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Abstract

“The robots are coming!”
– “I hope they know where they are going…and what they can and cannot do
there!”

The work presented in this thesis addresses the fundamental questions of
how machines, such as robots and other autonomous agents, can acquire a
mental representation of their environment that allows them to (a) act and
navigate in it, and (b) communicate about it with humans in natural language.

We specifically investigate representations of structured environments that
cannot be apprehended as a perceptual whole (i.e., large-scale space). This com-
prises, for instance, indoor domestic environments, or building ensembles. By
that, the presented work goes beyond situated natural language interaction about
an agent’s immediate surroundings (i.e., small-scale space), such as table-tops
or single room spaces.

Situated communication about entities – that is, things, places, properties,
and events – in large-scale space requires the interlocutors to draw attention
to entities that are not currently observable, and to comprehend which remote
places and things are being talked about.

We furthermore show how such representations that can be used for spo-
ken interaction with human users also endow autonomous agents with skills for
context-aware planning and execution of actions in structured environments that
are made by and for humans. To this end, the presented spatial models have been
implemented and deployed in integrated systems for intelligent mobile robots.

We then present an approach for natural language generation and under-
standing that makes use of the acquired spatial models. It allows an agent to
successfully generate and resolve natural language expressions that refer to
entities in large-scale space. The approach is backed by observations from an
empirical spoken language production experiment. The thesis concludes with a
discussion of ongoing work to transfer the models made for intelligent mobile
robots to autonomous virtual agents that act in an online virtual 3D world.



Ausführliche Zusammenfassung

“Die Roboter kommen!”
– “Ich hoffe, sie wissen, wo sie hinwollen…und was sie dort tun können – und
was nicht!”

Die vorliegende Arbeit thematisiert die grundlegende Frage, wie Maschi-
nen, wie etwa Roboter oder andere autonome Agenten, ein mentales Bild ihrer
Umgebung erwerben können, mithilfe dessen sie (a) in ihrer Umgebung agie-
ren und navigieren, und (b) mit Menschen in natürlicher Sprache über diese
Umgebung kommunizieren können.

Insbesondere untersuchen wir Repräsentationen von strukturierten Umge-
bungen, die nicht unmittelbar als Ganzes wahrgenommen werden können, so
genannte großräumige Umgebungen (engl. ‘large-scale space’). Diese umfas-
sen unter anderem häusliche Umgebungen oder Gebäudekomplexe. Dadurch
geht die vorliegende Arbeit einen Schritt weiter als bisherige Modelle für die
situierte Interaktion mit Agenten, welche in der Regel auf die unmittelbare Um-
gebung, d.h. so genannte kleinräumigeUmgebungen (engl. ‘small-scale space’),
eines Agenten beschränkt waren. Im Gegensatz zu großräumigen Umgebungen
können kleinräumige Umgebungen, zu denen üblicherweise einzelne Zimmer
oder auf die Oberfläche eines Tisches begrenzte Szenen zählen, unmittelbar als
Ganzes wahrgenommen werden. Die situierte Kommunikation über Dinge –
weit gefasst: Objekte, Orte, Eigenschaften oder Ereignisse – in großräumigen
Umgebungen verlangt von Gesprächspartnern einerseits, dass sie die Aufmerk-
samkeit ihrer Zuhörer auf Dinge lenken, die nicht unmittelbar wahrnehmbar
sind, und dass sie andererseits verstehen, über welche an anderer Stelle befind-
lichen Dinge gerade gesprochen wird.

In dieser Arbeit zeigen wir, wie Raummodelle von strukturierten, vonMen-
schen für Menschen geschaffenen Umgebungen, die zur situierten gesproche-
nen Interaktion mit Menschen dienen, von autonomen Agenten zur kontextbe-
wussten Planung und Ausführung von Aktionen benutzt werden können. Dazu
haben wir die räumlichen Modelle in integrierten Systemen implementiert, die
für den Einsatz mit intelligenten mobilen Robotern gedacht sind.

Schließlich präsentieren wir einen Ansatz, der die erworbenen Raummo-
delle zur situierten Verarbeitung natürlicher Sprache verwendet. Er erlaubt es
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einem Agenten, treffende natürlichsprachliche Ausdrücke zu generieren und zu
verstehen, die auf Dinge in der großräumigen Umgebung referieren. Der An-
satz wird von einem empirischen Sprachproduktionsexperiment unterstützt. Die
vorliegende Arbeit behandelt abschließend den im Gange befindlichen Trans-
fer der für intelligente mobile Roboter entwickelten räumlichen Modelle auf
virtuelle Agenten in einer internetbasierten virtuellen 3D online-Welt.

In Kapitel 2 fassen wir den wissenschaftlichen Hintergrund zusammen,
auf dem die vorliegende Arbeit aufbaut. Nach einer Kurzeinführung in kogni-
tive Systeme befassen wir uns mit autonomen Systemen, darunter Bereiche der
Robotik (insbesondere autonome und intelligente mobile Roboter) und der vir-
tuellen Welten. Danach erörtern wir einige wesentliche Aspekte von verkör-
perter Kognition (engl. ‘embodied cognition’), menschlicher Kategorisierung
und Konzeptualisierung, und geben abschließend noch eine Einführung in die
ontologische Wissensrepräsentation.

In Kapitel 3 wird die hervorgehobene Rolle der Gliederung und Kategori-
sierung großräumiger Umgebungen für ein umfassendes Raumverständnis mo-
tiviert. Damit autonome Agenten situierte Dialoge über ihre Umgebung führen
können, brauchen sie Raummodelle, die mit den mentalen Raummodellen ihrer
menschlichen Gesprächspartner vereinbar sind. Für ein autonomes Verhalten,
z.B. Navigation, hingegen benötigen sie Zugriff auf Repräsentationen auf einer
viel niedrigeren Ebene. Um diesen beiden Anforderungen gerecht zu werden,
führen wir eine Methode zur mehrschichtigen räumlich-konzeptuellen Kartie-
rung ein. Die Beschreibung des Ansatzes ist in eine Erörterung relevanter For-
schungsergebnisse aus den Gebieten der menschlichen Raumkognition und der
Umgebungsmodellierung für mobile Roboter eingebettet.

In Kapitel 4 befassen wir uns mit der konzeptuellen Schicht der mehr-
schichtigen räumlich-konzeptuellen Karte. Wir zeigen, wie Beschreibungslogi-
ken benutzt werden können, um weitere Schlussfolgerungen aus einem symbo-
lischen, mit der menschlichen Umgebungskonzeptualisierung vereinbaren Um-
gebungsmodell zu ziehen. Des Weiteren zeigen wir, wie prototypische Default-
Schlussfolgerungen und Belief-Revision die Fähigkeiten autonomer Agenten
bereichern können.

InKapitel 5 stellen wir den Explorer vor. Der Explorer ist ein integriertes
Roboter-System, das das mehrschichtige räumlich-konzeptuelle Umgebungs-
modell implementiert. Die mobile Roboter-Plattform ist mit verschiedenen Sen-
soren, u.a. zur Kartierung, Objekterkennung und Benutzerinteraktion, ausge-
stattet. Wir zeigen, wie der Explorer dieses Umgebungsmodell interaktiv in
einer so genannten geführten Tour aufbauen kann. Eine wichtige Kernfunktion
von Robotern für eine solche geführte Tour ist die Fähigkeit, einem menschli-
chen Tutor autonom durch die Umgebung folgen zu können. Wir zeigen einen
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Ansatz zum situationsbewussten Verfolgen von Personen, der die konzeptuel-
le Information aus dem mehrschichtigen Umgebungsmodell verwendet. Dies
erhöht das wahrgenommene Intelligenzniveau des Roboters.

In Kapitel 6 präsentieren wir eine Erweiterung des Explorer-Systems, die
auf PECAS, einer kognitiven Architektur für intelligente Systeme, basiert. PE-
CAS verbindet die Fusion von Informationen aus einer verteilten, heteroge-
nen Architektur mit einer Methode zum fortwährenden Planen als Systemkon-
trollmechanismus.Wir beschreiben, wie das PECAS-basierte Explorer-System
dasmehrschichtige Umgebungsmodell implementiert. DesWeiteren zeigenwir,
wie prototypisches Default-Wissen aus einer auf Beschreibungslogiken basie-
renden Ontologie abgeleitet werden, und wie dieses, wenn kein Faktenwissen
verfügbar ist, zum zielgerichteten Planen für situiertes Agieren in großräumigen
Umgebungen eingesetzt werden kann.

In Kapitel 7 zeigen wir ein Verfahren zur autonomen Erstellung einer
räumlich-konzeptuellen Karte. Dies wird durch eine enge Verzahnung von
Bottom-up-Kartierung mit logischem Schließen und aktiver Beobachtung der
Umgebung erzielt. Das Verfahren erweitert den Ansatz zum mehrschichtigen
räumlich-konzeptuellen Kartieren und sieht sowohl einen nicht-monotonen
Aufbau des konzeptuellen Umgebungsmodelles als auch eine bidirektionale
Verbindung von Wahrnehmung, Kartierung und Inferenz vor. Das Verfahren
wurde in dem integrierten Roboter-System Dora implementiert. Es besitzt die
Fähigkeit zum beschreibungslogikbasierten Schließen und zur nicht-monotonen
Inferenz über eine OWL-Ontologie von räumlichem Commonsense-Wissen.
Es setzt diese beim aktiven visuellen Durchsuchen und bei einer am Informa-
tionsgewinn ausgerichteten Erkundung der Umgebung ein. Das System wurde
in mehreren Experimenten getestet, die aufzeigen, wie ein mobiler Roboter
sein Umgebungsmodell autonom aufbauen, und wie räumlich-konzeptuelles
Wissen sein zielgerichtetes autonomes Verhalten beeinflussen kann.

In Kapitel 8 behandeln wir eine Methode zur Generierung und Interpre-
tation natürlichsprachlicher Ausdrücke, die auf Dinge in großräumigen Umge-
bungen referieren. Sie basiert auf der in den vorhergehenden Kapiteln beschrie-
benen räumlichen Wissensbasis. Bestehende Algorithmen für die Generierung
referentieller Ausdrücke versuchen eine Beschreibung zu finden, die den Refe-
renten unter Einbeziehung des aktuellen Kontexts eindeutig identifiziert. Die-
jenigen Agenten, die wir hier betrachten, agieren jedoch in großräumigen Um-
gebungen. Das bringt die Herausforderung mit sich, dass ein Zuhörer seinen
Kontext entsprechend vergrößern muss, sobald über an anderer Stelle befindli-
che Dinge gesprochen wird. Hierzu muss der Sprecher genügend Information
kommunizieren, um dem Zuhörer zu ermöglichen, den intendierten Referenten
korrekt zu identifizieren. Wir präsentieren das Prinzip der topologischen Abs-
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traktion (TA) als Lösungsansatz, um geeignete Kontexte sowohl für die Gene-
rierung als auch für die Resolvierung referentieller Ausdrücke aufzubauen. Wir
zeigen weiterhin, wie unser Ansatz in einem bidirektionalen Dialogsystem für
interaktive Roboter verwendet werden kann.

In Kapitel 9 befassen wir uns mit einer Methode für die Produktion und
das Verständnis von Ausdrücken, die auf Dinge in einer großräumigen Umge-
bung referieren, während eines längeren Diskurses. DieMethode verwendet das
TA-Prinzip. Allerdings betrachten wir hier die Identifizierung von Bezugsob-
jekten sprachlicher Ausdrücke aus einer Diskursperspektive. Zu diesem Zweck
schlagen wir zwei Mechanismen vor, die das Lenken der Aufmerksamkeit im
Verlaufe eines Diskurses modellieren. Die Mechanismen nennen wir anchor-
progression und anchor-resetting. Wir beschreiben dann die Durchführung und
Auswertung eines empirischen Sprachproduktionsexperimentes. Es dient der
Evaluation der vorgeschlagenen Mechanismen im Hinblick auf situierte Hand-
lungsanweisungen in kleinräumigen Szenen einerseits und großräumigen Um-
gebungen andererseits. Abschließend präsentieren wir eine Implementation der
Methode.
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Chapter 1

IntroducƟon

“Spatial cognition is at the heart of our thinking.”
(Stephen C. Levinson)

“Language is the dress of thought.”
(Samuel Johnson)

“The robots are coming!”
(Alan K. Mackworth)

Many times each day, if not almost constantly, we are thinking about space. We
need to do so when we move, when we plan and perform actions, and when we
try to accomplish tasks. We always need to knowwhat is where in order to know
what we can and cannot do there. This naturally involves the perception of our
immediate surroundings. It also comprises access to past experiences and their
interpretation that form mental representations of portions of space that are not
immediately perceivable. Only this makes it possible to remember and reason
about what was where and what to expect there. Spatial cognition is therefore a
vital skill and immediately relevant to our survival. The ability to have spatial
memories, however, is not unique to humans. Many animals are equipped with
sophisticated spatial representations that allow them to find their retreat area or
places where they can find food.

Besides mental representations of space, another aspect of cognition dealt
with in this thesis is communication –more specifically spatially situated natural
language communication. Language is the most common and most prominent
means for our everyday communication. Communication is about exchanging
information, and as such it is a widespread ability in the animal world as well.
Animals communicate, for example, in order to signal danger or courtship, or
to coordinate flocking and other behaviors. Animals also communicate spatial
information. For instance, an animal can signal the position of a hazard to other
members of the group, or it can communicate its own position to potential in-
truders. The remarkable difference between such forms of communication and
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human language is the creative combinatorial potential of the latter. Whereas
human language makes use of a generative rule-set and open-ended sets of to-
kens to create an infinitely large number of different messages, animals can only
communicate a finite set of messages with little or no variability at all.1

With the emergence of language, i.e., a system to convey arbitrary mes-
sages, our ancestors were able to communicate about different spatial topics.
This provided the evolutionary advantage of being able to efficiently share the
vital aspect of knowledge and experience where dangerous and fruitful places
are, and how to best avoid or make use of them, respectively. Even today, a
large part of our communication is about space: we talk about things in our en-
vironment, we refer to other places – each concrete thing that we talk about has
a spatial location. It is not for no reason that foreign language phrasebooks are
very elaborate on spatial language: asking for directions, being able to point
out which object one is talking about, and even explaining where one comes
from are among the basic conversational skills that one needs when talking to
strangers. Humans are able to routinely and effortlessly use and understand
spatial language.

However, space and spatial cognition affect our language even when we are
not directly talking about spatial topics. Spatial language is pervasive and fun-
damental for all of our communication. We don’t have to look at metaphors and
collocations to come to the conclusion that spatial concepts provide a “structur-
ing tool for other conceptualized domains” (Lakoff and Johnson, 1980). Every-
day language makes regular use of spatial relations to express abstract relation-
ships – most prominently through the prepositional system. “Spatial” prepo-
sitions are used to express syntactic (“to be or not to be”), temporal (“the bus
arrives in five minutes”), as well as causal (“the reasons behind his success”)
relationships, to name just a few.

Many researchers and scientists have investigated the special relation
between language and spatial cognition, for example from a cross-linguistic
perspective (Levinson, 2003), or under the assumption of an embodied mind
(Lakoff and Johnson, 1999; Pecher and Zwaan, 2005). The human language
capabilities coincide with the human level of conscious intelligence that is tied
to higher-level cognitive representations (i.e., concepts) of lower-level mental

1For example, certain bees are known to be able to communicate the location of food through a
specific form of dance. It allows them to express three kinds of properties of the food location:
its relative direction with respect to the sun (expressed through body orientation), the distance
to the hive (expressed by the length of certain part of the dance), and the food quality (expressed
by the intensity of the display). They are, however, unable to express further circumstances, nor
are they able to combine information about two sources of food, let alone specify the position
of one food source with respect to another.
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categories. The human concept system is available for reasoning and reflection,
and thus accessible for manipulation and modification. Humans can verbalize
their knowledge and relate external symbols to internal, cognitive concepts to
an extent far beyond immediate stimulus-response triggering found in animals.
Together, conceptual spatial cognition and natural language communication
are fundamental for the kind of intelligence unique to humans.

Artificial intelligence, in contrast, is aimed at recreating intelligence in ma-
chines. Language remains the most intuitive, natural and efficient way of ex-
changing thoughts, commands, and of conveying all kinds of information for
humans. The availability and rapid miniaturization of personal computers and
their wide distribution has thus challenged researchers with endowing machines
with language skills (Carstensen et al., 2010). With the development of au-
tonomous robots, by the same token, the research community has been faced
with machines that act in space, that perceive the space around them, that are
part of the environment they operate in, and that are endowed with a physical
embodiment. Teaching such machines basic spatial behaviors was just the be-
ginning of a substantial body of research on robot navigation, mapping, and
spatial representation (Choset et al., 2005).

More importantly than for other information technology, natural language
capabilities for robots must be grounded in the physical space. If robots are to
assist in concrete tasks (rather than reading the news to their users), they must
engage in dialogues about things and events in their environment. The ability
to refer to objects and to understand which objects are being talked about is at
the very core of such spatially situated language use. Understanding, in turn,
implies the existence of internal – mental – representations that are linked with
the mentioned external entities. As it turns out, autonomous robots for the first
time afford researchers with tools that can perceive their environment while be-
ing active part of the environment. Robots can act in an environment in order
to alter it and actively gather new knowledge. And robots offer a degree of an-
thropomorphism that leads humans to intuitively and naturally employ spatial
language when interacting with them. This means that robots offer the possibil-
ity to study embodied situated natural language use – but it also means that in
order to be successfully deployed as conversational assistants, one of the most
important requirements is that robots be able to make use of spatial language.

The work presented in this thesis addresses the fundamental questions of
how machines, such as robots and other autonomous agents, can acquire a men-
tal representation of their environment that allows them to (a) act and navi-
gate in it, and (b) communicate about it with humans in natural language. We
specifically investigate representations of structured environments that cannot
be apprehended as a perceptual whole (i.e., large-scale space). This comprises,
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for instance, indoor domestic environments, or building ensembles. By that,
the presented work goes beyond situated natural language interaction about an
agent’s immediate surroundings (i.e., small-scale space), such as table-tops or
single room spaces. Situated communication about entities – that is, things,
places, properties, and events – in large-scale space requires the interlocutors
to draw attention to entities that are not currently observable, and to compre-
hend which remote places and things are being talked about. We furthermore
show how such representations that can be used for spoken interaction with hu-
man users also endow autonomous agents with skills for context-aware planning
and execution of actions in structured environments that are made by and for
humans. To this end, the presented spatial models have been implemented and
deployed in integrated systems for intelligent mobile robots. We then present
an approach for natural language generation and understanding that makes use
of the acquired spatial models. It allows an agent to successfully generate and
resolve natural language expressions that refer to entities in large-scale space.
The approach is backed by observations from an empirical spoken language pro-
duction experiment. The thesis concludes with a discussion of ongoing work
to transfer the models made for intelligent mobile robots to autonomous virtual
agents that act in an online virtual 3D world.

1.1 ContribuƟons
This work contributes to research in computational linguistics, artificial in-
telligence and robotics by proposing related and connected approaches to
several challenges that arise in the context of human-compatible environment
modeling, situated dialogue processing, including natural-language generation
and understanding, for autonomous embodied agents. Such agents include
autonomous mobile robots and non-player characters for online virtual worlds.
The approaches have been successfully deployed in integrated robotic systems.
An empirical production experiment was conducted to confirm and refine the
proposed models for the production and resolution of referential verbal descrip-
tions in situated discourse about large-scale space.

Specifically we address in this work:

• a multi-layered approach to spatial mapping for mobile robots combining
robot-centric spatial representations with higher-level conceptual repre-
sentations

• a method for ontology-based symbolic representations for the purpose of
human-compatible structuring and conceptualization of space
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• different reasoning methods for these representations, covering Descrip-
tion Logic-based reasoning, prototypical reasoning, rule-based inference
and nonmonotonic reasoning

• observations and experiences from implementing such ontology-based
symbolic representations and formalisms in integrated robotic systems

• context- and distractor-set determination for generating and understand-
ing referring expressions in large-scale space using these representations
as spatially situated knowledge bases

• a model for attentional anchor-progression in discourse about large-scale
space based on an empirical experiment on referring expressions in spa-
tially situated instruction giving

1.2 PublicaƟons
The work presented in this thesis is based on the following contributions to
research workshops, publications in conference proceedings, scientific journal
articles, and book chapters.

Journal arƟcles
• Wyatt, Aydemir, Brenner, Hanheide, Hawes, Jensfelt, Kristan, Krui-
jff, Lison, Pronobis, Sjöö, Skočaj, Vrečko, Zender, and Zillich (2010).
Self-understanding & self-extension: A systems and representational
approach. IEEE Transactions on Autonomous Mental Development,
2(4):282–303, December 2010.

• Zender, Mozos, Jensfelt, Kruijff, and Burgard (2008). Conceptual spa-
tial representations for indoor mobile robots. Robotics and Autonomous
Systems, 56(6):493–502, June 2008.

• Kruijff, Zender, Jensfelt, and Christensen (2007b). Situated dialogue and
spatial organization: What, where… and why? International Journal of
Advanced Robotic Systems, 4(1):125– 138, March 2007.

Book chapters
• Pronobis, Jensfelt, Sjöö, Zender, Kruijff, Mozos, and Burgard (2010a).
Semantic modelling of space. In Henrik Iskov Christensen, Geert-Jan M.
Kruijff, and Jeremy L. Wyatt, editors, Cognitive Systems, volume 8 of
Cognitive Systems Monographs, chapter 5. Springer Verlag, Berlin/Hei-
delberg, Germany, 2010.
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• Kruijff, Lison, Benjamin, Jacobsson, Zender, and Kruijff-Korbayová
(2010). Situated dialogue processing for human-robot interaction. In
Henrik Iskov Christensen, Geert-Jan M. Kruijff, and Jeremy L. Wyatt,
editors, Cognitive Systems, volume 8 of Cognitive Systems Monographs,
chapter 8. Springer Verlag, Berlin/Heidelberg, Germany, 2010.

• Sjöö, Zender, Jensfelt, Kruijff, Pronobis, Hawes, and Brenner (2010).
The Explorer system. In Henrik Iskov Christensen, Geert-Jan M. Kruijff,
and Jeremy L. Wyatt, editors, Cognitive Systems, volume 8 of Cognitive
Systems Monographs, chapter 10. Springer Verlag, Berlin/Heidelberg,
Germany, 2010.

Conference papers
• Zender, Koppermann, Greeve, andKruijff (2010). Anchor-progression in
spatially situated discourse: a production experiment. In Proceedings of
the Sixth International Natural Language Generation Conference (INLG
2010), pages 209–213, Trim, Co. Meath, Ireland, July 2010.

• Zender, Kruijff, and Kruijff-Korbayová (2009b). Situated resolution and
generation of spatial referring expressions for robotic assistants. In Pro-
ceedings of the Twenty-First International Joint Conference on Artifi-
cial Intelligence (IJCAI-09), pages 1604–1609, Pasadena, CA, USA, July
2009.

• Zender, Jensfelt, and Kruijff (2007a). Human-and situation-aware people
following. In Proceedings of the 16th IEEE International Symposium on
Robot and Human Interactive Communication (RO-MAN 2007), pages
1131–1136, Jeju Island, Korea, August 2007.

• Zender, Jensfelt, Mozos, Kruijff, and Burgard (2007b). An integrated
robotic system for spatial understanding and situated interaction in in-
door environments. In Proceedings of the Twenty-Second Conference on
Artificial Intelligence (AAAI-07), pages 1584–1589, Vancouver, British
Columbia, Canada, July 2007.

Workshop contribuƟons
• Hanheide, Hawes, Wyatt, Göbelbecker, Brenner, Sjöö, Aydemir, Jensfelt,
Zender, and Kruijff (2010). Hanheide, Hawes, Wyatt, Göbelbecker, A
framework for goal generation and management. In Proceedings of the
AAAI Workshop on Goal-Directed Autonomy, Atlanta, GA, USA, July
2010.
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• Hawes, Zender, Sjöö, Brenner, Kruijff, and Jensfelt (2009b). Planning
and acting with an integrated sense of space. In Alexander Ferrein, Josef
Pauli, Nils T. Siebel, and Gerald Steinbauer, editors, HYCAS 2009: 1st
International Workshop on Hybrid Control of Autonomous Systems –
Integrating Learning, Deliberation and Reactive Control, pages 25–32,
Pasadena, CA, USA, July 2009.

• Zender, Kruijff, and Kruijff-Korbayová (2009a). A situated context
model for resolution and generation of referring expressions. In Proceed-
ings of the 12th European Workshop on Natural Language Generation
(ENLG 2009), pages 126–129, Athens, Greece, March 2009. Association
for Computational Linguistics.

• Zender and Kruijff (2007b). Towards generating referring expressions in
a mobile robot scenario. In Language and Robots: Proceedings of the
Symposium, pages 101–106, Aveiro, Portugal, December 2007.

• Mozos, Jensfelt, Zender, Kruijff, and Burgard (2007b). An integrated
system for conceptual spatial representations of indoor environments for
mobile robots. In Proceedings of the IROS 2007 Workshop: From Sen-
sors to Human Spatial Concepts (FS2HSC), pages 25–32. San Diego,
CA, USA, November 2007.

• Mozos, Jensfelt, Zender, Kruijff, and Burgard (2007a). From labels to
semantics: an integrated system for conceptual spatial representations
of indoor environments for mobile robots. In Proceedings of the ICRA-
07 Workshop on Semantic Information in Robotics (SIR), pages 33–40.
Rome, Italy, April 2007.

• Zender and Kruijff (2007a). Multi-layered conceptual spatial map-
ping for autonomous mobile robots. In Holger Schultheis, Thomas
Barkowsky, Benjamin Kuipers, and Bernhard Hommel, editors, Control
Mechanisms for Spatial Knowledge Processing in Cognitive / Intelligent
Systems – Papers from the AAAI Spring Symposium, Technical Report
SS-07-01, pages 62–66, Menlo Park, CA, USA, March 2007. AAAI,
AAAI Press.



8 Introduction

1.3 CollaboraƟons
Parts of this thesis have resulted from collaboration with other researchers. I
am grateful for their ideas, advice, and effort they put into the joint projects.

Specifically, the approach tomulti-layered conceptual spatial mapping rests
on constant refinements of the low-level maps for robotic navigation devel-
oped at the Centre for Autonomous Systems (CAS/CVAP) at the Royal Insti-
tute of Technology (KTH) in Stockholm, Sweden, notably by Patric Jensfelt
and Kristoffer Sjöö. Furthermore, approaches to hybrid laser- and vision-based
object search and localization as well as active visual object search were de-
veloped by Dorian Gálvez López (formerly of KTH Stockholm) and Alper Ay-
demir (KTH Stockholm).

Approaches to sensor-based room categorization that were used as input
providers for the ontology- and rule-based room classification were developed
by Óscar Martínez Mozos (formerly of the University of Freiburg, now Univer-
sity of Zaragoza) and Andrzej Pronobis (KTH Stockholm).

The dialogue system in which our method for generating and resolving re-
ferring expressions in large-scale space was used was developed by my col-
leagues at DFKI Geert-Jan Kruijff, Ivana Kruijff-Korbayová, and Pierre Lison.
Trevor Benjamin (formerly of DFKI) wrote the OpenCCG grammar that is used
for parsing and surface realization of natural language. Christopher Kopper-
mann and Fai Greeve (both DFKI) helped conducting and evaluating the em-
pirical experiment on anchor-progression in situated dialogue about large-scale
space. The software infrastructure for connecting my models and algorithms
with the Twinity virtual world is based on the KomParse system developed by
my colleagues at DFKI Berlin Peter Adolphs, Tina Klüwer, Feiyu Xu, and Xi-
wen Cheng, with the help of Torsten Huber and Weijia Shao.

The CAST cognitive architecture design and software were conceived
and developed at the University of Birmingham by Nick Hawes, with in-
put from Michael Zillich (now TU Vienna) and Henrik Jacobsson (formerly
of DFKI Saarbrücken), and inspired by discussions with Jeremy Wyatt and
Aaron Sloman. Approaches to symbolic planning, goal management, and
cross-modal content binding are contributed by Michael Brenner (University
of Freiburg, continual planning), Marc Hanheide (University of Birmingham,
goal-generation and management), and Henrik Jacobsson (cross-modal content
binding), respectively.

I will use the first person plural pronouns as pluralis modestiae. By consis-
tently adhering to this use throughout my thesis, I want to reflect the fact that this
work presents the results of many fruitful discussions with my colleagues and
was conducted within European integrated research projects involving many
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other people at different sites. The contributions of my collaborators are repro-
duced, potentially shortened, in as far as they are crucial for the description of
the joint work. These contributions are listed separately at the beginning of each
chapter. Besides literal quotations, which are marked in the usual way, defini-
tions that are taken from the literature are marked with a citation. Everything
else is based on the author’s own work.

1.4 Outline

In Chapter 2, we present the scientific background that the work in this thesis
builds upon. After a short overview of research on cognitive systems, we
present an introduction to autonomous agents, including some background in
robotics, in particular autonomous and intelligent mobile robots, and virtual
worlds. We then discuss relevant aspects of the study of embodied cognition,
human categorization and conceptualization. An introduction to ontology-
based knowledge representations concludes the chapter.

In Chapter 3, we identify structuring of space and categorization of large-
scale space as two important aspects of spatial understanding. In order to enable
an autonomous agent to engage in a situated dialogue about its environment, it
needs to have a human-compatible spatial understanding, whereas autonomous
behavior, such as navigation, requires the agent to have access to low-level spa-
tial representations. Addressing these two challenges, we present an approach
to multi-layered conceptual spatial mapping. The description of our approach
is embedded in a discussion of relevant research in human spatial cognition and
mobile robot mapping.

In Chapter 4, we focus on the conceptual map layer of the multi-layered
spatial. We show how Description Logics can be used to perform inference
on a human-compatible symbolic conceptualization of space. We further pro-
pose methods for prototypical default reasoning and belief revision to extend
the capabilities of autonomous agents.

In Chapter 5, we introduce the Explorer robot system. The Explorer
implements the approach to multi-layered conceptual spatial mapping in an
integrated robotic system. The mobile robot base is equipped with different
sensors for map building, place and object recognition, and user interaction.
We illustrate how the multi-layered map can be acquired interactively in a so-
called guided tour scenario. We furthermore present a method for human- and
situation-aware people following that makes use of the higher-level information
of the multi-layered conceptual spatial map, thus increasing the perceived level
of intelligence of the robot.
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In Chapter 6, we present an extension of the Explorer system. The presented
implementation makes use of PECAS, a cognitive architecture for intelligent
systems, which combines fusion of information from a distributed, heteroge-
neous architecture, with an approach to continual planning as architectural con-
trol mechanism. We show how the PECAS-based Explorer system implements
the multi-layered conceptual spatial model. Moreover, we show how – in the
absence of factual knowledge – prototypical default knowledge derived from
a Description Logic-based ontology can be used for goal-directed planning for
situated action in large-scale space.

In Chapter 7, we present an approach in which a conceptual map is ac-
quired or extended autonomously, through a closely-coupled integration of
bottom-up mapping, reasoning, and active observation of the environment.
The approach extends the conceptual spatial mapping approach, and allows
for a nonmonotonic formation of the conceptual map, as well as two-way con-
nections between perception, mapping and inference. The approach has been
implemented in the integrated mobile robot system Dora. It uses rule- and
DL-based reasoning and nonmonotonic inference over an OWL ontology of
commonsense spatial knowledge, together with active visual search and infor-
mation gain-driven exploration. It has been tested in several experiments that
illustrate how a mobile robotic agent can autonomously build its multi-layered
conceptual spatial representation, and how the conceptual spatial knowledge
can influence its autonomous goal-driven behavior.

In Chapter 8, we present an approach to the task of generating and re-
solving referring expressions to entities in large-scale space. It is based on the
spatial knowledge base presented in the previous chapters. Existing algorithms
for the generation of referring expressions try to find a description that uniquely
identifies the referent with respect to other entities that are in the current context.
The kinds of autonomous agents we are considering, however, act in large-scale
space. One challenge when referring to elsewhere is thus to include enough in-
formation so that the interlocutors can extend their context appropriately. To
this end, we present the principle of topological abstraction (TA) as a method
for context construction that can be used for both generating and resolving refer-
ring expressions – two previously disjoint aspects. We show how our approach
can be embedded in a bi-directional framework for natural language processing
for conversational robots.

In Chapter 9, we present an approach to producing and understanding
referring expressions to entities in large-scale space during a discourse. The
approach builds upon the principle of topological abstraction (TA) presented in
Chapter 8. Here, we address the general problem of establishing reference from
a discourse-oriented perspective. To this end, we propose anchor-progression
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and anchor-resetting mechanisms to track the origin of the TA algorithms
throughout the discourse that model the way attention-directing information
unfolds during the course of a discourse. We present an empirical production
experiment that evaluates the utility of the proposed methods with respect to
situated instruction-giving in small-scale space on the one hand, and large-scale
space on the other. We conclude with a discussion of an implementation of the
approach and give examples of its performance with respect to the domain of
the production experiment.

In Chapter 10, we recapitulate the work presented in this thesis. We de-
scribe an ongoing effort to transfer the proposed robotics-oriented models to
autonomous virtual agents that act in an online virtual 3D world. We conclude
the thesis with a discussion of open issues and opportunities for extensions to
the presented work in future research.
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1.5 NotaƟonal ConvenƟons and Symbols

Ontology, logics and rule-based reasoning

Logics
Symbol Description
General Description Logics
O ontology knowledge base
T TBox
A ABox
R RBox
D DBox
∆ domain of discourse
I interpretation function
|= entailment
O |= . . . knowledge base O entails . . .
Abstract DL syntax
A, B atomic concepts
C, D concept definitions
R, S roles
a, b, c individuals
x, y, z free individual variables
n,m non-negative integers
A(a), C(a) concept assertions
R(a, b), S(b, c) role assertions
Examples in abstract DL syntax
Concept, ConceptName concept names
related, hasRelation role names
INDIVIDUAL, IND1 individual names
Concept(IND1), ConceptName(IND2) concept assertions
related(IND1, IND2), role assertions
hasRelation(IND2, IND1)
Default Logic
α, β, γ first-order logic formulae
δ default rule
x, y, z free individual variables
Ei knowledge base extensions
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Concept1 INDIVIDUAL1
is-a

Concept2 INDIVIDUAL2Concept3

has-relation

Concept4

is-a

TOP has-relation

INDIVIDUAL3

Solid arrows express relationships between Concepts: concept definitions
(“has-relation”, hollow arrow head), or subclass relations (“is-a”, dark arrow
head). Dashed arrows express relationships involving INDIVIDUALs: being
an instance of a Concept (“is-a”, dark arrow head), or being related to another
INDIVIDUAL (“has-relation”, hollow arrow head).

Natural language syntax and semanƟcs

Combinatory Categorial Grammar (CCG)
Symbol Description
X , Y categories
/, \ rightward-combining and leftward-combining

functors (“slashes”)
Hybrid Logic Dependencuy Semantics (HLDS)
Symbol Description
@ satisfaction operator
p, q, r variables over any hybrid logic formula
i, j, k variables over states
di, hi variables over nominals

(for dependent and head, respectively)
An, Bn, … nominals (with n being a natural number)

StaƟsƟcs

Statistics
Symbol Description
σ standard deviation
t t-value for t-test
df degrees of freedom (usually n− 1)
p probability of error





Chapter 2

Background

Summary
In this chapter, we present the scientific background that the work in this the-
sis builds upon. After a short overview of research on cognitive systems, we
present an introduction to autonomous agents, including some background
in robotics, in particular autonomous and intelligent mobile robots, and vir-
tual worlds. We give a short definition of the notion of situated dialogue. We
then discuss relevant aspects of the study of embodied cognition, human cate-
gorization and conceptualization. An introduction to ontology-based knowl-
edge representations concludes the chapter.

The work presented in this thesis is at the intersection of computational linguis-
tics, artificial intelligence, and robotics – an inter- and multi-disciplinary area
concerned with the design and implementation of cognitive systems. The long-
term goal of cognitive systems research is best characterized by the objective
of the European Commission’s sixth framework programme (FP 6):

“to construct physically instantiated … systems that can perceive,
understand … and interact with their environments, and evolve
in order to achieve human-like performance in activities requir-
ing context- (situation and task) specific knowledge” (from (Chris-
tensen et al., 2010)).

From this objective a number of requirements can be derived. First of all, phys-
ical instantiation requires embodiment – i.e., the agent is a physical part of the
world, it has sensors and effectors to perceive and manipulate its environment.
In addition to perception, the agent must develop an understanding of its envi-
ronment that allows for context-aware interaction with the environment.

This work addresses some of the challenges that an embodied cognitive
system, i.e., an autonomous agent has to overcome in order to acquire a repre-
sentation of its large-scale spatial environment that allows it to act and interact
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in it. The specific kind of interaction that we focus on in this work is spatially
situated dialogue with a human. In the following, we present relevant founda-
tional and background work from the involved and related scientific fields.

2.1 Autonomous Agents
Franklin and Graesser (1997) define an autonomous agent as “a system situated
within and a part of an environment that senses that environment and acts on it,
over time, in pursuit of its own agenda and so as to effect what it senses in the
future.” Autonomy, in turn, is characterized as a property that entails exercising
control over one’s own actions, and gaining information about the environment.
With respect to the taxonomy proposed by Franklin and Graesser (1997), we fo-
cus on agents which possess, in addition to autonomy, the following properties.

Goal-orientation Depending on its system state, the agent might have the goal
to follow the instructions of a user, or it might come up with its own goals.

Communicativity The agent is able to communicate with other agents. Here,
we focus on interactive communication with humans. Diverging from
Franklin and Graesser’s terminology, we will call this class of agents con-
versational agents.

Mobility A mobile agent is not static, but can actively change its location.

Embodiment As opposed to mere software agents that, for instance, collect in-
formation on the world wide web, and communicate with their users like
other computer programs, the agents we are interested in have a physi-
cal embodiment. They have a “shared presence” with their human users,
breaking the so-called “fifth wall” that usually separates the spaces in
which the agent and its user operate (Byron and Fosler-Lussier, 2006).

Under these assumptions, we are particularly focusing on two special kinds
of autonomous agents, namely autonomous mobile robots (cf. Section 2.2),
and virtual embodied agents, which correspond to non-player avatars in virtual
worlds (cf. Section 2.3).

Later, we will use the term (autonomous) agent to refer to any of these
two kinds of agents. Sometimes, we will also subsume humans (or human-
controlled avatars) in the environment under this term. Instead of saying au-
tonomous mobile robot, we will later simply use the term robot, when there is
no danger of confusion with industrial robots, or when we also want to sub-
sume stationary intelligent robots. Finally, we will call virtual embodied agents
simply virtual agent, or, in order to stress the difference to human-controlled
avatars, non-player character (NPC).
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2.2 RoboƟcs
The term robot for a human-like automaton first appeared in the 1920 play
Rossum’s Universal Robots by the Czech writer Karel Čapek. The term was
coined after the Czech word robota ‘(corvée or slave) labor’. However, the
concept of artificial people and intelligent automata respectively is much older,
ranging back to both Greek and Norse mythology. Leonardo da Vinci’s design
of a mechanical knight from the late 15th century, as well as the mechanical au-
tomata of Jacques de Vaucanson, a French engineer in the 18th century, exhibit
features similar to the modern sense of robot.

There are several kinds of modern robots that share certain features, but
are different in a lot of ways. All robots have in common that they are me-
chanical automata capable of performing actions and movements. They differ
in the degree of autonomy they have in executing their tasks, ranging from a
fixed sequence of actions and motions in typical industrial robots to a high de-
gree of reactiveness and adaptability to a changing world in autonomous robots
(Siegwart and Nourbakhsh, 2004).

Industrial robots (cf. Figure 2.1) find their application in automated assem-
bly processes. They mostly perform an invariant sequence of actions, outper-
forming humans in strength and precision. Industrial robots, however, usually
cannot sense changes in their environment and cannot change their behavior de-

Figure 2.1: Factory Automation with industrial robots for palletizing food prod-
ucts like bread and toast at a bakery in Germany.
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liberately. Typical industrial applications are robot arms with several degrees
of freedom for painting, welding, or assembling component parts.

While industrial robots are typically immobile and perform their task at a
fixed position in the assembly work flow, robotic automated guided vehicles
(AGV) follow preprogrammed routes in – often instrumented – environments
such as large warehouses. The next degree of autonomy, especially concern-
ing mobility in unknown environments, is found in applications that involve
tasks that are either too dangerous to be performed by humans, or pertain to
environments that are not easily accessible by humans, such as bomb disposal
(explosive ordnance disposal robots, EOD) or underwater exploration scenarios
(autonomous underwater vehicle, AUV).

2.2.1 Autonomous mobile robots
As mentioned earlier, our focus is on autonomous mobile robots. Autonomy
implies that the robot must be equipped with sensors for perceiving its environ-
ment, whereas mobility implies that the robot must be equipped with actuators
that provide it with locomotion capabilities.

In the context of perception, exteroceptive sensors are used to perceive
the robot’s environment, and proprioceptive sensors measure a robot’s inter-
nal states. Laser range finders, sonar arrays, and infrared distance sensors are
the most common exteroceptive sensors used in mobile robots, while various
kinds of encoders provide proprioceptive measurements of wheel and/or motor
speed and position.

When it comes to locomotion – as opposed tomanipulation – there are sev-
eral robots that make use of biomimetic mechanisms, such as various kinds of
legged walking systems: biped anthropomorphic robots (such as the small hu-
manoid robot Nao,1 see Figure 2.2a), quadruped reptile or mammal-like robots,
even eight-legged walking robots, or swimming robots that mimic the locomo-
tion abilities of a sea snake. Such biomimetic locomotion apparatus are highly
specialized for certain terrains.

Wheeled robots or robots equipped with slip/skid steering with caterpillar
tracks sacrifice the benefits of biomimetic configurations. Instead, they have
the advantage of easier control and more efficient locomotion in structured en-
vironments, such as indoor environments. They do not have the problem with
balance and stability that most legged robots have. Figure 2.2b shows a Mo-
bileRobots P3-DX2 robotic platform for research and teaching. It is equipped
with a two-wheel differential drive and a third caster wheel for stability. The
1http://www.aldebaran-robotics.com/en/node/1160 [last accessed on 2010-05-10]
2http://www.mobilerobots.com/ResearchRobots/ResearchRobots/PioneerP3DX.

aspx [last accessed on 2010-05-10]

http://www.aldebaran-robotics.com/en/node/1160
http://www.mobilerobots.com/ResearchRobots/ResearchRobots/PioneerP3DX.aspx
http://www.mobilerobots.com/ResearchRobots/ResearchRobots/PioneerP3DX.aspx
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(a) Nao by Aldebaran Robotics: a medium-
sized (ca. 58 cm) humanoid robot.

(b) P3-DX by MobileRobots Inc.: a wheeled
mobile robot.

Figure 2.2: Two mobile robots with different morphologies.

wheel speed and position is tracked by the robot’s odometry. The robotic sys-
tems presented in Part II are based on robot platforms that are derived from the
P3-DX. The main external sensor used in these systems is a laser range finder
(not shown in Figure 2.2b).

Robot self-localizaƟon and environment mapping

Siegwart and Nourbakhsh (2004) identify self-localization, navigation, and
path planning as crucial functional prerequisites of mobile robots. These
pre-suppose the existence of an environment map within which to localize,
navigate, and plan paths. Consequently, mapping is another cornerstone of
mobile robotics.

Primitive localization methods rely only on dead reckoning. Dead reckon-
ing considers an initial position, the distance, speed, time, and directions trav-
eled to estimate the current position. In other words, dead reckoning tries to
estimate the robot’s current position solely on the basis of odometry readings.
Due to external factors, including friction of the mobile robot’s wheels on the
ground surface, dead reckoning yields rather unreliable position estimates. To-
gether with general sensor noise, these factors lead to a considerable amount
of accumulated error, such that reliable self-localization is impossible without
additional error correction. Moreover, localization assumes that a map of the
operating environment exists. Simple mapping of an environment, in contrast,
is achieved through exteroception. However, the readings that such sensors
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(e.g., camera images, sonar, or laser) give are also prone to errors and noise. In
case the environment to be covered is larger than the sensory horizon, or parts
of it are occluded by obstacles, the exteroceptive readings must be acquired at
different positions in the environment and integrated with each other. This, in
turn, poses the question of how to know the exact positions at which the differ-
ent sensor readings were acquired.

There are several methods that integrate exteroceptive and proprioceptive
sensors to build more reliable hypotheses about the environment and the robot’s
position within it. One such technique is simultaneous localization and map-
ping (SLAM). SLAM is utilized to overcome the limitations of dead reckoning,
while also attempting to correct exteroceptive errors. It usually combines odom-
etry readings from the rotation of the robot’s wheels and input from at least one
exteroceptive sensor. From these sensor readings, the SLAM method extracts
features and uses these feature observations for self-localization by tracking and
aligning the observations from subsequent sensor readings over time through
statistical and probabilistic methods. SLAM is very useful as it provides a po-
sition estimate while constructing a map of unknown environment. There are
different SLAM algorithms, as mentioned in (Thrun et al., 2005). Their com-
mon goal is to construct an optimal metric map of the environment while the
robot is exploring that environment. In order to account for sensor noise, other
limitations in perception, and the combined error of odometry and external mea-
surement most SLAM methods explicitly represent the uncertainty about the
state they are in. The maps created by the SLAM technique range from lo-
cal patches that are only loosely combined to a global representation, to global
metric maps that can represent whole buildings with several floors, e.g., in the
approach presented by Frese and Schröder (2006). We show later how SLAM
is utilized in our approach for acquiring a spatial representation of the robot’s
environment.

2.2.2 Service robots
With the ongoing development in the field of artificial intelligence, the pre-
viously fictional idea of intelligent, or at least highly autonomous, robots has
become an increasingly active subject of research and development. Social
robots, domestic robots, and service robots are considered future and emerging
technologies by government agencies and commercial companies all over the
world. The International Federation of Robotics (IFR) Statistical Department
(2009) identifies the following major classes of service robots:

• Field robotics (agriculture and forestry)

• Professional cleaning (e.g., floor cleaning and pipe cleaning)
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• Inspection and maintenance systems (e.g., for factories or sewers)

• Construction and demolition (including nuclear dismantling)

• Logistic systems (e.g., mail or cargo handling, and factory logistics)

• Medical robotics (most notably, robot assisted surgery and therapy)

• Defense, rescue and security applications (e.g., demining robots, un-
manned aerial vehicles (UAVs) and other surveillance robots)

• Underwater systems (i.e., autonomous underwater vehicles (AUVs))

• Public relation robots (e.g., guide robots or library robots)

• Robots for domestic tasks (the largest portion being consumer-level floor
cleaning robots)

• Entertainment robots (including toy/hobby robots as well as robots used
in education and training)

• Handicap assistance (most notably, robotized wheelchairs)

In total, these amount to a number of approximately 1.6 million sold units in
2007, and approximately 1.7 million sold units in 2008 International Federa-
tion of Robotics (IFR) Statistical Department (2009). Out of these, hotel and
restaurant robots (estimated installations between 2009 and 2012: 150 units),
guide robots (units sold in 2007: 4, units sold in 2008: 5, estimated instal-
lations 2009–2012: 350 units), robot butlers and companions (units sold in
2007: 518, units sold in 2008: 600, estimated installations 2009-2012: 40,000
units), robotic wheelchairs (estimated installations between 2009 and 2012:
1,000 units), and other assistive robots (estimated installations between 2009
and 2010: 25,300 units) are the ones that are most likely to be used by non-
expert users, and have to operate in non-instrumented environments. The Nes-
bot™ robot (see Figure 2.3a) by BlueBotics is an example of a domestic service
robot. It can operate in known, fully mapped environments. Users can interact
with it using a handheld control panel, or a web-based ordering application.

These numbers also illustrate that people are willing to introduce robots
into their everyday lives and to permit them to enter their social environments.
Such robotic assistants, however, need to have more intelligence than current
autonomous vacuum cleaners or robotic pets, which are mere sensor-enabled
household tools or toys, respectively. In order to be of real assistance to hu-
mans, a robot must be able to act within, interact with, and understand a human-
populated environment. This is where cognitive systems come into play. An
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(a) The Nesbot robot by BlueBotics:
a mobile service robot with limited
user interaction capabilities.

(b) BIRON, the Bielefeld
Robot Companion: a
human-robot interac-
tion research platform.

(c) Dora, the cognitive
robotics research plat-
form of the project
CogX.

Figure 2.3: Three chest-height sizedmobile robots designed for user interaction.

autonomous cognitive assistant has to be aware of the implications that arise
when performing actions in domestic environments and must react accordingly.

2.2.3 Intelligent roboƟc systems

Currently, most robots for domestic use on the market have been developed
with security and safety considerations in mind, which is the most important
requirement of any consumer-level machine. Intelligence, a high level of au-
tonomy, and sophisticated natural interaction capabilities are still topics of re-
search. Consequently, most existing integrated intelligent robotic systems so
far are research prototypes. Besides the integrated systems that are described
in more detail in Part II (e.g., Dora shown in Figure 2.3c), a number of other
integrated intelligent robotic systems exist that are able to interact with humans
in their environment. Figure 2.3 shows different wheeled mobile indoor robots
that are designed for interaction with human users.
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Rhino (Burgard et al., 1999) and RoboX (Siegwart et al., 2003) are robots that
are designed to act as tour-guides in museums. Both robots rely on an accurate
metric representation of the environment and use limited dialogue to commu-
nicate with people. ShopBot (Gross et al., 2008) is an interactive in-store as-
sistant robot. Examples of robots with more elaborate dialogue capabilities are
RoboVie (Ishiguro et al., 2001), BIRON (shown in Figure 2.3b)(Haasch et al.,
2004; Spexard et al., 2006; Peltason et al., 2009), Godot (Bos et al., 2003),
WITAS (Lemon et al., 2001) and Mel (Sidner et al., 2004). Recently, the Au-
tonomous City Explorer (Bauer et al., 2009) was deployed in the city center
of Munich, where it autonomously navigated across the pedestrian area. It did
not have a pre-defined map of the environment and relied solely on gestured
direction information from passers-by.

2.3 Virtual Worlds and Agents
The term virtual world refers to “an electronic environment that visually mim-
ics complex physical spaces, where people can interact with each other and with
virtual objects, and where people are represented by virtual characters” (Bain-
bridge, 2007).

This comprises games as well as online services that serve the goal of so-
cial exchange between the participants (referred to as players for the sake of
simplicity). The electronic environments can either be fictional, taking place in
settings with differing degrees of realism, or modeled on the real world. What
they have in common is that their mode of presentation is inherently human-
oriented. “[Virtual worlds] approximate aspects of reality – enough for the pur-
poses of immersion (...)” (Bartle, 2003). Spaces in the virtual world are to be
understood by humans. They thus must make use of patterns that are familiar
and meaningful to the players. The extent to which they do so differs with the
intended degree of realism.

Just like autonomous mobile robots, autonomous virtual agents (see Sec-
tion 2.1) therefore operate in human-oriented environments. They too need
to make sense of environments that were designed to be understood by hu-
mans. Parts of that environment are usually designed by the programmers and
providers of the virtual world, which makes it possible to give an agent a pre-
cise representation of its environment and the things occurring therein. This is
similar to instrumented environments in reality. However, a typical feature of
social online virtual worlds is to allow players to customize and shape parts of
their environment. This usually comprises the possibility to change the appear-
ance of their characters, but also, more importantly, to own places that serve as
virtual homes, which can then be designed, decorated, and modified just like a
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Figure 2.4: A conversational agent bartender NPC in the virtual world Twinity.

real one. In this case, the autonomous agent cannot receive a fully labeled map,
including names for places and objects, from the server.

In Section 10.2 we show ongoing work in applying the methods of this
thesis, which were originally designed for autonomous robots, to a non-player
character in a virtual world. We have interfaced our algorithms with the NPC
control for a virtual online world named Twinity, a product of the Berlin start-
up company Metaversum.3 Figure 2.4 shows a non-player character in a the
Twinity virtual world engaged in a dialogue with a human-controlled avatar.

2.4 Situated Dialogue
So far, we have discussed different techniques that endow agents with auton-
omy to sense and move about their environment. Another aspect of the kinds of
autonomous agents we are interested in is their ability to interact verbally with
humans about their environment, their current tasks, or plans. In such an inter-
action process they must be able to communicate about entities in the (physical
or virtual) world they are situated in.

Formally, dialogue can be seen as “a joint process of communication,”
which “involves sharing of information (data, symbols, context) between two
or more parties” (Lansdale and Ormerod, 1994). Meaning is established if the
3http://www.twinity.com/, http://www.metaversum.com/ [last accessed 2010-05-05]

http://www.twinity.com/
http://www.metaversum.com/
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symbols used by each party refer to common concepts and entities. In situated
communication the data and symbols exchanged are about entities in the in-
terlocutors’ environment. The way the reference between the symbols and the
entities in the word is established is determined how the interaction is situated in
the environment. We say that the communication is grounded in the spatial con-
text. In general, this information sharing can be non-linguistic. Here, however,
we focus on natural-language based communication in situated dialogue.

2.5 CategorizaƟon and ConceptualizaƟon
An important issue in cognitive science, psychology, and linguistics is the ques-
tion how the mind processes sensorimotor stimuli in order to form abstract rep-
resentations that are available for higher-level reasoning as well as language
production and understanding. A related question is how words, being arbi-
trary symbols, get their meaning and how this meaning is grounded in reality,
i.e., how words can refer to things and circumstances in the world.

On the lowest level of sensorimotor abstraction, the mind performs cate-
gorization. Categorization is a basic skill of structuring sensory input by ab-
straction and simplification. It is an essential capability of every neural system
in humans and animals alike, or as Lakoff and Johnson (1999) put it, “every
living being categorizes,” and every “living system must categorize”. By cate-
gorization, it is possible to reduce the complexity of the input by relating it to
previous input patterns, i.e., past experiences. With more and more experience,
more and more categories are formed, and existing ones are refined. Most of
category-forming and categorization is a sub-conscious process, while only a
small part of it can be subject to conscious, deliberate cognitive action (Lakoff
and Johnson, 1999).

Concepts are higher-level cognitive representations of our mental cate-
gories. The concept system is accessible for reasoning and inference and thus
part of our conscious thinking. Concepts are often formed around prototypes
– either ideal or average representatives of their concept, or ones that possess
only elementary properties. Prototypes allow to draw draw inferences about
category members in the absence of any special contextual information (Lakoff
and Johnson, 1999).

2.5.1 Basic-level categories and concepts

We are concerned with the question of how one can refer linguistically to a
spatial structure – e.g., a room, a place, or an object in a specific location –
in a given situation. By naming a referent, people categorize it. Brown (1958)
identifies that people in one community prefer the choice of one particular name
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for classes of things over the many other possible names. “The most common
name is at the level of usual utility” (Brown, 1958). This theory is regarded as
the first approach towards a notion of basic-level categories further developed
by Rosch (1978). The basic-level category of a referent is assumed to provide
enough information to establish equivalence with other class members while
distinguishing it from non-members. It has also been shown that the concept of
an object evokes expectations about how to interact with it (Borghi, 2005).

For our method, we claim that a similar correspondence between room con-
cepts and actions holds. The basic-level category of spatial entities in an envi-
ronment is determined by functional properties that the members of such an
equivalence class afford. The functional affordances of a room which are not
directly related to its spatial extension, are in most cases provided by objects
that are located therein. For instance, the concept of ‘kitchen’ applies to rooms
that are suited for preparing a meal. The preparation of food, in turn, is afforded
by certain objects, such as, e.g., an oven, a stove, a microwave oven, and sec-
ondary objects, such as a refrigerator, a countertop, or a sink. Thus, the objects
that are located in a room are a basis for determining the appropriate general
name to refer to the room. The category of a room can also be determined by
several properties pertaining to the room’s appearance such as shape, size, or
color. For example, corridors are places that allow people to walk from one
room to another. This function is not provided by any specific object, but rather
by the spatial layout of the corridor, which spatially links as many rooms as
possible (and necessary).

We furthermore assume that the basic-level categories that people use to
refer to spatial areas are located at one level lower than the more general cate-
gory ‘room’. Of course, rooms can have proper names and it is common usage
in office environments to label rooms systematically, e.g., by assigning unique,
ordered numbers, but still it is uncommon in everyday talk that people use these
proper names to refer to a spatial entity. People instead refer to rooms with their
general names, which correspond to basic-level categories such as ‘kitchen,’ ‘li-
brary,’ or ‘lobby.’

2.5.2 Basic spaƟal relaƟons
The physical properties of containers and surfaces belong to the “first and most
frequent spatial concepts taught” to children (Freundschuh and Sharma, 1996).
Since these spatial concepts are among the first to be experienced through our
own embodiment, they give rise to the basic cognitive schemata for spatial
and metaphorical thinking. The so-called container schema represents one of
the most pervasive and intuitive spatial relations, namely containment (Lakoff
and Johnson, 1999). Another schema that is acquired early on is the notion of
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surface-support, i.e., the surface schema. In natural language they are expressed
by the topological locatives “in” and “on,” which are among the most frequently
used prepositions (Coventry and Garrod, 2004).

2.5.3 Ontology-based knowledge representaƟon
Our approach models conceptual knowledge in an ontological taxonomy. It is
composed of a commonsense ontology of an indoor environment that describes
necessary and sufficient conditions that spatial entities must fulfill in order to
qualify for belonging to a certain concept. Our definitions of the concepts in
the terminological taxonomy are inspired by the way humans categorize space.

An ontology as a knowledge representation in computer science is a formal,
“explicit specification of a conceptualization” of an area of interest (Gruber,
1993). Ontologies describe classes of objects, their properties, and relations
that can hold between them. Ontologies are used to formally define a shared
terminology, and to provide a semantic interpretation. They can be used as
knowledge base for automated reasoning. Description Logics (DL) are a fam-
ily of logical formalisms for ontology-based reasoning. Ontologies are suitable
for representing the knowledge about a given domain in a way that is under-
standable by humans and processable by computers.
Recent research on formal and applied aspects of ontology-based knowledge
representations have resulted in a distinction between two kinds of ontologies.
For one, there exist ontologies that are supposed to represent very general con-
cepts and relations that exist independently of a specific domain – so-called
upper ontologies (Mascardi et al., 2007), such as, e.g., the Generalized Upper
Model (GUM) (Bateman et al., 1995) or DOLCE (Masolo et al., 2003). Domain
ontologies, on the other hand, represent the kinds of objects, along with their
properties and relations, that exist in a particular domain. Examples of domain
ontologies that are used to formally define the terminology of a specific field
are the different food and agriculture ontologies listed by the Food and Agricul-
ture Organization of the United Nations (FAO) (2010), and the Music Ontology
proposed by Raimond et al. (2010). Figure 2.5 shows an example ontology (see
Section 1.5 for a legend).

The Semantic Web makes wide use of ontologies. The aim of the Se-
mantic Web is to provide machine-processable representations of web content.
This processing involves the combination of information, knowledge discovery
through inference, and an automatic detection of knowledge gaps and incon-
sistencies (Antoniou and van Harmelen, 2008). Ontologies provide machine-
readable descriptions of their content as well as a semantic interpretation. The
Web Ontology Language OWL has been introduced specifically to address the
requirements of the Semantic Web, and to be mostly compatible to the well-
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Figure 2.5: Example of an ontology of family relationships.

established standards RDF and RDFS (see Section 4.2.4). It offers a formally
defined syntax, as well as formal semantics. Its expressive power strikes a bal-
ance to a tractable reasoning support.

2.6 Summary and Outlook
In this chapter, we have presented the scientific background that the work in this
thesis builds upon. After a short overview of research on cognitive systems, we
have presented an introduction to autonomous agents, including some back-
ground in robotics, in particular autonomous and intelligent mobile robots, and
virtual worlds. We have then discussed relevant aspects of the study of embod-
ied cognition, human categorization and conceptualization as well as the use of
ontologies as a knowledge representation. In the next chapter, we will present
an approach to multi-layered conceptual spatial mapping for autonomous mo-
bile robots. The approach combines low-level sensor-based maps and several
abstraction layers that are inspired by human categorization and conceptualiza-
tion. In Chapter 4, we will show will show how we make use of an OWL-DL
ontology for the conceptual layer of the multi-layered spatial representation.
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Chapter 3

MulƟ-Layered Conceptual SpaƟal
Mapping

Summary
In this chapter, we identify structuring of space and categorization of large-
scale space as two important aspects of spatial understanding. In order to en-
able an autonomous agent to engage in a situated dialogue about its environ-
ment, it needs to have a human-compatible spatial understanding, whereas
autonomous behavior, such as navigation, requires the agent to have access
to low-level spatial representations. Addressing these two challenges, we
present an approach to multi-layered conceptual spatial mapping. We embed
our work in a discussion of relevant research in human spatial cognition and
mobile robot mapping.

3.1 MoƟvaƟon and Background
We are driven by the research question of spatial understanding and its con-
nection to acting and interacting in indoor environments. We want to endow
autonomous embodied agents with the capability to conduct spatially situated
dialogues. For this the agent must be able to understand space in terms of con-
cepts that can be expressed in, and resolved from natural language.

We start from the assumption that the environment is not instrumented in
order to facilitate the mapping problem. The kinds of environments that we
are interested in are indoor spaces that are designed by humans for humans –
and that are intuitively and easily understood by humans. This includes ordi-
nary and everyday indoor office environments or apartments that are populated
by humans working and living there. This also includes virtual spaces that are
designed in such a way that humans who control an avatar using a 3D client
software perceive of them as if they were realistic models of natural physical
spaces. We call this class of environments that are made and designed by hu-
mans for being used and populated by humans human-oriented environments.
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(a) Perspective image taken from a digital cam-
era mounted on the top platform of the robot
(height: 140cm, field of view: 68.9◦).

(b) Omnidirectional image taken from a digital
camera facing up towards a hyperbolic mirror
(height: 116cm, field of view: 360◦).
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(c) Frontier of the corresponding laser range scan taken at
a vertical height of 30cm in parallel to the floor plane
(field of view: 180◦).

ActivMedia ActivMedia iRobot
PeopleBot at Pioneer-3 at ATRV-Mini at
Saarbrücken Freiburg Ljubljana

Figure 3: Three different mobile platforms employed for image acquisition at the three labs. The portable
socket with the camera setup is shown in the top right corner.

illumination and weather conditions that could be classified into three groups: sunny weather, cloudy
weather and night. For the different illumination conditions, the acquisition procedure was repeated at
least thrice, resulting in a minimum of three image sequences, acquired one after the other, under similar
conditions.

At each lab, two different paths were followed by the robot during image acquisition: (a) the standard
path, where the robot was driven across rooms that are most likely to be found in most labs; (b) the
extended path, where the robot was driven across all the available rooms. Figure 4-5 presents the two
types of paths that the robot followed in each environment. The extended path generally contained
more rooms than the standard path, and the additional rooms are usually specific for each particular
lab. In each case, a set of standard and extended image sequences was collected at each lab. Detailed
information about the number of sequences in the database can be found in Table 3. Table 4 presents a
list of rooms covered by each sequence type at each lab. Due to the manual control of the robot, strong
viewpoint variations can be observed between different sequences, even if they were recorded following
the same type of acquisition path. The total number of frames in each image sequence depends on the
lab and the path that the robot followed (roughly 1000-2800 for Saarbrücken, 1600-2800 for Freiburg
and 2000-2700 for Ljubljana).

5 Data Annotation

In order to label the acquired images, the same procedure as in [3, 2] was followed: the robot pose was
estimated during the acquisition process using a laser-based localization technique [1]. The pose was
represented in a predefined global coordinate system (see Appendix C). Each image was then labeled
as belonging to one of the available rooms according to the position (i.e. estimated coordinates in the
global coordinate system) of the robot at the moment of acquisition. This strategy could not be directly
followed in Ljubljana, because the robot patform did not have a laser scanner. Thus, for the sequences
captured in Ljubljana, the annotation procedure was accomplished using odometry data with manual
corrections. Description of the file format used to store odometry and laser range data can be found in
Appendix B.

For the perspective camera, an important consequence of this annotation procedure is that when the

5

(d) The mobile robot used for ac-
quiring the data. The cameras
and the laser scanner can be
seen on the top and bottom plat-
forms, respectively.

Figure 3.1: Office environment “seen” by different robot sensors.

Figure 3.2 demonstrates examples of different human-oriented environments
in which autonomous agents have to operate. Figure 3.1 shows how a robot’s
sensors (cameras and laser range finders) perceive such an environment.

There exist many different approaches for equipping autonomous embod-
ied agents, most notably mobile robots, with spatial models. The problem is
that these models are usually specifically tailored for the tasks the agent is sup-
posed to fulfill. This means that the features of the spatial representation are
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(a) Autonomous mobile robots – left: Explorer (see Chapter 5 and Chapter 6), right: Dora (see
Chapter 7) – operating in an office building.

(b) A virtual character in a household environment within the Twinity world
(see Section 10.2).

Figure 3.2: Examples of human-oriented environments.
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Figure 5.2: Results after running on St.Pere Pescador Dataset(a) Underwater grid map of a marina in San Pere Pescador,
Spain (Keshavdas, 2009).

(b) Line-feature map of an in-
door environment.

Figure 3.3: Examples of robotic spatial representations for SLAM.

typically onlymeaningful with respect to the algorithms that work on these rep-
resentations. These include, for instance, occupancy grid maps (see Figure 3.3a
for an example), which address the challenge of representing which parts of an
environment are likely to be free and unobstructed, and which ones contain po-
tential obstacles (Thrun et al., 2005), or line maps that represent static features
of the environment for the purpose of simultaneous localization and mapping
(SLAM), illustrated in Figure 3.3b (see also Section 2.2.1).

In contrast to this, what we need are human-like features. In order to be able
to talk in and about space, the agent needs to abstract from its internal, machine-
compatible representations of space to a level that is at least comparable to the
way humans perceive of space.

Spatial understanding comprises two aspects. For one, it concerns struc-
turing of spatial organization. That is, which are the units a human-oriented
environment is composed of? Secondly, it concerns categorization of space.
That is, which are the concepts that describe these spatial units, and how are
they determined? We call spatial knowledge representations that address these
issues human-compatible representations of space.
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To this end the work presented in this thesis builds upon and extends the au-
thor’s previous research on multi-layered conceptual spatial mapping (Zender,
2006; Zender and Kruijff, 2007a) in the tradition of approaches like the (Hy-
brid) Spatial Semantic Hierarchy (Kuipers, 2000; Kuipers et al., 2004; Beeson
et al., 2007), the Route Graphmodel (Werner et al., 2000; Krieg-Brückner et al.,
2005), hybrid maps (Buschka and Saffiotti, 2004), and multi-hierarchical se-
mantic maps for mobile robots (Galindo et al., 2005, 2007). The approach is
inspired by human cognition. On the lower layers it contains sensor-based rep-
resentations. These are abstracted into basic categories (free space vs. occupied
space, areas vs. humans vs. objects, rooms vs. corridors, etc.). The basic spatial
relation is spatial containment, corresponding to the container schema, which
is among the most prominent, most important, and most fundamental schemata
in human cognition (cf. Section 2.5.2 and (Lakoff and Johnson, 1999)).

3.1.1 Structuring space

Research in cognitive psychology addresses the inherently qualitative nature
of human spatial knowledge. It tries to answer the question how the human
mind represents spatial information in a so-called cognitive map. Following
the results of empirical studies, it is nowadays generally assumed that humans
adopt a partially hierarchical representation of spatial organization (Stevens
and Coupe, 1978; McNamara, 1986). The basic units of such a qualitative spa-
tial representation are topological regions (Cohn and Hazarika, 2001), which
correspond to more or less clearly bounded spatial areas. The borders may be
defined physically, perceptually, or may be purely subjective to the human. It
has been shown that even in natural environments without any clear physical or
perceptual boundaries, humans decompose space into topological hierarchies
by clustering salient landmarks (Hirtle and Jonides, 1985). In our approach,
topological areas are the primitive units of the conceptual map that is used for
human-robot interaction and dialogue, and the basic spatial relation is topolog-
ical inclusion.

Recent advances in cognitive neuroscience have found evidence for brain
structures that supply the topological representations of the so-called “place-
cells” with a metric one encoded in the so-called “grid cells” (Jeffery and
Burgess, 2006). This does not contradict the assumption that the global-scale
representation of large-scale space in the cognitive map is a topological one. It
rather provides insight into how local scenes, i.e., small-scale space, might be
represented in the human mind and speaks in favor of a multi-layered, hybrid
representation of space in the cognitive map.
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Large-scale space and small-scale space

There is an important distinction to make when investigating any kind of spa-
tially situated behavior, be it acting, planning, observing, learning, or communi-
cating, namely if it pertains to space that constitutes the agent’s immediate sur-
roundings, or if it pertains to larger spatial structures. The dichotomy between
small-scale space and large-scale space for human spatial cognition (Herman
and Siegel, 1978; Hazen et al., 1978) is central to the work presented in this
thesis.

Kuipers (1977) defines large-scale space as “a space which cannot be per-
ceived at once; its global structure must be derived from local observations over
time,” whereas small-scale space consist of the here-and-now. For example, a
drawing is a large-scale space “when viewed through a small movable hole,
while a city can be small-scale when viewed from an airplane” (Kuipers, 1977).
In more common everyday situations, an office environment, one’s house, a
city, or a university campus are large-scale spaces. A table-top or a particular
corner of one’s office are examples of small-scale space.

This distinction is crucial to thework presented in this thesis. We get back to
it later when discussing appropriate knowledge representations (in this chapter)
and reasoning mechanisms (in Chapter 4); when discussing semantic-driven ex-
ploration, navigation, and planning (in Part II); and, ultimately, when discussing
strategies for verbally referring to entities in large-scale space (in Part III).

SegmenƟng and parƟƟoning space

As mentioned earlier, it is important that autonomous agents which are sup-
posed to interact with humans in a human-oriented environment have a notion
of spatial units that are also meaningful for humans. Topological regions are
such units that are meaningful to humans. We call the units of indoor spaces
areas. We distinguish between two basic kinds of areas. Rooms are spatial ar-
eas whose primary purpose is defined by the kinds of actions they afford (see
Section 2.5.1). The other major class of indoor areas are passages whose pri-
mary purpose is to link rooms and provide access to other spatial areas. In
Section 5.4.3 we show how this basic distinction provides a basis for situation-
aware motion behavior of the robot.

The challenge for intelligent agents is to autonomously build spatial rep-
resentations that are composed of such areas. The previously mentioned dis-
tinction between physical, perceptual and subjective boundaries of topological
areas corresponds to a spatial segmentation along geometric features versus
functional features. In indoor environments, walls are the physical boundaries
of areas. They determine the geometric layout of the space they surround. Func-
tional features, as mentioned in Section 2.5.1, can be determined by specific
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objects – but also by the spatial layout and the composition of the objects and
their surroundings.1 Similarly, the gateways that link areas can be defined ge-
ometrically or on a functional-perceptional basis.

However, as we showed in the previous sections, the sensors of a robot are
not particularly geared towards perceiving architectural structures. Neither do
computer vision methods exist that allow to visually recognize arbitrary objects
– let alone their functional affordances. Currently, the main purpose of robotic
exteroceptive sensors is to discriminate free space from physical obstacles, and
to provide a means for localizing the robot with respect to local landmarks. It is
therefore necessary to make use of other cues to segment an environment into
topological units.

A special kind of free space are geometrically bounded gateways. In a
spatial representation that is based upon free space and its inter-connectivity,
gateways play an important role in structuring and segmenting free space. In
a map that only implicitly represents the boundaries of spatial areas, gateways
divide space into regions that belong to one spatial area from regions that be-
long to other spatial areas. “Cognitively this allows the world to be broken up
into smaller pieces” (Chown, 1999). Gateways constitute an important factor
for spatial cognition and navigation of autonomous agents in large-scale space
(Chown, 2000). Chown et al. (1995) explains the special role of gateways for
autonomous robots like this:

“In buildings, these [gateways] are typically doorways…Therefore,
a gateway occurs where there is at least a partial visual separation
between two neighboring areas and the gateway itself is a visual
opening to a previously obscured area. At such a [location], one
has the option of entering the new area or staying in the previous
area.”

Likewise, our approach is based on the assumption of the importance of gate-
ways (especially doorways) for human-compatible spatial representations of
human-oriented environments. Later we show how our approach makes use of
information about doorways in order to maintain a representation that is com-
posed of rooms and other spatial areas (e.g., corridors).
Hierarchical subdivision of space

One prominent spatial relation we experience physically and abstractly every
day is spatial containment (see also Section 2.5.2). Egenhofer and Rodríguez
1Strictly speaking, the presence of a coffee machine alone does not turn a room into a kitchen – it
could as well be a storeroom. The space in the room must afford the preparation of coffee, just
as the coffee machine must be reachable and usable.
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(1999) consider the space within a room as a small-scale space in which peo-
ple experience cognitive image schemata, e.g., the container-surface schema.
However, people routinely employ the same schemata to larger structures, for
example when saying “the bench is in the garden” (Lakoff and Johnson, 1999).
Similar to objects that are inside a room, streets are in a city, and several dis-
tricts form a country. The space around us can thus be decomposed into smaller
units, or can combine with other spatial units to larger regions. The container
schema can – with a few constraints – also be applied to large-scale space – at
least when considering objects of comparable size and similar observation scale
(Rodríguez and Egenhofer, 1997).

Containment of objects or spatial units is a productive schema for spatial
language (Coventry and Garrod, 2004), and one of the structuring principles
in the cognitive map (Stevens and Coupe, 1978; McNamara, 1986). Likewise,
hierarchical subdivisions of space are a basic topological relation for geograph-
ical information systems (GIS) (Marx, 1986; Trainor, 2003).

Topological hierarchies can be expressed as spatial-relation algebras,
which, unlike usual computational geometry-based calculations, “rely on sym-
bolic computations over small sets of relations. This method is very versatile
since no detailed information about the geometry of he objects, such as coordi-
nates of boundary points or shape parameters, is necessary to make inferences”
(Egenhofer and Rodríguez, 1999). This makes them a prime candidate for a
basic human-compatible relation to structure and subdivide space.

Conceptually, containment does not form a strict hierarchy. One spatial
region can be contained in several different spatial regions, which, in turn, might
not be in a containment relation. Consider, for example, an intersection of two
corridors. While the intersection itself forms a spatial region, it can also be
assumed to be a part of each individual corridor. The representation of spatial
abstraction hierarchies is thus rather a partially ordered set (poset) (Kainz et al.,
1993).

Definition 1 (Partially ordered sets (posets) (Kainz et al., 1993)).

Let P be a set. A partial order on P is a binary relation ≤
on P such that, for every x, y, z ∈ P :

1. x ≤ x (reflexive)

2. if x ≤ y and y ≤ x, then x = y (antisymmetric)

3. if x ≤ y and y ≤ y, then x ≤ z (transitive)
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A set P with a reflexive, antisymmetric and transitive relation (or-
der relation)≤ is called a partially ordered set (or poset). For every
partially ordered set P we can find a new poset, the dual of P , by
defining that x ≥ y is in the dual if y ≤ x ∈ P . Any statement
about a partially ordered set can be turned into a statement of its
dual be replacing≤ with≥, and vice versa. ≥ is called the inverse
of ≤. ■

We show later (in Part III) how a hierarchical subdivision of space provides
the basic structure for the production and understanding of spatially situated
language.

3.1.2 Categorizing space
Aside from the functionality of the cognitive map, another relevant question
from cognitive science is how people categorize spatial structures, as illus-
trated in Section 2.5.1. Categories determine how people can interact with,
and linguistically refer to entities in the world. Basic-level categories represent
the most appropriate name for a thing or an abstract concept. The basic-level
category of a referent is assumed to provide enough information to establish
equivalence with other members of the class, while distinguishing it from non-
members (Brown, 1958; Rosch, 1978). We draw from these notions when cat-
egorizing the spatial areas in the robot’s conceptual map. We are specifically
concerned with determining appropriate properties that allow a robot to both
successfully refer to spatial entities in a situated dialogue between the robot and
its user, and meaningfully act in its environment.

Our work rests on the assumption that the basic-level categories of spatial
entities in an environment are determined by the actions they afford. Many
types of rooms are designed in a way that their structure and spatial layout afford
specific actions, such as corridors, or staircases. Other types of rooms afford
more complex actions. These are in most cases provided by objects that are
located there. For instance, the concept ‘living room’ applies to rooms that are
suited for resting. Having a rest, in turn, can be afforded by certain objects,
such as couches or TV sets. We thus conclude that besides basic geometric
properties, such as shape and layout, the objects that are located in a room are
a reliable basis for appropriately categorizing that room.

3.2 RepresenƟng Space at Different Levels of
AbstracƟon

If an autonomous agent is required to perform navigation tasks, it must have ac-
cess to low-level spatial representations that are suitable for fine-grained hard-
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ware control. These are typically quantitative spatial representations, such as
metric coordinate systems. Metric maps rely on accurately measurable dis-
tances and dimensions. The sensors modern robots are typically equipped with,
such as time-of-flight cameras or laser range finders, provide quite exact mea-
surements of free and occupied space in the robot’s surrounding. Such sensor
readings are hence often stored in metric maps of different kinds. Metric maps
are also an obvious choice for online avatars because they can have easy access
to the virtual world, which typically consists of 3D models.

Humans, on the other hand, use the topological structuring of space to form
a more qualitative sense of space. This is reflected in natural language, which
is full of vague, qualitative spatial expressions. In order to be able to communi-
cate successfully and naturally with humans, autonomous conversational agents
must be able to establish such a quantitative spatial understanding on the basis
of the low-level maps they can build from their sensory input.

To this end, we present multi-layered conceptual spatial mapping. The
approach addresses the problems of human-compatible structuring and cate-
gorization of space. It comprises spatial representations at different levels of
abstraction, ranging from low-level metric maps to symbolic conceptual repre-
sentations. In Chapter 4 we present reasoning methods that can be performed
using such spatial conceptual knowledge. In Part II we show that the imple-
mented approach is suitable for situated action and interaction with humans in
human-oriented environments.

The multi-layered conceptual spatial mapping principle has been imple-
mented in two instantiations. The one in Figure 3.4 is the basis for the integrated
robotic systems in Chapters 5 and 6. More recently, Pronobis et al. (2010b) pre-
sented a refined approach to multi-layered mapping, in which, most notably, the
representations of the lower map layers were re-defined. The integrated robotic
system in Chapter 7 makes use of this instantiation (illustrated in Figure 3.5).

In the following sections we outline the different spatial representations
underlying the individual abstraction layers. The details of the implementation
are presented in the chapters of Part II.

3.2.1 Related work
Recently, a number of methods originating in robotics research have been pre-
sented that construct multi-layered environment models. These layers range
from metric sensor-based maps to abstract conceptual maps that take into ac-
count information about objects acquired through computer visionmethods. Va-
sudevan et al. (2007) suggest a hierarchical probabilistic representation of space
based on objects. The work by Galindo et al. (2005, 2007) presents an approach
containing two parallel hierarchies, spatial and conceptual, connected through
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Figure 3.4: Illustration of a multi-layered conceptual spatial map.
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Figure 3.5: COARSE (Cognitive lAyered Representation of Spatial knowledgE)
(Pronobis et al., 2010b).
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anchoring. Inference about places is based on objects found in them. This
approach is based on the Multi-AH-graph model by Fernández and González
(2001). The work by Diosi et al. (2005) creates a metric map through a guided
tour. The map is then segmented into discrete rooms according to the labels
given by the instructor. Furthermore, the Hybrid Spatial Semantic Hierarchy
(HSSH), introduced by Beeson et al. (2007), allows a mobile robot to describe
the world using different representations, each with its own ontology.

3.2.2 The different map layers
In the following, we briefly describe the properties of the individual layers. The
conceptual map layer is central to the work presented in this thesis. The other
layers, i.e., the metric, navigation, and topological layers will be referred to as
the “lower layers” of the spatial model. They are outside the scope of this thesis.
While they are important for robot navigation and self-localization, their sole
relevance to the work of this thesis is that they provide input to the conceptual
layer based on perception of the real world. The robotic systems presented in
Part II illustrate implementations of the multi-layered mapping approach using
different techniques in the lower layers.

Unless the agent is equipped with a form of external localization – such
as robots acting in instrumented environments (which, in turn, are faced with
their own challenges (Estrin et al., 2002)), or avatars that operate in the 3D
coordinate system of the virtual world – it must be equipped with sensors that
allow it to perceive its surroundings. In the simplest case, such sensors are
only used to prevent the robot from hitting an obstacle2 or to enable the robot
to move to a fixed target position.3 This, however, does not amount to much
spatial understanding other than a robot-centric frame of reference that captures
the here-and-now small-scale space.

An understanding of large-scale space requires that the agent at least be
able to represent – i.e., remember and retrieve – landmarks that are outside the
currently observable part of space. Some approaches to mapping of large-scale
space generate metric maps, ranging from interconnected patches of local maps
(Beeson et al., 2010) to larger, global metric maps of the whole operating envi-
ronment (Frese and Schröder, 2006). In contrast, there are other approaches to
mapping of large-scale space that do without local metric maps, but rather rep-
resent the positions of landmarks with respect to each other in terms of control
laws that take the robot from one landmark to another (Kuipers, 2000).

2For instance, the e-puck educational robot is equipped with eight infrared (IR) proximity sensors,
which measure the presence of nearby obstacles (Mondada et al., 2009).

3The iRobot© Roomba© autonomous vacuum cleaner has the capability to find its way to a dock-
ing station by sensing the IR signals that the station emits.
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Such maps, referred to as either metric maps or called the sensory map layer
serve the principal purpose of allowing the robot to safely navigate its environ-
ment while staying localized within its representation of large-scale space. This
self-localization can be performed in an absolute frame of reference or in a rela-
tive frame of reference with respect to a local landmark. As a result, such maps
are essentially representations of free and reachable space, rather than faithful
models of the architectural structure around that free space.

In order to allow for efficient path planning it is common practice to abstract
away from sensor-based metric maps. The first abstraction step is discretization
of the continuous metric space. Examples of such a discretization are free-space
markers (Newman et al., 2002) which are used to form a navigation graph map
layer in the implementations in Chapters 5 and 6. The intermediate map layer
used in the robotic system in Chapter 7 is formed out of places.

This level of discretization provides a basic notion of the topological struc-
ture of an environment. However, the discrete units are not guaranteed to be
meaningful to humans. It is thus necessary to aggregate the units of the inter-
mediate layer into human-compatible spatial units, such as rooms.

This then provides a topological partitioning that can be used for human-
compatible structuring and categorization of space. In this view, the exact shape
and boundaries of an area are irrelevant. Basic notions that are represented in
such a map are adjacency and connectivity.

Together, the intermediate discretization layer and the topological layer pro-
vide a symbolic abstraction over continuous, sensor-based metric data. The
symbols correspond to the units of the respective maps (e.g., places, naviga-
tion nodes, areas, objects, and landmarks) and the relations that hold between
them (e.g., adjacency, inclusion, visibility). These symbols are the basis for the
conceptual map layer. In the conceptual map, different kinds of symbolic rea-
soning are used to provide a human-compatible structuring and categorization
of space that can be used for situated human-machine interaction.

With each abstraction step, the available spatial information gets coarser,
while the conceptual knowledge increases. Apart from immediate adjacency
of topological areas, the model is unable to derive a global structure other than
containment of one portion of space in another. Specifically this means that
the model cannot predict that two known areas are adjacent to each other un-
less their connectivity has been explicitly recognized. This corresponds, on a
smaller scale, to the human performance in novel environments. Imagine the
surprise when, e.g., while walking through a large furniture store, one realizes
that the bathrooms are behind the bedroom closets. A similar behavior becomes
apparent in Chapter 7 when the robot enters a partially explored room through
a different door (thus at first believing that yet another new room has been dis-
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Figure 3.6: Illustration of a part of the commonsense ontology of an indoor of-
fice environment. Edges with dark arrow heads denote the taxonomical sub-
class relation. Edges labeled with contains express that the given subclass of
Room is defined as containing at least one instance of the pointed-to Object
subclass. T stands for the universal top-level concept. See Section 4.2).

covered), and only afterwards arrives at a previously visited place that it knows
belongs to an already known room.

In the conceptual map, information stemming from vision and dialogue is
related to the spatial units generated in the lower map layers. This allows, for
instance, to represent the fact that a specific object was encountered in a spe-
cific room together with the information that the human user called that room
“the kitchen.” Internally, the conceptual map represents information about spa-
tial areas and objects in the environment in an ontological (see Section 4.2)
reasoning module. It consists of a commonsense ontology of an indoor envi-
ronment, which describes taxonomies (i.e., subclass relations) of room types,
and couples room types to typical objects found therein through contains rela-
tions. Figure 3.6 shows such a commonsense ontology. In the next chapter we
give formal definitions of the ontology and its underlying representations and
reasoning formalisms.
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Figure 3.7: Combining different types of knowledge in the conceptual map.

These conceptual taxonomies have been handcrafted and cannot be changed
online. However, instances of the concepts are added to the ontology during
run-time. Using a reasoner, new knowledge can be inferred. For example, if
the robot knows that it is in an area where there is a coffee machine and an oven,
it can infer that it can categorize this area as a kitchen. Like this, linguistic
references to areas can be generated and resolved (see Part III).

In Chapter 4 we present the different kinds of inferences – including non-
monotonic and ontology-based reasoning methods – in the conceptual map in
more detail.

3.3 InformaƟon Processing
Depending on the origin of a piece of information, we distinguish between ac-
quired, asserted, innate, and inferred knowledge. These notions are important
for the characterization of the information flow during map acquisition.

• Acquired knowledge is derived from the robot’s own sensors, including
the spatial information encoded in the lower map layers and objects rec-
ognized by a computer vision software. The information that an avatar
receives from the virtual world engine is another example of acquired
knowledge.
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• Asserted knowledge is provided by another agent, for example a human
tutor. It is typically given through verbal input (for example, the tutor
might say “you are in the laboratory.”).

• Innate knowledge is any kind of information that is incorporated into the
system in away that does not allow for on-linemanipulation of the knowl-
edge. In our approach, the conceptual ontology (cf. Section 4.2) is an
example of innate knowledge.

• Any piece of information that can be derived on the basis of the combina-
tion or evaluation of other information provides inferred knowledge, such
as knowledge inferred by the Description Logic-based reasoning mecha-
nisms in the conceptual map.

Figure 3.7 illustrates how different pieces of information are combined and pro-
cessed in the conceptual map layer. In the next chapter, we explain the different
reasoning mechanisms employed in the conceptual map in more detail.

The individual layers of our multi-layeredmapping approach have been im-
plemented within different instantiations of a distributed cognitive architecture.
The information processing in these integrated systems is described in more
detail in Part II.

3.4 Summary and Outlook
In this chapter, we have presented an approach to multi-layered conceptual spa-
tial mapping for autonomous agents. It addresses the challenges of structuring
space as well as categorizing space, which are prerequisites of spatial under-
standing. Since the kinds of agents we are dealing with have to operate in non-
instrumented human-oriented environments it is crucial that they be endowed
with a human-compatible spatial representation in order to engage in meaning-
ful situated dialogues about spatial topics with its human user. Moreover, the
presented approach allows for integration with lower-level robotic maps that
provide the robot with safe and reliable navigation and control mechanisms,
and which take the recent advances in robot sensing, mapping, and motion con-
trol into account. In the following chapter, we will explain the representations
and formalisms underlying the conceptual map in more detail. In Part II, we
will present three integrated robotic systems that make use of the multi-layered
mapping approach. In Part III, we will show how the conceptual map can be
used as a basis for generation and understanding of natural language in spatially
situated human-agent dialogues.





Chapter 4

Reasoning with Changing and
Incomplete Conceptual SpaƟal
Knowledge

Summary
In this chapter, we focus on the conceptual map layer of the multi-layered
spatial model proposed in Chapter 3. We show how Description Logics can
be used to perform inference on a human-compatible symbolic conceptualiza-
tion of space. We further propose methods for prototypical default reasoning
and belief revision to extend the capabilities of autonomous agents. In the
subsequent chapters, we will illustrate how these principles can be applied
to real, integrated robotic systems.

4.1 MoƟvaƟon and Background
The kinds of autonomous agents under study in this work operate in dynamic,
large-scale environments. These environments are subject to change and cannot
be apprehended as a perceptual whole. At the same time, the agents have the
possibility to alter the world around them, and to perform actions that allow
them to extend their own knowledge. For this to be successful, their knowledge
representation must be able to deal with changing and incomplete information.

In Section 4.2, we show how Description Logic-based ontological reason-
ing can help overcome the problem of partial information at the sensory-symbol
interface. Nonmonotonic reasoning methods, addressed in Section 4.3, are suit-
able for drawing more, potentially too strong, conclusions from the knowledge
base of an autonomous agent that acts and interacts in a dynamic world. We
show how, in particular, default reasoning (Section 4.3.1) can be used for rea-
soning with incomplete information, while belief revision (Section 4.3.2) is suit-
able for reasoning with changing information.
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Wedo not focus on purely epistemological aspects of ontologymodeling. While
the representations themselves are important, our main focus lies on practical
systems; systems that allow an autonomous agent to instantiate these repre-
sentations, reason with them, and extend them. The emphasis is here on spa-
tial representations that support human-compatible action and interaction. This
comprises the capability to verbalize the agent’s knowledge, and to relate its
internal symbols to entities in the world on the one hand, and to the words that
are exchanged with its interlocutors on the other. This also comprises enabling
the agent to act and navigate in a human-oriented environment in such a way
that its understanding becomes transparent to the humans in its surrounding.

To this end, we employ terminological inference, rule-based reasoning, dif-
ferent kinds of nonmonotonic reasoningmethods, and and simple spatial reason-
ing based on topological containment. The challenges of using spatial calculi
for qualitative spatial reasoning, and their application to ontology-based spatial
representations are beyond the scope of this work.1 Here we focus on the appli-
cation of different kinds of ontology-based reasoning methods to the problem
of conceptualizing and structuring space for autonomous agents.

4.2 DescripƟon Logic-Based Reasoning
We have chosen a Description Logic (DL) based domain ontology (cf. Sec-
tion 2.5.3) as representation for the conceptual map layer (cf. Section 3.2). It
provides a human-compatible symbolic knowledge base that can be used as a
basis for interaction with humans. Due to the availability of different OWL
reasoning software, its wide acceptance as a standard for ontology engineering,
and the resulting re-usability of resources, we adopt OWL-DL as the ontology
language for the present work, see Section 4.2.4. DLs comprise a whole fam-
ily of knowledge representations and associated reasoning formalisms that are
based on fragments of first-order logic (Baader et al., 2003).

DL-based knowledge representations distinguish three kinds of knowledge.
Firstly, a taxonomy of concepts represents the so-called terminological knowl-
edge of the domain. This part of the knowledge base is referred to as TBox T .
Secondly, the ABox A (for assertional knowledge) holds the knowledge about
individuals in the domain. Finally, DL ontologies contain a set of roles that
can hold between individuals, and which are defined over concepts. The hier-
archy of roles and their properties are represented in the RBox R. While the
TBox expresses general, abstract knowledge of the domain, the ABox contains
a description of a specific state of affairs of the world. The role definitions and

1Katz and Grau (2005) and Grütter and Bauer-Messmer (2007) present extensions to OWL-DL
that use the RCC-8 calculus for qualitative spatial reasoning (Cohn and Hazarika, 2001).
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role restrictions that are used in concept definitions belong to the TBox. The
knowledge about concrete relations between individuals is part of the ABox.

Definition 2 (Ontological knowledge base).
An ontological knowledge baseO consists of a TBox T , an ABox
A, and an RBoxR: O = T ∪ A ∪R. ■

The basic constituents of the TBox are concepts. Another common name for
concept is class. This gives rise to a more extensional perspective, in which a
concept can be represented as the set of its member individuals. Individuals are
the basic entities represented in the ABox. We say that an individual a is an
instance of a concept A if a instantiates A or any of its subconcepts. Likewise,
we can also say that a belongs to a class A if it is a member of A or any of its
subclasses. An alternative, equivalent formulation that will be used later is to
say that a has type A.

An important notion we get back to later are concept definitions. Using
concept constructors and role restrictions, complex concept descriptions can
be built from atomic concepts. Named concepts can then be axiomatically de-
fined through concept descriptions. Concepts can also be defined through an
extensional enumeration of the individuals belonging to it. In the following, we
explain the concept constructors and role restrictions that are relevant for this
work. The interested reader can find a more detailed account of the matter in
the book chapters by Nardi and Brachman (2003) and Baader and Nutt (2003).

4.2.1 Open-world and non-unique name assumpƟon
Description Logics make two important assumptions regarding the knowledge
about the domain they represent.

The open-world assumption (OWA) says that the knowledge base can be
incomplete with respect to the domain of interest. In particular, the OWA im-
plies that a statement that is not known to be true is not assumed to be false.
This effectively means that DLs operate with a three-valued truth system: true,
false, and unknown. The OWA is an important prerequisite for a monotonic
behavior of DL-based knowledge representations.

In line with the OWA, many DLs make a second assumption, the non-
unique name assumption. According to this assumption, individuals that have
different names are not automatically assumed to be different from each other.
They might also be equal.2 The fact that two individuals are indeed identical –
or have different identities – must be explicitly expressed in order to draw more
2Frege (1892) uses the famous example of the identity of ‘the Morning Star’ and ‘the Evening
Star’ with the planet Venus. It is possible to learn and talk about ‘the Morning Star’ and ‘the
Evening Star’ individually, before recognizing that they are indeed one and the same planet.
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conclusions. The non-unique name assumption is crucial for applications where
knowledge bases can be fused. OWL-DL implements this assumption in order
to account for the decentralized and distributed way in which knowledge is rep-
resented in the Semantic Web. The non-unique name assumption is also useful
for autonomous agents that have limited perceptual capabilities. For instance,
the recognition that an observed object is identical to a previous observation is
not trivial to establish. It must thus be possible to accumulate knowledge about
both observations independently and, later, once their identity is established, to
fuse the knowledge.

4.2.2 DL syntax and semanƟcs
The formal semantics of DL concepts is given by a set-theoretic interpretation
I with respect to a domain∆I . Concepts are interpreted as sets of individuals,
and roles are interpreted as sets of pairs of individuals. According to the OWA,
the domain of the interpretation can be infinite. The interpretation of concepts
and roles exhibits the relatedness of DL and predicate logic. Since the interpre-
tation assigns to every atomic concept a unary relation, and to every role a binary
relation, concepts and roles can be viewed as unary and binary predicates, re-
spectively. Formal definitions of the syntax and semantics of DL concepts and
roles are given below. Definition 3 and Table 4.1 on the next page show the
syntax and semantics of DL axioms. Definitions 4 and 5 provide the abstract
syntax of DL concept and role constructors, respectively, whereas Table 4.2
provides the corresponding semantic interpretations. These definitions cover
the subset of DL syntax and semantics relevant for the present work. Baader
(2003) provides an exhaustive discussion of DL terminology, along with formal
syntax and semantics for DLs of different levels of expressivity.

The taxonomical relations between concepts and between roles are ex-
pressed by terminological axioms. An interpretation I consists of a non-empty
set ∆I (the domain of the interpretation) and an interpretation function which
assigns to every atomic concept A a set AI ⊆ ∆I and to every atomic role R
a binary relation RI ⊆ ∆I ×∆I .

Definition 3 (Terminological axioms (Baader and Nutt, 2003)).
Terminological axioms express how concepts and roles are related
to each other. There exist two kinds of axioms, inclusions and
equalities. Together they constitute the taxonomy of concepts and
roles. Inclusions take the form C ⊑ D or R ⊑ S, where C, D
are concepts, and R, S are roles. Equality axioms have the form
C ≡ D or R ≡ S. Their interpretations are given in Table 4.1. ■
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Table 4.1: Syntax and semantics of inclusion and equality axioms.
Syntax Semantics Name
C ⊑ D CI ⊆ DI concept inclusion

C ≡ D CI = DI concept equality

R ⊑ S RI ⊆ SI role inclusion

R ≡ S RI = SI role equality

Definition 4 (DL concept constructors (Baader, 2003)).
The abstract syntax of Description Logic concept descriptions C,
D is specified by the following recursive rewrite rules3:
C,D → A | ⊤ | ⊥ | ¬A | C ⊓D | C ⊔D | ∀R.C | ∃R.C | ∃R.b |

≥ nR | ≤ nR | = nR | ≥ nR.C | ≤ nR.C | = nR.C

Table 4.2 lists the inductive definitions for the interpretation. ■

Definition 5 (DL role constructors (Baader, 2003)).
Roles, being interpreted as binary relations, can be subject to the
usual operations on binary relations (depending on the expressivity
of the DL language). In the DL language we use, OWL-DL, the
following role descriptions can be constructed from a role R:
R+ (transitive closure), R− (inverse)
Symmetric roles are specified through an equality axiom between
a role and its inverse: R ≡ R− (symmetry)
Table 4.2 lists the inductive definitions for the interpretation. ■

The previously mentioned concept definitions provide a means for formally
specifying atomic concepts in terms of complex concept descriptions.

Definition 6 (Concept definitions (Baader and Nutt, 2003)).
A concept definition is an equality axiom whose left-hand side is
an atomic concept: A ≡ C

Concept definitions can thus introduce names for complex but
otherwise anonymous concepts. ■

3For compactness alternative expansions are separated by |. For explanations of the different
symbols used, please refer to Table 4.2 on the following page or Section 1.5.
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Table 4.2: Syntax and semantics of some DL concept and role constructors.

Concept constructors
Syntax Semantics Name

A AI ⊆ ∆I atomic concept

⊤ ∆I universal concept

⊥ ∅ bottom concept

¬A ∆I \AI atomic negation

C ⊓D CI ∩DI intersection

C ⊔D CI ∪DI union

∀R.C {a ∈ ∆I | ∀b.(a, b) ∈ RI → b ∈ CI} value restriction

∃R.C {a ∈ ∆I | ∃b.(a, b) ∈ RI ∧ b ∈ CI} existential quantification

∃R.b {a ∈ ∆I ∧ b ∈ ∆I | (a, b) ∈ RI} existential quantification
with restricted value

≥ nR.⊤ {a ∈ ∆I || {b ∈ ∆I | (a, b) ∈ RI} |≥ n}

cardinality restriction≤ nR.⊤ {a ∈ ∆I || {b ∈ ∆I | (a, b) ∈ RI} |≤ n}

= nR.⊤ {a ∈ ∆I || {b ∈ ∆I | (a, b) ∈ RI} |= n}

Role constructors
Syntax Semantics Name

R RI ⊆ ∆I ×∆I atomic role

R+ ∪
n≥1(R

I)n transitive closure

R− {(b, a) ∈ ∆I ×∆I | (a, b) ∈ RI} inverse

Let us consider some examples from an indoor mapping domain as discussed in
the previous chapter. Figure 4.1 shows the TBox Tindoor of the commonsense
ontology of an indoor environment. Example 1 gives an example of a concept
definition in Tindoor. It defines kitchens as those rooms that contain at least one
kitchen object.

(1) Kitchen ≡ Room ⊓ ∃contains.KitchenObject ∈ Tindoor
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Figure 4.1: Part of the commonsense ontology of an indoor office environment
(see also Figure 3.6) in Tindoor. Edge labels express concept definitions like
in Example 1.

We have already made use of a role: contains. In order to capture the kinds
of spatial relations we are interested in (i.e., topological containment), we need
to extend the RBox Rindoor further. Example 5 specifies another role, in, as
inverse role of contains. Making use of transitivity and inversion, we represent
topological inclusion of spatial entities along the definition of a poset, see Def-
inition 1 on page 38. Reflexivity is of minor importance for our purposes. It
is left out due to implementational considerations. Anti-symmetry per se is not
supported by the Description Logic language we are using (i.e., OWL-DL, see
Section 4.2.4).4

(2) in ≡ contains− ∈ Rindoor

(3) in ≡ in+ ∈ Rindoor

(4) contains ≡ in− ∈ Rindoor

(5) contains ≡ contains+ ∈ Rindoor

4The OWL 1.1 draft contains a construct for anti-symmetry, which rather expresses asymmetry.
The kind of anti-symmetry required by Definition 1 on page 38 could be expressed through
inference rules (see Section 4.2.6) instead.
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4.2.3 DL inferences
DLs are based on a decidable subset of first-order predicate logic. The set-
theoretical semantic interpretation of DLs is equivalent to the semantics of pred-
icate logic. Similar to a set of predicate logic axioms, the axioms in a DL knowl-
edge base represent explicit as well as implicit knowledge about the domain.
Using logical inference, this implicit knowledge can be made explicit.

Definition 7 (Entailment in DL).
We say that a set of axioms O1 entails another set of axioms O2,
O1 |= O2, iff all interpretations satisfying O1 also satisfy O2. ■

Different reasoning engines (henceforth simply called reasoners) for the differ-
ent variants of DL exist. The task of DL reasoners is to perform certain kinds
of inferences in both the TBox and the ABox that follow from the semantics of
the respective DL formalism used. These inferences are typically based on two
kinds of conditions: necessary and sufficient conditions. If the sufficient con-
ditions are met, the truth of a conclusion is warranted. Conversely, the falsity
of necessary conditions imply the falsity of their conclusions. This means that
necessary conditions alone do not suffice to guarantee the truth of their con-
clusions, while sufficient conditions might be by no means necessary for their
conclusions. Often, a number of necessary conditions together form a sufficient
condition. In such a case, the different conditions are individually necessary,
but jointly sufficient. The task of a reasoner can be paraphrased as inferring all
the knowledge that is only implicitly represented in the knowledge base.

The most basic TBox inference is subsumption checking between concepts.
This inference turns a set of concept definitions into a hierarchical taxonomy
in which concepts are related with a subclass/superclass relation. Given the
example above, a DL reasoner can infer that Kitchen is a subclass of Room.

(6) Tindoor |= Kitchen ⊑ Room

In the ABox a DL reasoner establishes concept membership of individuals, the
so-called instance checking mechanism (Nardi and Brachman, 2003). Individ-
uals are introduced by naming them and asserting properties about them. Such
properties include their concept membership and roles that they take part in.
Concept membership is expressed using so-called concept assertions. C(a) de-
notes that a belongs to the interpretation of C. A role assertion like R(a, b)
denotes that the tuple (a, b) belongs to the interpretation of R, cf. Definition 4.

Definition 8 (Satisfiability of assertions (Baader and Nutt, 2003)).
I satisfies C(a) if aI ∈ CI .
I satisfies R(a, b) if (aI , bI) ∈ RI . ■
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Continuing our example, we assert the following facts about our domain:

(7) The example ABox Aex:
Room(AREA1)
Oven(OBJ1)
contains(AREA1,OBJ1)
Office(AREA2)

The reasoner can then infer that OBJ1 is also an instance of KitchenObject and
hence AREA1 is an instance of Kitchen5. Additionally, the reasoner can infer
that AREA2 also instantiates Room:

(8) Tindoor ∪ Aex |= KitchenObject(OBJ1),
Kitchen(AREA1),
Room(AREA2)

In other words, the subclass relation betweenOffice andRoom establishes a suf-
ficient condition for an instance of Office to also instantiate Room. Conversely,
being a Room instance consists a necessary condition for being an instance of
Office or Kitchen, but it is not sufficient. The concept definition in Example
(1) expresses the jointly necessary and sufficient conditions under which indi-
viduals belong to the named concept Kitchen. Generally speaking, the subclass
relation A ⊑ B expresses a necessary condition ¬B(x) → ¬A(x). Put differ-
ently, if A(x) is true then B(x) must not be false, or else the knowledge base
is inconsistent. Its inverse constitutes a sufficient condition A(x) → B(x).
Necessary and sufficient conditions A(x) ↔ B(x) thus constitute mutual sub-
sumption A ⊑ B ∧ B ⊑ A, which is the same as full equivalence A ≡ B
(cf. Example (1)).

The iterative process in which the different DL reasoning services infer
new facts from the TBox, ABox, and RBox axioms is called expansion. In pure
Description Logics, this is a monotonic process, i.e., the full expansion of a
knowledge base results from repetitive applications of the DL rules, irrespective
of their order. Unless the knowledge base is inconsistent, there is exactly one
full expansion for a given knowledge base.

4.2.4 OWL and RDF
For the work presented in this thesis, we represent our ontologies in theWebOn-
tology Language OWL, more specifically in its sub-language OWL-DL (Smith
et al., 2004). OWL ontologies make use of RDF and RDF Schema (RDFS)
5Of course, anOWL-DL reasoner would establish the full type hierarchy for both individuals along
the transitive subsumption axis (cf. Figure 4.1). This is left implicit here for ease of reading.
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constructs (Brickley and Guha, 2004), as well as XML Schema (XSD) data
types. RDF can express binary relations, so-called subject-predicate-object
triples. RDF itself is composed of three basic elements: resources, properties,
and classes. OWL makes use of RDF and RDFS constructions and extends
their vocabulary. Consequently, roles are called properties in OWL. XSD de-
fines a set of primitive data types, such as string, boolean, and several numerical
data types, and provides constructors (list, union, and restriction) for defining
complex data types. In OWL, properties that do not range over individuals (so-
called object properties) but over data types (so-called datatype properties) are
defined in accordance with XSD.

OWL/RDF can either be written in XML syntax or in a more compact no-
tation of RDF triples, e.g., N-Triples (Beckett and Barstow, 2001). Triples en-
code the RDF graph structure, whereby the subject and object resources are the
nodes and the predicate resources are the labeled edges of the RDF graph (RDF
Working Group, 2004). In RDF triple notation, XSD data values are typed using
a ∧∧xsd : DATATYPE suffix, where DATATYPE is replaced with the actual data
type (e.g., boolean or string). Further down, Example 12 and Example 13
on page 62 show RDF triples with datatype properties.6

Definition 9 (RDF triples (Powers, 2003)).
Each RDF triple is made up of subject, predicate and object.
Each RDF triple is a complete and unique fact.
An (RDF) triple is a 3-tuple, which is made up of a subject, predi-
cate and object (…).
Each RDF triple can be joined with other RDF triples, but it still
retains its own unique meaning, regardless of the complexity of the
models in which it is included. ■

In the following we make use of a simplified N-Triples notation (Beckett and
Barstow, 2001), where namespaces URIs are omitted in favor of short names-
pace prefixes, and namespace prefixes, in turn, might be omitted for examples
that are local to the work presented herein.

We write RDF triples like this:

subject predicate object . (namespaces omitted)
Kitchen rdfs:subClassOf Room . (with RDF-Schema namespace prefix)
area1 rdf:type Room . (with RDF namespace prefix)
contains owl:inverseOf in . (with OWL namespace prefix)
_:b1 rdfs:subClassOf owl:Thing . (with a blank node)
6In the rest of the thesis, however, we will omit XSD suffixes for ease of reading. Data values are
assumed to be implicitly typed with their usual, simple data types.
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These graphs can be queried using the SPARQL Protocol and RDF Query Lan-
guage (Prud’hommeaux and Seaborne, 2008). Without going into the details, a
basic SPARQL query consists of a query clause and a graph pattern clause. In
the following examples the query clause consists of a SELECT clause that spec-
ifies variables that will be presented in the query results, and a WHERE clause
that specifies the graph pattern that should be matched against the data graph.
The graph pattern can consist of any number of triples. Example 9 shows a
query that matches all RDF triples, whereas Example 10 queries the knowledge
base for all ABox individuals. More details about the SPARQL syntax can be
found in the official W3C recommendation document by Prud’hommeaux and
Seaborne (2008).

(9) SELECT ?x ?y ?z WHERE {?x ?y ?z .}
(10) SELECT ?x WHERE {?x rdf:type owl:Thing .}

It is important to note that OWL-DL reasoners perform open-world reasoning,
whereas SPARQL performs closed-world querying. We show later (see Sec-
tion 4.3.2) how inferences drawn from the absence of counter-evidence result
in a non-monotonic behavior that necessitates belief revision mechanisms.

In the previous sections, we introduced the Description Logic axioms as
well as the concept and role constructors that are part of OWL-DL. Table 4.3
on the following page shows the correspondence between OWL axioms and DL
axioms, and Table 4.4 on the next page contains the OWL equivalents of the DL
concept and role constructors. As can be seen in the namespace prefixes, OWL
makes use of RDF constructions wherever available.

Restrictions are written as owl:Restriction elements with a declara-
tion of owl:onProperty that specifies which role is subject to a restriction
(left out of the table). The different kinds of restrictions are existential quan-
tifications (owl:someValuesFrom and owl:hasValue), value restrictions
(owl:allValuesFrom), and cardinality restrictions. For such cardinality re-
strictions owl:minCardinality can be used to specify a lower bound and
owl:maxCardinality an upper bound. They can be combined to specify car-
dinality intervals. If an exact cardinality is to be expressed, owl:cardinality
can be used instead of specifying an interval with identical lower and upper
bounds. Qualified cardinality restrictions (owl:valuesFrom) are a non-
standard extension to OWL-DL. They are available as suggestions from the
Editor’s Drafts of the Best Practice and Deployment Documents (Rector and
Schreiber, 2005).

Domains and ranges of roles are also straightforwardly represented
(rdfs:domain and rdfs:range, respectively). The individuals in the ABox
are asserted to instantiate a concept using rdf:type statements.
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Table 4.3: OWL-DL axioms.
OWL Axiom DL Syntax Example
rdfs:subClassOf C ⊑ D Oven ⊑ Object
owl:equivalentClass C ≡ D Kitchen ≡ Room

⊓∃contains.KitchenObject
owl:disjointWith C ⊑ ¬D Room ⊑ ¬Object
owl:sameAs {a} ≡ {b} KITCHEN1 ≡ ROOM128
owl:differentFrom {a} ⊑ {¬b} KITCHEN1 ⊑ ¬KITCHEN2
rdfs:subPropertyOf R ⊑ S in ⊑ topoIncludes
rdfs:equivalentProperty R ≡ S in ≡ locatedIn
owl:inverseOf R ⊑ S− contains ⊑ in−

owl:transitiveProperty R+ ⊑ R in+ ⊑ in
owl:symmetricProperty R ≡ R− equals ≡ equals−

Table 4.4: OWL-DL constructors (owl: namespace omitted).
OWL Constructor DL Syntax Name
Thing, Nothing ⊤, ⊥ universal and bottom concept

complementOf ¬A negation

intersectionOf C ⊓D intersection

unionOf C ⊔D union

oneOf {a1, . . . , an} enumeration

allValuesFrom ∀R.C value restriction

someValuesFrom ∃R.C existential quantification

hasValue ∃R.b exist. quant. with restr. value

maxCardinality ≥ nR

cardinality restrictionminCardinality ≤ nR

cardinality = nR

maxCardinality + valuesFrom ≥ nR.C

qualified cardinality restrictionminCardinality + valuesFrom ≤ nR.C

cardinality + valuesFrom = nR.C
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Figure 4.2: RDF graph for a part of Tindoor. Empty circles denote blank nodes.

Complex concept descriptions correspond to anonymous classes that can be
named through equality axioms. In XML syntax, such class definitions are
stored as nested elements, whereas in RDF anonymous classes correspond to
blank nodes in the graph. Figure 4.2 shows the RDF graph that corresponds to
Example 1 on page 54.

Using OWL-DL ontologies has a number of advantages. First of all, OWL-
DL is widely used and accepted due to its status as aW3C standard. This means
that many available ontologies – including upper ontologies and domain ontolo-
gies alike – are represented in OWL. Furthermore, there exists a large number
of reasoners which allow for automatic reasoning over OWL-DL ontologies.
These systems offer the aforementioned inference mechanisms (subsumption
and instance checking) and in some cases (e.g., forward chaining approaches,
see Section 4.2.6) compute fully materialized knowledge bases. This means that
ABox, TBox, and RBox contain all facts that are entailed through the OWL-
DL semantics by the asserted facts in the ontology definitions. Another advan-
tage of using OWL/RDF is that, on top of such a fully materialized triple store,
other inference rules that go beyond the power of OWL-DL can be applied.
One could, e.g., specify a domain-specific set of rules that extend the domain-
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independent OWL-DL inference rules in order to draw more, domain-specific
conclusions. Depending on the actual set-up, facts derived from applying such
rules could then again give rise to further OWL-DL based inferences and so
forth.

4.2.5 Marking basic-level concepts
One important aspect of human-compatible categorization is the notion of basic-
level categories, as introduced in Section 2.5.1. If we want to express that a
certain class in the ontology corresponds to such a basic-level category, it is im-
portant to ensure that this only holds for the respective class and not for its sub-
classes (unless explicitly stated otherwise). We hence need a way of marking a
class as “basic-level” outside the automatic subsumption checking of OWL-DL
reasoners. OWL-DL offers so-called annotation properties, which are mutually
disjoint with the usual terminological properties (i.e., owl:ObjectProperty
and owl:DatatypeProperty), and which must not be used in property axioms
(Bechhofer et al., 2004).

The classes in the TBox that are considered basic-level categories can thus
be marked by adding RDF triples like the following to the knowledge base.
In Example 11, we define an annotation property isBasicLevel which takes
Boolean values. Example 12 and Example 13 illustrate how a named class can
be marked as a basic-level category.

(11) isBasicLevel rdf:type owl:AnnotationProperty .
isBasicLevel rdfs:range xsd:boolean .

(12) Office isBasicLevel "true"∧∧xsd:boolean .
(13) Couch isBasicLevel "true"∧∧xsd:boolean .

When querying for basic-level categories we can then perform closed-world
queries for classes that have the annotation property isBasicLevelwith a boolean
value of true (illustrated in Example 14). This has the advantage that the process
of creating, maintaining, and editing the ontology can be kept simple: only those
classes that are deliberately chosen as basic-level categories must be annotated.
The classes for which this annotation property is undefined are assumed to be
non-basic-level.

(14) SELECT ?x WHERE {?x isBasicLevel "true"∧∧xsd:boolean .}

4.2.6 Rule-based reasoning
The conceptual map layer represents symbolic knowledge derived from ab-
stractions of lower-level sensor input. DL-based inference combines knowl-
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edge about the individuals in the domain, including the types that are derived
from the sensor input, and their relationships. There are, however, other reg-
ularities that help structure the knowledge that are beyond pure terminological
reasoning. Some of these regularities can be expressed in terms of conditional
inference rules.

Such an inference rule consists of a set of premises and a set of conse-
quences. It is possible to represent the semantics of lathe parts of OWL-DL in
terms of TBox, RBox and ABox inference rules. Using additional rules, it is
possible to extend the inferences that are supported by the conceptual map. A
reasoner that performs rule-based inference on a knowledge base is called rule
engine.7 Rules can be expressed in an abstract syntax that resembles first-order
logic conditionals:

Definition 10 (Inference rules).
Let P andQ denote well-formed formulae in the syntax of the rule
engine. A rule is a conditional of the form: P ⇒ Q

P and Q are the premises and consequences of the rule, respec-
tively. Premises are also called body terms, conclusions are called
head terms. The set of premises can also be referred to as the an-
tecedent of a rule, whereas the set of conclusions can be called its
consequent. Both can – depending on the rule engine – contain pro-
cedural primitives for, e.g., evaluation of conditionals, execution of
an output operation, or arithmetic operations. ■

There exist different approaches to rule-based reasoning. One distinction of the
approaches is between forward chaining and backward chaining, and it char-
acterizes the direction and order in which the rules are evaluated (Russell and
Norvig, 2003). Forward chaining evaluates a rule if its premises are fulfilled,
i.e., if all its premises are known to be true with respect to the current explicit
knowledge. Backward chaining , in contrast, starts from an assumption (i.e.,
a set of hypotheses, also called goals) and tries to find a list of rules that will
establish the truth of the goals. It does so by inspecting the consequents of the
available rules. If a rule is found whose consequent fulfills one or multiple goals
and whose antecedent is known to be true, the consequent is added to currently
known facts and removed from the goal set. If the consequent of a rule matches
a current goal, but its antecedent is not known to be true, backward chaining
adds the antecedent to the goal set. This procedure is repeated until either no

7Other names for rule engine that stress different properties are production (rule) system (where
the nature of rules producing new knowledge is highlighted) and pattern-directed inference
system (which stresses the pattern matching necessary to select applicable rules).
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more goals are present, in which case the truth of the hypotheses is established,
or no additional rules can be selected in order to derive the truth of a hypothesis
from the known facts. Another way of saying that a rule antecedent or conse-
quent (in case of forward or backward chaining, respectively) matches is to say
that a rule fires. Forward chaining is characterized by a data-driven approach:
the presence of known facts gives rise to concluding new facts, which can then
be the basis for additional inferences, and so on. The approach of backward
chaining, on the other hand, is goal-driven: rules are only evaluated if they sup-
port the proof of a given hypothesis. As a consequence, backward chaining will
terminate for a larger set of knowledge and rule bases, because it is less likely
to run into infinite loops of firing rules. Backward chaining also requires less
memory space, but is slower, while forward chaining is faster and consumes
more memory space.

Different rule engine algorithms address the issues of optimizing the pat-
tern matching strategy for runtime and memory efficiency. A well-known and
widely-used pattern matching algorithm for rule engines is the RETE algorithm
by Forgy (1982). Furthermore, practical implementations of rule systems must
also address the issues of conflict resolution and truth maintenance. Conflict
resolution becomes necessary, for instance, in order to determine the order in
which to execute the currently applicable rules – which can have a crucial influ-
ence on the efficiency of the rule engine. Truth maintenance becomes necessary
if the knowledge base can be modified, or if there are rules whose consequent
might invalidate the antecedent of a rule that was already applied. Truth main-
tenance is a nonmonotonic process that is related to the notion of belief revision,
which we explain in more detail together with other challenges that arise from
reasoning under changing knowledge in Section 4.3.

Using a general rule engine in addition to DL-based reasoning has the ad-
vantage that some more domain-specific knowledge can be taken into account
for drawing inferences. For example, the data-driven forward chaining ap-
proach fits well with the bottom-up map acquisition process in Section 5.3.5.
The system can then perform automatic inferences (in addition to DL-based in-
stance and subsumption checking) using the symbols and facts that are asserted
from the lower levels. We make use of inference rules for establishing proto-
typical defaults (see Sections 4.3.1 and 6.2.3) and for maintaining symbols for
spatial areas (see Section 7.2.3).

4.3 Nonmonotonic Reasoning
Robotic systems and avatars alike are faced with two challenges for their knowl-
edge representation. For one, the knowledge base cannot always be assumed
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to be complete. In fact, it will inevitably be incomplete at any point. Sec-
ondly, realistic environments are dynamic. States and positions of things in the
world change over time – both actively and passively. Moreover, the agent’s
perception of the world might be incomplete or error-prone and thus an agent’s
representation of the world might be initially false and only over time become
more accurate. A spatial knowledge base for autonomous agents should thus
be able to address these two challenges: reasoning with incomplete informa-
tion, and reasoning with changing information. There are two major kinds of
nonmonotonic logics that address these two challenges, respectively (Antoniou,
1997).

Default Logic, introduced by Reiter (1980), is an approach to derive more,
but not necessarily true, conclusions from a knowledge base. Special inference
rules, called defaults, that represent commonsense knowledge are applied to a
set of certain facts. This allows the inference of more knowledge than repre-
sented by the known, certain facts. This is a principle that is used commonly
in human cognition. “Reasoning with prototypes is, indeed, so common that it
is inconceivable that we could function for long without it” (Lakoff and John-
son, 1999). We show how an autonomous agent can make use of such default
assumptions when operating with incomplete information in Section 4.3.1.

Belief Revision, on the other hand, provides mechanisms for reasoning with
changing information (Gärdenfors, 1988, 1992; Nebel, 1989). This is the case,
e.g., in a world that is not static, or if the agent acquires new information that
invalidated older, potentially erroneous information. In Section 4.3.2 we show
how an autonomous agent can employ nonmonotonic reasoning to “take back
conclusions that turned out to be wrong and for deriving new, alternative con-
clusions instead” (Antoniou, 1997).

It is important to note that reasoning with changing information can be-
come necessary due to two very different reasons. For one, in a dynamic world
things change. This means that new facts can become true while old facts might
cease to be true. The second kind of changing information is induced by the
agent itself. The agent might make erroneous observations that are only later
corrected. In our approach, we are focusing on representing the current state-of-
affairs and on keeping this representation as accurate as possible over time. The
distinction whether an old fact became invalid because the world has changed
or because the agent recovered from a mistake is therefore of less importance.
Such a differentiation can only be adequately represented in a knowledge base
that explicitly represents the states of facts over time. Krieger et al. (2008),
for instance, present a diachronic representation of facts about entities and how
they correspond over time. Their approach also makes use of OWL-DL ontolo-
gies, which they augment with temporal information. Such extensions must
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either make use of reification (see also page 72), or extend the representation
from triples to n-ary tuples. Reasoning with temporal information also requires
further inference rules in addition to standard OWL-DL (Krieger, 2010a,b).

Autonomous agents operating in large-scale space, however, are faced with
the problem of partial observability of theworld – and thereforemight encounter
the famous frame problem (McCarthy and Hayes, 1969) when trying to ade-
quately model the state of their environment over time. For this work, we thus
focus on methods that allow autonomous agents to maintain a faithful repre-
sentation of their spatial environment with respect to the current state-of-affairs
only.

4.3.1 Default reasoning

Default Logic (Reiter, 1980) is a family of nonmonotonic logics. In a nutshell,
Default Logic allows to draw risky (i.e., potentially false or contradicting) con-
clusions from a set of certain, but possibly incomplete facts using a special kind
of “rules of thumb” called defaults (Antoniou, 1997). Inference from defaults
differs from usual entailment in that defaults permit the derivation of their con-
sequences based on the absence of counter-evidence for their truth. In combi-
nation, the set of certain facts W and the set of defaults D constitute a default
theory T = (W,D).

The standard syntax of a default δ is:

δ =
α : β

γ

α, β, γ are first-order logic formulae. α is the prerequisite of the default rule, β
is called the justification, and γ is its consequent. Informally speaking, a default
δ can be interpreted like this: if α is true, and if it is consistent to assume β, then
conclude γ. This definition, however, does not yet capture the crucial aspect
that the application of defaults may alter the knowledge base and thus influence
further default applications. Following Antoniou (1997), here is a more precise,
formal definition of the semantics of Default Logic.

Definition 11 (Formal semantics of Default Logic (Antoniou, 1997)).

If α is currently known, and if β is consistent with the current
knowledge base, then conclude γ. The current knowledge base E
is obtained from the facts and the consequents of some defaults
that have been applied previously.
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δ =
α : β

γ
is applicable to a deductively-closed set of formulae E

iff α ∈ E and ¬β ̸∈ E. The state of knowledge base E at time t is
expressed by a subscriptEt. Only one default δ can be applied toE
at a time. After applying δ to Et, the new current knowledge base
Et+1 results from adding γ to Et. Defaults that were previously
applicable (i.e., to Et) might not be applicable anymore to Et+1.
New defaults, however, might become applicable to Et+1. ■

Satisfiability within a default theory means that a formula must either follow
from the facts (i.e., the certain information) or from the consequents of the de-
faults (i.e., other possible conjectures) that have been evaluated so far. Exten-
sions E of a default theory T are sets of possible beliefs about the domain that
are consistent with T . The order in which defaults are applied matters. It is,
for example, possible that a consequent of one default negates the justification
of another default. An extension is always a maximal realization of a possible
world, i.e., a state in which nomore defaults can be applied. Multiple extensions
are possible for the same set of facts and defaults.8

Sometimes there are defaults that intuitively and intendedly correspond to
more general principles, which could be given up more easily in case a more
specific default applies. A common improvement of standard Default Logic is
thus to allow for priorities over defaults. This way some order of evaluation of
the defaults can yield extensions that correspond more to the intuition behind
a default theory. We refer the interested reader to the textbook by Antoniou
(1997) and the seminal article by Reiter (1980) for further and more detailed
discussions about the different kinds of Default Logics.

A special form of default reasoning is prototypical reasoning, which ex-
presses typical properties of instances of a concept (see also Section 2.5). This
notion is closely related to the intuition behind the ontological knowledge rep-
resentation we chose for our conceptual spatial knowledge base. There, we use
ontology-based reasoning in order to endow autonomous agents with common-
sense knowledge about the spatial organization of indoor environments. De-
faults are a way of expressing a different kind of commonsense knowledge. It
would be possible to define a set of default rules that make use of the facts and
predicates in the ontology and extend the DL-based model with further conclu-
sions. However, the possibility to combine ontological resources, and the ease

8Note that there may be default theories that don’t have an extension because they contain con-
tradicting defaults. There exist different approaches that attempt to construct consistent default
theories from contradictory defaults, such as the computation of weak extensions (Lévy, 1993).
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with which existing ontologies can be edited and extended would make the task
of maintaining a separate set of default rules consistent with the representations
chosen in the ontology a tedious one. Instead we show how generalized intro-
spective mechanisms can be applied to derive defaults from existing OWL-DL
ontologies in a principled way.

As stated previously, default knowledge can help infer new facts from in-
complete knowledge. There are many cases, in which an autonomous agent
should be able to act on incomplete knowledge. This pertains especially to sit-
uations in which such an agent is capable of extending its own knowledge. The
agent could then attempt to verify or falsify default assumptions through its own
perceptive abilities. Another use case are automatic planning algorithms. These
usually rely on a number of preconditions and intermediate conditions in order
to find a complete plan. Defaults can help overcome situations in which the
agent would otherwise be unable to come up with a plan.

Let us start with the following example that expresses the commonsense
knowledge that ovens are usually found in kitchens:

(15) δoven =
Oven(x) ∧Kitchen(y) : in(x, y)

in(x, y)

The above default contains free variables. It is a so-called open default that
represents a set of defaults, where all variables are assigned values. Practically
only those substitutions are considered for which the prerequisite is satisfiable,
i.e., in our case only oven instances would be used to substitute the free vari-
able x in the first place. The same holds for the other free variable y. Note
that this explicitly rules out hypothesizing about unknown individuals. Never-
theless such a closed default would allow an autonomous agent to hypothesize
about the whereabouts of certain objects in case their existence can be assumed.
The autonomous agent mentioned before could use this default knowledge to
come up with an informed guess where to look first for an oven. This can be
helpful both for the purely epistemic goal of achieving a better and more com-
plete knowledge of the world, and for executing a task, such as to fetch a cake
from the oven. We show later in more detail how these defaults can be used
for goal-directed knowledge gathering, and planning of complex actions with
deferred validation of default assumptions.

Deriving defaults from an OWL-DL ontology

Ontologies describe the way things are. They describe the concepts within a
specific domain, and how they are related. Based on the notion of concept defi-
nition, a DL reasoner can infer which (named) classes an individual instantiates.
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This is a crisp inference based on facts that are known to be true. This espe-
cially means that the rdf:type relation between an individual and a class can
be inferred from class definitions, but other relations cannot. Only properties
that generalize an asserted property can be inferred to hold.

Kolovski et al. (2006) present an implemented approach to extending an
OWL-DL reasoner with the capability to apply default reasoning. Their inten-
tion is to extend the expressiveness of OWL-DL so that it is possible to rep-
resent and reason with terminological default theories. Their evaluation, how-
ever, shows that such an approach quickly degrades with the number of possible
extensions. In comparison, we are interested in automatically deriving default
knowledge – more specifically prototypical knowledge – that is implicitly al-
ready represented in OWL-DL knowledge bases. Our approach does not require
a full-fledged default reasoner. We rather show how introspective mechanisms
can be used to exploit standard OWL-DL ontologies for inferring prototypical
facts. Moreover, we propose a way of representing such prototypical facts in
the same knowledge base as other OWL-DL facts – while ensuring that the de-
fault knowledge does not interfere with the agent’s innate, acquired, asserted,
or inferred crisp knowledge.

Within our indoor ontology example, the presence of an oven in a room
legitimates the conclusion that it is a kitchen. If, on the other hand, the agent
were told that there exists a coffee machine somewhere, nothing else could be
inferred. Using DL-based reasoning alone, it is impossible to apply the com-
monsense knowledge that coffee machines are usually found in kitchens in or-
der to surmise that this coffee machine can be found in the kitchen. It simply
does not logically follow from the model. And, in fact, such an assumption
might turn out to be wrong. Nevertheless it is exactly this kind of common-
sense knowledge that a human would apply in a similar situation: unless she
knows that there is no coffee machine in the kitchen, this is where she would
start looking for one.

Most autonomous agents that operate in human-compatible environments
will be faced with situations in which they need to act upon incomplete knowl-
edge. In the example, our agent might be told to fetch a coffee from the coffee
machine. In the absence of factual knowledge about its location, a reasonably
flexible agent could initiate an exhaustive search of the environment. A some-
what more intelligent agent, however, would know where to start looking.

As it turns out, such default associations are implicitly present in the OWL-
DL knowledge base.9 If we again turn our attention to Example (15) and then
9This approach is, however, dependent on the way the respective ontology is modeled. It is only
applicable if the ontology makes use of concept definitions through complex concept descrip-
tions.
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look at Example (1), it is obvious that it is such a concept definition that contains
knowledge about kitchen appliances and kitchens. The relationship between
coffee machines and kitchen appliances is then established by the subsumption
hierarchy.

In order to generate a default from a concept definition, we propose to use
introspective meta-reasoning over necessary conditions. Example (1) can be
decomposed into the following two necessary conditions:

(16) Tindoor |= Kitchen ⊑ Room
(17) Tindoor |= Kitchen ⊑ ∃contains.KitchenObject

Akitchen can be assumed to (necessarily) be a room. It can also be assumed that
it contains some kitchen object. According to the open-world assumption under-
lying DLs, the actual objects fulfilling this assumption might still be unknown.
Suppose the knowledge base contains an instance of some kitchen object and
nothing else is known about it. It then makes sense as a case of prototypical de-
fault reasoning to assume that the given kitchen object is contained in a known
kitchen. Of course it is impossible to know for sure – without actually trying
to perceptually verify its truth. That is why it is not desirable to add the con-
sequents as crisp facts to the OWL-DL knowledge base. The default theory
must be kept separate so that the agent can act upon default knowledge without
regarding it as real facts.

Based on the part of the concept definition in Example 1 on page 54 that
describes an anonymous class (i.e., Example 17), we can express our intuitive,
prototypical knowledge about usual locations of kitchen appliances like this:

(18) δcontains =
Kitchen(x) ∧ KitchenObject(y) : contains(x, y)

contains(x, y)

This default rule is an open default. We are not interested in constructing such
default rules per se. We are rather interested in drawing default conclusions
about known individuals – i.e., substitutions with existing individuals that
satisfy the prerequisites and that don’t violate the justification. Given our
previously introduced example TBox Tindoor with ABox Aex (see Examples
(1)–(8)), and exploiting the RBox definition of contains and in as inverse roles,
the open default in Example 18 can be instantiated like this:

(19) δcontains1 =
Kitchen(AREA1) ∧ KitchenObject(OBJ1) : contains(AREA1,OBJ1)

contains(AREA1, OBJ1)

(20) δcontains1−
=

Kitchen(AREA1) ∧ CoffeeMachine(OBJ1) : in(OBJ1,AREA1)
in(OBJ1, AREA1)



Nonmonotonic Reasoning 71

Kitchen

owl:Class

rdf:type Room

rdfs:subClassOf

rdfs:subClassOf

owl:equivalentClass

rdf:type

owl:Restriction

rdf:type

contains

owl:onProperty

KitchenObject

owl:someValuesFrom

rdf:type

owl:intersectionOf

rdf:first rdf:rest

rdf:first

rdf:nil

rdf:rest

owl:ObjectProperty

rdf:typerdf:type

AREA1

rdf:type

OBJ1

rdf:type

Figure 4.3: RDF graph for a part of Tindoor,Rindoor and Aex.

The individuals that satisfy the prerequisites (here: AREA1 and OBJ1) can
be easily retrieved from the knowledge base using SPARQL queries (cf. Sec-
tion 4.2.4). In Figure 4.2 we have already shown an RDF graph for the concept
definition ofKitchen. Figure 4.3 shows that RDF graph augmented with further
rdfs:subClassOf relations (established through subsumption checking) and
some ABox individuals introduced in Example 7 on page 57.

Concept definitions like the one above and including the other concept con-
structors (cf. Table 4.2 on page 54) share a common graph pattern that can be
expressed as a SPARQL query restriction. Example 21 on the following page
shows a SPARQL query that returns variable substitutions (i.e., ?x and ?y) for
open defaults that are based on concept definitions. Additionally the query re-
turns the role (?property) that is supposed to hold prototypically between ?x
and ?y. This provides a productive pattern for deriving closed defaults based
on concept definitions in a principled way. Note that we claim that it is al-
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ways consistent to assume the validity of prototypical statements. Therefore,
satisfiability of β (cf. Definition 11) is never explicitly checked. We rather en-
sure elsewhere in the system that factual knowledge is favored over prototypical
knowledge (see below).

(21) SELECT DISTINCT ?x ?property ?y
WHERE { ?x rdf:type ?definedClass .

?y rdf:type ?roleFillerClass .
?definedClass rdfs:subClassOf ?restriction .
?restriction rdf:type owl:Restriction .
?restriction owl:onProperty ?property .

?restriction ?quantification ?roleFillerClass .
?roleFillerClass rdfs:subClassOf owl:Thing .
FILTER (?definedClass != owl:Nothing).
FILTER (?quantification != rdfs:subClassOf).
FILTER (!isBlank(?definedClass)).
FILTER (!isBlank(?roleFillerClass)). }

RepresenƟng defaults in OWL/RDF through reificaƟon

If we want to represent prototypical knowledge within the same knowledge base
as the asserted, acquired, and inferred knowledge deduced through OWL-DL
reasoning, these two kinds of knowledge must not be mixed up. In particular we
are interested in keeping separate certain relations that hold between individu-
als and prototypical relations that could be assumed in case no other evidence
is present. One possibility for this is to introduce new relations in a separate
namespace – or in a separate branch of the RBox hierarchy – that are not used
in the axioms and class definitions of the OWL-DL part of the ontology. This,
however, neglects the fact that there still exists a conceptual relationship be-
tween a prototypical relation and its DL counterpart. Moreover, as we see later
in Chapter 6, it is desirable that prototypical relations can stand in in case their
DL counterparts are not deducible – with the constraint that their prototypical-
ity be apparent. Like this, an autonomous agent can perform different, possibly
more cautious, actions when the decisions are based on prototypical default
knowledge rather than crisp facts. Likewise, a conversational agent can pro-
duce different utterances when reporting on prototypical knowledge (e.g., “the
coffee machine is probably in the kitchen” – as opposed to saying “the coffee
machine is in the kitchen”).

It would thus be useful to qualify relations derived from default applica-
tions as prototypical, while maintaining the semantics of their non-prototypical,
DL counterparts. Unfortunately, OWL/RDF can only express binary relations.
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It is not possible to directly express qualifications of concrete relation triples.
However, it is possible to circumvent this limitation through reification. For
reification, a new individual that denotes a specific relation between two other
individuals is introduced. This individual is called statement. In order to rep-
resent the given relation, the statement expresses the related individuals as its
subject and object, and the relation as its predicate.

RDF offers reification using the rdf:Statement class. Instances of
rdf:Statement can then be related to its subject and object individuals using
rdf:subject and rdf:object, respectively. rdf:predicate denotes the
type of relation that the statement is about. rdf:subject, rdf:object, and
rdf:predicate are instances of rdf:Property. Example (4.3.1) summa-
rizes the structure of a reified statement in RDF triple notation.10

(22) Example of reification using RDF statements:
statement rdf:type rdf:Statement .
statement rdf:subject subj .
statement rdf:predicate pred .
statement rdf:object obj .

This construction allows us to refer to relations that hold prototypically. It is
straightforward to express relations between OWL individuals as RDF state-
ments. OWL can express two kinds of relations: owl:ObjectProperty
and owl:DatatypeProperty. These are subclasses of the RDF class
rdf:Property, and OWL individuals are instances of rdfs:Resource.
In order to qualify a statement as prototypical, we introduce a new class
DefaultStatement as a subclass of rdf:Statement that expresses proto-
typical statements based on the default rules presented earlier. Example (4.3.1)
shows the RDF triple notation of our previous example (see Example (18)).

(23) Asserted knowledge:
area1 rdf:type Kitchen .
obj1 rdf:type Oven .

(24) Inferred knowledge:
obj1 rdf:type KitchenObject .

(25) Default knowledge:
_:s rdf:type DefaultStatement .
_:s rdf:subject area1 .
_:s rdf:predicate contains .
_:s rdf:object obj1 .

10subj and obj are instances of rdfs:Resource, and pred is an instance of rdf:Property.
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Like this, prototypical knowledge can be stored in the same knowledge base,
but it is kept separate from the triples that are subject to the OWL-DL reason-
ing. A special set of rules must be written to generate and access this kind of
knowledge. Conceptually, we refer to this set of knowledge as DBox. We can
hence extend the definition of our knowledge base fromDefinition 2 on page 51
as follows.

Definition 12 (Ontological knowledge base (extended)).
An ontological knowledge baseO consists of a TBox T , an ABox
A, an RBoxR, and a DBox D: O = T ∪ A ∪R ∪D. ■

Using rules to automaƟcally instanƟate open defaults

We have presented a technique for instantiating prototypical defaults using RDF
graph queries. We have also shown how prototypical knowledge can be stored
in an OWL/RDF knowledge base while keeping it outside the part of the knowl-
edge base that is subject to direct manipulation by an OWL-DL reasoner. Using
a combined OWL-DL and general purpose rule engine as presented in Sec-
tion 4.2.6 allows us to automatically generate reified defaults while the agent is
discovering its environment.

The rules essentially consist of a set of premises that correspond to the graph
pattern clause of the SPARQL query (21), and a set of consequences that add
a reified statement like the one in Example 25 – with the difference that the
object positions of the statement triples are instantiated with the result of the
graph pattern query. In Chapter 6, we present an integrated autonomous robot
that makes use of prototypical knowledge derived from its spatial knowledge
base. We also show how such a rule can be written for the specific rule engine
used in the implementation.

4.3.2 Belief revision
Belief revision deals with keeping a knowledge base consistent when new in-
formation is acquired. In the simplest case, the new information leads to adding
certain facts to the knowledge base without creating any inconsistencies with
respect to the current knowledge base. This rather straightforward, monotonic
process is called expansion (Antoniou, 1997). Expansion happens for exam-
ple in the ABox when new individuals are added to an OWL-DL ontology, or
when new relations between individuals are asserted. In such a case the OWL-
DL reasoner can monotonically infer new facts by computing the closure of the
new knowledge base. This is the standard case in our scenarios when the agent
explores its environment and discovers new objects and their locations. The
reasoner then performs the usual instance checking for establishing the type hi-
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erarchies of objects, and, possibly, for inferring new types of individuals using
OWL-DL concept definitions, as described earlier (cf. Section 4.2).

Another case for expansion of a knowledge base is when new conceptual
information is added to the TBox. This can be the case when two ontology
resources are combined in an on-line manner. The OWL-DL reasoner must
then compute the transitive closure of the combined type taxonomies. In case
of a non-empty ABox this also entails the recomputation of the type hierarchy
of individuals, which might lead to inference of new types either through simple
concept subsumption or more complex concept definitions. However, we are
not considering extensions of the TBox during run-time. We thus neglect the
belief revision mechanisms necessary to recover from potentially inconsistent
conceptual knowledge.

A more difficult to handle process is contraction (Antoniou, 1997), which
deals with the retraction of facts from a knowledge base, and the resulting prob-
lem of determining which other, now invalid, facts must be removed such that
the knowledge base is consistent again. Obviously the knowledge base should
not only be consistent, but also complete with respect to the certain facts and
known rules. Contraction can then be interpreted as the process of removing the
minimal set of facts such that these two requirements hold again. This, in turn,
can be a hard problem in case there are several possibilities to restore a consis-
tent knowledge base. Contraction happens for example when an individual is
removed from the knowledge base (in which case every triple involving the in-
dividual must be removed), or when the presence of new information invalidates
a left-hand side (i.e., the antecedent) of an inference rule. In the latter case, the
derived facts from the consequent side of the rule must be retracted from the
knowledge base, along with all the facts that were derived solely from these
consequents. It is therefore necessary that the reasoner internally distinguish
between asserted knowledge (i.e., either innate, or acquired from processing
sensor input, or user-asserted) and facts that were inferred (i.e., either through
DL-based reasoning or inference rules).

Since, in our approach, the TBox is only altered off-line and thus innate with
respect to the system run-time, there will not be any necessity to recover from
changing or even contradictory terminological knowledge. Asserted knowl-
edge is knowledge about individuals that is created on the basis of user input.
There might be misunderstandings, or the user might later give inconsistent in-
formation. This is a case in which clarification strategies are necessary that
are beyond the scope of this thesis.11 For acquired knowledge, it is possible

11Kruijff et al. (2008) present an approach to situated clarification that could potentially be used to
resolve inconsistencies or ambiguities that arise from asserted knowledge.
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that a lower-level processing module recognizes that the state of an entity in
the world has changed, or that information stemming from a lower-level pro-
cessing module invalidates previous assumptions in upper-level modules. In
both cases, the module that handles the input from lower-levels and mediates
the ontology-based representation of facts derived from lower-levels must be
aware to which individuals this change pertains, and which appropriate steps it
needs to perform in order to allow the reasoner to correctly perform knowledge
base contraction with respect to facts inferred from the revised facts.

By precluding terminological revision and by actively maintaining asserted
and acquired knowledge, the belief revision process is greatly simplified. The
reasoner must ensure that inferred facts are ‘given up’ more easily, or, even
more strictly speaking, only contradictory inferences are withdrawn. In the lat-
ter case, there must however be a mechanism to retrieve inconsistent, acquired
or asserted, knowledge in order to initiate other appropriate steps for recovering
a consistent knowledge base, such as interactive clarification.

4.4 Summary and Outlook
In this chapter, we have presented the representations and formalisms underly-
ing the conceptual map layer of the multi-layered spatial model from the previ-
ous chapter. We have shown how Description Logics can be used to perform in-
ference on a human-compatible symbolic conceptualization of space. We have
further proposed methods for prototypical default reasoning and belief revision
to extend the capabilities of autonomous agents. In the next chapters, we will il-
lustrate how these principles can be applied to real, integrated robotic systems.
The Explorer system that will be presented in Chapter 5 performs DL-based
reasoning in its conceptual map. The extensions to the Explorer in Chapter 6
consist of exploiting terminological knowledge for deriving default assumptions
that are useful for goal-directed planning for situated action in large-scale space.
The robot Dora, which will be introduced in Chapter 7, relies on mechanisms
for belief revision as well as nonmonotonic symbol creation and maintenance.
Finally, in Part III, we will use the conceptual spatial representation as a knowl-
edge base for situated natural language comprehension and production.



Part II

ImplementaƟon and
Experiences on Integrated

RoboƟc Systems





Chapter 5
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Summary
In this chapter, we introduce the Explorer robot system. The Explorer imple-
ments the approach to multi-layered conceptual spatial mapping from Chap-
ter 3 in an integrated robotic system. The mobile robot base is equipped
with different sensors for map building, place and object recognition, and
user interaction. We illustrate how the multi-layered map can be acquired
interactively in a so-called guided tour scenario. We furthermore present a
method for human- and situation-aware people following that makes use of
the higher-level information of the multi-layered conceptual spatial map, thus
increasing the perceived level of intelligence of the robot.

This chapter originates from a joint work with Óscar Martínez Mozos (laser-
based place classification), Patric Jensfelt (low-level mapping, SLAM, naviga-
tion, laser-based people tracking and robot control), and Geert-Jan Kruijff (sit-
uated dialogue), cf. (Kruijff et al., 2007b; Zender et al., 2008, 2007a,b; Mozos
et al., 2007a,b). It also makes use of the approach to hybrid laser- and vision-
based object search and localization developed by Gálvez López (2007).

5.1 MoƟvaƟon and Background
As discussed earlier, robots that can perform more demanding household tasks
and interact with their users must be endowed with a human-compatible repre-
sentation of their environment. An important aspect of human-compatible per-
ception of the world is the robot’s understanding of the spatial and functional
properties of human-oriented environments, while still being able to safely act
in it. In the previous chapters we have presented an approach to multi-layered
conceptual spatial mapping that addresses these requirements.
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In this chapter we focus on how a robot can autonomously build an internal
representation of the environment by combining innate (possibly human-
compatible) concepts of spatial organization with different low-level sensory
systems. To this end, we present an implementation of the multi-layered con-
ceptual mapping approach in a mobile robot system called Explorer. The
multi-layered conceptual spatial representation presented in Chapter 3 contains
maps at different levels of abstraction in order to meet both aforementioned
requirements – robust robot control and human-compatible conceptualization.
In Section 5.4 we show how conceptual spatial information can be used in
lower-level processes, such as robot navigation and control, so that the robot
can anticipate likely actions performed by a human and adjust its motion
accordingly – in an approach to human- and situation-aware people following.

5.1.1 The EøÖ½ÊÙ�Ù

The Explorer is based on a MobileRobots Robotics Pioneer 3 PeopleBot1 re-
search robot platform (see also Section 2.2.1), which is equipped with various
sensors for odometry (i.e., measuring the distance traveled) and exteroception
(i.e., perceiving external stimuli). It has been implemented on two different
PeopleBots – the DFKI-based “Robone” (cf. Figure 5.1) and “Minnie” at KTH
Stockholm. Figure 5.11 shows both robots side-by-side.

The laser range finder, a SICK LMS200, is the main exteroceptive sensor
in our system. It is mounted at a vertical height of 30 cm and faces the forward
direction in parallel to the floor plane. It covers a semi-circle at the robot’s front
with time-of-flight measurements of 360 laser pulses with an angular resolution
of 0.5◦at 36 Hz. The laser scanner detects solid objects in the direct line of sight.
Glass objects, however, cannot be detected. Figure 3.1c shows the frontier of
such a laser range scan.

The two drive wheels allow for convenient motion control of the robot,
while the third wheel – a caster wheel at the back of the robot – preserves
stability and balance. The wheels are equipped with rotation encoders, which
provide odometry readings. The wireless ethernet component ensures the tele-
operability of the robotic system when running the software architecture off-
board.

Both robots feature a pan-tilt unit (PTU) bearing a camera. On “Minnie”
this PTU is mounted upside down below the top platform, on “Robone” the
PTU carries a stereo-vision camera and is mounted on top of the top platform
of the robot.

1http://www.mobilerobots.com/ResearchRobots/ResearchRobots/PeopleBot.aspx
[last accessed on 2010-04-23]

http://www.mobilerobots.com/ResearchRobots/ResearchRobots/PeopleBot.aspx
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Figure 5.1: Features and accessories of the PeopleBot “Robone.”
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5.1.2 Related Work
In (Kruijff et al., 2007b) we present the cognitive architecture of the imple-
mentation of the Explorer system as used in this chapter, and give details on
its dialogue capabilities. We furthermore discuss how these components are
used for interactive map acquisition. In addition to this, the present work fo-
cuses on an implementation of our method for representing the environment
on several levels of abstraction as introduced in the previous chapters. Where
necessary, some details about the computer vision algorithms used for object
detection, about the processing of sensory input from a laser scanner, and about
the principles of knowledge processing in the conceptual map layer are given.
We present another extension to the robotic system in (Zender et al., 2007a).
The extension consists of the approach to human- and situation-aware people
following that makes use of the semantic information represented in the con-
ceptual spatial map.

People detecƟon, tracking and following

There are several techniques that address detection, tracking, and following of
persons in a robot’s environment. They differ from the present work not only
in the sensors used, but also in the degree of mobility of the robot. Kleine-
hagenbrock et al. (2002) present a person tracking approach that fuses infor-
mation from a laser-range based leg detection mechanism and a vision-based
face recognition module to keep track of a person. Fritsch et al. (2004) extend
this work by adding a stereo-microphone setup that locates persons through the
speech sounds they produce. One reason for combining multiple sensors for
tracking a person is the lack of occlusion handling of their laser-range based
people tracker. They present an experimental setup in which a static robot has
to keep track of a person partially occluded by office furniture while manipu-
lating a typical office object. Although they achieve a fair degree of robustness
in the experiments, there is no evaluation of the performance of the approach
when used on a moving robot. Moreover, their approach does not have the pre-
dictive capabilities to anticipate actions of a tracked person. Topp and Chris-
tensen (2005) present an evaluation of a laser-based people tracking method
that allows for multiple people in the environment and temporary occlusion of
tracked persons, similar to the algorithms of Schulz et al. (2003). The experi-
ments show that an approach that is only relying on laser data is a good choice
for mobile robots that will be operating under different lighting conditions and
will have to interact with previously unknown people. However the experi-
ments also reveal the disadvantages of a purely laser-based method: in a typical
office environment laser readings of many structures at a height of 30 cm re-
semble laser readings typical for legs at that height. Arras et al. (2007) present
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Figure 5.2: Overview of the components of the Explorer robotic system.

a machine learning approach to acquire features for person detection from laser
scans that could overcome some of these drawbacks.

Here we present an approach to people following which builds forth on the
research cited above. We opted for a laser range finder as the main sensor for
our method, as it imposes the least requirements on the clothing of people, their
body posture with respect to the robot, and the lighting conditions of the sur-
roundings. Based on sensing input, the robot maintains an awareness of the cur-
rent situational context. This forms the core, and the novelty, of our approach: a
combination of both human awareness and situation awareness to yield a com-
prehensible, socially acceptable following behavior, which includes keeping an
acceptable personal distance (based on Hall’s notion of proxemics (Hall, 1966;
Pacchierotti et al., 2005)), establishing eye contact, providing verbal feedback,
and applying situation-aware interpersonal behaviors.

5.2 System Overview
This multi-layered spatial representation from Chapter 3 is the centerpiece of
the Explorer integrated robotic system. It is created using information coming
from different input modalities, as shown in Figure 5.2. The individual modal-
ities range from low level robot control and perception modules to a communi-
cation subsystem for spoken dialogue with the user. There are three main sub-
systems involved in constructing, maintaining, and using the spatial represen-
tation: the perception subsystem (presented in more detail in Section 5.2.1) for
evaluation of sensory input, the communication subsystem (see Section 5.2.2)
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for situated spoken dialogue, and the subsystem for multi-layered conceptual
spatial mapping that bridges the gap between sensor-based maps and a human-
compatible spatial representation. The main techniques used in the perception
and communication subsystems and the structure of the multi-layered spatial
representation that sits at the core of our system are explained in more detail in
the following sections.

5.2.1 PercepƟon

The perception subsystem gathers information from the laser range scanner and
from a camera. Different techniques are used for evaluation of the sensory input.
The laser data is processed and used to create the low level layers of the spatial
representation. At the same time the input from the laser scanner is used by a
component for detecting and following people. Finally, the images acquired by
the camera are analyzed by a computer vision component for object recognition.

Simultaneous localizaƟon and mapping

To reach a high level of autonomy the robot needs the ability to build amap of its
environment that can be used to safely navigate and stay reliably localized. To
this end we use the simultaneous localization and mapping (SLAM) technique
of Folkesson et al. (2005). In our system the SLAM module extracts geometric
primitives from laser range scans and applies an Extended Kalman Filter (EKF)
framework for the integration of feature measurements. The geometric features
used in our approach are lines, which typically correspond to walls and other
straight structures that that appear as a line segment at the height of the laser
scanner. Since walls are in most cases static, these invariant features of the
environment are used to keep the robot localized. The line features are stored
in a global metric map with an absolute frame of reference. Figure 3.3b shows
an example of such a line map created using this method.

Place classificaƟon

Apart from line features, i.e. walls, other features can be derived from the laser
range data. These features are useful to semantically interpret the position at
which they were detected. The integrated robotic system presented here uses a
laser-based method that classifies observations into belonging to either a door-
way, a corridor, or a room.

Doorways indicate the transition between different spatial regions (Chown,
1999). They are detected and added whenever the robot passes through an open-
ing of a certain width. This width is selected such that it corresponds to the
width of standard doorways in the environment (e.g., around 80 cm). Informa-
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tion about the door opening (width and orientation) is stored in the map (see
Section 5.3.2) along with the detected position of the doorway.

Corridors and rooms are classified according to the laser observation that
the robot takes at that location. The main idea of this approach is to extract
simple geometrical features from the laser scans and their polygonal approx-
imation. The overall approach, which lies outside the scope of this thesis, is
presented in more detail in (Mozos et al., 2005; Mozos, 2010).

People tracking

In order to follow its user, the robot must be able to detect and track the positions
of people in its vicinity. Here, we focus on the interaction with a single person –
the user – which simplifies the tracking problem. To handle the challenges that
arise with occlusions and people moving close to each other, a more advanced
tracking algorithm such as the one by Schulz et al. (2003) is needed. For the
present work, we apply a method for people tracking that is akin to (Lindström
and Eklundh, 2001; Wang and Thorpe, 2002). The exact details of the method
are outside the scope of this thesis. They are described in more detail in (Zender
et al., 2007a).

Object recogniƟon

In a nutshell, the visual object detection system uses SIFT features (Lowe, 2004)
to recognize previously learned objects, such as a television set, a couch, or a
coffee machine. Objects play an integral role in the conceptual map, as the in-
formation of recognized objects is used for inferring subconcepts (e.g., Kitchen
or Livingroom) for rooms in the environment. Object recognition has been and
still is a very active area of research. Since the implementation of the computer
vision modules is not part of this thesis, we refer the reader to (Zender et al.,
2008; Gálvez López, 2007) for more details of the approach.

5.2.2 Situated dialogue

In this section, we discuss the functionality which enables a robot to carry out a
situated dialogue in natural language with a human user. A core characteristic
of our approach is that the robot builds up a meaning representation for each
utterance. The robot interprets it against the dialogue context, relating it to
previously mentioned objects and events, and to previous utterances in terms of
“speech acts” (dialogue moves). Because dialogues in human-robot interaction
are inherently situated, the robot also tries to ground the utterance content in the
situated context – including past and current visuo-spatial contexts (reification
of visuo-spatial references), and future contexts (notably, planned events and
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states). Below we only highlight several aspects; for more detail, we refer the
reader to (Kruijff et al., 2007a,b).

Speech recognition yields a string-based representation for spoken input,
which is subsequently parsed using the OpenCCG Combinatory Categorial
Grammar (CCG) parser (see Section 8.1.2 and (Baldridge and Kruijff, 2003)).
The parser analyzes the utterance syntactically and derives a semantic repre-
sentation in Hybrid Logics Dependency Semantics (HLDS) (see Section 8.1.3
and (Baldridge and Kruijff, 2002)). The semantic representation is a logical
form (LF) in which propositions are assigned ontologically sorts, and related
along typed relations (e.g. “Location”, “Actor”).

The LFs yielded by the parser are interpreted further, both within the di-
alogue system and against information about the situated spatial context. Ob-
jects and events in the logical form are related against the preceding context
(coreference resolution), as is the dialogue move of the utterance. The resulting
dialogue model is similar to that proposed by Asher and Lascarides (2003) and
Bos et al. (2003). The robot also builds up a temporal-aspectual interpretation
for events, relating it to preceding events in terms of how they temporally and
causally follow on each other (see also (Kruijff and Brenner, 2007)). In combi-
nation with the dialogue model, this is closely related to the approach of Sidner
et al. (2004).

Example 26 shows the meaning representation of typical assertion of the
human user. Example 27 presents the robot’s answer to the question “where are
you?”. It illustrates that the robot conveys its inferred conceptualization of the
current area as a referring expression (see Section 8.1.1). The examples show
the semantic analysis of these utterances in HLDS, which are described in detail
in Section 8.1.3.

(26) HLDS logical form of the utterance “we are in the office.”

@be1:ascription(be ∧
⟨Mood⟩ind ∧
⟨Tense⟩pres ∧
⟨Copula−Restr⟩(w1 : person ∧ we) ∧
⟨Copula− Scope⟩(in1 : m− location ∧ in ∧

⟨Anchor⟩(office1 : e− place ∧ office ∧
⟨Delimitation⟩unique ∧
⟨Num⟩sg ∧
⟨Quantification⟩specific)) ∧

⟨Subject⟩(w1 : person))
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(27) HLDS logical form of the utterance “I am in the living room.”

@be9:state(be ∧
⟨Mood⟩ind ∧
⟨Tense⟩pres ∧
⟨Copula−Restr⟩(r1 : person ∧ I) ∧
⟨Copula− Scope⟩(in1 : m− location ∧ in ∧

⟨Anchor⟩(livingroom1 : e− place ∧ livingroom ∧
⟨Delimitation⟩unique ∧
⟨Num⟩sg ∧
⟨Quantification⟩specific)) ∧

⟨Subject⟩(r1 : person))

5.3 MulƟ-Layered SpaƟal RepresentaƟon
The Explorer system presented in this chapter is endowed with a multi-layered
conceptual spatial map, ranging from a low-level metric map for robot local-
ization and navigation (SLAM), to a conceptual layer that provides a human-
compatible decomposition and categorization of space. Figure 5.3 depicts the
main layers of the representation.

The lower layers of our model are derived from sensor input (Section 5.2.1).
Different methods are used to gradually construct more abstract representations.
On the highest level of abstraction, we regard topological regions and spatially
located objects as the primitive entities of a spatial conceptualization that is
compatible with how humans perceive space. In order for a robot to meaning-
fully act in, and talk about an environment, it must be able to assign human-
compatible categories to spatial entities. Below, the individual layers of our
spatial representation are addressed more closely.

5.3.1 Metric map

At the lowest layer of our spatial model, we have ametric map. In this map, lines
are the basic primitive to represent the boundaries of open space. The metric
line map supports self-localization of the robot. It is maintained and used by the
SLAM component, as described in Section 5.2.1. As can be seen in Figure 3.3b
and Figure 5.4, the line based metric map gives a rather sparse description of
the environment. Moreover, since the global co-ordinate system of the metric
map is purely internal to the robot and since humans are not able to easily (i.e.,
without additional tools) evaluate its underlying quantitative spatial represen-
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Figure 5.3: Our multi-layered map, ranging from sensor-based maps to a con-
ceptual abstraction.

Figure 5.4: The navigation graph overlayed on the metric line-feature map. The
navigation nodes are represented by stars. Different colors represent different
areas separated by doors, which are marked by bigger red stars.

tation, the metric map alone does not provide a suitable level of abstraction for
human-robot dialogues.

5.3.2 NavigaƟon graph

The next layer of our representation is composed of a navigation graph, which
establishes a model of free space and its connectivity, i.e., reachability. It is
based on the notion of a “roadmap of virtual free-space markers” as described
in (Latombe, 1991; Newman et al., 2002). As the robot navigates through the
environment, a marker called navigation node is added to the map at the robot’s
current position whenever it has traveled a certain distance from the closest ex-
isting node. Nodes are connected following the order in which they were gener-
ated. This order is given by the trajectory that the robot follows during the map
acquisition process. Navigation nodes are anchored in the coordinate system
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of the metric map, as illustrated in Figure 5.4. Using standard graph search al-
gorithms2 the navigation graph can be used for path planning and autonomous
navigation in the already visited part of the environment.

In the navigation graph the robot’s spatial representation is augmented with
sensor-based semantic environment information. The approach presented in
Section 5.2.1 for semantic classification assigns a label (i.e., either corridor or
room) to each pose of the robot during a trajectory. In order to make the classi-
fications more robust, we store the classification of the last N poses in a short
term memory. Using a majority vote approach over these memorized classifi-
cations, we then assign a class to each navigation node.

Objects detected by the computer vision component are also stored on this
level of themap. Whenever an image ismatched to a training image of an object,
the pose of the robot is used to determine the position of the corresponding
detected object. The positions of objects are are associated with the navigation
node that is closest to their estimated metric position.

5.3.3 Topological map

The topological map provides a level of abstraction that approximates a human-
like qualitative segmentation of an indoor space into distinct regions, as dis-
cussed in 3.1.1. In this view, the exact shape and boundaries of an area, as
represented in the lower map layers, are abstracted to a coarse categorical dis-
tinction between rooms and corridors.

The topological map divides the set of nodes in the navigation graph into
areas. An area consists of a set of interconnected nodes which are separated
by a node classified as a doorway. In Figure 5.4, the topological segmentation
is represented by the coloring of the nodes. In order to determine the category
of an area, we take a majority vote approach of the classification results of all
nodes in the given area. The topological areas, along with detected objects (cf.
Section 5.2.1), are passed on to the conceptual map, where they are represented
as instances of their respective classes.

5.3.4 Conceptual map

On the highest level of abstraction resides the conceptual map. For one, it de-
scribes taxonomies of room classes and typical objects found in an office en-
vironment. Second, information extracted from sensor data and given through
situated dialogue about the actual environment is stored as symbols that instan-
tiate these classes. It represents conceptual knowledge in an OWL-DL ontology

2such as, e.g., A∗ (see (Russell and Norvig, 2003))
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Figure 5.5: Illustration of the TBox Texplorer of the indoor commonsense on-
tology used in the Explorer system. See also Figure 3.6.

of an indoor office environment (see Figure 5.5), andmakes use of the reasoning
principles introduced in Chapter 4.

In line with the way humans categorize space (see Section 3.1.2), our ontol-
ogy defines room types on the basis of the objects they contain. The conceptual
ontology in the TBox constitutes innate knowledge, which has to be predefined
and cannot be changed during run-time. However, while the robot operates in
its environment, the sensors constantly acquire new information, which is then
represented as instance knowledge in the ABox. Through situated dialogue the
robot can obtain asserted knowledge from its user. A description logic reasoner
can then fuse this knowledge in order to infer new knowledge about the world
that is neither given verbally nor actively perceived.

5.3.5 SpaƟal knowledge processing

Below, we describe the information processing principles (see also Section 3.3)
for these individual types of knowledge in more detail. Figure 3.7 shows an
example of how spatial knowledge from different sources in our robotic archi-
tecture converges in the conceptual map.
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InteracƟve map acquisiƟon

The map acquisition process exemplifies how information and knowledge is
exchanged between the different parts of the robotic architecture. The multi-
layered representation is created using an enhancedmethod for concurrent semi-
supervised map acquisition, i.e., the combination of a user-driven supervised
map acquisition process with autonomous exploration discovery by the robot.
This process is based on the notion of human-augmented mapping, as intro-
duced by Topp and Christensen (2005). We additionally use a linguistic frame-
work that actively supports the map acquisition process and is used for situated
dialogue about the environment (Kruijff et al., 2007b). The map can be ac-
quired during a so-called guided tour scenario in which the human tutor shows
the robot around and continuously teaches the robot new places and objects.
During such a guided tour, the user can command the robot to follow him or
to explore an area autonomously. This mixed control strategy – referred to as
sliding autonomy (Heger et al., 2005), or adjustable autonomy (Crandall and
Goodrich, 2001) – combines the robot’s autonomous capabilities where appro-
priate with different levels of user control where needed. However, the human
user preserves full control over the robot. She can always stop the robot or give
new commands.

Our system does not require a complete initial guided tour. It is as well
possible to incrementally teach the robot new places and objects at any time the
user wishes. With every new piece of information, the robot’s internal repre-
sentations become more complete. Still, the robot can always perform actions
in, and conduct meaningful dialogue about, the aspects of its environment it al-
ready knows about. This amounts to an anytime behavior, in which there is no
distinction between the learning phase and the operation phase typical for other
machine learning approaches. Rather, the robot acts according to the princi-
ple of discovery for map acquisition and navigation (Maio and Rizzi, 1992). It
constantly combines acquired and user-asserted knowledge with its conceptual
taxonomy and draws further conclusions according to the principles explained
in Part I.

Let us consider an example guided tour of the 7th floor of the CAS building
at KTH in Stockholm. A full description of the run can be found in (Kruijff et al.,
2007b).3 Initially, the robot starts with the TBox Texplorer shown in Figure 5.5.
The ABoxACAS7 and the RBoxRCAS7 are empty. The user then activates the
robot and teaches it the position of the charging station. After that, the robot
is told to follow the user, who enters another room, the so-called living room.

3A video that shows the full run can be found on-line [last accessed on 2010-04-23] under:
http://video.google.com/videoplay?docid=4538999908591170429

http://video.google.com/videoplay?docid=4538999908591170429
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Figure 5.6: The tutor activating the robot for a guided tour.

There, the robot first asks for clarification of an erroneously detected doorway,
which then leads to an update of the spatial representation. After that, the user
asks the robot several questions in order to check the robot’s current knowledge
of the environment. For instance, when first asked where the robot thinks it is, it
answers “I am in a room” because it only has the laser-based place classification
information. Then the user asks the robot to have a look around. This initializes
visual object recognition. After a while, the robot detects a couch and a TV set,
which lead to the inference that the containing area is a living room. After asking
again for the robot’s belief about its whereabouts, which it correctly describes
as living room, the user sends the robot back to the charging station. The video
also shows the robot’s human- and situation aware person following behavior,
which are described in more detail in Section 5.4, when the user is approaching
a known doorway.

Innate conceptual knowledge

We have handcrafted an ontology (see Figure 5.5) that models conceptual com-
monsense knowledge about an indoor office environment. On the top level of
the conceptual taxonomy, there are the two general concepts Area and Object.
The concept Area can be further partitioned into the concepts Room and Corri-
dor. The basic-level categories, i.e., the subclasses of Room, are defined (see
Section 4.2) by the Object instances that are found there, as represented by the
contains relation.
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Acquired knowledge

While the robot moves around constructing the metric and topological maps,
our system derives higher-level knowledge from the information in these layers.
The bottom-up acquisition of the spatial representation is done in a fix sequence
of processing steps. The metric map constructed in the SLAM module works
on input from the laser range finder and from the wheel odometry. Within the
multi-layered map, the SLAM module enables the robot to acquire knowledge
about solid structures, as well as free and reachable space in its environment.
Through use of a simple door detectionmechanism, the free and reachable space
is partitioned into topological areas. As soon as the robot acquires the knowl-
edge about a new area in the environment, this information is pushed from the
topological map to the conceptual map. Each topological area is represented in
the conceptual map as an instance of the class Area. Furthermore, as soon as
reliable information about the laser-based geometric-semantic classification of
an area is available (cf. Section 5.3.3), this is reflected in the conceptual map
by assigning the area’s instance a more specific category (Room or Corridor).

(28) The robot starts in the corridor (see Figure 5.6). The laser-based place
classifier recognizes the current area as a corridor:
ACAS7 = ACAS7 ∪ {Corridor(AREA0)}

Information about recognized objects stemming from the vision subsystem
(cf. Section 5.2.1) is also represented in the conceptual map. Whenever a new
object in the environment is recognized, a new instance of the object’s type,
e.g., TVSet, is added to the ABox. Moreover, the object’s instance and the
instance of the area where the object is located are related via the contains
relation.

(29) Later in the run, the robot is asked to have a look around and finds a
television (see Figure 5.7):
ACAS7 = ACAS7 ∪ {TVset(OBJ1), contains(AREA1,OBJ1)}

Asserted knowledge

During a guided tour with the robot, the user typically names areas and cer-
tain objects that she believes to be relevant for the robot. Typical assertions
in a guided tour include “we are in the kitchen,” or “this is the charging sta-
tion” (see Example 30). Any such assertion is analyzed by the subsystem for
situated dialogue processing (see Section 5.2.2). In case an assertion about the
spatial environment is made, the dialogue subsystem pushes these assertions on
to the conceptual map, where the ontology is updated with the new information
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Figure 5.7: “Aha. I see a television.”

– either by specifying the type of the current area or by creating a new object
instance of the asserted type and linking it to the area instance with the contains
relation, as illustrated in Examples (31) and (32).

(30) HLDS logical form of the utterance “this is the charging station.”

@be9:state(be ∧
⟨Mood⟩ind ∧
⟨Tense⟩pres ∧
⟨Copula−Restr⟩(t1 : thing ∧ this ∧
⟨V isualContext⟩(v1 : visualobject ∧

⟨Proximity⟩proximal)) ∧
⟨Copula− Scope⟩(c1 : thing ∧ chargingstation ∧
⟨Delimitation⟩unique ∧
⟨Num⟩sg ∧
⟨Quantification⟩specific))

(31) determine current location: AREA0
(32) assert the fact that there is a charging station:

ACAS7 = ACAS7∪{Chargingstation(OBJ0), contains(AREA0,OBJ0)}
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Inferred knowledge

Based on the knowledge representation in the ontology, our system uses DL-
based reasoning, which allows us to move beyond a pure labeling of areas.
Combining and evaluating acquired and asserted knowledge within the context
of the innate conceptual ontology, the reasoner can infer more specific classes
for known areas. E.g., combining the acquired information that a given area is
classified as Room and contains a television, with the innate conceptual knowl-
edge given in our commonsense ontology, the reasoner infers that this area can
be categorized as being an instance of Livingroom (see Example 33). Con-
versely, if an area is classified as Corridor and the user shows the robot a charg-
ing station in that area, no further inference can be drawn. The most specific
category the area instantiates will still be Corridor (see Example 34).

(33) Room(AREA1),TVSet(OBJ1), contains(AREA1,OBJ1) ∈ ACAS7
Texplorer ∪ ACAS7 |= Livingroom(AREA1)

(34) Corridor(AREA0),Chargingstation(OBJ0), contains(AREA0,OBJ0)
∈ ACAS7

In principle, our method allows for multiple possible classifications of any area4
because themain purpose of the reasoningmechanisms in our system is to facili-
tate human-robot interaction. The way people refer to the same room can differ
from situation to situation and from speaker to speaker, as observed by Topp
et al. (2006b). What one speaker prefers to call the kitchen might be referred to
as the recreation room by another person. Allowing for multiple classifications
of are instances ensures that is is possible to resolve all such possible references.

5.3.6 Discussion: conceptualizing areas
What does it mean to recognize an area? What defines an area? In SLAM-based
approaches, the notion of area roughly corresponds to an “enclosed space.” Ob-
served linear structures are interpreted as walls, delineating an area. This yields
a purely geometrical interpretation of the notion of area, based on its perceiv-
able physical boundaries. Doorways are regarded as transitions between dis-
tinct topological areas. Although this is already a suitable level of abstraction,
it is not yet sufficient for discriminating between areas. Another observation
from human spatial cognition is that humans tend to categorize space not only
geometrically, but also functionally. This functionality is often a result of the
different objects inside an area, like home appliances or furniture, that afford
these functions. In order to achieve a functional-geometric interpretation, a

4This is achieved by avoiding disjointness axioms (see Section 4.2.4) between classes in the TBox.
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Figure 5.8: Process diagram showing convergence on consistent interpretation
across levels of spatial abstraction.
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robot thus has to integrate its knowledge about distinct topological areas with
its knowledge about the presence of certain objects.

Figure 5.8 illustrates the way in which the modules in our system (cf. Sec-
tion 5.2.1) contribute to the individual layers of our conceptual spatial map (cf.
Section 5.3), and how additional pieces of knowledge are combined to achieve
a more complete conceptualization of space. In our example guided tour, this
is illustrated when the user repeatedly asks the robot about where it thinks it is.
At first, the only thing the robot knows is that the current area is classified as
Room, and answers “I am in a room.” However, after the robot has recognized
the couch and the TV set in the current room, its ontological reasoning capabil-
ities can infer the appropriate subconcept Livingroom (see Example 33). Hence
the robot can produce an answer that contains more information: “I am in the
living room.”

Our approach thus not only creates a qualitative representation of space that
is similar to the way humans conceptualize it. It also serves as a basis for suc-
cessful dialogues by allowing the robot to successfully refer to spatial entities
using natural language expressions. In Part III we present the details of the nat-
ural language processing methods we use. Finally, experiments highlighted the
need for nonmonotonic reasoning (as discussed in Section 4.3), that is, knowl-
edge must not be written in stone. As erroneous acquired or asserted knowledge
will otherwise lead to irrecoverable errors in inferred knowledge. In the next
chapters, we show how our system can make use of different nonmonotonic
reasoning methods, namely prototypical reasoning and belief revision.

5.4 InteracƟve People Following
A key functionality of an interactive mobile robot is to recognize its user and
follow her around the environment – commonly referred to as people following
behavior. It is useful in a range of situations, for example, when the user intends
to perform a collaborative action with the robot elsewhere in the environment,
and first needs to take the robot to this place. Another case where people fol-
lowing is necessary is the the interactive map acquisition process presented in
the previous sections.

Here we describe how the already present information in the map can be
used to make such a people following behavior more intelligent – by incorpo-
rating a notion of human- and situation awareness.

5.4.1 People tracking

The people tracking module keeps a list of the current dynamic objects. A dy-
namic object is represented as a tuple oi = ⟨id, x, y, θ, v⟩ where (x, y) is its
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target obstacle

avoidance

motion

command

people

tracking positions

people people

following position

Figure 5.9: Information flow for robot control in people following mode.

position in the metric map, θ the direction of motion, v its speed and id a unique
identifier to keep track of objects over time. This information is processed by
the people following module, calculating a target robot position pt = (xt, yt)
which is at a distance Dp from the person followed. The value of Dp is de-
termined according to the situation as described below. The calculated target
location is then passed on to the obstacle avoidance modules to calculate the ap-
propriate motion commands. The basic motion control algorithm used for ob-
stacle avoidance is the Nearness Diagram (Minguez and Montano, 2004) which
is able to handle very cluttered scenes. Figure 5.9 illustrates this.

5.4.2 Social awareness

The people following behavior presented here preserves socially acceptable dis-
tances from its human user, and gives readable social cues (gaze, speech) indi-
cating how the robot tries to maintain engagement during following.

The user can initiate the people following behavior by asking the robot to
follow him (e.g., “Come with me!” or “Follow me!”). Following is initialized
by selecting and then tracking the closest dynamic object, which is assumed
to be the user. The behavior is interactive in that the robot actively gives the
person feedback about its internal state. Verbal grounding feedback (e.g., “Yes”,
“Okay!”) signals that the robot has understood the command and is ready to
follow the user. During the execution of the people following behavior, the pan-
tilt unit (PTU) is moved to simulate a gaze that follows the user. This signals
that the robot is aware of its user’s position and provides additional feedback
about which person the robot assumes as its guiding person. The pan and tilt
angles are adjusted such that the camera that is mounted on the PTU (cf. Figure
5.11) points towards the head of the tracked person. We assume the head of the
person to be at ∼1.7m above ground at the x-y-position of the tracked person.

In accord with Pacchierotti et al. (2005), the motion control algorithms of
our approach employ a control strategy that reflects the notion of proxemics
(Hall, 1966). We only initiate a motion to follow the user if the person is more
than 1.2m away from the robot – that is, when the user leaves the personal
distance. Inside the personal distance, which we assume to be appropriate for
interaction with a domestic service robot, the robot will turn its “head” to pro-
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vide gaze feedback showing its user awareness. As long as she stays within the
personal distance boundary, the robot will turn in place if the change in angle
to the user is larger than an angle α (we use α = 10◦) in order to keep the user
in its field of view. As soon as the user is further away than 1.2m, we take this
as an indication that the robot should continue following her. For approaching
the user, we determine a target point at distance Dp = 50cm, thus preserving
a personal distance without violating the intimate distance boundary. The user
can stop the robot at any time (“Halt!”, “Stop!”).

5.4.3 SituaƟon awareness

Situation awareness can be paraphrased as “knowing [the important aspects of]
what is going on around you”, where ‘importance’ is “defined in terms of the
goals and decision tasks for [the current] job” (Endsley and Garland, 2000).
Endsley defines three levels of situation awareness: perception, comprehen-
sion, and projection. In the following paragraphs we explain how our robotic
system uses perception and comprehension of the current situation to antici-
pate projected future states. The two example situations are embedded into the
context of following a human user in a known indoor environment.

Smart handling of doors

When the user approaches a door, the robot can cause problems if it continues
in normal following mode. It is a frequently observed behavior – e.g., reported
by Mahani and Topp (2010) – of the kind of robot that we are using in the kind
of guided tour scenario we are using it in. If the user intends to close an open
door or open a closed door the robot might end up in a situation where it blocks
the user from, for example, swinging open a closed door leaf. A smart robot
should be aware of this danger and take appropriate action.

Since the only sensor used is a laser scanner, it is nearly impossible to de-
tect whether the user intends to open, close, or pass through a door when ap-
proaching it. However, a safe assumption is to make room so that the user can
perform any such action with the door. The navigation graph contains the posi-
tion of doors in the environment. Our solution is hence to increase the desired
distance between the robot and the user (Dp = 2m) when the user is in or close
to a door. If the user moves through the door in one motion – i.e., not manipu-
lating the door – the increased distance will not be visible and the robot follows
through. If on the other hand the user stops in the door, the robot will also stop
and even back off to keep a long distance from the user, thus making room for
the user’s actions. As soon as the robot detects that the user passed through the
door, continuing his or her way, the robot will decrease the desired distance to
the user again (Dp = 0.5m) and resume its people following behavior.
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(a) Detecting the main walls and center line from
laser data. The small dots depict the laser
range readings.

X

Y

(b) Calculating a smooth trajectory along the
corridor. The yellow square represents a box
close to the corridor wall.

Figure 5.10: Corridor follow mode.

Following in a corridor

Moving in a corridor is different from general motion in open space or in a more
cluttered environment like a room. If the robot is able to take advantage of this
situation, a smoother, faster and more intuitive motion can be achieved. The
main assumption underlying our approach (cf. Figure 5.10) is that the robot can
make much better predictions about the motion of the person being followed in
the corridor than in a general environment: motion in a corridor is known to be
along the corridor. The motion control problem is thus reduced to determining
the speed along the corridor and the position across the corridor. For the obstacle
avoidance method this means that a standard approach that is governed by the
robot’s local surround is not suitable. This would sometimes result in large
corrections to the direction of motion when some new structure or person enters
into the immediate surrounding of the robot. In a corridor, however, obstacles
on the robot’s path can be detected from a fair distance. In our approach, the
motion planning method can look ahead in the corridor and make corrections to
the path autonomously without relying on detecting that the user adjusts his/her
course. The lateral position in the corridor is controlled so that the robot follows
a safe lane along the corridor. For detecting upcoming obstacles, naturally, the
user is not considered.

Another observation that can be made is that corridors are transportation
roads for people where the speed of travel tends to be a bit higher and where
people are used to moving a bit closer to each other when passing each other.
The upper bound of the robot’s speed along the corridor, vrob, is controlled
according to

vrob = vp + k(D −Dp) (5.1)

whereD andDp are the current and desired distance respectively between per-
son and robot, vp is the current speed of the user and k is the controller gain (here
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k = 0.5). Experiments show (cf. Section 5.4.4) that increasing the robot’s max-
imal speed when moving in a corridor yields a better performance. Following a
person in a corridor reduces the motion control problem to adjusting the speed
along the corridor and position across the corridor. Predicting how the user will
move is also simpler and the robot can initiate an obstacle avoidance maneuver
much earlier.

Determining when to switch from normal following mode to corridor fol-
lowing mode can be based on the node classification from the navigation graph.
We also require that the parameters defining the corridor, i.e., direction and
width, can be found. This is done based on angle histograms similar to (Hinkel
and Knieriemen, 1988). Figure 5.10a shows an example where the direction
and the main walls of the corridor have been found.

5.4.4 ImplementaƟon and evaluaƟon
The approach to interactive people following was implemented and tested on
the two robots “Robone” and “Minnie” presented in Section 5.1.1. In both cases
the mounted cameras are not used in the experiments. The pan-tilt unit however
serves to provide gaze feedback by moving the camera to “look at” the user.
The robots had a map of their environment that had been acquired beforehand.
Below we discuss some results obtained from the experimental runs.

The top velocity for the robots as recommended by the manufacturer is
0.5m/s. Tests have clearly shown that it is not advised to violate this upper
bound in normally cluttered space, e.g., inside an office room. In line with
Section 5.4.3, however, we claim that an increased top speed of 0.8m/s is rea-
sonable when the robot is moving in a corridor employing the proposed control
algorithm.

The experiments were run by people familiar with the system as the main
purpose was to validate the usefulness of the proposed algorithms. All the ex-
periments start with the user asking the robot to follow him. The robot ac-
knowledges its understanding (“Okay.”) and initiates the people tracking and
following mechanisms. The user then guides the robot around the environment,
moving inside and between rooms and corridors, to create those situations we
are interested in, i.e., passing through doors and moving along corridors.

The experiments (see Figure 5.12) consist of two separate episodes, demon-
strating the smart handling of doors and the corridor follow mode. The zero
point of the time axis is set to the point when the robot is in the center of the door
in order to facilitate the comparison of the two episodes of the individual exper-
iments. In the first episode the robot follows its user through an office, keeping
a longer distance while the user is close to the known door. Figure 5.11(right)
shows two screen-shots that illustrate how the robot keeps a longer distance to
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Figure 5.11: Left: the two robots “Robone” and “Minnie” used in the experi-
ments. Right: screen-shots taken during the experiments showing the robot
and the user in a room that has a doorway which leads into a hall. Note how
the robot increases its distance while the user is close to the door (bottom).

its user in order to allow the user to open the door. In the second episode, the
robot has to follow its user down a corridor. Our tests clearly show that the pro-
posed motion planning algorithm for following in a corridor outperforms the
standard people following mode which the robot has to rely on when moving in
unknown or cluttered areas.

In both experiments, the user and the robot started in a room (lower left
corner in the map). The user first guided the robot through the door into a hall
and then down a corridor extending out from the hall. This first part (episode)
of the experiments was used to demonstrate the robot’s awareness of the door
(Time<0s). The second episode (Time>0s) was used to compare the robot’s
performance with active corridor awareness against its performance in the non-
aware follow mode.

In the first episode of both runs, the robot increased its distance or kept
a longer distance to the user while the user was close to the door, which can
be seen in the translation speed profiles (e.g., at −8s in Figure 5.12a, and at
−17s and−9s in Figure 5.12b). In this phase, the robot also turned a lot in both
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experiments to keep a posture facing the user, which can be seen in the rotation
speed profiles.

The behaviors of the robot differed in the second episode. As an additional
obstacle, a box had been placed at the side of the corridor (see Figure 5.10).

In the normal follow mode the robot’s translation speed was limited to
0.5m/s, which was reached rather quickly and maintained until the robot came
close to the box, which it only late considered an obstacle (at approx. 28s). The
robot corrected its heading very often and in a rather shaky manner, as can be
seen by the amplitude of the rotation speed curve. The end position was reached
only after 42s.

The corridor mode resulted in a shorter trajectory, which took the obstacle
much earlier into account. The slow motion between 0s and 10s can be ex-
plained by the robot originally facing the wrong direction of the corridor and
having to turn around almost in place. From 10s on the robot detected the cor-
ridor and started aligning itself in it. After that it accelerated and reached the
increased translation speed of 0.8m/s. It only slowed down while passing next
to the box. The smooth trajectory planning lead to only small adjustments to
the robots rotation speed. The end position was reached after 33s.

5.5 Summary and Outlook
In this chapter, we have introduced the Explorer robot system. The Explorer
implements the approach to multi-layered conceptual spatial mapping from
Chapter 3 in an integrated robotic system. The mobile robot base is equipped
with different sensors for map building, place and object recognition, and user
interaction. We have illustrated how the multi-layered map can be acquired in-
teractively in a so-called guided tour scenario. We have furthermore presented
a method for human- and situation-aware people following that makes use of
the higher-level information of the multi-layered conceptual spatial map, thus
increasing the perceived level of intelligence of the robot. In the next chapter,
we will present an extension of the Explorer system, in which we make use of
prototypical default knowledge for goal-directed planning for situated action in
large-scale space.



Chapter 6

Planning and AcƟng with SpaƟal
Default Knowledge in the EøÖ½ÊÙ�Ù

Summary
In this chapter, we present an extension of the Explorer system introduced
in the previous chapter. The presented implementation makes use of PECAS,
a cognitive architecture for intelligent systems, which combines fusion of in-
formation from a distributed, heterogeneous architecture, with an approach
to continual planning as architectural control mechanism. We show how
the PECAS-based Explorer system implements the multi-layered conceptual
spatial model from Chapter 3. Moreover, we show how – in the absence of
factual knowledge – prototypical default knowledge derived from a Descrip-
tion Logic-based ontology using the method presented in Chapter 4 can be
used for goal-directed planning for situated action in large-scale space.

This chapter originates from a joint work with Nick Hawes (CAST architec-
ture and goal-generation), Kristoffer Sjöö (low-level mapping and navigation),
Michael Brenner (continual planning), Geert-Jan Kruijff (situated dialogue),
and Patric Jensfelt (navigation and robot control), cf. (Hawes et al., 2009b).
It also makes use of the concept of cross-modal binding developed by Henrik
Jacobsson et al. (2008).

6.1 MoƟvaƟon and Background
If we wish to build a mobile robotic system that is able to act in a real envi-
ronment and interact with human users we must overcome several challenges.
From a system perspective, one of the major challenges lies in producing a sin-
gle intelligent system from a combination of heterogeneous specialized mod-
ules, e.g., natural language processing, reasoning and planning, conceptual spa-
tial mapping, hardware control, computer vision, etc. Ideally this must be done
in a general-purpose, extensible and flexible way, with the absolute minimum of
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hardwired behaviors. Additionally, taking account of the “human in the loop”
poses the challenge of relating robot-centric representations to human-centric
conceptualizations, such as the understanding of large-scale space.

Here, we introduce PECAS, an architecture for intelligent systems, and its
application in the interactive mobile robot Explorer. PECAS is a new archi-
tectural combination of information fusion and continual planning, which ad-
dresses the need to integrate multiple competences into a single robotic system.
PECAS plans, integrates and monitors the asynchronous flow of information
betweenmultiple concurrent systems. Information fusion provides a suitable in-
termediary to robustly couple the various reactive and deliberative forms of pro-
cessing used concurrently in the Explorer . The Explorer instantiates PECAS
around a hybrid spatial model combining SLAM, visual search, and concep-
tual default inference. We describe the elements of this model, and demonstrate
on an implemented scenario how PECAS provides means for flexible control.
Section 6.3 presents a complete system run from our implementation, demon-
strating how the flow of information and control passes between low and high
levels in our system.

We use this scenario to illustrate the usefulness of the spatial model pre-
sented in Chapter 3 and how it can be instantiated in a distributed cognitive ar-
chitecture like PECAS. A special emphasis is put on the utility of prototypical
default reasoning over OWL-DL ontologies for goal-directed, situated planning
and acting in large-scale space. The Explorer system presented in this chapter
makes use of an approach to continual planning, which offers the possibility to
assert facts, which can be used to construct an initial plan that leads to the de-
sired goal state, but which also need to be verified as part of the plan execution.
Our method for deriving prototypical default knowledge from conceptual ter-
minological knowledge (as described in Section 4.3.1) can provide the planner
with such tentative information. Just like the possibility that default knowledge
can be invalidated a property of defeasible and nonmonotonic reasoning, con-
tinual planning explicitly allows for the falsification of asserted facts. In that
case, re-planning is triggered and a different plan that does not make use of the
now unavailable assertion is generated.

6.1.1 The PECAS architecture
Recent work in the “CoSy” research project on cognitive systems for intelligent
robotics has led to the development of the PlayMate/Explorer CoSy Architec-
ture Sub-Schema (PECAS).1 PECAS is an information-processing architecture
1PECAS is the result of many collaborations of many researchers in the mentioned projects, and,
by itself, it is outside the scope of this thesis. We will hence only summarize its main features
and properties.
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suitable for situated intelligent behavior (Hawes et al., 2009a). The architecture
is designed to meet the requirements of scenarios featuring situated dialogue
coupled with table-top manipulation (the PlayMate focus (Hawes et al., 2007))
or situated action and interaction in large-scale space (the Explorer focus (Zen-
der et al., 2008), see also the previous chapter). It is based on the CoSy Archi-
tecture Schema (CAS), which structures systems into subarchitectures (SAs)
that cluster processing components around shared working memories, as pro-
posed by Hawes et al. (2007). In PECAS, SAs group components by function
(e.g., communication, computer vision, or navigation). All these SAs are active
in parallel, typically combining reactive and deliberative forms of processing,
and all operating on SA-specific representations (as is necessary for robust and
efficient task-specific processing).

These disparate representations are unified, or bound, by a subarchitecture
for binding (binding SA), which performs abstraction and cross-modal infor-
mation fusion on the information from the other SAs using the approach of
Jacobsson et al. (2008). PECAS makes it possible to use the multiple capa-
bilities provided by a system’s SAs to perform many different user-specified
tasks. In order to give the robots a generic and extensible way to deal with
such tasks, we treat the computation and coordination of overall (intentional)
system behavior as a planning problem. The use of planning gives the robot
a high degree of autonomy: complex goal-driven behaviors need not be hard-
coded, but can be flexibly planned and executed by the robot at run-time. The
robot can autonomously adapt its plans to changing situations using continual
planning (Brenner and Nebel, 2009) and is therefore well suited to dynamic en-
vironments. Relying on automated planning means that tasks for the robot need
to be posed as goals for a planner, and behavior to achieve these goals must be
encoded as actions that the planner can process. The following sections expand
upon these ideas.

6.1.2 Cross-modal binding
Cross-modal binding is an essential process in information-processing archi-
tectures that allow multiple task-specialized (i.e., modal) representations to ex-
ist in parallel.2 Although many behaviors can be supported within individual
modalities, two cases require representations to be shared across the system via
binding. First, the system requires a single, unified view of its knowledge in
order to plan a behavior that involves more than one modality (e.g., following

2The approach to cross-modal binding itself is outside the scope of this thesis, but it underlies
much of the design and implementation of the Explorer system. We will thus summarize its
main features in so far as they are relevant for the descriptions in this chapter. More details can
be found in (Hawes et al., 2009b) and (Jacobsson et al., 2008).
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a command to do something relative to the object or area). Second, binding is
required when a subsystem needs information from another one to help it solve
a problem.

Each PECAS SA that wishes to contribute information to the shared knowl-
edge of the system must implement a binding monitor. This is a specialized
processing component which is able to translate from an arbitrary modal rep-
resentation (e.g., one used for spatial modeling or language processing) into
a fixed amodal (i.e., behavior neutral) representation. Binding monitors de-
liver their abstracted representations into the binding SA as binding proxies and
features. Features describe the actual abstract content (e.g., color, concept, or
location) in our amodal language, whilst proxies group multiple features into a
single description for a piece of content (such as an object, room, or person),
or for relationships between two or more pieces of content. The binding SA
collects proxies and then attempts to fuse them into binding unions. Unions
are structures which group multiples proxies into a single, cross-system repre-
sentation of the same entity. Groupings are determined by feature matching.
Figure 6.1 illustrates this principle: the subarchitecture for low-level mapping
and navigation (nav SA) and the subarchitecture for conceptual mapping and
reasoning (coma SA), provide their information to the binding SA.

Throughout this process links are maintained between all levels of this hier-
archy: frommodal content, to features and proxies, and then on to unions. These
links facilitate access to information content regardless of location. Binding
thus supports the two identified cases for cross-modal binding: the collection of
unions provide a single unified view of system knowledge, and cross-subsystem
information exchange is facilitated by linking similarly referring proxies into a
single union.

6.1.3 Planning for acƟon and processing

For PECAS we assume that we can treat the computation and coordination of
overall system behavior as a planning problem. This places the following re-
quirements on PECAS:

1. it must be able to generate a state description to plan with;

2. system-global tasks for the robot need to be posed as goals for a (sym-
bolic) planner;

3. and behavior to achieve these goals must be encoded as actions which
can be processed by the planner.
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Concept: {"robot"}

 SubarchID: nav.sa  

 Concept: {"robot"} 

AreaID: {#1}

 Concept: {"library"} 

 SubarchID: coma.sa 

 AreaID: {#1} 

 Concept: {"library"} 

 SubarchID: nav.sa 

 AreaID: {#1} 

 RelationLabel: {"position"} 

 TemporalFrame: {PERCEIVED} 
from to

 SubarchID: nav.sa 

 RelationLabel: {"position"} 

 TemporalFrame: {PERCEIVED} 

Figure 6.1: Binding localization and conceptual information: “the robot is in the
library.” Proxies have dashed borders, unions solid borders. Relation proxies
and relation unions are colored.

In our implementation we use the MAPSIM continual planner and its Multi-
Agent Planning Language (MAPL) as described by Brenner and Nebel (2009).3
In MAPL, we can model beliefs and mutual beliefs of agents as well as opera-
tors affecting these, i.e., perceptual and communicative actions. The continual
planner actively switches between planning, execution, and monitoring in order
to gather missing goal-relevant information as early as possible.

To provide a planning state, the planning SA automatically translates from
the unions in the binding SA into MAPL. The planner thus automatically re-
ceives a unified view of the system’s current knowledge. The links from amodal
unions via subarchitecture-specific proxies back tomodal content keep the plan-
ning state, and therefore the plans, grounded in representations close to sensors
and effectors. In PECAS, planning goals arise as modal intentional content
which is then abstracted via binding monitors and placed in the planning SA’s
working memory. From here we use the same translation method as is used on
the planning state to produce MAPL goals for the planner.

3Continual planning itself is beyond the scope of this thesis. However, we illustrate the benefit
of using prototypical reasoning in absence of crisp facts together with a continual planning
approach that postpones sub-goal resolution.
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The use of continual planning in PECAS is essential, as it is intended for de-
ployment in complex, dynamic situations. In these situations continual planning
allows a system to cope with both expected and unexpected change in its en-
vironment. In the latter case, execution monitoring detects action failures and
triggers re-planning. In the former, novel constructs called assertions allow the
planning agent to postpone decision making until more information is available.

While the traditional use of planning is achieving goals through physical
actions, such direct interpretations of behavior are the exception rather than
the rule in cognitive robotics (cf. Shanahan (2002)). Here, where information
is incomplete, uncertain, and distributed throughout subsystems, much of the
actions to be performed by the system are to do with processing or moving in-
formation. Whilst some information processing may be performed continually
(e.g., SLAM (cf. Section 2.2.1)), much of it is too costly to be performed rou-
tinely and should instead be performed only when relevant to the task at hand,
i.e., it should be planned based on context.

As each SA in the decentralized PECAS approach is effectively a self-
contained processing unit, our design leads naturally to an integration strategy:
each SA is treated as a separate agent in a multi-agent planning problem. A
crucial feature of this strategy is that each subarchitecture’s knowledge is sepa-
rate within the planning state, and can only be reasoned about using epistemic
operators (i.e., operators concerned with knowledge). Likewise, goals are often
epistemic in nature, e.g., when a human or a SA wants to query the navigation
SA for the location of an object.

To realize internal and external information exchange each subarchitecture
can use two epistemic actions, tell-value and ask-value, coupled with two
facts about SAs, produce and consume. The actions provide and request in-
formation respectively. The facts describe where certain types of information
can come from and should go. For example, if a human teacher tells our robot
that “this is the kitchen,” this gives rise to the motivation that all SAs which
consume room knowledge – i.e., the subarchitecture for conceptual mapping
(coma SA, see Section 6.2.3) – should know the type of the room in question.
This may lead to a plan in which the SA for situated dialogue (comsys SA) uses
a tell-value action to give the coma SA this information.

Using this design, planning of information-processing becomes a matter
of planning for epistemic goals in a multi-agent system. This gives the robot
more autonomy in deciding on the task-specific information flow through its
subsystems. But there is another assumption underlying this design: whilst
the binding SA is used to share information throughout the architecture, not all
information in the system can or should be shared this way. The principle of
data parsimony ensures that the system is not overwhelmed with (currently)
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irrelevant information. Thus, in order to restrict the knowledge the planner
gives “attention” to without losing important information, it needs to be able to
extend its planning state on-the-fly, i.e., during the continual planning process.
In PECAS state extension is supported through the ask-value and tell-value
actions, and results in a process we call task-driven state generation.

6.2 The EøÖ½ÊÙ�Ù InstanƟaƟon
The binding and planning SAs described above are system and scenario inde-
pendent. We now discuss the Explorer -specific SAs to describe concrete func-
tionality and how this relates to system control. All SAs have been implemented
in CAST4 and tested on a PeopleBot research robot (see also Section 5.1.1).
Figure 6.2 shows all subarchitctures used in the Explorer PECAS instantiation.

For a mobile robotic system that is supposed to act and interact in large-
scale space, an appropriate spatial model is key. The Explorer maintains a
multi-layered conceptual spatial map of its environment as described in Part I.
It serves as a long-term spatial memory of large-scale space. Its individual lay-
ers represent large-scale space at different levels of abstraction (cf. Chapter 3),
including low-level metric maps for robot motion control, a navigation graph
and a topological abstraction used for high-level path planning, and a concep-
tual representation suitable for symbolic reasoning (cf. Chapter 4) and situated
dialogue with a human. In the Explorer , different SAs represent the individ-
ual map layers. Details on the interactive process of human-augmented map
acquisition are given in the previous chapter.

6.2.1 nav SA
The SA for navigation and low-level spatial mapping hosts the three lowest
levels of the spatial model (metric map, navigation map, and topological layer).
For low-level, metric mapping and localization the nav SA contains a mod-
ule for laser-based SLAM. The nodes and edges of the navigation map rep-
resent the connectivity of visited places, anchored in the metric map through
x-y-coordinates. Topological areas, corresponding roughly to rooms in human
terms, are sets of navigation nodes. This level of abstraction in turn feeds into
the conceptual map layer that is part of the coma SA.

The nav SA contains a module for laser-based people detection and tracking
as described in the previous chapter. The nav SA binding monitor maintains the
robot’s current spatial position and all detected people, as proxies and relations
on the binding SA. The smallest spatial units thus represented are areas. This

4CAST is an open-source toolkit implementing the CAS schema, see [last accessed 2010-04-26]:
http://www.cs.bham.ac.uk/research/projects/cosy/cast

http://www.cs.bham.ac.uk/research/projects/cosy/cast
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Figure 6.2: The Explorer architecture.

provides the planner with a sufficiently stable and continuous description of the
robot’s state. The planning SA can pose move commands to the nav SA. The
target location is defined based on the current task which might be to follow a
person, move to a specific point in space, etc. Move commands are executed by
a navigation control module, which performs path planning on the level of the
navigation graph, but automatically handles low-level obstacle avoidance and
local motion control.

6.2.2 obj SA
The subarchitecture for vision-based object search contains the components for
finding objects using computer vision. It consists of a module for view plan-
ning and one for visual search. The view planning component creates a plan for
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Figure 6.3: The “Borland book.”

which navigation nodes to visit, in what order and in what directions to look.
Details of the process can be found in (Gálvez López et al., 2008). Object in-
stances that are to be detected must be trained off-line in a supervised manner.
Figure 6.3 shows a training image used in the implementation: it is assigned the
label “borland_book” and the concept “Book.” The object recognition makes
use of the SIFT feature matching method by Lowe (2004). Objects that are
found during run-time of the system are published on the obj SA working mem-
ory. The nav SA detects this and in turn extends the spatial model with the new
objects. This then propagates the information to the coma SA and, if and when
necessary, to the binding SA.

6.2.3 coma SA

The subarchitecture for conceptualmapping and reasoningmaintains an abstract
symbolic representation of space suitable for situated action and interaction. It
represents spatial areas (from nav SA), objects in the environment (from obj
SA), and abstract properties of persons (e.g., ownership relations) in a combined
TBox, ABox and RBox reasoning framework based on an OWL-DL reasoner.
It allows to infer more specific concepts for the area instances as described in
Chapter 4. For our implementation, we use the Jena reasoning framework5 with
its built-in OWL reasoning and rule inference facilities. Internally, Jena stores

5http://jena.sourceforge.net/ [last accessed on 2010-04-26]

http://jena.sourceforge.net/
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the facts of the ontology as RDF triples (see Section 4.2.4). The knowledge
base can be queried through SPARQL queries (see also Section 4.2.4).

The coma SAmakes its information available to the binding SA on demand;
i.e., whenever planning SA sends the respective ask-val command, coma SA
will add its knowledge about spatial entities, especially their most specific con-
cepts, to the binding SA memory. From there the information then enters the
current planning state. In our system the explicit definitions of area concepts
through occurrences of certain objects are also used to raise expectations about
typical occurrences of certain objects. If the planning SA needs to know the lo-
cation of an object that has not been encountered before, it can query the coma
SA, which will then provide a prototypical location of the object in question.
This is done using the approach described in Section 4.3.1. An example of this
is discussed in Section 6.3.

The default rules in the Jena rule format are listed below. They instantiate
closed defaults based on concept definitions that involve role restriction concept
constructors (i.e., value restrictions, existential quantifications, and cardinality
restrictions, cf. Table 4.2 in Section 4.2.2) from the TBox (see Example 35).
Exploiting RBox knowledge, closed defaults for the inverse roles of the ones
involved in the concept constructors are also generated (see Example 36).

(35) [closedDefaultsRule:
(?definedClass rdfs:subClassOf ?def),
(?def rdf:type owl:Restriction),
(?def owl:onProperty ?prop),
(?def ?restr ?restrictedClass),
(?restrictedClass rdfs:subClassOf owl:Thing),
notEqual(?definedClass, owl:Nothing),
notEqual(?restr, rdfs:subClassOf),
(?ind1 rdf:type ?definedClass),
(?ind2 rdf:type ?restrictedClass),
noValue(?y rdf:type default:DefaultStatement),
noValue(?y rdf:subject ?ind1),
noValue(?y rdf:predicate ?prop),
noValue(?y rdf:object ?ind2),
makeTemp(?x)
->
(?x rdf:type default:DefaultStatement),
(?x rdf:subject ?ind1),
(?x rdf:predicate ?prop),
(?x rdf:object ?ind2)]
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(36) [inverseDefaultsRule:
(?def rdf:type default:DefaultStatement),
(?def rdf:subject ?ind1),
(?def rdf:predicate ?prop),
(?def rdf:object ?ind2),
(?prop owl:inverseOf ?inverseProp),
noValue(?y rdf:type default:DefaultStatement),
noValue(?y rdf:subject ?ind2),
noValue(?y rdf:predicate ?inverseProp),
noValue(?y rdf:object ?ind1),
makeTemp(?x)
->
(?x rdf:type default:DefaultStatement),
(?x rdf:subject ?ind2),
(?x rdf:predicate ?inverseProp),
(?x rdf:object ?ind1)]

These rules match an RDF graph pattern that is common to OWL-DL con-
cept definitions involving role restrictions. For implementational reasons, the
noValue(...) clausesmust ensure that only one instance of any closed default
is generated. The makeTemp(?x) functor generates a blank node and binds it to
the given variable (here: ?x). This blank node corresponds to the reified proto-
typical statement introduced by the rule. As soon as individuals that instantiate
the concepts involved in any given concept definition are added to the ABox,
the two rules above are triggered and add prototypical statements about these
individuals to the DBox.

6.2.4 comsys SA

The subarchitecture for situated dialogue processing has a number of compo-
nents concerned with understanding and generation of natural language utter-
ances.6 Speech recognition converts audio to possible text strings, which are
subsequently parsed. Parsing produces a packed representation of logical forms
(LFs) (see Section 8.1.3) that correspond to possible semantic interpretations of
an utterance. Finally, the semantics are interpreted against a model of the di-
alogue context. Content is connected to discourse referents, being objects and
events talked about over the course of an interaction. In the dialogue context
model, both the content of the utterance and its intent are modeled.

6More details on the dialogue system used in this work can be found in (Kruijff et al., 2010). Here,
we only briefly describe its main properties.
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All this information is communicated to the planning and binding SAs through
proxies representing the indexical and intentional content of the utterances. In
rough terms the indexical content (information about entities in the world) is
used by the binding SA to link with information from other modalities. Mean-
while the intentional content (information about the purpose of the utterance)
is used by the planning SA to raise goals for activity elsewhere in the system.

6.3 Example: Finding a Book
This section presents a scenario in which a human asks the Explorer to per-
form a task. It shows how PECAS controls system behavior and information-
processing, and illustrates how prototypical knowledge derived from an OWL
ontology can be used in goal-directed continual planning. The example is taken
directly from our implemented system, showing system visualizations (with mi-
nor post-processing).

We assume that the Explorer has already acquired a map of its environ-
ment, including a number of rooms and a corridor:

(37) Corridor(AREA0)
(38) Library(AREA1) ∈ APECAS

The Explorer starts in the spatial context and binding state visualized in Fig-
ure 6.4: the robot and person are in the same area, and the person is close to
the robot. The robot proxy is provided by the nav SA which it abstracts from
its representation of the robot pose. The person proxy is provided by the nav
SA because a person is being tracked. In addition to these, the nav SA makes
available a proxy for the area in which one of these proxies occurs, linking
them with a position relation proxy. Finally, the close relation proxy connects
the robot proxy to the proxy of the person because the person is geometrically
close to the robot. Note that no objects are present, nor are other areas except
the current area.

Next, the human approaches the robot and says “findme the Borland book.”
The comsys SA interprets this utterance, presenting the elements of its interpre-
tation to the rest of the system as proxies. Figure 6.5 shows the results. The
Explorer itself (the recipient of the order) is represented by a proxy with Con-
cept addressee, which binds to the robot proxy already present. The word “me”
refers to the speaker, and generates a “person” proxy identified by the Name
feature I. The expression referring to the book is given by a “borland_book”
proxy, not yet bound to any other proxies at this point.

The comsys SA can determine the intention of this utterance, and separates
the intentional elements of the interpretation from the aforementioned descrip-
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(a) Screenshot of the visualization tool.
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(b) Contents of binding working memory.

Figure 6.4: Initial situation: the user approaches the robot.

tive proxies. This intentional content is written to planning SA as a proxy struc-
ture with links back to the binder. The structure of this motive can be seen in
Figure 6.5b. Planning SA, detecting a new motive, begins the process of cre-
ating a plan to fulfill it. First, it converts the information on the binder (shown
in Figure 6.5a) to the MAPL representation in Example 39 on the next page. In
this process, unions become objects and predicates in the planning state. For
instance, as the person union is related by a position relation union to an area
union, this is expressed as (perceived-pos gensym4 : area_0) in the plan-
ning language, where gensym4 is an auto-generated planning symbol referring
to the person, and area_0 refers to the area. The planner similarly converts the



118 Planning and Acting with Spatial Default Knowledge in the Explorer

Concept: {"person"}

Location: {(2.25, -0.33, 0)[r1m]}

PersonID: {#1}

Name: {"I"}

SubarchID: nav.sa
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(a) State of binding SA.
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to
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to

(b) Representation of intentional content (as a motive).

Figure 6.5: After the user has uttered the command “Findme the BorlandBook.”

motive from Figure 6.5b into a MAPL goal (K gensym4 (perceived-pos
gensym6)). This can be read as the Explorer having the goal of the person
knowing the position of the book. We use this interpretation of the command
“Find me...,” as the robot does not have the ability to grasp objects.

(39) Planning state after processing the intentional content from Figure 6.5b.

Objects:
(area_id_0 - area-id)
(gensym0 - robot)
(gensym1 - area-name)
(gensym4 - person)
(gensym6 - movable)
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Facts:
(area-id gensym1 : area_id_0)
(area-name area_id_0 : gensym1)
(perceived-pos gensym0 : area_id_0)
(perceived-pos gensym4 : area_id_0)
(close gensym4 gensym0 : true)

Given this state and goal, the MAPSIM planner produces the following plan:
(40) L1: (negotiate_plan gensym0 coma_sa)

L2: (tell_val_asserted-pos coma_sa gensym0 gensym6)
L3: (find_a gensym0 gensym6 gensym0)
L4: (tell_val_perceived-pos gensym0 gensym4 gensym6)

This plan states that the Explorer must find the location of the book (L3), then
report this location to the person (L4). Before it does this, it must negotiate with
the coma SA (as each subarchitecture is treated as a separate agent) to provide a
location where it might be able to find the book (L1, L2). The reasoning behind
this plan is that Explorer must provide the person with a perceived location
for the book (as is specified in the goal), and, having not seen it recently, the
only way to obtain a perceived location is via its object search functionality. To
perform an object search the system must have both an object to search for (the
book in this case) and an area to search.

typical positions of objects (as opposed to their perceived positions) are
derived from the ontology in coma SA. According to the data parsimony prin-
ciple (cf. Section 6.1.3), not all knowledge encoded in the coma SA knowledge
base should be made available via binding all the time. This would add many
extra and redundant facts to the planning state, which is not desirable. Rather,
prototypical knowledge is offered by coma SA using a produce fact (see Sec-
tion 6.1.3). This allows the planner to query coma SA for prototypical positions
when it requires them. One advantage of this on-demand state generation is that
the comsys SA could also be used to provide the same knowledge, e.g., through
asking a human (and would be if the book was not found initially).

In the above plan, the planner makes use of this by getting the coma SA to
tell-val the typical position of the Borland book to the binding SA. Using a set
of rules, the coma SA knowledge base always contains prototypical knowledge
from instantiating open defaults (see Section 4.3.1 and Section 6.2.3). When
asked by the planner for this information (L2), coma SA queries its knowledge
base for relevant reified prototypical statements.

Only instantiated prototypical knowledge, i.e., closed defaults, is stored in
the knowledge base. In the present case, the robot’s ABox contains the fact that
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there exists an area (AREA1) which belongs to the class Library. The knowl-
edge that there exists an instance BORLAND_BOOK of type Book is also al-
ready part of the knowledge base. Any other concrete information apart from its
existence, like its position, is unknown. This knowledge, being ABox knowl-
edge, is not innate like the conceptual taxonomy in the TBox. The computer
vision component must be trained on specific object instances that it will later be
able to detect and recognize. We thus assume that the computer vision compo-
nent, when loading its available models (and their labels and categories) during
initialization, informs the conceptual map about any instance knowledge it has
(see Section 6.2.2). In this sense, it can be characterized as asserted knowledge:
during its (supervised) training phase, the computer vision component was told
by a human tutor the corresponding labels for each training image.

Together, the instance knowledge about AREA1 and BORLAND_BOOK,
and the terminological knowledge about libraries7 trigger the instantiation of the
default rule and yields the reified statement in Example 44. Moreover, knowing
that contains and in are inverse roles yields the statement in Example 45.

(41) Book(BORLAND_BOOK), Library(AREA1) ∈ APECAS

(42) Library ≡ Room ⊓ ≥ 100 contains.Book ∈ TPECAS

(43) TPECAS ∪ APECAS ∪ DPECAS |= δbook1 =

Library(AREA1) ∧ Book(BORLAND_BOOK) : contains(AREA1,BORLAND_BOOK)
contains(AREA1, BORLAND_BOOK)

(44) DPECAS ⊇


_:book1 rdf:type DefaultStatement .
_:book1 rdf:subject area1 .
_:book1 rdf:predicate contains .
_:book1 rdf:object borland_book .


(45) DPECAS ⊇


_:book1i rdf:type DefaultStatement .
_:book1i rdf:subject borland_book .
_:book1i rdf:predicate in .
_:book1i rdf:object area1 .


Upon receiving the tell-val request, the coma binding monitor then, in absence
of factual knowledge, retrieves the prototypical statement from the closed de-
fault in Example 45 and translates it to a proxy structure, which it then publishes
on the binding SA working memory: coma SA adds one proxy for its BOR-
LAND_BOOK individual, one proxy for its AREA1 individual, and a relation
7Note that OWL-DL does not allow for expressing vague knowledge like “libraries are rooms
that contain many books.” For the purpose of the present implementation, we chose a minimal
cardinality of 100 – and assume that the robot was informed verbally by its user that the room
with AreaID #1 is the library.
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proxy with TemporalFrame feature typical, marking the relation as prototypi-
cal. Together with the comsys SA proxy already present, and the proxy for Area
#1 automatically produced by nav SA (upon noticing that coma SA published
a proxy with an AreaID feature), the binding SA generates the structure below.
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Figure 6.6: Hypothetical position of the Borland book.

Given this hypothesis for the book’s location, MAPSIM uses a replanning step
to expand the initial plan to include steps to move the robot to the library, search
there for the book, then move back and report to the user. The updated plan and
planning state are now as follows:

(46) Planning state:
Objects:
(area_id_0 - area-id) (area_id_1 - area-id)
(gensym0 - robot) (gensym1 - area-name)
(gensym4 - person) (gensym6 - borland_book)
(gensym6 - movable) (gensym7 - area-name)

Facts:
(area-id gensym1 : area_id_0)
(area-id gensym6 : area_id_1)
(area-name area_id_0 : gensym1)
(area-name area_id_1 : gensym7)
(asserted-pos gensym6 : gensym7)
(perceived-pos gensym0 : area_id_0)
(remembered-pos gensym4 : gensym1)
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Figure 6.7: Perceived location of the book

(47) Plan:
L1: (move gensym0 area_id_1 area_id_0)
L2: (object-search-in-room gensym0 gensym6 area_id_1)
L3: (approach-person gensym0 gensym4 area_id_0)
L4: (tell_val_perceived-pos gensym0 gensym4 gensym6)

In the above, gensym7 is the binding union of the library. Using the AreaID
feature from the this union, the planner issues a command to the nav SA which
moves the robot to the library (fulfilling step L1). As with all other steps in
the plan (including the information-processing ones), the results of this action
are checked byMAPSIM to determine whether it has completed successfully or
whether replanning is required. This check is performed by inspecting the plan-
ning state and comparing it to the expected state. This means that all actions
must have effects that are visible on the binding SA (for subsequent transla-
tion). Once the check has passed for L1 (confirming the robot has arrived in
the library), the planner issues an object search command to the object SA. The
Explorer searches the room as described previously. Once the object is found,
the nav SA adds it to the navigation graph. Since it is part of the current spatial
context, it is also exported to the binder in the form of an object proxy, which is
connected to the room’s proxy by a new position relation proxy. This position
relation proxy has a perceived temporal frame.
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The new proxies generated by object search bind to the existing complex (de-
picted in Figure 6.6), resulting in the structure in Figure 6.7. This binding pro-
vides the original comsys SA book proxy with a perceived position (in addition
to its prototypical one). With this knowledge in the planning state (i.e., the ef-
fect of L2 is verified, which satisfies one precondition of L4), the planner is
able to trigger the remaining steps in the plan: moving to the user and reporting
the perceived position. A move command is sent to the nav SA referencing the
Location feature from the person proxy. Once close to this location, a tell-val
is sent to the comsys SA to communicate the book’s location to the person. The
content generation component in the comsys SA uses the contents of the bind-
ing SA working memory (see Figure 6.7) to generate the utterance “the Borland
book is in the library”, thus completing the plan and satisfying the original goal
(that the person knows the position of the book).

6.4 Summary and Outlook
In this chapter, we have presented an extension of the Explorer system in-
troduced in Chapter 5. The presented implementation makes use of PECAS,
a cognitive architecture for intelligent systems, which combines fusion of in-
formation from a distributed, heterogeneous architecture, with an approach to
continual planning as architectural control mechanism. We have shown how
the PECAS-based Explorer system implements the multi-layered conceptual
spatial model from Chapter 3. Moreover, we have shown how – in the absence
of factual knowledge – prototypical default knowledge derived from a Descrip-
tion Logic-based ontology using the method presented in Chapter 4 can be used
for goal-directed planning for situated action in large-scale space. In the next
chapter, we will present Dora, a robotic system that is also based on the CAS
cognitive architecture. Using a different instantiation of the multi-layered map-
ping approach, Dora can autonomously acquire a spatial representation of its
environment.





Chapter 7

Autonomous SemanƟc-driven
Indoor ExploraƟon with DÊÙ�

Summary
In this chapter, we present an approach in which a conceptual map is ac-
quired or extended autonomously, through a closely-coupled integration of
bottom-up mapping, reasoning, and active observation of the environment.
The approach extends the conceptual spatial mapping approach presented in
the previous chapters. It allows for a nonmonotonic formation of the concep-
tual map, as well as two-way connections between perception, mapping and
inference. The approach has been implemented in the integrated mobile robot
system Dora. It uses rule- and DL-based reasoning and nonmonotonic infer-
ence over an OWL ontology of commonsense spatial knowledge, together
with active visual search and information gain-driven exploration. It has
been tested in several experiments that illustrate how a mobile robotic agent
can autonomously build its multi-layered conceptual spatial representation,
and how the conceptual spatial knowledge can influence its autonomous goal-
driven behavior.

This chapter originates from a joint workwithKristoffer Sjöö (place-basedmap-
ping, placeholder creation, and navigation), Alper Aydemir (active visual object
search), Patric Jensfelt (low-level navigation and robot control), Marc Hanheide
(goal generation and management), and Nick Hawes (cognitive architecture,
CAST).

7.1 MoƟvaƟon and Background
Several approaches to human-augmented mapping (see also Section 5.3.5) have
recently been proposed. A human guides a robot around an indoor environment,
and the robot uses the information obtained through interaction with the human
to semantically annotate its map. BIRON (Peltason et al., 2009), ISAC (Kawa-
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mura et al., 2008), and the Explorer (described in Chapter 5 and Chapter 6) are
just a few examples of such mobile robots. But what happens after the “home
tour?” After a tour, the robot typically only has a partial representation of the
environment. Experience shows that human users do not necessarily visit every
place or talk about every object (Topp et al., 2006a). Even when they do, they
still might be blocking the robot’s view by standing close to the laser scanner
or the camera. Ontological reasoning can be used to deal with this partiality, to
an extent. It can infer defaults, e.g., what objects can be prototypically found
by default in a given location, as described in Chapter 6. But that does not yet
provide a fully instantiated map.

This chapter presents an extended approach to semantic mapping in which
the robot can autonomously build an instantiated map. The approach presents
a closely-coupled integration of several forms of cognitive functionality in a
single system. The approach combines the bottom-up construction of a concep-
tual map, typical for a home tour, with autonomous exploration and top-down
mechanisms for guiding active visual search. Visual search, and lower levels of
sensor data abstraction such as the building of topological structure, can make
the mapping construction process nonmonotonic. This is a natural consequence
of the uncertainty and partiality of observations the robot is dealing with. Struc-
tural and conceptual abstractions may need to be reconsidered in the light of
new evidence. The approach we present is capable of such nonmonotonic rea-
soning for conceptual map construction and revision. Existing approaches for
human-augmented mapping do not provide this functionality.

In this chapter, we introduce another integrated robotic system: “Dora the
Explorer.” It is based on a MobileRobots P3-DX1 robot platform (see also Fig-
ure 2.2b), and is equipped with a custom-built upper structure that holds a pan-
tilt unit with a stereo-vision camera. Figure 7.1 as well as Figures 2.3c and 3.2a
show the Dora robot. Apart from the usual proprioceptive odometry encoders,
its main exteroception sensor is a Hokuyo URG-04LX2 laser range scanner.

In the following, we first provide an example to illustrate the problems, and
connect this to relevant background on semantic mapping. We note shortcom-
ings, and address these in our approach. The full implementation in a mobile
robot system is then presented, with a discussion of experimental results ob-
tained in simulation. We focus here on the mapping approach. The use of
internal goal generation and management, as well as planning processes for
controlling exploration is only briefly highlighted.

1http://www.mobilerobots.com/ResearchRobots/ResearchRobots/PioneerP3DX.
aspx [last accessed on 2010-05-10]

2http://www.hokuyo-aut.jp/02sensor/07scanner/urg_04lx.html [last accessed on
2010-05-10]

http://www.mobilerobots.com/ResearchRobots/ResearchRobots/PioneerP3DX.aspx
http://www.mobilerobots.com/ResearchRobots/ResearchRobots/PioneerP3DX.aspx
http://www.hokuyo-aut.jp/02sensor/07scanner/urg_04lx.html
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Figure 7.1: Screenshots from an exploration sequence. Red nodes are door-
ways, colored circles are free space nodes. Nodes having the same color are
interpreted as belonging to the same room. Color changes of a node indicates
a revision of a room hypothesis, e.g., fusion of nodes into a single room (5
→ 6) or separation into a new room after observing a doorway (7→ 8).

7.1.1 MoƟvaƟng example

Figure 7.1 illustrates the inherent nonmonotonic nature of the autonomous se-
mantic mapping process we model. (1) shows the initial state. Blue points
indicate laser range readings, gray rectangles are walls, and colored circles are
(linked) nodes on a navigation graph. If nodes have the same color, they are in-
terpreted as belonging to the same room. (2) shows a sequence of nodes formed
after moving around. All nodes belong to a single room, a “corridor,” because
the robot failed to detect the door it was passing through. In (3) the robot has
passed through, and successfully detected, a doorway (red node). This triggers
the creation of a new room. In (4) the robot has exited this room through an-
other doorway, re-entering the corridor. At this point, the robot is unaware that
it has returned to the same corridor as before. Only in (6) nodes become fully
connected. Now, the hypothesis for a new room raised in (4) is fused with the
already existing corridor hypothesis, creating a single room. In (7), the robot
detects the doorway that it had not spotted earlier, in (2). This leads to a sepa-
ration of already observed nodes, creating a new room (8).

This is just a short example of an exploration of a confined, previously
unknown environment. Nevertheless, any robot that acts is a dynamic envi-
ronment and operates under the principle of discovery for map acquisition and
navigation (i.e., there are no distinct learning and operation phases, see also
Section 5.3.5) faces similar challenges. As discussed earlier in Chapter 4, in
realistic environments the world changes, which means that the agent has to
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revise its model of the world. Similarly, the agent cannot rely on its percep-
tual capabilities to be perfect. Erroneous perceptions and subsequently derived
knowledgemust be retractable. Finally, any agent operating in large-scale space
is faced with the fact that its operating environment is only partially observable.
All in all, this means that every mobile agent operating in a sufficiently realis-
tic large-scale environment must be able to deal with incomplete and changing
information. At every point in time, its representation of the world should be as
faithful as possible.

The conceptual mapping approach presented here manages the potentially
nonmonotonic formation and maintenance of room representations. It uses
topological information to establish the spatial extent of a room. Ontological
inference is used to reason about the concept of a room, and what objects it
might contain. This in turn guides active visual search. The observations help
extend the conceptual map with more instance information.

7.2 Design
The design we present can be considered an improvement over the semantic
mapping approach implemented in the Explorer system, cf. Chapter 5. That
approach still assumed a strongly supervised setting, in which a conceptual map
layer was built in a strictly monotonic way. Below, we present a new algorithm
for managing the formation of a conceptual map layer in a way that allows
for nonmonotonicity. The algorithm uses the notion of topological Places and
Placeholders. These are, in their turn, abstractions from metric mapping data.
We first discuss the topological structure, then the conceptual mapping algo-
rithm. The incremental way in which the model is constructed implies that over
time, a habituation effect will be observable: with decreasing uncertainty at
the lower layers, the conceptual representations will change less often due to
error-recovery, and will only be changed to reflect changes in the environment.

Whereas Places in our approach are spatial units that are meaningful for
the robot only, rooms are adequate for interaction with a human. Rooms are a
human category, and rooms can be conceptualized in a way that is meaningful
to humans. Knowledge about rooms and their concepts is thus important for
robots that need to perform tasks in common human-oriented environments.

For the purposes of this work, we only consider conceptual room structures
to apply to disjoint sets of Place nodes in a topological graph. As a consequence,
a flat conceptual map is built, without a partonomic hierarchy based on topolog-
ical inclusion. This assumption can, however, be easily lifted, along the lines
of the approach presented in Part I. In the current implementation, Dora can
only reach, explore, and represent areas on a single floor. An approach like the
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(a) Places defined by nodes. (b) Graph of Place nodes.

Figure 7.2: Places.

one by Karg et al. (2010) that explicitly represents floors as units in a SLAM-
based map could be integrated straightforwardly with our conceptual mapping
approach.

7.2.1 Places

The robot uses laser range data to autonomously build a 2D metric map. This
map is divided into discrete regions called Places. A Place provides a basic
form of spatial abstraction, cf. (Pronobis et al., 2009). Here, we define each
Place in terms of a map point called a node. Nodes indicate “free space,” and are
created at regular intervals along the robots’ trajectory (see also Section 3.2.2).
A node defines a Place as the Voronoi cell (Aurenhammer, 1991) surrounding
it, as illustrated in Figure 7.2a.

Nodes are connected into a navigation graph as the robot transits from one
Place to another. Figure 7.2b illustrates such a graph. Graph-edges indicate
adjacency of Places, and the possibility of moving between them. This connec-
tivity is used in planning and conceptual reasoning.

7.2.2 Placeholders

Space that has not yet been explored by the robot has no Place nodes in it. Nev-
ertheless, high-level processes like reasoning and planning do need symbols
representing areas that could potentially be explored. We facilitate this by giv-
ing unexplored space its own representation in Placeholders. A Placeholder
symbolizes an unexplored direction that the robot might move in – which may
or may not yield new Places. Placeholders are stored internally in the form of a
position in the map termed a node hypothesis, generated in space that is reach-
able from the current Place, but which is devoid of other nearby Place nodes.
This process is illustrated in Figure 7.3.
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A
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Figure 7.3: Placeholder creation. Dashed circles are hypotheses, each repre-
senting one Placeholder. A and B are frontier length estimates, C andD are
coverage estimates for the respective Placeholders.

Placeholders and Places have the same high-level representation, as do the links
connecting them. Placeholders are ascribed the additional attribute of being un-
explored, as well as two quantitative measures of estimated information gain
should the robot explore them. These are used by the goal-management sys-
tem, described in Section 7.3. The quantitative measures used are the coverage
estimate and the frontier length estimate, cf. Figure 7.3. The former is obtained
by measuring the free space visible from the current node and not near to any
existing node, and assigning it to the closest hypothesis. This heuristically esti-
mates the number of new Places that would result from exploring that direction.
The frontier length estimate is analogously extracted from the length of the bor-
der to unknown space. By prioritizing these two measures differently, the goal
management mechanism can produce different exploratory behaviors.

7.2.3 Conceptual mapping

Conceptual mapping uses the Place-based topological organization to perform
two reasoning tasks.

One, it maintains a representation that groups Places into rooms. This is
a difference to the implementation in the Explorer system, where the concep-
tual map layer did not have access to small spatial units (like nodes or Places)
and instead relied on the navigation graph layer to provide a segmentation into
larger units (namely, areas). As explained in Section 3.1.1, gateways play a spe-
cial role when structuring and segmenting space within spatial models that are
based on representing free space. In our approach, Places represent free space,
and the system contains a dedicated module for detecting doorways (see Sec-
tion 5.2.1 for a summary). The method for structuring and segmenting Places
into discrete rooms is based on doorways, which are a typical gateways in in-
door environments.
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Two, using observations of salient objects, it can infer possible concepts for
a room, and objects that are likely to be present by default. Performing these
tasks yields a conceptual map of the environment, with room organization, in-
stances, and default expectations. This works similarly to themethods presented
in Chapter 5 and Chapter 6, respectively. Much like in the previous chapters,
the TBox contains innate terminological knowledge, whereas the ABox con-
tains knowledge that is either acquired autonomously or asserted by a tutor
during run-time. On the basis of this knowledge, a reasoner can then discover
new, inferred knowledge.

However, in this work we specifically take into account that the ongoing
construction of the conceptual map is a potentially nonmonotonic process. The
overall room organization may be revised on the basis of new observations. The
representation underlying the conceptual map is an OWL-DL ontology (as in-
troduced in Section 4.2, consisting of a taxonomy of concepts (the TBox) and the
knowledge about individuals in the domain (theABox), as well as the knowledge
about the properties that can exist in the domain (the RBox), and prototypical
statements about individuals (in the so-called DBox).

The TBox taxonomy from Figure 5.5 and Figure 3.6 must be extended in
order to reflect the fact that in the Dora system the spatial units that serve as
input to the conceptualmap layer are Places. Therefore, the following additional
concepts are part of the TBox TDora.

(48) TDora ⊇ Texplorer
(49) PortionOfSpace ⊑ ⊤ ∈ TDora

(50) Area ⊑ PortionOfSpace ∈ TDora

(51) Place ⊑ PortionOfSpace ∈ TDora

(52) Door ⊑ Place ∈ TDora

Place instances are generated in a bottom-up fashion each time a new Place
node is created, or an existing Placeholder turns into an explored Place. In the
architecture used, this is signaled by the place layer to the conceptual map layer.
The latter can then add the respective information to its knowledge base (cf. Ex-
ample 54 on the next page). Whenever the system detects a doorway at a given
Place, this is represented in the ABox in a similar way (cf. Example 55 on the
following page). Likewise, if a Place ceases to exist (e.g., if it gets merged with
another Place), its Place instance is removed from the ABox. Edges between
Place nodes in the navigation graph are the basis for asserting their adjacency
(cf. Example 56 on the next page) with the symmetric adjacent role (see Exam-
ple 53 on the following page). In case aPlace instance is deleted from theABox,
the reasoner must perform ABox contraction as described in Section 4.3.2 in
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order to remove all facts involving the deleted individual (such as adjacency
relation assertions). Moreover, doorway detection can go wrong, and thus the
belief about rooms in the environment might also change nonmonotonically.

(53) adjacent ≡ adjacent− ∈ RDora

(54) ADora = ADora ∪ {Place(PLACE1),Place(PLACE2)}
(55) ADora = ADora ∪ {Door(PLACE2)}
(56) ADora = ADora ∪ {adjacent(PLACE1,PLACE2)}

Besides the usual inferences performed by the OWL-DL reasoner (see Sec-
tion 4.2.3), namely subsumption checking for concepts in the TBox (i.e., estab-
lishing subclass/superclass relations between concepts) and instance checking
for ABoxmembers (i.e., inferring which concepts an individual instantiates), an
additional rule engine (see Section 4.2.6) is used to form and maintain Room
instances based on adjacency of Places. Based on adjacency, a rule maintains
another role, the symmetric and reflexive sameRoomAs, that expresses which
Places belong to the same room. The rule engine, monitors the knowledge
base and adds a sameRoomAs fact, whenever two Place instances fulfill the an-
tecedent (left-hand side) of the respective rule. These rules (listed in Figure 7.4)
are interpreted nonmonotonically: whenever a previously true antecedent turns
false, its consequent (right-hand side) statements are retracted from the ABox.

Continuing our example, let us assume that the robot discovers some more
Places, and represents that some of them are adjacent (see Examples 57 and 58).
According to the rules 1, 2 and 3 (from Figure 7.4), the knowledge baseODora

then contains the facts in Example 60.

(57) ADora = ADora ∪ {Place(PLACE3),
Place(PLACE4),Place(PLACE5)}

(58) ADora = ADora ∪ {adjacent(PLACE3,PLACE4),
adjacent(PLACE4,PLACE5)}

(59) ADora ∪RDora |= {adjacent(PLACE4,PLACE3),
adjacent(PLACE5,PLACE4)}

(60) ODora |= {
sameRoomAs(PLACE3,PLACE3), sameRoomAs(PLACE4,PLACE4),
sameRoomAs(PLACE5,PLACE5), sameRoomAs(PLACE3,PLACE4),
sameRoomAs(PLACE4,PLACE3), sameRoomAs(PLACE3,PLACE5),
sameRoomAs(PLACE5,PLACE3), sameRoomAs(PLACE4,PLACE5),
sameRoomAs(PLACE5,PLACE4)}
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Rule 1 for Place instance x:
Place(x) & ¬Door(x)
⇒ sameRoomAs(x, x)

Rule 2 for Place instances x, y:
adjacent(x, y) & ¬Door(x) & ¬Door(y)
⇒ sameRoomAs(x, y)

Rule 3 for Place instances x, y, z:
adjacent(x, z) & sameRoomAs(y, z)
& ¬Door(x) & ¬Door(y) & ¬Door(z)
⇒ sameRoomAs(x, y)

Rule 4 for Place instances x, y, and Room instance z:
sameRoomAs(x, y) & contains(z, x)
⇒ contains(z, y)

Rule 5 for Place instance x:
¬Door(x) & ¬contains(y, x)
⇒ generateNewInstance(z) &
Room(z) & contains(z, x) & hasSeedPlace(z, x)

Rule 6 for Room instances x, y, and Place instance z:
hasSeedPlace(x, z) & contains(y, z) & x ̸= y
⇒ deleteInstance(y)

Figure 7.4: Rules for room segmentation. Internally, the rules perform closed-
world reasoning: negation is interpreted as absence of the positive facts. The
rules ensure that only Places that are transitively interconnected (i.e., adja-
cent) without passing a doorway Place are asserted to belong to the same
room. The reflexive sameRoomAs role thus provides an extensional, bottom-
up definition of which segments of space consist a room.

If Dora then detects a door at PLACE4 that it previously did not spot, the now
invalid consequents of the rules are removed from the knowledge base:

(61) ADora = ADora ∪ {Door(PLACE4)}
(62) ODora |= {

sameRoomAs(PLACE3,PLACE3), sameRoomAs(PLACE5,PLACE5)}
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Based on the extensional sameRoomAs role, another rule is responsible for as-
serting the containment of Places in rooms (through the contains/in roles). Rule
5 handles the creation of new Room instances. This is where an external func-
tion (generateNewInstance) needs to be executed in order to introduce a new
symbol to the ABox. In case two existing rooms are merged, rule 6 applies,
which takes care of deleting one room symbol and all the relations it has through
an external function (deleteInstance). For this, we make use of the notion of
seed Place, which is usually the first Place found in a room. All places in the
same room (according to rule 3 and 5) are then asserted to belong to the same
room instance as the seed place. The creation of a new room symbol cannot
be expressed in the first-order logic-like rule syntax. That’s why room creation
and maintenance relies on external functions. Since the results of external func-
tions are not transparent to the rule engine, rules 5 and 6 cannot be undone by
simple belief revision. Rule 6 hence provides an explicit trigger for the deletion
of Room instances previously created by rule 5. Together, rule 5 and rule 6
alter the knowledge base in a nonmonotonic way. Further deletions based on
the contraction initiated by rule 6 are then again handled automatically by the
reasoning and rule engine.

(63) after Example 60 on page 132:
ODora |= { contains(ROOM1,PLACE3), contains(ROOM1,PLACE4),

contains(ROOM1,PLACE5)}

(64) after Example 62 on the previous page:
ODora |= { contains(ROOM1,PLACE3), contains(ROOM2,PLACE5)}

Rooms are usually extended as the robot keeps exploring its environment. Split-
ting of rooms occurs when a doorway is correctly detected only later. Merging
of rooms occurs when the robot enters the same room from a different side,
which leads to the creation of a new room instance, and then closes the con-
nection to the already existing places in that room. The newer one of the two
merged room instances is then deleted.

7.3 ImplementaƟon
Below we discuss how the above design has been implemented in a cognitive
system running on a mobile robot platform. The implementation combines the
spatial mapping functionality with active visual search, and goal generation and
management mechanisms to autonomously drive exploration. Goal generation
is based on planning. It uses information gain and the current state of the map
to decide whether to plan for further spatial exploration (achieved through ex-
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ploring Placeholders), or for obtaining more categorical information (achieved
through active visual search).

7.3.1 Architecture design
The integrated system is built using the cognitive robotics software framework
CAST.3 CAST is an event-driven architecture, built from one or more subarchi-
tectures (Hawes and Wyatt, 2010), as described in more detail in the previous
chapter. In a nutshell, each subarchitecture (SA) provides a certain function-
ality. It consists of independently executing software processing components,
and a commonworkingmemory throughwhich the components exchange infor-
mation. SAs can likewise exchange information through read/write-operations
on each other’s working memories. We use the “Player/Stage” middleware 4 to
integrate sensorimotor I/O and control into the CAST system.

Our system incorporates five subarchitectures. The spatial SA constructs
the representations of spatial knowledge. The active visual search (AVS) SA
finds objects using computer vision and view planning. The binding SA serves
to fuse information from different modalities, into singular amodal represen-
tations (Jacobsson et al., 2008) (see also Section 6.1.2 for more details on the
approach). The goal-management and planning SAs use the data from binding
to generate goals and plans for achieving them (see Section 6.1.3). Line in the
Explorer system presented in the previous chapter, the planning SA performs
high-level symbolic planning using the amodal information from the binding
SA as planning state. The goals are given by the goal-management SA, which
uses introspective mechanisms to determine possible actions that extend the
agent’s knowledge. The planning SA issues action commands to the AVS and
spatial SAs.

7.3.2 goal-management SA

The goal-management SA is an architectural concept for goal selection.5 In the
context of exploration as discussed here, it decides on a behavioral level which
exploration goal to pursue next. Basically, we consider two types of goals:
exploration to extend the spatial coverage of the map, or exploration to increase
the amount of conceptual instance information in the conceptual map.

Symbolic planning itself has been widely researched. Yet, comparatively
little attention has been paid to where the goals for planning processes come

3http://baltcast.sourceforge.net/ [last accessed on 2010-04-15]
4http://playerstage.sourceforge.net/ [last accessed on 2010-04-15]
5Goal generation, selection and management is beyond the scope of this thesis. We summarize
the relevant principles that are used in the present implementation. Further details can be found
in (Hanheide et al., 2010)

http://baltcast.sourceforge.net/
http://playerstage.sourceforge.net/
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Figure 7.5: Visualization of a goal-management SA state with multiple compet-
ing goals (here: “motives” for exploring different Placeholders).

from. We propose an architecture for goal generation and management based
on work by Wright et al. (1996). In brief, this architecture is composed of re-
active goal generators, filters, and management mechanisms. The goal gener-
ators create new goals from modal content in spatial SA, and amodal content
on binding SA. The filters do a first pass selection of goals to be considered for
activation. Management mechanisms determine which of these goals should be
activated, i.e., planned for. The system can generate multiple new goals asyn-
chronously, e.g., when a new area of space is sensed, or when a command is
given. At the same time it also determines which collection of goals the system
should currently try to achieve, e.g., which space to explore, or whether explo-
ration or categorization goals should be pursued. Figure 7.5 shows an example
of multiple competing system goals.

7.3.3 spaƟal SA
The SA most central to exploration is the spatial SA. Its components work to-
gether to extract abstract representations from raw sensory data, and to translate
high-level actions back to low-level motor commands. Figure 7.6 illustrates the
data flow in the Spatial SA. It is organized in a layered manner along the princi-
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Figure 7.6: Data flow in the spatial SA.

ples presented in Chapter 3. It makes use of the concepts proposed by Pronobis
et al. (2009).

The sensory layer provides continuous low-level readings from sensors.
Readings are clustered and classified quantitatively in the categorical layer.
The results are used in the place layer to form discrete Places and Placeholders,
and their associated properties. The components of the conceptual map layer
perform qualitative reasoning over these abstractions. Firstly, the conceptual
map layer segments interconnected Places into rooms and maintains Room in-
stance representations, as described earlier. Second, the reasoner tries to infer
more special categories for rooms, e.g., Office or Kitchen. It makes use of in-
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ference mechanisms described in Section 4.2. The combined rule and OWL
reasoning is done using the Jena reasoner.6

The output of both place and conceptual layers are presented to the sys-
tem at large, through the amodal representations of the binding SA. The goal-
management and planning SAs use this information to decide on how to con-
tinue autonomous exploration. The goal-management SA selects a goal to be
pursued, e.g., for a certain Placeholder to be explored, and the planning SA
constructs a plan that will fulfill it. The actions that make up this plan are then
fed back into the spatial SA, and turned into concrete continuous-space motor
commands by the respective layers (not shown).

7.3.4 AVS SA

The active visual search SA is responsible for finding objects in rooms. AVS is
triggeredwhen the goal-management SA selects a goal for categorizing a certain
room. The process maintains several information flows between the AVS SA
and the spatial SA. One, observed objects are provided to the conceptual map
in the spatial SA, to infer more specific concepts than Room. Two, given a
goal to locate a particular object, the AVS SA uses information from the place-
and conceptual map layers to determine in which rooms the object is likely to be
found (e.g., coffeemachines in kitchens), making use of prototypical knowledge
(see also Section 4.3 and Chapter 6). Like this, conceptual knowledge can feed
back to sensory modalities and provide a kind of attentional priming.

Our implemented algorithm is a derivation of the one by González-Banos
and Latombe (2001).7 Once the robot is in a room that is to be searched, the
AVS SA identifies parts of the room where objects can more likely be found.
The idea behind such indirect search is that the time cost of finding possibly
object-rich parts of a room is almost always smaller than a full scale random
search over the whole area (Tsotsos, 1992). Free space is assumed to be devoid
of objects, and, conversely, obstacles and landmarks on the low-level map are
likely to include objects. The search plan hence starts from positions which
provide the most coverage of seen obstacles, and generates view points in an
art-gallery problem fashion (Shermer, 1992; O’Rourke, 1987).

7.4 Experiment
The integrated robot system described here has run for many hours at different
sites in different countries, being one of the demonstrator scenarios of the re-

6http://jena.sourceforge.net/ [last accessed on 2010-04-15]
7Active visual search is beyond the scope of this thesis. We hence only provide a short introduction
to the problem and sketch the approach chosen for the Dora system.

http://jena.sourceforge.net/
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search project “CogX.” However, in order to eliminate noise from environmen-
tal variation and to gather as much comparable data as possible, we evaluated
our approach using the “Player/Stage” simulator. The goal was to assess the
accuracy and appropriateness of our nonmonotonically built spatial representa-
tion. The system consisted of precisely the same implementation as used on the
robot albeit with simulated sensor and motor interfaces. The test environment
was a floor-plan map of one of our office environments, shown in Figures 7.7
and 7.8. The map consisted of eight rooms: a corridor, a terminal room, a lab,
two offices, two restrooms, and a printer room. This constitutes the ground truth
for our tests of the accuracy of the room maintenance. The robot was ordered
to perform an autonomous exploration, controlled by a symbolic planner. The
top-level goal-management system would select appropriate locations for ex-
ploration based on the notion of Placeholders. To assess the coverage that this
exploration yields, we determined a gold standard of 60 Place nodes to be gen-
erated in order to fully, densely and optimally cover the simulated environment.
We achieved this by manually steering the robot to yield an optimal coverage,
staying close to walls and move in narrow, parallel lanes.

We performed three runs with the robot in different starting positions, each
time with an empty map. Each run was cut-off after 30 minutes. The robot was
then manually controlled to take the shortest route back to its starting position.

For the evaluation, the system state was logged after fix intervals. At each
such step, the generated map was compared to the ground truth for the room
representation and to the gold standard for Place node coverage. The firstRoom
instance to cover part of a ground-truth room is counted as true positive (TP).
If that Room instance extends into a second room, it is counted as TP only
once, and once as a false positive (FP). Each additional Room instance inside a
ground-truth room is also counted as FP. False negatives (FN) are ground-truth
rooms for which no instance exists. Using these measures, precisionP , recallR
and the balanced f-score F for the room maintenance are as follows. Moreover,
we compute a normalized value for coverage.

P =
| TP |

| TP | + | FP | (7.1)

R =
| TP |

| TP | + | FN | (7.2)

F = 2× P ×R

P +R
(7.3)

coverage =
| nodes |

60
(7.4)
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Figure 7.7: Stage simulation model used in the experiments

(a) During run 1 (b) During run 2 (c) During run 3

Figure 7.8: Screenshots acquired at different stages of the experiments.
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Figure 7.9: Plots for precision, recall, balanced f-score and coverage of each
of the three experimental runs. The Y-axis shows the normalized values for
precision, recall, balanced f-score, and coverage (0–1). The X-axis is time,
in milliseconds.
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Figure 7.9 shows the progression of these measures during the three experimen-
tal runs. As can be seen, the accuracy (balanced f-score) of the representation
is increasing towards a high end result (0.80, 0.79 and 0.93, respectively). The
increases and decreases in precision during the individual runs are due to the
introduction and retraction of false room instances. Recall can be interpreted
as coverage in terms of room instances. After 30 minutes, the exploration al-
gorithm yielded a relatively high recall value (0.75, 0.75 and 0.88, resp.), i.e.,
most of the rooms had been visited. A recurring problem here was that the two
smallest rooms were often only entered by a few decimeters. This was enough
to consider the corresponding Placeholder to be explored, but not enough to
create an additional Place node beyond the doorway – which would have been
the prerequisite for the creation of a Room instance. The node coverage that
the algorithm achieved after 30 minutes (33, 34, 32 out of 60, respectively) can
be attributed partly to the 30-minutes cut-off of the experiment, and partly to
the exploration strategy which goes for high information gain Placeholder first.
These tend to be in the middle of a room rather than close to its walls, which
means that larger areas are covered with less Place nodes than maximally pos-
sible.

7.5 Summary and Outlook
We have presented an approach that integrates several levels of cognitive func-
tionality for a mobile robot system. The robot is able to (a) explore an indoor
environment, (b) autonomously construct a multi-layered map of that environ-
ment, and (c) deliberate on the basis of the state of the map whether to explore
new space, or categorize known rooms.

The integrated robotic systemDorawe have introduced here is an extension
of the Explorer system presented in the previous chapters. We have presented
a new algorithm that is capable of dealing with the partiality and uncertainty
inherent to mapping. It can handle the nonmonotonicity in forming and main-
taining rooms. It uses an instance of the multi-layered conceptual spatial map-
ping approach from Chapter 3, and it makes use of OWL-DL and rule-based
reasoning (as presented in Chapter 4) for room maintenance. This provides
the basis for a possible integration with other functionality, such as situated di-
alogue processing in human-robot interaction, which will be presented in the
following chapters.
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Chapter 8

Situated ResoluƟon and GeneraƟon
of Referring Expressions

Summary
In this chapter, we present an approach to the task of generating and resolv-
ing referring expressions to entities in large-scale space. It is based on the
spatial knowledge base presented in Part I. Existing algorithms for the gener-
ation of referring expressions try to find a description that uniquely identifies
the referent with respect to other entities that are in the current context. The
kinds of autonomous agents we are considering, however, act in large-scale
space. One challenge when referring to elsewhere is thus to include enough
information so that the interlocutors can extend their context appropriately.
We address this challenge with a method for context construction that can
be used for both generating and resolving referring expressions – two pre-
viously disjoint aspects. We show how our approach can be embedded in a
bi-directional framework for natural language processing for conversational
robots.

This chapter originates from joint work with Geert-JanM. Kruijff (overall com-
munication system, and the CCGgrammar) and IvanaKruijff-Korbayová (utter-
ance planning and utterance production), cf. (Zender and Kruijff, 2007b; Zender
et al., 2009a,b). More people have participated in the design and implemen-
tation of the communication system for situated natural language processing,
cf. (Kruijff et al., 2010).

8.1 MoƟvaƟon and Background
The robots described in the previous chapters so far needed only limited di-
alogue capabilities. Once such robots are supposed to assist people in more
demanding everyday tasks, they will need to be endowed with further natural
langauge capabilities. For example, imagine a robot that can deliver objects,
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Where is the 

IT Help desk? It is on the 

1st floor in 

building 3b.

it is at
<45.56, -3.92, 10.45>

Where is the 
IT help desk? It is on the 1st 

floor in building 
3B.

It is at

Figure 8.1: Situated dialogue with a campus service robot.

and give directions to visitors on a university campus. Such a robot must be
able to verbalize its knowledge in a way that is understandable by humans, as
illustrated in Figure 8.1, in an interaction setting that is situated in a human-
oriented environment.

In Part I, we showed how a machine can be endowed with a human-
compatible knowledge representation. But there is more to a successful verbal
interaction than making use of human-compatible concepts. In a physically
situated dialogue setting, the location of the interlocutors as well as the things
being talked about, has a crucial influence on how mutual reference – that is,
a common understanding of the interlocutors which things in the world are
being talked about – to entities in the environment is established. The focus of
this work lies on reference to entities that are outside the currently observable
scene. In other words, we pick up the dichotomy between small-scale space
and large-scale space as defined in Section 3.1.1.

Despite large-scale space being not fully observable, people can neverthe-
less have a reasonably complete mental representation of, e.g., their domestic
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or work environments in their cognitive maps. Details might be missing, and
people might be uncertain about particular things and states of affairs that are
known to change frequently. Still, people regularly engage in a conversation
about such an environment, making successful references to spatially located
entities.

There are conceivably many ways in which a physically situated agent
might refer to things in the world, but many such expressions are unsuitable
in many situations. Consider the following set of examples:

1. “position P = ⟨45.56,−3.92, 10.45⟩”

2. “the area”

3. “Peter’s office at the end of the corridor on the third floor of the Acme
Corp. building 7 in the Acme Corp. complex, 47 Evergreen Terrace,
Calisota, Earth, (...)”

Clearly, these REs are valid descriptions of the respective entities in the agent’s
world representation. Still they fail to achieve their communicative goal (Grice,
1975), which is to specify the right amount of information so that the hearer can
easily uniquely identify what is meant.

The following expressions might serve as more appropriate variants of the
previous examples (in certain situations!):

1. “the IT help desk”

2. “the large hall on the first floor”

3. “Peter’s office”

The question then remains how a natural language processing (NLP) system
can generate such expressions which are suitable in a given situation. In this
chapter, we identify some of the challenges that an NLP system for situated
dialogue about large-scale space needs to address, and discuss a model that
addresses these.

Specifically, we present a situated model for generating and resolving re-
ferring expressions, with a special focus on how a conversational mobile robot
can produce and interpret such expressions against an appropriate part of its
acquired knowledge base. A benefit of our approach is that most components,
including the situated model and the linguistic resources, are bi-directional, i.e.,
they use the same representations for comprehension and production of utter-
ances. This means that the proposed system is able to understand and correctly
resolve all the referring expressions that it is able to generate.
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8.1.1 Referring expressions
Referring expressions (REs) are definite descriptions that serve the commu-
nicative goal of enabling the hearer to “pick out whom or what [the speaker]
is talking about” (Donnellan, 1966). Strawson (1950) identifies the following
class of referring expressions:

“singular demonstrative pronouns (‘this’ and ‘that’); proper
names (e.g., ‘Venice’, ‘Napoleon’, ‘John’); singular personal and
impersonal pronouns (‘he’, ‘she’, ‘I’, ‘you’, ‘it’); and phrases
beginning with the definite article followed by a noun, qualified or
unqualified, in the singular (e.g., ‘the table’, ‘the old man’, ‘the
king of France’).”

More recently, the notion of referring expressions has been broadened and nar-
rowed in different aspects. First of all, as explained by Reiter and Dale (1992),
felicitous referring expressions are characterized by their communicative pur-
pose. A definite description is a referring expression “if and only if (...) it is
intended to identify the object it describes to the hearer,” the so-called intended
referent. Appelt (1985) divides this intention further: either the “speaker in-
tends to refer to a mutually known object,” or the “speaker has an implicit as-
sumption that the hearer identify a referent.” This referential use of definite
descriptions contrast with their attributive use, in which “the speaker has an
implicit intention that the hearer not identify a referent” (Appelt, 1985). This
class of definite descriptions falls outside the scope of this work. We only con-
sider referring expressions, i.e., referential definite descriptions.

Secondly – extending the above list by Strawson (1950) – plural expres-
sions, constituting referring expressions that refer to sets of objects, have re-
cently become an active subject of research (Stone, 2000; van Deemter, 2000).

Moreover, the distinction between anaphoric and exophoric references has
recently received attention (Krahmer and Theune, 2002). Whereas exophora
express reference to entities outside the discourse context – thus introducing ref-
erents into the discourse context – anaphora refer back to already introduced ref-
erents. Vieira and Poesio (2000) distinguish between “direct anaphora,” which
use the same head noun to pick up a previous referent, “bridging descriptions”
using a different head noun for picking up an already introduced entity, and
“discourse-new” references. These are defined as “first-mention definite de-
scriptions that denote objects not related by shared associative knowledge to
entities already introduced in the discourse” (see also (Prince, 1992)). Ex-
ophora are discourse-new references. The distinction between direct anaphora
and bridging descriptions is more important from a stylistic viewpoint. The
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use of bridging descriptions, for instance, can be advisable, depending on the
intended register or text genre, in order to avoid repetitions. When resolving
references, however, it is important that a reference resolution mechanism suc-
cessfully identify such a coreference.

In natural language generation (NLG) the task of generating referring ex-
pressions (GRE) is finding an appropriate verbal expression that successfully
identifies an intended referent to the hearer on first mention. This implies that
the description must be chosen in a way that prevents it from referring to an-
other entity in the current context. This context includes the discourse context,
the immediate surroundings of the interlocutors (the visual context), but also
world knowledge and other implicit referents that the speaker or hearer might
have in mind. Other entities in the context that are not intended referents could
be mistakenly assumed as referents by the hearer. These are called potential dis-
tractors. A successful referring expression must thus distinguish the intended
referent from its potential distractors.

Conversely, in natural language comprehension, resolving referring expres-
sions (RRE) is concerned with identifying which entity is referred to by the
speaker. In everyday language, felicitous uses of definite descriptions are not re-
stricted to already evoked entities or previously introduced discourse referents.
Poesio and Vieira (1998), Vieira and Poesio (2000), and Poesio et al. (2004)
found in several corpus studies, i.e., studies on large collections of written doc-
uments (e.g., newspaper articles) that discourse-new definite descriptions make
for a large portion of all definite descriptions. We claim that the same is true for
situated dialogues about entities in large-scale space. A module for resolving
referring expressions in such dialogues must hence be able to establish which
entity in the world is being talked about by finding an appropriate referent in
its knowledge base, thus going beyond intra-linguistic coreference resolution
(Byron and Allen, 2002).

Usually, GRE has been viewed as an isolated problem, focusing on effi-
cient algorithms for determining which information from the domain must be
incorporated in a noun phrase such that it allows the hearer to optimally under-
stand which referent is meant. Other challenges addressed in the GRE field in-
volved psycholinguistic plausibility, algorithmic elegance, and representational
efficiency. The domains of such approaches usually consist of small, static do-
mains or simple visual scenes.

In their seminal work Dale and Reiter (1995) present the incremental al-
gorithm (IA) for generating referring expressions. The IA constitutes an ap-
proach to the GRE problem, which they rephrase in terms of the Gricean Max-
ims (Grice, 1975). Inherently, any referring expression should fulfill the Maxim
of Quality in that it should not contain any false statements. The algorithm also
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ensures that only properties of the referent that have some discriminatory power
are realized (Maxim of Relevance). Moreover, they try to fulfill the Maxims of
Manner and Quantity in that the produced expressions are short and do not con-
tain redundant information. The incremental algorithm provides a solution to
the GRE problem with a reasonable run-time complexity. This is achieved by
not trying to find an optimal referring expression, which Dale and Reiter justify
by findings in psycholinguistics.

In more recent work, van Deemter (2002), and Krahmer and Theune (2002)
propose extensions to the IA that address some of its shortcomings, such as
negated and disjoined properties (vanDeemter, 2002) and an account of salience
for generating contextually appropriate shorter, anaphoric referring expressions
(Krahmer and Theune, 2002). Other, alternative GRE algorithms exist (Ho-
racek, 1997; Bateman, 1999; Krahmer et al., 2003). What all these GRE algo-
rithms have in common is that they rely on a given domain of discourse that
constitutes the current context, also called focus of attention. The task of the
GRE algorithm is then to single out the intended referent against its potential
distractors. As long as the domains of discourse are small visual scenes or other
closed-context scenarios, the intended referents are always in the current focus
of attention.

We address the challenge of producing and understanding references to en-
tities that are outside the current focus of attention, e.g., because they have not
been mentioned yet and are beyond the currently observable scene. Following
Appelt (1985) (see above), we make the assumption that felicitous references
to entities outside the current focus of attention are possible because a) they are
mutually known, or b) the hearer accepts and accommodates the presupposi-
tion1 that a uniquely identifiable referent exists. In the first case, the referent
is discourse-new, but nevertheless part of the interlocutors’ shared knowledge
(Prince (1981) calls this Givennessk). In the latter case, the hearer will only
later be able to resolve the reference to a physical entity. Consequently, the
resolution process is deferred until the identity of the referent can be perceptu-
ally confirmed. In both cases, however, the hearer’s attention must be directed
towards an entity that is not immediately perceivable.

Paraboni et al. (2007) are among the few to address the issue of generat-
ing references to entities outside the immediate environment. They present an
algorithm for context determination in hierarchically ordered domains, mainly
targeted at producing textual references to entities in written documents (e.g.,
figures and tables in book chapters). As a result they do not touch upon the chal-

1Apresupposition can be accommodated if it is not in conflict with the hearer’s background knowl-
edge.
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lenges of physically and perceptually situated dialogue. Section 8.2 contains a
more detailed discussion of the different approaches to context determination in
spatial domains. Another shortcoming is that their approach is not easily com-
binable with any other existing GRE algorithm. We address this by proposing
a separate algorithm for determining an appropriate context. This context can
then be used to constrain the input to a GRE algorithm.

For completeness’ sake, we present two of the widely used general-purpose
GRE algorithms in the following sections.

The incremental algorithm (IA) of Dale and Reiter (1995)

Themain routine of the IA,makeReferringExpression (reproduced in Algorithm
1), relies on three input parameters: the intended referent r, the contrast set C
(defined as the context set without the intended referent), and a list of preferred
attributes P .

Moreover, the IA needs a knowledge base that describes the properties of
the domain entities through attributes and values. A special attribute is an en-
tity’s type. In order to determine appropriate discriminating properties, the al-
gorithm requires a set of interface functions to the knowledge base to get addi-
tional information, namely the taxonomical specialization of a given attribute,
the basic-level category of an entity’s attribute, which draws from the notion of
basic-level categories (see also Section 2.5.1), and a model of the user’s knowl-
edge.

The conceptual spatial map described in Part I represents the knowledge in
its domain as statements about the properties of the individuals in the domain,
and their relationships, as well as a taxonomy of concepts. As described in-
Section 4.2.5, the TBox also contains information about which concepts count
as basic-level categories. It is thus straightforward to interface the conceptual
spatial map with the IA.

After initialization, the IA iterates through the attribute list in the given or-
der of preference. Within that loop, a number of subroutines, which are not
reproduced here, are called. The findBestValue routine determines an appro-
priate value for the given attribute that has the highest discriminatory power –
given that the hearer knows about it (checked against a user model by the user-
Knows routine). It is initially called with the basicLevelValue of the referent’s
attribute under consideration. Below we give an informal example of the algo-
rithm that also discusses the ideas behind findBestValue and basicLevelValue.
Once the best value, which holds for the intended referent and is false for at
least one member of the contrast set, has been established for the respective at-
tribute, the algorithm adds the attribute-value pair to the description generated
so far. It then also shrinks the contrast set accordingly in order to reflect which
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Algorithm 1 The basic incremental algorithm for GRE by Dale and Reiter
(1995)
makeReferringExpression(r, C, P )
Input: intended referent r, contrast set C, preferred-attributes-list P
Output: descriptionDESC of a referring expression for r or failure if there exists none

Initialize: DESC := ∅
for each Ai ∈ P do

V := findBestValue(r,Ai, basicLevelValue(r,Ai))
if rulesOut(⟨Ai, V ⟩) ̸= nil then

DESC :=DESC ∪ {⟨Ai, V ⟩}
C := C \ rulesOut(⟨Ai, V ⟩)

end if
if C = {} then
if ⟨type,X⟩ ∈ DESC for someX then
returnDESC

else
returnDESC ∪ {⟨type, basicLevelValue(r, type)⟩}

end if
end if

end for
return failure

potential distractors have hence been ruled out. The loop stops once the contrast
set is empty, i.e., once the intended referent is the only entity in the context for
which the conjunction of the constituents of the generated description is true.
Finally, the algorithm makes sure the type of the intended referent is included
in the description, irrespective of its potential discriminatory power. The rea-
soning behind this is that usually an entity’s type is realized as a noun – the
most important constituent of (most) referring expressions. If the algorithm has
successfully eliminated all original members from the contrast set, it terminates
and returns the expression generated so far. If the contrast set is non-empty
after iterating over all properties, the algorithm fails. For more details on the
algorithm, we refer the reader to the work by Dale and Reiter (1995).

Example Imagine that the incremental GRE algorithm has to describe one spe-
cific ball among a number of other small objects, including other balls. Let’s fur-
ther assume that the preferred attributes are type and color. The algorithm then
first checks which of the intended referent’s types (here: beach ball, ball, object,
and the top level DL concept ⊤) is most useful for identifying it to the hearer.
The basic-level category is “ball”, which already rules out any object that is not
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a ball. However, descending the type taxonomy to “beach ball” also succeeds in
setting the intended referent apart from the other balls that are not beach balls,
for instance, basketballs and volleyballs. The algorithm then chooses “beach
ball” as the so-called best value for the type attribute, includes it into the de-
scription, and shrinks the contrast set, which then only consists of all the beach
balls in the domain.The next attribute it checks is color. Let’s assume that the
knowledge base represents an objects color as RGB values.2 Without going
into the details of research on color perception, let us further assume that the
knowledge base knows the ranges in the RGB color space that correspond to
the eleven basic color terms in English3. It then picks “green” as the basic level
color of the intended referent, which rules out all but one other beach ball from
the contrast set. Descending the color taxonomy then yields “dark olive green”
as a color term that contrasts the intended referent to the other, “lawn green” col-
ored beach ball. The contrast set is now empty, and the IA returns the semantic
description of “the dark olive green beach ball” as a referring expression.

The salience-based version of the IA by Krahmer and Theune (2002)

Krahmer and Theune (2002) present a revision of the original IA, which espe-
cially aims at being sensitive to the discourse context. To this end, they make
use of the notion of discourse salience. Krahmer and Theune (2002) discuss
different approaches to determining the salience of a discourse referent – the
basic assumption being that a recently mentioned entity is more salient than
entities that have not been mentioned. They then reformulate the strict require-
ment of the original IA that the generated description discriminate the intended
referent against all other entities in the context. The salience-based modified
algorithm (reproduced in Algorithm 2 on the following page) only requires that
the intended referent be the most salient entity described the generated expres-
sion. This allows the algorithm to generate short definite descriptions that act as
anaphoric references to previously mentioned referents.4 The overall behavior
of the algorithm is similar to the original IA. It is important to note that, besides
a model of discourse context, the algorithm makes the same assumption about
the properties of the knowledge base and the existence of a given external con-

2This is a simplifying assumption. Systems operating in the real world have to recognize the
color of the objects in their surroundings autonomously. van de Weijer et al. (2009) present
an approach for learning the main color of objects in images retrieved from the web. Vrečko
et al. (2009) present an approach for interactive learning of object colors in an integrated robotic
system similar to the ones in Part II.

3Berlin andKay (1969) identify black, white, red, green, yellow, blue, brown, purple, pink, orange,
grey as the eleven basic color terms of the English language.

4Kelleher and van Genabith (2004) and Kelleher (2005) take visual salience into account for gen-
erating and resolving referring expressions. Their approach is also based on the original IA.
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Algorithm 2 The salience-based version of the IA by Krahmer and Theune
(2002)
makeReferringExpression(r, P , s)
Input: intended referent r, preferred-attributes-list P , salience-state s
Output: syntactic tree of a referring expression for r or failure if there exists none

Initialize list of properties: L := ∅
Initialize syntactic tree: tree := nil
Initialize indication if current property is contrastive: contrast := false
for each Ai ∈ P do

V := findBestValue(r,Ai, basicLevelValue(r,Ai), s)
contrast := contrastive(r,Ai, V )
tree′ := updateTree(tree, V, contrast)
if (|val(L ∪ {⟨Ai, V ⟩})| < |val(L)| ∨Ai = type) ∧ tree′ ̸= nil then

L := L ∪ {⟨Ai, V ⟩}
tree := tree′

end if
if mostSalient(r, L, s) = true then

tree := addDefDet(tree)
return tree

end if
end for
return failure

text. For more details, interested readers are referred to the original work by
Krahmer and Theune (2002).

An example for the utility of such an approach is the production task pre-
sented in the next chapter (cf. Section 9.3), where participants first produce a
long expression, which is then picked up by a short anaphora, as in the following
example:

(65) “take the ball from the table in the kitchen, then go to the study and put
the ball into the box.”

Even shorter anaphora are achieved by pronominalization like:

(66) “then you take the ball in the kitchen and you put it into the box on the
table.”

8.1.2 OpenCCG
We use OpenCCG (White, 2010), an open source implementation of Multi-
Modal CCG as presented in (Baldridge and Kruijff, 2003). It is based on the
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Combinatory Categorial Grammar (CCG) formalism (Steedman, 2000), which
in turn is an extension of the traditional Categorial Grammar (CG) theory by
Steedman (1999). OpenCCG provides a unified framework for parsing and re-
alization. Given a string-based natural language utterance, it constructs a repre-
sentation of its syntactic as well as semantic structure and the relation between
syntactic units and their meaning.5

The basic grammatical unit of CCG is the category. Categories may be
atomic (primitive categories) or complex (functions). Complex categories re-
flect the combinatoric potential of a word, i.e., the way in which it takes other
sentence constituents as arguments. The position where a word expects specific
constituents to combine with is expressed in complex categories using functors.

Definition 13 (CCG categories and functors (Steedman and Baldridge, 2007)).

Categories (i.e., primitive categories as well as functions) can
be combined using functors, called slashes: \ and /. These func-
tors determine the directionality of a function, and the order in
which it takes its arguments.
If X and Y are categories, then (X/Y ) and (X\Y ) are also cate-
gories. Outermost parentheses can be omitted.
The leftmost category is always the resulting category after com-
bining a constituent with its arguments. In this “result leftmost”
notation, the rightward-combining functor is written X/Y , and,
conversely, the leftward-combining functor is written X\Y . This
means that, here, X is always the range of the function, while Y
is its domain. X and Y may be primitive categories or functions. ■

The approach of CCG is “fully lexicalized” (Steedman and Baldridge, 2007)
as the way in which constituents combine to form more complex constituents
is only driven by the categories of the lexical entries, which are atomic con-
stituents. In the lexicon, a word is represented as a lexical entry that is assigned
a category. In traditional CCG, each word has its own category. OpenCCG
allows for the use of lexical families. These map a category to a set of lexical
entries that share the same syntactic behavior.
5We use CCG because it was chosen as the grammar formalism for the natural language com-
munication system used in the research projects this thesis contributed to (Kruijff et al., 2010).
Therefore the choice for a specific grammar formalism was predetermined to CCG. In fact, any
grammar formalism that comprises a semantic analysis and that is able to derive syntactic as
well as semantic representations, and that supports generation of natural language surface forms
from semantic representations could be used for the methods presented in this thesis.
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An example for a simple category isN for nouns. Adjectives, in contrast, have
a complex categoryN/N . They take anN as their argument and their resulting
category has the same combinatory properties as any normal N . Finally, verbs
belonging to the lexical family of transitive verbs take an NP to their right
as their argument and yield again a complex category that takes another noun
phrase to its left to produce a sentence: (S\NP )/NP .

Functional categories can combine with their arguments according to a
number of combinatory rules. The basic combinators are forward application
and backward application. OpenCCG extends these by adding the associativity-
inducing rules for forward and backward type raising and forward and back-
ward harmonic composition and rules for forward and backward crossed com-
position, which induce permutation. The incremental application of rules until
no more rules can be applied yields a grammatical derivation of an input string.

Definition 14 (Combinatory rules of CCG (Steedman and Baldridge, 2007)).
In the following list, the symbols for the rules are given on the left.
The left-hand side of a rule (before the ⇒) shows the categories
and their linear order that must be matched in the current derivation
step. The right-hand side of the rule specifies the category that
replaces the matched categories when a rule is applied.
Forward and backward application:

(>) X/Y Y ⇒ X

(<) Y X\Y ⇒ X

Forward and backward type raising:

(>T) X ⇒ Y /(Y \X)

(<T) X ⇒ Y \(Y /X)

Forward and backward harmonic composition:

(>B) X/Y Y /Z ⇒ X/Z

(<B) Y \Z X\Y ⇒ X\⋄Z

Forward and backward crossed composition:

(>B×) X/Y Y \Z ⇒ X\Z
(<B×) Y /Z X\Y ⇒ X/Z ■
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Figure 8.2: Hierarchy of
CCG modal markers.

These additional rules, however, can lead to un-
grammatical derivations. To overcome this prob-
lem, modal markers (m ∈ {⋆,♢,×, •}, cf. Fig-
ure 8.2) are introduced to control accessibility to
combinators, as presented in (Baldridge and Krui-
jff, 2003). All connectives are marked with such a
modal marker (\m and /m) and the combinators are
then restricted to specific modally marked, modal-
ized, connectives. The modal markers are ordered
hierarchically. A combinator that is restricted by a
modal marker may be applied to categories that con-
tain only combinators of the same or weaker modality. The strongest modal-
ity is ⋆. Only forward and backward application (> and <) are controlled by
this modality. Type raising and harmonic composition (>T, <T and >B, <B
resp.) are controlled by ♢, which is only accessible to •, the weakest modality.
• controls all combinators. Similarly, the modality × controls crossed com-
position (>B× and <B×) and is also only accessible to •. ⋆, the strongest
modality, is accessible to all other modalities. Like this, lexical entries can be
assigned modalized categories to have a detailed control over permitted deriva-
tions. By adjusting lexical categories, Multi-Modal CCG (and thus OpenCCG)
can reflect language-specific properties in a universal, strictly lexicon-driven
way. Table 8.1 shows the modalized combinatory rules from Definition 14.
OpenCCG offers another functor type: \− and /

−
. These slashes are inhibited

combinators. They serve to construct complex categories that are not applied
as functions. Example (67) shows a syntactic derivation6 for a typical sentence
in our domain.

Table 8.1: The modalized OpenCCG combinators.
Name Symbol Rule
Forward application > X/⋆Y Y ⇒ X
Backward application < Y X\⋆Y ⇒ X
Forward type raising >T X ⇒ Y /⋄(Y \⋄X)
Backward type raising <T X ⇒ Y \⋄(Y /⋄X)
Forward harmonic composition >B X/⋄Y Y /⋄Z ⇒ X/⋄Z
Backward harmonic composition <B Y \⋄Z X\⋄Y ⇒ X\⋄Z
Forward crossed composition >B× X/×Y Y \×Z ⇒ X\×Z
Backward crossed composition <B× Y /×Z X\×Y ⇒ X/×Z

6This and all the other syntactic derivations in this work were constructed using the “moloko.v6”
grammar by Trevor Benjamin and Geert-Jan M. Kruijff.



158 Situated Resolution and Generation of Referring Expressions

(67) Syntactic derivation for “the box is in the office.”
the box is in the office

s/(s\−np)/�n n s\−np/�pp pp/�np np/�n n
>

s/(s\−np)
>np
>pp
>

s\−np
>s

8.1.3 Hybrid Logic Dependency SemanƟcs

Besides the syntactic derivation, the OpenCCG parser constructs at the same
time a semantic representation of the utterance in Hybrid Logic Dependency
Semantics (HLDS) (Kruijff, 2001)). It substitutes the λ-calculus typically used
in traditional Categorial Grammar. The approach of combining HLDS with
CCG has been presented by Baldridge and Kruijff (2002). HLDS offers a
dependency-based, compositional representation of different sorts of semantic
meaning: propositional content and intentional content. HLDS also offers an
extended modal logic framework preserving the advantages of standard modal
logic, i.e., decidability and a convenient complexity (Areces, 2000).

The most prominent feature of hybrid logic is the introduction of nominals
as an additional basic formula. Nominals allow for explicitly referring to states,
a property that standard modal logic is lacking (Blackburn, 2000). Moreover, a
new operator @, the satisfaction operator, is introduced. It can be used to form
formulas in the same way as the common boolean operators. A formula @ip
serves to express that a formula p holds at the state referred to by i. Further-
more, nominals can be typed with the ontological sorts of the states they refer
to. In Example 68, the nominal be1 is typed as ascription. We represent the
linguistically realized meaning of an utterance in an HLDS logical form. An LF
is a conjunction of elementary predications (EPs), cf. Definition 15, anchored
by the nominal that identifies the head’s proposition, cf. Definition 16.

Definition 15 (HLDS elementary predications (Baldridge and Kruijff, 2002)).
@idx:sort(prop): represents a proposition prop with ontological
sort sort and index idx,
@idx1:sort1⟨Rel⟩(idx2 : sort2): represents a relation Rel from
index idx1 to index idx2,
and @idx:sort⟨Feat⟩(val): represents a feature Feat with value
val at index idx. ■
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Definition 16 (HLDS logical forms (Baldridge and Kruijff, 2002)).
Let EP be an elementary predication, then EP is a logical form.
Let LF1 and LF2 be logical forms, then LF1 ∧ LF2 is also a
logical form.
In general, a logical form can take the following form
@h:sorth

(proph ∧ ⟨δi⟩(di : sortdi ∧ depi) ∧ ⟨Feat⟩(val)),
where ⟨δi⟩ represents a dependency relations between the head h
and its dependents, identified by the nominals di. ■

The connection between the syntactic representation of an utterance and its cor-
responding semantics is established by application of a linguistic linking theory:
i) in HLDS, nominals denote discourse referents of their heads, and ii) in a de-
pendent part of a logical form, the nominal denotes the discourse referent of
the respective syntactic dependent. In OpenCCG, the logical form of a word is
defined at the categorial level. The logical form of a word expresses its own
nominal and defines the semantic roles that its syntactic dependents have by
coindexing the dependent nominals of the target category with the head nom-
inals of the arguments. Subsequent derivation steps then apply unification to
compositionally build a complex logical form of the head category that con-
tains the full logical forms of its dependents. Example (68) shows the HLDS
logical form of the sentence “the box is in the office” that is constructed from
the syntactic derivation in Example (67).

(68) HLDS logical form of the utterance “the box is in the office.”

@be1:ascription(be ∧
⟨Mood⟩ind ∧
⟨Tense⟩pres ∧
⟨Copula−Restr⟩(box1 : thing ∧ box ∧
⟨Delimitation⟩unique ∧
⟨Num⟩sg ∧
⟨Quantification⟩specific) ∧

⟨Copula− Scope⟩(in1 : m− location ∧ in ∧
⟨Anchor⟩(office1 : e− place ∧ office ∧
⟨Delimitation⟩unique ∧
⟨Num⟩sg ∧
⟨Quantification⟩specific)) ∧

⟨Subject⟩(box1 : thing))
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8.1.4 UƩerance planning and surface realizaƟon
Production covers the entire path from handling dialogue goals to speech syn-
thesis. The dialogue system in which our approach is embedded can itself pro-
duce goals (e.g., to handle communicative phenomena like greetings), and it
accepts goals from a higher level planner. Once there is a goal, an utterance con-
tent planner7 produces a content representation for achieving that goal, which
the realizer then turns into one or more surface forms to be synthesized.

A dialogue goal specifies a goal to be achieved, and any content that is as-
sociated with it. A typical example is to convey an answer to a user: the goal
is to tell, the content is the answer. Content is given as a conceptual structure
or proto-LF abstracting away from linguistic specifics, similar to the a-modal
structures we produce for comprehension. Based on this, it incrementally trans-
forms the proto-LF into one or more logical forms that express the propositional
and intentional meaning in a contextually appropriate way. This includes gen-
eration of referring expressions, which is the topic of the work presented herein.

Content planning turns this proto-LF into a complete LF which matches
the specific linguistic structures defined in the grammar we use to realize it.
“Turning into” means extending the proto-LF with further semantic structure.
This may be non-monotonic in that parts of the proto-LF may be rewritten,
expanding into locally connected graph structures.

The OpenCCG realizer constructs a string-based, syntactically well-formed
surface structure of the resulting HLDS logical form. The last step of the pro-
duction process consists of providing the string-based output of OpenCCG to a
text-to-speech module.

8.2 Context DeterminaƟon in Hierarchically Ordered
Domains

Imagine the situation in Figure 8.1 did not take place somewhere on campus,
but rather inside building 3B. It would have made little or no sense for the robot
to say that “the IT help desk is on the 1st floor in building 3B.” To avoid con-
fusion, an utterance like “the IT help desk is on the 1st floor” would have been
appropriate. Likewise, if the IT help desk happened to be located on another
site of the university, the robot would have had to identify its locations as be-
ing, e.g., “on the 1st floor in building 3B on the new campus”. It is obvious
that the physical and spatial situatedness of the dialogue participants plays an
important role when determining which related parts of space come into con-
sideration as potential distractors. The examples illustrate that the hierarchical

7For the work presented in this thesis, we make use of the utterance planner by Kruijff (2005).



Context Determination in Hierarchically Ordered Domains 161

...
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... ...

...office1 office4 office1

floor1 floor2

building 1A building 3B

old campus

kitchen office2 helpdesk office3office5

floor1 floor2 floor1

building 2C building 3B

new campus

Dienstag, 14. April 2009

Figure 8.3: Example for a hierarchical representation of space.

representation of space that humans adopt (cf. Section 3.1.1) reflects upon the
choice of an appropriate context when producing referential descriptions that
involve attention-directing information.

Large-scale space can thus be viewed as a hierarchically ordered domain
(see Figure 8.3 for an illustration). To keep track of the correct referential con-
text in such a domain, we propose a general principle of situated topological
abstraction (TA) for context extension. In the following section, we present the
model in more detail and instantiate it with two algorithms that can be used for
the GRE and RRE tasks, respectively.

This model is similar to Ancestral Search by Paraboni et al. (2007).
However, their approach suffers from the shortcoming that their GRE al-
gorithm treats spatial relationships as one-place attributes. For example a
spatial containment relation that holds between a room entity and a build-
ing entity (“the library in the Cockroft building”) is given as a property of
the room entity (building name = Cockroft), rather than a two-place relation
(in(library,Cockroft)).Thereby they avoid recursive calls to the GRE algo-
rithm. In principle, recursive calls to the algorithm are necessary if an intended
referent is related to another entity that must be identified to the hearer through
a definite description.

We believe that this imposes an unnecessary restriction onto the design of
the knowledge base. Moreover, it makes it hard to separate the process of con-
text determination from the actual GRE algorithm. In order to be compatible
with the many existing GRE algorithms, and also to be useful for the RRE task,
we propose an algorithm for situated context determination. It can be applied to
the input knowledge bases of existing GRE approaches, and can determine the
part of the knowledge base against which to perform the RRE task. We show
how, in particular, the spatial knowledge representation for autonomous agents
introduced in Part I can be used as knowledge base for generating and resolving
referring expressions.
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Figure 8.4: Illustration of the TA principle: starting from the attentional anchor
(a), the smallest sub-hierarchy containing both a and the intended referent
(r) is formed incrementally.

TA relies on two parameters. One involves the location of the intended referent
‘r’. The other parameter is the attentional anchor ‘a’. For single expressions the
attentional anchor corresponds to the “position of the speaker and the hearer in
the domain” Paraboni et al. (2007) – the so-called utterance situation, see Sec-
tion 9.2 and (Poesio, 1993). For longer discourses about large-scale space, we
will propose a model for attentional anchor-progression and evaluate it against
real-world data in Chapter 9.

8.2.1 Context determinaƟon through topological abstracƟon
To establish a correct referential context for references to entities in large-scale
space, we propose a general principle of topological abstraction (TA) for con-
text extension, which is rooted in what we call the attentional anchor a.

TA is designed for a multiple spatial abstraction hierarchy. Such a spatial
representation decomposes space into into parts that are related through a tree or
lattice structure in which edges denote a containment relation (cf. Figure 8.3).
The attentional anchor a corresponds to the current focus of attention, and it thus
forms the nucleus of the context to be generated. In the basic case, a corresponds
to the hearer’s physical location. During a longer discourse, however, a can
also move along the “spatial progression” of the most salient discourse entity.
In Chapter 9 we explain this principle of anchor-progression in more detail.

If the intended referent is outside the current context, TA extends the context
by incrementally ascending the spatial abstraction hierarchy until the intended
referent is in the resulting sub-hierarchy (cf. Figure 8.4). Below we describe
two instantiations of the TA principle, a TA algorithm for reference generation
(TAA1, cf. Algorithm 3) and a TA algorithm for reference resolution (TAA2,
cf. Algorithm 4). They differ only minimally, namely in their use of an intended
referent r (in case of GRE), or a logical description desc(x) of the referent (in
case of RRE) to determine the conditions for entering and exiting the TA loop.
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Context determinaƟon for GRE

TAA1 (cf. Algorithm 3) constructs a set of entities dominated by the attentional
anchor a (including a itself). If this set contains the intended referent r, it is
taken as the current utterance context set. Else TAA1 moves up one level of
abstraction and adds the set of all descendant nodes to the context set. This
loop continues until r is in the thus constructed set. At that point TAA1 stops
and returns the constructed context set.

Algorithm 3 TAA1 (for reference generation).
Input: attentional anchor a, intended referent r
Output: the smallest sub-hierarchy containing a and r

Initialize context: C := ∅
C := C ∪ {a} ∪ topologicalDescendants(a)
if r ∈ C then
return C

else
Initialize abstraction queue: Q := [a]
while size(Q) > 0 do

n := pop(Q)
for each p ∈ topologicalParents(n) do

push(Q, p)
C := C ∪ {p} ∪ topologicalDescendants(p)

end for
if r ∈ C then
return C

end if
end while
return failure

end if

TAA1 is formulated to be neutral to the kind of GRE algorithm that it is used
for. It can be used with the original IA by Dale and Reiter (1995), augmented
by a recursive call if a relation to another entity is selected as a discriminatory
feature. It could in principle also be used with the standard approach to GRE
involving relations (Dale and Haddock, 1991), but we agree with Paraboni et al.
(2007) that the mutually qualified references that it can produce8 are not eas-
ily resolvable if they pertain to circumstances where a confirmatory search is
8An example for such a phenomenon is the expression “the ball on the table” in a context with
several tables and several balls, but of which only one is on a table. Humans find such REs
natural and easy to resolve in visual scenes.
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costly (such as in large-scale space). More recent approaches to avoiding infi-
nite loops when using relations in GRE make use of a graph-based knowledge
representation (Krahmer et al., 2003; Croitoru and van Deemter, 2007). TAA1
is compatible with these approaches, as well as with the salience based approach
of Krahmer and Theune (2002).

Context determinaƟon for reference resoluƟon

Analogous to the GRE task, a dialogue system must be able to resolve verbal
descriptions by its users to symbols in its knowledge base. In order to avoid
over-generating possible referents, we propose TAA2 (cf. Algorithm 4) which
tries to select an appropriate referent from a relevant subset of the full knowl-
edge base.

It is initialized with a given semantic representation desc(x) of the referen-
tial expression in a format compatible with the knowledge base. We show how

Algorithm 4 TAA2 (for reference resolution).
Input: attentional anchor a, referential description desc(x)
Output: set of possible referents in the smallest sub-hierarchy containing a and at least
one referent satisfying desc(x)

Initialize context: C := ∅
Initialize possible referents: R := ∅
C := C ∪ {a} ∪ topologicalDescendants(a)
R := desc(x) ∩ C
if R ̸= ∅ then
return R

else
Initialize abstraction queue: Q := [a]
while size(Q) > 0 do

n := pop(Q)
for each p ∈ topologicalParents(n) do

push(Q, p)
C := C ∪ {p} ∪ topologicalDescendants(p)

end for
R := desc(x) ∩ C
if R ̸= ∅ then
return R

end if
end while
return failure

end if
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this is accomplished in our framework in Section 8.3.1. Then, an appropriate
entity satisfying this description is searched for in the knowledge base. Sim-
ilarly to TAA1, the description is first matched against the current context set
C consisting of a and its child nodes. If this set does not contain any instances
that match desc(x), TAA2 increases the context set along the spatial abstraction
axis until at least one possible referent can be identified within C.

8.3 ImplementaƟon
Our approach for resolving and generating spatial referring expressions has been
integrated with the dialogue functionality in a cognitive system for the mobile
robot presented in Chapter 5 (Kruijff et al., 2010). The robot is endowed with
a conceptual spatial map, as presented in Chapter 3, which represents knowl-
edge about places, objects and their relations in an OWL-DL ontology. In this
specific implementation, the Jena reasoning framework9 with its built-in OWL
reasoning and rule inference facilities is used. Internally, Jena stores the facts
of the conceptual map as RDF triples, which can be queried through SPARQL
queries, cf. Section 4.2.4. Figure 8.5 shows a subset of such a knowledge base.

In the following, we use this example scenario to illustrate our approach to
generating and resolving spatial referring expressions in the robot’s dialogue
system. We assume that the interaction takes place at the reception on the
ground floor (i.e., FLOOR0), so that for TAA1 and TAA2 a=RECEPTION.

8.3.1 The comprehension side
In situated dialogue processing, the robot needs to build up an interpretation for
an utterance which is linked both to the dialogue context and to the (referenced)
situated context. Here, we focus on the meaning representations.

We represent meaning as a logical form (LF) in HLDS (cf. Section 8.1.3).
The LF can be viewed as a directed acyclic graph (DAG), with labeled edges,
and nodes representing propositions. Each proposition has an ontological sort,
and a unique index. The representations are built compositionally, parsing the
word lattices provided by speech recognition with a Combinatory Categorial
Grammar (cf. Section 8.1.2), using the approach of Lison and Kruijff (2008).
Reversely, we use the same grammar to realize strings (cf. Section 8.3.2) from
these meaning representations (White and Baldridge, 2003).

An example is the meaning we obtain for “the big kitchen on the first floor”
in Figure 8.6a. In the resulting logical form, elementary predications are folded
under a single scope of @, as shown in Figure 8.6b. It illustrates how each
propositional meaning gets an index, similar to situation theory. “kitchen” gets

9http://jena.sourceforge.net [last accessed on 2010-04-15]

http://jena.sourceforge.net
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FLOOR0

RECEPTION

FLOOR1

KITCHEN1 KITCHEN2 OFFICE1 OFFICE2

FLOOR2

KITCHEN3 OFFICE3 OFFICE4

BUILDING3B

(a) Topological abstraction hierarchy in an example ABox. Arrows represent the immediate topo-
logical containment relation.

Kitchen rdfs:subClassOf Room . Office rdfs:subClassOf Room .
contains owl:inverseOf in . in rdf:type owl:ObjectProperty .
kitchen1 rdf:type Kitchen . reception rdf:type Reception .
office1 rdf:type Office . floor1 rdf:type Floor .
kitchen2 size big .
bob rdf:type Person . bob name "Bob" .
bob owns office1 .
floor1 contains kitchen1 . floor2 contains office3 .
floor1 ordNum "1" . floor2 ordNum "2" .

(b) Some RDF triples in the conceptual map (ABox, TBox, and RBox). XSD type definitions are
left out for ease of reading.

Figure 8.5: Subset of a conceptual map for an office environment.

one, and also modifiers like “big,” “on” and “one.” This enables us to single
out every aspect for possible contextual reference.

Next, we resolve contextual references, and determine the possible dialogue
move(s) the utterance may express. Contextual reference resolution determines
how we can relate the content in the utterance meaning, to the preceding dia-
logue context. If part of the meaning refers to previously mentioned content,
we associate the identifiers of these content representations; else, we generate a
new identifier. Consequently, each identifier is considered a dialogue referent.
The details of this step and the next one below are outside the scope of this work
– the interested reader is referred to (Kruijff et al., 2010) for more information.

Oncewe have a representation of utterancemeaning in dialogue context, we
build a further level of representation to facilitate connecting dialogue content
with models of the robot’s situation awareness. This next level of representation
is essentially an a-modal abstraction over the linguistic aspects of meaning, to
provide an a-modal conceptual structure (Jacobsson et al., 2008). Abstraction
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the big kitchen on the first floor

np/�n n/n n pp/�np np/�n n/n n
>n
>np
>pp

typechange−4
n\∗n

<n
>n
>np

(a) CCG derivation for “the big kitchen on the first floor.”

@l1:e−place(kitchen ∧
⟨Delimitation⟩unique ∧
⟨Num⟩sg ∧ ⟨Quantification⟩specific ∧
⟨Modifier⟩(b1 : q − size ∧ big) ∧
⟨Modifier⟩(o1 : m− location ∧ on ∧

⟨Anchor⟩(f1 : thing ∧ floor ∧
⟨Delimitation⟩unique ∧
⟨Num⟩sg ∧ ⟨Quantification⟩specific ∧
⟨Modifier⟩(n1 : number − ordinal ∧ 1))))

(b) Logical form for “the big kitchen on the first floor.”

Concept: {"kitchen"}

Size: {"big"}

Concept: {"floor"}

OrdNumberTag: {"1"}

RelationLabel: {"On"}

(c) A-modal directed acyclic graph.

SELECT ?x0 ?x1 WHERE { ?x0 rdf:type Kitchen .
?x0 size big . ?x1 rdf:type Floor .
?x1 ordNum "1" . ?x0 on ?x1 . }

(d) Corresponding SPARQL query. In the knowledge base of Fig-
ure 8.5b, ?x0 resolves to kitchen2.

Figure 8.6: Syntactic derivation, logical form, a-modal DAG and corresponding
SPARQL query for “the big kitchen on the first floor.”
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is a recursive translation of DAGs into DAGs, whereby the latter (conceptual)
DAGs are typically flatter than the linguistic DAGs (Figure 8.6c), as illustrated
in Figure 8.6c. The final step in resolving an RE is to construct a query to
the robot’s knowledge base. In our implementation we construct a SPARQL
query from the a-modal DAG representations (see Figure 8.6d). This query
corresponds to the logical description of the referent desc(r) in TAA2. TAA2
then incrementally extends the context until at least one element of the result
set of desc(r) is contained within the context.

8.3.2 The producƟon side
The utterance planning (cf. Kruijff (2005) for a description of the method em-
ployed here) is agenda-based, and uses a planning domain defined as a (sys-
temic) grammar network alike the approach of Bateman (1997). A grammar
network is a collection of systems that define possible sequences of operations
to be performed on a node with characteristics matching the applicability con-
ditions for the system. A system’s decision tree determines which operations
are to be applied. Decisions are typically context-sensitive, based on informa-
tion about the shape of the (entire) LF, or on information in context models
(dialogue or otherwise). While constructing an LF, the planner cycles over its
nodes, and proposes new agenda items for nodes which have not yet been vis-
ited. An agenda item consists of the node, and a system which can be applied
to that node. A system can explicitly trigger the generation of an RE for the
node on which it operates. It then provides the dialogue system with a request
for an RE, with a pointer to the node in the (provided) LF. The dialogue system
resolves this request by submitting it to the GRE module. The GRE module
produces an LF with the content for the RE. The planner then gets this LF and
integrates it into the overall LF.

For example, say the robot in our previous example is to answer the question
“where is Bob?” We receive a dialogue goal (cf. Section 8.1.4) to inform the
user, specifying the goal as an assertion related to the previous dialogue context
as an answer. The content is specified as an ascription e of a property to a
target entity. The target entity is t which is specified as a person called “Bob”
already available in the dialogue context, and thus familiar to the hearer. The
property is specified as topological inclusion (⟨TopIn⟩) within the entity p,
the reference to which is to be produced by the GRE algorithm – hence the type
“rfx” and the “RefIndex” which is the address of the entity (cf. Example 69).
The content planner makes a series of decisions about the type and structure of
the utterance to be produced. As it is an assertion of a property ascription, it
decides to plan a sentence in indicative mood and present tense with “be” as the
main verb. The reference to the target entity makes up the copula restriction
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(⟨Copula−Restr⟩), and a reference to the ascribed property is in the copula
scope (⟨Copula− Scope⟩). This yields the expansion of the goal content in
Example 70.

(69) Logical form specifying an assertion about Bob’s location.

@d:dvp(c− goal∧
⟨SpeechAct⟩assertion ∧
⟨Relation⟩answer ∧
⟨Content⟩(e : ascription ∧

⟨Target⟩(t : person ∧ Bob ∧
⟨InfoStatus⟩familiar) ∧

⟨TopIn⟩(p : rfx ∧RefIndex)))

(70) Expansion of the LF in Example 69. The assertion can be realized as a
copula construction.

@e:ascription(be ∧
⟨Tense⟩pres ∧
⟨Mood⟩ind ∧
⟨Copula−Restr⟩(t : person ∧ Bob ∧
⟨InfoStatus⟩familiar) ∧

⟨Subject⟩(t : person) ∧
⟨Copula− Scope⟩(prop : m− location ∧
in ∧ ⟨Anchor⟩(p : rfx ∧RefIndex)))

The next step consists in calling the GRE algorithm to produce an RE for the
entity p. In our NLP system we use a slightly modified implementation of the
incremental algorithm (Dale and Reiter, 1995). The context set C is deter-
mined using TAA1. The preferred attributes list is specified as P=[type, name,
topoIncluded, ordNum, ownedBy, size]. It is crucial that the spatial relation
topoIncluded occur early on in order to ensure that the RE contains navigational
information in case the intended referent is outside the immediate environment
of the hearer. Let’s assume that Bob is currently in KITCHEN3. In our exam-
ple (a =RECEPTION) the GRE algorithm then produces the following logical
form. The LF is then returned to the planner and inserted into the proto-LF cre-
ated so far (cf. Example 71). The planner then makes further decisions about
the realization, expanding this part of the LF to the result in Example 72.
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(71) LF generated by the GRE algorithm – “the kitchen on the second floor.”

@p:entity(kitchen ∧
⟨Unique⟩true ∧
⟨TopOn⟩(f : entity ∧ floor ∧
⟨Unique⟩true ∧
⟨OrdNum⟩(n : number ∧ 2)))

(72) Full HLDS LF for the NP in Example 71.

@p:entity(kitchen ∧
⟨Delimitation⟩unique ∧
⟨Num⟩sg ∧ ⟨Quantification⟩specific ∧
⟨Modifier⟩(o1 : m− location ∧ on ∧

⟨Anchor⟩(f : thing ∧ floor ∧
⟨Delimitation⟩unique ∧
⟨Num⟩sg ∧ ⟨Quantification⟩specific ∧
⟨Modifier⟩(t1 : number − ordinal ∧ 2))))

Once the planner is finished, the resulting overall LF is provided to a CCG
realizer (White and Baldridge, 2003), turning it into a surface form (“Bob is in
the kitchen on the second floor”). This string is synthesized to speech using the
MARY text-to-speech software (Schröder and Trouvain, 2003).

8.4 Summary and Outlook
In this chapter, we have presented an approach to generating and resolving re-
ferring expressions (GRE and RRE) for dialogues that are situated in large-scale
space. It extends existing GRE and RRE algorithms with algorithms for spa-
tial context determination. These algorithms are based on a general principle
of topological abstraction (TA) for spatial domains. Besides an overview of re-
lated research on GRE we have introduced the relevant formalisms underlying
the approach, i.e., Combinatory Categorial Grammar (CCG) and Hybrid Logics
Dependency Semantics (HLDS), as well as a short introduction to the remain-
der of the natural language generation process. We have concluded with an
implementation of this approach in a dialogue system for autonomous mobile
robots. In the next chapter, we will extend this approach to the generation and
resolution of multiple consecutive references to entities in large-scale space.



Chapter 9

Anchor-Progression in Situated
Discourse about Large-Scale Space

Summary
In this chapter, we present an approach to producing and understanding re-
ferring expressions to entities in large-scale space during a discourse. The
approach builds upon the principle of topological abstraction presented in
Chapter 8. Here, we address the general problem of establishing refer-
ence from a discourse-oriented perspective. To this end, we propose anchor-
progression and anchor-resetting mechanisms to track the origin of the TA
algorithms throughout the discourse that model the way attention-directing
information unfolds during the course of a discourse. We present an empiri-
cal production experiment that evaluates the utility of the proposed methods
with respect to situated instruction-giving in small-scale space on the one
hand, and large-scale space on the other. We conclude with a discussion of
an implementation of the approach and give examples of its performance with
respect to the domain of the production experiment.

I gratefully acknowledge the support of Christopher Koppermann (preparation
and supervision of the experiment, annotation and evaluation of the data), Fai
Greeve (data annotation), as well as the helpful discussions with Geert-Jan M.
Kruijff and Ivana Kruijff-Korbayová, cf. (Zender et al., 2010).

9.1 MoƟvaƟon and Background
GRE algorithms can nowadays be applied in a variety of real systems. This
has led to a shift of focus towards systemic approaches to reference. This does
not only involve other intra-linguistic processes, such as discourse planning,
sentence aggregation, lexical choice, and surface realization. It also involves
the extra-linguistic challenge of knowledge base construction and maintenance,
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and the need to interface such a knowledge base with the natural-language pro-
cessing system. Such systemic approaches also gave rise to the broader view
that reference is established during discourse – as opposed to the limited view
that a single, isolated RE must be all-encompassing in order to be successful.
Establishing reference is thus not only a task to be solved by an isolated GRE
algorithm. Reference is established during the course of a discourse. It is not
sufficient to determine which information needs to be realized in an utterance,
but also when and where. The challenge that we address here is how the focus
of attention can move over the course of a discourse if the domain is larger than
the currently visible scene. Let us illustrate this with an example. The two sen-
tences (translated to English) are taken from the data that we gathered in our
production experiment (see Section 9.3).

(73) “Go to the living room and take the ball. Then go to the bathroom and
put the ball into the box. Then take the ball from the floor and put it in
the study into the box on the table.”

(74) “Go to the bathroom, take the ball, go to the study and put the ball into
the box. Take the other ball, go to the living room, put the ball into the
box on the table.”

The sentences are meant as part of a set of instructions,which are given in a
different place and before the recipient of orders is supposed to execute them.
As can be seen, the noun phrase “the ball” occurs quite often – sometimes as
exophoric reference, sometimes as anaphoric reference. The referent of the
exophoric “the ball” differs in each utterance. What exactly it refers to is deter-
mined by the previous context: the first “ball” in Example 73 refers to “the ball
in the living room,” whereas its first occurrence in Example 74 refers to “the
ball in the bathroom.”1

In this chapter, we identify attention-direction and context determination
as crucial steps towards the generation and resolution of references to entities
in large-scale space. We employ the principle of topological abstraction pre-
sented in Chapter 8 for determining an appropriate spatial context for referring
expressions, and discuss principles that determine the origin of the TA algo-
rithms along the course of a discourse. We propose the mechanisms of anchor-
progression and anchor-resetting, which model the way attention-directing in-
formation unfolds during the course of a discourse. We then present an empir-
ical experiment that evaluates the utility of the proposed methods with respect

1As we have already shown in the previous chapter, the appropriateness of the circumscriptions
“the ball in the X” is of course also dependent on the situations in which they are used.
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to situated instruction-giving in small-scale space on the one hand, and large-
scale space on the other. Finally, we provide an example of the behavior of the
implemented methods with respect to the domain of the production experiment.

9.1.1 ExisƟng corpora
There exists a great amount of empirical research on the production and resolu-
tion of referring expressions in visual scenes or shared small-scale work spaces.
Empirical research on referential behavior in large-scale space has been over-
looked for the most part.

We want to investigate the different forms referring expressions to entities
in large-scale space can have during a discourse. There exist many corpora
of referring expressions to entities in small-scale visual scenes, such as, the
GRE3D3 corpus (Viethen and Dale, 2008b,a), and the Drawer data set (Viethen
and Dale, 2006). These corpora provide insights in the different processes in-
volved in the production of referring expressions. They do not, however, cover
the specifities of references in large-scale space.

Other corpora address situated task-oriented natural language in large-scale
spatial settings. The OSUQuake 2004 corpus (Byron and Fosler-Lussier, 2006)
and the SCARE corpus (Stoia et al., 2008) are recordings of experiments per-
formed using “first person graphics” 3D games. The drawback of these corpora,
however, is that the process of establishing reference develops in a task-oriented
situated dialogue while the participants are exploring their virtual 3D environ-
ment. This elicits phenomena of interactive alignment (Garrod and Pickering,
2004; Pickering and Garrod, 2006) and conceptual pacts (Brennan and Clark,
1996), which among other things, include the use of “risky references” (Carletta
and Mellish, 1996). This can then be followed by interactive repair processes,
and indefinite descriptions to introduce new referents to the shared context. It
has been shown that two interlocutors who are faced with a situation that is new
to them, will spend quite an amount of time and effort to collaboratively es-
tablish mutual reference. This involves the development of shorter, sometimes
even idiosyncratic verbal descriptions over the course of such a dialogue (Clark
andWilkes-Gibbs, 1986). For several reasons these phenomena are very promi-
nent in the aforementioned corpora. For one, the individual recorded conversa-
tions are rather short (15 minutes on average per session in the SCARE corpus,
9–35 minutes per session in the OSU corpus). And, secondly, the participants
were embodied and situated in a virtual world that was new to them. All in all,
this leads to an over-representation of verbal behaviors that serve the purpose
of building up common ground (Stalnaker, 2002).

The GIVE challenge (Koller et al., 2007; Byron et al., 2009) follows a sim-
ilar approach as the OSU and SCARE experiments. Participants embody an
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avatar in a 3D environment. They have to navigate their large-scale environ-
ment following the orders of an NLG system that acts as instruction-giver. The
overall task is that the participants have to complete a treasure-hunt task based
on the system’s instructions. Most referring expressions (that is, definite ex-
ophoric noun phrases) in such scenarios are generated in-situ, treating the local
visual scene as a small-scale spatial context. Expressions like the ones we are
interested in are conceivable in the GIVE challenge (e.g., “now press the yel-
low button in the dining room again.”). However, at least with respect to the
objective measures of the challenge (i.e., success rate and completion time of
the treasure hunt), these might not be the most efficient ones. Embodied motion
within the domain, visual salience, and especially short-term (spatial) memory
effects determine which objects qualify as referents and distractors.

The aim of the TRAINS project (Allen et al., 1995) was to develop a spo-
ken dialogue system that a user can interact with in order to negotiate train
schedules. One of its achievements was the collection of a corpus of record-
ings and transcriptions of several hours of spoken human-human dialogues in
the TRAINS domain. The domain is characterized by its orientation towards
collaborative task planning. The data gathering was performed by having one
human speaker play the role of the system, while the other participant acted as
the system’s user (Poesio, 1993). Their joint task was to develop plans for rout-
ing and scheduling freight trains, based on identical copies of a map that each
of them had been given. Table 9.1 shows a fragment of user instructions from
the recorded corpus.

29.1 okay,
29.2 great
29.3 while this is happening,
29.4 take engine E1 to Dansville,
29.5 pick up the boxcar,
29.6 and come back to Avon

Table 9.1: Transcript of user instructions, reproduced from (Poesio, 1993).

Many of these experiments trace back to the HCRCMap Task experiments (An-
derson et al., 1991), which yielded a large corpus of instruction giver-instruction
follower dialogues. The experimental setting was collaborative route replica-
tion using incomplete and differing maps of pseudo-large-scale space. The map
was not meant as a depiction of a realistic large-scale domain, but rather the map
was the domain itself, rendering the situation effectively to a small-scale space.
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Taking into account the shortcomings of existing corpora with respect to the
verbal phenomena we want to investigate, we conducted an empirical data gath-
ering experiment. Our experiment, like many of the more recent experiments on
establishing mutual reference, draws inspiration from the original Map Task ex-
periments. The design of our experiment is aimed at controlling memory effects
and common knowledge of the domain, and specifically at eliciting exophoric
definite noun phrases.

9.2 A Model for AƩenƟonal Anchor-Progression
The approaches to topological abstraction for distractor-set formation presented
in the previous chapter rely on two parameters. For one, obviously, the location
of the intended referent plays a role. The second parameter is the attentional
anchor. As discussed in Section 8.2, for single expressions it is determined by
the utterance situation, i.e., the physical position where the utterance is made.
For longer discourses about large-scale space the challenge of determining the
attentional anchor remains.

Poesio (1993) observes that users interacting with the TRAINS-92 system
make use of short non-anaphoric definite descriptions (e.g., “the boxcar”, see
the transcript in Table 9.1 on the preceding page) to felicitously refer to a spe-
cific one, even though the overall domain contains several boxcars (one located
in Dansville, two in Bath, and one at Elmira).

The TRAINS domain is represented by a map, which is visually presented
as awhole to the user, andwhich is assumed to be fully known to both the system
and the user. Poesio (1993) interprets the referring expression “the boxcar” as
a “visible situation use of a definite NP,” which is defined in terms of Situation
Theory (cf., e.g., (Devlin, 2006)). Essentially, a situation is a part of the world
consisting of a “set of objects and facts about these objects” (Devlin, 1991),
where, in turn, these facts comprise properties of the objects and the relation-
ships that hold between them. Two basic distinctions can bemade for situations.
Temporally characterized situations are events and episodes. Conversely, there
are situations that are characterized rather by their spatial properties, rather than
temporally. Devlin (2006) identifies visual scenes as such a kind of situation.

When producing and, conversely, understanding an utterance, its interpre-
tation in situation semanticsdepends on three situations: the utterance situation
(defined as “the context in which the utterance is made and received”), the re-
source situation, which can become available in various ways, and the focal
situation (Devlin, 2006). As factors that can make a situation available as re-
source situation, Devlin (2006) lists:

1. being perceived by the speaker,
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2. being the objects of some common knowledge about the world,

3. being the way the world is,

4. being built up by previous discourse.

For the caseswe are interested in, i.e., situated discourse about large-scale space,
especially the second and fourth factor are relevant.

Although the previously mentioned NP “the boxcar” is, strictly speaking,
underspecific with respect to the whole domain, the speaker can nevertheless
make a felicitous reference. The NP must thus be interpretable with respect to
a resource situation in which it is a unique description of its intended referent.
Poesio (1993) hence argues for the need of a “situation forming principle, which
states under which conditions a conversational participant will assume that a
piece of information is part of that situation.” More precisely, he claims that
there must be “principles for anchoring resource situations” in the course of a
discourse. An important determining factor of resource situations is the current
focus of attention. The mutual focus of attention of the interlocutors can be
felicitously used as resource situation (the so-called situation of attention, which
Poesio (1993) explains in terms of shared visual attention). A second principle
for determining the resource situation is via the current discourse topic. This can
then lead to a shift of attention (Grosz, 1977) induced by the “movement” of the
referents in the domain of discourse. For instance, the resource situation for “the
boxcar” is the part of the map that was the terminal location of the instruction in
the previous sentence (i.e., “Dansville,” cf.(Poesio, 1993)). According to him,
this movement then determines the updated current mutual focus of attention
because the hearer can direct his visual attention accordingly.

Based on these observations, we claim that what is true for visual scenes
also holds for situated discourse about entities large-scale space (cf. Sec-
tion 3.1.1). Parallel to the focus shift in visual attention, we extend this notion
to mental shifts of attention during a discourse about large-scale space. We
show how such a principle can account for “movement” of the attentional an-
chor required for situated context determination in large-scale space presented
in the previous chapter.

In order to account for the determination of the attentional anchor, we hence
propose a model that we call anchor-progression. The model assumes that each
reference to an extra-linguistic entity in large-scale space serves as attentional
anchor for the subsequent reference. Formally speaking, each exophoric refer-
ring expression sets a new anchor. This excludes pronominal anaphora as well
as other “short” descriptions that pick up an existing referent from the linguistic
context, as, e.g., addressed in the salience-based GRE approach of Krahmer and
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Theune (2002). The attentional anchor and the intended referent are then passed
to the respective TA algorithm, i.e., TAA1 (see Algorithm 3 on page 163) for
reference generation or TAA2 (see Algorithm 4 on page 164) for reference res-
olution. Taking into account the verbal behavior observed in the experiment,
cf. Section 9.3, we also propose a refined model of anchor-resetting. In this
model, for each new turn (e.g., a new instruction), the attentional anchor is re-
set to the position of the interlocutors. This model leads to the inclusion of
navigational information for each first referring expression in a turn, and thus
makes it easier for the hearer to follow.

9.3 Data Gathering Experiment

We are interested in the way the disambiguation strategies change when pro-
ducing expressions during a discourse about large-scale space versus discourse
about small-scale space. In our experiment, we hence gathered a corpus of
spoken instructions in two different situations: small-scale space and large-
scale space. We use the gathered data to evaluate the utility of the anchor-
progression/resetting model. We specifically evaluate it against the traditional
(global) model in which the intended referent must be singled out against all en-
tities in the domain. Analyzing the data gathered in the small-scale space scenes
with respect to the global model establishes the baseline for other experiments
and well-studied GRE approaches for visual scenes.

9.3.1 Design consideraƟons

As discussed earlier, small-scale space and large-scale space differ significantly.
Large-scale space is a space that cannot be fully perceived from a single view-
point – whereas small-scale space is defined by its immediate observability.
This poses a fundamental problem when designing comparable stimuli for both
conditions.

There is an inherent difficulty to conducting situated experiments in large-
scale space. In a realistic physical environment with which the participants
are familiar, the factors influencing the participants’ behavior are hard, if not
impossible, to control. That is why experiments are usually conducted in speci-
ficly instrumented, dedicated environments in order to be able to record the
participants as unobtrusively as possible. Most participants are thus unfamiliar
with the experimental environment. Memory effects as well as different spatial
reasoning capabilities in the participants are likely to overshadow the observed
verbal behavior. Embodiment in a virtual 3D world has a similar disadvantage,
because the participants’ mental map of the environment is typically very brittle.
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A common practice for the study of human language processing is the use of
drawings to depict small-scale scenes, e.g., using the visual world paradigm for
correlating eye-movement and utterance processing (Cooper, 1974; Knoeferle
et al., 2005). Production and resolution of referring expressions has also been
extensively studied using drawings or other artificial renderings of small-scale
scenes, such as the work done by Funakoshi et al. (2004), Kelleher (2007), or
Viethen and Dale (2008b) to name a few.

In order to study the differences in language use for small-scale and large-
scale environments, we adopt the well-studied approach of using drawings of
table-top scenes as the comparison standard. For the large-scale counterparts
we draw inspiration from the Map Task experiments, as well as from more re-
cent work by Hois and Kutz (2008). The large-scale scenes are depicted by
a floor-plan like depiction of a domestic indoor environment. Hois and Kutz
(2008) report on an experiment with a bird’s-eye view of an office represented
in a traditional floor-plan style, which succeeded in situating the participants’
imagination in a room. In contrast to their study, however, we do not want to
address the problems of spatial orientation for spatial calculi and their natural
language realizations. We hence need to exclude perspectivization induced by
spatial orientation of the objects as a factor for verbalization. In our experiment,
we therefore depict the target objects in an upright fashion. This violates the
strict bird’s-eye perspective most people are used to from realistic floor plans.
However, it has the advantage of emphasizing the hierarchical structure of the
scene, rather than its exact interior design.

Strictly speaking, a fully observable map of an environment violates the
definition of large-scale space. However, we claim that maps, being common
abstractions of mental representations of large-scale space, can stimulate the
participants’ imagination of a scene such as to induce a realistic verbal behavior.

9.3.2 SƟmulus design

The stimuli consist of a set of corresponding scenes depicting a table-top set-
ting (small-scale space), and a domestic indoor setting (large-scale space), cf.
Figure 9.1. For each scene in one setting, there is a scene in the other one that
has the target, landmark, and distractor objects placed in a parallel fashion. As
mentioned earlier, an observation from human-human dialogue production ex-
periments is that the participants cooperate towards achieving as much common
ground as possible about their task. In the TRAINS experiments, this included
(Poesio, 1993):

1. facts ‘about the world’, i.e., information obtained from the map,
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(a) Small-scale space scene: squares represent small boxes, stars represent cookies, white
circles represent plates.

ArbeitszimmerKüche

Wohnzimmer Bad

(b) Large-scale space scene: squares represent boxes that are either placed on the floor or
on a table, circles represent balls, rooms are labeled Küche ‘kitchen’, Arbeitszimmer
‘study’, Bad ‘bathroom’,Wohnzimmer ‘living room’.

Figure 9.1: Two of the scenes shown in the experiment.
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2. generic information about the task, such as expectations about the in-
tentions of each conversational participant, and information about the
‘rules of the game,’ i.e., temporal-causal information and commonsense
knowledge,

3. the discourse history,

4. the current status of the plan.

In order to preclude this and the other aforementioned specific phenomena of
collaborative, task-oriented dialogue, the participants had to instruct an imag-
inary recipient of orders. Therefore the stimuli provide a template for giving
instructions to a service robot. The choice of a robot as instruction recipient
was made to rule out potential social implications when imagining, e.g., talking
to a child, a butler, or a friend. Moreover, it prevents the second and fourth of
the above factors from playing a role: the participants cannot rely on the intel-
ligence of the robot to figure out the ‘rules of the game,’ nor should they make
use of meta-instructions that relate to the overall task status.

The small-scale setting shows a similar perspective on the scene as the ex-
periment done by Funakoshi et al. (2004), i.e., a bird’s-eye view of the table-top
including an illustration of the robot’s position with respect to the table. The tar-
get, landmark and distractor objects consist of cookies, small boxes, and plates.
The way the objects are arranged allows to refer to their location with respect
to the four corners of the table. The large-scale scenes depict an indoor envi-
ronment consisting of a corridor and four rooms, parallel to the four corners in
the small-scale scenes. The parallel target, landmark, and distractor objects are
balls, boxes, and tables. The scenes show the robot and the participant in one
end of the corridor.

9.3.3 Experiment design
In order to gather more comparable data we opted for a within-participants ap-
proach. Each person participated in the small-scale space treatment and in the
large-scale space treatment. To counterbalance any potential carry-over effects,
half of the participants were shown the two treatments in inverse order. The
treatments consisted of eight different scenes. The sequence of the scenes was
varied in a principled way in order to avoid parallel learning and habituation
effects between the participants of each group.

In order to make the participants produce multi-utterance discourses, they
were required to refer to all the four target object pairs. The pairs could be
identified by their color. The exact wording of their instructions was up to the
participants.
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The cover story for the experiment was that we wanted to record spoken instruc-
tions in order to improve a speech recognition system for intelligent robots. The
participants were asked to imagine an intelligent service robot capable of un-
derstanding natural language and familiar with its environment. The purpose
of the service robot is to help humans in household tasks. The task that the
robot was to perform was to clean up a working space, i.e., a table-top and an
apartment, respectively. Cleaning up meant to place target objects (cookies or
balls) in boxes of the same color. An influence of visual salience on the par-
ticipants’ performance can be ruled out for several reasons. First of all, in each
scene the same set of four colors (yellow, blue, red, green) occurs. Second,
the participants had to refer to all objects in each scene, and they were free to
choose their order. Moreover, part of the experiment design was that the use
of color terms to identify objects verbally was discouraged. This was achieved
by telling the participants that the robot is unable to perceive and understand
color terms. The fact that objects of the same type always had the same size
also served to exclude visual salience as a factor.

9.3.4 Experiment procedure

Each participant was placed in front of a screen and a microphone. First they
were shown the general instructions on the screen. Then they were presented
the specific instructions for the first treatment, followed by three practice scenes
that were showing stimuli of the same kind than the experimental scenes but
with a lower complexity. After that the participants were given the opportunity
to rest or ask clarifying questions before they were presented the eight scenes of
the first treatment. After onemore opportunity for a short pause, the instructions
and practice scenes for the second treatment were shown, again allowing them
to ask for clarification before starting with the experimental scenes.

During the practice runs and the experiments, the participants would utter
their orders to the imaginary robots into the microphone, followed by a self-
paced keyword that would allow the experimenter to know when to proceed
to the next scene. Whenever participants asked clarifying questions the exper-
imenter would repeat the appropriate part of the experiment’s instructions to
them. The experimenter was operating the computer that the screen was at-
tached to and hit the forward button to advance to the next scene whenever the
participants uttered the keyword.

ParƟcipants The experiment consisted of a pilot study with ten participants
and themain experiment with 33 participants (19 female, 14male students). The
participants were paid for their efforts. Their median age was 22 (19–53 years).
All of them were native speakers of German. One male participant had a color
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vision deficiency. He reported that he was able to discriminate the target objects
based on their shade, rather than hue. Due to his above average performance
with respect to accuracy and reasonable completion time of the task it was not
necessary to discard his session. The data of three other participants had to
be discarded because they did not behave according to the instructions. The
individual experiments took between 20 and 35 minutes.

9.3.5 AnnotaƟon
The recorded spoken instructions were first manually transcribed. Then the
transcriptions were automatically transformed to a machine-readable XML-
based mark-up format encoding the different parameters of the experiment (age
and gender of the participant, order and type of treatments, order of scenes per
treatment). These XML files were then imported into the UAM CorpusTool
annotation software.2 Occurrences of the linguistic phenomenon we are inter-
ested in, i.e., referring expressions, were then manually annotated. Samples of
the annotations were cross-checked by a second annotator.

The annotation part consisted of several tasks. First of all, referring ex-
pressions were marked as ‘refex’ segments. Only definite noun phrases (NPs)
qualify as ‘refex’ segments. If a turn contained an indefinite NP to introduce a
new referent, the whole turn was discarded.3 Only exophoric references were
marked as ‘refex’. This excludes pronouns and mentions of already introduced
referents. The segmentation was done in a shallow manner, i.e., complex NPs
were not decomposed into their constituents. The ‘refex’ segment thus spanned
across the head noun and its determiner, and all other modifiers, such as adver-
bials, adjectives, dependent propositional phrases, and relative clauses.

The next step in the annotation process consisted of coding the ‘refex’ seg-
ments with respect to a set of features. These features encode the amount of se-
mantic information that the segments contain, and under which disambiguation
model – global (G), anchor-progression (A), or anchor-resetting (R), the latter
only for the large-scale treatment – this information can be used for singling
out the described referent. We distinguish three types of semantic specificity
with respect to each model according to the terms introduced by Engelhardt
et al. (2006). A ‘refex’ is coded as an over-description with respect to a model
M ∈ {G,A,M} (overM ) if it contains redundant information according to the
respective modelM . Coding as an under-description (underM ) means that the
‘refex’ segment is ambiguous with respect to the model. Minimal descriptions
with respect to the model (minM ) contain just enough information to uniquely
2http://www.wagsoft.com/CorpusTool/ — Thanks to Mick O’Donnell for his support.
3This happened relatively seldom: only 18 turns out of the total 1,907 turns produced by the 30
evaluated participants contained an indefinite description and were thus discarded.

http://www.wagsoft.com/CorpusTool/
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identify the referent. If the participants made an error with respect to the instruc-
tions of the experiment, the respective ‘refex’ was coded as error. Example 75
and Example 76 show annotated examples taken from the data.

(75) Example from the small-scale space scene in Figure 9.1a:

1. nimm
take

[das
the

plätzchen
cookie

unten
bottom

links]minG,A

left
,
,
leg
put

es
it
[in
into

die
the

schachtel
box

unten
bottom

rechts
right

auf
on

dem
the

teller]overG,A

plate
‘take the cookie on the bottom left, put it into the bottom right box on the plate’

2. nimm
take

[das
the

plätzchen
cookie

unten
bottom

rechts]minG,overA

right
,
,
leg
put

es
it
[in
into

die
the

schachtel
box

oben
top

links
left

auf
on

dem
the

teller]minG,A

plate
‘take the cookie on the bottom right, put it into the top left box on the plate’

3. nimm
take

[das
the

plätzchen
cookie

oben
top

links]minG,overA

left
,
,
leg
put

es
it
[in
into-the

die
box

schachtel
top

oben
right

rechts]minG,A

‘take the top left cookie, put it into the top right box’
4. nimm

take
[das
the

plätzchen
cookie

oben
top

rechts]minG,overA

right
,
,
leg
put

es
it
[in
into

die
the

schachtel
box

oben
top

links]underG,A

left
‘take the top right cookie, put it into the top left box’

(76) Example from the large-scale space scene in Figure 9.1b:

1. geh
go

[ins
into-the

wohnzimmer]minG,A,R

living-room
und
and

nimm
take

[den
the

ball]underG,minA,R

ball
und
and

bring
bring

ihn
it

[ins
into-the

arbeitszimmer]minG,A,R

work-room
,
,
leg
put

ihn
it

[in
into

die
the

kiste
box

auf
on

dem
the

tisch]underG,overA,R

table
‘go to the living room and take the ball and bring it to the study; put it into the box
on the table’

2. und
and

nimm
take

[den
the

ball]underG,R,minA

ball
und
and

bring
bring

ihn
it

[in
into

die
the

küche]minG,A,R

kitchen
und
and

leg
put

ihn
it

[in
into

die
the

kiste
box

auf
on

dem
the

boden]underG,minA,R

floor
‘and take the ball and bring it to the kitchen and put it into the box on the floor’
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3. und
and

dann
then

nimmst
take

du
you

[den
the

ball
ball

in
in
der
the

küche]minG,R,overA

kitchen
und
and

legst
put

ihn
it

[in
into

die
the

kiste
box

auf
on

dem
the

tisch]underG,minA,R

table
‘and then you take the ball in the kitchen and you put it into the box on the table’

4. und
and

dann
then

gehst
go
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‘and then you go to the bathroom and you take the ball that lies there and you put it
into the box that stands there’

9.4 Results
The collected corpus consists of 30 annotated sessions, each composed of two
treatments (small-scale space and large-scale space). Each treatment comprises
eight scenes with four sub-goals (termed turns) each. In total, the corpus con-
tains 4,589 annotated referring expressions, out of which 83 are errors (i.e.,
confusion of target objects and other errors with respect to the task of the exper-
iment). With the exception of the calculation of the error rate, we only consider
non-error ‘refex’ segments as the universe. The small-scale treatment contains
1,902 ‘refex’, with a mean number of 63.4 and a standard deviation of σ=1.98
per participant. This corresponds to the expected number of 64 referring ex-
pressions to be uttered: 8 scenes × 4 target object pairs (i.e., cookie and box).
The large-scale treatment contains 2,604 ‘refex’. On average the participants
produced 86.8 correct referring expressions (σ=18.19). As can be seen in Ex-
ample 76, this difference results from the participants’ referring to intermediate
way-points that introduce new spatial contexts in addition to the target objects.

Overall, the participants had no difficulties completing the two treat-
ments of the experiment. For both, the error rates are low: 1.78% on average
(σ=3.36%) in the small-scale treatment, and 1.80% on average (σ=2.98%)
for the large-scale treatment. A paired sample t-test of both scores for each
participant shows that there is no significant difference between the error rates
in the treatments (t=-0.019, df=29, p=0.985). This supports the claim that
both treatments were of equal difficulty for the participants. In addition, a
multivariate analysis of variance shows that there is no significant effect of
treatment-order for the verbal behavior under study. This rules out potential
carry-over effects. Figure 9.2 and Table 9.2 show the mean frequencies of over-
descriptive, minimally descriptive, and under-descriptive referring expressions
with respect to the models in both treatments.
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Figure 9.2: Bar chart visualization of Table 9.2.

Table 9.2: Mean frequencies (with standard deviation in italics) of minimal
(min), over-descriptions (over), and under-descriptions (under) with re-
spect to the models (A, R, G) in both treatments (LSS and SSS).

overG overA overR

small-scale 13.94% 34.45%
space 15.85% 14.37%

large-scale 6.81% 34.75% 20.06 %
space 7.53% 12.13% 10.10%

minG minA minR

small-scale 78.90% 60.11%
space 17.66% 13.13%

large-scale 68.04% 64.55% 76.73%
space 17.87% 13.13% 10.66%

underG underA underR

small-scale 7.16% 5.43%
space 12.07% 10.50%

large-scale 25.16% 0.69% 3.21%
space 19.48% 1.72% 5.06%
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As can be seen, evaluating the participants’ referring expressions in the small-
scale space treatment with respect to the global model yields the expected re-
sults: about 13.9% of the referring expressions contain redundant information
(overG). This is comparable to the results of Viethen and Dale (2006) who re-
port a rate of about 21% of over-descriptive referring expressions. In contrast
to their experiment, however, the small-scale scenes in our experiment did not
provide the possibility for producing more-than-minimal referring expressions
for every target object. The large standard deviation of the frequency of overG
referring expressions (σ=15.9%) illustrates that there is a huge variety in the par-
ticipants’ verbal behavior. underG referring expressions – hence unsuccessful
and ambiguous references – occur with a frequency of 7.2% in the data of the
small-scale space treatment. This is considerably less than the 16% reported by
Viethen and Dale (2006). Moreover, among the participants of our experiment
there is one outlier with a rate of 56% underG referring expressions. This is
due to the participant’s inconsistent use of the equivocal prepositional phrase
vor dir ‘in front of you’, which we annotated as ambiguous. Excluding this
outlier results in a mean frequency of 5.5% of underG ‘refex’.

Although underA has a slightly lower mean frequency than underG for the
small-scale scenes, this difference is not significant (t=2.018, df=29, p=0.053).
The significantly (t=9.806, df=29, p<0.001) higher mean frequency of minG

(78.9%, σ=17.7%) thanminA (60.1%, σ=13.1%), however, shows that global
is a much more accurate model for the verbal behavior in the small-scale
space treatment. This observation is supported by the significantly (t=-13.745,
df=29, p<0.001) lower mean frequency of overG (13.9%, σ=15.9%) than
overA (34.5%, σ=14.4%).

For the large-scale space treatment, on the other hand, the global model
does not fit the data well. A mean frequency of 25.2% underG referring ex-
pressions means that an RRE algorithm would fail to resolve the intended ref-
erent in approximately 1 out of 4 cases. The high standard deviation σ=19.5%
and the high median of 29% illustrate that for some participants the model fits
even worse.

With only 0.7% underA referring expressions (σ=1.7%) on average the
anchor-progression assumption models the gathered data from the large-scale
space treatment significantly better (t=6.776, df=29, p<0.001). Still, the model
yields a high rate of overA referring expressions (mean frequency of 34.8%,
σ=12.1%). In comparison, the anchor-resetting model yields a significantly
(t=-10.348, df=29, p<0.001) lower amount of over-descriptions overR (20,1%,
σ=10.1%). Themean frequency of under-descriptions underR (3.2%, σ=5.1%)
is significantly (t=2.765, df=29, p=0.010) higher than for underA, but still be-
low what the global model generates in the small-scale space treatment. With
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a mean frequency of 76.7% (σ=10.7%) minimal descriptions, anchor-resetting
models the data better than both global and anchor-progression. For the refer-
ring expressions in large-scale space minR is in the same range as minG for
the referring expressions in small-scale space.

9.5 Discussion
Overall, the two proposed models (anchor-progression and anchor-resetting)
yield a high mean frequency of over-descriptions in the large-scale space data.
This could be a side-effect of the experiment design. The participants might
have been inclined to makemore frequent use of redundant information because
of the imagined intelligence level of the robot. At the same time, 21% of the
referring expressions in the small corpus collected by Viethen and Dale (2006)
– which did not involve speaking to an artificial system like a robot – are over-
descriptions. This number is in the same range as the 20.1% of over-descriptions
that the anchor-resetting model yields for large-scale space.

However, since this means that the human-produced referring expressions
sometimes contain more information than minimally necessary, this does not
negatively affect the performance of an RRE algorithm. For a GRE algorithm,
however, amore cautious approachmight be desirable. Onemeasure for this can
be the principle of anchor-resetting. In order to reassure the hearer of the current
anchor, mentioning attention-directing information from the current physical
location to the location of the anchor can be useful after a sequence of minimal
descriptions. Whereas an algorithm has little difficulty in keeping track of long
sequences of transitions between symbols in its knowledge base, the linguistic
performance of humans deviates from their competence because of the nature
of human memory and cognition (Chomsky, 1957).

We thus suggest that the anchor-progression model is suitable for the RRE
task because it yields the least amount of unresolvable under-descriptions,
whereas for the GRE task, the anchor-resetting model is more appropriate.
It strikes a balance between producing short descriptions and supplementing
additional, helpful information by providing navigational information at the
beginning of each turn. This allows the hearer to follow the spatial progression
with little effort. Note that the resolution and generation of anaphora and other
expressions that pick up already introduced referents are outside the proposed
models and must be handled separately.

Another factor that might increase the inclusion of redundant information
when referring to entities outside the visual context is the inherent uncertainty
involved in knowledge about large-scale space. Typically, considerable por-
tions of such a dialogue serve the construction of a common agreement about
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some particular state of affairs underlying the topic under discussion. While
in dialogue people sometimes make “risky” utterances, in the specific setting
of one-way instruction-giving potential under-descriptions cannot be tolerated
because the robot cannot “collaborate” on the construction of reference. The in-
clusion of redundant information might thus answer the purpose of increasing
the likelihood of identifying the correct referent in case the conversation partner
has incomplete or divergent knowledge.

9.6 ImplementaƟon
The algorithms presented in the previous chapter, the knowledge representa-
tions and reasoning mechanisms from Part I, and the anchor-progression and
anchor-resetting models from Section 9.2 have been implemeted in a natural
language generation system. Here, we sketch the design of the implementation
and illustrate what the algorithms generate with respect to the domain of the
large-scale space treatment. The specificity of the generated referring expres-
sions corresponds tominA andminR, respectively.

9.6.1 Knowledge base design

The knowledge base is represented by an OWL-DL ontology that is augmented
with a set of custom rules reflecting the kind of reasoning a human would per-
form on the explicitly given information to infer additional knowledge.

The TBox consists of five major classes: Scene, Room, Corner, Land-
markObject, and TargetObject (see Figure 9.3). Scene is used as a top-level
spatial concept that contains all the individuals of the respective scene. The
five subclasses of Room correspond to the four labeled target rooms (Study,
Kitchen, Livingroom, and Bathroom), and Corridor (i.e., the initial position of
the robot and the person). The individuals in the domain correspond to the
TargetObjects Ball and Box for the LargeScaleScenes. The LandmarkObjectss
that can be used to further describe the target objects are instances of Table.
Additionally, the Floor of a Room can be used to disambiguate the referents.
Figure 9.3 shows the part of the TBox and ABox corresponding to the large-
scale space scene no. 12 in Figure 9.1b. The figure only shows the direct as-
serted classes for the individuals. The ontology asserts a number of facts about
the individuals in the scenes. Further knowledge is derived through OWL-DL
based reasoning, and through the use of custom rules. These rules perform a
kind of closed-world reasoning in that they rely on the absence of facts in order
to introduce new facts. The rules are listed in Figure 9.6.

The on_in_rule takes care of the fact that any object that is on another
object is also in the same room – this allows us to underspecify the asserted
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Corridor CORRIDOR12

Box

BOX12_1

BOX12_2

BOX12_3

BOX12_4

LandmarkObject

Table

Floor

Kitchen KITCHEN12

Scene

LargeScaleScene

Livingroom LIVINGROOM12

Ball

BALL12_1

BALL12_2

BALL12_3

BALL12_4

TABLE12_1

TABLE12_2

Room

Bathroom

Study

LARGESCENE12

owl:Thing

TargetObject

BATH12

BATHFLOOR12

KITCHENFLOOR12

LIVINGROOMFLOOR12

STUDYFLOOR12

STUDY12

Figure 9.3: The TBox of the large-scale space treatment and an ABox instanti-
ating one scene.
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roles between the individuals in the domain. For example, the knowledge base
contains the asserted facts that box12_3 is on table12_1, and that table12_1
is in kitchen12. The rule engine then infers the additional fact that box12_3
is also in kitchen12. The other rule (on_floor_rule) encodes another piece
of commonsense knowledge, namely that everything that is not on a table must
be on the floor of respective room it is located in.4

4The rule is of course a simplification. But it serves the purpose of not having to assert for every
object that it is placed on the floor. This information is neglected in most cases, but it is used in
cases where, within one room, a box must be discriminated from another box that is on a table.

rdf:Property

owl:ObjectProperty

rdfs:subPropertyOf

owl:TransitiveProperty

rdfs:subPropertyOf

topoIncluded
rdf:type

topoIncludes

rdf:type

topoIncludesTrans

rdf:type

in

rdf:type

on
rdf:type

rdfs:subPropertyOf

rdf:type

rdf:type

rdf:type

rdf:type

rdf:typerdf:type

rdfs:subPropertyOf

rdfs:subPropertyOf

owl:inverseOf

rdfs:subPropertyOf

Figure 9.4: RBox of the ontology used in the implementation.
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Figure 9.5: Depiction of the individuals in scene no. 12.
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[on_in_rule:
(?x on ?y),
(?y in ?z)
->
(?x in ?z)]

[on_floor_rule:
noValue(?x rdf:type Floor),
(?x anchor:in ?y), (?z rdf:type:Floor),
(?z in ?y), noValue(?x on ?o)
-> (?x on ?z)]

Figure 9.6: Custom Jena rules for the large-scale scene.

9.6.2 GeneraƟon of referring expressions

Discourse planning and surface realization are outside the scope of this thesis.
We thus present only the LFs of the referring expressions that are generated
by our implemented approach. The decision of which objects to refer to are
based on the utterances produced by the participants of the experiment. In a
full instruction-giving system, this decision could, for instance, be made by an
automated planning module such as the one presented by Brenner and Nebel
(2009) with an appropriately designed planning domain. The decision between
anaphoric and non-anaphoric REs could then be made by a GRE algorithm that
is aware of the discourse context, like Algorithm 2 in Section 8.1.1.

The GRE algorithm presented in the previous chapter is used to generate
the LFs of the referring expressions, which can be realized using OpenCCG (see
Section 8.1.2). Apart from the knowledge base (illustrated in Figures 9.3 and
9.5) and the functions to interface with it, the GRE algorithm requires an ordered
list of preferred attributes. For the implementation here we chose P=[type,
topoIncluded]. The modified algorithm for finding the best spatial relation first
determines the best landmark object, and then chooses the right sub-role (i.e.,
in or on, cf. Figure 9.4). The contrast set is determined according to TAA1 (cf.
Algorithm 3) on the basis of the attentional anchor and the intended referent. For
the generation task, we have used both the anchor-progression as well as the
anchor-resetting models. The attentional anchor progresses along the chosen
model, whereas the intended referents are given in a fixed sequence. Initially
the anchor corresponds to the utterance situation, i.e., corridor12.

The instructions consist of putting the green ball (ball12_1) into box12_1
(the green box) then to go to the living room (livingroom12), and to put the
yellow ball (ball12_2) into the yellow box (box12_2). The next instruction
turn is to take ball12_4 (the blue ball) go to the kitchen (kitchen12), and put
it into the blue box (box12_4). Finally, the red ball (ball12_3) is supposed to
be put into the red box (box12_3). The instructions are given in full sentences
for the sake of presentation. The differences between the anchor-progression
and the anchor-resetting models are highlighted in yellow.
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9.7 Conclusions
In this chapter, we have presented an approach to the challenges of generating
and resolving referring expressions to entities in large-scale space. The issues
we have addressed include the determination of an appropriate part of the do-
main as referential context, and the way exophoric references can shift the focus
of attention in the course of a discourse. We make use of the principle of topo-
logical abstraction for context determination in the GRE and RRE tasks. The
presented mechanisms of anchor-progression and anchor-resetting account for
the motion of the focus of attention across multiple utterances. We have also
reported on a production experiment for evaluating the proposed models. The
evaluation shows that simple global context models fail for situated discourse
about large-scale space. The gathered data support the claim that the anchor-
progression and anchor-resetting models are a more accurate account of human
verbal behavior in such discourses. We have also presented an implementation
of the proposed models integrated with the GRE approach of Chapter 8. We
have illustrated the output of the models for one large-scale space scene from
the experiment.
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Chapter 10

Summary and Outlook

Summary
In this chapter, we recapitulate the work presented in this thesis. We describe
an ongoing effort to transfer the proposed robotics-oriented models to au-
tonomous virtual agents that act in an online virtual 3D world. We conclude
with a discussion of open issues.

10.1 RecapitulaƟon
The work presented in this thesis addresses the fundamental questions how ma-
chines, such as robots and other autonomous agents, can acquire a mental repre-
sentation of their environment that allows them to (a) act and navigate in it, and
(b) communicate about it with humans in natural language. The kinds of en-
vironments under discussion are structured, human-oriented, large-scale spatial
environments – i.e., environments that cannot be apprehended as a perceptual
whole, such as indoor domestic environments, or building ensembles.

To this end, we have proposed a multi-layered conceptual spatial map that
ranges from low-level specialized sensor-based maps for robotic applications
over topological and categorical abstraction steps to a conceptual model that
divides space into rooms whose concepts are based on salient objects. The
conceptual map layer is implemented as an ontology-based knowledge base,
which allows for different kinds of reasoning, including Description Logic-
based inference, nonmonotonic maintenance of symbolic representations of
spatial units, and prototypical default reasoning.

The proposed models have been implemented in several integrated au-
tonomous mobile cognitive robotic systems developed within the EU-funded
research projects “CoSy” and “CogX.” The systems highlight how a mo-
bile robot can build up spatial representations, both autonomously (i.e., in a
curiosity-driven way) and semi-autonomously (i.e., through a process called
human-augmented mapping), and how the conceptual spatial knowledge can
be used for goal-directed action planning and execution.
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These models are then used as knowledge bases for situated natural language di-
alogue about entities in large-scale spatial environments. By that, the presented
work goes beyond situated natural language interaction about an agent’s imme-
diate surroundings (i.e., small-scale space), such as table-tops or single room
spaces. The approach allows an agent to successfully generate and resolve natu-
ral language expressions that refer to entities in large-scale space. The approach
is backed by observations from an empirical spoken language production exper-
iment. The thesis concludes with a discussion of ongoing work to transfer the
models made for intelligent mobile robots to autonomous virtual agents that act
in an online virtual 3D world.

In Chapter 2, we presented the scientific background that the work in this
thesis builds upon. After a short overview of research on cognitive systems, we
presented an introduction to autonomous agents, including some background
in robotics, in particular autonomous and intelligent mobile robots, and virtual
worlds. We then discussed relevant aspects of the study of embodied cogni-
tion, human categorization and conceptualization. An introduction to ontology-
based knowledge representations concluded the chapter.

InChapter 3, we identified structuring of space and categorization of large-
scale space as two important aspects of spatial understanding. In order to enable
an autonomous agent to engage in a situated dialogue about its environment, it
needs to have a human-compatible spatial understanding, whereas autonomous
behavior, such as navigation, requires the agent to have access to low-level spa-
tial representations. Addressing these two challenges, we presented an approach
to multi-layered conceptual spatial mapping. The description of our approach
is embedded in a discussion of relevant research in human spatial cognition and
mobile robot mapping.

InChapter 4, we focused on the conceptual map layer of the multi-layered
spatial. We showed how Description Logics can be used to perform inference
on a human-compatible symbolic conceptualization of space. We further pro-
posed methods for prototypical default reasoning and belief revision to extend
the capabilities of autonomous agents.

In Chapter 5, we introduced the Explorer robot system. The Explorer
implements the approach to multi-layered conceptual spatial mapping in an
integrated robotic system. The mobile robot base is equipped with different
sensors for map building, place and object recognition, and user interaction.
We illustrated how the multi-layered map can be acquired interactively in a so-
called guided tour scenario. We furthermore presented amethod for human- and
situation-aware people following that makes use of the higher-level information
of the multi-layered conceptual spatial map, thus increasing the perceived level
of intelligence of the robot.
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In Chapter 6, we presented an extension of the Explorer system. The pre-
sented implementation makes use of PECAS, a cognitive architecture for intel-
ligent systems, which combines fusion of information from a distributed, het-
erogeneous architecture, with an approach to continual planning as architectural
control mechanism. We showed how the PECAS-based Explorer system im-
plements the multi-layered conceptual spatial model. Moreover, we showed
how – in the absence of factual knowledge – prototypical default knowledge
derived from a Description Logic-based ontology can be used for goal-directed
planning for situated action in large-scale space.

In Chapter 7, we presented an approach in which a conceptual map is
acquired or extended autonomously, through a closely-coupled integration of
bottom-up mapping, reasoning, and active observation of the environment. The
approach extends the conceptual spatial mapping approach, and allows for a
nonmonotonic formation of the conceptual map, as well as two-way connec-
tions between perception, mapping and inference. The approach has been im-
plemented in the integrated mobile robot system Dora. It uses rule- and DL-
based reasoning and nonmonotonic inference over an OWL ontology of com-
monsense spatial knowledge, together with active visual search and information
gain-driven exploration. It has been tested in several experiments that illustrate
how amobile robotic agent can autonomously build its multi-layered conceptual
spatial representation, and how the conceptual spatial knowledge can influence
its autonomous goal-driven behavior.

In Chapter 8, we presented an approach to the task of generating and re-
solving referring expressions to entities in large-scale space. It is based on
the spatial knowledge base presented in the previous chapters. Existing algo-
rithms for the generation of referring expressions try to find a description that
uniquely identifies the referent with respect to other entities that are in the cur-
rent context. The kinds of autonomous agents we are considering, however,
act in large-scale space. One challenge when referring to elsewhere is thus to
include enough information so that the interlocutors can extend their context
appropriately. To this end, we present the principle of topological abstraction
(TA) as a method for context construction that can be used for both generat-
ing and resolving referring expressions – two previously disjoint aspects. We
showed how our approach can be embedded in a bi-directional framework for
natural language processing for conversational robots.

In Chapter 9, we presented an approach to producing and understanding
referring expressions to entities in large-scale space during a discourse. The
approach builds upon the principle of topological abstraction (TA) presented
in Chapter 8. Here, we addressed the general problem of establishing refer-
ence from a discourse-oriented perspective. To this end, we proposed anchor-
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progression and anchor-resetting mechanisms to track the origin of the TA al-
gorithms throughout the discourse that model the way attention-directing infor-
mation unfolds during the course of a discourse. We presented an empirical
production experiment that evaluates the utility of the proposed methods with
respect to situated instruction-giving in small-scale space on the one hand, and
large-scale space on the other. We concluded with a discussion of an imple-
mentation of the approach and gave examples of its performance with respect
to the domain of the production experiment.
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10.2 Ongoing Work: Transfer of the SpaƟal Model
to a Virtual Agent

As sketched earlier (cf. Section 2.3 and Chapter 3), virtual online worlds can
also be viewed as human-oriented environments. Autonomous virtual agents
acting in such a 3D world and autonomous mobile robots operating in the real
world thus encounter similar challenges. They both have an embodied shared
presence (cf. Section 2.1) with the humans they interact with. Situated interac-
tions with humans in their environment require them to be aware of the spatial
situation they are part of.

We are currently investigating a transfer of the spatial model and natural
language processing methods presented in this work to a virtual NPC agent
for the 3D virtual world Twinity.1 According to the multi-layered conceptual
spatial mapping approach, the lower layers of the spatial model must be instan-
tiated with interfaces to and abstractions over the world representation of the
Twinity engine, whereas the conceptual layer must only be adapted to reflect
the concepts that are present in the domain. Figure 10.1 shows the basic sys-
tem architecture used for interfacing our virtual agent control with the Twinity
world server. The implementational details of this infrastructure is described in
(Klüwer et al., 2010).
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Figure 10.1: System architecture for virtual agents in the Twinity world.

In Twinity, the world consists currently of three cities that are based on real cities
(i.e., Berlin, Singapore, and London).2 These cities contain a street network
based on the actual city map. Buildings contain apartments and other indoor
spaces (termed “LocalSpace”). Our spatial model will focus on LocalSpaces.
Being human-oriented environments, the LocalSpaces are not crisply divided
into individual rooms or other areas that would be accessible through the Twin-
ity interface. At the present time, the Twinity server does not provide much
environment information. It only provides information about which items (i.e.,
objects, pieces of furniture, decoration etc.) are present in the LocalSpace and
1This section describes a currently ongoing integration of our approach with the KomParse system
developed by Peter Adolphs, Tina Klüwer, FeiyuXu, andXiwen Cheng, with the help of Torsten
Huber and Weijia Shao. See also http://komparse.dfki.de/ [last accessed 2010-05-20]

2http://www.twinity.com/ [last accessed on 2010-05-05]

http://komparse.dfki.de/
http://www.twinity.com/


202 Summary and Outlook

their x-y-coordinates. Since the positions of walls are currently not available
through the interface, we determined the outlines of the walls in a few apart-
ments by hand. This then yields a basic spatial segmentation of LocalSpaces
into rooms. In order to automatically and autonomously acquire room models,
we are investigating the utility of the home tour scenario for a human-augmented
mapping (cf. Section 5.3.5) of novel environments. Figure 10.2 shows a user-
furnished apartment for which we have manually created a metric map.

Using a topological computation on the basis of the boundaries of the
rooms, we can then compute in which rooms contain which items in the Lo-
calSpace. Together with the information which rooms (and possibly which
floors, in case of multistory LocalSpaces) are in a given apartment, we can then
derive a basic containment hierarchy (cf. Section 3.1.1) for a LocalSpace and
its constituents (illustrated in Figure 10.3).

Figure 10.2: A modern apartment in Twinity.
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Figure 10.3: Containment hierarchy of the individuals in ABox ATwinity .
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Figure 10.4: Part of the TBox TTwinity instantiated in ATwinity (see Fig-
ure 10.3).
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One advantage of the Twinity world over realistic robotic applications is that
object detection does not have to rely on computer vision. Recognition of ob-
ject categories as well as detection of arbitrary objects are hard problems for
computer vision that have not yet been solved. At least for the items that are
provided by the Twinity engine (e.g., obtainable through in-game stores) the
categories are known – for items that are based on user-built custom 3D mod-
els, this is not necessarily the case. For the ‘official’ Twinity items, there exists
a rich ontology, as described in (Klüwer et al., 2010). This makes it easy to
integrate the Twinity object ontology with the indoor common sense ontolo-
gies presented in this work. Figure 10.4 shows those concepts from the TBox
TTwinity that are instantiated by the individuals from the example environment
(see Figure 10.2).

The high amount of objects in the apartment, however, highlights a short-
coming of our approach. Due to different factors, e.g., presumably, the way in
which players control their avatars, and the perspective that players have of the
environment, leads players to have apartments that contain large, open spaces.
The requirements of an apartment in a virtual world are very different from
apartments in the real world. Rather than providing privacy and facilities for
daily chores, virtual apartments serve mainly representative functions. Giving
artistic form to a part of a virtual world is probably the predominatingmotivation
behind players’ decorating and furnishing such apartments. Instead of individ-
ual rooms dedicated to specific tasks, these large rooms are then conceptually
divided into smaller areas where objects that support a common purpose are
grouped. Figure 10.2 shows the greater part of the apartment of ATwinity . In
such a case, the objects-in-room based inference from Chapter 4 (see also the
simplified definitions shown in Figure 10.5b) yields a too diverse conceptual-
ization and a too coarse spatial segmentation, as shown in Figure 10.5a.

For such environments, the notion of room as functional unit is too coarse.
We are currently investigating the possibility of using a clustering approach like
the one by Viswanathan et al. (2009) for determining spatial segments based
on object clusters. In the example apartment (see Figure 10.2), the concept
“kitchen” applies to a part of the overall room only – the part in which the
kitchen range, the freezer and the sink are located – whereas the portion of
space in front of the desk with the notebook could be referred to as “office.”



206 Summary and Outlook

10.3 Open Issues
There are several aspects of the work presented in this thesis that offer opportu-
nities for improvements and extensions in future research. We want to conclude
this thesis with identifying three such aspects, and presenting ideas and sugges-
tions for how to address them.

10.3.1 Ontology design and commonsense knowledge
Typically, ontologies are designed and manually created by experts, often do-
main experts or experts in formal knowledge representation and formalization.
This engineering-oriented approach towards ontology building has the disad-
vantage that the thus created ontologies tend to reflect their creators’ view of
the world. Instead of real common sense, it reflects the common sense of one
person or a small group of people.

One of the open challenges with respect to the conceptual spatial knowl-
edge base presented in this work is thus to automatically acquire an ontology
that reflects common sense in a broader view. Such an approach should be
based on a large amount of gathered data, such as from observing and analyz-
ing people’s homes and other indoor environments. However, given the current
limitations of computer vision (as mentioned in the previous section), and con-
sidering safety, security, robustness, and privacy issues, it is currently not feasi-
ble to deploy autonomous mobile robot’s in people’s homes in order to acquire
more realistic, commonsense models.

Intelligent robotics, though, is not the only discipline that has a demand for
large amounts of realistic training data. Currently, a number of efforts are in
progress that try to gather large amounts of labeled and segmented images for
training computer vision algorithms on. We suggest exploiting these data bases
for establishing correlations between object occurrences and specific room con-
cepts that could help make our approach more generally applicable. One such
effort is the LabelMe3 project by MIT CSAIL (Russell et al., 2008). LabelMe
contains, as of today, 183,407 digital images (out of which 58,926 are annotated
with the objects they contain) of indoor and outdoor scenes. (Viswanathan et al.,
2010) present an approach to visual place classification based on detected object
occurrences that makes use of the LabelMe statistics.

Another effort towards collecting commonsense knowledge from many
people is the Open Mind Indoor Common Sense (OMICS) project4 by Honda
Research Institute USA Inc.. The approach of the OMICS project is to ask
people on the web to fill in the blanks in different sentences about everyday
3http://labelme.csail.mit.edu/ [last accessed 2010-05-20]
4Freely available at http://openmind.hri-us.com/

http://labelme.csail.mit.edu/
http://openmind.hri-us.com/
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situations. One table of the OMICS database contains the associations be-
tween typical objects and their typical locations that people have reported. The
knowledge is rather unstructured – in fact only object-location pairs can be
extracted – and is not immediately ready for automated reasoning. Its advan-
tage is its focus on domestic indoor environments, which makes it valuable
for our approach. It is conceivable to make use of the indoor objects and
locations reported by users in order to restrict the search space when computing
correlations between rooms and objects in the LabelMe dataset. Moreover, the
information in the OMICS locations table can be used as a different method for
generating prototypical assumptions (see Section 4.3.1 and Section 6.2.3).

Finally, in a virtual world like Twinity (see Section 10.2), NPC avatars en-
counter fewer restrictions regarding safety and security. Even privacy is much
less of an issue. We are thus planning to use a guided home tour scenario to
gather statistical data about object presence and room conceptualization for
user-maintained LocalSpaces in Twinity. Although the collected data might not
scale to the real world, the approach can yield a valid conceptualization within
the virtual world, and secondly the approach can inform and foster extensions
of robot-based exploration and human-augmented mapping.

10.3.2 Belief revision and belief update
As explained in Section 4.3, our focus in the conceptual map layer is to main-
tain a consistent and faithful model of the current state of the environment.
Autonomous agents are faces with two fundamentally different circumstances
that require them to adapt their representation of the current state-of-affairs. For
one, in a dynamic environment things move, new events happen – change is the
rule rather than the exception. An agent must be aware of these changes and ac-
commodate them in his knowledge base. Secondly, the perception of an agent
might be noisy and, in case of large-scale spatial environments, incomplete.
There is hence an inherent uncertainty in interpretations of sensor input, which
might lead to false assumptions and erroneous derivations. As soon as the agent
notices a previous error, it has to revise its belief about the state of the world.
The first process, accommodation of changed information, is also called belief
update, whereas the latter, error-recovery, is a case of belief revision (Russell
and Norvig, 2003).

In our approach, this distinction is not made because the aim of the con-
ceptual map is to provide an accurate account of the current state-of-affairs at
any point. In contrast, an agent that is supposed to have a memory of its past
experiences, i.e., an agent that is supposed to have a notion of time, must be able
to differentiate between the two cases. Krieger (2010a) presents an account to
representing individuals as perdurants that have time slices, which specify an
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extension in time. This allows to express diachronic (e.g., relationships that
change over time) as well as synchronic knowledge, thus extending the knowl-
edge base with a notion of dynamics. An approach to also take the agent’s
changing belief into account could make use of creating time-indexed ABoxes.
Together with the perdurant/time-slice approach, this would provide the agent
with the possibility to reason about its own changing belief about a changing
world.

10.3.3 RestricƟve and aƩribuƟve informaƟon
We presented a model for situated generation and resolution of referring expres-
sions that makes use of a spatial knowledge base. In our algorithms as well as
our experiment, we assume that the interlocutors, i.e., the agent and its user(s),
are familiar with the environment they are talking about. A topic that we have
not addressed in this work is the ability to talk about entities that are not (yet)
known.

For natural language processing, this poses challenges in both directions.
The agent must be able to understand that an expression refers to an unknown
entity, or an unknown property of the referent – either unknown to itself, or un-
known to the hearer – and adapt its verbal behavior accordingly. If a referent (or
some of its properties) can be unknown to the agent, the agent must be able to
deal with the possibility that for the reference resolution process not all informa-
tion is to be used restrictively. Some of the information conveyed by the speaker
can be used attributively, i.e., conveying additional information that augments
the agent’s knowledge about the referent. In such a case, the agent should em-
ploy an active clarification strategy in which it negotiates which information is
restrictive (i.e., meant to single out the referent among potential distractors) and
which is attributive (i.e., meant to provide new information about the referent).
An open issue for further research is hence to extend approaches to situated
clarification and tutoring like the ones by Kruijff et al. (2008), Vrečko et al.
(2009) and Skočaj et al. (2010), which are targeted at fully observable scenes,
to large-scale space scenarios, which are not fully observable by the agent and
its interlocutors. If, on the other hand, the agent must use information that is not
known to the hearer, it needs to be able to notice that the hearer might have mis-
understood a reference. In realistic settings, in which partial knowledge about
the environment being talked about must be assumed for all interlocutors, how-
ever, misunderstanding and the need for clarification might arise in any of the
interlocutors. Ultimately, hence, the agent must be able to engage in the col-
laborative process of building common ground during the course of a situated
dialogue (Clark and Wilkes-Gibbs, 1986; Janíček, 2010).



List of Figures

2.1 Industrial robot for factory automation.
The photograph has been released into the public domain by its author,
KUKA Roboter GmbH. . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Two mobile robots with different morphologies: Nao and P3-DX. 19
2.3 Autonomous mobile robots designed for user interaction: Nes-

bot, BIRON, Dora.
Nesbot image source (last accessed on 2010-04-19):
http://www.bluebotics.com/company/portfolio.php, reproduced
with kind permission.
BIRON image courtesy of Marc Hanheide, reproduced with kind
permission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 A conversational virtual bartender agent.
Twinity screenshot taken from (Klüwer et al., 2010), reproduced with
kind permission. . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 An ontology of family relationships.
Based on “generations.owl: an ontology about family relation-
ships that demonstrates classification” by Matthew Horridge. Source
(last accessed on 2010-05-25):
http://protegewiki.stanford.edu/wiki/Protege_Ontology_Library 28

3.1 Office environment “seen” by different robot sensors.
Still images and sensor readings taken from the CoSy Localization
Database (COLD) (Pronobis and Caputo, 2009). Reproduced with
kind permission. . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Examples of human-oriented environments. . . . . . . . . . . 33
3.3 Examples of robotic spatial representations for SLAM.

Grid map image generated from the marina dataset (Ribas et al.,
2008), courtesy of Shanker Keshavdas.
Line-feature map image taken from (Zender et al., 2008), courtesy of
Patric Jensfelt. . . . . . . . . . . . . . . . . . . . . . . . . . . 34



210 List of Figures

3.4 Illustration of a multi-layered conceptual spatial map. . . . . . 41
3.5 The COARSE model by Pronobis et al. (2010b).

Figure adapted from (Wyatt et al., 2010), reproduced with kind per-
mission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 A part of the commonsense indoor office environment ontology. 45
3.7 Combining different types of knowledge in the conceptual map. 46

4.1 Commonsense ontology of an indoor environment. . . . . . . 55
4.2 RDF graph for a part of Tindoor. . . . . . . . . . . . . . . . . 61
4.3 RDF graph for a part of Tindoor,Rindoor and Aex. . . . . . . 71

5.1 Features and accessories of the PeopleBot “Robone.” . . . . . 81
5.2 Overview of the components of the Explorer robotic system. . 83
5.3 The Explorer instantiation of the multi-layered conceptual spa-

tial map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.4 Navigation graph overlayed on the metric line-feature map. . . 88
5.5 Illustration of the TBox Texplorer. . . . . . . . . . . . . . . . 90
5.6 The tutor activating the robot for a guided tour. . . . . . . . . 92
5.7 “Aha. I see a television.” . . . . . . . . . . . . . . . . . . . . 94
5.8 Convergence on a consistent interpretation of space. . . . . . . 96
5.9 Information flow for robot control in people following mode. . 98
5.10 Corridor follow mode. . . . . . . . . . . . . . . . . . . . . . 100
5.11 The robots “Robone” and “Minnie” used in the experiments,

and screen-shots from the experiments. . . . . . . . . . . . . . 102
5.12 Speed profiles and trajectories for two experimental runs. . . . 103

6.1 Binding localization and conceptual information. . . . . . . . 109
6.2 The Explorer architecture. . . . . . . . . . . . . . . . . . . . 112
6.3 The “Borland book.” . . . . . . . . . . . . . . . . . . . . . . 113
6.4 Initial situation: the user approaches the robot. . . . . . . . . . 117
6.5 State after the command “Find me the Borland Book.” . . . . 118
6.6 Hypothetical position of the Borland book. . . . . . . . . . . . 121
6.7 Perceived location of the book . . . . . . . . . . . . . . . . . 122

7.1 Screenshots of an exploration sequence of Dora. . . . . . . . 127
7.2 Places.

Figures courtesy of Kristoffer Sjöö, reproduced with kind permission. 129
7.3 Placeholder creation.

Figure courtesy of Kristoffer Sjöö, reproduced with kind permission. . 130
7.4 Rules for room segmentation. . . . . . . . . . . . . . . . . . . 133



List of Figures 211

7.5 Visualization of a goal-management SA state. . . . . . . . . . 136
7.6 Data flow in the spatial SA.

Figure courtesy of Kristoffer Sjöö, reproduced with kind permission. . 137
7.7 Stage simulation environment. . . . . . . . . . . . . . . . . . 140
7.8 Screenshots from the experiments. . . . . . . . . . . . . . . . 140
7.9 Precision, recall, balanced f-score and coverage of the experi-

mental runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.1 Situated dialogue with a campus service robot. . . . . . . . . 146
8.2 Hierarchy of CCG modal markers.

Adapted from Baldridge and Kruijff (2003). . . . . . . . . . . . . 157
8.3 Example for a hierarchical representation of space. . . . . . . 161
8.4 Illustration of the TA principle. . . . . . . . . . . . . . . . . . 162
8.5 Subset of a conceptual map for an office environment. . . . . 166
8.6 Syntactic derivation, LF, a-modal DAG and SPARQL query. . 167

9.1 Two of the scenes shown in the experiment. . . . . . . . . . . 179
9.2 Bar chart visualization of Table 9.2. . . . . . . . . . . . . . . 185
9.3 The TBox of the large-scale space treatment and an ABox in-

stantiating one scene. . . . . . . . . . . . . . . . . . . . . . . 189
9.4 RBox of the ontology used in the implementation. . . . . . . . 190
9.5 Depiction of the individuals in scene no. 12. . . . . . . . . . . 190
9.6 Custom Jena rules for the large-scale scene. . . . . . . . . . . 191

10.1 System architecture for virtual agents in the Twinity world.
Figure adapted from (Klüwer et al., 2010), reproduced with kind per-
mission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

10.2 A modern apartment in Twinity. . . . . . . . . . . . . . . . . 202
10.3 Containment hierarchy of the individuals in ABox ATwinity . . 202
10.4 Part of the TBox TTwinity instantiated in ATwinity (see Fig-

ure 10.3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
10.5 Object-based room concept inference for TTwinity . . . . . . . 204





Bibliography

James F. Allen, Lenhart K. Schubert, George Ferguson, Peter Heeman,
Chung Hss Hwang, Tsuneaki Kato, Marc Light, Nathaniel G. Martin, Brad-
ford W. Miller, Massimo Poesio, and David R. Traum. The TRAINS project:
A case study in building a conversational planning agent. Journal of Exper-
imental and Theoretical AI, 7(1):7–48, 1995.

Anne H. Anderson, Miles Bader, Ellen G. Bard, Elizabeth Boyle, Gwyneth M.
Doherty, Simon C. Garrod, Stephen Isard, Jacqueline Kowtko, Jan McAllis-
ter, Jim Miller, Cathy Sotillo, Henry S. Thompson, and Regina Weinert. The
HCRC Map Task corpus. Language and Speech, 34:351–366, 1991.

Grigoris Antoniou. Nonmonotonic Reasoning. The MIT Press, Cambridge,
MA, USA, 1997.

Grigoris Antoniou and Frank van Harmelen. A Semantic Web Primer, 2nd Edi-
tion. Cooperative Information Systems. The MIT Press, Cambridge, MA,
USA, 2008.

Douglas E. Appelt. Planning english referring expressions. Artificial Intelli-
gence, 26(1):1–33, 1985.

Carlos Areces. Logic Engineering. The Case of Description and Hybrid Log-
ics. PhD thesis, University of Amsterdam, Amsterdam, The Netherlands,
October 2000.

Kai O. Arras, Óscar Martínez Mozos, and Wolfram Burgard. Using boosted
features for the detection of people in 2D range data. In Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA 2007),
Rome, Italy, April 2007.

Nicholas Asher and Alex Lascarides. Logics of Conversation. Cambridge Uni-
versity Press, Cambridge, UK; New York, NY, USA, 2003.

Franz Aurenhammer. Voronoi diagrams—a survey of a fundamental geometric
data structure. ACM Computing Surveys, 23(3):345–405, 1991.



214 Bibliography

Franz Baader. Description logic terminology. In Franz Baader, Deborah L.
McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, editors, The De-
scription Logic Handbook: Theory, Implementation, and Applications, chap-
ter Appendix 1. Cambridge University Press, Cambridge, UK; New York,
NY, USA, 2003.

Franz Baader andWerner Nutt. Basic description logics. In Franz Baader, Deb-
orah L. McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, editors,
The Description Logic Handbook: Theory, Implementation, and Applica-
tions, chapter 2. Cambridge University Press, Cambridge, UK; New York,
NY, USA, 2003.

Franz Baader, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Implementa-
tion, and Applications. Cambridge University Press, Cambridge, UK; New
York, NY, USA, 2003.

William Sims Bainbridge. The scientific research potential of virtual worlds.
Science, 317(5837):472–476, July 2007.

JasonBaldridge andGeert-JanM.Kruijff. Coupling CCG andHybrid LogicDe-
pendency Semantics. In Proceedings of the 40th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL 2002), pages 319–326, Philadel-
phia, PA, USA, July 2002.

Jason Baldridge and Geert-Jan M. Kruijff. Multi-modal combinatory categorial
grammmar. In Proceedings of the 10th Conference of the European Chap-
ter of the Association for Computational Linguistics (EACL 2003), pages
211–218, Budapest, Hungary, April 2003.

Richard Bartle. Designing Virtual Worlds. New Riders, 2003.

John A. Bateman. Enabling technology for multilingual natural language gen-
eration: the KPML development environment. Journal of Natural Language
Engineering, 3(1):15–55, 1997.

John A. Bateman. Using aggregation for selecting content when generating re-
ferring expressions. In Proceedings of the 37th annual meeting of the Associ-
ation for Computational Linguistics on Computational Linguistics (ACL’99),
pages 127–134, Morristown, NJ, USA, 1999. Association for Computational
Linguistics.



Bibliography 215

John A. Bateman, Renate Henschel, and Fabio Rinaldi. Generalized Upper
Model 2.0: documentation. Technical report, GMD/Institut für Integrierte
Publikations- und Informationssysteme, Darmstadt, Germany, 1995.

Andrea Bauer, Klaas Klasing, Georgios Lidoris, Quirin Mühlbauer, Florian
Rohrmüller, Stefan Sosnowski, Tingting Xu, Kolja Kühnlenz, Dirk Woll-
herr, and Martin Buss. The Autonomous City Explorer: Towards natural
human-robot interaction in urban environments. International Journal of So-
cial Robotics, 1(2):127–140, 2009.

Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deborah L.
McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein. OWL Web
Ontology Language reference. http://www.w3.org/TR/owl-ref/, February
2004. [Last accessed on 2010-04-26].

Dave Beckett and Art Barstow. N-TriplesW3CRDFCoreWG internal working
draft. http://www.w3.org/2001/sw/RDFCore/ntriples/, September 2001.
[Last accessed on 2010-04-21].

Patrick Beeson, Matt MacMahon, Joseph Modayil, Aniket Murarka, Benjamin
Kuipers, and Brian Stankiewicz. Integrating multiple representations of spa-
tial knowledge for mapping, navigation, and communication. In Interaction
Challenges for Intelligent Assistants, Papers from the AAAI Spring Sympo-
sium, Stanford, CA, USA, 2007. AAAI.

Patrick Beeson, JosephModayil, and Benjamin Kuipers. Factoring the mapping
problem: Mobile robot map-building in the Hybrid Spatial Semantic Hierar-
chy. International Journal of Robotics Research, 29(4):428–459, 2010.

Brent Berlin and Paul Kay. Basic Color Terms: Their Universality and Evolu-
tion. University of California Press, Berkeley, CA, USA, 1969.

Patrick Blackburn. Representation, reasoning, and relational structures: a hy-
brid logic manifesto. Journal of the Interest Group in Pure Logic, 8(3):
339–365, 2000.

Anna M. Borghi. Object concepts and action. In Diane Pecher and Rolf A.
Zwaan, editors,Grounding Cognition – The Role of Perception and Action in
Memory, Language and Thinking. Cambridge University Press, Cambridge,
UK; New York, NY, USA, 2005.

http://www.w3.org/TR/owl-ref/
http://www.w3.org/2001/sw/RDFCore/ntriples/


216 Bibliography

Johan Bos, Ewan Klein, and Tetsushi Oka. Meaningful conversation with a
mobile robot. In Proceedings of the Research Note Sessions of the 10th Con-
ference of the European Chapter of the Association for Computational Lin-
guistics (EACL 2003), pages 71–74, Budapest, Hungary, 2003.

Susan E. Brennan and Herbert H. Clark. Conceptual pacts and lexical choice in
conversation. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 22(6):1482–1493, 1996.

Michael Brenner and Bernhard Nebel. Continual planning and acting in dy-
namic multiagent environments. Journal of Autonomous Agents and Multi-
agent Systems, 19(3):297–331, 2009.

Dan Brickley and R. V. Guha. RDF vocabulary description language 1.0: RDF
Schema. http://www.w3.org/TR/rdf-schema/, October 2004. [Last accessed
on 2010-03-23].

Roger Brown. How shall a thing be called? Psychological Review, 65(1):
14–21, 1958.

Wolfram Burgard, Armin B. Cremers, Dieter Fox, Dirk Hähnel, Gerhard Lake-
meyer, Dirk Schulz, Walter Steiner, and Sebastian Thrun. Experiences with
an interactive museum tour-guide robot. Artificial Intelligence, 114(1–2):
3–55, October 1999.

Pär Buschka and Alessandro Saffiotti. Some notes on the use of hybrid maps
for mobile robots. In Proceedings of the 8th International Conference on
Intelligent Autonomous Systems (IAS), Amsterdam, The Netherlands, March
2004.

Donna K. Byron and James F. Allen. What’s a reference resolution module to
do? redefining the role of reference in language understanding systems. In
Proceedings of the 4th Discourse Anaphora and Anaphor Resolution Collo-
quium (DAARC2002), pages 80–87, 2002.

Donna K. Byron and Eric Fosler-Lussier. The OSU Quake 2004 corpus of two-
party situated problem-solving dialogs. In Proceedings of the 15th Language
and Resources and Evaluation Conference (LREC’06), 2006.

Donna K. Byron, Alexander Koller, Kristina Striegnitz, Justine Cassell, Robert
Dale, Johanna Moore, and Jon Oberlander. Report on the first NLG chal-
lenge on generating instructions in virtual environments (GIVE). In Pro-
ceedings of the 12th European Workshop on Natural Language Generation

http://www.w3.org/TR/rdf-schema/


Bibliography 217

(ENLG 2009), Athens, Greece, March 2009. Association for Computational
Linguistics.

Jean Carletta and Christopher S. Mellish. Risk-taking and recovery in task-
oriented dialogue. Journal of Pragmatics, 26(1):71–107, 1996.

Kai-Uwe Carstensen, Christian Ebert, Cornelia Ebert, Susanne Jekat, Ralf
Klabunde, and Hagen Langer, editors. Computerlinguistik und Sprachtech-
nologie – Eine Einführung. Spektrum Akademischer Verlag, Heidelberg,
Germany, 3rd edition, 2010.

Noam Chomsky. Syntactic Structures. Mouton, The Hague / Paris, 1957.

Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram
Burgard, Lydia E. Kavraki, and Sebastian Thrun. Principles of RobotMotion:
Theory, Algorithms and Implementations. The MIT Press, Cambridge, MA,
USA, 2005.

Eric L. Chown. Making predictions in an uncertain world: Environmental struc-
ture and cognitive maps. Adaptive Behavior, 7(1):17–33, December 1999.

Eric L. Chown. Gateways: An approach to parsing spatial domains. In Pro-
ceedings of the International Conference on Machine Learning Workshop on
Machine Learning of Spatial Knowledge, pages 1–6, Palo Alto, California,
2000.

Eric L. Chown, Stephen Kaplan, and David Kortenkamp. Prototypes, loca-
tion, and associative networks (PLAN): Towards a unified theory of cognitive
mapping. Cognitive Science, 19(1):1–51, 1995.

Henrik Iskov Christensen, Geert-Jan M. Kruijff, and Jeremy L. Wyatt, editors.
Cognitive Systems, volume 8 of Cognitive Systems Monographs. Springer
Verlag, Berlin/Heidelberg, Germany, 2010.

Herbert H. Clark and Deanna Wilkes-Gibbs. Referring as a collaborative pro-
cess. Cognition, 22:1–39, 1986.

Anthony G. Cohn and Shyamanta M. Hazarika. Qualitative spatial representa-
tion and reasoning: An overview. Fundamenta Informaticae, 46:1–29, 2001.

Roger M. Cooper. The control of eye fixation by the meaning of spoken lan-
guage : A new methodology for the real-time investigation of speech percep-
tion, memory, and language processing. Cognitive Psychology, 6(1):84–107,
1974.



218 Bibliography

Kenny R. Coventry and Simon C. Garrod. Saying, Seeing and Acting – The
Psychological Semantics of Spatial Prepositions. Essays in Cognitive Psy-
chology. Psychology Press, 2004.

Jacob W. Crandall and Michael A. Goodrich. Experiments in adjustable auton-
omy. In Proceedings of the IEEE International Conference on Systems, Man,
and Cybernetics, 2001.

Madalina Croitoru and Kees van Deemter. A conceptual graph approach to
the generation of referring expressions. In Proceedings of the 20th Inter-
national Joint Conference on Artificial Intelligence (IJCAI-07), Hyderabad,
India, January 2007.

Robert Dale and Nick Haddock. Generating referring expressions involving
relations. In Proceedings of the Fifth Meeting of the European Chapter of
the Association for Computational Linguistics, Berlin, Germany, April 1991.

Robert Dale and Ehud Reiter. Computational interpretations of the Gricean
Maxims in the generation of referring expressions. Cognitive Science, 19(2):
233–263, 1995.

Keith Devlin. Logic and Information. Cambridge University Press, Cambridge,
UK; New York, NY, USA, 1991.

Keith Devlin. Situation theory and situation semantics. In Dov M. Gabbay
and John Woods, editors, Logic and the Modalities in the Twentieth Century,
volume 7 of Handbook of the History of Logic, pages 601–664. Elsevier,
2006.

Albert Diosi, Geoffrey Taylor, and Lindsay Kleeman. Interactive SLAM using
laser and advanced sonar. In Proceedings of the 2005 IEEE International
Conference on Robotics and Automation (ICRA 2005), Barcelona, Spain,
April 2005.

Keith S. Donnellan. Reference and definite descriptions. Philosophical Review,
75(3):281–304, 1966.

Max J. Egenhofer and M. Andrea Rodríguez. Relation algebras over containers
and surfaces: An ontological study of a room space. Spatial Cognition and
Computation, 1(2):155–180, 1999.

Mica R. Endsley and Daniel J. Garland, editors. Situation Awareness Analysis
and Measurement. Laurence Erlbaum Associates, Mahwah, NJ, 2000.



Bibliography 219

Paul E. Engelhardt, Karl G.D. Bailey, and Fernanda Ferreira. Do speakers and
listeners observe the Gricean Maxim of Quantity? Journal of Memory and
Language, 54(4):554–573, 2006.

Deborah Estrin, David Culler, Kris Pister, and Gaurav Sukhatme. Connecting
the physical world with pervasive networks. IEEE Pervasive Computing, 1
(1):59–69, 2002. ISSN 1536-1268.

Juan-Antonio Fernández and Javier González. Multi-Hierarchical Represen-
tation of Large-Scale Space – Applications to Mobile Robots, volume 24 of
International Series on Microprocessor-Based and Intelligent Systems Engi-
neering. Kluwer Academic Publishers, Dordrecht / Boston / London, 2001.

John Folkesson, Patric Jensfelt, and Henrik I. Christensen. Vision SLAM in the
measurement subspace. In Proceedings of the 2005 IEEE International Con-
ference on Robotics and Automation (ICRA 2005), Barcelona, Spain, April
2005.

Food and Agriculture Organization of the United Nations (FAO). Domain on-
tologies: Agricultural information management standards (AIMS).
http://aims.fao.org/website/Domain-Ontologies/, 2010. [Last accessed
on 2010-03-23].

Charles L. Forgy. Rete: A fast algorithm for the many pattern/many object
pattern match problem. Artificial Intelligence, 19(1):17 – 37, 1982.

Stan Franklin and Art Graesser. Is it an agent, or just a program?: A taxon-
omy for autonomous agents. In Jörg P. Müller, Michael J. Wooldridge, and
Nicholas R. Jennings, editors, Intelligent Agents III. Agent Theories, Archi-
tectures, and Languages (ECAI’96 Workshop (ATAL)), volume 1193 of Lec-
ture Notes in Computer Science, pages 21–35. Springer Verlag, Berlin/Hei-
delberg, Germany, 1997.

Gottlob Frege. Über sinn und bedeutung. Zeitschrift für Philosophie und
philosophische Kritik, pages 25–50, 1892.

Udo Frese and Lutz Schröder. Closing a million-landmarks loop. In Proceed-
ings of the 2006 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2006), pages 5032–5039, 2006.

Scott M. Freundschuh and Madhu Sharma. Spatial image schemata, locative
terms and geographic spaces in children’s narrative. Cartographica, 32(2):
36–49, 1996.

http://aims.fao.org/website/Domain-Ontologies/


220 Bibliography

Jannik Fritsch, Marcus Kleinehagenbrock, Sebastian Lang, Gernot A. Fink, and
Gerhard Sagerer. Audiovisual person tracking with a mobile robot. In Pro-
ceedings of the International Conference on Intelligent Autonomous Systems,
pages 898–906, Amsterdam, The Netherlands, March 2004.

Kotaro Funakoshi, Satoru Watanabe, Naoko Kuriyama, and Takenobu Toku-
naga. Generation of relative referring expressions based on perceptual group-
ing. In COLING ’04: Proceedings of the 20th international conference
on Computational Linguistics, Morristown, NJ, USA, 2004. Association for
Computational Linguistics.

Cipriano Galindo, Alessandro Saffiotti, Silvia Coradeschi, Pär Buschka, Juan-
Antonio Fernández-Madrigal, and Javier González. Multi-hierarchical se-
mantic maps for mobile robotics. In Proceedings of the IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS-05), pages
3492–3497, Edmonton, Canada, August 2005.

Cipriano Galindo, Juan-Antonio Fernández-Madrigal, and Javier González.
Multiple Abstraction Hierarchies for Mobile Robot Operation in Large En-
vironments, volume 68 of Studies in Computational Intelligence. Springer
Verlag, Berlin/Heidelberg, Germany, 2007.

Dorian Gálvez López. Combining object recognition and metric mapping for
spatial modeling with mobile robots. Master’s thesis, Royal Institute of Tech-
nology, Stockholm, Sweden, July 2007.

Dorian Gálvez López, Kristoffer Sjöö, Chandana Paul, and Patric Jensfelt. Hy-
brid laser and vision based object search and localization. In Proceedings of
the 2008 IEEE International Conference on Robotics and Automation (ICRA
2008), pages 2636–2643, Pasadena, CA, USA, May 2008.

Peter Gärdenfors. Belief revision: An introduction. In Peter Gärdenfors, editor,
Belief Revision. Cambridge University Press, Cambridge, UK; New York,
NY, USA, 1992.

Peter Gärdenfors. Knowledge in Flux – Modeling the Dynamics of Epistemic
States. The MIT Press, Cambridge, MA, USA, 1988.

Simon C. Garrod andMartin J. Pickering. Why is conversation so easy? Trends
in Cognitive Sciences, 8(1):8–11, January 2004.

Héctor González-Banos and Jean-Claude Latombe. A randomized art-gallery
algorithm for sensor placement. In Proceedings of the Seventeenth Annual



Bibliography 221

Symposium on Computational Geometry, pages 232–240, Medford, MA,
USA, 2001.

Paul H. Grice. Logic and conversation. In Peter Cole and Jerry L. Morgan,
editors, Syntax and Semantics: Vol. 3, Speech Acts, pages 43–58. Academic
Press, New York, NY, USA, 1975.

Horst-Michael Gross, Hans Joachim Böhme, Christof Schröter, Steffen Müller,
Alexander König, Christian Martin, Matthias Merten, and Andreas Bley.
ShopBot: Progress in developing an interactive mobile shopping assistant
for everyday use. In Proceedings of the IEEE International Conference on
Systems, Man and Cybernetics 2008 (SMC 2008), pages 3471–3478, Singa-
pore, October 2008.

Barbara J. Grosz. The Representation and Use of Focus in Dialogue Under-
standing. PhD thesis, Stanford University, 1977.

Thomas R. Gruber. Toward principles for the design of ontologies used for
knowledge sharing. In Nicola Guarino and Roberto Poli, editors, Formal
Ontology in Conceptual Analysis and Knowledge Representation. Kluwer
Academic Publishers, Deventer, The Netherlands, 1993.

Rolf Grütter and Bettina Bauer-Messmer. Combining OWL with RCC for spa-
tioterminological reasoning on environmental data. In Proceedings of OWL:
Experiences and Directions (OWLED 2007), Innsbruck, Austria, June 2007.

Axel Haasch, Sascha Hohenner, Sonja Hüwel, Marcus Kleinehagenbrock, Se-
bastian Lang, Ioannis Toptsis, Gernot A. Fink, Jannik Fritsch, Britta Wrede,
and Gerhard Sagerer. BIRON – the Bielefeld robot companion. In Erwin
Prassler, Gisbert Lawitzky, Paolo Fiorini, and Martin Hägele, editors, Pro-
ceedings of the 2nd International Workshop on Advances in Service Robotics,
pages 27–32, Stuttgart, Germany, May 2004. Fraunhofer IRB Verlag.

Edward T. Hall. The Hidden Dimension. Doubleday, Garden City, NY, USA,
1966.

Marc Hanheide, Nick Hawes, Jeremy L. Wyatt, Moritz Göbelbecker, Michael
Brenner, Kristoffer Sjöö, Alper Aydemir, Patric Jensfelt, Hendrik Zender, and
Geert-Jan M. Kruijff. A framework for goal generation and management.
In Proceedings of the AAAI Workshop on Goal-Directed Autonomy, Atlanta,
GA, USA, July 2010. AAAI.



222 Bibliography

Nick Hawes and Jeremy L. Wyatt. Engineering intelligent information-
processing systems with CAST. Advanced Engineering Informatics, 24:
27–39, 2010.

Nick Hawes, Aaron Sloman, Jeremy L. Wyatt, Michael Zillich, Henrik Jacob-
sson, Geert-Jan M. Kruijff, Michael Brenner, Gregor Berginc, and Dani-
jel Skočaj. Towards an integrated robot with multiple cognitive functions.
In Proceedings of the Twenty-Second Conference on Artificial Intelligence
(AAAI-07), pages 1548–1553, Vancouver, Canada, July 2007.

Nick Hawes, Michael Brenner, and Kristoffer Sjöö. Planning as an architectural
control mechanism. In Proceedings of the 4th ACM/IEEE International Con-
ference on Human-Robot Interaction (HRI 2009), pages 229–230, La Jolla,
CA, USA, March 2009a. ACM.

Nick Hawes, Hendrik Zender, Kristoffer Sjöö, Michael Brenner, Geert-Jan M.
Kruijff, and Patric Jensfelt. Planning and acting with an integrated sense of
space. In Alexander Ferrein, Josef Pauli, Nils T. Siebel, and Gerald Stein-
bauer, editors, HYCAS 2009: 1st International Workshop on Hybrid Control
of Autonomous Systems – Integrating Learning, Deliberation and Reactive
Control, pages 25–32, Pasadena, CA, USA, July 2009b.

Nancy L. Hazen, Jeffery J. Lockman, and Herbert L. Pick, Jr. The development
of children’s representations of large-scale environments. Child Develop-
ment, 49(3):623–636, September 1978.

Frederik W. Heger, Laura M. Hiatt, Brennan Sellner, Reid Simmons, and San-
jiv Singh. Results in sliding autonomy for multi-robot spatial assembly. In
Proceedings of the 8th International Symposium on Artificial Intelligence,
Robotics and Automation in Space (i-SAIRAS 2005), Munich, Germany,
September 2005.

James F. Herman and Alexander W. Siegel. The development of cognitive
mapping of the large-scale environment. Journal of Experimental Child Psy-
chology, 26:389–406, 1978.

Ralf Hinkel and ThomasKnieriemen. Environment perceptionwith a laser radar
in a fast moving robot. In Procedings of the Symposium on Robot Control
(SYROCO ’88), pages 68.1–68.7, October 1988.

Stephen C. Hirtle and John Jonides. Evidence for hierarchies in cognitive maps.
Memory and Cognition, 13:208–217, 1985.



Bibliography 223

Joana Hois and Oliver Kutz. Natural language meets spatial calculi. In Chris-
tian Freksa, Nora S. Newcombe, Peter Gärdenfors, and Stefan Wölfl, edi-
tors, Learning, Reasoning, and Talking about Space (SC’08), volume VI of
Spatial Cognition, pages 266–282. Springer Verlag, Berlin/Heidelberg, Ger-
many, 2008.

Honda Research Institute USA Inc. Open Mind Indoor Commonsense.
http://openmind.hri-us.com/. [Last accessed on 2010-03-23].

Helmut Horacek. An algorithm for generating referential descriptions with flex-
ible interfaces. In Proceedings of the 35th Annual Meeting of the Associa-
tion for Computational Linguistics and Eighth Conference of the European
Chapter of the Association for Computational Linguistics (ACL-97), pages
206–213, Morristown, NJ, USA, 1997. Association for Computational Lin-
guistics, Association for Computational Linguistics.

International Federation of Robotics (IFR) Statistical Department. World
Robotics 2009 Service Robots. VDMA Verlag, Frankfurt a.M., Germany,
2009.

Hiroshi Ishiguro, Tetsuo Ono, Michita Imai, Takeshi Maeda, Takayuki. Kanda,
and Ryohei Nakatsu. Robovie: An interactive humanoid robot. Industrial
Robot: An International Journal, 28(6):498–504, 2001.

Henrik Jacobsson, Nick Hawes, Geert-Jan M. Kruijff, and Jeremy L. Wyatt.
Crossmodal content binding in information-processing architectures. In Pro-
ceedings of the 3rd ACM/IEEE International Conference on Human-Robot
Interaction (HRI 2008), Amsterdam, The Netherlands, March 2008.

Miroslav Janíček. Continuous planning for communicative grounding in sit-
uated dialogue. Unpublished master’s thesis, Charles University Prague,
Prague, Czech Republic, 2010.

Kathryn J. Jeffery and Neil Burgess. A metric for the cognitive map: Found at
last? Trends in Cognitive Sciences, 10(1), January 2006.

Wolfgang Kainz, Max J. Egenhofer, and Ian Greasley. Modeling spatial re-
lations and operations with partially ordered sets. International Journal of
Geographical Information Systems, 7(3):215–229, 1993.

Michael Karg, Kai M. Wurm, Cyrill Stachniss, Klaus Dietmayer, and Wol-
fram Burgard. Consistent mapping of multistory buildings by introducing
global constraints to graph-based SLAM. In Proceedings of the 2010 IEEE

http://openmind.hri-us.com/


224 Bibliography

International Conference on Robotics and Automation (ICRA 2010), pages
5383–5388, Anchorage, AK, USA, May 2010.

Yarden Katz and Bernardo Cuenca Grau. Representing qualitative spatial in-
formation in OWL-DL. In Proceedings of OWL: Experiences and Directions
(OWLED 2005), Galway, Ireland, November 2005.

Kazuhiko Kawamura, Stephen M. Gordon, Palis Ratanaswasd, Erdem Erdemir,
and Joseph F. Hall. Implementation of cognitive control for a humanoid robot.
International Journal of Humanoid Robotics, 2008.

John D. Kelleher. Integrating visual and linguistic salience for reference reso-
lution. In Norman Creaney, editor, Proceedings of the 16th Irish conference
on Artificial Intelligence and Cognitive Science (AICS ’05), pages 159–168.
The University of Ulster, September 2005.

John D. Kelleher. Attention driven reference resolution in multimodal contexts.
Artificial Intelligence Review, 25:21–35, 2007.

John D. Kelleher and Josef van Genabith. Exploiting visual salience for the
generation of referring expressions. In Proceedings of the 17th International
Florida Artificial Intelligence Research Society Conference (FLAIRS 2004),
Miami Beach, FL, USA, May 2004.

Shanker Keshavdas. Grid based SLAM using Rao-Blackwellized particle fil-
ters. Unpublished master’s thesis, Heriot Watt University, Edinburgh, UK,
May 2009.

Marcus Kleinehagenbrock, Sebastian Lang, Jannik Fritsch, Frank Lömker, Ger-
not A. Fink, and Gerhard Sagerer. Person tracking with a mobile robot
based on multi-modal anchoring. In Proceedings of the IEEE International
Workshop on Robot and Human Interactive Communication (ROMAN 2002),
Berlin, Germany, September 2002.

Tina Klüwer, Peter Adolphs, Feiyu Xu, Hans Uszkoreit, and Xiwen Cheng.
Talking NPCs in a virtual game world. In Proceedings of the System Demon-
strations Section at ACL 2010, Uppsala, Sweden, July 2010.

Pia Knoeferle, Matthew Crocker, Martin Pickering, and Christoph Scheepers.
The influence of the immediate visual context on incremental thematic role-
assignment: evidence from eye-movements in depicted events. Cognition,
95(1):95–127, 2005.



Bibliography 225

Alexander Koller, Johanna Moore, Barbara Di Eugenio, James Lester, Laura
Stoia, Donna K. Byron, Jon Oberlander, and Kristina Striegnitz. Shared task
proposal: Instruction giving in virtual worlds. Working group report, Work-
shop on Shared Tasks and Comparative Evaluation in Natural Language Gen-
eration, 2007.

Vladimir Kolovski, Bijan Parsia, and Yarden Katz. Implementing OWL de-
faults. In Proceedings of OWL: Experiences and Directions (OWLED 2006),
Athens, GA, USA, November 2006.

Emiel Krahmer and Mariët Theune. Efficient context-sensitive generation of
referring expressions. In Kees van Deemter and Rodger Kibble, editors, In-
formation Sharing: Givenness and Newness in Language Processing, pages
223–264. CSLI Publications, Stanford, CA, USA, 2002.

Emiel Krahmer, Sebastiaan van Erk, and André Verleg. Graph-based genera-
tion of referring expressions. Computational Linguistics, 29(1):53–72, 2003.
ISSN 0891-2017.

Bernd Krieg-Brückner, Udo Frese, Klaus Lüttich, Christian Mandel, Till Mas-
sokowski, and Robert J. Ross. Specification of an ontology for Route Graphs.
In Christian Freksa, Markus Knauff, Bernd Krieg-Brückner, Bernhard Nebel,
and Thomas Barkowsky, editors, Spatial Cognition IV. Reasoning, Action,
and Interaction, volume 3343 of Lecture Notes in Artificial Intelligence,
pages 390–412. Springer Verlag, Heidelberg, Germany, 2005.

Hans-Ulrich Krieger. A general methodology for equipping ontologies with
time. In Proceedings of LREC 2010, 2010a.

Hans-Ulrich Krieger. A temporal extension of hayes-/ter horst-style entailment
rules. In under submission, 2010b.

Hans-Ulrich Krieger, Bernd Kiefer, and Thierry Declerck. A framework for
temporal representation and reasoning in business intelligence applications.
In AAAI 2008 Spring Symposium on AI Meets Business Rules and Pro-
cess Management, Papers from the AAAI Spring Symposium, pages 59–70.
AAAI, 2008.

Geert-Jan M. Kruijff. Context-sensitive utterance planning for CCG. In Pro-
ceedings of the 10th European Workshop on Natural Language Generation,
Abderdeen, Scotland, UK, 2005.



226 Bibliography

Geert-Jan M. Kruijff. A Categorial-Modal Logical Architecture of Informa-
tivity: Dependency Grammar Logic & Information Structure. PhD thesis,
Charles University Prague, Prague, Czech Republic, 2001.

Geert-Jan M. Kruijff and Michael Brenner. Modelling spatio-temporal com-
prehension in situated human-robot dialogue as reasoning about intentions
and plans. In AAAI Spring Symposium on Intentions in Intelligent Systems,
Papers from the AAAI Spring Symposium. AAAI, 2007.

Geert Jan M. Kruijff, Pierre Lison, Trevor Benjamin, Henrik Jacobsson, and
Nick Hawes. Incremental, multi-level processing for comprehending situated
dialogue in human-robot interaction. In Language and Robots: Proceedings
of the Symposium, Aveiro, Portugal, December 2007a.

Geert-Jan M. Kruijff, Hendrik Zender, Patric Jensfelt, and Henrik I. Chris-
tensen. Situated dialogue and spatial organization: What, where…and why?
International Journal of Advanced Robotic Systems, 4(1):125–138, March
2007b.

Geert-Jan M. Kruijff, Michael Brenner, and Nick Hawes. Continual planning
for cross-modal situated clarification in human-robot interaction. InProceed-
ings of the 17th International Symposium on Robot and Human Interactive
Communication (RO-MAN 2008), pages 592–597, Munich, Germany, Au-
gust 2008.

Geert-Jan M. Kruijff, Pierre Lison, Trevor Benjamin, Henrik Jacobsson, Hen-
drik Zender, and Ivana Kruijff-Korbayová. Situated dialogue processing for
human-robot interaction. In Henrik Iskov Christensen, Geert-Jan M. Kruijff,
and Jeremy L. Wyatt, editors, Cognitive Systems, volume 8 of Cognitive Sys-
tems Monographs, chapter 8, pages 311–364. Springer Verlag, Berlin/Hei-
delberg, Germany, 2010.

Benjamin Kuipers. Representing Knowledge of Large-Scale Space. PhD thesis,
MIT-AI TR-418, Massachusetts Institute of Technology, Cambridge, MA,
USA, May 1977.

Benjamin Kuipers. The Spatial Semantic Hierarchy. Artificial Intelligence, 119:
191–233, 2000.

Benjamin Kuipers, Joseph Modayil, Patrick Beeson, Matt MacMahon, and
Francesco Savelli. Local metrical and global topological maps in the Hybrid
Spatial Semantic Hierarchy. In Proceedings of the 2004 IEEE International



Bibliography 227

Conference on Robotics and Automation (ICRA 2004), New Orleans, LA,
USA, April 2004.

George Lakoff and Mark Johnson. Metaphors we live by. Chicago University
Press, Chicago, IL, USA, 1980.

George Lakoff and Mark Johnson. Philosophy in the Flesh: The Embodied
Mind and Its Challenge to Western Thought. Basic Books, New York, NY,
USA, 1999.

M. Lansdale and T. Ormerod. Understanding Interfaces. Academic Press, Lon-
don, UK, 1994.

Jean-Claude Latombe. Robot Motion Planning. Academic Publishers, Boston,
MA, 1991.

Oliver Lemon, Anne Bracy, Alexander Gruenstein, and Stanley Peters. Amulti-
modal dialogue system for human-robot conversation. In Proceedings of the
Second Meeting of the North American Chapter of the Association of Com-
putational Linguistics (NAACL 2001Proceedings of the Second Meeting of
the North American Chapter of the Association of Computational Linguistics
(NAACL 2001), Pittsburg PA, 2001.

Stephen C. Levinson. Space in Language and Cognition – Explorations in Cog-
nitive Diversity. Cambridge University Press, Cambridge, UK; New York,
NY, USA, 2003.

François Lévy. Weak extensions for default theories. In Symbolic and Quan-
titative Approaches to Reasoning and Uncertainty, volume 747 of Lecture
Notes in Computer Science. Springer Verlag, Berlin/Heidelberg, Germany,
1993.

Mattias Lindström and Jan-Olof Eklundh. Detecting and tracking moving
objects from a mobile platform using a laser range scanner. In Proc. of
the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS’01), volume 3, pages 1364–1369, Wailea Maui HI, USA, 2001.

Pierre Lison and Geert-Jan M. Kruijff. Salience-driven contextual priming of
speech recognition for human-robot interaction. In ECAI 2008, 2008.

David G. Lowe. Distinctive image features from scale-invariant keypoints. In-
ternational Journal of Computer Vision, 60(2):91–110, November 2004.



228 Bibliography

Maryamossadat N. Mahani and Elin Anna Topp. Identifying and resolving am-
biguities within joint movement scenarios in HRI. In Marc Hanheide and
Hendrik Zender, editors, Proceedings of the ICRA 2010 Workshop on In-
teractive Communication for Autonomous Intelligent Robots (ICAIR), pages
37–39, Anchorage, AK, USA, May 2010.

DarioMaio and StefanoRizzi. Clustering by discovery onmaps. Pattern Recog-
nition Letters, 13(2):89–94, 1992.

Robert W. Marx. The TIGER system: Automating the geographic structure of
the United States census. Government Publications Review, 13(2):181–201,
March–April 1986.

Viviana Mascardi, Valentina Cordì, and Paolo Rosso. A comparison of upper
ontologies. In Proceedings of the Conference on Agenti e industria: Ap-
plicazioni tecnologiche degli agenti software (WOA 2007), Genova, Italy,
September 2007.

Claudio Masolo, Stefano Borgo, Aldo Gangemi, Nicola Guarino, and Alessan-
dro Oltramari. Wonderweb deliverable d18 – ontology library. IST Project
2001-33052WonderWeb Deliverable Del 18, Laboratory For Applied Ontol-
ogy – ISTC-CNR, December 2003.

John McCarthy and Patrick J. Hayes. Some philosophical problems from the
standpoint of artificial intelligence. In B. Meltzer and D. Michie, editors,
Machine Intelligence 4, pages 463–502. Edinburgh University Press, 1969.

Timothy P. McNamara. Mental representations of spatial relations. Cognitive
Psychology, 18:87–121, 1986.

Javier Minguez and Luis Montano. Nearness diagram (ND) navigation: Col-
lision avoidance in troublesome scenarios. IEEE Transactions on Robotics
and Automation, 20(1):45–59, February 2004.

Francesco Mondada, Michael Bonani, Xavier Raemy, James Pugh, Christo-
pher Cianci, AdamKlaptocz, StéphaneMagnenat, Jean-Christophe Zufferey,
Dario Floreano, and Alcherio Martinoli. The e-puck, a robot designed for ed-
ucation in engineering. In Proceedings of the 9th Conference on Autonomous
Robot Systems and Competitions (Robotica 2009), pages 59–65, May 2009.

Óscar Martínez Mozos. Semantic Place Labeling with Mobile Robots. Springer
Tracts in Advanced Robotics (STAR). Springer Verlag, Berlin/Heidelberg,
Germany, 2010. ISBN 978-3-642-11209-6.



Bibliography 229

Óscar Martínez Mozos, Cyrill Stachniss, and Wolfram Burgard. Supervised
learning of places from range data using adaboost. InProceedings of the 2005
IEEE International Conference on Robotics and Automation (ICRA 2005),
pages 1742–1747, Barcelona, Spain, April 2005.

Óscar Martínez Mozos, Patric Jensfelt, Hendrik Zender, Geert-Jan M. Kruijff,
and Wolfram Burgard. From labels to semantics: An integrated system for
conceptual spatial representations of indoor environments for mobile robots.
In Proceedings of the IEEE ICRA-07 Workshop: Semantic Information in
Robotics, Rome, Italy, April 2007a.

Óscar Martínez Mozos, Patric Jensfelt, Hendrik Zender, Geert-Jan M. Kruijff,
and Wolfram Burgard. An integrated system for conceptual spatial represen-
tations of indoor environments for mobile robots. In Proceedings of the IROS
2007Workshop: From Sensors to Human Spatial Concepts (FS2HSC), pages
25–32, San Diego, CA, USA, November 2007b.

Daniele Nardi and Ronald J. Brachman. An introduction to description logics.
In Franz Baader, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors, The Description Logic Handbook: Theory, Implementa-
tion, and Applications, chapter 1. Cambridge University Press, Cambridge,
UK; New York, NY, USA, 2003.

Bernhard Nebel. A knowledge level analysis of belief revision. In Ronald J.
Brachman, Hector J. Levesque, and Raymond Reiter, editors, Principles of
Knowledge Representation and Reasoning: Proceedings of the 1st Interna-
tional Conference (KR’89), pages 301–311, Toronto, Canada, May 1989.

Paul M. Newman, John J. Leonard, Juan D. Tardós, and José Neira. Explore
and return: Experimental validation of real-time concurrent mapping and lo-
calization. In Proceedings of the 2002 IEEE International Conference on
Robotics and Automation (ICRA 2002), pages 1802–1809,Washington, D.C.,
USA, 2002.

Joseph O’Rourke. Art gallery theorems and algorithms. Oxford University
Press, Oxford, UK; New York, NY, USA, 1987.

Elena Pacchierotti, Henrik I. Christensen, and Patric Jensfelt. Embodied social
interaction for service robots in hallway environments. In Proceedings of the
International Conference on Field and Service Robotics (FSR 2005), pages
476–487, Brisbane, Australia, July 2005. IEEE.



230 Bibliography

Ivandré Paraboni, Kees van Deemter, and JudithMasthoff. Generating referring
expressions: Making referents easy to identify. Computational Linguistics,
33(2):229–254, June 2007.

Diane Pecher and Rolf A. Zwaan, editors. Grounding Cognition – The Role
of Perception and Action in Memory, Language and Thinking. Cambridge
University Press, Cambridge, UK; New York, NY, USA, 2005.

Julia Peltason, Frederic H. K. Siepmann, Thorsten P. Spexard, Britta Wrede,
Marc Hanheide, and Elin Anna Topp. Mixed-initiative in human augmented
mapping. In Proceedings of the 2009 IEEE International Conference on
Robotics and Automation (ICRA2009), Kobe, Japan, May 2009.

Martin J. Pickering and Simon C. Garrod. Alignment as the basis for successful
communication. Research on Language and Computation, 4(2–3):203–228,
October 2006.

Massimo Poesio. A situation-theoretic formalization of definite description in-
terpretation in plan elaboration dialogues. In Peter Aczel, David Israel, Ya-
suhiro Katagiri, and Stanley Peters, editors, Situation Theory and its Appli-
cations Volume 3, CSLI Lecture Notes No. 37, pages 339–374. Center for the
Study of Language and Information, Menlo Park, CA, USA, 1993.

Massimo Poesio and Renata Vieira. A corpus-based investigation of definite
description use. Computational Linguistics, 24(2):183–216, 1998.

Massimo Poesio, Olga Uryupina, Renata Vieira, Mijail Alexandrov-Kabadjov,
and Rodrigo Goulart. Discourse-new detectors for definite description res-
olution: A survey and a preliminary proposal. In Proceedings of the ACL
2004 Workshop on Reference Resolution and Its Applications, pages 47–54,
Barcelona, Spain, 2004.

Shelley Powers. Practical RDF. O’Reilly Media, July 2003.

Ellen F. Prince. Toward a taxonomy of given-new information. In Peter Cole,
editor, Radical Pragmatics, pages 223–255. Academic Press, NewYork, NY,
USA, 1981.

Ellen F. Prince. The ZPG letter: subjects, definiteness, and information status.
In Sandra Thompson and William Mann, editors, Discourse Description: di-
verse analyses of a fund raising text, pages 295–325. John Benjamins, 1992.



Bibliography 231

Andrzej Pronobis and Barbara Caputo. COLD: COsy Localization Database.
The International Journal of Robotics Research (IJRR), 28(5):588–594, May
2009.

Andrzej Pronobis, Kristoffer Sjöö, Alper Aydemir, Adrian N. Bishop, and Patric
Jensfelt. A framework for robust cognitive spatial mapping. In Proceedings
of the 14th International Conference on Advanced Robotics (ICAR 2009),
Munich, Germany, June 2009.

Andrzej Pronobis, Patric Jensfelt, Kristoffer Sjöö, Hendrik Zender, Geert-
Jan M. Kruijff, Óscar Martínez Mozos, and Wolfram Burgard. Semantic
modelling of space. In Henrik Iskov Christensen, Geert-Jan M. Kruijff, and
Jeremy L. Wyatt, editors, Cognitive Systems, volume 8 of Cognitive Sys-
tems Monographs, chapter 5. Springer Verlag, Berlin/Heidelberg, Germany,
2010a.

Andrzej Pronobis, Kristoffer Sjöö, Alper Aydemir, Adrian N. Bishop, and Patric
Jensfelt. Representing spatial knowledge in mobile cognitive systems. In
11th International Conference on Intelligent Autonomous Systems (IAS-11),
Ottawa, Canada, August 2010b.

Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for RDF.
http://www.w3.org/TR/rdf-sparql-query/, January 2008. [Last accessed
2010-03-23].

Yves Raimond, Frédéric Giasson, Kurt Jacobson, George Fazekas, Thomas
Gängler, and Simon Reinhardt. Music ontology specification.
http://musicontology.com/, February 2010. [Last accessed 2010-03-23].

RDF Working Group. Resource Description Framework (RDF).
http://www.w3.org/RDF/, October 2004. [Last accessed 2010-03-23].

Alan Rector and Guus Schreiber. Qualified cardinality restrictions (QCRs):
Constraining the number of values of a particular type for a property.
http://www.w3.org/2001/sw/BestPractices/OEP/QCR/, November 2005.
[Draft of November 2, 2005; Last accessed on 2010-03-30].

Ehud Reiter and Robert Dale. A fast algorithm for the generation of referring
expressions. In Proceedings of the 14th International Conference on Compu-
tational Linguistics (COLING-92), pages 232–238, Nantes, France, August
1992.

Raymond Reiter. A logic for default reasoning. Artificial Intelligence, 13(1-2):
81–132, 1980.

http://www.w3.org/TR/rdf-sparql-query/
http://musicontology.com/
http://www.w3.org/RDF/
http://www.w3.org/2001/sw/BestPractices/OEP/QCR/


232 Bibliography

David Ribas, Pere Ridao, Juan Domingo Tardós, and José Neira. Underwater
SLAM in man made structured environments. Journal of Field Robotics, 25
(11):898–921, December 2008.

M. Andrea Rodríguez and Max J. Egenhofer. Image-schemata-based spatial
inferences: The container-surface algebra. In Stephen C. Hirtle and An-
drew U. Frank, editors, Spatial Information Theory: A Theoretical Basis for
GIS (COSIT ’97), volume 1329 of Lecture Notes in Computer Science, pages
35–52. Springer Verlag, Berlin, Germany, 1997.

Eleanor Rosch. Principles of categorization. In E. Rosch and B. Lloyd, editors,
Cognition and Categorization, pages 27–48. Lawrence Erlbaum Associates,
Hillsdale, NJ, USA, 1978.

Bryan C. Russell, Antonio Torralba, Kevin P. Murphy, andWilliam T. Freeman.
Labelme: a database and web-based tool for image annotation. International
Journal of Computer Vision, 77(1–3):157–173, May 2008.

Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall Series in Artificial Intelligence. Pearson Education, Upper Sad-
dle River, NJ, USA, second edition edition, 2003.

Marc Schröder and Jürgen Trouvain. The german text-to-speech synthesis sys-
tem MARY: A tool for research, development and teaching. International
Journal of Speech Technology, 6:365–377, 2003.

Dirk Schulz, Wolfram Burgard, Dieter Fox, and Armin B. Cremers. People
tracking with a mobile robot using sample-based joint probabilistic data as-
sociation filters. International Journal of Robotics Research, 22(2):99–116,
2003.

Murray Shanahan. A logical account of perception incorporating feedback and
expectation. In Proceedings of the Eighth International Conference on Prin-
ciples and Knowledge Representation and Reasoning (KR-02), pages 3–13,
Toulouse, France, April 2002.

Thomas C. Shermer. Recent results in art galleries. Proceedings of the IEEE,
80(9):1384–1399, September 1992. ISSN 0018-9219.

Candace L. Sidner, Cory D. Kidd, Christopher Lee, and Neal Lesh. Where to
look: A study of human-robot engagement. In Proceedings of the 9th Inter-
national Conference on Intelligent User Interfaces (IUI ’04), pages 78–84,
2004.



Bibliography 233

Roland Siegwart and Illah R. Nourbakhsh. Introduction to Autonomous Mobile
Robots. The MIT Press, Cambridge, MA, USA, 2004.

Roland Siegwart, Kai Oliver Arras, Samir Bouabdallah, Daniel Burnier, Gilles
Froidevaux, Xavier Greppin, Björn Jensen, Antoine Lorotte, Laetitia Mayor,
Mathieu Meisser, Roland Philippsen, Ralph Piguet, Guy Ramel, Gregoire
Terrien, and Nicola Tomatis. Robox at expo.02: A large scale installation of
personal robots. Robotics and Autonomous Systems, 42:203–222, 2003.

Kristoffer Sjöö, Hendrik Zender, Patric Jensfelt, Geert-Jan M. Kruijff, Andrzej
Pronobis, Nick Hawes, and Michael Brenner. The Explorer system. In Hen-
rik Iskov Christensen, Geert-Jan M. Kruijff, and Jeremy L. Wyatt, editors,
Cognitive Systems, volume 8 of Cognitive Systems Monographs, chapter 10,
pages 395–421. Springer Verlag, Berlin/Heidelberg, Germany, 2010.

Danijel Skočaj, Miroslav Janíček, Matej Kristan, Geert Jan M. Kruijff, Aleš
Leonardis, Pierre Lison, Alen Vrečko, andMichael Zillich. A basic cognitive
system for interactive continuous learning of visual concepts. In Marc Han-
heide and Hendrik Zender, editors, Proceedings of the ICRA 2010 Workshop
on Interactive Communication for Autonomous Intelligent Robots (ICAIR),
pages 30–36, Anchorage, AK, USA, May 2010.

Michael K. Smith, Chris Wely, and Deborah L. McGuinness. OWL Web On-
tology Language guide. http://www.w3.org/TR/owl-guide/, October 2004.
[Last accessed on 2010-03-23].

Thorsten P. Spexard, Shuyin Li, Britta Wrede, Jannik Fritsch, Gerhard Sagerer,
Olaf Booij, Zoran Zivkovic, Bas Terwijn, and Ben J. A. Kröse. BIRON,
where are you? enabling a robot to learn new places in a real home environ-
ment by integrating spoken dialog and visual localization. In Proceedings
of the 2006 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2006), pages 934–940, Beijing, China, 2006.

Robert Stalnaker. Common Ground. Linguistics and Philosophy, 25(5–6):
701–721, 2002.

Mark Steedman. Categorial grammar. In Rob Wilson and Frank Keil, editors,
The MIT Encyclopedia of Cognitive Sciences. The MIT Press, Cambridge,
MA, USA, 1999.

Mark Steedman. The Syntactic Process. TheMIT Press, Cambridge, MA, USA,
2000.

http://www.w3.org/TR/owl-guide/


234 Bibliography

Mark Steedman and Jason Baldridge. Combinatory categorial grammar (draft
5.0). April 2007.

Albert Stevens and Patty Coupe. Distortions in judged spatial relations. Cog-
nitive Psychology, 10:422–437, 1978.

Laura Stoia, Darla Magdalena Shockley, Donna K. Byron, and Eric Fosler-
Lussier. SCARE: a situated corpus with annotated referring expressions. In
Proceedings of the Sixth International Language Resources and Evaluation
(LREC’08), Marrakech, Morocco, May 2008. European Language Resources
Association (ELRA).

Matthew Stone. On identifying sets. In Proceedings of the First International
Conference on Natural Language Generation (INLG-2000), pages 116–123,
Morristown, NJ, USA, 2000. Association for Computational Linguistics.

Peter Frederick Strawson. On referring. Mind, 59(235):320–344, July 1950.

Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics.
The MIT Press, Cambridge, MA, USA, 2005.

Elin Anna Topp and Henrik I. Christensen. Tracking for following and pass-
ing persons. In Proceedings of the 2005 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2005), pages 70–76, Edmonton,
Canada, August 2005.

Elin Anna Topp, Helge Hüttenrauch, Henrik I. Christensen, and Kerstin Sev-
erinson Eklundh. Acquiring a shared environment representation. In Pro-
ceedings of the 1st ACM Conference on Human-Robot Interaction (HRI
2006), pages 361–362, Salt Lake City, UT, USA, 2006a.

Elin Anna Topp, Helge Hüttenrauch, Henrik I. Christensen, and Kerstin Sev-
erinson Eklundh. Bringing together human and robotic environment repre-
sentations – a pilot study. In Proc. of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Beijing, China, October 2006b.

Timothy Trainor. U.S. Census Bureau geographic support: A response to
changing technology and improved data. Cartography and Geographic In-
formation Science, 30(2):217–223, April 2003.

John K. Tsotsos. On the relative complexity of active vs. passive visual search.
Int. J. Comput. Vision, 7(2):127–141, 1992.



Bibliography 235

Joost van deWeijer, Cordelia Schmid, Jakob Verbeek, and Diane Larlus. Learn-
ing color names for real-world applications. IEEE Transactions on Image
Processing, 18(7):1512–1523, 2009.

Kees van Deemter. Generating vague descriptions. In Proceedings of the First
International Conference on Natural Language Generation (INLG-2000),
pages 179–185, Mitzpe Ramon, Israel, June 2000.

Kees van Deemter. Generating referring expressions: boolean extensions of the
incremental algorithm. Computational Linguistics, 28(1):37–52, 2002.

Shrihari Vasudevan, Stefan Gachter, Viet Nguyen, and Roland Siegwart. Cog-
nitive maps for mobile robots – an object based approach. Robotics and
Autonomous Systems, 55(5):359–371, May 2007.

Renata Vieira andMassimo Poesio. An empirically based system for processing
definite descriptions. Computational Linguistics, 26(4):539–593, 2000.

Jette Viethen and Robert Dale. Algorithms for generating referring expressions:
Do they do what people do? In Proceedings of the 4th International Natu-
ral Language Generation Conference (INLG 2006), pages 63–70, Sydney,
Australia, 2006.

Jette Viethen and Robert Dale. Generating relational references: What makes
a difference? In Proceedings of the Australasian Language Technology As-
sociation Workshop 2008, Hobart, Australia, December 2008a.

Jette Viethen and Robert Dale. The use of spatial relations in referring expres-
sions. In Proceedings of the 5th International Natural Language Generation
Conference (INLG 08), Salt Fork, OH, USA, June 2008b.

Pooja Viswanathan, David Meger, Tristram Southey, James J. Little, and
Alan K. Mackworth. Automated spatial-semantic modeling with applica-
tions to place labeling and informed search. In CRV ’09: Proceedings of the
2009 Canadian Conference on Computer and Robot Vision, pages 284–291,
Washington, DC, USA, 2009. IEEE Computer Society.

Pooja Viswanathan, Tristram Southey, James J. Little, and Alan K. Mackworth.
Automated place classification using object detection. In Proceedings of the
Seventh Canadian Conference on Computer and Robot Vision (CRV 2010),
Ottawa, Canada, 2010.



236 Bibliography

Alen Vrečko, Danijel Skočaj, Nick Hawes, and Aleš Leonardis. A computer
vision integration model for a multi-modal cognitive system. In Proceedings
of the 2009 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2009), pages 3140–3147, St. Louis, MO, USA, October 2009.

Chieh-Chih Wang and Chuck Thorpe. Simultaneous localization and mapping
with detection and tracking of moving objects. In Proceedings of the 2002
IEEE International Conference on Robotics and Automation (ICRA 2002),
volume 3, pages 2918–2924, Washington, D.C., USA, May 2002.

Steffen Werner, Bernd Krieg-Brückner, and Theo Herrmann. Modelling navi-
gational knowledge by Route Graphs. In Christian Freksa, Wilfried Brauer,
Christopher Habel, and Karl F. Wender, editors, Spatial Cognition II, volume
1849 of Lecture Notes in Artificial Intelligence, pages 295–316. Springer Ver-
lag, Heidelberg, Germany, 2000.

Michael White. OpenCCG: The OpenNLP CCG Library.
http://openccg.sourceforge.net/, February 2010. [Last accessed on 2010-
04-15].

Michael White and Jason Baldridge. Adapting chart realization to CCG. In
Proceedings of the 9th EuropeanWorkshop on Natural Language Generation
(ENLG 2003), Budapest, Hungary, 2003.

IanWright, Aaron Sloman, and Luc Beaudoin. Towards a design-based analysis
of emotional episodes. Philosophy, Psychiatry, & Psychology, 3(2):101–126,
1996.

Jeremy L. Wyatt, Alper Aydemir, Michael Brenner, Marc Hanheide, Nick
Hawes, Patric Jensfelt, Matej Kristan, Geert-JanM.Kruijff, Pierre Lison, An-
drzej Pronobis, Kristoffer Sjöö, Danijel Skočaj, Alen Vrečko, Hendrik Zen-
der, and Michael Zillich. Self-understanding and self-extension: A systems
and representational approach. IEEE Transactions on Autonomous Mental
Development, 2(4):282–303, December 2010.

Hendrik Zender. Learning spatial organization through situated dialogue. Un-
published diploma thesis, Saarland University, Saarbrücken, Germany, Au-
gust 2006.

Hendrik Zender and Geert-Jan M. Kruijff. Multi-layered conceptual spatial
mapping for autonomous mobile robots. In Holger Schultheis, Thomas
Barkowsky, Benjamin Kuipers, and Bernhard Hommel, editors, Control

http://openccg.sourceforge.net/


Bibliography 237

Mechanisms for Spatial Knowledge Processing in Cognitive / Intelligent Sys-
tems – Papers from the AAAI Spring Symposium, Technical Report SS-07-01,
pages 62–66, Menlo Park, CA, USA, March 2007a. AAAI, AAAI Press.

Hendrik Zender and Geert-JanM. Kruijff. Towards generating referring expres-
sions in a mobile robot scenario. In Language and Robots: Proceedings of
the Symposium, pages 101–106, Aveiro, Portugal, December 2007b.

Hendrik Zender, Patric Jensfelt, and Geert-Jan M. Kruijff. Human- and
situtaion-aware people following. In Proceedings of the 16th IEEE Inter-
national Symposium on Robot and Human Interactive Communication (RO-
MAN 2007), pages 1131–1136, Jeju Island, Korea, August 2007a.

Hendrik Zender, Patric Jensfelt, Óscar Martínez Mozos, Geert-Jan M. Krui-
jff, and Wolfram Burgard. An integrated robotic system for spatial under-
standing and situated interaction in indoor environments. In Proceedings of
the Twenty-Second Conference on Artificial Intelligence (AAAI-07), pages
1584–1589, Vancouver, Canada, July 2007b.

Hendrik Zender, Óscar Martínez Mozos, Patric Jensfelt, Geert-Jan M. Kruijff,
and Wolfram Burgard. Conceptual spatial representations for indoor mobile
robots. Robotics and Autonomous Systems, 56(6):493–502, June 2008.

Hendrik Zender, Geert-JanM. Kruijff, and Ivana Kruijff-Korbayová. A situated
context model for resolution and generation of referring expressions. In Pro-
ceedings of the 12th European Workshop on Natural Language Generation
(ENLG 2009), pages 126–129, Athens, Greece, March 2009a. Association
for Computational Linguistics.

Hendrik Zender, Geert-Jan M. Kruijff, and Ivana Kruijff-Korbayová. Situated
resolution and generation of spatial referring expressions for robotic assis-
tants. In Proceedings of the Twenty-First International Joint Conference on
Artificial Intelligence (IJCAI-09), pages 1604–1609, Pasadena, CA, USA,
July 2009b.

Hendrik Zender, Christopher Koppermann, Fai Greeve, and Geert-Jan M. Krui-
jff. Anchor-progression in spatially situated discourse: a production exper-
iment. In Proceedings of the Sixth International Natural Language Gener-
ation Conference (INLG 2010), pages 209–213, Trim, Co. Meath, Ireland,
July 2010. Association for Computational Linguistics.



Index

ABox, 59, 74, 90, 93, 113, 115,
119, 131

actuator, 18
adjacency, 44
adjustable autonomy, see sliding

autonomy
anaphora, 153, 191
anchor-progression, 162, 172
anchor-resetting, 172
anchoring, 176
anytime behavior, 91
area, 36
attentional anchor, 175, 176
attributive, 148
autonomous agent, 16
autonomous mobile robot, see

robot
axiom

concept equality, 53
concept inclusion, 53
equality, 52, 61
inclusion, 52
OWL, 60
role equality, 53
role inclusion, 53
terminological, 52

backward chaining, 63
belief revision, 59, 74

categorization, 25, 27
category, 87, 155

basic-level, 26, 39, 92, 151,
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CCG, 13, 155
OpenCCG, 86, 154–156, 158,
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closed-world

querying, 59
reasoning, 188
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cognitive systems, 15
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Combinatory Categorial Grammar,
see CCG
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sufficient, 57
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containment, 26, 35, 37, 38, 202
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intentional, 158
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context, 150, 151
continual planning, 107
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contrast set, 151
conversational agent, 16

DBox, 74, 115, 131
default, 120

closed, 68, 71
open, 68, 70

Default Logic, 66
default reasoning, 66, 70, 106
default theory, 70
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derivation, 157, 159
Description Logics, 47, 50
dialogue goal, 160, 168
discourse planning, 191
discourse referent, 159
discourse-new, 148, 150
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human-augmented mapping, 91,
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individual, 151
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acquired, 46, 69, 90, 131
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large-scale space, see space, large-
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168, 191
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map

metric, 44
mapping, 19
metric map, 87, 93
modal marker, 157
multi-layered conceptual spatial

map, 87
multi-layered conceptual spatial

mapping, 83, 84
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natural language processing, see

NLP
navigation graph, 44, 88, 89, 129

navigation node, 88
NLG, 149, 160
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nominal, 158, 159
NPC, see virtual agent

odometry, 19, 80
Ontology, 57
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188
open-world assumption, 52, 59, 70
OWL, 72
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OWL-DL, 52, 53, 61

passage, 36
PECAS, 106
people following, 82, 84, 97
perception, 15
place layer, 44, 129
poset, 38
potential distractors, 150
pronominalization, 154
property, see role
proprioception, 18, 20
prototype, 25
prototypical reasoning, 106, 114
proxemics, 83, 98

RBox, 91, 113, 114, 131
RDF, 58, 61, 71, 72

triples, 58, 114, 165
RDFS, 58
RE, 168
reasoner, 46, 61, 63, 68, 74, 95,
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reasoning, 45, 47, 207
referential, 148
referring expression, 148, 191
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BIRON, 23, 125
CoSy Explorer, see Explorer,

the Explorer system, see
Explorer, the Explorer
system

Godot, 23
industrial, 17
ISAC, 125
Mel, 23
Rhino, 23
RoboVie, 23
RoboX, 23
service, 20
ShopBot, 23
WITAS, 23

role, 58, 151
atomic, 54
constructor, 53, 54
inverse, 54, 55, 120
transitive, 54, 55

room, 36
Route Graph, 35
RRE, 149, 153, 161, 164, 165
rule engine, 132
rule-based reasoning, 62

salience
discourse, 153

satisfaction operator, 13
satisfiability

in Description Logics, 56
scene

visual, 175
segmentation

spatial, 36, 37
semantic place labeling, 84
semantic representation, 158, 159
sensor, 18

shared knowledge, 150
simultaneous localization andmap-

ping, see SLAM
situated dialogue, 16, 24, 85, 90
situatedness, 146
situation, 175

focal, 175
of attention, 176
resource, 175, 176
utterance, 162, 175, 191

situation awareness, 83, 97, 99
situation semantics, 175
Situation Theory, 175
SLAM, 20, 84, 87, 110, 111
sliding autonomy, 91
small-scale space, see space, small-

scale
space

large-scale, 15, 36, 107, 111,
128, 146, 147, 172, 176,
178

small-scale, 36, 43, 146, 178
SPARQL, 71, 114, 165
Spatial Semantic Hierarchy, see

SSH
spatial understanding, 34, 43
speech recognition, 86
SSH, 35, 43
subsumption checking, 71, 132
surface schema, 27
symbolic representation, 44
syntactic representation, 159

TA, see topological abstraction
TAA1, 163
TAA2, 164
taxonomy, 45, 50, 52, 89
TBox, 75, 90, 113, 114, 120, 131,

151
text-to-speech, 160, 170
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topological abstraction, 161–165,
175

topological map, 44, 89, 93
TRAINS, 174, 175, 178
transparency, 50
Twinity, 24, 201

utterance planning, 160, 168

virtual agent, 16, 23
virtual world, 23
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