleh, n2hyp) ∧
label(rolet) = label(roleh)

122



5.3. Determining Directed Overlap of Hypothesis and Text

We check whether we find a pair of matching frame nodes in text and hypothesis
such that they are connected by edges with identical labels.

Loose match This condition generalizes the one above such that filler match is not
required. It is practically only a test as to whether a given role is realized in
both text and hypothesis at a matching frame. The formal definition just checks
whether outgoing roles from a matching node in text and hypothesis have identical
labels. We reserve a special node with match type “dummy” in the match graph
as endpoint of the edge for the graph to be well formed. In fact, this is the only
exception from the general constraint that matching edges must be connected by
two matching nodes.

< matchrole, < m1, n1text, n1hyp >,< dummy, nn, nn >> ∈ EMrole if
< m1, n1text, n1hyp > ∈ Nodesmatch, rolet ∈ SRtext, roleh ∈ SRhyp and
from(rolet, n1text) ∧ from(roleh, n1hyp) ∧ label(rolet) = label(roleh)

As the overall number of matching frames and thus roles available for matching is still
comparably low, we did not implement any more elaborate role matching techniques for
the time being. After a full integration of the FrameNet hierarchy and the developments
of frame distance measures, experiments with similarity measures for role fillers like
Levenshtein distance or WordNet-based measures will make sense. Moreover, it will also
be important to include FrameNet’s role-mapping information to be able to compare
roles across different frames with non-identical names. In theory, role filler match or
filler incompatibility should be an important factor for entailment checking.

5.3.7. Modality

The match types we have described so far detect similar material in hypothesis and text,
which may indicate true entailment. In contrast, the detection of inconsistent modality
types in text and hypothesis indicates negative entailment. Nodes from hypothesis and
text can match only if both nodes are marked with identical modality. In case of modality
mismatch, we remove all matches embedded under the respective node and instead mark
the nodes with a new match type. So, the detection of modality has a double effect.
On the one hand, the respective nodes are marked, which might allow the statistical
model to derive certain regularities. On the other hand, structures embedded under
mismatching modality are blocked from any other kind of matching. This effectively
reduces the size of the match graph.

Formally, we generate new sets of matching nodes and edges, where unwanted matches
are removed and mismatches are marked by a new match type matchmod mismatch:

Nodes′′match := {< m,ntext, nhyp > ∈ Nodes′match| modality(ntext) = modality(nhyp)}
∪ {< matchmod mismatch, ntext, nhyp > | ∃ < m,ntext, nhyp > ∈ Nodes′match|
modality(ntext) 6= modality(nhyp)}
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Edges′match := {< m,< m1, n1text, n1hyp >,< m2, n2text, n2hyp >> ∈ Edgesmatch|
modality(n1text) = modality(n1hyp) ∧ modality(n2text) = modality(n2hyp)}

The function modality returns the modality annotation of a given node and 0 if no
modality is annotated.

5.3.8. Context-dependent Enrichment with Background Know ledge

In Section 3.4.1, we argued that textual entailment sometimes requires “bridging infer-
ences” using information beyond the level of frame semantics. Additional knowledge can
easily be integrated in the matching architecture, as we have shown with a few hand-
coded axioms. For example, one axiom encodes the background knowledge that joining
X can result in (being) member of X. Certainly, there are also cases of joining that
do not result in membership as in join a chat room, where one becomes visitor rather
than member. In order to avoid overgeneration, we restrict these “heuristic inferences”
to apply only if both sides of the axiom are fully instantiated by text and hypothesis.
These axioms are interesting as they can mutually disambiguate information from text
and hypothesis. For example, while have can in general not always be interpreted as
referring to possession (a day has 24 hours.), in (5.8)-(5.9), it is clear that has in the
hypothesis means possession.

(5.8) T: The twin buildings are 88 stories each, compared with the Sears Tower’s 110
stories.

(5.9) H: The Sears Tower has 110 stories.

Just as a proof of concept, we added four handwritten axioms to our system, two of
which are sketched above. They apply in the magnitude of 2,5% of the sentence pairs
in RTE sets. One idea for future research would be to explore the possibility of either
deriving such rules from manual annotations or from other resources. One option could
be to try to parse SUMO axioms and to semi-automatically translate them into rewrite
rules.

5.4. Feature Extraction and Statistical Entailment Decisio n

In accordance with the vast majority of approaches to textual entailment, the final
entailment decision is made in a machine learning setting. To this end, features are
extracted from text, hypothesis, and the match graph (Section 5.4.1). They are then
taken to train a statistical model (Section 5.4.2) on the RTE development corpora, where
the correct entailment values are annotated.

5.4.1. Feature Extraction

In the feature extraction step (see Figure 5.1), a feature vector is computed for each
text/hypothesis/match graph triple. The basic features we extract can be classified
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according to their (i) level of representation (lexical, syntactic, semantic), (ii) source
(text, hypothesis or match graph), and as to (iii) whether they represent a proportional
measure (hypothesis/text, match/hypothesis ratio).

Extraction of the feature values is for the most part achieved simply by counting, e.g.,
the number of frame matches, and if applicable by computation of proportional ratios.
Therefore, most features have integer or floating point values. Some additional “meta-
features” such as the RTE sub-task annotation provided by the corpora or LFG parsing
status (fragmentary true/false) are also recorded.

The only more involved processing at this stage concerns the detection of connected
clusters in the match graph. As the matching strategy proceeds node by node and edge
by edge, the match graph is typically not connected. We assume that the more and the
larger connected parts are found, the more similar are hypothesis and text and thus the
more likely entailment holds. An algorithm for the detection of connected clusters in
the match graph we implemented starts from nodes without incoming edges. It follows
outgoing edges as long as possible. Information about the number of different clusters
and about their average size is represented by three different features.

Table 5.2 lists all 42 features we compute, together with a short description and
classification as to whether the feature relates to text, hypothesis, or match graph. Also,
the feature type is listed – integer, floating point, boolean, or enumeration type. We
deliberately accept a certain redundancy in the feature space as we want to be able to
explore which information is relevant for entailment decision and how the the different
types of information interact. This feature list must not be regarded as being definite.
It is rather intended as a basis for future experimentation and refinement.

Most features have been explained before, except for the features on the bottom of the
table prefixed with assigned. These provide the number of frames and roles as originally
assigned by Shalmaneser/Detour before integration with LFG. A simple overlap measure
serves to compute the respective matching frames. These features do not depend on the
LFG analysis and thus can serve as a fall-back in cases where LFG analysis fails.

5.4.2. Statistical Model

The entailment decision is a two-ways classification problem, for which we have ex-
perimented with different classifiers. In order to train a statistical model for textual
entailment, we have generated feature vectors for RTE development sets, where entail-
ment values are given. We experimented with different training and test sets and also
with various machine learning systems and the attribute selection module of Weka (Wit-
ten and Frank, 2005). A first observation was that many learners (evaluators) selected
features that seem intuitively important. However, also unintuitive features such as
the number of predicates in the hypothesis are high-valued features. This might either
indicate that the analysis component or matching algorithm has difficulties with long
(short) hypotheses, or this apparent bias is due to idiosyncrasies in the development
set. In fact, the results of feature selection and machine learning in general have to be
take with some care, given that the development and test sets considered consist only
of a couple of hundred sentences. An in-depth discussion of experiments with different
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Feature Comment t h m Type
matchnode pred LFG predicate matches x Int.
matchnode pred coref – for structural co-reference x Int.
matchnode pred pro – for pronouns x Int.
matchnode wn related – using WordNet x Int.
matchnode heuristic inf – using inferences x Int.
matchedge syn All LFG features x Int.
matched feat subcgf Only subcategorized functions x Int.
matched feat modgf Only modifying functions x Int.
matched feat gf Subcat. plus modifying functions x Int.
modal context unmatched Nodes with incompatible modality x Int.
matchnode frame Matched frames (identity) x Int.
matchnode frame related Matching frames via frame relations x Int.
matchnode detour related Matching frames via Detour x Int.
matchnode detour relto h Impact of Detour on h x x Float.
matchedge role Matched roles (total) x Int.
matchedge role filler Matched roles (with matching fillers) x Int.
lexids h Length of hypothesis x Int.
lexids t Length of text x Int.
rel size h relto t lexids Length of hypothesis w.r.t. text x x Float.
preds m relto h Matched LFG predicates relative to h x x Float.
frames h/fes h Frames/FEs in hypothesis x Int.
frames t/fes t Frames/FEs in text x Int.
frames m/fes m Frames/FEs in match graph x Int.
frames h relto t Frames in hypothesis relative to text x x Float.
fes h relto t – for roles x x Float.
frames m relto h Frames of hypothesis that matched x x Float.
fes m relto h – for roles x x Float.
clusters no Number of connected clusters x Int.
clusters avgsize Average size of connected clusters x Float.
clusters avgsize relro h – relative to size of hypothesis x x Float.
fragmentary True if one LFG parse is fragmentary x x Bool.
rte task RTE subtask (IE|IR|QA|SUM) x x Enum.
rte entails Entailed/Non entailed x x Bool.
Below: frames as assigned by Shalmaneser/Detour; intended for cases, where LFG parse fails
assigned frames h Frames in hypothesis x Int.
assigned fes h – for FEs x Int.
assigned frames t Frames in text x Int.
assigned fes t – for FEs x Int.
assigned frames h relto t Ratio of frames in hyp. and text x x Float.
assigned fes h relto t – for FEs x x Float.
assigned frames m Matched frames (identity) x Int.
assigned fes m – for FEs x Int.
assigned frames m relto h Matched frames relative to hyp. x x Float.
assigned fes m relto h – for FEs x x Float.

Table 5.2.: All features of the SALSA RTE system.
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machine learning settings will be given in the next chapter, where we also provide the
results the SALSA RTE system achieved in the RTE-2 and RTE-3 challenges.

5.5. Summary of this Chapter

In this chapter, we have presented our own approach to textual entailment and its
implementation in the SALSA RTE System. At the heart of the system is a linguistic
analysis of text and hypothesis, which combines LFG grammatical, frame semantic, and
ontological information. The analyses are represented as tripartite graphs, where the
respective levels of analysis are connected via projections.

In a second stage, interaction between the different layers is established in order to en-
rich and normalize information on the different layers. We mainly exploit the availability
of semantic information within LFG f-structures here.

While the linguistic analysis and further enrichment is performed for text and hy-
pothesis in isolation, in the subsequent matching phase, the similarities of both are
detected and marked. The basic assumption of this kind of “entailment reasoning” is
that (directed) overlap of (meaning representations of) hypothesis and text correlates
with entailment – the more of the hypothesis is covered by the text, the more evidence
we have that entailment holds. We represent the similarities of text and hypothesis in
a third structure we call match graph. It consists of matching nodes and edges plus
additional information about different match types that licensed the respective node or
edge matches.

Finally, in a feature extraction phase, we generate feature vectors from the information
in the match graph, including relative measures with respect to text and hypothesis.
These feature vectors are then used to train a statistical model for the textual entailment
decision.
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In this chapter, we evaluate the SALSA RTE system. We illustrate how the system
operates, inspect errors, and discuss results the system achieved in RTE challenges. One
of the main goals of this chapter is to study the contribution of predicate-argument
structure in terms of frame semantics for checking textual entailment. To this end, we
first evaluate the system against a shallow baseline. One result of this comparative
evaluation is that the full system mostly does not perform better than the baseline and
that machine learning results we obtain under different conditions are unstable. As it is
in general difficult to derive reliable conclusions about the precise contribution of single
parts of complex system architectures (especially in a machine learning setting), we then
present a number of experiments that allow to assess in particular the performance and
impact of components related to the the layer of frame semantics.

Throughout this chapter, the SALSA RTE system we refer to is the system as de-
scribed in the previous chapter. Only for the RTE-2 challenge, a “prototype” variant
of the system with a preliminary interface between LFG and Shalmaneser/Detour was
used.

This chapter is structured as follows. Section 6.1 presents the primal evaluation of
the system – its performance on RTE corpora. We describe the system settings used
in the RTE-2 and RTE-3 challenges and discuss the results it obtained. In Section 6.2,
we will mainly provide a qualitative error analysis. We will also shortly present a few
examples to illustrate successful system behavior. Section 6.3 will present a detailed
analysis of the system’s performance against a “shallow” word-overlap baseline. One of
the driving question is how reliable system results are under different machine learning
conditions. In Section 6.4, we will discuss why the system does not fully confirm the
intuition that an inclusion of frame semantics leads to a significantly better system
performance. To this end, we will present a manual annotation of an RTE test set
and provide a comparison of the automatic frame semantic annotation against this gold
standard. The gold standard is too small for training and testing of the complete SALSA
RTE system. We therefore assess the potential impact of frame semantics on the task of
recognizing textual entailment by way of a simple algorithm, which simulates the system
in a rule-based setting. In Section 6.5, we will summarize and conclude this chapter.

6.1. Performance of the SALSA System on RTE Corpora

The SALSA RTE system participated in the second and third RTE challenge (Bar-
Haim et al., 2006; Giampiccolo et al., 2007a). We present the settings and results in
Section 6.1.1 and Section 6.1.2, respectively. In Section 6.1.3, we discuss the results.
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Feature

1 preds m relto h Predicate matches relative to hypothesis
2 assigned frames m relto h Matched frames (Shalmaneser/Detour

without LFG) relative to hypothesis
3 assigned fes m relto h Matched roles (Shalmaneser/Detour

without LFG) relative to hypothesis
4 cluster avgsize relto h Match graph size relative to hypothesis

Table 6.1.: Feature set for RTE-2 submission.

6.1.1. RTE-2

For the RTE-2 challenge, a prototype of the SALSA RTE system was used, where the
interface between LFG and frame semantics was still preliminary. We manually chose
a small and intuitively plausible feature set for the submission, which led to constant
results on a number of classifiers in pilot experiments. The feature set is displayed in
Table 6.1. Two system runs we submitted that use different classifiers from the Weka
toolkit (Witten and Frank, 2005). A simple conjunctive rule classifier was used for run 1
and the state-of-the-art LogitBoost1 classifier from Weka’s meta classifiers for run 2.
These relatively different classifiers were chosen to level out the impact of the classifier
on overall performance. Training was done on the RTE-2 development corpus only;
results are measured on the respective test corpus.

The conjunctive rule classifier of run 1 generates a single rule measuring predicate and
frame matches relative to the hypothesis (features 2 and 1 from Table 6.1):

(assigned frames m relto h ≤ 0.954546) and
(preds m relto h ≤ 0.485294)
⇒ rte entails = 0

This rule defines that a sentence pair is taken as a true entailment if roughly all frames
and half of the LFG predicates of the hypothesis are matched in the text. This rule con-
firms the intuition that coverage of all frames occurring in the hypothesis is a prerequisite
for entailment as this ensures that hypothesis and text deal with the same topic. The
lower restriction on predicate overlap can be explained by the characteristic of textual
entailment that some additional material in the hypothesis is acceptable. Note that the
frames considered by this rule are the ones originally assigned by Shalmaneser/Detour
and not those integrated by LFG projection (see the lower part of Table 5.2). This
indicates that the preliminary interface between LFG and frame semantics in this first
prototype implementation indeed did not work very well – too few frames were projected.

The LogitBoost classifier used in run 2 selects features 1, 2 and 4 from Table 6.1 in
its iteration steps. This means, that the average size of the connected clusters in the

1LogitBoost performs additive logistic regression using the classifier DecisionStump.
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Overall
accuracy IE IR QA SUM

Run 1 59.0 49.5 59.5 54.5 72.5
Run 2 57.8 48.5 58.5 57.0 67.0

Table 6.2.: RTE-2 results.

match graph (feature 4) is taken into account in addition to the features used in run 1.
Thus, a combination of grammatical, semantic and ontological information is considered.
Feature 3 counting matched semantic roles was ignored by both learners.

Table 6.2 lists the results on the RTE-2 test data. Run 1 performs slightly better than
run 2, overall and on most subtasks. Accuracy of both runs differs considerably across
subtasks, ranging, e.g., for run 1 between 49.5% for IE and 72.5% for SUM. The SALSA
RTE system performed in the middle ranks of the competing systems.

6.1.2. RTE-3

For the RTE-3 challenge, we implemented a “shallow” module measuring lexical overlap
on content words (see Section 6.3 for details) to be used in combination with the full
system.

A combined set consisting of the RTE-2 development and test set as well as the RTE-
3 development set was used for training. The LogitBoost learner was used again as it
had produced good and stable results within several tests we performed. We therefore
decided to keep the learner constant and experiment with different features for the RTE-
3 submission. To this end, we used the feature (attribute) selection component of the
Weka tools.

Feature Selection for RTE-3 Submission

In order to derive the feature set for RTE-3 in a more principled way, we ran several
of Weka’s attribute selection strategies on different available RTE corpora. The initial
set of features are all features displayed in Table 5.2. Table 6.3 displays the five best
ranked features of a typical feature set, computed by Weka’s ChiSquaredAttributeEval2

component on the RTE-2 test set with 10-fold cross-validation.
The best ranked feature (a) basically measures word overlap on content words. This

confirms the common observation that this is a good indicator for textual entailment as
implemented in the available corpora. The remaining high-valued features cover different
layers of analysis. Feature (b) is from the grammatical layer, feature (d) is from the
realm of structural semantics. The average size of connected clusters (c, e) includes
LFG, frame semantic, and ontological information. Features measuring the average size

2The component is described as to evaluate the worth of an attribute by computing the value of the

chi-squared statistic with respect to the class.
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Ranking Feature

a 41.052 preds m relto h Predicate matches relative to hypothe-
sis

b 23.583 matched feat gf Matching grammatical functions
c 21.111 clusters avgsize rel h Size of connected clusters in match

graph relative to size of hypothesis
d 20.909 matchnode modal context Number of matching nodes with incom-

patible modality
e 20.35 clusters avgsize Size of connected clusters in match

graph

Table 6.3.: Typical feature selection result.

Feature

a preds m relto h Predicate matches relative to hypothesis
b matched feat gf Matching grammatical functions
e cluster avgsize Size of connected clusters in match graph

Table 6.4.: Feature set for RTE-3 submission.

of connected matching parts of hypothesis and text occur twice, absolute (e) and relative
to the hypothesis (c). As variant (e) has been ranked higher than (c) by most of Weka’s
feature selection modules, we included (e) in the feature set for the RTE-3 submission,
together with the two most stable features. The set used in the submission is displayed
in Table 6.4.

RTE-3 Results

For the RTE-3 challenge, the selected features were trained separately first, then a “meta
classifier” was used to make the final entailment decision. This more elaborate training
architecture will be discussed in the next section. We submitted two runs, one with
(run 1) and one without (run 2) addition of the “shallow” lexical overlap component.
Both runs achieved almost identical results, as can be seen in Table 6.5. Variance across
subtasks is high again. The result are slightly better than for RTE-2, which confirms to
the general trend. The system performed in the middle ranges compared to competing
systems again.

6.1.3. Discussion of Results

The SALSA RTE system has achieved satisfactory results in the RTE-2 and RTE-3
challenges, implementing an approach of modeling textual entailment via “structural
and semantic overlap” between text and hypothesis. Frame semantic information seems
to contribute to the entailment decision. For example, the conjunctive rule of run 1
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Overall
Accuracy IE IR QA SUM

Run 1 62.5 51.0 68.0 74.0 57.0
Run 2 62.6 50.0 69.0 72.5 59.0

Table 6.5.: RTE-3 results.

(RTE-2) takes a high degree of semantic similarity based on frames, joint with medium
degree overlap at the syntactic predicate level to model entailment.

Per-task analysis reveals a huge divergency of accuracy across RTE subtasks. At
the same time, the “difficulty” of subtasks is distributed unevenly between RTE-2 and
RTE-3, the only obvious constant being that IE is most difficult. This may be explained
by the special characteristics of IE hypotheses. They are typically very short factive
statements like “John Lennon is dead” providing little context. Many approaches report
problems with IE examples. Overall, the unsystematic distribution of difficulty across
subtasks in different challenges indicates imbalances in the corpora.

A result which diverges from observations reported for related approaches is that the
combination of the full, “deep” system with a shallow overlap measure does not increase
overall performance. We will provide a systematic comparative evaluation of the full
system and the shallow component in different settings in Section 6.3.

So far, the intuitive appeal of frame semantic analysis has not been confirmed by
remarkable increase in system performance. In the feature selection result used as feature
set for the RTE-3 submission, frame semantic information is referred to only indirectly
via average cluster size. At the same time, grammatical functions score well, which
might indicate that (semantic) role information is a relevant entailment indicator. Other
features which also occur in high ranks for different Weka feature selection modules are
absolute LFG predicate match, as well as match of syntactic edges (matchnode pred,
matchedge syn). Frame-related features are rarely selected. Again, from a machine
learning view, the size of the development corpus is very small. Features that do not
occur frequently and in the majority of sentence pairs are neglected by the machine
learning systems. We therefore cannot draw final conclusions on the effectiveness of
certain features from these experiments on RTE corpora.

6.2. Inspection of System Behavior

In this section, we will mainly be concerned with a qualitative analysis of errors made by
the system (Section 6.2.2). Before that, we will shortly illustrate positive system behavior
by presenting examples from RTE corpora for true positive and negative classification
(Section 6.2.1). We conclude this section by pointing to open questions in Section 6.2.3.
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Figure 6.1.: Analysis of (6.2).

6.2.1. Positive System Behavior

True Positives

A typical true positive entailment decision is made by the system for (6.1)-(6.2), triggered
by high semantic overlap between hypothesis and text in terms of matching predicates,
frames, and f-structure.

(6.1) T: An earthquake has hit the east coast of Hokkaido, Japan, with a magnitude of
7.0 Mw.

(6.2) H: An earthquake occurred on the east coast of Hokkaido, Japan.

An analysis of (6.2) is displayed in Figure 6.1, where red parts are matches with (6.1).
For example the grammatical analyses of east cost of hokkaido in hypothesis and text
match completely. Likewise, the frame Process matches the identical frame in the text.
The main predicate occur –as expected– does not match the predicate hit in the text.
Thanks to the frame analysis, the system manages to establish a match on the semantic
layer – the frame Event evoked by occur matches the frame Impact evoked by hit.
This is due to a heuristic “Detour” match, based on WordNet relatedness.

Other true positive examples are (6.3)-(6.4) and (6.5)-(6.6). The examples show that
we obtain good results for texts and hypotheses of different lengths (absolute and rela-
tive), while some approaches have difficulties, e.g., with longer hypotheses (MacCartney
and Manning, 2007).
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(6.3) T: The system of government purchases of food under the U.N. Oil-for-Food
Program was alleged to have many abuses.

(6.4) H: A government purchases food.

(6.5) T: In one of the latest attacks, a US soldier on patrol was killed by a single shot
from a sniper in northern Baghdad, the military said yesterday.

(6.6) H: A sniper killed a U.S. soldier on patrol in Baghdad with a single shot.

True Negatives

True negatives in general are cases where overlap is low on different layers. Treatment of
modality has proven quite effective for explicitly handling dissimilarity. 27% of correct
entailment rejections involve mismatches of modality, while only 11.9% of all sentences
contain modal contexts. The sentence pairs below are true negatives that involve what
we subsume under modality. In (6.7), can is the LFG main predicate such that the
complete text is embedded under dia modality. In (6.9), the modality mismatched is
caused by unmatched will-future.

(6.7) T: The goal of preserving indigenous culture can hardly be achieved by a
handful of researchers and curators at museums of ethnology and folk culture.

(6.8) H: Indigenous folk art is preserved.

(6.9) T: Even today, within the deepest recesses of our mind, lies a primordial fear
that will not allow us to enter the sea without thinking about the possibility of
being attacked by a shark.

(6.10) H: A shark attacked a human being.

We see potential for future improvement of system performance by including more
dissimilarity measures like the modality feature just illustrated.

6.2.2. Error Analysis

The most obvious source of errors are basic analysis components – the word sense dis-
ambiguation system and the parsers. Typical problems are missing or inappropriate
frame and role assignments. We will postpone an evaluation of these components until
Section 6.4, and first discuss more general shortcomings of our approach.

The current system has a bias towards positive judgment. A probable explanation is
that we have put to work many high-frequency features that measure similarity (e.g.
predicate and frame overlap), but only few and low-frequency features that identify
dissimilarity like modality mismatch. Therefore, the learners have a tendency to classify
too few examples as not entailed, e.g., on the RTE-2 test corpus, we observe 29.5% false
positives as opposed to 12.75% false negatives. We will discuss examples of both types
errors below, focusing on false positives, though.
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Figure 6.2.: Analysis of (6.12).

False Positives

Two common problems leading to false positive judgments are related to the level of
semantic analysis we use and to the matching strategy we apply, respectively.

Granularity and relevance. Our approach is predominantly based on the coarse-grained
level of frame semantic description. In certain cases, the approximate semantic tech-
niques and generalizations we define are too optimistic and do not capture information
that would be needed to reject entailment. Consider the false positive (6.11)-(6.12). The
analysis of the hypothesis is displayed in Figure 6.2.

(6.11) T: Israeli helicopters fired two missiles in separate attacks on a Palestinian
refugee camp on Wednesday, killing four people in a stepped-up campaign the
army says is aimed at rooting out militants in the Gaza Strip.

(6.12) H: Palestinian militants were killed while trying to infiltrate the Gaza Strip.
(FALSE)

Several problems can be observed in this sentence pair. The frame People is as-
signed to (four) people as well as (Palestinian) militants, both filling the victim role of
the respective Killing frame. While frame analysis successfully identifies comparable
(semantically similar) material, we do not capture the information that people does not
entail militants. In this case, this semantic normalization is too coarse-grained and alone
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Figure 6.3.: Outliers from within matching clusters.

insufficient for distinguishing between positive and negative entailment. The role fillers
and also the frame evoking elements have to be further analyzed and taken into account,
too. This could be done using, e.g., string comparison or WordNet-based measures to
assess the semantic compatibility of the respective parts of hypothesis and text. While
our architecture checks WordNet compatibility of predicates in the matching phase, this
information is not set in relation to matching or non-matching frames. As such corre-
lations (frame matches vs. non-matching predicates) are not automatically detected by
statistical models, it might be necessary to consider larger structures like a frame and
its arguments in a more explicit top-down fashion to identify mismatching role fillers in
larger configurations.

Another problem which can be seen in the analysis in Figure 6.2 is that the verb try in
the hypothesis could not be uniquely disambiguated by the Detour weighting algorithm,
and therefore has been assigned three different frames.3 One of them has a counterpart
in the text via a frame relation and the two others were related to frames in the text via a
WordNet/Detour match. This leads to a total of five out of six frames being matched for
this pair, which falsely indicates high semantic similarity. It is evident that frames and
matches dot not all have the same relevance. Multiple frames assigned to an ambiguous
word or a general frame for named entities like People should be less relevant than,
e.g., the frame assigned to the main verb if it is a full verb.

Distance of matching nodes. A related problem occurring in a number of cases are
nodes in the match graph that are closely connected, e.g., in the hypothesis graph, but
match with far distant parts of the text graph as in (6.13)-(6.14).

(6.13) T: Some 420 people have been hanged in Singapore since 1991, mostly for
drug trafficking, an Amnesty International 2004 report said. That gives the
country of 4.4 million people the highest execution rate in the world relative
to population.

(6.14) H: 4.4 million people were executed in Singapore. (FALSE)

137



6. Evaluation

Figure 6.4.: Frame relations (screenshot of FrameGrapher).

In this example, the frames Execution and People are projected by very close f-
structure nodes in the hypothesis (verb and direct object). In the text, however, the
respective nodes belong to two different sentences and are thus far apart. Figure 6.3
schematically shows this configuration. The pink edge represents an “outlier” match.

In order to tackle this problem, we could introduce weights that reflect the relative
distance of matching node pairs in the text and hypothesis graphs, measured in terms
of f-structure or frame structure path distance. In Figure 6.3, the pink match thus
could be identified as an outlier and receive a low weight. The distance to the closest
matching neighbors is much shorter in the hypothesis than in the text, as can be seen in
the relative lengths of the green and blue edges. Introducing respective weights should
help to define further criteria for entailment rejection.

False Negatives

Frequent cases of false negatives involve similar, yet non-identical frames in text and
hypothesis. Often, the information needed to establish a link between intuitively com-
patible frames is not available. In (6.15)-(6.16), the semantically compatible frames
Commerce sell and Expensiveness have been assigned, but can not be matched.

(6.15) T: The first Barbie doll was sold for $3.

(6.16) H: The first Barbie cost 3 dollars. (TRUE)

Both frames are related via a complex path of FrameNet frame relations. The path
can be seen in Figure 6.4, which is a screenshot of the FrameNet Grapher4. Dif-
ferent colors indicate different relations – Commerce sell is a perspectivization of
Commerce goods transfer, which is a subframe of Commercial transaction.
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Commercial transaction in turn is a subframe of Commerce scenario while Ex-
pensiveness uses Commerce scenario. It is an open question however, how different
configurations of frame relations can automatically be used to derive frame similarity
measures. Moreover, the coverage of frame relations in terms of annotated instances is
currently relatively low. We will come back to these problems in Chapter 7.

6.2.3. A Final Remark

Inspection of examples above and the experiments for the RTE-2 challenge indicate that
features from different levels of analysis are used by the SALSA RTE system for modeling
textual entailment. However, it is difficult to tell what the contribution of the single
levels is. For instance, many positive examples such as (6.3)-(6.4) presented throughout
this section exhibit high surface overlap while negative ones like (6.11)-(6.12) often do
not. This raises the question of how the semantic analysis relates to more shallow
measures like predicate overlap. Below, we will systematically compare performance
of the full system against a shallow baseline and then present some experiments that
identify contributions and shortcomings of different system components.

6.3. Evaluation Against a “Shallow” Baseline

It has been observed for many RTE systems that a combination of separately trained
features can lead to an overall improvement in system performance, in particular if
features from a more “informed” component and “shallow” ones are combined (e.g.
Hickl et al., 2006a; Bos and Markert, 2006). Below, we provide a systematic analysis
of the SALSA system’s behavior on different training and test sets and with different
feature combinations. In Section 6.3.1, we describe the experimental setup. Results are
presented and discussed in Section 6.3.2.

6.3.1. Experimental Setup

We implemented an extended interface to automatically run Weka with different con-
figurations. The extended interface supports testing with voting strategies and using a
“meta learner”, after training individual features or feature sets separately. The latter
technique is used by several approaches using “multi-layer” matching strategies (e.g.,
Haghighi, Ng, and Manning, 2005). All figures we present in the following are computed
with the LogitBoost classifier, which is used to train individual feature sets and is also
used as meta learner.

3With the latest FrameNet and WordNet releases, the frame Attempt is uniquely assigned to try#v#1

by the Detour system.
4http://framenet.icsi.berkeley.edu/FrameGrapher/
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Lexical Overlap Component

As a baseline to compare our full system against, we used a simple system that ap-
proximates textual entailment in terms of lexical overlap between text and hypothesis.
This shallow system was also used within run 1 submitted to the RTE-3 challenge. It
measures the relative number of words in the hypothesis that also occur in the text.
Both text and hypothesis are tagged and lemmatized using Tree Tagger (Schmid, 1994),
taking only nouns, non-auxiliary verbs, adjectives and adverbs into account. Training
a decision tree on the relative word-overlap as single feature yields a system which per-
forms comparable to other word-overlap based systems, achieving an accuracy of 60.6 %
if trained and tested on the RTE-2 development and test set, respectively (using Weka’s
J48 classifier) and 57.5 % using Weka’s LogitBoost classifier.

Feature Combinations

In the experiments, we investigated the behavior of our systems on various combinations
of three different sets of text hypothesis pairs, namely the RTE-2 development and test
set and the RTE-3 development set (see Table 6.6). We tested four different feature
configurations:

(I) All 42 features generated by the system

(II) Three selected features of the system (run 2 of RTE-3 submission):

• preds m relto h (overlap of LFG predicates)

• matched feat gf (matching of grammatical functions)

• cluster avgsize (average size of connected clusters of the match graph)

(III) The features from II plus lexical overlap (run 1 of RTE-3 submission)

(IV) Lexical overlap alone

As a shorthand notation for the different conditions, we will use triples of feature-set,
training-set, and test-set, e.g., I-D2T2-D3 means all 42 features trained on the combined
development and test set of RTE-2, tested on the development set of RTE-3.

6.3.2. Discussion of Results

The outcome of the experiments is shown in Table 6.6. Three central results are: (i) the
shallow overlap feature most of the time outperforms the more informed features;5 (ii)
the combination of informed and shallow features only has a moderate effect on accuracy,
and (iii) almost all features behave quite differently on different training and test sets.

To substantiate these results, we discuss three particular topics below – feature vari-
ance, corpus variance, and task variance.

5The complete featureset I always performs worse than the selected in features II. This indicates that
the classifier does not manage to detect the best features.
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I II III IV I II III IV I II III IV

D2 56.25 57.25 58.625 57.5 57.875 61.125 66.375 66.625

T2 56.375 58.75 60.625 61.625 57.5 60.875 63.75 64.625

D3 53.875 61.25 61.75 61.75 56.625 58.75 57.25 57.25

D2T2 58.5 64.25 65.875 66.375

D2D3 58 58.625 60 58.5

T2D3 56.75 61.25 60.875 60.875

Table 6.6.: Performance of different feature combinations on different training and test sets using LogitBoost as learner on all
feature sets and as “meta learner” for III, the combined set of II and IV.
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Feature Variance

Variance among individual features and feature sets is large. Feature set II contains
the most reliable and stable features of the complete feature set. We tested how this
“more informed” feature set (II) compares to the shallow word overlap feature (IV) and
whether their combination (III) increases accuracy. As can be seen from Table 6.6, in
most of the cases, IV performs best (best accuracy for each configuration is printed
in boldface). The combination of the “deep” features with the “shallow” one usually
leads to an improvement, e.g. in the D2-D3 configuration, where feature set II alone
achieves 61.125, while the combination with IV boosts the performance by 5% (III).
Still, the combination mostly does not perform better than IV alone. There are only
few exceptions, where the inclusion of the word overlap feature lowers the performance,
e.g. from 61.25 (II-T2D3-D2) to 60.875 (III-T2D3-D2). It would be interesting to test
the system on data, where lexical overlap is not such a good entailment indicator.

Combinations of features often perform lower than the best individual feature in the
set. For instance, in configuration D2T2-D3, feature III achieves 65.875, compared to
66.375 for IV alone. In contrast to results reported by related approaches, we generally
could not observe a positive effect for the combination of features in a meta feature.
Apart from the size of the training data, feature dependence might be an explanation
for this.

Corpus Variance

Testing on T2 (RTE-2-test) seems to be the hardest task. No configuration achieves an
accuracy of more than 60%. In contrast, the overall best performance is 66.625% accu-
racy (IV-D2-D3). One explanation for this observation is imbalance of the “difficulty” of
datasets. An indicator for the difficulty of a test set is the average lexical overlap of text
and hypothesis. We measured the average word overlap among entailed and not entailed
pairs for different sets and also computed difference in proportion between entailed and
not entailed examples. It amounts to 0.05 on T2 and 0.13 on D3 (see also Figure 6.7),
thus explaining why D3 is “easier” as compared to T2.

Using a larger training set should lead to a better performance. The bottom part of
table 6.6 shows results computed with a combined training set consisting on the RTE-
2 training and test set. However, a stable positive effect can not be observed. For
most feature sets the gain in performance is very small, e.g. from 57.875 (I-D2-D3)
and 57.5 (I-T2-D3) to 58.5 (I-D2T2-D3). On some feature sets, the performance even
decreases, e.g. from 61.625 (IV-T2-D2) and 61.75 (IV-D3-D2) to 60.875 (IV-T2D3-D2).
The largest effect occurs for feature set II. Its performance increased from 61.125 (II-
D2-D3) and 60.875 (II-T2-D3) to 64.25 (II-D2T2-D3). These unstable effects can be
explained by the small size of the datasets. In terms of machine learning, extending a
training set by factor 2 (from 800 to 1.600 items as we did) does not make a qualitative
difference. The improvement observed by (e.g. Hickl et al., 2006a) was achieved by going
to 10.000 training items. It would be very interesting to see how the performance of our
system would develop on a much larger training set. Unfortunately, the only currently
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Figure 6.5.: Per task accuracy (D2T2-D3).

Task Entailed Not Entailed ∆

IE 0.41 0.35 0.06
SUM 0.39 0.22 0.17
IR 0.29 0.23 0.06
QA 0.44 0.20 0.24

0.38 0.25 0.13

Table 6.7.: Average word overlap per task for D3.

available textual entailment corpora are the relatively small ones provided within the
RTE challenges.

Task Variance

Figure 6.5 shows a per task analysis for the feature sets II, III and IV (D2T2-D3). The
system performs best on the Question Answering (QA) task, where it achieves almost
80% accuracy. This differs from the experience with the RTE-2 submission, where the
system performed best in the summarization (SUM) task. A somewhat unexpected
result is that the more “informed” feature set II performs better in SUM than the
shallow feature set IV, while it is the other way round in QA. The per task analysis also
confirms the observation that the combination of (deep and shallow) feature sets (III)
behaves heterogeneously in terms of accuracy – on information extraction (IE) and SUM
it performs worse than both II and IV; on information retrieval (IR), it outperforms
II and IV; and on QA, its accuracy is between that of II and IV. Given the general
variance discussed above, however, we think that these observations do not allow general
conclusions.

The large variability of the shallow overlap feature (IV), which ranges between 52.5%
(IE) and 79% (QA), can partly be explained if we compare the average word overlap
measures for positive and negative pairs among the individual tasks (Table 6.7). The
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difference (∆) between positive and negative examples measures the discriminative power
of word overlap in deciding entailment. For IE, SUM, and QA, this difference correlates
with the accuracy achieved on the respective tasks (cf. Figure 6.5). Note however, that
the difference (∆) between positive and negative examples in IE and IR is identical while
the accuracy of the word overlap feature differs drastically on both tasks. Their absolute
overlap values differ, though.

6.4. Experiments with a Manual Gold Standard

Experiments performed in the context of the RTE-2 and RTE-3 submissions were am-
bivalent concerning the impact of frame semantic information on entailment decisions
derived by the SALSA RTE system. However, the comparative evaluation reported
above clearly shows that “informed” features of the SALSA RTE system overall do not
perform better than a shallow word overlap baseline. In other words, the intuitively
expected positive impact of using frame semantics for modeling textual entailment has
not yet been confirmed by increased system performance. We identified the factors de-
tailed below as potential limit to the success of applying frame semantics in automatic
entailment checking.

FrameNet coverage FrameNet is incomplete in several respects. One factor limiting its
success in entailment checking could be that its coverage is simply not good enough
to provide a solid semantic annotation of the given corpora. A related study in the
context of annotation of a German newspaper corpus (Burchardt et al., 2006a),
reports that one third of the verb occurrences could not be annotated with existing
FrameNet frames (largely due to the incompleteness of the frame inventory, not to
cross-lingual differences).

Quality of automatic linguistic analysis The SALSA RTE system strongly relies on par-
sers providing syntactic analyses (LFG and Collins) and on Shalmaneser and the
Detour system providing frame semantic annotations. One reason for low overall
performance could be that the quality of the annotations produced by the systems
is not good enough to significantly support RTE inferences. Another problem
could be the quality of the interface between LFG and Shalmaneser/Detour.

Entailment modeling If appropriate annotations are provided, it might be the case that
the available information is not optimally accessed and modeled by the matching
algorithm and feature space we used. The algorithm was deliberately designed
to be robust against partial or missing analyses. The feature space is relatively
redundant as we wanted to test which features are considered relevant by the
machine learners. Yet, the overall bias towards positive entailment judgement
might indicate that this approach is too liberal.

In the following, we study these different factors. To this end, we manually annotated
the RTE-2 challenge test set with frame semantic information. This corpus called FATE
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serves as gold standard for the experiments concerning frame semantics. In Section 6.4.1,
we give a short description of the FATE corpus and on this basis in Section 6.4.2 evaluate
the impact of the FrameNet resource coverage. Section 6.4.3 will be concerned with the
linguistic analysis components. We will provide performance statistics for syntactic
parsers. We also compare the automatic annotation by Shalmaneser/Detour with the
gold standard to get an indication of the quality of the automatic frame semantic analysis
and evaluate the LFG/Shalmaneser/Detour interface. Finally, in Section 6.4.4 we will
assess the potential of using frame semantic annotation for checking textual entailment
by processing the gold standard and the automatic annotation with a simple, controlled
algorithm.

6.4.1. The FATE Corpus

This section presents the FATE (“Frame Annotation for Textual Entailment”) corpus
we built as gold standard. The FATE annotation has been carried out on the test set of
the RTE-2 challenge. Frames and roles were manually annotated on top of a syntactic
structure produced by the Collins parser (Collins, 1999) – the same syntactic analysis
the Shalmaneser/Detour systems take as input. The annotation basically follows the
annotation guidelines used for the creation of the German SALSA corpus (Burchardt
et al., 2006a).

Below, we will shortly describe central features of the corpus which deviate from the
SALSA annotation and which are relevant for our evaluation purposes. More details on
FATE can be found in Burchardt and Pennacchiotti (to appear). The corpus will be
available at the SALSA project page.6

We created FATE for studying the usefulness of frame annotation for textual entail-
ment and therefore focused the annotation on those parts of the sentences which are
central for this task. In particular, we only annotate relevant FEEs and do so only
within relevant spans of the texts.

Relevant FEEs

Intuitively, not all frames that can be annotated to a given text or hypothesis are candi-
dates for playing a central role in an entailment decision. For example, an event-denoting
frame evoked by the main verb is more likely relevant than a frame like Calendric Unit
evoked by a noun like Monday. Starting from the idea is that textual entailment infer-
ences should mainly by supported by properties and descriptions of central facts, we
introduced the notion of relevant FEEs. With this notion, we refer to words that evoke
frames which are somehow relevant to the overall situation(s) described. Consider the
following example.

(6.17) T: Authorities in Brazil say that more than 200 people are being held
hostage in a prison in the country’s remote, Amazonian jungle state of
Rondonia.

6www.coli.uni-saarland.de/projects/salsa
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(6.18) H: Authorities in Brazil hold 200 people as hostage.

A complete annotation of (6.17)-(6.18), e.g., in the style of FrameNet’s full text anno-
tation7, would select all words displayed in boldface as FEEs. In the FATE annotation,
we only annotate the underlined, relevant FEEs (words considered not relevant as FEE
are still available as arguments of frames). Indeed, these are the only words which evoke
frames describing the central situations: hostage evokes the Kidnapping frame, say
evokes Statement.

In a pilot annotation for a small, randomly selected set of 15 sentences, we achieved
a very high inter-annotator agreement concerning the question of what are relevant
FEEs. We elaborated operational characterizations of relevance, which have been used
to guide the main annotation. For example, a word counts as relevant only if the frame
it evokes also realizes one or more roles in the given text. Note that texts and hypothesis
are annotated separately in random order – the relevance of FEEs is judged for each
sentence independently.

Relevant Spans

For many pairs in the RTE datasets only parts of the texts contribute to the inferential
process that allows to derive the hypothesis from the text. A typical example is (6.19)-
(6.20) below, where only the sections in bold face are really important.

(6.19) T: Soon after the EZLN had returned to Chiapas, Congress approved a different
version of the COCOPA Law, which did not include the autonomy clauses,
claiming they were in contradiction with some constitutional rights (private
property and secret voting); this was seen as a betrayal by the EZLN and
other political groups.

(6.20) H: EZLN is a political group.

In FATE, we annotated only the specific sections within the text/hypothesis pairs that
contain relevant material for the task of textual entailment recognition. The annotators
were provided with a markup of the these relevant spans. The spans are derived using
the ARTE annotation, which provides alignment annotations for the positive pairs in the
RTE-2 test set (Garoufi, 2007). As the ARTE annotation does not provide alignment
annotation for negative text/hypothesis pairs, it cannot be used to provide an automatic
markup of relevant spans for these pairs. Accordingly, we conducted a full annotation
for negative examples in FATE. Indeed, in negative entailment pairs, the concept of
relevant span is often not applicable to the texts. For example, if a hypothesis contains
information which is not contained in the text, there is no markable available in the text.

FATE Annotation Statistics

The inter-annotator agreement in the FATE annotation was quite good, e.g., 88% for
frame assignment. The sporadic cases of disagreement on frames usually involve the

7See http://framenet.icsi.berkeley.edu/index.php?Itemid=84
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Leadership 196 Attempt 40
Statement 152 Being employed 38
Killing 92 Causation 36
People by vocation 90 Death 35
Change position on a scale 85 Intentionally create 35
Attack 73 Businesses 34
Finish competition 68 Education teaching 33
Being located 51 Hostile encounter 31
Event 50 Protecting 31
Military 49 Activity start 29
Surpassing 46 Becoming aware 29
Using 46 Means 29
Cause change of position on a scale 45 Cause harm 28
Aggregate 43 Locale by use 26
Medical conditions 42 Behind the scenes 25

Table 6.8.: Most frequently annotated frames in the RTE-2 test set.

choice of different but highly similar frames (e.g. Risky situation vs. Run risk) or
an Unknown frame (see below) used by one annotator instead of the correct one present
in the FrameNet hierarchy. The final corpus contains 4488 annotated frames and 9512
annotated roles, with an average of 5.6 frames per pair, and 2.1 roles per frame.

Table 6.8 reports the most frequent frames occurring in FATE, and their number of
occurrences. This list gives an impression of the semantic domains characterizing the
RTE-2 corpus, mostly referring to killing, disaster and competition events.

6.4.2. FrameNet Coverage

FrameNet’s coverage on the RTE corpus is rather good and therefore unlikely to be an
important factor for performance issues of the SALSA RTE system. In order to assess
the impact of FrameNet’s coverage, the annotators of FATE marked cases where no
suitable FrameNet was available with a pseudo frame (or role) called Unknown. The
annotation contains 373 Unknown frame instances, accounting only for the 8% of the
total frames (unknown roles are 1% of the total roles). Thus, FrameNet’s coverage is
at 92%. This number differs considerably from figures reported for SALSA’s German
corpus annotation cited above. One possible reason for this discrepancy might by the
strategy of annotating only relevant frames in FATE. Also, the annotators of FATE were
allowed to annotate frames that looked appropriate in a rather flexible way, while the
SALSA annotation for German followed a stricter annotation guideline.
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LFG Collins
coverage full frag. full t+h frag. t or h single t or h coverage

dev 98.0 87.7 10.3 77.9 21.3 0.8 99.1
test 99.1 85.4 13.6 74.3 23.7 2.0 99.0

Table 6.9.: Parsing results on RTE-2 corpora for texts (t) and hypothesis (h) (in %).

6.4.3. Quality of Automatic Linguistic Analysis

In this section, we first explore the quantitative performance of the parsers. We then
present an experiment carried out to assess the accuracy of the Shalmaneser/Detour
systems against the FATE corpus as a gold standard. Finally, we evaluate the interface
between LFG and Shalmaneser/Detour.

Quantitative Performance of Parsers

Syntactic parsing. Providing a full qualitative evaluation of syntactic parsing is beyond
the scope of this thesis. We refer to the literature such as Kaplan et al. (2004), where a
comparative evaluation of the LFG parser and the Collins parser (used by Shalmaneser)
is provided. The accuracy values reported for both parsers are comparable (both achieve
F-scores in the high 70s).

Quantitative performance of the LFG and the Collins parser on RTE data is quite
good. We ran both parsers on the datasets of the first three RTE challenges. Both have
almost full coverage. Table 6.9 shows parsing results on the RTE-2 development and
test corpus, which are comparable to results obtained on other sets.

The LFG parser provides much richer representations than the comparably shallow
Collins parser (cf. Kaplan et al., 2004). In its overall coverage figures given in Table 6.9,
fragmentary parses (see Section 3.2.2) are included. More than 10% of the sentences
receive only partial LFG parses. For textual entailment, text/hypothesis pairs have
to be parsed. Table 6.9 also displays how fragmentary parses are distributed among
sentence pairs – about 75% of the pairs are fully parsed (full t+h); in about 22% of
the cases, either text or hypothesis are fragmentary (frag. t or h). Only few texts or
hypotheses remain without a parsed counterpart (single t or h).

We do not perform a compositional semantics construction within LFG. So, fragmen-
tary parses are unproblematic as long as the relevant predicates and their arguments
reside within parsed fragments.8 If relevant parts are fragmented, we might miss in-
formation about some grammatical relations or certain modifiers in the analysis. Yet,
the frames and roles can (mostly) still be projected (see below). Also, the subsequent
processing stages are robust in that they do not rely on fully connected parses.

8If this is the case, fragmentation has minor impact only – the overall properties of the sentence such
as the number of predicates change and peripheral parts do not receive a full grammatical analysis.
Both should not have a strong impact on the entailment decision.

148



6.4. Experiments with a Manual Gold Standard

Semantic parsing. We ran the semantic parsers Shalmaneser and Detour on all RTE
corpora to assess their quantitative performance. The number of frames assigned by
Shalmaneser, e.g., on the RTE-2 corpora, averages at 2.4 frames and 3.8 roles per sen-
tence. The number of frames is roughly comparable to the number of manually annotated
frames in FATE (see Section 6.4.1). The number of roles is a little lower than in the
manual annotation. If we take into account, that the manual frame annotation in FATE
provides only a partial annotation (relevant frames within relevant spans on positive
pairs), the number of frames assigned by Shalmaneser is too sparse. Combined with the
Detour system, the number goes up to 3.8 frames and 8.4 roles per sentence. Below, we
will determine the quality of the automatic frame assignment.

Quality of Automatic Frame Semantic Analysis

The following experiments assess the quality of the automatic frame semantic analysis
with the help of the gold standard FATE corpus.

Experimental setup. Both semantic parsers were run – Shalmaneser alone (SHA) and
Shalmaneser boosted with the Detour (DET). The special frame Unknown was removed
from FATE before running the experiments. System performance is evaluated on three
different tasks – frame, role, and filler assignment. In frame assignment, we count
the number of frame labels assigned by the system that occur in the gold standard
annotation of the respective sentence (precision), and the number of frame labels in
the gold standard annotation that can also be found in the system annotation (recall).
We further distinguish two different conditions – strict and relaxed match. Strict match
means identity of labels in automatic annotation and gold standard. Relaxed match also
accepts pairs of labels which are related via the FrameNet hierarchy or by the WordNet
inheritance relation using the algorithm described in Section 5.3.5. Role assignment is
evaluated only on the frames that are correctly annotated by the system. We compute
precision as the number of roles assigned by the system that are in the gold standard, and
recall as the number of roles in the gold standard that have been assigned by the system.
Similarly, we compute accuracy of filler assignment on the set of correctly hypothesized
roles only, as the percentage of fillers which have identical syntactic head lemmas in
automatic annotation and gold standard.

The relaxed frame match has been adopted to account for the fact that a certain
variance is normal in the task of assigning semantic annotations, as is shown in the
inter-annotator agreement values on frame assignment reported, e.g., in Burchardt et al.
(2006a). The relaxed frame match is intended as “fairer” condition for the systems. For
example consider the following text:

(6.21) Cars exported by Japan decreased.9

Here, in the gold standard annotation, exported relates to the frame Export, while
Shalmaneser assigns the frame Sending, which is still a plausible annotation.

9From RTE-2 test set.
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System Frame assignment Role
assignment

Filler
assignment

Strict Relaxed
Precision Recall Precision Recall Precision Recall Accuracy

SHA 0.35 0.40 0.48 0.55 0.54 0.37 0.77

DET 0.19 0.55 0.30 0.85 0.52 0.36 0.75

Table 6.10.: Systems’ performance over the gold standard.

Analysis of results. Comparison of the systems’ results with the gold standard anno-
tation shows that the systems’ performance is low and needs to be improved. Table 6.10
shows the results for the different tasks. Results on frame assignment indicate that the
systems have some difficulties in assigning exactly the gold standard frame. Yet, the large
improvement from strict to relaxed match (e.g., Precision +13% and Recall +15% for
SHA), shows that the systems often assign a frame which is similar to the gold standard
frame. The results on role assignment leave room for improvement. Filler assignment
results are relatively good, showing that in most cases, a correctly hypothesized role is
filled with the correct syntactic constituent.

Results for frame, role, and filler assignment are lower than results of Shalmaneser
reported in Erk and Pado (2006). This is probably due to two facts. First, Shalmaneser
has been trained and tested on different kinds of corpora; sentences in the RTE dataset
are typically longer and less “prototypical” if compared to the FrameNet sample corpus
Shalmaneser has been trained on. Second, the FATE annotation was performed using
a liberal annotation style. This aspect has been addressed by the use of the Detour
system, which implements a more flexible frame assignment. However, the precision of
the Detour on the FrameNet data presented in Section 4.2 was also higher than that
on the RTE gold standard corpus. Again, as there are no standard measures for frame
similarity, the figures give only an estimate of the quality of the automatic annotation.

Quality of LFG/Shalmaneser Interface

The interface between Shalmaneser/Detour and LFG is a piece of software that estab-
lishes the semantic projection from LFG f-structure nodes into frames and FEs (see
Section 5.2.1). Looking at its accuracy, we have to distinguish between the projection
of frames and the projection of FEs. In the current implementation, 97% of the frames
and 74% of the roles assigned by Shalmaneser/Detour can successfully be projected from
LFG some f-structure node.

As frames are typically evoked by single words, a high accuracy can be achieved in the
interface. About 90% of the frames can be treated by a straightforward algorithm based
on head lemma information. It has been improved to 97% by implementing heuristics
rules that use full forms and substring-matching in cases where the lemma has not been
found. Projecting FEs has proved more difficult as the fillers are often named entities,
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Figure 6.6.: Different tokenization in Collins and LFG parse.

pronouns, or complex phrases, where differences across parsers are ubiquitous. The
initial accuracy for lemma-based role projection was at only 64%. The heuristic method
mentioned above improved the accuracy to currently 74%. Still, further improvement of
the interface is possible. Systematic cases like the different tokenization of ASEAN in
the example displayed in Figure 6.6 should be relatively easy to handle, but more effort
will be needed for a special treatment of less systematic differences.

Intermediate Result

We have shown above that FrameNet’s coverage on the RTE corpora is rather good and
therefore most probably not an issue impeding the performance of frame-based modeling
of textual entailment.

Poor evaluation results of the linguistic components are more likely explanations for
the limited performance of the SALSA RTE system. While syntactic parsing seems to
work sufficiently well, the quality of the automatic frame semantic analysis is not satis-
factory. Precision of frame assignment between 20% and 50% in different conditions and
roughly 50% recall is rather low. In particular, recall for role assignment of about 35%
is a problem since role (mis-)match is intuitively more important for the entailment de-
cision than frame match. Unfortunately, this sparseness of role assignments is amplified
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by problems occuring in the interface that establishes the semantic role projection from
the grammatical layer.

6.4.4. Entailment Modeling

The suboptimal performance of automatic linguistic analysis is a probable explanation
for the fact that our entailment architecture does not perform as good as we had ex-
pected. The question remains whether it would perform better if the frame assignment
component had gold standard quality.

The most straightforward experiment is to re-run the SALSA RTE system on the
gold standard corpus. Low performance would most likely indicate a lack in modeling
entailment. However, due to its annotation strategy the gold standard does not lend
itself for being processed by the system. An exploratory system run on four fold cross
validation on the gold standard confirmed the expectation that the corpus has an ar-
tificial bias. Accuracy went up to 75%. The reason is that only relevant frames were
annotated in FATE and in particular only relevant spans in positive cases. Therefore,
negative pairs tend to have a considerably higher absolute number of frames. This bias
affects all features in the system based on frame number counts. After disabling the re-
spective features if possible, the system still had a better performance than that on the
automatically annotated data. But as the gold standard has only the size of a RTE test
set, and we cannot expect significant results from training and testing the full system.
A large variance across folds confirms this expectation.

As an alternative, we now present an experiment based on a simple algorithm which
extracts frame-based statistical information from the positive and negative examples of
the annotated corpus. It also captures the overlap of frame structures between text and
hypothesis in an entailment pair. In contrast to the full system, the algorithm focuses
on frame semantic annotation and has no fall-back alternative such as grammatical
functions.

Experimental Setup

We studied if basic frame-based information extracted from the gold standard helps in
discriminating positive and negative entailment in the RTE-2 test set. We investigated
three basic types of information:

Frame overlap This is the percentage of frames in the hypothesis which have a matching
frame in the text. By match, we mean an exact match here, i.e., both frames must
have the same label.

Role overlap Role overlap measures the presence of identical role label annotations in
hypothesis and text irrespective of the respective fillers. We count role overlap
only on those frames of the hypothesis which have a matching frame in the text.

Filler overlap This is the percentage of matching role fillers, counted on matched roles.
We consider two types of filler matching – strict matching where the filler strings
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Information type Annotation Average overlap Difference
On positives On negatives

Frame overlap
Gold standard 42.1% 28.1% +14.0%
Shalmaneser 39.6% 29.6% +10%

Role overlap
Gold standard 56.0% 47.3% +8.7%
Shalmaneser 33.2% 29.7% +3.5%

Baseline lexical overlap 76.6% 66.1% +10.5%

Table 6.11.: Average frame and role overlap over positive and negative pairs in the gold
standard and in Shalmaneser output and lexical baseline.

Annotation Match type Overlap Difference
On positives On negatives

Gold standard
Strict 12.7% 9.8% +2.9%
Levenshtein 20.0% 14.8% +5.2%

Shalmaneser
Strict 14.8% 13.6% +1.2%
Levenshtein 18.8% 18.7% +0.1%

Table 6.12.: Average role filler overlap over positive and negative pairs in the gold stan-
dard and in Shalmaneser output.

are identical and Levenshtein matching when the Levenshtein distance between
the two fillers is above a given threshold. Levenshtein matching is adopted to
approximate a lexical overlap strategy.

In order to find out if the three frame-based types of overlap information offers a
relevant contribution for checking entailment, we compare their discriminative power
against the simple lexical overlap baseline we already used as baseline in the experiments
reported in Section 6.3. We compute frame, role and filler overlap on the gold standard
and the output of Shalmaneser on the same corpus.

Results

Results for the simple algorithm are displayed in Table 6.11 and 6.12. Results for frame
overlap (Table 6.11) show that indeed the gold standard offers a notable discriminative
power of 14% between positive and negative examples. Compared to the baseline of
lexical overlap, frame overlap shows a slightly higher discriminative power (+10.5% vs.
+14%). Incidentally, we also tested the effect of including some frame relations in a lim-
ited and controlled manner (allowing “Inheritance”, “Subframe”, and “Perspective on”
relations with a maximal path length of four), but the figures did not change notably.
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The discriminative power of role overlap is lower. On the gold standard, it is at
8.7%, slightly lower than the lexical baseline. The results for strict role filler mismatch
displayed in Table 6.12 is almost neglectable. On the gold standard, it is at 2.9%
difference. The use the shallow Levenshtein measure improves the results to 5.2%.

Discussion of Results

Results for frame and role overlap are not unexpected, as both positive and negative pairs
should by and large talk about the same situation and type of participants. In theory,
the most significant indication as to whether entailment holds should be observed on the
level of filler match and mismatch. Yet, the results for filler mismatch do not confirm
this intuition. The slight improvement from strict to Levenshtein match indicates that
further elaborating the comparison of role fillers is an urgent and promising challenge
for future research.

Regarding automatic analysis, results show that frame overlap computed using Shal-
maneser’s analysis does not have a discriminative power higher than the baseline (+10%
vs. +10.5% difference). This is due to the fact that the output of Shalmaneser is noisy.
Similar results are obtained by the Shalmaneser data on role and filler match, reveal-
ing an informational gap existing between the information produced by a gold standard
annotation and an automatic parser.

Overall,the goal of the experiment was to find out (i) whether processing high quality
frame information as provided by a gold standard would be effective within a simple
algorithm for modeling entailment, and (ii) whether straightforward modeling of this
semantic information in an overlap-based architecture is sufficient.

Results show that this way of modeling frame semantics does not make optimal use
of the information contained in the dataset. Strong evidence to discriminate between
negative and positive examples cannot be found in this straightforward manner. In the
light of these experiments, it is not surprising that the full SALSA RTE architecture,
working on automatic frame semantic analyses, does not perform significantly better
than the lexical baseline. Future work will be necessary on the one hand to derive more
elaborate processing models for frame semantic information and on the other hand to
improve the quality of the automatic frame semantic analyses.

6.5. Summary and Discussion

In this chapter, we have evaluated the performance of the SALSA RTE system. We
also addressed the general question to what extent frame semantic information mod-
eling predicate-argument structure contributes to the automatic recognition of textual
entailment.

Results achieved by the system in RTE challenges were promising and inspection
of example analyses has shown that the grammatical and frame semantic knowledge
has neatly been integrated. Still, in experiments to identify factors that are most rel-
evant for entailment, features from the level of frame semantics did not occur in high
ranks. Instead, the shallow level of predicate overlap scored best, followed by the level of
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grammatical functions. While this can be taken as evidence that the level of predicate-
argument structure should also be relevant, the only high-ranked feature containing
frame semantic information is average match cluster size, representing a combination of
grammatical, semantic and ontological information.

The fact that features from different “deeper” and more “shallow” levels were ranked
highly in feature selection gave rise to the assumption that they are largely independent.
We systematically evaluated the performance of the full, “informed” system against and
in combination with a “shallow” lexical overlap measure. From these experiments, it is
evident that beating the lexical overlap baseline is still difficult for the more informed
features. In fact, both seem to model more or less the same information. Another result
is that the variance in accuracy is high across different training and test conditions for
all features. This confirms observations of other RTE groups and can be best explained
with the limited size of the corpora and with idiosyncrasies. It indicates that conclusions
derived from measuring system accuracy on the given corpora have to be taken with care.

In order to determine the performance and contribution of those systems components
that relate to frame semantic modeling, we designed a gold-standard corpus and per-
formed a number of experiments with it. Three main results are these.

First, the coverage of the Berkeley FrameNet lexicon is unexpectedly good for the RTE
data. Thus, it is unlikely that coverage is a relevant factor limiting the applicability of
frame semantics in real settings.

Second, performance of the linguistic analysis components, especially the quality of
frame semantic analysis produced by state of the art shallow semantic parsers is com-
parably low on RTE data. This is mirrored in the limited discriminative power of Shal-
maneser annotations over positive and negative entailment examples, especially when
compared to a lexical overlap baseline. Also, the accuracy of the SALSA system’s inter-
face between LFG f-structure and frame semantics needs to be improved.

Third, the task of entailment modelling has emerged as the major factor limiting the
applicability of frame semantics in RTE. We proved that simple overlap strategies at the
frame semantic level –such as computing frame, role, and filler overlap– do not perform
well. While overlap strategies have been applied with some success at the lexical and
syntactic level in other studies, we showed that this is not the case for frame semantics.
Any system for RTE seeking to use FrameNet or similar role-semantic resources, should
model such knowledge in more sophisticated ways, where the richness of frame semantics
can be made explicit and exploitable. We believe that research related to the FrameNet
hierarchy, e.g., defining frame similarity measures, is most promising for the near future.
We will give pointers in this direction in Chapter 7.
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7. Towards Integration of FrameNet’s
Hierarchy

In previous chapters, we argued that further achievements of frame-based inference archi-
tectures, e.g., for checking textual entailment, depend on automatic access of information
coded in FrameNet’s hierarchy1. By human inspection, this information can easily be
accessed, interpreting different types of frame relations in suitable ways. For example,
it is possible to establish links between (7.1) and both (7.2) and (7.3).

(7.1) John bought a car from Mary for 10.000$. (Commerce buy)

(7.2) John got a car. (Getting)

(7.3) Mary got 10.000$. (Getting)

The relation between (7.1)-(7.2) is straightforward – Commerce buy inherits from
Getting and the argument positions map correctly. Establishing a link between (7.1)-
(7.3) with correct argument fillers is possible, yet more intricate. The shortest path be-
tween both frames consists of five steps, requiring moving up and down in the FrameNet
hierarchy along three different relation types. As concerns automation, we are not aware
of substantial research on computational similarity measures for frames or frame seman-
tic annotations. This is especially surprising in light of the rich literature available for
related resources like WordNet.

At the same time, larger frame “scenarios” are predestined to be used for gathering
information provided within multi-sentence text fragments. This is increasingly impor-
tant for modeling textual entailment as the trend goes towards longer, more realistic
texts such as (7.4).

(7.4) T: In the first trial in the world in connection with the terrorist attacks of 11
September 2001, the Higher Regional Court of Hamburg has passed down
the maximum sentence. Mounir al Motassadeq will spend 15 years in prison.
The 28-year-old Moroccan was found guilty as an accessory to murder in more
than 3000 cases. (Trial, Sentencing,Prison, Assistance . . . )

(7.5) H: Mounir al Motassadeq faced a trial at the Higher Regional Court of
Hamburg for accessory to murder. (Trial)

1As in the case of, e.g., WordNet, the term hierarchy is used in a wider sense. In fact, not all relations
are hierarchical.
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In order to establish entailment in (7.4)-(7.5), it is necessary to combine information
provided within four different frame instances in (7.4) to cover the single frame instance
in (7.5) and all its role fillers (the respective frames are underlined and the role fillers are
printed in boldface). Although the idea of using frame semantics for discourse related
tasks is not new (Fillmore, 1977; Fillmore and Baker, 2001), little research has been
conducted in this area so far.2

In this chapter, we want to explore the potential of using FrameNet’s hierarchy. In
Section 7.1, we will report issues that arise if one tries to make use of the FrameNet
hierarchy. The aim of this section is mainly to give pointers for future research. In
Section 7.2, we will present a case study of how to use frame semantics for providing
loosely connected meaning representations of larger discourse. In Section 7.3, we will
shortly wrap up central points.

7.1. Issues Related to FrameNet’s Hierarchy

For checking textual entailment, as for many other natural language processing tasks,
it is necessary to measure semantic similarity, e.g., between known classes of entities
and a new entity occurring in a text. Already in the case of nouns –which often refer to
relatively concrete objects– it is not easy to define one comprehensive measure. This is
proven by the vast number of such measures which have been defined for WordNet. A
main difficulty is to find appropriate ways of delimiting concepts or concept clusters in
the face of different levels of granularity of sense distinctions that can be applied.

Modeling semantic similarity for events is a challenge as they form a heterogeneous
class. In FrameNet, we find frames that have different ontological status in that they
describe, e.g., complex events (Commercial transaction), sub-events hereof (Com-
merce goods-transfer), linguistic perspectives on events (Commerce buy), or par-
tial aspects of events (Reciprocality). Additional complexity is introduced by the
fact that semantic roles (and possibly fillers) have to be taken into account as well.
This overall complexity surfaces in FrameNet in the existence of many types of frame
relations, which are to be interpreted in different ways.

Below, we discuss issues of automatically interpreting FrameNet’s hierarchy (Sec-
tion 7.1.1). In Section 7.1.2, we give reason for some structural issues, namely a tension
between linguistic and cognitive modeling that can be observed in FrameNet.

7.1.1. Impact of Different Relation Types

FrameNet defines a variety of frame relations to specify how frames relate to other
frames. To see why different relation types can be an issue for natural language pro-
cessing, consider Figure 7.1, which displays a number of frames in the context of the
Commercial transaction scenario. Definitions of frames relevant for our discussion
are given in Table 7.1.

2Semantic role information in general is not used much for discourse processing. An exception is
Ponzetto and Strube (2006), who use PropBank roles for anaphora resolution
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Figure 7.1.: Frame relations of Commercial transaction (screenshot of Frame-
Grapher).

Just to illustrate potential problems, we try out a naive way of determining the simi-
larity of two frame-annotated sentences by following frame relations in a straightforward
fashion. This approach is comparable to taking path length as indicator for the simi-
larity of different synsets in WordNet. If we do so without awareness of different frame
relation types, we arrive at contradictory results. Consider the two sentences (7.6) and
(7.7). They instantiate the frames Commerce buy and Commerce pay, respectively
and convey roughly the same meaning.

(7.6) [John]buyer bought [a car]goods [from Mary]seller [for 10.000$]money.
(Commerce buy)

(7.7) [John]buyer paid [Mary]seller [10.000$]money [for a car]goods.
(Commerce pay)

The frames instantiated by the example sentences can be found on the bottom of
Figure 7.1. Both frames are connected via Perspectivization links to Commerce goods-
transfer and Commerce money-transfer, respectively. On this level, we can follow
two different types of links upward – subframe links to Commercial transaction
(CT) and inheritance links to Transfer (TR). The role fillers that we end up following
the different paths are displayed in Table 7.2. For example, for (7.6) the seller role of
the super-frame Commercial transaction would be instantiated with Mary.

If we consider both sentences, we can reach four different super-frame pairs (CT-
CT, CT-TR, TR-CT, TR-TR). Unsurprisingly, if we choose the commercial transaction
scenario for both sentences (CT-CT), their frame and role analysis is identical (see
Table 7.2 on the left). With this choice, we can confirm the intuition that both sentences
are similar in meaning.
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Frame Definition and core roles

Transfer
This frame involves a Donor transferring a Theme to a Recip-
ient.
Core roles: donor, recipient, theme, transferors

Commercial
transaction

These are words that describe basic commercial transactions
involving a Buyer and a Seller who exchange Money and
Goods. [. . . ]
Core roles: buyer, goods, money, seller

Commerce goods-
transfer

The subframe of the Commercial transaction in which the
Seller gives the Goods to the Buyer (in exchange for the
Money). (Non-lexical frame)
Core roles: buyer, exchangers, goods, money, seller

Commerce money-
transfer

The subframe of the Commercial transaction frame which in-
volves the transfer of Money from the Buyer to the Seller (in
exchange for the Goods). (Non-lexical frame)
Core roles: buyer, exchangers, goods, money, seller

Commerce buy
These are words describing a basic commercial transaction
involving a buyer and a seller exchanging money and goods,
taking the perspective of the buyer.
Core roles: buyer, goods

Commerce pay
This frame involves agents paying MONEY for GOODS. [. . . ]
Core roles: buyer, goods, money, rate, seller

Getting
A Recipient starts off without the Theme in their possession,
and then comes to possess it. Although the Source from which
the Theme came is logically necessary, the Recipient and its
changing relationship to the Theme is profiled.
Core roles: recipient, theme

Table 7.1.: Frame definitions and core roles.

However, all other possibilities would not permit to confirm this intuition. In two
cases (CR-TR, TR-CR), the frames are more or less unrelated. This neither indicates
similarity nor dissimilarity of the sentences. In the last case (TR-TR), the frames are
identical but the role analyses are incompatible as can be seen in Table 7.2 on the right.
This choice strongly suggest that both sentences are dissimilar in meaning. While this
is true regarding the transfer aspect (“who gets what”), it is evidently not true for both
sentences in general.

An open research question is how to (automatically) (i) find appropriate paths through
the hierarchy in a given constellation and (ii) how to interpret them. The problem is
manifest. Coming back to our initial example ((7.1) through (7.3), repeated below), the
link between Commerce buy from (7.8) and Getting from (7.10) can be established
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Commercial transaction Transfer
(7.6) (7.7) (7.6) (7.7)

Mary seller seller donor recipient
John buyer buyer recipient donor
(for) a car goods goods theme
(for) 10.000$ money money theme

Table 7.2.: Super-frames for (7.6) and (7.7).

as follows (see also Figure 7.1).

(7.8) John bought a car from Mary for 10.000$. (Commerce buy)

(7.9) [John]Recipient got [a car]Theme. (Getting)

(7.10) [Mary]Recipient got [10.000$]Theme. (Getting)

Commerce buy perspectivizes Commerce goods transfer, which is a subframe
of Commercial transaction. The latter has another subframe Commerce money
transfer, which is perspectivized in Commerce collect (“Mary charged 10.000$”).
This frame finally inherits from Getting (not displayed in Figure 7.1) such that the
role fillers are instantiated as in (7.10). Comparing this comparably long path moving
up and down the hierarchy with the direct inheritance between Commerce buy from
(7.8) and Getting as instantiated by (7.9), it is by no means obvious how to arrive at
the knowledge that the “semantic distance” between (7.8) and both (7.9) and (7.10) is
roughly the same.

From inspection of examples, one can speculate that some order of precedence of the
different types of relations might be involved. For example, it seems that the subframe
relation “blocks” inheritance under certain conditions. In the general case, i.e., for
frames which are not part of a scenario, connectedness via the inheritance relation plus
role compatibility should provide reliable evidence that the situations described are
compatible. The Uses relation and in particular Perspectivization seem to behave like
inheritance in this respect. In the case of Causation, it is much easier to provide an
interpretation in a computational way. For example, an indicator to establish entailment
can be that the “consequent frame” is the resulting state of the action mentioned in the
“antecedent frame”.

Another open question concerns the impact of the directness of relations when travers-
ing the hierarchy. While, e.g., brother terms in the WordNet hierarchy like rocket and
skibob are typically relatively dissimilar, hyponyms and hypernyms are usually more
similar. The example above indicates that this might be different for certain relations
in FrameNet. Still, as has been shown for other hierarchies (e.g. in Čulo, 2006, for the
case of GermaNet), the contrastive features between classes do not apply to all classes
and levels of the hierarchy in the same way. Within FrameNet, e.g, the two frames
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Cooking Creation and Duplication, which inherit from Intentionally create
are comparably dissimilar. In contrast, the frames Inhibit movement and Arrest
inherit from Intentionally affect and are much more compatible.

As we cannot provide a comprehensive treatment of frame relations within the scope
of this thesis, we have to leave the discussion at that.

7.1.2. Tension between Cognitive and Linguistic Modeling

FrameNet can be seen as being an “interface” between lexical semantics (capturing
predicate meaning) and knowledge representation (capturing information about typical
situations). As a consequence, sometimes a divergence can be observed between the
often defeasible character of natural language semantics one the hand and the typically
stricter information contained in idealized, abstract models of the world on the other
hand.

This divergence is mirrored in the question whether inheritance describes a conceptual
relation or a relation which is tied more closely to natural language. In Fillmore et al.
(2001), inheritance was regarded more on a conceptual level, e.g., to describe so-called
profiling.3 An example discussed is the profiling of the place of departure in a Depart-
ing frame, which inherits from the more general Motion frame. Moreover, multiple
inheritance (“frame blending”) had originally been proposed to relate frames by way of
a “semantic decomposition”. For example, Judgment communication was conceived
as a blend of both Judgment and Communication (now: Statement). This had
been expressed via multiple inheritance.

However, in the current FrameNet database, both inheritance relations have been
replaced by the “weaker” Uses relation, which is harder to utilize in natural language
processing for its unclear semantics. Ruppenhofer et al. (2006) give as one reason for
changing from inheritance to Uses that the (overtly realizable) role inventory of the
frames is partly incompatible – while, e.g., Judgment communication can realize an
evaluee and a reason, Statement realizes the same content as a single message, as
can be seen in (7.11) and (7.12).

(7.11) You accused [me]evaluee [of bluffing]reason. (Judgment communication)

(7.12) You said [I was bluffing]message. (Statement)

This example illustrates different rationales for establishing frame relations. One is
driven by conceptual considerations of whether the situations described by one frame
are more specific than the ones described by other frames and the other one is driven
by observations about possible and impossible linguistic realization patterns of semantic
roles.

3In Narayanan, Baker, Fillmore, and Petruck (2003), FrameNet members state to have borrowed the
term profiling from Langacker (1987), who distinguishes between profile and base. The profile refers
to the meaning of the word under consideration itself while the base refers to encyclopedic knowledge
needed to understand it.
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“Lexicographic” hierarchy
(current)

Hierarchy determined
purely by roles

Incorporated role is made
explicit

Instance Sole Instance Instance
instance item instance
type type type
instance prop instance prop

Sole instance Instance Sole instance
item instance item
type type type

instance prop +item prop: sole

Uses Inherits from Inherits from

Table 7.3.: Towards a more uniform hierarchy.

From the perspective of practical natural language processing, an open question is
whether it is possible to (automatically) arrive at a FrameNet hierarchy that is easier to
utilize. As concerns the Uses relation, it is conceivable how a simpler, stricter version
of FrameNet could look like. We sketch one idea for re-structuring the hierarchy by
means of the two frames Instance and Sole instance, that currently stand in a Uses
relation. The frame Instance describes “transparent nouns which denote instances
of types of entities or events” and Sole instance describes adjectives which describe
items as being the only instance of the given type. Example annotations are found in
(7.13) and (7.14).

(7.13) [This algorithm]instance is a [typical]instance prop instance [of bottom up
clustering ]type. (Instance)

(7.14) [Steven]item is the sole [survivor]type in his family.4 (Sole instance)

Both frames with their full role inventory are displayed in Table 7.3 in the left col-
umn. The role Sole instance.item inherits from Instance.instance, type is inher-
ited without renaming. The linguistic reason why Sole instance cannot inherit from
Instance is that the instance property (of being sole) is absorbed (or incorporated) by
the adjectives evoking it. Consequently, the role inventory of Sole instance lacks a
role corresponding to instance prop. As inheritance would require that all roles of the
super-frame (Instance) are also available at the sub-frame (Sole instance), it is not
applicable here. Yet, Sole instance is still construed as being a related to (and proba-
bly more specific as) Instance. To capture this, the Uses relation has been annotated.

4The annotation is from FrameNet, we would have included in his family in the type as well, as this
would result in a unique description.
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Committing crime

Theft Kidnapping . . .

Robbery

Inherits from

Uses

Figure 7.2.: Frames inheriting from Committing crime.

Again, the tension here is that while it is conceptually arguable that Sole instance is
more specific than Instance, the respective linguistic role inventories do not allow to
establish an inheritance relation between both.

Still, for automatic natural language processing, it would be desirable to have a dense
annotation of FrameNet’s inheritance relation, as is the case in WordNet. moreover, as
non-monotonic inheritance structures tend to complicate models and processing archi-
tectures, it would be preferably to use proper inheritance if possible. Two possibilities
for re-structuring FrameNet accordingly are displayed in Table 7.3 in the middle and
right column. The solution in the middle may seem strange as it swaps both frames,
defining Instance as subframe of Sole instance. This solution implements the idea
that the hierarchy is based solely on the available role inventories.5 An advantage would
be that this solution could be implemented fully automatically. However, as it leads to
a conceptually inadequate hierarchy –not every Instance is a Sole instance– this is
not a convincing option. Our preferred solution is the one displayed in the right col-
umn of Table 7.3. Here, the incorporated role instance prop is made explicit within
Sole instance. It is added (re-named to item prop) and annotated with an appro-
priate semantic type. More research would be needed to check whether this method is
applicable in general.

FrameNet itself in some cases addresses comparable problem caused by incorporated
roles using the special role type core unexpressed, which introduces non-monotonicity.
We will illustrate it with an example. Table 7.4 shows the roles of the four frames
displayed in Figure 7.2 and contrasts the respective role types (core, non-core, extrath-
ematic, core unexpressed, see Section 3.3.4).

The top row displays the roles that are identical throughout all four frames. The
middle row shows the roles that are added monotonically by one of the daughter frames
or that change their role type during inheritance. The last row shows a case of an
incorporated role – the crime itself, which is a core role of Committing crime, is not
applicable at either Theft or Robbery (although Kidnapping lists an event role, we

5We disregard the question as to whether the role inheritance of instance from item is justifiable.
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Comm. crime Theft Robbery Kidnapping

Identical roles

frequency nc nc nc nc
manner nc nc nc nc
means nc nc nc nc
perpetrator c c c c
place nc nc nc nc
purpose nc nc nc nc
reason nc nc nc nc
time nc nc nc nc

Monotonic
role extension/
Change of
coreness

instrument ext nc
source c c nc
goal nc
victim c c c
goods c nc
degree nc
duration nc
manner nc
means nc

Role deletion crime c-u nc (Event)

Table 7.4.: Frame element inheritance (c=core, c-u=core-unexpressed, nc=non-core,
ext=extrathematic).

did not find any annotated sentences providing an example realization).
Technically, inheritance of the crime role is blocked by annotating this role as core-

unexpressed on the level of Committing crime. A disadvantage of this solution is
that the inheritance relation is occasionally turned into a non-monotonic relation. This
is not only theoretically unattractive, but it might also lead to computational issues if
standard methods cannot be applied. Again, we would prefer to make the incorporated
roles explicit in the daughter frames. Incidentally, in German, the crime role can easily
be realized within a Theft frame as in (7.15).

(7.15) Gestern stahlen [drei Maskierte]perpetrator [bei einem Überfall im
Landesmuseum]crime [drei wertvolle Gemälde]goods. (Theft)

Table 7.4 also shows that the roles of Theft and Robbery, which stand in a Uses
relation (see Figure 7.2), are identical with the exception that the latter frame does
not have an instrument role. At the same time, one can find attestations like he
robbed it with a chain gun in the WWW. If the missing instrument role is the only
reason why Robbery does not properly inherit from Theft, we would suggest to adapt
these frames in order to arrive at a more uniform inheritance structure. One solution
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could be to annotate the instrument as extrathematic (as has been done in the case of
Committing crime, from which Robbery inherits).

All in all, the current FrameNet hierarchy is not only incomplete, it is also idiosyncratic
in places. Originally designed for lexicographic research, it should partly be re-structured
to become more committing and thus easier to be used within automatic natural language
processing. Ideally, the completeness problem could be addressed, e.g., by focusing on a
thorough annotation of inheritance relations. It needs to be determined, to what extent
this process could be performed (semi-)automatically.

Abstracting away from these issues that occur when two frames or single sentence
analyses are compared, the FrameNet hierarchy bears further potential for the analysis
of larger discourse. In the next section, we will demonstrate how this potential can
practically be used.

7.2. Building Text Meaning Representations from Contextually
Related Frames

A natural advantage of FrameNet lies in its capability of describing larger scenarios, thus
potentially covering the meaning of multiple sentences (“discourse”). The relevance of
frame semantics for text linguistics has already been pointed out by Fillmore in an early
work on frame semantics (Fillmore, 1977, p.4):

Successful text analysis has got to provide an understanding of the develop-
ment of an image or scene [. . . ]: The first part of the text activates an image
or scene [. . . ]; later parts of the text fill in more and more information [. . . ].

Apart from a more programmatic discussion in Fillmore and Baker (2001), we are
not aware of any substantial research in this area. In this section, we investigate frame
annotations in context as a partial text meaning representation on a fairly concrete level.
We present a case study where we investigate different types of relations between frames
when assigned to contiguous portions of text –contextual relations from syntactic parsing
and frame relations from FrameNet– and show how specific patterns of such relations
support the inference of co-referential links between frames. We discuss possibilities of
using learning techniques to induce links between frames.

We proceed as follows. Section 7.2.1 presents an outline of our investigations into
frame-based text meaning representation. We discuss how to connect frame annotations
to obtain an interlinked (yet partial) semantic representation. In Section 7.2.2, we
then present a worked-out example that illustrates how specific configurations of lexico-
semantic and contextual relations can license the induction of co-referential links between
frames. We discuss how this process can be generalized and automated in Section 7.2.3.

7.2.1. Frame Semantics for Partial Text Meaning Representa tion

As frame semantic descriptions are focusing on open class categories (verbs, nouns, ad-
jectives), full text annotations are necessarily partial. By applying frames to contiguous
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portions of text –due to the lack of constructional “glue”– we obtain partially connected
predicate-argument structures in a network of potential frame-to-frame relations. In
order to construct a more densely connected frame-based text meaning representation,
we need to infer additional links between frames and frame elements. For this we can
exploit contextual relations between frames and frame elements as given by syntactic
parsing, e.g., structural embedding or adjacency relations between neighboring frames.
When trying to induce contextually linked frames, we have to distinguish two levels:

1. The level of frame instances, where we can infer co-reference of events or role fillers,
and

2. the level of types, where we can infer intrinsic relations between frames and roles
that are not yet included in the FrameNet graph.

At the instance level, we can establish co-referential links between, e.g., a filled role
of one frame instance with an unfilled role of another frame instance provided we find
sufficient supporting evidence. Two roles can be linked, e.g., if –at the type level– the
respective frames stand in a subframe relation and in addition, the frame instances are
contextually related, e.g., by functional-syntactic embedding or else by way of a discourse
relation.

At the type level, we can induce relations between frames or roles on the basis of,
e.g., recurrent anaphoric linking patterns observed in texts. The induction of meaning
relations at the type level is more involved and requires use of annotated corpora and
learning techniques. In both cases, the induction of co-reference relations between frames
can only be heuristic.

7.2.2. Frames in Context – A Case Study

In this section, we present a case study that establishes systematic patterns of lexical-
semantic and contextual relations that support the induction of co-referential relations
between frames and roles. As an example we chose a short news wire text6 that pertains
to the “scenario frame” Criminal process:

(7.16) In the first trial in the world in connection with the terrorist attacks of 11
September 2001, the Higher Regional Court of Hamburg has passed down the
maximum sentence. Mounir al Motassadeq will spend 15 years in prison. The
28-year-old Moroccan was found guilty as an accessory to murder in more than
3000 cases.

Table 7.5 lists all target predicates, frames and roles that are relevant for the example.
Role fillers that correspond to local constituents are displayed in the right column in italic
(non-bold) type font, e.g., Trial.case is filled by the constituent terrorist attacks. Roles
that cannot be associated with any constituents are not displayed or left unfilled (e.g.,
Attack.victim). Frame element fillers and co-references between frame elements that

6http://www.germnews.de/archive/dn/2003/02/19.html
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Target Frame Frame element Filler (given vs. induced)

trial Trial case terrorist attacks (1)
charge accessory to murder (2)
court Higher Regional Court (3)
defendant 28-year-old Moroccan (4)

attacks Attack assailant terrorist (5)
victim (6)
time (non-core) 11 September 2001 (7)

sentence Sentencing convict Mounir al Motassadeq (8)
court Higher Regional Court (9)
type maximum sentence (10)

prison Prison inmates Mounir al Motassadeq (11)
duration (exth.) 15 years (12)

found Verdict case terrorist attacks (13)
guilty charge accessory to murder (14)

defendant 28-year-old Moroccan (15)
finding guilty (16)

accessory Assistance co-agent (17)
focal entity murder (18)
helper 28-year-old Moroccan (19)

murder Killing killer (20)
victim more than 3000 cases (21)

Table 7.5.: Frame annotations with given/inferred frame element linkings.

can be induced on the basis of frame relations, contextual relations or bridging inferences
are displayed in boldface. For example, Higher Regional Court that originally only fills
the role Sentencing.court can be induced to be filler of the role Trial.court as
well.

Frame Relations

The frames evoked in the example pertain to the following frame relations. Both Sen-
tencing and Trial are subframes of Criminal process. Verdict in turn is a sub-
frame of Trial. These frame relations are displayed (among other things) in Figure 7.3
by straight lines. Additionally, Assistance inherits from Intentionally act.

Contextual Relations

The example features different types of contextual relations between frames and roles
such as functional syntactic embedding, surface order, discourse relations, or co-reference.
In Figure 7.3, central relations are displayed by dashed lines. For example, Sentencing
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Figure 7.3.: Frame relations, contextual relations, and inferred relations.

and Trial are syntactically related by functional (adjunct) embedding; the Killing
frame is embedded within the focal entity role of Assistance; the sentence project-
ing Prison follows, and stands in a discourse relation (elaboration) to the sentence pro-
jecting Sentencing. Finally, the referents corresponding to the roles Prison.inmates
and Verdict.defendant can be recognized as co-referent.

Inferred Relations

Based on these lexico-semantic and contextual relations, we can infer further semantic
relations between roles and frames, such as co-referential binding of unfilled roles. Fig-
ure 7.3 shows the inferred relations that we identified in (7.16) by dotted lines. Closer
study of the inferred relations reveals a number of underlying patterns of justifications,
which we will exemplify in turn. In the majority of cases, we can infer role bindings on
the basis of (a variety of) patterns of lexical semantic and contextual relations between
frames and roles. In some cases, further lexical semantic knowledge is required, which is
not yet encoded in FrameNet, such as “semantic control” between frames and elements.
We will later discuss an example which motivates that additional semantic information,
such as referential and temporal properties, needs to be considered for inducing role
bindings.

Inference on instance level. Figure 7.4 schematically illustrates a pattern in which
we induce an instance link between role fillers like trial.court (r1) and sentenc-
ing.court (r2) (see (3) and (9) in Table 7.5). In the figure, frame (and role) types
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Frame relations Context-related instances Inferred instance rel.s

F0

R0

F1 F2

R1 R2

f1 : F1 f2 : F2

r1 : R1 r2 : R2

f0

r0

f1 f2

r1 r2

Figure 7.4.: Inferring instance relations.

Frame relations Context-related instances Inferred frame rel.s

F1 F2

R1 R2

f1 : F1 F2 : F2

r1 : R1 r2 : R2

F1 F2

R1 R2

Figure 7.5.: Inducing frame relations.

are printed in upper case, instances in lower case. f1 : F1 means that f1 is an in-
stance of frame F1. In this concrete example, sentencing (F2) and Trial (F1) are
subframes of Criminal process (F0) and the roles R1 and R2 both inherit from Crim-
inal process.court (R0). These type level inheritance and subframe relations are
displayed by dashed lines (left). In addition, the given frame instances (f1, f2) stand
in a functional (adjunct) embedding relation. This contextual relation is displayed by
dotted lines (middle).

On this basis, we assume that both frame instances are subframes of the same Crim-
inal process scenario instance (f0). In other words, a “larger” cluster of frames is
instantiated by the observed instances. This allows linking of the roles (r1) and (r2)
(right) on the basis of type level information. Other examples of role identifications that
follow this pattern are (1)-(13), (2)-(14), (4)-(15) in Table 7.5, which are based on the
subframe relation between Trial and Verdict.

Inference on type level. Figure 7.5 illustrates a case where role identification is in-
duced on the type level. In this concrete pattern, the support is provided by a contex-
tual co-reference relation. The frames Prison (F1) and Verdict (F2) are unrelated
in FrameNet (left). In the text, the referents of the roles Prison.inmates (r1) and
Verdict.defendant (r2) are marked co-referent by means of a definite description
(middle). We therefore induce a role identification at the type level by assumption of an
“anonymous” frame-to-frame relation that can be further specified, e.g., as a causation
relation or a subframe relation within some scenario. Of course, such heuristic inductions
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Frame relations Context-related instances Inferred inst. rel.s

R2 F2

R3 Int. act

Fx agent

Rx

sem ctrl

r2 : R2 f2 : F2

r3 : R3 Int. act

f1 agent

r1

r2 f2

r3

f1

r1

Figure 7.6.: Inferring instance relations (via “semantic control”).

cannot be based on a single observed instance, but require recurrent observations of jus-
tifications. One application of this technique might be the semi-automatic extension of
FrameNet’s inheritance structure on the basis of annotated data such as the FrameNet
corpus. A requirement on the corpus is that either more than one frame is annotated
per sentence or that frame annotations are carried out on subsequent sentences.

Lexical meaning postulates: “semantic control”. In some cases, patterns of frame
and contextual relations are not sufficient to induce role-identification. We found that
sometimes further lexical semantic information is required, in particular what we call
semantic control, as a kind of meaning postulate. For some frames, it is part of their
inherent lexical meaning that a given role must be co-referent with the agent- or patient-
like role of an embedded frame. For example, the defendant in a verdict is (found to be)
the actor in the event that constitutes the charge of the verdict, as illustrated by the
examples below.

(7.17) He was convicted for jumping out of a bush naked and making lewd suggestions
to a jogger [. . . ].7 (Verdict, Self Motion)

(7.18) Defendant Stephanie Mohr has appealed her conviction for violating 18. U.S.C.
242.8 (Verdict, Compliance)

(7.19) She was found guilty for lying to federal investigators.9 (Verdict,
Prevarication)

This is schematically represented in Figure 7.6 (left). Verdict (F2) features seman-
tic control, in that Verdict.defendant (R2) is marked identical to the agent of some
frame Fx embedded within its Charge role (R3) (dashed line). Agenthood is formally

7From news.ninemsn.com.au
8From www.usdoj.gov
9From www.womensnewsdaily.com
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represented by inheritance from Intentionally act.agent.10 In our running exam-
ple (middle), Verdict.charge (r3) embeds Assistance (f1). Furthermore, Assis-
tance.helper (r1) inherits from Intentionally act.agent. We can thus conclude
that the filler of Verdict.defendant (r2) is identical to the assistance.helper (r1)
(right) ((15)-(19), Table 7.5). Other examples that involve semantic control are (17)-
(20) and (8)-(11) (the latter assuming a causative relation between Sentencing and
Prison).

7.2.3. Acquisition of Role-linking Patterns

We have identified various patterns of lexico-semantic and contextual relations that sup-
port the induction of co-reference relations between frames and roles. Frame relations
proved essential for linking contextually related (neighboring) frame instances. Different
types of contextual relations could be observed to support role identification – syntac-
tic and semantic embedding, anaphoricity, and connectedness by discourse relations or
surface linearization. More data needs to be investigated to determine the weight of
the individual factors. In future work, one could apply statistical methods for acquiring
role-linking patterns from analyzed (annotated) text samples of a restricted domain, like
Criminal process. The aim is to learn weighted role-linking patterns that can be for-
malized as probabilistic inference rules. For experiments along these lines, see Liakata
and Pulman (2004); Lin and Pantel (2001).

We have provided an abstract definition of semantic control in terms of the agent
role marked by inheritance from the perspectivizing frame Intentionally act (the
frame Intentionally affect additionally defines a patient role). This will facilitate
the acquisition of lexical semantic control relations, yet it relies on the full specification
of such inheritance relations in the FrameNet data (for the chosen domain). Based on
inferred or given role-linkings and subframe relations, one could also learn more involved
patterns of “bridging” inferences between frames. For example, in (7.20), Baragiola
locally fills the role Sentencing.convict and via an elliptical construction also the
role of Escape.escapee.

(7.20) [Baragiola]convict/escapee had previously been convicted of murder in Italy,
but had escaped in 1980 and obtained Swiss citizenship. (Sentencing/Escape)

Assuming that we have already learned a role-linking between Sentencing.convict
and Prison.inmates, we can heuristically infer the existence of a Prison frame, with
Prison.inmates referentially bound to the Escape.escapee. In turn, one could try
to find more instances of the pattern Prison-Escape as additional support for the
heuristic inference. So, this approach could be used to “bootstrap” densely connected
frame scenarios from given annotation.

Finally, examples like (7.21) go beyond the expressivity of the frame semantic repre-
sentations we used above. In order to treat them, we need to enrich the representations

10In fact, not all frames constituting charges in the examples above are (yet) annotated to inherit from
Intentionally act.
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with more “deep” semantic information to control the induction of role identification.
We need to model referential properties, such as the introduction of new discourse ref-
erents (a new trial), and event modification by locational or temporal adjuncts. The
former will be crucial to define “blocking” factors for role identification rules, the latter
will provide deeper semantic characterizations of contextual relations between frames,
such as temporal sequence.

(7.21) Mounir El Motassadeq (born April 3, 1974) is a Moroccan. In February 2003 he
was convicted [. . . ]. As of April 2004 he is the only person to have been
convicted in direct relation to the September 11, 2001 attacks. The verdict and
sentence were set aside on appeal [. . . ]. A new trial is expected in mid-2004.
(From Wikipedia)

7.3. Summary of this Chapter

This chapter was concerned with the access and use of information encoded in FrameNet’s
hierarchy. We started from the observation that there exists neither literature on sim-
ilarity measures for frames or frame annotations nor on the use of frame annotation
for discourse modeling – two issues which are relevant for further achievements in using
frame semantics for detecting textual entailment.

We then explicated issues that arise from the multitude of existing frame relations,
which makes the FrameNet structure much harder to interpret than, e.g., WordNet’s
inheritance structure for nouns. We gave reasons for why this is the case and sketched
first ideas for re-structuring FrameNet in order to adapt it to the needs of automatic
processing.

As concerns the use of frames for discourse analysis, we provided a worked-out exam-
ple that illustrates how actual frame analyses in context can be made more dense by
relating frames and roles of “neighboring” frames. The basis for this are on the one hand
frames scenarios and on the other hand contextual relations like syntactic embedding
or anaphoric reference. In the other direction, we have shown how frequently observed
patterns in annotated corpora can be used to heuristically induce new frame relations.

More research on the ideas we presented in this chapter is needed. Once there are
results available like similarity measures for frames, we can adjust our RTE system
accordingly. Hopefully, this will lead to a more significant contribution of the frame
semantic information for natural language tasks like RTE in the near future.
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In this thesis, we presented the SALSA RTE system, a competitive, large-scale, semantics-
based natural language inference system. While implementation of such a system would
have been out of reach a few years ago, we are far from proclaiming that all problems
have been solved.

When we started to prepare this thesis, broad-coverage syntactic parsers had been
available for some time while the traditional, logic-based approaches to computational
semantics had proven to be inapt for practical applications. This “semantic gap” had
partly been filled by “shallow” approaches, that managed to approximate natural lan-
guage meaning in prototypal applications with some success. These approaches were
often based on distributional measures and the WordNet taxonomy. A natural next step
was to explore the contribution of more structured lexical-semantic information in the
form of predicate-argument structure, for which semantic parsers had become available.

The newly introduced task of recognizing textual entailment (RTE) was attractive for
this undertaking for a number of reasons: (i) it subsumes a number of typical applica-
tions, (ii) it offers a corpus for realistic, empirical evaluation, and (iii) several studies
had shown that the level of predicate-argument structure is relevant for modeling many
types of variation and paraphrases encountered in the RTE data.

The framework we developed in this thesis is one of the first that explores the con-
tribution of predicate-argument structure in terms of Fillmore’s frame semantics for
broad-scale natural language inference. Textual entailment is approximated via “in-
formed” features that capture the structural and semantic overlap between analyses of
(entailing) texts and (entailed) hypotheses. In the implementation, this information is
provided by state-of-the-art frame semantic parsers, combined with deep grammatical
analysis and a WordNet-based component that deals with aspects of semantic modeling
not covered by frame semantics. The SALSA RTE system’s performance was on a par
with related (non-commercial) systems in last years’ RTE challenges.

This “pioneering” study can serve to guide future and in-depth research on both frame-
based inference systems and lexical-semantic approaches to textual entailment. Our work
offers major contributions in the field of applied lexical semantics because frame-semantic
information had neither been integrated in a comparable, broad-scale end-to-end system
before, nor had the coverage of Berkeley FrameNet and that of existing semantic parsers
been evaluated on realistic data. In the rest of this chapter, we will go through four of
the most important challenges we have addressed in this thesis and finally sketch some
starting points for future research. The challenges we will discuss are:

• Cope with coverage issues of FrameNet.

• Construct frame-based meaning representations.
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• Design a suitable inference framework.

• Evaluate its impact on the RTE task.

Cope with coverage issues of FrameNet. It is known that the Berkeley FrameNet
database is incomplete in several respects. Two central types of limitations are: (i)
missing frames (senses); and (ii) missing LUs (incomplete lexicon). Another limitation
are missing frame relations (see below). These issues potentially restrict the usefulness
of FrameNet for tasks such as RTE. One result of this thesis is that we could eliminate
the first concern and provide an effective solution for the second:

(i) Missing frames are not an issue for RTE. The topics dealt in RTE corpora such
as killing, disaster, and competition events are covered well by FrameNet. As
we have shown with a manually annotated gold-standard, more than 90% of the
information relevant for entailment can be annotated with existing frames. This
somewhat unexpected result can only partially explained with the flexibility we
granted human annotators for assigning frames that seem by and large plausible
and the strategy of annotating only relevant material.

(ii) Statistically trained systems like Shalmaneser completely fail in assigning any
frame if they encounter a word that is not contained in the FrameNet lexicon. They
also fail if too few annotations of an existing LU are available in the FrameNet cor-
pus for training. We addressed these problems by developing the WordNet-based
“Detour (to FrameNet)” system, which guarantees high coverage. The detour
practically implements a flexible frame assignment strategy. It has almost 90%
recall and a precision of about 50%. This means, in 50% of the cases, where sta-
tistically trained systems fail, the correct (gold standard) frame can be assigned
by the Detour algorithm. If an approximate notion of frame similarity is taken
into account in the evaluation against a gold-standard, adding the Detour system
improves both precision and recall as compared to Shalmaneser alone.

While coverage issues of automatic frame and role assignment can be alleviated by the
combination of Shalmaneser and the Detour system, we found out that their precision is
still far from a manually annotated gold standard. Substantial improvement of frame-
semantic analysis tools will be a prerequisite for further achievements in frame-based
natural language processing.

For future improvement of Detour’s precision, it would be helpful to be able to au-
tomatically distinguish words/readings for which a frame exists from those that are
definitely not covered by FrameNet. First investigations in this direction are reported in
Erk (2006) under the heading outlier detection. It would also be desirable to have a bet-
ter external WordNet word-sense disambiguation component. As WordNet has become
a kind of standard reference format for lexical resources, it would in general be good
to have an annotation of existing FrameNet’s LUs with WordNet synsets. This would
considerably facilitate the use of FrameNet in applications.
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Construct frame-based meaning representations. Recent research on predicate-argu-
ment structure has mostly been concerned with automatic role labeling. One outcome
of this research is Shalmaneser, the frame semantic parser used in this thesis. The
question how of to integrate this kind of knowledge in natural language processing tasks
has largely been untouched. Possible reasons are coverage issues (see above), and also
limited robustness of analysis tools.

We decided to address this latter point by combining FrameNet information with
grammatical information from a state-of-the-art “deep” syntactic LFG framework. LFG
f-structure predicates and grammatical functions can serve as fall-back for cases, where
frame or role analyses are not available. Another reason for integrating grammatical
information in the SALSA RTE system was that surface and syntactic phenomena make
up a good part of textual entailment. We are convinced that it is a good strategy to
check entailment on the lowest possible level of analysis in hybrid architectures. While
semantic descriptions in theory provide nice abstractions from irrelevant surface, it is
evident that semantic processing at the same time introduces noise and has to deal with
a number of issues such as limited coverage.

In order to represent grammatical, frame semantic, and ontological information in
a common framework, we designed a suitable meaning representation format and im-
plemented an interface integrating information from the primal analysis components.
Grammatical and FrameNet information is integrated by a semantic projection from
LFG f-structure graphs into frame structures. WordNet knowledge was integrated by
way of a third projection called ontological projection. The resulting tripartite graphs for
text and hypothesis represent all given information in an integrated way while keeping
the levels of description apart. This architecture is easily extensible as we have shown
by including information from the SUMO knowledge ontology. We also demonstrated
how this architecture nicely supports refinement and further normalizations by way of
interleaving information from different levels. This does not only lead to more dense
frame semantic annotations, but also allows to approximately mark phenomena from
compositional semantics like modality, as has been shown.

The technical realization of the interface between basic components (LFG and Shal-
maneser/Detour) was difficult. Exhaustive fine tuning was not possible for time reasons.
An option for future research to circumvent problems on this basic level would be do
devise a direct semantic construction for frame semantics from a major grammar frame-
work like LFG or HPSG. Either in a machine learning setting, as proposed by Frank and
Erk (2004), or based on the linking patterns provided, e.g., by FrameNet for English
or the semantic lexicon of SALSA (Burchardt, Padó, Spohr, Frank, and Heid, 2008) for
German.

Design a suitable inference framework. Frame-based reasoning has also not been dis-
cussed in the literature so far. Not even similarity measures for frames or frame an-
notations are currently available. We designed a frame-based inference framework for
textual entailment from scratch. Like related approaches, we approximate entailment
via semantic similarity of hypothesis and text. In the SALSA RTE system, this was
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implemented by computing directed overlap of meaning representations of hypothesis
and text, assuming that the more of the hypothesis is covered by the text, the more
indication we have that entailment holds.

Starting from the meaning representations we sketched above, we designed a graph
matching technique that captures different aspects of structural and semantic similarity
of representations for text and hypothesis. We deliberately opted for a declarative,
verbose, and partly redundant representation format to be able study, which factors
have an impact on the entailment decision. An advantage of these “match graphs” is
that they are easily human readable, thus supporting error analysis and correction. The
matching information is translated into feature vectors, and the entailment decision is
made by a well-established machine learning system, trained on RTE corpora.

Our initial expectation that the machine learners would help establish interesting
correlations between the different types of information such as matching frames and
unmatched role fillers was not fulfilled. In the evaluation, it turned out that more
controlled ways of comparing text and hypothesis might be needed to make better use
of information from different layers. For a start, one could try to come up with a more
controlled, precise, “rule based” definition of graph matching for a restricted number of
examples or phenomena. In the architecture, this could be achieved by defining new,
more complex features. Doing so, however, seems to rely on a more comprehensive
understanding of the notion of textual entailment.

Concrete improvements for the SALSA system we identified concern its bias towards
positive entailment judgments. This tendency should be compensated by introducing
more negative features that measure, e.g., the distance –semantic or constructional–
between material involved in partial match graphs. More generally, in addition to the
determination of similarity, we should improve modeling clues for dissimilarity. The
detection of incompatible modalities has proved rather effective, but can be further
extended to lexically induced modalities (e.g., possibility of, alleged, promise).

Evaluate the impact of predicate-argument structure on the RTE task. Results ob-
tained by the SALSA RTE system in RTE challenges were comparable to those of re-
lated systems. However, the intuitive appeal of frame semantics has not yet manifested
itself in a significant improvement of system results. The most indicative features for
entailment used by the machine learners stem from the layer of grammatical analysis.
One reason for this result is certainly sparsity of training data. As we are working with
statistical methods, corpora in the magnitude of 1000 training examples are definitely
a challenge in itself. Only features that occur very frequently are considered by the
learners.

Results concerning the potential of frame annotation to discriminate between positive
and negative entailment are still ambivalent. We have shown that even a high-quality
manual frame annotation manages to model textual entailment only slightly better than
the lexical baseline. Pure frame annotation of text and hypothesis and comparison in a
straightforward manner obviously does not suffice for achieving a significant effect. As
text and hypothesis should talk about more or less about the same situation in positive
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and negative examples, it is evident that the semantic normalization provided by pure
frame annotation is not sufficient for distinguishing entailment from non-entailment.
Why inclusion of (heuristic) measures for role and filler overlap did not exhibit a better
discriminative power in our experiments still has to be determined. Intuitively, it should
more often the case that role fillers between text and hypothesis differ in negative pairs
than in positive ones.

An overall problem is the absence of similarity measures for frames and frame annota-
tion instances. This problem could naturally be resolved making use of frame relations.
Yet, to date, the number of annotated instances is not only relatively sparse, it is also
largely open how existing frame relations can be automatically interpreted. System re-
sults as well as experiments with the FATE corpus suggest that principled access to
frame relations are a necessary requirement for future improvements in frame-based
inferencing.

Future Directions

Below, we want to sketch three directions for future research we find promising. The
first directly concerns further development of systems similar to the SALSA RTE system.
The second addresses a weakness in the setup of the RTE challenge. The third identi-
fies a future topic beyond textual entailment on the way towards intelligent automatic
information access.

Focus on hard examples. Lexical (surface) overlap often serves as baseline for checking
textual entailment. On the available RTE corpora, accuracy of such a baseline is in
the low 60s. Systems beating this baseline are often very complex and have access to
additional corpora and large proprietary knowledge resources (see Chapter 2). Many
less complex and informed systems, like the SALSA RTE system, are challenged by this
baseline. It seems that systems often implement variants of this baseline on different
levels of analysis.

To overcome this, one option for future research is to focus on modeling those ex-
amples, where surface overlap fails as entailment measure. These “hard” examples are
on the one hand positive entailment pairs that exhibit low surface overlap and on the
other hand negative pairs with high overlap. The following example, which was already
discussed in Section 1.3, is one such example.

(8.1) T: El-Nashar was detained July 14 in Cairo. Britain notified Egyptian
authorities that it suspected he may have had links to some of the attackers.

(8.2) H: El-Nashar was arrested in Egypt. (TRUE)

The number of these “hard” examples in current RTE corpora is manageable. For
example, the RTE-3 development set contains only 34 negative pairs with full surface
overlap (measured as described in Section 6.3.1) and 41 positive pairs with an overlap
less than 50%. An interesting research question is whether it is possible to characterize
these examples such that they can be automatically identified. Intuitively, only “deep”
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semantic systems can tackle these examples. One could then design hybrid architectures,
where shallow and deep components cooperate in a more sophisticated way. One could
try to identify strengths and weaknesses of different approaches and also of concrete
system components, algorithms, and resources used with the help of these examples.

Acquisition of negative examples. From the discussion above, one can also derive the
goal to generate more principled entailment corpora, where surface overlap and textual
entailment correlate less strongly. This leads to the more basic question on “what is a
good negative example?” and on how to generate good negative examples. As we have
already discussed in Section 2, negative examples in current RTE corpora correspond
to system “failures”. This models the general philosophy of the RTE challenge that the
task of RTE should be application driven. Consider the examples below.

(8.3) T: More than 2,000 people lost their lives in the devastating Johnstown Flood.

(8.4) H: 100 or more people lost their lives in a ferry sinking. (IR, FALSE)

(8.5) T: Geithner criticized the report’s findings on the World Bank, including a
commission recommendation that the Bank stop lending to emerging market
economies, concentrate its resources on the poorest countries and shift the IFI’s
concessional assistance from loans to grants.

(8.6) H: The World Bank is criticized for activities. (IR, FALSE)

(8.7) T: The renewed attention to the war came as peace activists, camping near the
president’s ranch, awaited a performance Sunday evening by peace movement
icon Joan Baez.

(8.8) H: Folk singer Joan Baez brought her latest anti-war message Sunday to
President Bush’s adopted hometown, supporting Iraq war protesters camping out
near his ranch. (SUM, FALSE)

The “errors” made by the respective systems are diverse. In (8.3)-(8.4), flood and
ferry sinking have been confused and numbers do not fit. The problem with (8.6) is that
is not related to the main message of (8.5), although it is indirectly compatible with
what is said. Finally, in (8.7)-(8.8), different sources of information seem to have been
mixed up.

We have the impression that these negative examples are not equally well suited for
studying the textual entailment as empirical phenomenon, although it is difficult to
pinpoint why this is the case. Properties of good negative examples might be prototyp-
icality and the chance of being misjudged. (8.7)-(8.8) is not likely to be falsely judged
as entailed. We think that, e.g., borderline cases that are not judged as entailed in the
vast amount of cases are good candidates for more realistic “distractors”. At the same
time, we are not in favor of Zaenen et al. (2005)’s idea of selecting artificial examples
with certain semantic properties for RTE corpora (cf. the discussion reported in Sec-
tion 2.4.3). Our point is that it is important to develop a clear idea on what constitutes
a good negative example.

182



Modeling relevance. In an information access scenario, textual entailment can be used
as a mans to check semantic consistency of certain statements (hypotheses) with respect
to documents they have been derived from (texts). Textual entailment itself does neither
provide a clue on how to find suitable candidate texts in a data collection nor does it
measure how relevant a particular text is for supporting the given hypothesis.

These tasks have to be carried out by appropriate systems or system components.
But they have to be carried out in intelligent ways in order to meet our original goal of
user-friendly information access. Texts which are not textually entailed by a hypothesis
might still be highly relevant for a user looking for certain information. To illustrate
this, consider using a question answering system to find an answer to the question Is
nuclear power safe?. A straightforward hypothesis a question answering system could
come up with is (8.11).

(8.9) T1: The nuclear sector is one of the safest industries in the United States [. . . ].1

(8.10) T2: The Chernobyl Disaster showed the world the ugly face of nuclear power
[. . . ] the next accident is only a question of time.2

(8.11) H: Nuclear power is safe.

Possible texts retrieved by the system to support the hypothesis are (8.9) and (8.10).
Both texts are relevant with respect to the query, but only (8.9) textually entails (8.11).
An intelligent question answering system should therefore also generate hypotheses like
Nuclear power is not safe or Nuclear power is possibly safe and seek for texts like (8.10)
entailing these hypotheses as well.

Finally, we would be glad if our framework and results were taken as a basis for
future research. We hope that this thesis succeeded in providing a clearer picture of
the contribution and shortcomings of components already available or still needed for
frame-based natural language processing.

1From www.whitehouse.gov.
2From www.ippnw-students.org.
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8. Conclusions
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Part IV.

Appendix
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A. Complete Architecture of SALSA RTE
System

Figure A.1 gives a rather technical overview of the scripts and Makefile commands, as
well as the data types involved in the complete system architecture of the SALSA RTE
system. A more detailed technical documentation would go beyond the scope of this
thesis.

187



A
.

C
o
m

p
le

te
A

rc
h
it
ec

tu
re

o
f
S
A

L
S
A

R
T

E
S
y
st

em

Figure A.1.: SALSA RTE system components, directory names and makefile structure.
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B. Re-write Rules for Named Entities

%-------------------------------------------------------%

% rule-based assignments of sumo-concepts, based on NER %

%-------------------------------------------------------%

%----------------------------------------------------------%

% names + more specific info from NE-tags in morphology %

%----------------------------------------------------------%

% HUMAN=+ and NTYPE | NSEM | PROPER | PROPER-TYPE name

+human(X,+), nsem_proper_type(X,name)

==> sumo_syn(OntX,’Human’)

&& make_ont_proj(X,_,OntX).

+ont(SemX,OntX), +sumo_syn(OntX,’Human’)

==> frame(SemX,’PeopleDEF’), ’Person’(SemX,SemX).

% name modifiers become Person roles of the respective People frame

+frame(SemX,’People’), +’S::’(X,SemX),

+name_mod(X,Set), +in_set(Y,Set), +’S::’(Y,SemY),

frame(SemY,’PeopleDEF’), ’Person’(SemY,SemY)

==> ’Person’(SemX,SemY).

nsem_proper_type(X,name),

+phi(Cs,X),

+terminal(Cs,’+Company’,_)

==> sumo_syn(OntX,’Corporation’)

&& make_ont_proj(X,_,OntX).

+ont(SemX,OntX), +sumo_syn(OntX,’Corporation’)

==> frame(SemX,’Businesses’).

%----------------------------------------------------------%

% names + more specific info from NE-tags in morphology %

%----------------------------------------------------------%

% NTYPE | NSEM | PROPER | PROPER-TYPE title

nsem_proper_type(X,title)
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B. Re-write Rules for Named Entities

==> frame(SemX,’Leadership’)

&& make_proj(X,SemX).

%--------%

% dates %

%--------%

% NTYPE | NSEM | TIME | month or day

+ntype(X,Y), +nsem(Y,Z), +time(Z,month)

==> sumo_syn(OntX,’Month’)

&& make_ont_proj(X,_,OntX).

+ntype(X,Y), +nsem(Y,Z), +time(Z,day)

==> sumo_syn(OntX,’Day’)

&& make_ont_proj(X,_,OntX).

+ont(SemX,OntX), +’S::’(_X,SemX),

( +sumo_syn(OntX,’Month’) | +sumo_syn(OntX,’Day’) )

==> frame(SemX,’Calendric_unit’).

%-----------------------------------------------------------%

% locations + more specific info from NE-tags in morphology %

%-----------------------------------------------------------%

nsem_proper_type(X,location),

+phi(Cs,X),

+terminal(Cs,’+Place’,_)

==> sumo_syn(OntX,’GeographicArea’)

&& make_ont_proj(X,_,OntX).

nsem_proper_type(X,location),

+phi(Cs,X),

+terminal(Cs,’+Continent’,_)

==> sumo_syn(OntX,’Continent’)

&& make_ont_proj(X,_,OntX).

+ont(SemX,OntX),

( +sumo_syn(OntX,’GeographicArea’) | +sumo_syn(OntX,’Continent’) )

==> frame(SemX,’Locale’).

nsem_proper_type(X,location),

+phi(Cs,X),

+terminal(Cs,’+Country’,_)

==> sumo_syn(OntX,’Nation’)
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&& make_ont_proj(X,_,OntX).

nsem_proper_type(X,location),

+phi(Cs,X),

+terminal(Cs,’+City’,_)

==> sumo_syn(OntX,’City’)

&& make_ont_proj(X,_,OntX).

+ont(SemX,OntX),

( +sumo_syn(OntX,’Nation’) | +sumo_syn(OntX,’City’) )

==> frame(SemX,’Political_locales’).
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C. FEF Export Format

The LFG exchange format used by the XLE re-write system (see Section 5.2.2) is not
easily human readable as internal information is intermingled with the representation
of the f-structures and projections. For inspection and exchange, we transform into a
Prolog-like exchange format we call FEF (Frame Exchange Format). It contains only
essential information, which has been further normalized, e.g., diverse values for the
tense predicate are mapped onto pres and past. Table C.1 shows a FEF representation
of the analysis of (5.3). In the table, some of the information related to the verb leave,

Normalized f-structure with projection Frames, roles and ontological information

pred(f(1),leave).
tense(f(1),pres).

stmt type(f(1),declarative).

mood(f(1),indicative).

dsubj(f(1),f(8)).

dobj(f(1),f(3)).
pred(f(3),’Sweden’).

proper(f(3),location).

num(f(3),sg).

pred(f(8),’Larsson’).

proper(f(8),name).

num(f(8),sg).

mod(f(8),f(11)).

pred(f(11),’Henrik’).

proper(f(11),name).

num(f(11),sg).

sslink(f(1),s(24)).
sslink(f(3),s(28)).

sslink(f(8),s(27)).

sslink(f(11),s(41)).

frame(s(24),’Departing’).
source(s(24),s(28)).
theme(s(24),s(27)).

frame(s(27),’People’).

role(s(27),person).

person(s(27),s(41)).

person(s(27),s(27)).

frame(s(28),’Political locales’).

frame(s(28),’Locale’).

ont(s(24),s(34)).
ont(s(27),s(38)).

ont(s(28),s(33)).

ont(s(41),s(40)).

wn syn(s(33),’sweden#n#1’).

sumo syn(s(33),’Nation’).

sumo syn(s(33),’GeographicArea’).

sumo inst(s(33),’Nation’).

wn syn(s(34),’leave#v#1’).
sumo syn(s(34),’Leaving’).
sumo syn(s(38),’Human’).

sumo syn(s(40),’Human’).

Table C.1.: FEF for Henrik Larsson leaves Sweden.
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C. FEF Export Format

which is represented by the f-structure node f(1) is highlighted. For example, its deep
object is f(3) and its semantic projection points to s(24). In turn, the frame of this
semantic projection is Departing and the source role points to the semantic projection
of Sweden. The ontological projection of s(24) is s(34), which is annotated with the
WordNet synset leave#v#1 and the SUMO class Leaving.
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