
Semi-supervised Semantic Role Labeling

via Graph Alignment

Dissertation

zur Erlangung des akademischen Grades eines

Doktors der Philosophie

der Philosophischen Fakultäten der Universität des Saarlandes

Vorgelegt von Hagen Fürstenau

aus Bonn-Bad Godesberg



Dekan der Philosophischen Fakultät II: Prof. Dr. Erich Steiner
Berichterstatter: Prof. Dr. Manfred Pinkal

Dr. Mirella Lapata
Prof. Dr. Dietrich Klakow

Tag der letzten Prüfungsleistung: 10. Februar 2011



Im Gedenken an meinen Großvater
Karl-Heinz Fürstenau

(21. Februar 1917 – 16. März 2011)





Abstract

Semantic roles, which constitute a shallow form of meaning representation,
have attracted increasing interest in recent years. Various applications have
been shown to benefit from this level of semantic analysis, and a large num-
ber of publications has addressed the problem of semantic role labeling, i.e.,
the task of automatically identifying semantic roles in arbitrary sentences.
A major limiting factor for these approaches, however, is the need for large
manually labeled semantic resources to train semantic role labeling systems
in the supervised learning paradigm. Consequently, the application of such
systems is still limited to the small number of languages and domains for
which sufficiently large semantic resources are available.

This thesis addresses the knowledge acquisition problem of semantic role
labeling, i.e., the substantial annotation effort required for the creation of
semantic resources that can be used to train state-of-the-art semantic role
labeling systems.

Our main contribution is to formulate a semi-supervised approach to
semantic role labeling, which requires only a small manually labeled corpus
of role-annotated sentences. This initial seed corpus is augmented with
annotation instances generated automatically from a large unlabeled corpus.
The augmented corpus is used as training data for a supervised role labeler,
to improve labeling performance over what can be attained when training
on the manually labeled sentences alone. Our approach therefore reduces
the annotation effort required to attain satisfactory performance and thus
alleviates the knowledge acquistion problem, especially for languages and
domains where the cost of annotating large semantic resources is prohibitive.

The key idea of our semi-supervised approach is to measure the simi-
larity between labeled sentences from the manually annotated resource and
sentences from a large unlabeled corpus. Similarity is conceptualized in
terms of optimal graph alignments, which are employed to project annota-
tions from labeled to unlabeled sentences. To select a set of novel training
instances, similarity is operationalized as a measure of confidence, allowing
us to limit the adverse effect of erroneous annotations. The optimization
problem is formulated as an integer linear program and solved efficiently.

The thesis broadly consists of two parts. In the theoretical part, our
semi-supervised approach to semantic role labeling is described in detail.

v



ABSTRACT

The empirical part then evaluates the effect of this method on various cor-
pora extracted from existing semantic resources for English and German.
These experiments show that the additional training data generated by our
method can indeed improve the performance of a semantic role labeler and
thus reduce annotation effort in practice.

vi



Zusammenfassung

In den letzten Jahren hat sich ein wachsendes Interesse an semantischen
Rollen, einer flachen Form von Bedeutungsrepräsentation, entwickelt. Es hat
sich gezeigt, dass verschiedene Anwendungen von dieser Ebene der semanti-
schen Analyse profitieren können, und eine große Zahl an Publikationen hat
sich mit dem Problem der automatischen rollensemantischen Annotation
befasst, also der Aufgabe, semantische Rollen in beliebigen Sätzen automa-
tisch zu identifizieren. Ein Hindernis für solche Verfahren ist der Mangel an
umfangreichen, semantisch annotierten Ressourcen, wie sie benötigt werden,
um rollensemantische Annotationssysteme nach überwachten Lernverfahren
zu trainieren. Die Anwendung solcher Systeme ist daher noch auf eine kleine
Zahl von Sprachen und Domänen begrenzt, für die hinreichend große seman-
tische Ressourcen zur Verfügung stehen.

Die vorliegende Arbeit beschäftigt sich mit dem Problem der Wissens-
aquise für rollensemantische Annotation, d.h. mit dem erheblichen Anno-
tationsaufwand, der mit der Erstellung von semantischen Ressourcen für
leistungsfähige rollensemantische Annotationssysteme verbunden ist.

Der Hauptbeitrag der Arbeit liegt in der Formulierung eines halbüber-
wachten Ansatzes für rollensemantische Annotation, der lediglich auf ein
kleines manuell mit semantischen Rollen annotiertes Korpus angewiesen
ist. Dieses Initialkorpus wird durch Annotationsinstanzen ergänzt, die mit
Hilfe eines umfangreichen unannotierten Korpus automatisch generiert wer-
den. Das erweiterte Korpus wird dann verwendet, um ein überwachtes
Rollenannotationssystem zu trainieren und dessen Leistung im Vergleich zu
einem System, dem nur das Initialkorpus zur Verfügung steht, zu verbessern.
Unser Ansatz reduziert daher den Annotationsaufwand, der nötig ist, um
zufriedenstellende Annotationsqualität zu erreichen, und mildert so das Pro-
blem der Wissensaquise, insbesondere für Sprachen und Domänen, für die
die hohen Annotationskosten ein großes Hindernis darstellen.

Die Grundidee unseres halbüberwachten Verfahrens ist es, die Ähnlichkeit
zwischen annotierten Sätzen des Initialkorpus und unannotierten Sätzen des
großen Erweiterungskorpus zu quantifizieren. Wir drücken diese Ähnlichkeit
mit Hilfe von optimalen Graphalinierungen aus, die wir verwenden, um
semantische Information von annotierten auf unannotierte Sätze zu pro-
jizieren. Um eine Auswahl von neuen Trainingsinstanzen zu treffen, ver-

vii



ZUSAMMENFASSUNG

wenden wir diese Ähnlichkeit als Konfidenzmaß, was uns erlaubt, Annota-
tionsfehler zu vermeiden. Das Optimierungsproblem wird als Aufgabe der
ganzzahligen linearen Programmierung formuliert und effizient gelöst.

Die Arbeit gliedert sich grob in zwei Teile. Der theoretische Teil be-
schreibt detailliert unseren halbüberwachten Ansatz zur rollensemantischen
Annotation. Im empirischen Teil wird dann der Effekt dieser Methode
auf verschiedenen Korpora evaluiert, die auf existierenden semantischen
Ressourcen für Englisch und Deutsch basieren. Diese Experimente zeigen,
dass die zusätzlichen Trainingsdaten, die unsere Methode erzeugt, in der
Tat die Leistung eines semantischen Rollenannotationssystems verbessern
und somit den Annotationsaufwand reduzieren können.

viii



Acknowledgements

There are a number of people without whom this thesis would not have
taken its present shape — or none at all. While only those most directly
involved are mentioned here, my thanks go to everyone who helped me make
the quest for my PhD enjoyable and ultimately successful.

Naturally, the first to mention is my supervisor Manfred Pinkal. Ten
years ago, he let me take my first glimpse into Computational Linguistics,
sparking an interest deep enough for me to come to Saarbrücken a few years
later and venture into a new field. Guiding me on this way, he always
left me enough room to learn from my own mistakes, but also time and
again helped me take the essential “step back” from my work, and see the
difference between results and insights.

I am also much indebted to my second supervisor Mirella Lapata. During
my time in Edinburgh and afterwards, she helped me shape and focus the
topic of my thesis, and taught me much about how to go about planning,
conducting, and presenting good research. Of course, where this is not
reflected in the present work, the responsibility is entirely mine.

Out of the many other people who shared their experience with me, I am
especially grateful for the guidance I received from Sabine Schulte im Walde
and Caroline Sporleder during the earlier stages of my studies. Further I
want to thank Martin Forst for patiently helping me solve my problems
with LFG parsing, as well as Sebastian Padó and Alexander Koller for some
stimulating discussions. I was also fortunate to enjoy an excellent research
environment, supported first by the DFG International Research Training
Group 715 “Language Technology and Cognitive Systems” and later by the
SALSA Project (DFG grant PI 154/9-3), complemented with excellent tech-
nical support by Christoph Clodo and the Systemgruppe.

Finally, my most special thanks go to Suhee, whose love and patience and
unfaltering belief supported me on this whole journey, and make everything
worthwhile.

ix





Contents

1 Introduction 1
1.1 Semantic Roles . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Semantic Role Labeling . . . . . . . . . . . . . . . . . . . . . 9
1.4 Semi-supervised Learning . . . . . . . . . . . . . . . . . . . . 11
1.5 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Preprocessing 17
2.1 Dependency Syntax . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Semantically Labeled Dependency Graphs . . . . . . . . . . . 20
2.3 Parse Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Evaluation with Different Parsers . . . . . . . . . . . . . . . . 24
2.5 Syntactic Information in the SALSA Corpus . . . . . . . . . . 28
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 General Expansion Framework 31
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Structure of the Algorithm . . . . . . . . . . . . . . . . . . . 33
3.3 Graph Alignments . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Similarity Scores . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5 Annotation Projection . . . . . . . . . . . . . . . . . . . . . . 47
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Lexical and Syntactic Similarity 49
4.1 Vector Space Model of Lexical Similarity . . . . . . . . . . . . 50
4.2 WordNet-based Model of Lexical Similarity . . . . . . . . . . 54
4.3 Syntactic Similarity . . . . . . . . . . . . . . . . . . . . . . . 63
4.4 The Weight Parameter . . . . . . . . . . . . . . . . . . . . . . 66
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Solving the Optimization 69
5.1 Scope of the Problem . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Formulation as Integer Linear Program . . . . . . . . . . . . 72
5.3 Complexity of the Integer Linear Program . . . . . . . . . . . 74

xi



CONTENTS

5.4 Solution of the Integer Linear Program . . . . . . . . . . . . . 76
5.5 Average Time Complexity . . . . . . . . . . . . . . . . . . . . 78
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6 Supervised Semantic Role Labeler 81
6.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 Frame Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3 Role Recognition and Classification . . . . . . . . . . . . . . . 85
6.4 Evaluation Measures . . . . . . . . . . . . . . . . . . . . . . . 86
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7 Semi-supervised Learning for Known Predicates 93
7.1 Evaluation Procedure . . . . . . . . . . . . . . . . . . . . . . 93
7.2 Choice of Lexical Similarity Measure . . . . . . . . . . . . . . 95
7.3 Tuning the Weight Parameter . . . . . . . . . . . . . . . . . . 100
7.4 Experiments on Corpora of Different Sizes . . . . . . . . . . . 104
7.5 Comparison with Self-training . . . . . . . . . . . . . . . . . . 111
7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8 Semi-supervised Learning for Unknown Predicates 115
8.1 Frame Candidates . . . . . . . . . . . . . . . . . . . . . . . . 115
8.2 Evaluation Procedure . . . . . . . . . . . . . . . . . . . . . . 119
8.3 Experiments on English . . . . . . . . . . . . . . . . . . . . . 120
8.4 Experiments on German . . . . . . . . . . . . . . . . . . . . . 126
8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

9 Conclusions 131
9.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Appendix 135

Index 143

Bibliography 145

xii



List of Figures and Tables

1.1 An abridged version of the frame Cause harm as defined
by FrameNet. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Example of a dependency graph . . . . . . . . . . . . . . . . . 18

2.2 Three different analyses for the phrase “broken window” . . . 19

2.3 Two different analyses for the sentence “They tried to finish
the work”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Example of a semantically annotated dependency graph . . . 20

2.5 LFG f-structure for the sentence “They saw the girl with the
telescope.” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Dependency graphs converted from two of the four readings
encoded in the f-structure of Figure 2.5 . . . . . . . . . . . . 25

2.7 Proportions of sentences for which the Frame Semantic anno-
tation could be mapped without any mismatches . . . . . . . 26

2.8 Manual evaluation of the correctness of the mapped annotations 27

2.9 Proportion of the unmappable sentences that fail due to parser
errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.10 Schematic representation of the combined method employed
on the SALSA corpus . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Expansion algorithm . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Schematic view of the labeling and selection stages . . . . . . 36

3.3 Voronoi cells of six seeds . . . . . . . . . . . . . . . . . . . . . 37

3.4 Annotated dependency graph of the sentence “Old Herkimer
blinked his eye and nodded wisely” . . . . . . . . . . . . . . . 39

3.5 Example of merging the preposition in the sentence “He waited
for me.” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Example of merging the conjunction word in the sentence “He
left while I was sleeping.” . . . . . . . . . . . . . . . . . . . . 41

3.7 Alignment between a labeled and an unlabeled dependency
graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.8 Illustration of optimal graph alignments as the result of a
step-wise transformation process . . . . . . . . . . . . . . . . 45

xiii



LIST OF FIGURES AND TABLES

4.1 Illustration of computing cosine similarity on sparse vector
representations . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Algorithm for computing cosine similarity on sparse vector
representations . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Transformation ϕ of the unbounded range of the Jiang-Conrath
similarity measure into the bounded interval [0, 1) . . . . . . 57

4.4 Two examples of the precomputed data structures used in the
Jiang-Conrath similarity computation . . . . . . . . . . . . . 60

4.5 Algorithm to efficiently compute bounded Jiang-Conrath sim-
ilarity from precomputed lists v and w of hypernyms . . . . . 62

4.6 Hierarchy of grammatical relations defined for RASP . . . . . 64

4.7 Corpus statistics and computed information content values
for the grammatical relations produced by RASP . . . . . . . 65

4.8 Bounded Jiang-Conrath similarity between the most frequent
grammatical relations . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Values of the number c(m,n) of all possible alignments for
different values of m and n . . . . . . . . . . . . . . . . . . . 71

5.2 Histogram of the size of alignment domains over labeled seeds
from the FrameNet corpus . . . . . . . . . . . . . . . . . . . . 71

5.3 Pseudocode of our adaptation of the branch-and-bound algo-
rithm to find an optimal alignment σ∗ . . . . . . . . . . . . . 77

5.4 Proportion of solvable problem instances for different limits
on the number of iterations of our branch-and-bound algorithm 79

5.5 Average number of iterations of our algorithm relative to
number of all valid alignments . . . . . . . . . . . . . . . . . . 79

6.1 Features used by the frame classifier . . . . . . . . . . . . . . 84

6.2 Annotated dependency graph for the sentence “She drank,
savouring the flavour with closed eyes” . . . . . . . . . . . . . 85

6.3 Features used by the role classifiers . . . . . . . . . . . . . . . 87

7.1 Results for the two alternative measures lexcos and lexJC un-
der various values for the logarithmic weight parameter logα 96

7.2 Dependency graphs of three sentences featuring the predicate
swim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.3 Alignments between a seed and two different unlabeled sen-
tences, one favoured by lexcos, the other by lexJC . . . . . . . 99

7.4 Performance of the expansion method on the development set
for various values of α . . . . . . . . . . . . . . . . . . . . . . 103

7.5 Corpus sizes of various training sets . . . . . . . . . . . . . . 105

7.6 Improvements in role labeling F1 obtained by expanding seed
corpora of different sizes . . . . . . . . . . . . . . . . . . . . . 106

7.7 Results on the SALSA corpus, depiction like in Figure 7.6 . . 109

xiv



LIST OF FIGURES AND TABLES

7.8 Similarity of the k-th nearest neighbour relative to that of the
nearest neighbour in the FrameNet and SALSA experiments . 109

7.9 In the same set-up as shown in Figure 7.6, self-training leads
to lower F1 scores . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.1 Accuracy out of n for different frame candidate methods . . . 117
8.2 Frame labeling accuracy resulting from different values for

the parameter k, which determines the expansion size . . . . 120
8.3 Results on FrameNet data, choosing among different numbers

of frame candidates produced by the vector-based method . . 123
8.4 Results on FrameNet data, choosing among different numbers

of frame candidates produced by the WordNet-based method . 125
8.5 Results on SALSA data, choosing among different numbers

of frame candidates produced by the vector-based method . . 127

xv





Chapter 1

Introduction

Weigh the meaning
and look not at the words.

Ben Jonson

One of the fundamental goals of computational linguistics is to formulate
representations of the meaning conveyed by linguistic entities such as words
and sentences which lend themselves to automatic derivation and manipula-
tion. In one form or another such meaning representations are essential for
most tasks in natural language processing (NLP). In machine translation,
usually considered the founding task of the field, it is evident that in order
to translate a sentence such as

(1.1) She decided to treat herself to a fig from the bowl.

some notion of its meaning is indispensable. For example, the translation
of the English word treat into most other languages will require at least an
implicit notion of its word senses (such as “to interact in a certain way”,
“to provide with a gift”, “to care for medically”, “to have as a topic”, and
several others). Likewise, to generate a translation with adequate word
order and function words, the relations between the meanings of the words
are decisive. These cannot be formulated in syntactic terms alone since
syntactic structures are specific to individual languages: that a fig from the
bowl is expressed in a prepositional phrase of the verb treat in English does
not preclude it from being realized as a direct object of the verb gönnen in a
possible German translation (“Sie entschied, sich eine Feige aus der Schale
zu gönnen”). In both cases, however, it plays the same semantic role relative
to the denoted action, namely that of the “enjoyed thing”, in contrast to the
other occuring role of the “enjoying person”. A fully adequate treatment of
the translation task must reflect this.

1



CHAPTER 1. INTRODUCTION

Similar requirements are apparent when considering other NLP prob-
lems. To automatically find or generate answers for natural language ques-
tions, we need an understanding of the content and composition of the ques-
tion sentence, allowing us, e.g., to generalize over synonyms , distinguish be-
tween the different senses of homonyms, and recognize the relations holding
between the given words (including the question word). Without any such
notion, it is not conceivable that the question (1.2) could be associated with
the answer candidate (1.3):

(1.2) How much did Google pay for YouTube?

(1.3) Google snapped up YouTube for $1.65 billion.

Here, we need to determine that “snap up” in this context refers to a com-
mercial transaction and its object (“YouTube”) corresponds to a preposi-
tional phrase when the payment is expressed by the verb “pay”.

Examples could be given for a number of other NLP applications. To
allow for complex reasoning and inference, meaning representations have to
not only comprise word senses and semantic roles, but also take into account
other semantic aspects such as modality, time, negation, quantification, etc.
Computational semantics has long sought to address such problems through
the derivation of logical representations for natural language sentences. The
long tradition of formal logic in the history of western thought, the so-
phisticated level it has reached in modern philosophy and mathematics, as
well as its apparent suitability to computational concepts and contemporary
technology have all contributed to the appeal of formal logic to represent
meaning. Formal semantics has therefore concentrated on the derivation
of logical formulas from text, usually assisted by syntactic theory. Origi-
nating in the seminal work of Montague (1973) these efforts have yielded
complex and sophisticated formal systems. Nevertheless, they have largely
failed to deliver on their promise of making reasoning about natural lan-
guage feasible in practice: lack of coverage and robustness have turned out
not to be transient shortcomings of these approaches, but rather inherent in
the discrepancy between the immensity of the required knowledge and the
limitations of manually encoding it.

In computational semantics, as in other subfields, the last two decades
have seen these obstacles addressed more and more by statistical approaches,
which seek to represent meaning by the quantitative analysis of language
data. Variously hailed for bringing empiricism to linguistics and bemourned
for dispensing with linguistic insight, this development has indubitably been
essential for the practical success of most NLP applications today. Mean-
ing representations, however, are less clearly identifiable in statistical ap-
proaches. Often, meaning is encoded implicitly in the models learned from
the data, which do not easily lend themselves to interpretation. If, for
example, a statistical machine translation model learns to translate treat

2



differently depending on whether the following words are “herself to” or
“him badly”, it does make a distinction correlating to word senses. These
senses, however, are never made explicit. Moreover, large amounts of data
have to be available to account for lexical variability, so that other phrases
such as “treat the guests to a wonderful meal” or “treat the animal with cau-
tion” can be handled adequately. Finally, it is questionable whether all the
information necessary for natural language understanding can be acquired
from corpora alone. Common sense knowledge in particular is frequently
assumed, but hardly ever expressed.

Recognizing the shortcomings of both purely formal methods dependent
on manually codified rules on the one hand and statistical approaches try-
ing to extract information solely from naturally occuring texts on the other
hand, much of current research focuses on a middle ground. In computa-
tional semantics, the concepts of word senses and semantic roles in partic-
ular have proved amenable to such treatment. Both taxonomies of word
senses and theories of semantic roles have been complemented by annotated
corpora, which allow supervised learning of statistical models to predict lin-
guistically defined categories, giving rise to the active research fields of word
sense disambiguation and semantic role labeling. These semantic represen-
tations have proved beneficial to various NLP applications, such as infor-
mation extraction (Surdeanu et al., 2003), question answering (Shen and
Lapata, 2007), and machine translation (Wu and Fung, 2009). Tasks such
as the recognition of textual entailment would also profit if higher accu-
racy could be attained (Burchardt et al., 2009). However, while annotating
corpora with word senses or semantic roles requires less effort and exper-
tise than devising a rule-based system, it is still a major limiting factor
for the performance of NLP systems, and has thus become known as the
“knowledge acquisition bottleneck”. In practice, large annotated corpora,
which are required for high-quality statistical systems, are available for but a
small number of languages (most notably English) and domains. A possible
solution to this problem are semi-supervised learning approaches, which in
addition to manually annotated corpora also utilize information gained from
unlabeled corpora. With large amounts of text nowadays readily available
in electronic form, semi-supervised methods hold promise for improving the
performance of NLP systems at little or no cost. They can thus reduce the
required annotation effort and make many NLP tasks feasible for a broad
range of languages or special domains with limited resources.

This thesis presents a semi-supervised approach to semantic role labeling
(SRL), a task which has received much attention in recent years, yet is still
dominated by supervised methods. In particular, we focus on the theory
of Frame Semantics, which will require us to also address, to some extent,
the problem of word sense disambiguation. We will show how our method,
making use of both annotated Frame Semantic resources and large unlabeled
corpora, is able to significantly improve SRL performance compared with

3



CHAPTER 1. INTRODUCTION

state-of-the-art supervised approaches. This directly translates into reduced
annotation costs for a given level of accuracy.

In the following sections, we first provide some background on semantic
roles in linguistics and computational linguistics, describe the most impor-
tant role semantic resources, and briefly survey the state of the art in SRL.
We then discuss a range of semi-supervised learning approaches. Finally, we
give an overview over the structure of the thesis.

1.1 Semantic Roles

The notion of semantic roles can be traced back to the As.t.ādhyāȳı of Pān. ini,
an ancient Sanskrit grammarian, who probably lived in the 4th century
BCE. A fundamental concept in his grammar is that of six categories, called
kāraka, into which things may be classified relative to an action. Following
Cardona (1976), these are

1. katr. (agent): “the kāraka which functions independently with respect
to other participants in a given action”

2. karman (object): “that participant in an action which the agent most
wishes to reach through the action in question”

3. karan. a (instrument): “that kāraka which, more than any other par-
ticipant in a given action, serves as means for its accomplishment”

4. adhikaran. a (locus): “the kāraka which functions as substrate relative
to an action”

5. sam. pradāna: “that kāraka which the agent intends as goal through
the object of the action in which he participates”

6. apādāna: “that kāraka which functions as a point of departure”

Here, the linguistic significance of the relationship between an action and its
participants is clearly recognized. It is disputed, however, to what extent the
rules for classifying participants into the various kāraka are purely seman-
tic or partly influenced by their function in deriving the syntax of Sankrit.
Cardona (1976) discusses that, e.g., a “person towards whom anger is felt”
is variously designated as either sam. pradāna or karman, depending on the
specific verb and preverb of the sentence. Similarly, in the sentence “The
axe is cutting the tree”, the reason for classifying “the axe” as katr. instead of
karan. a is arguably also a sytactic one. Pān. ini is not alone in compounding
syntactic and semantic criteria for the classification of participants in ac-
tions. This can be similarly observed in classical Greek and Latin grammar,
where syntactic cases and their (semantic) uses were traditionally conflated
into descriptions such as Dative of Purpose or Ablative of Cause.

4



1.1. SEMANTIC ROLES

The first attempt to go beyond this level of analysis was made by Fillmore
(1968). In his case grammar he seeks to identify “deep-structure cases”,
which different languages may realize in various morphological and syntactic
surface forms. A preliminary set of six such semantically defined cases is
proposed:

1. Agentive: “the case of the perceived instigator of the action identified
by the verb, typically animate”

2. Instrumental : “the case of the inanimate force or object causally in-
volved in the action or state identified by the verb”

3. Dative: “the case of the animate being affected by the state or action
identified by the verb”

4. Factitive: “the case of the object or being resulting from the action or
state identified by the verb, or understood as a part of the meaning of
the verb”

5. Locative: “the case which identifies the location or spatial orientation
of the state or action identified by the verb”

6. Objective: “[...] the case of anything representable by a noun whose
role in the action or state identified by the verb is identified by the
semantic interpretation of the verb itself [...]”

Fillmore notes that this enumeration is not to be taken as exhaustive. Subse-
quent attempts at completing the picture, however, did not yield consensus
on a universal set of “deep cases” or “thematic roles”, leading Dowty (1991)
to conclude that the only universal categories seem to be Proto-Agent and
Proto-Patient, which arguments can be associated with to varying degrees.

Recognizing the problems arising in the definition of a universally valid
set of roles, Fillmore (1976) developed the theory of Frame Semantics. It as-
sumes that the understanding of language necessarily requires background
knowledge about prototypical events and situations, organized in frames.
Each frame is associated with a specific set of semantic roles or frame el-
ements. In a sentence, a frame is evoked by a particular lexical unit or
construction, which is called a frame evoking element (FEE). Often, this
is a verb referring to an action or state, with frame elements denoting the
participating or involved entitites, but frames may also be evoked by words
belonging to other parts of speech. Due to polysemy, many lexical units
may evoke a number of different frames dependening on the context they
occur in. For example, the verb treat may evoke, among others, the Topic,
Giving, and Cure frames, while in the example sentence (1.1) the context
makes it clear that the Giving frame is evoked.

5



CHAPTER 1. INTRODUCTION

By virtue of their definition, frames generalize across different lexical
units. Both “pay” in (1.2) and “snapped up” in (1.3) refer to the same sit-
uation, which is captured by the Commercial transaction frame. Simi-
larly, the frame elements Buyer and Goods of this frame generalize over the
concrete syntactic realizations in the two sentences. Frame Semantics there-
fore offers a semantic representation that takes into account polysemy, syn-
onymy , and variability in syntactic realization. Important cases of syntactic
variability are diathesis alternations, i.e., cases where syntactic realizations
are subject to systematic variation. A large number of such alternations has
been documented by Levin (1993). As an example, we consider the following
sentences:

(1.4) [The burglar]Agent [broke]Cause to fragment [the window]Whole patient

[with a hammer]Instrument.

(1.5) [The hammer]Instrument [broke]Cause to fragment

[the window]Whole patient.

Here we have indicated the frame Cause to fragment evoked by the word
broke and its frame elements Agent, Whole patient, and Instrument. The
Frame Semantic analysis abstracts away from the syntactic surface realiza-
tion of the Instrument, once in a prepositional phrase and once as the subject
of break, and thus expresses the common underlying meaning.

1.2 Resources

Before addressing the question of how to automatically derive frames and
roles1 for given sentences, we first present the major resources that have
made the data-driven modeling of the problem possible.

FrameNet. The FrameNet project (Baker et al., 1998) is an effort to
identify and document an inventory of frames suitable for the analysis of
naturally occuring English text. Its first aim is to build a frame lexicon,
defining frames and their associated roles. As an example, the definition of
the Cause harm frame is shown in Figure 1.1. It includes a definition text,
explaining the concept represented by the frame, a set of core roles, which
are specific to the frame, and a number of non-core roles, which cover more
general and incidental information. Finally, all lexical units that may evoke
this frame are listed.

In addition to the creation of a frame lexicon, the FrameNet project fur-
ther seeks to exemplify frames by naturally occuring sentences, drawn from
the British National Corpus (BNC) and the LDC North American Newswire

1We will often use the terms “role” or “semantic role” instead of “frame element”, as
it is more common in the SRL literature.

6



1.2. RESOURCES

Frame: Cause harm

Definition: The words in this frame describe situations in which an Agent
or a Cause injures a Victim. The Body part of the Victim which is most
directly affected may also be mentioned in the place of the Victim.

Core Roles
Agent: Agent is the person causing the Victim’s injury.
Body part: The Body part identifies the location on the body where the

bodily injury takes place.
Cause: The Cause marks expressions that indicate some non-

intentional, typically non-human, force that inflicts harm on
the Victim.

Victim: The Victim is the being or entity that is injured.

Non-core Roles
Degree: Degree is the degree to which the Agent causes harm to the

Victim.
Reason: A fact or action somehow related to the Victim that the

Agent responds to by causing harm to the Victim.
Means: An intentional action performed by the Agent that accom-

plishes the action indicated by the target.

Lexical Units
bash.v, batter.v, bayonet.v, beat up.v, beat.v, belt.v, biff.v, bludgeon.v,
boil.v, break.v, bruise.v, buffet.v, burn.v, butt.v, cane.v, chop.v, claw.v,
clout.v, club.v, crack.v, crush.v, cudgel.v, cuff.v, cut.v, elbow.v, electro-
cute.v, electrocution.n, flagellate.v, flog.v, fracture.v, gash.v, hammer.v,
hit.v, horsewhip.v, hurt.v, impale.v, injure.v, jab.v, kick.v, knee.v, knife.v,
knock.v, lash.v, maim.v, maul.v, mutilate.v, pelt.v, poison.v, poisoning.n,
pummel.v, punch.v, slap.v, slice.v, smack.v, smash.v, spear.v, squash.v,
stab.v, sting.v, stone.v, strike.v, swipe.v, thwack.v, torture.v, transfix.v,
welt.v, whip.v, wound.v

Figure 1.1: An abridged version of the frame Cause harm as defined
by FrameNet.

Corpora. For this purpose, occurences of lexical units are manually anno-
tated with the frames they evoke in given sentential contexts. The textual
representations of roles are identified and labeled accordingly. The following
sentences are examples of the Cause harm frame:

1. [Lee]Agent [punched]Cause harm [John]Victim [in the eye]Body part.

2. [A falling rock]Cause [crushed]Cause harm [my ankle]Body part.

3. [She]Agent [slapped]Cause harm [him]Victim [hard]Degree

[for his change of mood]Reason.

7



CHAPTER 1. INTRODUCTION

4. [Rachel]Agent [injured]Cause harm [her friend]Victim

[by closing the car door on his left hand]Means.

In these examples, the words punched, crushed, slapped and injured are all
annotated as evoking the Cause harm frame. This constitutes a form of
word sense annotation. The word crush may in a different context evoke,
e.g., the Grinding frame, while slap may also evoke the Impact frame. In
addition, each sentence is annotated with all applicable roles, such as Agent,
Victim, or Cause. Technically, the annotation of an FEE or a role consists of
a (not necessarily contiguous) textual span, specified in terms of character
positions, and correponding frame and role labels.

In its latest version (release 1.3), FrameNet contains almost 140,000 ex-
ample sentences for a total of 502 frames, which are evoked by over 5,000 dif-
ferent lexical units (predominantly verbs, nouns and adjectives) in the anno-
tated sentences. However, in spite of the considerable effort that went into
its creation, amounting to a large number of person-years over the space
of more than a decade, the resource is still incomplete. Frames and lexical
units are missing, and even for listed lexical units there may be few or no
example sentences.

SALSA. The frames defined in the English FrameNet project have been
successfully used to annotate sentences in a number of other languages,
empirically confirming the intuition that frames are to a large degree lan-
guage-independent. While FrameNets for Spanish (Subirats and Petruck,
2003), Japanese (Ohara et al., 2004), and Swedish (Borin et al., 2009) are
of limited size, the German SALSA corpus (Burchardt et al., 2006) contains
about 20,000 annotated sentences for verbal lexical units, which is roughly
a third of the number for FrameNet (excluding other parts of speech). In
contrast to the annotation procedure employed for FrameNet, the SALSA
corpus is not based on manually selected example sentences, but on the
exhaustive annotation of a number of verbs over a text corpus. The number
of sentences for a verb therefore reflects its corpus frequency. Specifically,
the TIGER treebank (Brants et al., 2002), comprising news texts from the
German “Frankfurter Rundschau”, was labeled with frames and roles of
491 verbs (compared to 2,115 verbal lexical units in FrameNet), thus adding
a layer of semantic annotations to the syntactic treebank information. As
a result, the corpus is more homgeneous in domain than FrameNet, which
draws on the balanced collection of the BNC. Moreover, the annotation
of roles more closely corresponds to syntactic constituents, as the units of
annotation are not words or characters, but non-terminals and terminals in
the phrase structure trees of the treebank.

Finally, the exhaustive annotation of all instances of the selected verbs
encountered many verb senses for which a frame has not yet been defined in
FrameNet. In these cases a total of 444 proto-frames were defined. These

8



1.3. SEMANTIC ROLE LABELING

indicate verb senses not covered by FrameNet, but do not generalize across
predicates as fully defined frames do. This limits their practical use and
calls for a lexicographic effort to identify common underlying frames, which
could unify proto-frames of different lexical units.

PropBank. The PropBank corpus (Palmer et al., 2005) consists of the
“Wall Street Journal” portion of the Penn Treebank (Marcus et al., 1993)
with an additional layer of semantic role annotations. However, the project
follows a different approach than FrameNet, avoiding any commitment to a
theory of semantic roles. Relative to a verb in a given word sense, a sen-
tential constituent may fill an argument role ARG-n (with n ≥ 0) or any
of a small number of adjunct-like roles (like ARGM-LOC, ARGM-TMP, or
ARGM-MNR for location, time, or manner). While ARG-0 and ARG-1 are
meant to correspond to Dowty’s Proto-Agent and Proto-Patient respectively,
the argument types ARG-n for n ≥ 2 characterize semantic roles specific to
individual verbs. Descriptions of their semantics are provided for each verb,
but do not generalize over different verbs as frames in Frame Semantics do.
This allows abstraction over syntactic variability like the diathesis alterna-
tion shown in (1.4) and (1.5), but does not address the problems raised by
lexical variation, as shown in (1.2) and (1.3). A complementary project to
PropBank is NomBank (Meyers et al., 2004), which similarly addresses the
annotation of nominal predicates and their arguments.

1.3 Semantic Role Labeling

With the availability of large manually annotated corpora like FrameNet
and PropBank, supervised learning approaches to SRL became practically
feasible. In the supervised paradigm, a statistical model is learned from
a manually annotated training corpus and then applied to automatically
analyze the role semantic structure of input sentences. Recent years have
seen a multitude of publications on supervised SRL approaches. In this
section, we give a broad overview over the different lines of research. For
an extensive survey, we refer the reader to Palmer et al. (2010) or Màrquez
et al. (2008).

The first supervised learning approach to SRL was proposed by Gildea
and Jurafsky (2002). Their model uses FrameNet data and estimates the
probabilities of role labels conditioned on a range of features, which are ex-
tracted from phrase structure trees. Many of the features they proposed still
live on in current state-of-the-art systems. Among them are the phrase type
of an argument, its governing category, the path in the parse tree between
a predicate and its argument, the head word of an argument, etc. Interest
in SRL has rapidly spread ever since, as witnessed by the shared tasks of
CoNLL-2004 (Carreras and Màrquez, 2004), Senseval-3 (Litkowski, 2004),

9



CHAPTER 1. INTRODUCTION

CoNLL-2005 (Carreras and Màrquez, 2005), SemEval-2007 (Litkowski and
Hargraves, 2007; Màrquez et al., 2007; Pradhan et al., 2007; Baker et al.,
2007), CoNLL-2008 (Surdeanu et al., 2008), and SemEval-2010 (Ruppen-
hofer et al., 2010a).

Various general-purpose machine learning techniques have been applied
to the task, such as decision trees (Surdeanu et al., 2003), maximum entropy
classifiers (Fleischman et al., 2003), and support vector machines (Pradhan
et al., 2005). Often the identification of the substrings that realize roles
and their classification into specific role types are separated into two con-
secutive stages. In SRL systems for Frame Semantics, frame classification
is an additional preceding stage (Erk and Padó, 2006). While fast and easy
to implement, this “pipeline architecture” is not without problems. Once
a decision has been made, it cannot be corrected at a later stage. More
complex architectures therefore employ methods of joint inference, e.g., by
solving an integer linear program which ensures that structural constraints
are respected (Punyakanok et al., 2008), re-ranking of candidate analyses
(Toutanova et al., 2008), generative modeling (Thompson et al., 2003), for-
mulation as a sequence tagging problem (Màrquez et al., 2005a; Pradhan
et al., 2005), or modeling by conditional random fields (Cohn and Blunsom,
2005).

Besides the choice of system architecture, feature engineering has played
an important role in improving the performance of supervised SRL systems.
Commonly, heuristics such as the pruning rules of Xue and Palmer (2004) are
applied to exclude words or constituents which are unlikely to be arguments
of a given predicate, thus increasing precision and reducing processing time.
Some novel feature types have also been expressed by tree kernels, which
are employed in support vector machines to measure the similarity between
instances by way of counting common substructures in their parse trees
(Moschitti et al., 2008).

Attention has also been paid to the syntactic representations provid-
ing feature values for the various machine learning approaches. While ini-
tially parsers generating phrase structure trees were employed, attention has
to some extent shifted towards dependency structure, as witnessed by the
CoNLL-2008 Shared Task on “Joint Learning of Syntactic and Semantic
Dependencies”. SRL systems based on dependency graphs obtain similar
performance as those based on phrase structure trees (Johansson, 2008).
Màrquez et al. (2005b) show that even a system based on partial syntactic
analyses can perform relatively well.

Supervised learning algorithms and the annotation they require can be
integrated in a process of active learning, which selects sentences for human
annotation based on the uncertainty of a classifier. This avoids wasting
annotation effort on cases that can be handled by the model already, while
focusing attention on problematic cases. While several publications have
addressed active learning for word sense disambiguation (Chen et al., 2006;

10



1.4. SEMI-SUPERVISED LEARNING

Chan and Ng, 2007; Zhu and Hovy, 2007; Zhu et al., 2008), it has not yet
been explored for semantic role labeling.

1.4 Semi-supervised Learning

Problems of resource scarcity in NLP are increasingly addressed by ap-
proaches that are able to extract useful information from unlabeled data.
Unsupervised learning methods try to utilize regularities in unlabeled data
and thus make predictions without any manually annotated training data.
An example of this class of algorithms are clustering approaches, which par-
tition given data points into a fixed or variable number of classes based on
similarity in a suitable feature space. More advanced methods build statis-
tical models based on hidden variables, which are probabilistically inferred
from the observable data. For example, in Latent Dirichlet Allocation (Blei
et al., 2003), underlying topics are inferred from the words of a text.

There have been few attempts to apply unsupervised learning to the
task of SRL. The role identification task has been addressed by Abend et al.
(2009), who estimate the collocation strength between predicates and possi-
ble arguments to decide whether a role relation holds or not. Their approach
only relies on part-of-speech annotations. Grenager and Manning (2006) ad-
dress the task of role classification by a structured probabilistic model and
apply the EM algorithm (Dempster et al., 1977) to learn its parameters in an
unsupervised fashion. The same problem is addressed by Lang and Lapata
(2010), who present an algorithm that is able to determine non-standard
linkings between semantic roles and their syntactic realizations.

A problem of completely unsupervised techniques is that they may be
able to group instances together with some accuracy, but not to associate
them with class labels as defined by the task, e.g., semantic role labels.
This connection has still to be made either with the help of information
from a manually created lexicon or by manually labeling a small set of in-
stances. Swier and Stevenson (2004, 2005) present an approach relying on
information from VerbNet (Kipper et al., 2000), a verb lexicon documenting
alternation behavior of the kind studied by Levin (1993), which constitutes
a weak form of supervision. They make initial unambiguous labeling de-
cisions and then iteratively update a probability model in a bootstrapping
procedure.

In contrast to unsupervised learning, the semi-supervised learning para-
digm assumes that manual creation of a small labeled resource of seed anno-
tations is feasible, and that in addition to these labeled instances there is a
large amount of unlabeled instances. Many unsupervised probabilistic mod-
els can take into account labeled instances by way of observable variables
in their learning process, thus improving model quality. Besides such gen-
eral statistical models allowing for training on both labeled and unlabeled

11



CHAPTER 1. INTRODUCTION

instances, there are various specific semi-supervised learning methods. One
of the most straightforward procedures is self-training, where a supervised
classifier is first trained on the seed data and then applied to the unlabeled
data, with the resulting labeled instances added to the seed data. The clas-
sifier is then retrained on the augmented seed set. This procedure has been
shown to be effective for some NLP problems (Mihalcea, 2004; McClosky
et al., 2006). It does, however, generally seem to depend on different models
or “views” of the problem informing each other. This notion is formalized
in the approach of co-training (Blum and Mitchell, 1998). Here, such differ-
ent and independent views are explicitly assumed. Different classifiers are
trained and constrained to agree with each other in the learning process.
This has the effect that the individual classifiers can learn from each other,
to the extent that not all of them make the same mistakes.

There are various more advanced semi-supervised learning approaches.
Transductive support vector machines (Joachims, 1999) extend standard
support vector machines by finding a hyperplane which not only separates
labeled instances of different classes but also cuts through regions in the
feature spacer showing low density of unlabeled instances, which can thus
improve the quality of the learned model. A similar idea is formalized in
graph-based semi-supervised approaches. Here, the graph of all labeled and
unlabeled instances is considered, with edges between them labeled by some
kind of similarity values. A global optimization task is then solved to dis-
connect the graph into components, each containing only labeled instances
of one class. For example, Blum and Chawla (2001) formulate this task
as a mincut problem, removing graph edges to disconnect instances of two
classes and minimizing the total similarity represented by the removed edges.
Another semi-supervised technique is structural learning (Ando and Zhang,
2005), which defines auxiliary problems on the unlabeled data and then uses
their solutions to inform the main task.

As in the case of unsupervised methods, applications of semi-supervised
approaches to SRL have been few and far between. First attempts at using
both labeled and unlabeled sentences to train SRL models did not yield
convincing results. Self-training and co-training were not successful (He
and Gildea, 2006), and semi-supervised generative modeling yielded only
small improvements (Thompson, 2004). Some methods, however, have been
developed to address resource scarcity in general. Gordon and Swanson
(2007) use surrogate training material of syntactically similar verbs to label
PropBank roles of verbs with only one fully annotated sentence. Padó et al.
(2008) propose a method for training on verbal annotation data to label
event nominalizations, establishing a mapping between roles of verbs and
their nominalizations.

A different strategy is followed by methods of cross-lingual annotation
projection. Those seek to derive annotations for one language by projecting
role semantic annotations of another language via aligned bi-texts. Padó

12



1.5. THESIS OVERVIEW

(2007) applies such techniques to project Frame Semantic annotations from
English to German and French. Similarly, Johansson and Nugues (2006)
project from English to Swedish. Fung and Chen (2004) avoid the need for
parallel corpora and infer annotations for Chinese by associating FrameNet
information with HowNet, an ontology for Chinese.

To our knowledge, this thesis presents the first semi-supervised approach
to SRL that infers new annotation instances by projection from a labeled
to an unlabeled corpus of the same language. An important feature of
our method is that it procures additional training data for an arbitrary
supervised SRL system. Learning an SRL model is therefore orthogonal
to utilizing unlabeled data, and overall performance can profit from future
advances in either field.

1.5 Thesis Overview

This thesis addresses the knowledge acquisition problem of SRL described
in the preceding sections. It proposes a novel semi-supervised approach
based on the acquisition of additional training instances for a supervised
SRL system.

Chapter 2 introduces the concepts which our semi-supervised algorithm
is based on, and describes how the required resources, i.e., a seed corpus
of semantic annotations and syntactic analyses produced by a dependency
parser, are preprocessed into a suitable input format for all later processing
stages.

Chapter 3 describes the general framework of the expansion algorithm
driving our semi-supervised method. A similarity measure based on opti-
mal graph alignments is derived and employed both for the projection of
annotations from labeled to unlabeled sentences and for the selection of
suitable novel annotation instances. A number of parameters are left un-
specified, such as the measures of lexical and syntactic similarity, a weight
parameter between the two, and a parameter determining the amount of
generated annotation data.

Chapter 4 presents specific measures of lexical and syntactic similarity
that can be used in the general framework of Chapter 3. For lexical simi-
larity, two common approaches from the literature are discussed, one based
on distributional similarity and the other based on WordNet information.
Efficient algorithms for the computation of these similarity measures are
presented. For syntactic similarity, a simple definition is given. A more
complex approach is also discussed, but found to be unsatisfactory.

13



CHAPTER 1. INTRODUCTION

Chapter 5 shows how the optimization problem of Chapter 3 can be
formulated as an integer linear program. The complexity of the problem is
analyzed both theoretically and empirically, and an algorithm is described
that efficiently solves the problem in practice.

Chapter 6 describes the supervised SRL system which is employed in the
evaluation of the expansion algorithm in Chapters 7 and 8. Following a state-
of-the-art system from the literature, the tasks of frame and role labeling
are implemented by machine learning algorithms in a pipeline architecture.

Chapter 7 reports on the results of applying our semi-supervised SRL
approach to generate novel annotation instances for predicates that are ex-
emplified by a small number of manually labeled sentences. First, an optimal
instantiation of the framework of Chapter 3 is determined, choosing one of
the two alternative definitions of lexical similarity presented in Chapter 4
and optimizing the weight parameter. In the main experiments of the chap-
ter, we investigate how the sizes of the manually labeled corpus and the
set of generated instances influence the performance of our method. Signifi-
cant improvements are found for small and medium sized seed sets. Finally,
we compare our method to a self-training approach, which shows that our
similarity-based formulation is essential for the observed improvements.

Chapter 8 focuses on the harder task of labeling frames and roles of
predicates for which no annotated sentences at all are available. To process
such predicates, we first need to determine frame candidates for them. We
present two alternative methods for this task, one based on distributional
similarity and one making use of WordNet information. We then show how
instances generated by the expansion algorithm can improve frame and role
labeling performance.

Chapter 9 concludes the thesis by summarizing the main contributions
and giving a brief outlook on possible directions for future research.

14



1.5. THESIS OVERVIEW

Relevant Publications

Results of the research presented in this thesis have been reported on in the
following publications:

• Hagen Fürstenau. 2008.
Enriching Frame Semantic Resources with Dependency Graphs.
In Proceedings of the 6th International Language Resources and Eval-
uation Conference, 1478–1484. Marrakech, Morocco.

• Hagen Fürstenau and Mirella Lapata. 2009.
Semi-supervised Semantic Role Labeling.
In Proceedings of the 12th Conference of the European Chapter of the
Association for Computational Linguistics, 220–228. Athens, Greece.

• Hagen Fürstenau and Mirella Lapata. 2009.
Graph Alignment for Semi-supervised Semantic Role Labeling.
In Proceedings of the 2009 Conference on Empirical Methods in Nat-
ural Language Processing. 11–20, Singapore.

15





Chapter 2

Preprocessing

Before anything else,
preparation is the key to success.

Alexander Graham Bell

In this chapter, we detail the preprocessing steps necessary for both the
application and the evaluation of our semi-supervised semantic role labeling
approach. We first introduce some concepts and notation used throughout
the following chapters, most importantly that of a semantically labeled de-
pendency graph. We then describe a general method for generating such
graphs by combining annotations of a Frame Semantic resource with the
output of a dependency parser. These graphs will later function as seeds for
our expansion algorithm. We evaluate the quality of the produced graphs
and show how the impact of parser errors, the most important source of
incorrect labeled graphs, can be significantly reduced.

2.1 Dependency Syntax

Dependency syntax (Tesnière, 1959) describes the structural relations be-
tween the words of a sentence in terms of dependencies, i.e., binary relations
between words, where one word is the head, the other is the dependent and
a certain grammatical relation (e.g., subject or direct object) holds between
the two.

We can visualize dependency structures as directed graphs like the one
shown in Figure 2.1. All words of the sentence are represented by graph
nodes, while grammatical relations show up as directed labeled edges from
heads to dependents. Various kinds of additional information, extending
the original notion of dependency syntax, may be associated with the graph
nodes. For our purposes we store information about word form, lemma,
part of speech tag, voice (for verbs) and linear position within the sentence.

17



CHAPTER 2. PREPROCESSING

and
ncsubj

xxrrrrrrrrrr
conj

��

conj

$$JJJJJJJJJ

Herkimer

mod

��

blink

dobj

��

nod

mod
��

Old eye

det

��

wisely

his

Figure 2.1: Dependency graph for the sentence “Old Herkimer blinked his
eye and nodded wisely” taken from the FrameNet corpus. Graph edges
are labeled with grammatical relations: ncsubj for non-clausal subject,
conj for conjunct, mod for modifier, dobj for direct object, and det for
determiner.

Other morphological information like case, number or tense is not relevant
for our purposes. For simplicity, we will only show the lemma of each word
when drawing dependency graphs.

While general linguistic criteria have been formulated to decide whether
two words stand in a dependency relation, which direction it takes and how it
is to be labeled (Mel’čuk, 2003), there are a number of phenomena for which
analyses vary among different syntactic theories. For example, there is no
consensus on how to analyse coordination, and to consider the coordinating
word the head, as in Figure 2.1, is only one possibility (see Nilsson et al.
(2006) for a discussion of alternative analyses).

Given a pair of words, the head generally should be the word that deter-
mines the syntactic behaviour of the phrase to a greater extent. This would
imply that in a phrase consisting of a noun and an attributive participle,
such as “broken window”, the noun should be the syntactic head. However,
some dependency parsers, such as the RASP system (Briscoe et al., 2006),
which will be used in our experiments for English, include a relation in the
opposite direction. This reflects the fact that a predication is expressed by
the verb break, which is therefore considered the head word. This solution
is clearly inspired by the semantics of the phrase more than by its syntax.
If relations in both directions are included, the graph contains a directed
cycle, as illustrated in Figure 2.2.

In fact, much of the variance that can be observed in dependency parser
output stems from attempts at producing more “semantic” analyses. An-
other example for this is the treatment of raising and control verbs. Raising
verbs are verbs that realize a semantic argument of a subordinate clause as
a direct syntactic dependent. A prominent example is the verb seem. In
the sentence “He seems to work a lot”, the subject he is a syntactic de-

18



2.1. DEPENDENCY SYNTAX

window

mod
��

window window

mod
��

break break

obj

OO

break

obj

UU

Figure 2.2: Three different analyses for the phrase “broken window”, the
third one showing a directed cycle.

try

ncsubj

||yyyyyyyy
xcomp

""FFFFFFFFF try

ncsubj

�����������������
xcomp

""FFFFFFFFF

they finish

dobj

��

finish
ncsubj

vvlllllllllllllll

dobj

��
work they work

Figure 2.3: Two different analyses for the sentence “They tried to finish
the work”, the second graph exhibiting an undirected cycle. The edge labels
denote non clausal subject (ncsubj), unsaturated VP complement (xcomp),
and direct object (dobj). The words “to” and “the” are omitted.

pendent of seem, but semantically an argument of work. A similar case are
control verbs, for which the syntactic dependent is a semantic argument of
both verbs, as they in “They tried to finish the work”. Again, some de-
pendency parsers will try to encode the semantic information and analyze
the argument in question as a dependent of the subordinate verb — or even
of both verbs. The latter case results in a dependency graph that is not a
tree, because the dependent will have two heads, and the dependency graph
therefore exhibits an undirected cycle, as shown in Figure 2.3.

These two examples highlight that, while dependency syntax is often
formally defined to exclude multiple heads so that the resulting graphs are
actually trees, in practice we may have to deal with analyses containing undi-
rected or even directed cycles. Undirected cycles do not present significant
problems for our algorithms, and we will therefore allow dependency analy-
ses to be general directed acyclic graphs (DAGs). Directed cycles, however,
pose problems for many algorithms involving graph traversal, since sets of
“seen nodes” have to be maintained to ensure termination. We therefore
remove directed cycles as a step of preprocessing, using a small number of
rules that are specific to the parser we employ. For example, for RASP we
remove edges from a non-verb to a verb if there also is an edge in the oppo-
site direction. As an additional preprocessing step, we ensure that subjects
of verbs in the passive voice are marked by distinct grammatical relations
(e.g., ncsubj pass).

19



CHAPTER 2. PREPROCESSING

Body movement

FEE

=={
{

{
{

{
{

{
{

{
{

Agent

��

_eikmoru
y

�
�

�

Body part

��

�

�




�
�

}
|

{
z

z
{

�

and
ncsubj

xxrrrrrrrrrr
conj

��

conj

((QQQQQQQQQQQQQQ

Herkimer

mod

��

blink

dobj

��

nod

mod
��

Old eye

det

��

wisely

his

Figure 2.4: Semantically annotated dependency graph: the word blink
evokes the frame Body movement, which features the roles Agent and
Body part.

2.2 Semantically Labeled Dependency Graphs

Neither of the two Frame Semantic corpora to which we will apply our ex-
pansion method contains dependency syntax annotation. The annotations
in the FrameNet corpus have limited syntactic information about phrase
types and the grammatical relation between the FEE and the roles (distin-
guishing only the functions external, object and dependent for verbal FEEs).
The SALSA corpus does contain detailed manual syntactic annotation, as
it was built on top of the TIGER treebank (Brants et al., 2002). However,
this treebank holds phrase structure analyses, and while a small subset has
been converted into a dependency bank (Forst et al., 2004), this process
involves a significant amount of manual work, making it infeasible for the
entire SALSA corpus.

Our goal therefore is to produce semantically annotated dependency
graphs by merging the Frame Semantic analyses with dependency graphs
produced by an automatic parser. The result will be semantically anno-
tated dependency graphs, where FEEs are marked with the frames they
evoke and each role of a frame is associated with graph nodes representing
its instantiation in the sentence. Specifically, we will add a frame structure
to a dependency graph by linking a special frame node to its FEE by an
edge labeled “FEE”. Each role is then represented by an edge between the
frame node and the head of the phrase realizing this role, labeled with the
role name. An example is given in Figure 2.4.

We now describe in turn how to map the annotations of FEEs and roles
onto dependency graphs.

20



2.2. SEMANTICALLY LABELED DEPENDENCY GRAPHS

Mapping FEEs. For every annotated FEE in the Frame Semantic corpus
we identify a corresponding node in the dependency graph. We make the
following simplifying assumptions:

1. In this thesis we will focus on SRL for verbal predicates, which have
received more attention in the literature than other parts of speech. In
the FrameNet corpus, they make up 60,666 of the 139,439 annotated
sentences, while in the SALSA corpus all 19,494 annotations are for
verbs. Each sentence in the two corpora features the annotation of a
single FEE and its roles. As we will apply our semi-supervised SRL
approach to these two corpora, we can thus assume that in each
sentence there is exactly one annotated verbal lexical unit.

2. In FrameNet, a single lexical unit always evokes exactly one frame. In
SALSA, however, approximately 7% of the instances contain FEEs an-
notated with multiple frames. These express underspecification, where
more than one frame may be applicable. We chose to ignore this phe-
nomenon in our work and treat each annotated frame as a separate
annotation instance. Accounting for underspecification at the frame
level would make evaluation of our results less obvious (e.g., we would
have to decide whether to give partial scores if some of the annotated
frames are correctly predicted) and complicate exposition. We thus
assume that each FEE evokes exactly one frame.

3. A Frame Semantic lexical unit may consist of more than one word.
A frequent example in English are particle verbs such as put up. A
dependency parser will typically analyze two tokens here, with up a
dependent (of type particle or similar) of put. Following Frame Seman-
tics, we would therefore have to mark two graph nodes as constituting
the FEE. We avoid this complication and only mark the verb (or, more
generally, the first part of a multi-word expression) as the FEE. This
should be of little practical consequence: an SRL system typically has
access to the entire dependency graph and its grammatical function
labels, and can therefore recover this information. Consequently, we
assume that each FEE consists of a single word, corresponding
to a single node in the dependency graph.

Having made these assumptions, the identification of a single graph node
corresponding to the FEE is straightforward: we simply choose the graph
node which coincides with the annotated FEE in its textual span. There
may be cases, however, where no such graph node exists, e.g., because the to-
kenization performed by the parser differs from the annotation in FrameNet.
In such cases we choose the graph node having the largest overlap with the
textual span of the FEE instead, which we count in number of characters.
This makes our preprocessing more robust to minor incompatibilities of the

21



CHAPTER 2. PREPROCESSING

employed tools. We record the number of mismatched characters (i.e., char-
acters which are in the node span, but not the FEE span or vice versa) as
a mismatch score for this instance. This score will later be used to discard
unreliable graphs from the seed set of our expansion algorithm.

Mapping Roles. To associate frame roles with nodes in the dependency
graph, we identify the node whose yield corresponds to the annotated tex-
tual role span. Here, the yield of a node is the textual span of the words
associated with itself or any of its direct or indirect dependents. For exam-
ple, in Figure 2.4 the yield of the node eye would be the substring “his eye”
of the given sentence. The yield of a node does not have to be a contigu-
ous substring of the sentence (dependency graphs for which it always is are
called projective). In fact, if textual spans of graph nodes are represented
by character indices in the sentence string, the union of multiple spans will
usually not be contiguous due to missing whitespace characters or punctua-
tion marks (which are often omitted from dependency graphs). To compare
such textual spans to the ones marked in FrameNet, we employed heuristics
to ignore mismatches on such “irrelevant” character positions. There is,
however, still no guarantee that for a given role span a single node with a
matching yield can be found. The reasons for this fall into three classes:

1. As in the case of mapping FEEs, there may be minor incompatibilities
in tokenization or invalid offsets of string indices due to encoding er-
rors. We handle these problems robustly by an approach equivalent to
the one outlined above and increase the mismatch score by the num-
ber of mismatching characters for each role. In the end, it therefore
represents the sum of the character mismatches in mapping the FEE
and all role instantiations, and a mismatch score of 0 indicates that
no problems were encountered.

2. The assumption that a role span corresponds to the yield of a single
graph node is a simplification of the situation found in Frame Semantic
annotation. It is violated in a number of cases in the FrameNet corpus,
where semantic roles are annotated across syntactic phrase boundaries.
The most frequent case is caused by the annotation guideline that a
role annotated on a relative pronoun also include the referent of the
relative pronoun in the containing clause. Other cases are less sys-
tematic and often subject to idiosyncratic annotation decisions. (For
example, in the sentence “These genes are duplicated along with the
chromosomes”, both “these genes” and “along with the chromosomes”
are annotated with the role Original of the frame Duplication.) Un-
der our approach, roles will be imperfectly mapped in these cases, as
only the part of the role span overlapping most with the yield of a
graph node will be represented in the dependency graph.

22



2.3. PARSE SELECTION

3. The majority of cases in which no perfectly matching node can be
found are due to parser errors. If a parser error leads to an incorrect
yield for a node that should receive a role label, the comparison of this
yield to the textual span of the role will fail.

Interestingly, this last type of mismatches opens up a possibility of detecting
parser errors. This will be discussed in the next section. It is also the reason
why we do not generalize the method to allow one role to be represented by
more than one graph node, which might improve coverage of the phenomena
of the second type discussed above. Allowing an arbitrary number of nodes
to represent a role would make the matching succeed in almost all cases,
thus rendering this indicator of parser errors useless. Some overall accuracy
might be gained by a compromise of allowing a small number (e.g., two or
three) head nodes per role span. For ease of exposition, however, we leave
exploration of this parameter to future work.

2.3 Parse Selection

A significant source of errors for any SRL system relying on syntactic prepro-
cessing are parser errors, which affect both the training and the application
of an SRL system. In the former case, these errors negatively impact the
quality of the learned model, while in the latter case applicability of the
model to the badly parsed test sentences is impaired.

In the context of our semi-supervised approach to SRL, there is a third
process suffering from parser errors: since we infer new training instances
from seed sentences, a single incorrectly parsed seed sentence may lead to
a large number of badly inferred training instances, introducing noise into
the learning process and thus counteracting our attempts at improving the
training data. In the worst case the detrimental effect of this noise may be
larger than the benefit from capturing novel information. Avoiding parser
errors is therefore even more crucial to our approach than to conventional
SRL architectures.

We address this problem by performing a form of parse selection dur-
ing preprocessing. The key observation here is that many parser errors are
caused by syntactic ambiguity that could be resolved with semantic informa-
tion. A prime example for this is the attachment problem of prepositional
phrases (PPs). In the sentence “I eat my meal with a fork” there is a syn-
tactic ambiguity between attaching the PP “with a fork” either to the verb
“eat” or to the noun “meal”. Semantically, however, only the first choice
makes sense. Such attachment ambiguities are one of the chief causes of
parser errors (Collins, 2003). In our case, however, the semantic information
which the parser lacks in order to make the right disambiguation decision
is often implicit in the Frame Semantic annotation. In the given example
sentence, we would see “my meal” annotated as a role span. This leads to

23



CHAPTER 2. PREPROCESSING

a mapping mismatch with any analysis attaching “with a fork” to “meal”,
while for the correct analysis the spans match perfectly. In fact, the correct
attachment is inherent in the semantic annotation decision of leaving with
a fork out of the role span.

Since there is no easy way of incorporating this information into the
parsing process itself, we resort to a reranking approach on n-best lists of
analyses. Specifically, we set the parser to output the 20 parses with the
highest probability and try to map the Frame Semantic annotation to each of
them in turn as described in Section 2.2, proceeding in order of decreasing
parse probability. As soon as we find a perfect match, we terminate and
map the frame onto this dependency graph. If the frame cannot be mapped
perfectly to any of the 20 graphs, we instead choose the analysis leading to
the least mismatch score as defined above.

2.4 Evaluation with Different Parsers

As the quality of the semantically annotated dependency graphs is crucial
for all later processing stages, we evaluate our preprocessing algorithm for
coverage and accuracy, taking into account different parsers for English and
German.

We consider the PARC XLE system with the English LFG developed in
the ParGram project (Riezler et al., 2003), which is a hand-crafted grammar
with statistical parse ranking. It produces c-structures, resembling classical
phrase structure trees, and f-structures, which are structurally close to de-
pendency graphs. An example of an f-structure is shown in Figure 2.5. It
covers four different readings of the sentence “They saw the girl with the
telescope” in a packed representation. We do not need to go into detail about
the specific information contained in it. It suffices to note that it is possible
to convert f-structures into dependency graphs. For our experiments we ap-
plied a set of rewriting rules1 for this purpose. Figure 2.6 shows dependency
graphs for two of the readings in our example, representing the attachment
ambiguity of the prepositional phrase. In the other two readings, the verb
to see is replaced by the verb to saw.

As a second system for English, we considered RASP (Briscoe et al.,
2006), which is a toolchain consisting of a tokenizer, a part of speech tagger,
a lemmatizer, a parser based on a manually built grammar, and a ranking
model. It produces both phrase structure trees and dependency output. An
example of the latter has already been shown in Figure 2.1. Briscoe and
Carroll (2006) find that the LFG and RASP perform similarly at 79.6% and
79.7% F1 score, respectively, on the PARC 700 Dependency Bank (King
et al., 2003).

1kindly provided to us by Tracy H. King

24



2.4. EVALUATION WITH DIFFERENT PARSERS

Figure 2.5: LFG f-structure for the sentence “They saw the girl with the
telescope.”

see
subj

{{xxxxxxxx
obj

��

adjunct

%%KKKKKKKKKK

they girl

det

��

with

obj
��

the telescope

det

��
the

see
subj

{{xxxxxxxx
obj

""EEEEEEEE

they girl
det

}}zzzzzzzz
adjunct

%%JJJJJJJJJJ

the with

obj
��

telescope

det

��
the

Figure 2.6: Dependency graphs converted from two of the four readings
encoded in the f-structure of Figure 2.5

25



CHAPTER 2. PREPROCESSING

(a) FrameNet (verbal FEEs)

Parser n-best Mappable

LFG 1 49.3%
RASP 1 44.4%
LFG 20 61.1%
RASP 20 65.1%

(b) SALSA

Parser n-best Mappable

LFG 1 56.7%
LFG 20 64.5%

Table 2.7: Proportions of sentences for which the Frame Semantic annota-
tion could be mapped without any mismatches

For German, we considered the LFG developed again as part of the
ParGram project (Dipper, 2003; Rohrer and Forst, 2006), together with the
statistical disambiguation model of Forst (2007), which achieves an F1 score
of 83.01% on the TiGer Dependency Bank (Forst et al., 2004). As in the
case of English, we converted f-structures to dependency graphs with the
help of rewriting rules2.

We first analyze how many of the instances in the FrameNet and SALSA
corpora can be mapped perfectly (i.e., with mismatch score 0) onto depen-
dency graphs produced by different parsers. We apply the procedure de-
scribed in Section 2.2 to map frames and roles onto nodes of dependency
graphs generated by the three parsers. For each parser, we consider either
only the most probable parse or select among the 20 most probable analyses
as described in Section 2.3. The results are shown in Table 2.7.

We can see that parse selection improves coverage in terms of perfectly
mappable instances by about 8 to 21 percentage points, depending on the
corpus and parser employed. The difference between the two parsers for
English is rather small. Moreover, their relative order is reversed between
the 1-best and 20-best scenarios, with RASP obtaining the higher coverage
with parse selection. This might indicate that a parser based on a deep
linguistic grammar can be more accurate for our purposes, but does not
gain as much from n-best parse selection. It should be noted, however, that
general conclusions about the relative performance of syntactic parsers are
outside the scope of this thesis.

To ascertain whether higher coverage really corresponds to higher qual-
ity of preprocessing, we next randomly selected samples of 100 sentences
from both the FrameNet and SALSA corpora. We then manually analysed
the successfully mapped annotations, classifying them as correct or incor-
rect. Here, an annotated dependency graph was considered correct if the
part of the sentence constituting the semantic predicate-argument structure
described by the frame was correctly analysed in its syntax and additionally
the FEE and all roles were correctly associated with graph nodes. Due to
the size of the sample and the fact that there was only one annotator (the

2kindly provided to us by Martin Forst

26



2.4. EVALUATION WITH DIFFERENT PARSERS

(a) FrameNet (verbal FEEs)

Parser n-best Correct

LFG 1 76% (±9%)
RASP 1 78% (±9%)
LFG 20 77% (±9%)
RASP 20 78% (±9%)

(b) SALSA

Parser n-best Correct

LFG 1 81% (±8%)
LFG 20 80% (±8%)

Table 2.8: Manual evaluation of the correctness of the mapped annotations.
Confidence intervals (p < 0.05) are given in brackets.

author), this cannot give more than a rough indication of the quality of the
annotated dependency graphs. The results are shown in Table 2.8. Across
corpora and parsers no significant deterioration of accuracy is discernible
within the confidence intervals. This means that the significant increase in
coverage achieved by selecting among the 20 best parses does not incur an
obvious loss in accuracy, which confirms the suitability of our parse selection
approach.

Comparison to conventional parser evaluation is not straighforward. The
simplest measure of parser performance is exact match, which counts how
many of the analyses produced by a parser coincide perfectly with those in
a gold standard. Often, however, more fine-grained measures are employed,
such as the popular PARSEVAL metric (Black et al., 1991), which consid-
ers precision and recall of individual relations, or extensions of it that also
take into account relation labels. For an overview over dependency parser
evaluation we refer the interested reader to Dridan (2010). Accuracy for our
purposes of mapping Frame Semantic annotation lies somewhere in between
strict measures like exact match and more lenient ones like precision and
recall of individual relations. For complex sentences, usually only a small
part of the dependency graph will be relevant to a given semantic frame.
Therefore it is certainly a more lenient measure than exact match. It does,
however, usually require multiple syntactic relations to be correct, which is
stricter than relation-based measures.

Ultimately, an accuracy of about 80% for dependency graphs with a mis-
match score of 0 seems to be the best that can be achieved in preprocessing.
This still means that in the application of our expansion method about one
in five seed sentences can be expected to contain some relevant parser er-
ror. Our algorithms therefore have to be designed so that they are robust
in the face of noise. It is also interesting to note that, while better parser
accuracy would be welcome, SRL would benefit especially from accuracy
improvements in local analyses, namely in the parts of a parse covered by
a single semantic predicate-argument structure. This is not necessarily the
objective which statistical parsers are optimized for when tuned on popular
evaluation metrics.

27



CHAPTER 2. PREPROCESSING

(a) FrameNet (verbal FEEs)

Parser n-best Parser Errors

LFG 1 82% (±8%)
RASP 1 76% (±9%)
LFG 20 83% (±8%)
RASP 20 78% (±9%)

(b) SALSA

Parser n-best Parser Errors

LFG 1 81% (±8%)
LFG 20 80% (±8%)

Table 2.9: Proportion of the unmappable sentences that fail due to parser
errors. Confidence intervals (p < 0.05) are given in brackets.

In a final evaluation, we considered those sentences which could not be
mapped perfectly either to the best or to any of the 20 best parses. Table 2.9
shows that roughly 80% of those failures were due to parser errors. (The
remaining failures are caused by the other reasons discussed in Section 2.2,
such as tokenization errors, roles spanning more than one subgraph, etc.)
Comparing this with the 20% parser errors among mappable sentences, we
see that failure to map the semantic annotation is indeed a strong indicator
for an invalid syntactic analysis and therefore acts as a filter in our prepro-
cessing. We will therefore not use any sentences with a mismatch score > 0
as seeds in our expansion algorithm. As described in Section 6.4, we will,
however, include such sentences in the test sets to guarantee an unbiased
evaluation of our method.

For all further experiments with the English FrameNet corpus we will
use annotated dependency graphs produced by RASP and parse selection
among the 20 best analyses.

2.5 Syntactic Information in the SALSA Corpus

In the case of the SALSA corpus, the semantic annotation is already associ-
ated with tree nodes of phrase structure parses. We would therefore expect
annotated dependency graphs of higher quality if it was possible to avoid
reparsing these sentences and instead convert the phrase structure trees into
dependency graphs while maintaining frame and role labels. This would also
make the mapping procedure unnecessary, as the converted structures would
already be equipped with semantic annotation. Unfortunately, there are two
drawbacks to this approach:

First, conversion from phrase structure trees to dependency graphs is
ambiguous in some cases. In the creation of the TiGer Dependency Bank,
this necessitated a manual disambiguation procedure, which is not feasible
on the complete SALSA corpus. The statistical disambiguation system we
employed on parsed structures cannot be applied to converted graphs either,
as they lack specific information required by that model. In such cases, we

28



2.5. SYNTACTIC INFORMATION IN THE SALSA CORPUS

TIGER Tree

�� ))TTTTTTTTTTTTTTT SALSA Annotation

oo

Reparsed
Dependency Graphs

��

Converted
Dependency Graphs

vvnnnnnnnnnnnn

Best parsed graph
(with tree node

correspondences)

$$JJJJJJJJJJJJJJ

Semantically
Labeled Graph

Figure 2.10: Schematic representation of the combined method employed on
the SALSA corpus

can therefore only choose one of the converted graphs at random, which
introduces a moderate amount of errors.

More limiting for our purposes is the fact that dependency graphs con-
verted from phrase structure trees differ in many details (such as exact
lemmatization or part of speech tags) from those produced by a parser.
Our ultimate goal, however, is to use annotated sentences as seeds in the
expansion algorithm and compare them to parsed sentences from an unla-
beled corpus. It is therefore essential that seeds and expansion sentences
are represented by comparable dependency graphs.

Therefore, we chose not to use the converted structures themselves, al-
though annotated dependency graphs can be generated for almost all of them
(97.4%) and accuracy is high at 94%(±5%). Instead, we follow an approach
of combining converted and reparsed structures. For this we operationalize
the converted structures for disambiguation of the parsed structures. The
process is shown schematically in Figure 2.10.

The idea here is to compare all parses of a sentence to all readings of
the ambiguous converted structure and choose the parse which is most sim-
ilar to one of the readings. If several parses rank equally in similarity, the
statistical parse ranking model is employed to choose the most probable
analysis. The similarity between parsed and converted structures is com-
puted on the basis of shared f-structure facts, which are the individual pieces
of information collected in f-structures.3 Using this approach, we selected

3Comparison was performed with a script provided by Martin Forst. Because of com-
putational costs, the sets of structures had to be restricted in cases where they were too
large (a maximum of 10,000 combinations of a converted and a parsed analysis was al-
lowed). Furthermore, parses with low similarity scores (matching less than 50% of the
f-structure facts in the converted analysis) were discarded.

29



CHAPTER 2. PREPROCESSING

a dependency parse for each sentence, while at the same time maintaining
the information of which node in the phrase structure tree corresponds to
which node in the dependency graph. This allowed us to obtain labeled
dependency graphs from the original SALSA annotations, without recourse
to a mapping procedure.

Evaluation shows that 84.4% of the sentences in the SALSA corpus can
be converted in this way (for the remaining ones some incompatibility in
the syntactic representations causes the annotation information to be lost
or corrupted). This is an increase of about 20% over the best result (64.5%)
achieved with the mapping algorithm of Section 2.2, which ignores the tree-
bank information. Accuracy of the produced annotated dependency graphs
on the other hand does not suffer. It remains essentially stable at 79%(±8%).

All further experiments with the German SALSA corpus will there-
fore make use of annotated dependency graphs produced by this combined
conversion method. The higher success rate of 84.4% will ensure a suffi-
cient number of seed instances for the SALSA corpus, which is considerably
smaller than the FrameNet corpus.

2.6 Summary

In this chapter, we have introduced syntactic dependency graphs, and shown
how they can be combined with Frame Semantic annotations in a procedure
that maps frame and role labels onto graphs nodes. We have discussed the
sources of errors in this procedure, identifying parser errors as the major
problem. An approach to parse selection was proposed, taking advantage
of the disambiguating information inherent in the semantic analyses. We
evaluated the performance of the mapping procedure in terms of coverage
and accuracy on syntactic analyses of three different parsers, two for English
and one for German, showing that selection among the 20 most probable
parses substantially reduces the number of mapping failures, while main-
taining high accuracy. For the German SALSA corpus, we have described a
combined approach of parsing and treebank conversion, which takes advan-
tage of the phrase structure trees available for SALSA sentences and further
reduces the number of mapping failures.

In our experiments in Chapters 7 and 8, we will employ labeled depen-
dency graphs as seed corpora for our expansion algorithm. For the English
FrameNet corpus, we will make use of the annotation instances mapped
onto dependency graphs produced by RASP, while for the German SALSA
corpus, those generated from treebank information and LFG parses in the
combined method of Section 2.5 will be used. In the following chapter,
we now describe the general framework of our semi-supervised approach to
SRL.

30



Chapter 3

General Expansion
Framework

This chapter describes the general framework of our semi-supervised SRL
approach. We first motivate the basic idea of the expansion algorithm and
provide a technical description of its structure. The following sections then
describe our notion of sentence similarity and its definition by way of graph
alignments. Finally, we discuss the procedure of projecting annotations.

3.1 Motivation

The key idea of our semi-supervised approach to SRL is to automatically
generate novel training instances for a supervised classifier by projecting an-
notations from labeled seed sentences to unlabeled sentences. This requires
a (possibly rather small) labeled seed corpus and a much larger expansion
corpus without semantic annotation. For example, our expansion corpus
might contain a sentence like the following:

(3.1) The rest of his body thumped against the front of the cage.

To infer a Frame Semantic annotation for this sentence we might find a
sentence like the following one in our seed corpus:

(3.2) [His back]Impactor [thudded]Impact [against the wall]Impactee.

We now wish to determine that the two sentences are similar to the degree
that they share a Frame Semantic analysis. If we are also able to associate
the different parts of the two sentences with each other in a suitable way,
we can then project the annotation of the seed sentence onto the unlabeled
sentence, and thus obtain a labeled version of (3.1):

(3.3) [The rest of his body]Impactor [thumped]Impact

[against the front of the cage]Impactee.

31



CHAPTER 3. GENERAL EXPANSION FRAMEWORK

Our confidence in the validity of this projection will depend on the similarity
of the two sentences. In order to maximize our chances of obtaining a cor-
rect annotation, we should therefore look for a seed sentence with maximum
similarity to the given unlabeled sentence. For example, the following seed
sentence is not substantially similar and therefore projection of its annota-
tion onto (3.1) is not appropriate:

(3.4) [He]Agent [thumped]Cause impact [his fists]Impactor

[on his knees]Impactee.

Projecting the annotation from this sentence would erroneously annotate the
Cause impact frame instead of the correct Impact frame shown in (3.3).
Moreover, any projection of the role Agent would be incorrect.

Modeling Similarity. As we have seen, the way sentence similarity is
modeled plays an important role in our approach. However, while high sim-
ilarity increases our confidence that annotation projection is warranted, we
also have to allow for novel information to be acquired in the automati-
cally generated annotation instances. We consider two kinds of such novel
information:

As state-of-the-art SRL systems learn their models from annotated train-
ing sentences alone, without recourse to additional resources like taxonomies
or ontologies, their ability to generalize over different lexical items is limited
by the example sentences on which they are trained. We should therefore
aim at providing additional training instances exhibiting lexical variation,
which enable the classifier to learn better models of selectional preferences
and semantic classes implicit in the data.

Manually labeled corpora, which are of limited size, cannot exhaustively
document the syntactic behaviour of predicates and often exhibit limited
coverage of diathesis alternations as shown in Section 1.1, or variability of
syntactic realizations in general. Without access to a syntactic verb lexicon,
a SRL classifier is therefore severely limited in fully modeling such phenom-
ena. New training instances showing syntactic variation would alleviate this
problem by exemplifying various syntactic realizations.

While high lexical and syntactic similarity are good indicators that an-
notation projection is possible, it may therefore nevertheless be desirable to
allow new instances to deviate to some extent from labeled seeds in their
lexical material and syntactic configuration. To account for this, but still
maintain overall high confidence in the validity of our inference, we will
model sentence similarity as a trade-off between lexical and syntactic sim-
ilarity: lower lexical similarity can be counterbalanced by higher syntactic
similarity and vice versa.

Selecting Expansion Sentences. Finding similar seed sentences for an-
notation projection is only part of the problem of generating novel training

32



3.2. STRUCTURE OF THE ALGORITHM

data. We also need to decide which of the sentences of the expansion corpus
should receive annotations and thus become new training instances. This
is necessary, because for many sentences in the expansion corpus there will
be no sufficiently similar seed sentence, making it impossible to project a
correct annotation. Even if all unlabeled sentences could be annotated with
reasonable accuracy, there would still be the problem that the expansion
corpus is typically orders of magnitude larger than the seed corpus. Includ-
ing automatically inferred annotations for all of those sentences would lead
to an imbalance between a small number of clean manual annotations and
a much larger number of noisy automatically inferred annotations, which
would inevitably have a negative impact on classifier performance.

We therefore need a procedure to select a subset of the expansion corpus
that is suitable as additional training data. We will again base this selection
procedure on our confidence in the accuracy of the projected annotations, as
estimated by the similarity between the source and target sentences of the
projection. Our solution will feature a parameter determining the size of the
resulting set of additional training instances. The experiments performed
in Chapters 7 and 8 will show that there is a trade-off between the amount
and the accuracy of the inferred annotation instances.

A simple alternative to our procedure of measuring similarity and pro-
jecting annotations would be to apply a supervised SRL system to label
sentences from the expansion corpus and then add them to the training set
in a process of self-training. We will show the advantage of our approach
over self-training in Section 7.5.

3.2 Structure of the Algorithm

In this section we give a technical overview of our semi-supervised frame-
work. Let L denote a set of sentences labeled with Frame Semantic frames
and roles (the seed corpus) and U a (much larger) set of unlabeled sentences
(the expansion corpus), from which we wish to automatically create novel
annotated instances. The basic structure of our algorithm is shown in Fig-
ure 3.1. It broadly consists of two parts: a labeling stage (lines 1 to 20) and
a selection stage (lines 21 to 26).

Labeling Stage. In the labeling stage, we find the most similar seed in-
stance for each unlabeled instance. Here, an unlabeled instance consists of a
sentence u ∈ U together with a target predicate t in that sentence. Complex
sentences may feature several target predicates and thus give rise to different
annotation instances, as each of them may evoke a frame.

A given pair (u, t) is compared to each seed l ∈ L. The target predicate of
the seed is always its annotated FEE, so formally we are comparing the pairs
(u, t) and (l,FEE(l)). To carry out the comparison we first determine an

33



CHAPTER 3. GENERAL EXPANSION FRAMEWORK

1: Initialize Xl ← ∅ for all l ∈ L
2: for u ∈ U do
3: for each target predicate t in u do
4: s∗ ← 0
5: for l ∈ relevant seeds from L do
6: M ← alignment domain of FEE in l
7: N ← alignment range of t in u
8: (σ, s)← optimal alignment of M and N and its score
9: if (s > s∗) and (σ covers all roles) then

10: l∗ ← l
11: σ∗ ← σ
12: s∗ ← s
13: end if
14: end for
15: if s∗ > 0 then
16: u′ ← u with annotation projected via σ∗ from l∗

17: add (u′, s∗) to Xl

18: end if
19: end for
20: end for
21: X ← ∅
22: for l ∈ L do
23: for (u′, s) ∈ Xl do
24: add u′ to X if s is among the k highest scores in Xl

25: end for
26: end for
27: return X

Figure 3.1: Expansion algorithm: given a set L of labeled seed sentences
and a set U of unlabeled sentences it produces a labeled expansion set X
containing the k nearest neighbours of each seed.

alignment domain and an alignment range in the dependency graphs repre-
senting u and l. These represent the relevant predicate-argument structures
of t and FEE(l) in these graphs. Their definition will be detailed in the next
section. We then compare these subgraphs by determining their optimal
alignment according to our similarity measure. Section 3.4 will detail this
process. This gives us a similarity score for each seed l ∈ L, so that we can
determine the highest-scoring seed l∗, its alignment σ∗ to u and its score s∗.
The seed l∗ is then used to project a frame and a set of roles to u. This
projection and some additional measures to ensure that alignments cover all
role-bearing nodes are described in Section 3.5.

In principle, each unlabeled sentence u is thus compared to each la-

34



3.2. STRUCTURE OF THE ALGORITHM

beled seed l. In practice, however, we reduce the number of comparisons
by demanding that u und l have identical or at least similar targets. This
effectively reduces computational complexity by avoiding nonsensical com-
parisons. Details will be given in Chapters 7 and 8, where our experimental
setups are described.

The steps of the algorithm are shown schematically in Figure 3.2. In Fig-
ure 3.2(a) two seeds and six unlabeled sentences are visualized as solid and
empty circles, respectively. The distance between them conveys their mu-
tual similarity, with shorter distances representing higher similarity. Note
that this representation is for visualization purposes only and the similarity
metric does not actually include any notion of geometric distances. Fig-
ure 3.2(b) shows the result of the labeling stage: each of the unlabeled
sentences is associated with its most similar seed, indicated by dashed lines.
The thick solid line shows how two seeds divide the space of possible sen-
tences into two areas, as any unlabeled sentence is either closer to one or the
other seed (we ignore the border case of equal similarity values). After the
labeling stage, each unlabeled sentence (with a few exceptions to be detailed
in Section 3.5) has obtained an annotation by projection.

Selection Stage. In the selection stage we now take the similarity be-
tween each new instance and its most similar seed, which gave rise to its
annotation, as a measure of our confidence in the projected annotation. The
instances of the final expansion corpus are then chosen based on this confi-
dence score. A requirement of this selection process is that the number of
new instances and the proportions of different FEEs, frames and roles should
not primarily depend on the properties of the unlabeled corpus. Favoring
frequent instances, for example, would not be justified by the requirements
of supervised learning algorithms, which are much more in need of examples
for infrequent phenomena. This suggests an approach that selects a number
of unlabeled sentences per seed instance. We therefore collect, out of all new
annotations originating from a particular seed, the k instances scoring high-
est in their confidence values. Taken together for all seeds, this produces
our expansion set X.

Returning to our schematic representation, Figure 3.2(c) shows the result
of selecting the k = 2 most similar neighbours of each seed. The four
selected sentences are shown in gray. Note how our two-stage procedure
differs from simply selecting the two most similar unlabeled instances for
each seed. Under such an approach the unlabeled sentence indicated by
the arrow would be the second-closest neighbour of either of the two seeds,
leading to conflicting evidence as to which of the two its annotation should
be projected from. In our approach, however, the preceding labeling stage
has already uniquely identified a source of projection for each sentence and
the selection only takes place among those instances.

35



CHAPTER 3. GENERAL EXPANSION FRAMEWORK

(a) Schematic view of the distances between two seeds
(black circles) and six unlabeled instances (white cir-
cles).

(b) Associating each unlabeled instance with its most
similar seed for projection. The thick line indicates
equal distance from both seeds.

(c) Selecting the two most similar new instances for each
seed. The node indicated by the arrow is the second
nearest neighbour of both seeds.

Figure 3.2: Schematic view of the labeling and selection stages

36



3.3. GRAPH ALIGNMENTS

Figure 3.3: Voronoi cells of six seeds

More generally, we can say that the set of seeds divides the space of pos-
sible sentences into regions corresponding to their Voronoi cells. In analogy
to its geometric definition, we define the Voronoi cell of a seed to be the
set of all possible sentences more similar to this seed than to any of the
other seeds. An example with 6 seeds is visualized in Figure 3.3. Here, it
is obvious that the Voronoi cells are not symmetric around the seeds, and
a sentence relatively close to a particular seed may fall within a different
cell while a less similar one may still be in the same cell. Under this inter-
pretation, the labeling stage of our algorithm corresponds to determining
for each unlabeled sentence the Voronoi cell it falls into, while the selection
stage collects the k most similar neighbours of each seed within its own cell.
This clearly shows that in our approach the manually labeled seed instances
define the structure of the space of example sentences and the unlabeled
sentences fill this structure with additional pieces of evidence.

In the following sections we will detail our definition of similarity between
a labeled and an unlabeled sentence. In Section 3.3, we first define the con-
cepts of graph alignments between an alignment domain and an alignment
range. This will enable us to formulate a similarity score in Section 3.4. The
details of the projection procedure are then described in Section 3.5.

3.3 Graph Alignments

Before we give a definition of our similarity metric in the next section, we first
have to introduce the concept of an alignment between specific subgraphs
in the dependency analyses of a labeled and an unlabeled sentence.

Alignments are a widely employed concept in computational linguistics.
In the simplest case, the task is to find an optimal relation between the

37



CHAPTER 3. GENERAL EXPANSION FRAMEWORK

objects of two sets without internal structure. An example of this is the
assignment problem, which can be interpreted as the assignment of tasks to
agents, with each agent capable of performing at most one task and each as-
signment of a task to an agent incurring a specific cost. This problem can be
solved efficiently, e.g., with the so called Hungarian Algorithm (Kuhn, 1955).
If linear orders on the two sets have to be respected, the problem becomes
one of sequence alignment. This is, e.g., the case for edit distances like the
Levenshtein distance. Transforming one string into another by successive
substitutions, deletions and insertions can be viewed as a sequence align-
ment between the two strings where alignment of different characters incurs
the substitution cost and unaligned characters of either string incur dele-
tion or insertion costs, respectively. Further examples of sequence alignment
problems abound in NLP, such as alignment of sentences, phrases, or words
of bilingual corpora in statistical machine translation systems, alignment
between speech signals and phonetic representations in speech recognition
and synthesis, or alignment between different instances of event sequences
in the temporal analysis of discourse structure, to name but a few.

In graph alignment the complexity of the structure imposed on the
aligned sets is taken a step further. Instead of linear order, we now as-
sume an arbitrary binary relation, defining the edges between graph nodes.
Consequently, when aligning two graphs, we optimize a measure based on
the similarity of aligned nodes and the degree to which the graph structure
is respected. In an alignment that is perfectly compatible with the graph
structure, a pair of nodes would be connected by a graph edge if and only
if their aligned partners in the other graph are also connected by an edge.
Any deviation from this structural compatibility will incur a corresponding
cost. We apply the concept of graph alignments to our problem by defining
alignments between specific subgraphs of the dependency analyses of labeled
and unlabeled sentences.

Alignment Domain. We do not try to align complete dependency graphs,
because we are only interested in a single predicate-argument structure of
each sentence and other parts of the sentence are not relevant to the similar-
ity comparison. We first characterize the alignment domain M of a labeled
seed sentence, which is a subgraph of its dependency graph and corresponds
to the predicate-argument structure of its FEE. Let p be the FEE node of
the graph. If there are no mismatches between what constitutes semantic
and syntactic arguments, we expect all roles in the graph to be instantiated
by syntactic dependents of p. While this is often the case, it does not always
hold, e.g., because of the way the dependency parser analyses raising, con-
trol or coordination structures. We therefore cannot simply define M as the
set of direct dependents of the predicate, but rather also have to consider
complex paths between p and role-bearing nodes. An example is given in

38



3.3. GRAPH ALIGNMENTS

Body movement

FEE

>>~
~

~
~

~
~

~
~

~
~

Agent

��

_eiknpru
y

�

�
�

Body part

��

�

�

�

�

�
~

}
|

|
|

�

and
subj

xxrrrrrrrrrr
conj

��

conj

''PPPPPPPPPPPPP

Herkimer

mod

��

blink

dobj

��

nod

mod
��

Old eye

det

��

wisely

his

Figure 3.4: Annotated dependency graph of the sentence “Old Herkimer
blinked his eye and nodded wisely” with the annotation domain indicated
by double frames.

Figure 3.4, where the role Agent is filled by a node which is not dominated
by the FEE blink; instead, it is connected to blink by the complex path
(conj−1, subj). This reflects the fact that Old Herkimer is subject of both
of the coordinated predicates blink and nod. For a given sentence we build a
list of all such complex paths to any role-bearing node and include all nodes
connected to p by any of these paths in the alignment domain M . We thus
define the subgraph M to contain

(1) the predicate node p

(2) all direct dependents of p, except auxiliaries

(3) all nodes on complex paths originating in p

(4) single direct dependents of any preposition or conjunction node which
is in (2) or end-point of a complex path covered in (3)

The first two items require little justification. The predicate node is natu-
rally part of the predicate-argument structure and its direct syntactic de-
pendents are prime candidates for semantic arguments, while auxiliaries do
not contribute information relevant to Frame Semantic analyses. Note that
it is not essential to exclude all syntactic dependents which are not semantic
arguments. Remaining adjuncts may realize non-core semantic roles or pro-
vide lexical and syntactic context information even when not realizing any
semantic role. The inclusion of nodes on complex paths in (3) is necessary
for obtaining a connected subgraph: as long as the role-bearing end point
of the path is included, the path leading there must also be considered in
order to capture the complete syntactic relation between the predicate and
its argument.

39



CHAPTER 3. GENERAL EXPANSION FRAMEWORK

wait
ncsubj

||yyyyyyyy
iobj

""FFFFFFFF wait
ncsubj

||yyyyyyyy
iobj for

""FFFFFFFFF

he for

dobj

��

he me

me

Figure 3.5: Example of merging the preposition in the sentence “He waited
for me”. In the merged version on the right, the edge label iobj for includes
the preposition word for.

Our procedure in general does not include indirect dependents of the
predicate node, e.g., dependents of its dependents. This reflects the fact
that typically the syntactic heads of the dependent constituents correspond
to the semantic heads of arguments. Including indirect dependents would
therefore lead to overly specific comparisons of role instantiations, picking
up various modifiers. For example, instead of comparing the words cat
and dog, we might have to compare subgraphs representing the phrases
Abyssinian cat and lap dog. It is not unreasonable to assume that such
modifiers can have significant influence on the sense of the semantic head,
either by disambiguating an ambiguous head or by forming an idiomatic
expression together with it. A hot dog, e.g., should be less similar to an
Abyssinian cat than a lap dog. For simplicity, we only take into account
specific forms of this phenomenon: the syntactic analyses of prepositional
phrases and subordinate clauses.

Prepositional phrases are usually analyzed with the preposition as the
syntactic head of its nominal complement. The semantic status of preposi-
tions between function words and content words is a topic of ongoing research
(Saint-Dizier, 2006; Litkowski and Hargraves, 2005). However, we typically
want to consider the head of the nominal complement of a preposition as the
semantic head of the entire prepositional phrase. A common approach to
deal with this mismatch between syntax and semantics in SRL is to merge
preposition words into grammatical relations. Figure 3.5 shows the RASP
analysis of the sentence “He waited for me” on the left and a merged version
of the dependency graph on the right. Here, the preposition word for has
been merged with the relation iobj, which occurs between preposition words
and their heads, yielding the composite relation iobj for. This allows us
to view the head of the nominal complement (in this case the word me) as
a direct syntactic dependent.

Our graph alignment approach allows us to leave the original dependency
graph intact and instead include both the preposition word and its nominal
head into the alignment domain. This has the advantage that preposition
words can be compared lexically in the same way as any other graph node,

40



3.3. GRAPH ALIGNMENTS

leave
ncsubj

||yyyyyyyy
cmod

$$HHHHHHHHH leave
ncsubj

||yyyyyyyy
cmod while

##HHHHHHHHH

he while

ccomp
��

he sleep

ncsubj

{{wwwwwwwwww
aux

""DDDDDDDD

sleep
ncsubj

zzvvvvvvvvvv
aux

""EEEEEEEE I be

I be

Figure 3.6: Example of merging the conjunction word in the sentence “He
left while I was sleeping”. Here the word while is merged into the new edge
label cmod while.

while still capturing the information of the nominal complement head. A
very similar situation arises for subordinate clauses headed by conjunctions.
Figure 3.6 shows an analysis of the sentence “He left while I was sleeping”
and a version obtained by merging the conjunction word while with the
corresponding relation cmod. Again, we can avoid the ad-hoc solution of
modifying the dependency graph by simply including dependents of con-
junctions in the alignment domain. For both prepositions and conjunctions,
this is achieved by rule (4) above.

Alignment Range. Having defined the alignment domain in the seman-
tically labeled dependency graph, we must now define a corresponding sub-
graph in the unlabeled dependency graph. This alignment range represents
the predicate-argument structure of the target predicate.

While the process for identifying nodes of this subgraph would ideally
follow the exact same procedure as for the labeled graph, the definition of
complex paths forces us to introduce an asymmetry. We cannot determine
a list of complex paths for the unlabeled graph because complex paths are
defined by the syntactic relations between the predicate and role-bearing
nodes. Since an unlabeled graph has no role annotations, the appropriate
complex paths are therefore also unknown.

The simplest solution to this problem would be to ignore complex paths
altogether in the case of unlabeled graphs and only include syntactic depen-
dents in the alignment range. However, this approach assumes that unla-
beled sentences are structurally simpler than labeled ones. This assumption,
for which there is no justification, would lead to the incorrect alignment of
complex unlabeled sentences to structurally simpler seed sentences, or to
their omission due to the lack of a suitable alignment. Both outcomes are
detrimental to the quality of the resulting training set, because they intro-
duce a bias towards simple structures for the new training instances, either

41



CHAPTER 3. GENERAL EXPANSION FRAMEWORK

by missing semantic roles or through the systematic exclusion of complex
example sentences. Such a bias in the training data would lead an SRL
classifier to learn skewed models and ultimately result in sub-optimal per-
formance.

On a more formal level, ignoring complex paths for unlabeled graphs
entails a similarity metric under which a sentence does not necessarily align
perfectly to itself. Guided by this intuitive requirement, we address the
problem by reusing the list of complex paths extracted from the labeled
partner of an unlabeled sentence. This solution is not ideal either: it makes
the comparison asymmetrically dependent on the annotation of the labeled
sentence. However, in this regard, it only reflects the asymmetry inherent
in comparing semantically labeled and unlabeled sentences.

We therefore define the alignment range N in exact analogy to the align-
ment domain M , i.e., following the rules (1) to (4) above, with the only dif-
ference that the notion of complex paths is taken from the labeled partner
in the comparison being performed.

Alignments. An alignment between an alignment domainM and an align-
ment range N can be formalized as a function σ : M → N ∪ {ε}. A node
x ∈ M is said to be aligned to a node x′ ∈ N , if σ(x) = x′. We do not
require σ to be onto N or surjective, so that nodes in N may be unaligned.
Similarly, a node x ∈M may be unaligned, which is expressed by σ(x) = ε.
To ensure that no node in either set is aligned to more than one in the other,
we require that σ(x) = σ(x′) 6= ε implies x = x′.

Figure 3.7 shows an example of an alignment for the two sentences “His
back thudded against the wall” and “The rest of his body thumped against
the front of the cage”. The labeled graph of the first sentence is shown
on the left, annotated with the Impact frame. The nodes in its alignment
domain are indicated by double frames. To the right, the unlabeled graph of
the second sentence is shown, with the alignment range indicated by double
frames. One possible alignment σ is indicated by waved arrows between
nodes. There are many more possibilities. In principle, any node in one
of the two subgraphs could be aligned to any in the other one or be left
unaligned, as long as no node has more than one aligned partner.

To compute the total number of possible alignments of two graphs with
m and n nodes respectively, we first assume that m ≤ n. Let us fur-
ther assume that k ≤ m nodes of the first graph are aligned to nodes
of the second graph. According to basic combinatorics, there are

(
m
k

)
=

m!
(m−k)!k! ways to choose those k nodes. For each of these choices there are

n · (n− 1) · · · (n− k + 1) = n!
(n−k)! ways to align them to k different nodes of

the second graph. The factors in this product correspond to the number of
choices for the k individual alignment links, which successively decreases as
nodes of the second graph are aligned and thus become unavailable. There-

42



3.4. SIMILARITY SCORES

Impact

FEE

OO�
�
�

Impactor

��

_i
w

	
�

�
�

�
�

Impactee

��

_ V J
9

/
(

$
!

�

thud
� #+6v 6v

5u 5u 4t
3s 3s 2r 2r

1q 1q 0p 0p /o .n .n -m -m ,l ,l +k +k *j )i )i (h

subj

zzuuuuuuuuuu iobj

%%KKKKKKKKKK thump

subj

{{vvvvvvvvv
iobj

%%KKKKKKKKK

back

det

��

� %,5u 4t 4t
3s 3s 2r
2r 2r 1q 1q 0p 0p /o /o /o .n .n -m -m ,l ,l ,l +k +k *j *j )i

against

dobj

��

0 4<'g (h (h )i *j *j +k +k ,l -m -m .n .n /o 0p 0p 1q 1q 2r 3s
3s 4t 4t
5u 6v
6v 7w

rest
det

��

iobj

$$HHHHHHHHHH against

dobj

��
his wall

det

��

. 3;(h (h )i )i *j +k +k ,l ,l -m -m .n .n /o 0p 0p 1q 1q 2r 2r
3s 3s 4t
5u 5u
6v 6v

the of

dobj

��

front

det

��

iobj

$$IIIIIIIIII

the body

det

��

the of

dobj

��
his cage

det
��

the

Figure 3.7: Alignment between a labeled and an unlabeled dependency
graph. Alignment domain and alignment range are indicated by double
frames, with waved arrows linking aligned nodes.

fore, we have m!n!
(m−k)!(n−k)!k! choices for an alignment of k nodes. This term

is symmetric in m and n, which means that our initial assumption of m ≤ n
is unnecessary: if m > n, we simply swap the notation and still obtain the
same result. An alignment may have any number of aligned nodes between
0 and m (for m ≤ n), or 0 and n (for m > n), and therefore k may range be-
tween 0 and min(m,n). The overall number of alignments can be expressed
as the sum of the numbers of alignments for each k:

c(m,n) :=

min(m,n)∑
k=0

m!n!

(m− k)!(n− k)!k!
(3.5)

We will impose only one further restriction upon graph alignments,
namely that the nodes of the FEE and the target predicate be aligned to each
other. Any other alignment of those two nodes would violate the basic as-
sumption that our subgraphs represent predicate-argument structures, i.e.,
contain well-defined predicate nodes. With one node on either side pinned
down, the number of possible alignments therefore is c(m− 1, n− 1).

3.4 Similarity Scores

Based on the concept of graph alignments, we now develop a measure of sim-
ilarity between two predicate-argument structures. Our basic assumption is

43



CHAPTER 3. GENERAL EXPANSION FRAMEWORK

that it is possible to identify corresponding words and grammatical rela-
tions in two comparable predicate-argument structures, and express these
correspondences in an optimal alignment. We will first formulate a scoring
function expressing the similarity reflected by this optimal alignment. After-
wards we will show that in general the optimal alignment can be expected
to maximize this scoring function. This will give us a way of finding the
optimal alignment in practice by maximizing the scoring function over all
possible alignments.

Scoring Function. Given two predicate argument structures represented
by an alignment domain M and an alignment range N , we assume for the
moment that we know their optimal alignment σ∗, reflecting the most ap-
propriate correspondences between nodes and edges. The easiest way of
quantifying the similarity expressed by σ∗ is to sum similarity values for
each individual aligned node and edge pair:

score(σ∗) :=
∑
x∈M

σ∗(x)6=ε

lex (x, σ∗(x)) + α ·
∑

(x1,x2)∈E(M)
(σ∗(x1),σ∗(x2))∈E(N)

syn
(
rx1x2 , r

σ∗(x1)
σ∗(x2)

)
(3.6)

Here, lex and syn are arbitrary measures of similarity between words and
grammatical relations, respectively. The first sum comprises similarity val-
ues for each pair of an aligned node x in the alignment domain M and its
partner σ∗(x) in the alignment range N . It therefore stands for the overall
lexical similarity expressed by σ∗. In the second sum, E(M) and E(N) are
the sets of edges in the alignment domain and alignment range, respectively.
For each edge (x1, x2) in E(M), the aligned nodes σ∗(x1) and σ∗(x2) in N
may or may not be connected by an edge, i.e., (σ∗(x1), σ

∗(x2)) may or may
not be in E(N).1 If they are, the edge pair contributes a syntactic score
corresponding to the similarity of the two corresponding edge labels rx1x2 and

r
σ∗(x1)
σ∗(x2)

. The factor α scales the contribution of the syntactic similarity mea-
sure to the overall score. This accounts for the fact that the two measures
lex and syn represent fundamentally different kinds of information, whose
relative weight may need adjusting. In our experiments we will determine
the value of the weight parameter α in a parameter tuning procedure.

The functional form of this similarity measure satisfies the requirements
formulated in Section 3.1. It depends both on lexical and syntactic similarity
and expresses the two in a trade-off: lower lexical similarity can be directly
compensated by higher syntactic similarity and vice versa. In Chapter 4, we
will provide different instantiations of lex, alternatively based on distribu-
tional similarity or WordNet information, and discuss possible definitions of
syn, settling on a binary measure. The simple formulation of similarity in

1If x1 or x2 is not aligned, then formally σ∗(x1) = ε or σ∗(x2) = ε and therefore
(σ∗(x1), σ∗(x2)) /∈ E(N).

44



3.4. SIMILARITY SCORES

WVUTPQRSA

������������

��??????????

� $,8x 6v
5u 3s 3s
2r 1q 1q 0p 0p /o

/o /o .n .n -m -m ,l +k +k )i

_^]\XYZ[A′

��~~~~~~~~~~

��@@@@@@@@@@


 �)9y
6v 4t 3s
2r 2r 1q 0p 0p /o .n .n -m ,l ,l +k *j (h

_^]\XYZ[A′

��

x�!B�
<| 7w
4t 1q /o -m *j 'g "b

_^]\XYZ[A′

��

_^]\XYZ[B
< 9C `

!a
#c
$d %e &f 'g (h )i *j ,l -m .n /o 0p 1q 2r 4t

5u 6v
7w 8x
9y :z
;{
=}

_^]\XYZ[C
< 9C!a

"b
#c
$d %e &f 'g (h )i +k ,l -m .n /o 0p 1q 2r 3s

5u 6v
7w 8x
9y :z
;{
<|

_^]\XYZ[B
. 3;&f (h *j +k +k ,l -m -m .n .n /o /o /o 0p 0p 1q 1q

2r 3s 3s
4t

_^]\XYZ[C

� �%
 `
 `
 `
 `
 `
 `

_^]\XYZ[B

��

� ,2/o/o/o _^]\XYZ[B′

��

_^]\XYZ[C
F=G�\

"b 'g *j -m /o 1q 4t
7w <|

_^]\XYZ[C

WVUTPQRSA

������������

��??????????

� &-4t 3s 3s
2r 1q 1q 1q

1q 0p 0p 0p 0p 0p 0p 0p /o /o /o /o /o /o /o /o .n .n .n .n .n .n .n -m -m -m ,l +k +k _^]\XYZ[A′

��

_^]\XYZ[B - 3:(h (h (h )i )i )i )i *j *j *j *j +k +k +k +k ,l ,l ,l -m -m -m -m .n .n .n .n /o /o /o /o 0p 0p 0p 0p 1q 1q 1q 1q 2r
2r 2r 2r 3s 3s

3s 3s 4t 4t
4t 4t 5u
5u 5u 5u
6v 6v

_^]\XYZ[C

� &-*j
*j*j

*j*j
*j*j

*j*j
*j*j

*j*j
*j*j

*j*j
*j*j

*j
_^]\XYZ[B′

��

_^]\XYZ[C

Figure 3.8: Illustration of optimal graph alignments as the result of a step-
wise transformation process. Graph edges are drawn as solid arrows while
waved arrows show node correspondences.

terms of a weighted sum over node and edge pairs will allow us to employ
efficient linear programming algorithms in Chapter 5.

The Optimal Alignment. Since our definition of similarity between pre-
dicate-argument structures is based on optimal alignments , we have to
address the question of how to determine such an optimal alignment in
the first place. To find correspondences between nodes in two dependency
graphs, we imagine a transformation process similar to the one underlying
the definition of classical edit distance metrics. Starting with one of the two
graph, we apply lexical and syntactic changes until it has been transformed
into the other one. The identity of nodes can be maintained throughout
such an imaginary transformation, yielding an alignment of corresponding
nodes. This is the optimal alignment between the two graphs.

Figure 3.8 shows a simple schematic illustration of such a transforma-
tion process. In the top row, a graph is transformed in four steps. Going
from left to right, first the node label A is substituted by A′, then the graph
structure is changed so that C is now a child node of B rather than A, and
finally B is substituted by B′. The bottom part of the figure shows the

45



CHAPTER 3. GENERAL EXPANSION FRAMEWORK

resulting alignment between the original and the final version of the graph.
We may assume that A and A′, as well as B and B′, stand for comparatively
similar words. Consequently, an alternative alignment, e.g., associating A
with B′ and B with A′ would result in lower overall similarity in terms of
the score (3.6). As long as the applied changes are not too big, the result-
ing alignment thus maximizes the similarity score, since any change in the
alignment of a node can be expected to lower lexical or syntactic similarity.
Although we do not completely formalize these transformations or precisely
delineate the class of “small changes” for which our conclusions hold, this
observation strongly motivates a definition of the optimal alignment as that
alignment which maximizes the similarity score (3.6):

σ∗ = arg max
σ

(score(σ)) (3.7)

Graph Similarity. We can now define the final similarity measure be-
tween the subgraphs M and N as:

sim(M,N) =
1

C
score(σ∗) =

1

C
max
σ

(score(σ)) (3.8)

Here, C is a normalization factor, whose purpose is to make similarity scores
of different pairs of sentences comparable. Without such normalization,
alignments involving complex predicate-argument structures would tend to
receive higher similarity scores than those between simpler ones, because
a larger number of nodes and edges will tend to make the sums of lexical
and syntactic scores larger. This is, of course, counter-intuitive. A straight-
forward solution is to normalize “self-similarity”, i.e., the similarity of a
graph to itself, which is an upper bound for the similarity to any other sen-
tence. Assuming that lex and syn take a maximum of 1 on identical words
and grammatical relations, the self-similarity of an alignment domain M is
|M |+α|E(M)|. We could use this term as a normalization factor. However,
this would only account for the size of the alignment domain and ignore the
size of the alignment range. A suitable normalizing factor should treat both
graphs symmetrically. We achieve this by replacing the term |M | by the
geometric mean

√
|M | · |N | of |M | and |N |, and similarly the term |E(M)|

by the geometric mean
√
|E(M)| · |E(N)|. This results in a normalization

factor
C :=

√
|M | · |N |+ α

√
|E(M)| · |E(N)| (3.9)

which is symmetric in the two graphs, while still normalizing self-similarity
to 1, since

1√
|M |2 + α

√
E(M)2

(|M | · 1 + α · |E(M)| · 1) = 1

Although exploration of different normalization factors may be worthy of
some further attention, it is unlikely to have a large impact on the scoring
function, for which the concrete measures lex and syn are more important.

46



3.5. ANNOTATION PROJECTION

3.5 Annotation Projection

We have defined the similarity between the predicate-argument structure of
the FEE of a labeled graph and that of the target predicate of an unlabeled
graph in terms of the score of the optimal graph alignment between them.
This allows us to determine the most similar labeled seed l∗ for any unla-
beled sentence u. What remains to be described is the projection procedure
leading to a labeled version of u.

Given the optimal alignment σ∗ between an alignment domain M and
an alignment range N , the basic definition of semantic projection from l∗

to u is rather straightforward: as described in Section 2.2, frame names are
associated with the nodes of their FEEs and role names with the nodes of
their role filler heads. By definition, all these nodes are in the alignment
range M . We can therefore simply label σ(x) ∈ N with the same role as the
one carried by x, for each role-bearing node x ∈M . The only complicating
factor is the possibility of unaligned nodes, i.e., nodes x with σ(x) = ε. While
the notion of unaligned nodes is useful for ignoring irrelevant words, we have
to decide what to do if the optimal alignment σ leaves a role-bearing node
unaligned. (This problem cannot occur for the FEE, as we have assumed
that it is always aligned to the target predicate node.)

A possible solution would be not to project roles annotated on unaligned
nodes, so that only roles associated with aligned nodes show up in the in-
ferred annotation. Unfortunately, allowing such partial projections intro-
duces a systematic bias in favour of simple structures: roles annotated on
seed sentences can be discarded, but new roles cannot arise, so that the gen-
erated instances will on average show fewer roles than the seed sentences.
When these new instances are used for training a role labeler, they will in
turn bias the classifier towards under-annotating roles and thus decrease
performance.

The most straightforward way to enforce the constraint that σ(x) 6= ε
for all role-bearing nodes x would be to impose it on the alignments in the
maximization (3.7), i.e., to find a (possibly lower scoring) solution satisfy-
ing the condition that each role-bearing node is aligned. However, in cases
where it leads to a different alignment, this approach would ignore the infor-
mation that for at least one role-bearing node no good correspondence could
be found. Rather than resort to a lower-ranking alignment, it is therefore
much more appropriate to conclude that the given seed l∗ is not a good
source of information for the labeling of u. As our overall approach calls
for precision rather than recall, we therefore choose to dismiss the seed l∗

as a partner for u if the optimal alignment σ∗ fails to align all role-bearing
nodes. The unlabeled sentence u may still receive an annotation projected
from a different seed in L.

In some cases it is possible that an unlabeled sentence u will not find
any suitable seed for annotation projection. This happens when there is no

47



CHAPTER 3. GENERAL EXPANSION FRAMEWORK

seed for which the optimal alignment covers all role-bearing node and has a
similarity score greater than 0. In these cases, u is discarded, as no suitable
annotation can be inferred. The majority of unlabeled sentences, however,
will obtain some annotation and thus be available to the selection stage, in
which the most similar neighbours of each seed are determined.

3.6 Summary

In this chapter, we have described a general framework for semi-supervised
semantic role labeling. We have motivated our projection approach based on
lexical and syntactic similarity and given an overview over the structure of
the algorithm. The two stages of labeling and selection were interpreted in
terms of the space of possible sentences, which is structured by labeled seeds
and then filled with more examples in the form of unlabeled sentences. We
have then detailed the individual parts of the algorithm, introducing align-
ments between the relevant predicate-argument structures of labeled and
unlabeled sentences, formulating a similarity measure in terms of optimal
alignments, and finally describing the process of annotation projection.

In the following chapter we will now present definitions of the similarity
measures lex and syn introduced in (3.6), while Chapter 5 will address the
optimization problem and describe an efficient solution algorithm.

48



Chapter 4

Lexical and Syntactic
Similarity

In the previous chapter, we have described the general framework of our
semi-supervised SRL approach. The scoring function defined in Section 3.4
features two measures, called lex and syn, of lexical and syntactic similar-
ity, which were left unspecified. In this chapter, we now present concrete
instantiations of these two measures. We will provide two alternative defini-
tions of the measure lex, one based on a vector space model of distributional
similarity and one relying on the WordNet taxonomy. The latter has the
advantage of taking into account high-quality information from a manually
created resource. On the other hand, this dependence precludes its use for
languages where such a broad-coverage resource is not available. In Chap-
ter 7, we will compare the results of employing either of the two measures
in our expansion algorithm. For the measure of syntactic similarity, we will
give a simple definition based on the identity of grammatical relations, and
discuss possibilities of more gradual definitions.

An important requirement for the two measures is that their computation
must be efficient, as it is performed on a large number of word and edge pairs.
Syntactic similarity can be determined efficiently by precomputing a table
of all possible pairs of grammatical relations. However, this is not practical
for lexical similarity, as the number of possible word pairs is prohibitively
large. Apart from memory requirements, the skewedness typical of word
distributions would cause most of the entries in a table of lexical similarity
values to be accessed only once or not at all, so that no performance benefit
can be expected from a precomputed table. We therefore compute the lexical
similarity measures on-line.

In the following sections, we will introduce the different similarity mea-
sures, discuss their computational complexity, and present data structures

49



CHAPTER 4. LEXICAL AND SYNTACTIC SIMILARITY

and algorithms for their efficient computation.1 Afterwards, we will briefly
discuss the relative weight of lexical and syntactic similarity.

4.1 Vector Space Model of Lexical Similarity

Vector space models of word meaning (Lund and Burgess, 1996; Landauer
and Dumais, 1997) are an increasingly popular method of measuring lexical
similarity. Their basic idea goes back to the very inception of the field of
computational linguistics, when Weaver (1955) claimed that the problem of
polysemy encountered in automatic translation could be resolved by taking
neighboring words into consideration. This intuition becomes concrete in the
distributional hypothesis, put forward by Harris (1968), which states that
words occuring in similar contexts are themselves similar and is succinctly
expressed in the quotation “You shall know a word by the company it keeps”
of Firth (1957).

In vector space models, the meaning of a word is represented by a vector
whose components correspond to co-occuring words and take values reflect-
ing the frequency of co-occurence. The simplest context to consider for such
co-occurence is a context window consisting of up to n words to the left and
to the right. Commonly, a numeric similarity value for a pair of such vectors
is derived by computing the cosine of the angle between them. Although
there is no compelling theoretical justification for a geometric interpretation,
this measure has proved successful in various applications and comparisons
with other measures (Lee, 1999; Weeds et al., 2004), and additionally has
the advantage of being easy to compute.

More complex variants of this basic approach have been proposed. For
example, contexts may vary in size from a few words up to whole docu-
ments, as in latent semantic analysis (Landauer and Dumais, 1997). Instead
of simple frequency counts, association measures such as pointwise mutual
information have been proposed to account for chance co-occurence. Fur-
thermore, there is a wide range of functions of vector similarity, inlcuding
Euclidean distance (or L2 norm), Manhattan distance (or L1 norm), Jac-
card coefficient, as well as information theoretic measures such as Kullback-
Leibler divergence or Jensen-Shannon divergence. Another direction for the
extension of simple vector space models is the inclusion of syntactic infor-
mation. Padó and Lapata (2007) give a general framework for how to select
context words based on their grammatical relations to the word being char-
acterized.

A fundamental problem of classical vector space models is their insensi-
tivity to polysemy. By aggregating co-occurence counts over all occurences
of a word, they fail to provide separate representations of the different senses

1A free implementation computing the two lexical similarity measures is available at
http://www.coli.uni-saarland.de/~hagenf/software/svectors/.

50

http://www.coli.uni-saarland.de/~hagenf/software/svectors/


4.1. VECTOR SPACE MODEL OF LEXICAL SIMILARITY

a word may have. The resulting vector representation therefore combines
these senses in a weighted average, which favours the (often very dominant)
most frequent sense of a word. Recently, a number of approaches have been
proposed to integrate the word sense disambiguation task into the derivation
of vector representations. This is achieved by modifying or contextualizing
the vector of a word depending on the context of its concrete occurrence.
Mitchell and Lapata (2008) compare various operations to contextualize vec-
tors in simple models based on context windows, achieving good results with
component-wise vector multiplication. Erk and Padó (2008) take syntactic
relations into account and contextualize words with the selectional prefer-
ences of syntactically related words. Recently, Thater et al. (2010) have
proposed a model based on first- and second-order syntactic co-occurences.

Definition. For the corpus-based formulation of our lexical similarity mea-
sure, we employ a relatively simple vector space model, found to correspond
well to human similarity judgements (Mitchell and Lapata, 2011). However,
within our flexible framework this could easily be replaced by a more ad-
vanced vector space model. Specifically, we build vectors whose dimensions
correspond to the 2,000 most frequent words in the unlabeled expansion cor-
pus and consider co-occurence within a context window extending 5 words
to the left and 5 words to the right. For a given word w, the vector compo-
nent corresponding to the context word w′ is set to be the following ratio of
probabilities of w and w′:

vw,w′ :=
p(w,w′)

p(w)p(w′)
=
p(w′|w)

p(w′)
(4.1)

The first form of this ratio may be interpreted as the degree to which
the probability p(w,w′) of w and w′ co-occuring in the context window
is higher than the probability of chance co-occurence, which is propor-
tional to p(w)p(w′). The second form allows an asymmetric interpreta-
tion: values greater than 1 reflect the degree to which the probability of
encountering w′ is higher in the context of w than in general. vw,w′ is
closely related to the pointwise mutual information (PMI) of w and w′, by
PMI(w,w′) = log(vw,w′).

We compute the probabilities by maximum likelihood estimation as the
ratio of frequency counts over the unlabeled expansion corpus: p(w′|w) is
estimated as the number of occurences of w′ in the context of w divided
by the number of occurences of w, while for p(w′) we divide the number
of occurences of w′ by the total number of word tokens in the corpus. As
the part of speech (POS) tags of all words in the corpus are available from
their parses (which are needed for our expansion procedure), our vector
space model takes into account these POS tags as well. For example, the
noun shock, represented as shock.N, and the verb to shock, represented as

51



CHAPTER 4. LEXICAL AND SYNTACTIC SIMILARITY

shock.V, are different word types in our model. We make only coarse-grained
POS distinctions between nouns (N), verbs (V), adjectives (J), prepositions
(I), conjunctions (C), and all other categories (X).

Based on two lemmatized words w1 and w2 and their coarse-grained POS
tags p1 and p2, we define lexical similarity as follows:

lex(w1, w2) :=


cos(w1, w2) if p1 = p2 ∈ {N,V, J}
δw1,w2 if p1 = p2 ∈ {I, C}
0 else

(4.2)

Here, δw1,w2 takes the value 1 or 0 depending on whether w1 = w2 or not.
This reflects the fact that vector space models are not appropriate for mod-
eling the semantics of closed class words such as prepositions and conjunc-
tions. Pairs of nouns, verbs, and adjectives are compared by way of the
cosine function, while all pairs with other or mixed POS tags are given a
similarity value of 0, as they are unlikely to raise our confidence in the given
alignment.

Efficient Computation. We now discuss how to efficiently compute co-
sine similarity between two word vectors (the other cases of definition (4.2)
are trivial). Let N be the number of dimensions of the vector space (in our
case 2,000) and two vectors ~v and ~w be described by real numbers ai and
bi (1 ≤ i ≤ N), respectively. The cosine between the two vectors can be
expressed as

cos(~v, ~w) =
~v · ~w

||~v|| · ||~w||

=

∑N
i=1 aibi√∑N

j=1 a
2
j ·
√∑N

j=1 b
2
j

=

N∑
i=1

 ai√∑N
j=1 a

2
j

· bi√∑N
j=1 b

2
j

 (4.3)

The first obvious optimization here is to store normalized versions of the
vectors ~v and ~w instead of the vectors themselves. Having precomputed

ãi :=
ai√∑N
j=1 aj

(4.4)

for the vectors of all lexical items, it takes only N multiplications and N −1
additions to compute:

cos(~v, ~w) =

N∑
i=1

ãib̃i (4.5)

52



4.1. VECTOR SPACE MODEL OF LEXICAL SIMILARITY

~v:

0 1 2 3 4

1 .41 3 .39 7 .37 10 .74 -1

~w:

0 1 2 3 4

3 .59 4 .46 6 .56 7 .36 -1

i

j

Figure 4.1: Illustration of computing cosine similarity on sparse vector rep-
resentations, containing pairs of a key and a value. Here i and j point at
elements with the same key, so the product .39×.59 = .2301 would be added
to the result.

Efficiency can be further improved by observing that lexical vectors tend
to be sparse, i.e., many of the values are 0. When representing vectors as
fixed arrays of N values, we can improve performance by only executing
multiplication and addition for an index i if neither ãi nor b̃i is 0. This
saves one multiplication and one addition in the other cases, at the cost of
an additional test for each index i.

A more substantial improvement can be achieved by storing vectors in
sparse representations instead of fixed-size arrays. Figure 4.1 shows such
representations of two vectors in a 10-dimensional vector space. Each has
4 non-zero values, which are stored in a list of (key, value) pairs, with an
(arbitrary) numerical identifier of the dimension as key and the correspond-
ing (normalized) vector component as value. A key of −1 indicates the end
of the list. By storing these lists sorted by key, the computation of the co-
sine becomes very efficient. Figure 4.2 shows an algorithm that traverses
both lists and only executes multiplication and addition whenever coincid-
ing keys are found. For each of the lists an index is maintained, starting at
the first element. If the keys of the two referenced elements are equal, their
corresponding values are multiplied and added to the result. Otherwise the
index referencing the element with the lower key is incremented. Through
iteration, all pairs of elements with coinciding keys are processed, before
finally one of the indices reaches the end of its list.

Obviously, the loop will never be executed more than m+n times, where
m and n are the numbers of non-zero elements in the two vectors, since in

53



CHAPTER 4. LEXICAL AND SYNTACTIC SIMILARITY

1: result ← 0
2: i← 0
3: j ← 0
4: while (v[i].key 6= −1) and (w[j].key 6= −1) do
5: if v[i].key = w[j].key then
6: result ← result + v[i].value · w[j].value
7: i← i+ 1
8: j ← j + 1
9: else if v[i].key < w[j].key then

10: i← i+ 1
11: else
12: j ← j + 1
13: end if
14: end while
15: return result

Figure 4.2: Algorithm for computing cosine similarity on sparse vector rep-
resentations v and w

each iteration at least one index is incremented. For vectors with few non-
zero values relative to N , this is significantly more efficient than traversing a
fixed-size list of length N . But even if m and n are not much smaller than N ,
performance does not suffer relative to the naive approach: if m + n > N ,
there have to be at least k := m+n−N “overlapping” dimensions with non-
zero values in both vectors. For each of these, the loop advances both indices,
which saves k iterations relative to the upper bound of m+ n given above.
We can thus lower the bound to m+ n− k = N in this case. Consequently,
the total number of iterations is always bounded by min(m + n,N). Our
approach is therefore never worse than the naive one, and superior to it if
m+ n < N for at least some vector pairs.

4.2 WordNet-based Model of Lexical Similarity

A fundamentally different approach to measuring lexical similarity resorts
to manually created taxonomies that categorize words according to semantic
relations, such as synonymy , hypernymy, meronymy, antonymy etc. The
most widely used such taxonomy for English is WordNet (Fellbaum, 1998),
and in particular its structure of synonymy and hypernymy relations. Words
are grouped together in synsets if they are synonymous in at least some con-
texts. The hypernymy relations between synsets then constitute a directed
acyclic graph. In this section, we will review a number of WordNet-based
similarity measures, leading up to the definition of Jiang-Conrath similarity,
which we will employ for the definition of the lexical similarity measure lex.

54



4.2. WORDNET-BASED MODEL OF LEXICAL SIMILARITY

WordNet relations have been used in different ways to quantify similarity
between word meanings. The simplest approach is to determine the distance
of two synsets in the hypernymy graph, i.e., the number of edges on the
shortest path between them. This has the drawback of depending heavily
upon the granularity of the WordNet hierarchy: the fact that two synsets
are separated by many others may not reflect their semantic distance but
rather a high degree of detail in this part of WordNet. As the degree of
granularity inevitably varies over the hierarchy, the simple measure of path
length is relatively unreliable. In particular, related concepts deep in the
hierarchy should get higher similarity scores than general concepts near the
top. This is reflected in scaled measures such as the one proposed by Wu
and Palmer (1994), which sets the path length measure d in relation to the
depth of the least common ancestor s1,2 of two synsets s1 and s2:

simWP (s1, s2) =
2 · depth(s1,2)

d(s1, s1,2) + d(s2, s1,2) + 2 · depth(s1,2)
(4.6)

If we assume that the hierarchy is a tree, the shortest path between two
nodes has to pass through their least common ancestor, so that d(s1, s1,2) +
d(s2, s1,2) = d(s1, s2). For the reciprocal of simWP , representing distance
instead of similarity, we therefore have:

1

simWP (s1, s2)
=
d(s1, s2) + 2 · depth(s1,2)

2 · depth(s1,2)
= 1 +

d(s1, s2)

2 · depth(s1,2)
(4.7)

This shows that the simple path length distance d is scaled by the depth of
the least common ancestor, so that distances at the bottom of the hierarchy
become smaller.

Information content. A more empirical approach of utilizing the Word-
Net hypernymy hierarchy was proposed by Resnik (1995). He quantifies the
similarity of two concepts s1 and s2 by way of their shared information. This
is expressed in their most specific common hypernym, which is their lowest
common ancestor s1,2 in the hierarchy. Following Shannon’s self-information
(Shannon, 1948), its information content is quantified by

IC(s1,2) = − log p(s1,2) (4.8)

where p(s) is the probability of the occurence of the concept s or any of its
hyponyms. In accordance with its information theoretical interpretation as
“surprisal” at the occurence of s, the information content IC(s) therefore
quantifies the specificity of s, growing unboundedly for p(s)→ 0 and falling
to 0 for p(s) = 1.

A maximum likelihood estimate of the probability p(s) can be derived
from a suitable corpus by taking the ratio between the number of occurences

55



CHAPTER 4. LEXICAL AND SYNTACTIC SIMILARITY

of the concept s or any of its hyponyms and the overall number of concepts:

p(s) =

∑
s′∈hypo(s) f(s′)∑

s′ f(s′)
(4.9)

Here, f(s) is the frequency of the sense represented by the synset s, and
hypo(s) is the set containing s itself and its direct and indirect hyponyms.
The numerator sums the frequencies of all those synsets, while the denom-
inator is the constant sum over all WordNet synsets. If there is a root of
the hierarchy (such as the universal hypernym entity), this synset will thus
always have an information content of − log 1 = 0. Similarly, general terms
will tend to have low information content values, as for them the numerator
gets large contributions from hyponyms, while specific and infrequent terms
will have small numerators and consequently high values of IC(s).

Since sufficiently large corpora with WordNet sense annotations are not
available, f(s) usually has to be estimated from the frequencies of the words
w ∈ s making up the synset s. The easiest method to derive sense frequen-
cies from word frequencies is to equally distribute the frequency value of a
word across the synsets in which it occurs. The assumption that the senses
of a word show a uniform distribution is obviously not realistic. Sense dis-
tributions in a corpus tend to be strongly skewed towards a few frequent
senses. Modeling of a non-uniform distribution, however, would have to rely
on statistics from sense annotated corpora, which may not match the corpus
from which word counts are extracted. On the other hand, it may be ar-
gued that over-estimation and under-estimation of sense frequencies cancel
each other out to some degree over the different words in a synset. We thus
estimate

f(s) =
∑
w∈s

f(w) + 1

|synsets(w)|
(4.10)

where synsets(w) is the set of synsets containing w. Here, we also employed
add-1 smoothing (Lidstone, 1920), adding 1 to each word frequency. This
makes sure that the probability of words which occur in WordNet but not
in the corpus is not estimated as 0.

Jiang-Conrath Measure. The definition given by Resnik was developed
further by Jiang and Conrath (1997), who measure similarity of two con-
cepts not by the amount of shared information, but rather by the specific
information separating them, i.e., the information added by each of them
over that of their most specific common hypernym. This can be expressed as
the differences IC(s1)− IC(s1,2) and IC(s2)− IC(s1,2). The sum of these two
terms therefore measures the distance between s1 and s2, and a similarity
measure can thus be given by their reciprocal:

JC(s1, s2) =
1

IC(s1) + IC(s2)− 2 IC(s1,2)
(4.11)

56



4.2. WORDNET-BASED MODEL OF LEXICAL SIMILARITY

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4

ϕ(x)

x

Figure 4.3: Transformation ϕ of the unbounded range of the Jiang-Conrath
similarity measure into the bounded interval [0, 1). The dotted lines show
the tangents in x = 0 and x =∞.

Budanitsky and Hirst (2006), comparing five WordNet-based similarity mea-
sures, found that the Jiang-Conrath similarity measure performed best in
several evaluation settings.

For very specific concepts s1 and s2, which are in very different branches
of the WordNet hierarchy – reflected by a very general lowest common an-
cestor s1,2 – this value may approach 0. On the other hand, there is no
upper bound for it. IC(s1) and IC(s2) may be arbitrarily close to IC(s1,2),
which means that JC(s1, s2) may get arbitrarily large. For s1 = s2 we may
define it by JC(s, s) =∞. Obviously, in the context of our graph alignment
approach it is not appropriate for the measure lex to be unbounded. We
will frequently compare identical or very similar words of two sentences, and
thus a very large similarity contribution would unduly dominate the overall
score, practically excluding similarity information contributed by other node
pairs. We therefore formulate a bounded version of Jiang-Conrath similarity.
Our goal is to apply a monotonous transformation of the unbounded interval
[0,∞) into the bounded interval [0, 1). One of the simplest transformations
realizing this is:

ϕ : x 7→ x

1 + x
(4.12)

Its graph for 0 ≤ x ≤ 4 is shown in Figure 4.3. Small values of x are hardly
changed by ϕ, as x − ϕ(x) = x2

1+x which is very small for small x. For
x→∞, however, ϕ(x) approaches its upper bound of 1. We define bounded

57



CHAPTER 4. LEXICAL AND SYNTACTIC SIMILARITY

Jiang-Conrath similarity by JCb := ϕ ◦ JC, so that:

JCb(s1, s2) = ϕ(JC(s1, s2)) =
JC(s1, s2)

1 + JC(s1, s2)

=
1

1 + IC(s1) + IC(s2)− 2 IC(s1,2)
(4.13)

Dealing with Ambiguity. When comparing words in labeled and un-
labeled sentences to align their dependency graphs, the meaning of each
word may be ambiguous between several WordNet synsets. So far, however,
we have only defined similarity on the level of synsets. We could employ
general word sense disambiguation techniques to determine the right synset
for each word. However, most successful approaches are supervised (Nav-
igli, 2009), which entails that we would need training data annotated with
WordNet senses. Dependence on another type of manual annotation in ad-
dition to FrameNet seed instances, however, contradicts the basic goals of
our approach, which aims at minimizing annotation effort.

We therefore follow a different approach and exploit the fact that we have
to make disambiguation choices not for single words, but for pairs of words.
Our key assumption is that, among all the senses of two words, the respective
senses closest to each other in the WordNet hierarchy are the most probable
ones. There are different ways of defining these “closest senses”. The most
obvious way would be to maximize bounded Jiang-Conrath similarity over
all sense pairs. For two words w1 and w2 with respective senses s1,i and s2,j ,
we would thus choose the two senses s1 and s2 that maximize JCb(s1,i, s2,j).

While this is a valid approach, we choose a slightly different definition,
which more directly reflects closeness of two synsets in WordNet and has
the additional advantage of allowing very efficient maximization. Instead of
choosing the senses to maximize JCb, we pick the pair of senses s1 and s2
maximizing IC(s1,2), i.e., those senses of w1 and w2 with the most specific
lowest common ancestor. Intuitively, we determine the most specific subset
of WordNet containing one sense of w1 and one of w2. Formally, given w1

and w2 we choose

(s1, s2) := arg max
(s1,i,s2,j)

[IC(lca(s1,i, s2,j))] (4.14)

where lca stands for the lowest common ancestor of two synsets. If the
maximum is not unique, we choose the most general synsets s1 and s2, i.e.,
those with the lowest information content values. With these synsets we can
now give our definition of lex based on WordNet information in analogy to
the earlier definition (4.2):

lex(w1, w2) :=


JCb(s1, s2) if p1 = p2 ∈ {N,V }
δw1,w2 if p1 = p2 ∈ {I, C}
0 else

(4.15)

58



4.2. WORDNET-BASED MODEL OF LEXICAL SIMILARITY

Here, p1 and p2 are again the POS tags of the lemmatized words w1 and w2.
While similarity of noun and verb pairs is measured by JCb, there is no
corresponding hypernymyhypernym hierarchy for adjectives, which forces
us to leave them out. This is not a big problem as adjectives do not usually
occur as role filler heads, and so their number in alignment domains and
alignment ranges is comparatively low.

Efficient Computation. We now describe a data structure and an al-
gorithm to efficiently determine the information content of the maximizing
synsets s1 and s2 of (4.14) and their lowest common ancestor s1,2 for a given
pair of words w1 and w2. This then directly allows the computation of JCb

by (4.13). Surprisingly, we can use a data structure very similar to that
employed for sparse vector representations in Section 4.1.

We precompute a database with an entry for each word w. This entry is
a list of triples (h, s, IC(h)), where h and s are (unique identifiers of) synsets
and IC(h) is the information content of h. To build this list, we collect all
direct and indirect hypernyms of all synsets si containing w and store them
together with their information content values and the respective sense of w
which gave rise to them:

H(w) :=
⋃
i

{(h, si, IC(h)) | h ∈ hyper(si)} (4.16)

Here, hyper(s) denotes the set of all direct and indirect hypernyms of a
synset s, including s itself. Now the database entry of w is the list of
the elements of H(w) sorted by descending information content values.2

However, among all triples (h, s, IC(h)) with the same h, only the one with
the most general synset s (least information content) is retained.

Two schematic examples of database entries are shown in Figure 4.4. The
upper half shows an easy case where a word is unambiguous and only occurs
in synset s7, drawn as a gray node in the hierarchy. Its hypernyms s3 and s1
are drawn with a hatched pattern. The corresponding list of triples, shown
below the graph, therefore consists of entries for s7, s3, and s1, ordered by
descending information content. While the concrete numbers are arbitrary,
their order is determined by the fact that according to definition (4.9) a
synset can never have lower information content than its hypernym. The
end of the list is marked by a value of −1. As the represented word has only
one sense, the second triple component is s7 in all three triples.

Figure 4.4(b) shows a more complicated example. Here the given word
is ambiguous between the two senses s5 and s9, drawn in gray. The resulting
list of triples contains triples for those two synsets and their three hypernyms

2To ensure consistency in the algorithm described below, triples with identical informa-
tion content values are sorted by their hypernym synsets according to an arbitrary fixed
order on all WordNet synsets.

59



CHAPTER 4. LEXICAL AND SYNTACTIC SIMILARITY

(a)

s1

s2 s3

s4 s5 s6 s7

s8 s9

s7
s7

36.0

s3
s7

24.5

s1
s7

14.4

−1

(b)

s1

s2 s3

s4 s5 s6 s7

s8 s9

s9
s9

42.3

s5
s5

39.8

s4
s9

34.2

s2
s5

28.1

s1
s5

14.4

−1

Figure 4.4: Two examples of the precomputed data structures used in the
Jiang-Conrath similarity computation. Sorted lists of triples are built from
structural WordNet information and information content values that have
been derived from corpus statistics.

60



4.2. WORDNET-BASED MODEL OF LEXICAL SIMILARITY

s4, s2, and s1, ordered by descending information content. Here, the concrete
numbers and the position of s5 relative to s9 and s4 are arbitrarily chosen
for the example. The second triple components are set to either s5 or s9,
depending on which of the two gave rise to this triple. In the cases of s2
and s1, which are hypernyms of both s5 and s9, the synset with the lower
information content was chosen, which here is s5.

When computing lex(w1, w2), we traverse the lists of w1 and w2 using
the algorithm shown in Figure 4.5. It finds the first element (h, s1,i, IC(h))
in the first list that has a corresponding element (h, s2,j , IC(h)) in the second
list representing the same synset h. This means that h is a common ancestor
of s1,i and s2,j . In our example, taking Figure 4.4(a) to represent an unam-
biguous word w1 and Figure 4.4(b) to represent a word w2 with two senses,
this common ancestor would be the synset s1. Because of the ordering of the
lists, it is also a lowest common ancestor of the two synsets: if h′ is another
common ancestor of s1,i and s2,j , then IC(h′) ≤ IC(h), which means that h′

cannot be a hyponym of h. Moreover, among the lowest common ancestors
of all pairs of senses of w1 and w2, this particular lowest ancestor of s1,i and
s2,j is also maximal with regard to information content, which again follows
from the ordering of the lists: if the lowest common ancestor of another
sense pair had higher information content, it would already have been found
in the list traversal. Finally, if there is more than one pair of senses with this
lowest common ancestor, our construction ensures that s1,i and s2,j are min-
imal with regard to their information content, which is in accord with our
definition above. We have therefore simultaneously solved the maximization
problem of Equation (4.14) and found the information content IC(s1,2) of
the lowest common ancestor s1,2 = h. To compute JCb(s1, s2) according
to (4.13), we only have to look up the values IC(s1) and IC(s2), which is
done by traversing the two lists again individually.

The efficiency of this algorithm is due to the fact that a synset usually
has a limited number of hypernyms in the WordNet hierarchy. In a tree
there is a unique path from the root to any node and therefore the number
of hypernyms is equal to the depth of the synset in the hierarchy. In a per-
fectly balanced tree with constant numbers of children per node, the depth
is bounded by the logarithm of the number of nodes. While WordNet is
certainly not a perfectly balanced tree, the number of hypernyms of a given
synset is still very small compared to the overall number of synsets: in the
noun hypernymy hierarchy, a synset on average has only about 9 hypernyms,
including itself, whereas there is a total of 82,115 synsets. The largest num-
ber of hypernyms for any synset is 29 (for the synset {scat singing, scat}, a
kind of improvisation in vocal jazz).

The number of elements in the precomputed list for word w is bounded
by |synsets(w)| · |hyp(w)|. As the maximum polysemy in WordNet is 33 (for
the word head), we can therefore give 33 · 29 = 957 as an upper bound for
the list length. As each iteration of the loop increments one of the two list

61



CHAPTER 4. LEXICAL AND SYNTACTIC SIMILARITY

1: i← 0
2: j ← 0
3: while (v[i].key 6= −1) and (w[i].key 6= −1) and (v[i].h 6= w[j].h) do
4: if v[i].IC < w[j].IC then
5: j ← j + 1
6: else if v[i].IC > w[j].IC then
7: i← i+ 1
8: else if v[i].h < w[j].h then # arbitrary order on synsets
9: j ← j + 1

10: else
11: i← i+ 1
12: end if
13: end while
14: if (v[i].key = −1) or (w[i].key = −1) then
15: return 0 # no common ancestor
16: else
17: s1 ← v[i].s
18: s2 ← w[j].s
19: IC1,2 ← v[i].IC # same as w[j].IC
20: i← 0
21: while (v[i].h 6= s1) do
22: i← i+ 1
23: end while
24: IC1 ← v[i].IC
25: j ← 0
26: while (w[j].h 6= s2) do
27: j ← j + 1
28: end while
29: IC2 ← w[j].IC
30: return 1

1+IC1+IC2−2·IC1,2

31: end if

Figure 4.5: Algorithm to efficiently compute bounded Jiang-Conrath simi-
larity from precomputed lists v and w of hypernyms

62



4.3. SYNTACTIC SIMILARITY

indices, it is therefore executed at most 1914 times. Typically, the number
of executions will be much smaller, especially for relatively similar words,
where the first lowest common ancestor occurs early in both lists. The
individual traversal of both lists to look up the information content of the
two maximizing concepts according to (4.14) is similarly bounded by the
maximum list length and will be even faster as the synsets themselves occur
early in the respective lists.

4.3 Syntactic Similarity

Compared with research on lexical similarity, study of syntactic similarity is
a much less clearly delineated field. This may be due to the fact that, intu-
itively, there is a small set of discrete syntactic classes, whereas the meanings
of words more obviously fill a complex “semantic space”, which researchers
have then sought to model. Traditional grammar theories have included a
small number of syntactic classes, such as subjects or direct and indirect
objects. The same is true for many variants of phrase structure grammars,
going back to Chomsky (1957), or dependency grammars, following Tesnière
(1959), which are often based on small inventories of phrase types or gram-
matical relation labels. In some grammar theories, such as head-driven
phrase structure grammar (Pollard and Sag, 1994) or combinatory catego-
rial grammar (Steedman, 1987), syntactic categories have proliferated. To
our knowledge, however, no systematic study of their similarity, independent
of their role in syntactic composition processes, has been undertaken.

It is not obvious whether graded similarity values for grammatical re-
lations are warranted at all, or how these should be computed. A simple
definition of syntactic similarity can be formulated by making a binary dis-
tinction: identical relation types are “similar” and different ones are “dis-
similar”, with no intermediate values. Formally, this can be expressed as:

syn(r1, r2) = δr1,r2 =

{
1 if r1 = r2
0 else

(4.17)

Although individual edge pairs in graph alignments under this definition
are subject to binary classification, dependency paths containing more than
one edge can still show graded similarity. For example, the path (conj−1,
subj) in Figure 3.4 compares perfectly to an identical path, contributing
a syntactic similarity of 2, but comparison with a simple path (subj) will
still result in a similarity contribution of 1. In this regard, this measure is
similar to methods based on tree kernels (Moschitti et al., 2008), which also
measure the degree of similarity by counting common substructures.

We consider one alternative to the simple binary definition of (4.17). The
RASP parser employed in our experiments for English produces grammatical
relations for which a hierarchy has first been proposed in Carroll et al. (1998).

63



CHAPTER 4. LEXICAL AND SYNTACTIC SIMILARITY

dependent

ttjjjjjjjjjjjjjjjjj

yyssssssssss

�� ##GGGGGGGG

))TTTTTTTTTTTTTTT

ta arg mod

{{wwwwwwww

++XXXXXXXXXXXXXXXXXXXXXXXXX det aux conj

mod

}}zzzzzzzz

�� ##GGGGGGGG

**TTTTTTTTTTTTTTTT arg

zzvvvvvvvvvvvvvvvvvvvvv

��

��;;;;;;;;;;;;;;;;

ncmod xmod cmod pmod subj or obj

uujjjjjjjjjjjjjjj

�����������������������������

subj

ttjjjjjjjjjjjjjjjj

yyssssssssss

��

comp

ttiiiiiiiiiiiiiiiiiii

xxqqqqqqqqqq

��
ncsubj xsubj csubj obj

{{xxxxxxxxx

�� $$IIIIIIIII pcomp clausal

�� ""EEEEEEEE

dobj obj2 iobj xcomp ccomp

Figure 4.6: Hierarchy of grammatical relations defined for RASP

We reproduce the revised hierarchy from Briscoe et al. (2006) in Figure 4.6.
It is designed to give the parser fall-back options in case of unresolvable
ambiguity and to facilitate comparison between different formalisms. We
follow the intuition that closeness in this hierarchy represents similarity of
grammatical relations. As a measure of closeness, we again employ Jiang-
Conrath similarity.

Table 4.7 shows the different grammatical relations (GRs) occuring in
our expansion corpus, i.e., the BNC parsed with RASP. A total number of
86,286,092 GR tokens was counted. For each GR, its relative frequency, the
cumulative frequency of itself and all its subordinate GRs in the hierarchy,
and the information content (IC), computed in analogy to Equation (4.9),
is shown. From the information content values, the bounded Jiang-Conrath
similarity according to Equation (4.13) – with GRs instead of synsets – is
computed, which allows us to define:

syn(r1, r2) = JCb(r1, r2) (4.18)

The similarity values between the most frequent GRs are shown in Table 4.8.
Intuitively, those results do not look very promising in the context of our
expansion algorithm. For example, non-clausal subjects (ncsubj) and di-
rect objects (dobj) are given a relatively high similarity score, while in most
cases their distinction will be essential in role labeling, and potentially much
more so than the distinction between modifiers and arguments. Confirm-
ing this intuition, preliminary experiments with the definition (4.18) did
not show any improvements over the simple binary measure (4.17). We
therefore do not consider it any further. An alternative way of defining a

64



4.3. SYNTACTIC SIMILARITY

GR Rel. Freq. Cumulative IC

ncmod 24.67% 24.67% 1.400
dobj 16.94% 16.94% 1.776
det 12.87% 12.87% 2.050
ncsubj 10.81% 10.81% 2.225
conj 7.70% 7.70% 2.563
iobj 6.28% 6.28% 2.768
xcomp 4.77% 4.77% 3.043
aux 4.76% 4.76% 3.044
ccomp 4.12% 4.12% 3.189
ta 2.40% 2.40% 3.731
xmod 1.39% 1.39% 4.274
cmod 1.38% 1.38% 4.283
arg mod 0.47% 72.27% 0.325
obj 0.46% 23.97% 1.428
pcomp 0.38% 0.38% 5.579
obj2 0.30% 0.30% 5.815
pmod 0.13% 0.13% 6.666
csubj 0.08% 0.08% 7.130
xsubj 0.06% 0.06% 7.353
comp 0.04% 33.28% 1.100
arg 0.00% 44.23% 0.816
subj 0.00% 10.95% 2.212
clausal 0.00% 8.89% 2.420
dependent 0.00% 100.00% 0.000
subj or obj 0.00% 34.92% 1.052
mod 0.00% 27.57% 1.289

Table 4.7: Corpus statistics and computed information content (IC) values
for the grammatical relations (GRs) produced by RASP

ncmod dobj det ncsubj conj iobj xcomp

ncmod 1.0000 0.2836 0.2247 0.2516 0.2015 0.2213 0.2086
dobj 1.0000 0.2072 0.3452 0.1873 0.3721 0.2764
det 1.0000 0.1896 0.1781 0.1719 0.1641
ncsubj 1.0000 0.1728 0.2293 0.2157
conj 1.0000 0.1579 0.1514
iobj 1.0000 0.2169
xcomp 1.0000

Table 4.8: Bounded Jiang-Conrath similarity between the most frequent
grammatical relations

65



CHAPTER 4. LEXICAL AND SYNTACTIC SIMILARITY

syntactic similarity measure would be to optimize its values on pairs of GRs
in a tuning procedure. However, a symmetric similarity measure between
N grammatical relations with syn(r, r) = 1 has N(N−1)

2 free parameters.
For the 26 GRs produced by RASP, this would be 325 parameters, result-
ing in a huge search space, which would have to be restricted in some way.
Addressing this problem is beyond the scope of this thesis.

4.4 The Weight Parameter

An important parameter in the formulation of our similarity score (see Equa-
tion (3.6) on page 44) is the relative weight α of syntactic similarity com-
pared with lexical similarity. We consider its influence on the final simi-
larity score, which includes the normalization factor (see Equation (3.9) on
page 46). Abbreviating the sums of lexical and syntactic scores for simplic-
ity, we have:

sim(M,N) =

∑
lex +α

∑
syn√

|M | · |N |+ α
√
|E(M)| · |E(N)|

(4.19)

Obviously, values of α below 0 do not make sense in our model as our
similarity measure would then penalize genuinely similar syntactic structure.
In the special case of α = 0 we have

sim(M,N) =

∑
lex√

|M | · |N |
(4.20)

which means that syntactic information is ignored. Progressively larger
values α > 0 reflect growing influence of syntactic agreement on the overall
similarity score, but an analogous case in which only syntactic information
is considered while lexical similarity is ignored only occurs in the limit of
α→∞. In this case we have

sim(M,N) =
α−1

∑
lex +

∑
syn

α−1
√
|M | · |N |+

√
|E(M)| · |E(N)|

→
∑

syn√
|E(M)| · |E(N)|

(4.21)

The parameter α may thus range between 0 and∞, expressing a scale of
weights between the extremes of only considering lexical or only considering
syntactic similarity. To make this range of values symmetric we will consider
the logarithmic weight parameter logα, which correspondingly ranges from
logα = −∞ (i.e., α = 0, only lexical information is taken into accont), to
logα =∞ (i.e., the limit of α→∞, only syntactic information is taken into
account).

66



4.5. SUMMARY

We expect that for an appropriate definition of our similarity measure
both kinds of information should be taken into account, and logα should
therefore be neither too small nor too large. Its not clear, however, how
to derive a specific numeric value theoretically. Both measures lex and
syn may in principle take any value. Even when they are normalized to
the interval [0, 1], which is the case for the definitions given in the present
chapter, the distributions of their values within these intervals may be very
different. The absolute values of the cosine similarity measure, for example,
depend very much on the sparseness of vectors, which in turn depends on
the dimensionality of the employed vector space. In Section 7.3 we will
therefore determine an optimal value of logα empirically.

4.5 Summary

In this chapter, we have given definitions of our measures of lexical and syn-
tactic similarity. For lexical similarity, we have discussed two fundamentally
different approaches: vector space models based on co-occurence statistics
and similarity measures based on a taxonomy like WordNet. In both cases
we have derived the definition of a suitable measure lex and shown how to
compute it efficiently in the context of our task, i.e., given the prevalence
of sparse vectors for cosine similarity and relatively shallow hierarchies for
WordNet-based similarity.

Addressing syntactic similarity, we have first proposed a simple binary
measure. We have then given an alternative definition by applying the
taxonomy-based approach to a hierarchy of syntactic relations and deriving
similarity scores for them. However, this did not yield an appropriate sim-
ilarity measure. Future approaches to measure graded syntactic similarity
might have to be defined on fine-grained syntactic categories, provided by a
suitable parser.

In the following chapter, we will address the problem of finding graph
alignments which maximize the combined lexical and syntactic similarity
score.

67





Chapter 5

Solving the Optimization

In this chapter, we describe a solution algorithm for the optimization prob-
lem formulated in Section 3.4. We first discuss the scope and complexity of
the problem, showing that naive enumeration of all possible solutions is in-
feasible. We then formulate the problem as an integer linear program (ILP)
and discuss its properties, showing that a standard approach of reduction
to a problem solvable in polynomial time is not possible, as the problem is
NP-hard. We therefore propose an adapted branch-and-bound algorithm,
which renders the problem efficiently solvable in the vast majority of cases.

5.1 Scope of the Problem

In Section 3.4 we defined the similarity of two predicate-argument structures
as the maximum score of any alignment between them. For our expansion
algorithm, we need to determine this optimal alignment and its score accord-
ing to equation (3.6) for a large number of labeled and unlabeled dependency
graphs. The number c(m,n) of all possible alignments between two graphs
with m and n nodes respectively was derived as follows (repeated here from
equation (3.5)):

c(m,n) :=

min(m,n)∑
k=0

m!n!

(m− k)!(n− k)!k!
(5.1)

Assuming m ≤ n, we can give a lower bound for this expression by picking
only the term for k = dm2 e from this sum and thus estimating:

c(m,n) ≥ m!(
m− dm2 e

)
!
·
(

n

dm2 e

)
≥ m!(
bm2 c

)
!
≥ 2m (5.2)

The last inequality can easily be proved inductively, noting that (bm+1
2 c)! ≤

m+1
2 (bm2 c)! and therefore:

(m+ 1)!(
bm+1

2 c
)
!
≥ (m+ 1)m!

m+1
2 ·

(
bm2 c

)
!

= 2 · m!(
bm2 c

)
!

(5.3)

69



CHAPTER 5. SOLVING THE OPTIMIZATION

For reasons of symmetry, we similarly have c(m,n) ≥ 2n in the case of n ≤ m
and therefore

c(m,n) ≥ 2min(m,n) (5.4)

This shows that c(m,n) is at least exponential in min(m,n). The given
lower bound, however, is actually very weak. Figure 5.1 shows that even
for small m and n the number of possible alignments c(m,n) already be-
comes very large. To assess how this relates to our problem, we computed
a histogram over the 60,666 instances of verbal predicates in the FrameNet
corpus, counting the frequency of alignment domains with given numbers of
nodes. The result is shown in Figure 5.2. The average number of nodes in
an alignment domain is 5.7, but 18% of the alignment domains have more
than 7 nodes and 3% even more than 10 nodes. Due to the treatment of
complex paths described in Section 3.3, alignment ranges depend on the
alignment domains of labeled partners considered in the concrete experi-
mental setting. We therefore do not give statistics of their sizes. Given the
symmetry of the definitions, however, they can be expected to be of similar
sizes as the alignment domains. This means that in a significant part of
similarity comparisons, subgraphs of 10 or more nodes are compared and an
optimal solution among c(10, 10) = 234, 662, 231 alignments or more has to
be found. It is evident that such large numbers of evaluations of the scoring
function are infeasible, and maximization by simple enumeration therefore
unrealistic.

We are thus facing a large discrete optimization problem. Such problems
occur in many areas of NLP, such as syntactic parsing or translation. Often
it turns out that their solution can only be determined approximately, and
heuristics must be applied to prune unpromising parts of the search space, as
is the case, e.g., in beam search. Other approaches relax a discrete problem
into a continuous one in order to apply optimization strategies for contin-
uous functions. An example for this can be found in Klau (2009), whom
we will also follow in our formulation of the ILP for the graph alignment
problem. The obvious disadvantage of any approximation method is that it
introduces an additional source of errors. Approximation errors have to be
distinguished from modeling errors in that the former constitute failures to
find the optimal solution within the model, while the latter arise when the
model insufficiently represents the modeled phenomenon and therefore fails
to characterize the correct solution of the problem. In the following sections
we will describe an exact solution of the maximization problem (3.7), which
exludes the possibility of approximation errors. Any remaining errors are
therefore due to our model, including the general approach of similarity-
based projection and the concrete measures of similarity, which facilitates
error analysis.

70



5.1. SCOPE OF THE PROBLEM

0

20000

40000

60000

80000

100000

120000

140000

1 2 3 4 5 6 7

c(m,n)

n

m = 7

s s s s s
s

ss
m = 6

c c c c c c
c

c
m = 5

× × × × × × ×

×

Figure 5.1: Values of the number c(m,n) of all possible alignments for dif-
ferent values of m and n. The three graphs show the functions n 7→ c(m,n)
for m = 5, m = 6 and m = 7.

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

size of alignment domain

s s s s
s

s
s

s s s s s s s s s s s s s

Figure 5.2: Histogram of the size of alignment domains over labeled seeds
from the FrameNet corpus. The bars show relative frequencies of alignment
domains of the given size, while the curve shows the relative numbers of
alignment domains of at least the given size.

71



CHAPTER 5. SOLVING THE OPTIMIZATION

5.2 Formulation as Integer Linear Program

To formulate our optimization problem as an integer linear program (ILP)
we characterize alignments by sets of indicator variables. Given an alignment
σ from an alignment domain M = {n1, . . . , nm} to an alignment range N =
{n′1, . . . , n′n} (where n1 and n′1 represent the FEE and the target predicate,
respectively, and the order of the other nodes is fixed arbitrarily), we define
binary variables xij as:

xij :=

{
1 if σ(ni) = n′j
0 else

(5.5)

Each of these variables thus indicates whether the two nodes ni ∈ M and
n′j ∈ N are aligned or not, so that the set of all variables xij uniquely
determines σ. Not any assignment of those variables, however, corresponds
to a valid alignment. We have to ensure that no node of either graph is
aligned to more than one node in the other graph. This can be expressed
by the following constraints:

(1) ∀i :
∑

1≤j≤n xij ≤ 1

(2) ∀j :
∑

1≤i≤m xij ≤ 1

Constraint (1) ensures that for each i at most one of the binary variables
xi1, . . . , xin takes a value of 1, which corresponds to the constraint that each
node in M is aligned to at most one node in N . Constraint (2) enforces the
same in the opposite direction. Due to the universal quantification over i
and j, (1) and (2) together actually represent m + n linear constraints on
the variables xij . We can now express the scoring function

score(σ∗) :=
∑
n∈M

σ∗(n)6=ε

lex (n, σ∗(n)) + α ·
∑

(n1,n2)∈E(M)
(σ∗(n1),σ∗(n2))∈E(N)

syn
(
rn1
n2
, r
σ∗(n1)
σ∗(n2)

)
(5.6)

(repeated here from equation (3.6)) in terms of the indicator variables xij
instead of the function σ : M ∪ {ε} → N :

score(x) =
∑

1≤i≤m
1≤j≤n

lex
(
ni, n

′
j

)
xij + α ·

∑
1≤i,k≤m
1≤j,l≤n

syn

(
rnink , r

n′j
n′l

)
xijxkl (5.7)

To see that these two forms are indeed equivalent, we first consider the sum
of lex values over the indices i and j. For each aligned ni ∈ M there is
exactly one j′ with xij′ = 1, so that the sum over j reduces to a single
term lex(ni, n

′
j′), while for an unaligned ni ∈ M all xij are 0 and this sum

is therefore empty. The remaining sum over i is then identical with the
corresponding sum in (3.6), adding lexical similarity values for all aligned

72



5.2. FORMULATION AS INTEGER LINEAR PROGRAM

node pairs. The second sum over i, j, k, and l reduces similarly: the product
xijxkl is 1 if and only if σ(ni) = n′j and σ(nk) = n′l. The sum over all
combinations of i, j, k, and l therefore comprises syntactic similarity values
for all edge pairs between the relevant node pairs and coincides with the
corresponding term in (3.6).

Equation (5.7) expresses the maximization problem in terms of binary
variables. However, due to the products of the form xijxkl the scoring
function is not linear in its variables. To formulate an integer linear program,
we therefore introduce another set of auxiliary binary variables yijkl, obeying
the following additional constraints:

(3) ∀i,j,k,l : yijkl ≤ xij

(4) ∀i,j,k,l : yijkl ≤ xkl

(5) ∀i,j,k,l : yijkl ≥ xij + xkl − 1

The 2m2n2 constraints in (3) and (4) ensure

(yijkl = 1)⇒ (xij = 1 ∧ xkl = 1)

while the m2n2 constraints in (5) enforce the reverse implication. For binary
variables they are therefore equivalent to stating yijkl = xijxkl. This means
that we have linearized the scoring function, which can now be written as:

score(x,y) =
∑

1≤i≤m
1≤j≤n

lex
(
ni, n

′
j

)
xij + α ·

∑
1≤i,k≤m
1≤j,l≤n

syn

(
rnink , r

n′j
n′l

)
yijkl (5.8)

Finally, as was already mentioned (Section 3.3, page 43), we want to en-
sure that the FEE of the labeled sentence is aligned to the target predicate
of the unlabeled sentence. Since we assume that the FEE and the target
predicate are represented by n1 and n′1, this is expressed by the single con-
straint:

(6) x11 = 1

The problem of finding an optimal alignment has thus been reduced to
that of maximizing the objective function (5.8) in the mn+m2n2 variables
xij and yijkl, subject to the m+n+3m2n2+1 constraints listed in (1) to (6).
Integer linear programs in general assume arbitrary integer values for the
variables. Formally we therefore have to include the additional constraint
xij ≥ 0 for each xij . Together with (1) this implies xij ≤ 1 and therefore
xij , yijkl ∈ {0, 1}.

73



CHAPTER 5. SOLVING THE OPTIMIZATION

5.3 Complexity of the Integer Linear Program

Exact optimization for the general ILP problem is NP-hard, as can be shown
by reduction from the boolean satisfiability problem, which is NP-hard
(Cook, 1971). There is an important subclass of ILPs, however, which
are solvable in polynomial time. For those problems the solution of the
linear program (LP), i.e., the problem without the integer constraint, au-
tomatically takes integer values. A solution of the LP is therefore also a
solution of the ILP. One of the earliest algorithms proposed for the solu-
tion of the general LP is the Simplex Algorithm (Dantzig, 1963). Although
its worst-case performance is exponential in the number of variables (Klee
and Minty, 1972), it is typically very efficient in practice. The problem
was finally proved to be solvable in polynomial time by Khachiyan (1980).
His Ellipsoid algorithm, however, performs poorly in practice, and the Sim-
plex Algorithm is still widely used today, besides newer algorithms such as
interior point methods (Karmarkar, 1984; Mehrotra, 1992).

To our knowledge, there is no general method for deciding whether an
ILP belongs to the class of problems for which the integer constraint is
satisfied automatically and which are therefore solved by the solution of
the corresponding LP. A sufficient condition, however, can be given with
the help of the constraint matrix. The constraints of an LP or ILP in the
variables z1, . . . , zN can be written in a normalized form where the i-th
constraint (i = 1, . . . ,M) is given by

ai,1z1 + · · ·+ ai,NzN ≤ bi (5.9)

The matrix of all coefficients ai,j is then called the constraint matrix. It
can be shown that, if an LP has a totally unimodular constraint matrix, i.e.,
the determinant of any of its square submatrices is in {−1, 0, 1}, and if the
bi are all integral, the solution of the corresponding LP is also integral and
therefore also a solution of the ILP. A proof for this can be found, e.g., in
Sierksma (2001).

This test allows the reduction of a number of comparatively simple ILPs,
such as the linear assignment problem, to efficiently solvable LPs. Unfortu-
nately, our problem cannot be reduced in this way. We show this by proving
that the constraint matrix of our ILP always has a square submatrix with
a determinant that is not −1, 0, or 1. For a non-trivial problem, we may
assume n ≥ 2. We can number our N := mn+m2n2 variables xij and yijkl
by defining z1, . . . , zN through

z(i−1)n+j := xij (5.10)

for 1 ≤ i ≤ m and 1 ≤ j ≤ n and

zmn+(i−1)mn2+(j−1)mn+(k−1)n+l := yijkl (5.11)

74



5.3. COMPLEXITY OF THE INTEGER LINEAR PROGRAM

for 1 ≤ i, k ≤ m and 1 ≤ j, l ≤ n. The M := m+ n+ 3m2n2 + 1 constraints
(1) to (6) can be normalized and similarly numbered, so that we obtain a
M×N constraint matrix. We consider the following three constraints, taken
from (1) with i = 1, from (3) with i = j = k = 1 and l = 2, and from (4)
with i = j = k = 1 and l = 2:

x11 + x12 + · · ·+ x1n ≤ 1 (5.12)

y1112 ≤ x11 (5.13)

y1112 ≤ x12 (5.14)

Normalized and expressed in terms of the zi, these are

1 · z1 + 1 · z2 + . . .+ 1 · zn ≤ 1 (5.15)

−1 · z1 +1 · zmn+2 ≤ 0 (5.16)

− 1 · z2 +1 · zmn+2 ≤ 0 (5.17)

Taking the rows corresponding to these constraints and the columns corre-
sponding to z1, z2, and zmn+2 from the constraint matrix, we thus obtain
the following 3× 3 submatrix:

A =

 1 1 0
−1 0 1
0 −1 1

 (5.18)

Its determinant is 2, which shows that the constraint matrix is not totally
unimodular. It should be noted, however, that the normalization of (5.15),
(5.16), and (5.17) is not unique, as these inequalities could be multiplied by
arbitrary non-zero factors a, b, and c, and still be of the form (5.9). The
resulting matrix

B =

 a a 0
−b 0 b
0 −c c

 (5.19)

then has a determinant of 2abc. Since a, b, c 6= 0, at least one of them would
have to be non-integral for 2abc to be in {−1, 0, 1}. But this would yield
a trivial 1 × 1 submatrix with non-integral determinant, and thus again
contradict total unimodularity.

This discussion shows that our problem does not satisfy the sufficient
condition for the existence of a polynomial-time solution as stated above,
but does not yet prove anything about its hardness. However, it can be
shown that it is indeed NP-hard. For the proof by reduction from the
maximum subgraph problem we refer the reader to Klau (2009). This result
means that no polynomial-time algorithm for the exact solution of our ILP
is available. However, in the next section we describe a solution algorithm
which is efficient in all but a negligible number of cases in practice.

75



CHAPTER 5. SOLVING THE OPTIMIZATION

5.4 Solution of the Integer Linear Program

One of the most popular algorithms to make the solution of general ILPs
practically feasible is the branch-and-bound algorithm (Land and Doig,
1960). Its basic idea is to avoid unnecessary evaluations of the objective
function by using a hierarchical search strategy. Before entering a “branch”
of the search space, an upper “bound” for the best solution within this
branch is estimated. If this shows that the current best solution cannot be
improved upon, the branch is skipped. This may lead to significant per-
formance improvements compared to naive enumeration of all possibilities.
In this section, we describe a version of the branch-and-bound algorithm
adapted to the special structure of our problem. We will highlight the dif-
ferences to the general algorithm, where the structure of our ILP allows for
some early exclusion of impossible branches and tighter bound estimates,
leading to further performance improvements.

Figure 5.3 shows pseudocode for our algorithm. For a given alignment
domain M = {n1, . . . , nm} and alignment range N = {n′1, . . . , n′n} it deter-
mines the alignment σ∗ maximizing (3.6). Here, we employ a notation using
sets of alignment pairs ni 7→ n′j or ni 7→ ε. A set with m such alignment
pairs describes an alignment, while smaller sets stand for partial alignments,
in which the alignment of the missing nodes ni ∈M is still unspecified. Such
nodes must be distinguished from unaligned nodes; nodes with unspecified
alignment represent intermediate states in which an alignment decision has
not yet been made, while an alignment pair ni 7→ ε expresses the decision
that ni be left unaligned. This way of representing alignments is solely for
notational convenience and equivalent to the representation by the binary
indicator variables xij and yijkl.

At the beginning of the search process, we initialize σ∗ with the trivial
solution which aligns n1 to n′1 and leaves all other nodes unaligned. This
gives a score of lex(n1, n

′
1), which is stored in s∗. To find better solutions we

start with an initial partial alignment σ0, which contains only the alignment
pair n1 7→ n′1 and leaves the alignments of all other n ∈ M unspecified. As
in the general branch-and-bound algorithm, the space of all alignments is
then searched recursively by branching on the alignment decision for each
remaining node. A branch is left as soon as a bound on the achievable score
indicates that the current best solution cannot be improved upon within
this branch.

Given a partial alignment σ0 (the initial or any subsequent one) defined
on some subset of M , we estimate a suitable bound by extending σ0 to
a complete function σ on all nodes in M : each of the remaining nodes is
aligned to a partner in N in such a way that lex is maximized for the pair.
If no positive value can be achieved for lex, the node is defined as unaligned.
We then define the bound s as the score of σ0 together with the lexical
scores of the newly created alignments and a hypothetical syntactic score

76



5.4. SOLUTION OF THE INTEGER LINEAR PROGRAM

1: σ∗ ← {n1 7→ n′1, n2 7→ ε, . . . , nm 7→ ε}
2: s∗ ← lex(n1, n

′
1)

3: Initialize stack with single item ({n1 7→ n′1}, lex(n1, n
′
1))

4: while stack not empty do
5: pop (σ0 = {n1 7→ n′1, . . . , nk 7→ σ0(nk)}, s0) from stack
6: σ ← σ0
7: s← s0
8: for i from k + 1 to m do
9: n′ ← arg maxn′∈N lex(ni, n

′)
10: if lex(ni, n

′) > 0 then
11: σ ← σ ∪ {ni 7→ n′}
12: s← s+ lex(ni, n

′) + α · syn∗ ·|neighbours(ni)|
13: else
14: σ ← σ ∪ {ni 7→ ε}
15: end if
16: end for
17: if s > s∗ then
18: if valid(σ, k) and syn max(σ, k) then
19: σ∗ ← σ
20: s∗ ← s
21: else
22: for n′ ∈ (N − range(σ0)) ∪ {ε} do
23: σ1 ← σ0 ∪ {nk+1 7→ n′}
24: s1 ← s0 + lex(nk+1, n

′)
25: for i from 1 to k do
26: s1 ← s1 + α · syn

(
r
nk+1
ni , rn

′

σ0(ni)

)
27: s1 ← s1 + α · syn

(
rnink+1

, r
σ0(ni)
n′

)
28: end for
29: push (σ1, s1) onto stack
30: end for
31: end if
32: end if
33: end while
34: return (σ∗, s∗)

valid(σ, k) := ∀k<i<j≤m : σ(ni) 6= σ(nj) ∨ σ(ni) = ε

syn max(σ, k) := ∀(ni,nj)∈E(M) : (i ≤ k ∧ j ≤ k)∨
(

syn
(
rninj , r

σ(ni)
σ(nj)

)
= syn∗

)
Figure 5.3: Pseudocode of our adaptation of the branch-and-bound algo-
rithm to find an optimal alignment σ∗. σ0 and σ1 denote partial solutions,
while completions are built in σ. syn∗ is the maximum possible value of syn,
i.e., syn∗ = 1 for our binary measure.

77



CHAPTER 5. SOLVING THE OPTIMIZATION

which assumes that each of the newly considered edges is aligned perfectly,
i.e., with the maximum value syn∗ attainable by syn. This is a lower bound
than the one a naive application of the branch-and-bound algorithm to our
ILP would compute. It accounts for our knowledge of the relation between
node and edge alignments and avoids syntactic scores of edge pairs which,
given σ0, cannot be aligned any longer.

Of course, σ need not fulfill the constraints of the ILP, and s need not
be an attainable score. It is, however, an upper bound for the score of any
alignment extending σ0. If it is not greater than the current best score s∗,
we leave the current branch. Otherwise, we check if σ is a valid aligment
with score s, i.e., if it satisfies the constraints of the ILP and s is its score
(which means that the assumption of perfect syntactic scores on all newly
considered edge pairs was correct). If this is the case, we have a new current
optimum and do not need to follow the current branch any more either.

If, however, the bound s is greater than the current optimum s∗, but σ
violates some constraint or does not achieve the score s because it contains
new imperfect syntactic alignments, we have to branch on the decision of
how to extend σ0 by an additional alignment link. We consider the next node
with unspecified alignment and recursively apply the algorithm to extensions
of σ0. Each extension σ1 aligns this node to a partner in N which is not
yet taken. This simple check of constraint (1), which extends the general
branch-and-bound algorithm, avoids recursing into branches that cannot
contain any valid solutions. The partial score s1 corresponding to σ1 is
computed by taking into account the consequences of the new alignment to
the lexical and syntactic scores.

The algorithm terminates when no further branches need to be consid-
ered. Because of the theoretical considerations in Section 5.3, no polynomial
bound can be given for the number of iterations of the outer loop. This num-
ber is trivially bounded by nm−1, as each of the m−1 nodes n2, . . . , nm may
be aligned to any of the n−1 nodes n′2, . . . , n

′
n, or be left unaligned. But this

does not, of course, constitute a useful bound. Including all invalid align-
ments, it is much larger than the number of valid alignments c(m−1, n−1).
The algorithm can therefore only be efficient in practice, if the estimated
bounds allow it to exclude large parts of the search space from further con-
sideration. The benefit of the bounds has to outweigh the disadvantage of
theoretically having to consider a much larger number of (both valid and in-
valid) alignments. In the next section we will present experimental evidence
that this is indeed the case for our problem.

5.5 Average Time Complexity

In this section we estimate the average time complexity of the algorithm in
Figure 5.3 on problem instances practically occuring within our expansion

78



5.5. AVERAGE TIME COMPLEXITY

iter. < 10 100 1,000 10,000 100,000 1,000,000

inst. 22.08% 70.08% 93.47% 98.64% 99.73% 99.95%

Table 5.4: Proportion of solvable problem instances for different limits on
the number of iterations of our branch-and-bound algorithm

m = 5 m = 6 m = 7 m = 8 m = 9 m = 10

n = 5 13.66% 13.42% 12.71% 13.73% 13.42% 13.57%
n = 6 10.20% 9.76% 8.74% 9.38% 8.93% 8.98%
n = 7 7.80% 7.21% 6.19% 6.50% 5.98% 5.84%
n = 8 6.20% 5.54% 4.54% 4.62% 4.07% 2.46%
n = 9 5.09% 4.44% 3.46% 3.42% (1.39%) (0.32%)
n = 10 4.22% 3.56% 2.66% 1.46% (0.31%) (0.06%)

Table 5.5: Average number of iterations of our algorithm relative to number
of all valid alignments. Numbers in parantheses exclude timed-out instances.

framework. Specifically, we present data derived from the expansion of a
FrameNet development set. The concrete setup of this experiment will be
detailed in Section 7.3. For now it suffices to note that it is representative
of realistic applications of our framework.

In the given application of the expansion algorithm, graph alignments
were performed on 69, 982, 452 pairs of a labeled and an unlabeled sen-
tence. For each of them, we determined the number of iterations of our
algorithm until the solution was found. We found this distribution to be
highly skewed, with the vast majority of problems solvable within a rela-
tively small number of iterations. Table 5.4 shows how many of the total
number of instances could be solved within given numbers of iterations,
ranging from 10 to 1,000,000 on a logarithmic scale. To prevent rare in-
stances requiring very high numbers of iterations from inordinately slowing
down the overall process, we set a time-out of 1, 000, 000 iterations. Com-
pared to a time-out in terms of actual CPU time, this has the advantage of
making the results of our experiments deterministic and independent of the
available hardware. For the 0.05% of problems exceeding this bound, we do
not return any alignment, but rather skip the graph pair in question.

Table 5.5 compares the number of iterations of our algorithm to the
number of possible alignments, which would have to be enumerated in a
naive approach. For various values of m, the size of the alignment domain,
and n, the size of the alignment range, we show the ratio b(m,n)

c(m,n) , where

b(m,n) is the empirical average number of iterations of our variant of the
branch-and-bound algorithm and c(m,n) is the number of alignments from
Equation (5.1). Although computational cost for one iteration in the two
algorithms cannot be compared directly, we can see that the ratio decreases
significantly for growing m and n. For example, for m = 7 the number of

79



CHAPTER 5. SOLVING THE OPTIMIZATION

iterations falls from 12.71% of the number of possible alignments for n = 5
to only 2.66% for n = 10. This shows that in a realistic setting the average
performance of our algorithm scales qualitatively better to larger problems
than naive enumeration. The relative performance gains of several orders of
magnitude make its application in our framework feasible.

It is interesting to note that Table 5.5 is not symmetric in m and n,
whereas the problem definition and c(m,n) are. This could be used to
optimize an implementation by swapping the two graphs whenever m > n.
As the benefit is rather small, we did not implement this, though.

5.6 Summary

In this chapter, we have analyzed the optimization problem raised by our
definition of similarity between predicate-argument structures. We have
shown that the size of the problem makes a naive approach to its solution
infeasible. Therefore, a formulation as an integer linear program was pro-
posed. Analysis of this problem showed that no solution algorithm with a
polynomial worst-case complexity is available (nor possible, if P 6= NP ).
However, we have presented an adapted branch-and-bound algorithm that
efficiently solves all but a negligible number of instances of our problem in
practice.

We have now completely specified the expansion algorithm of our semi-
supervised approach to SRL. In the next chapters of the thesis we will pro-
ceed to evaluate it in a number of experimental settings. In the following
chapter, we first describe the supervised SRL system that will be employed
for this evaluation.

80



Chapter 6

Supervised
Semantic Role Labeler

Every individual matters.
Every individual has a role to play.
Every individual makes a difference.

Jane Goodall

In this chapter, we describe the supervised frame and role labeling system
that forms the basis for the evaluation of our semi-supervised SRL approach.
In the experiments conducted in Chapters 7 and 8, this system is trained
on different data sets, either comprising only manually annotated sentences
or augmented by application of the expansion algorithm described in Chap-
ter 3. This will allow us to assess the benefit of the automatically generated
trainind data.

We will first explain our choice of architecture for the supervised SRL
system, and then describe how it realizes frame labeling, role recognition and
role classification. Finally, we discuss how to evaluate SRL performance.

6.1 Architecture

A wide range of supervised SRL systems has been proposed in the literature
since the task was first addressed by Gildea and Jurafsky (2002). For an
extensive survey of the state of the art we refer the reader to Palmer et al.
(2010). Frequently, the problem is split into a number of subtasks, which
are then solved sequentially in a “pipeline architecture”. For the task of
labeling FrameNet frames and roles, we can identify three such stages:

1. Frame Labeling: Choosing the right frame for a given FEE.

81



CHAPTER 6. SUPERVISED SEMANTIC ROLE LABELER

2. Role Recognition: Deciding whether a given substring realizes a role
of a given frame or not.

3. Role Classification: Choosing the right role label for a given sub-
string realizing a role.

In principle, a complete system would have to perform an additional step
before frame labeling, namely recognize which words actually evoke a frame.
We leave this stage out of our SRL architecture and evaluation because the
FrameNet corpus in its present state does not contain full text annotations
that could be used to train or test the recognition of FEEs, but rather only
exemplifies a single frame on each annotated sentence. Recently, some fully
annotated data sets have become available from the FrameNet project and
the SemEval 2010 Shared Task on “Linking Events and their Participants in
Discourse” (Ruppenhofer et al., 2010a), but they are still too limited in size
to be a basis for our evaluation, comprising not more than a few hundred
sentences.

The first of the three stage, frame labeling, is similar to a supervised
word sense disambiguation task. While most approaches to word sense dis-
ambiguation are based on the sense inventory provided by WordNet, a lex-
ical unit capable of evoking different frames is ambiguous between different
senses defined by the frame inventory. The stages of role recognition and
role classification are executed separately for technical reasons. In principle,
they could be combined into one classifier deciding between a number of role
labels or the special label none. As training data for such a classifier would
be heavily biased towards this none class, however, it has proved benefi-
cial to filter out this class in the role recognition stage and let a dedicated
classifier decide between the actual role labels in the role classification stage
(Pradhan et al., 2005).

Although popular, this pipeline architecture for SRL is not universally
used and more integrated models have been proposed to allow later stages to
correct mistakes of earlier ones. On the other hand, a key advantage of the
pipeline architecture is its efficiency. This makes it suitable for evaluation
in our experiments, which will involve retraining of the system on many
different training sets.

Most existing SRL systems rely on the output of a syntactic parser and
extract various lexical and syntactic features from training instances and
input sentences. Early approaches to SRL were based on phrase structure
trees, but recent attention has shifted towards the output of dependency
parsers (see Section 2.1), as witnessed, e.g., in the Shared Task on “Joint
Parsing of Syntactic and Semantic Dependencies” (Surdeanu et al., 2008).
There are multiple reasons for this, including advances in research on de-
pendency parsing and availability of parser implementations for various lan-
guages. Perhaps the most convincing advantage is that syntactic dependency

82



6.2. FRAME LABELING

structure is conceptually closer to the semantic predicate-argument struc-
tures that SRL systems try to extract. This has already been observed by
Fillmore (1968), who notes that the concept of predication in classical logic
seems for a long time to have fostered the view that there is a fundamental
distinction between subject NPs and other arguments of the verb (collected
in the VP), with the former not requiring further analysis regarding their
semantic function. The structure of classical phrase structure grammars
reflects this view. Dependency syntax, on the other hand, treats all depen-
dents of a predicate equally, whether they stand in a subject, object, or
other relation. It therefore better corresponds to the principles of Frame
Semantics, which describe the relationships between a predicate (specifying
an action or situation) and all of its arguments (denoting the participants).

Since automatic conversion between phrase structure trees and depen-
dency graphs is feasible with reasonable accuracy, they may to some degree
be viewed as different representations of the same information. Experimen-
tal results confirm this view, showing that SRL systems utilizing dependency
information achieve similar performance as those built on phrase structure
trees (Johansson, 2008). This of course means that in practice the deci-
sion between the formalisms will often be made according to the availability
of tools and resources for a given language and domain. With our semi-
supervised approach based on dependency graphs, it is therefore natural to
choose a dependency-based SRL system for our evaluation.

6.2 Frame Labeling

To predict the frame type evoked by an FEE in a given sentence, we im-
plemented a classifier based on features extracted from dependency graphs.
Our choice of features is modeled after those presented in Johansson and
Nugues (2007a).

The task of choosing the right one out of hundreds of frames with some-
times very fine-grained semantic distinctions is substantially difficult. It is
significantly simplified if an accurate frame lexicon such as the one included
with FrameNet is available, listing for each predicate the frames it can pos-
sibly evoke. But even if manually encoded information is unavailable for a
given lexical unit, it can still be approximated by inferring frame candidates
automatically. We will describe several such approaches when we are faced
with the task of labeling unknown predicates in Chapter 8. For now, we as-
sume that our frame labeler is provided with a small set of evokable frames
for each target lemma type.

A complete list of all features used by our frame labeler is given in
Table 6.1. The features voice and parent has obj are binary, all others take
values from (sometimes much) larger finite sets. Following standard practice
in machine learning we replace them by corresponding binary features before

83



CHAPTER 6. SUPERVISED SEMANTIC ROLE LABELER

Feature Type Description and example value

target lemma atomic lemma of the target node (savour)
frames set set of frames that can be evoked by the

target verb ({Perception active, Ex-
periencer subj})

voice binary voice of the target node (active)
parent word set lemmata of the parents of the target node

({drink})
parent POS set parts of speech of the parents of the tar-

get node ({VVD})
rel to parent set grammatical relations between the tar-

get node and its parents ({xmod})
parent has obj binary whether or not any of the parents has an

outgoing “object” relation (no)
dsubcat atomic subcategorization frame, i.e., the multi-set

of all outgoing relations of the target node
(dobj, iobj)

child word set set set of lemmata of all children of the tar-
get node ({flavour, with})

child dep set set set of all outgoing relations of the tar-
get node ({dobj, iobj})

child word dep set set set of pairs (lemma, relation) for all chil-
dren of the target node ({(flavour, dobj),
(with, iobj)})

Table 6.1: Features used by the frame classifier. Example values for the
target predicate savour in the annotated graph of Figure 6.2 are given in
parantheses.

feeding them to the learning algorithm. Each of the set-valued features
(indicated by the type “set” in the table) is represented by a number of
binary features corresponding to the possible elements of the set. A value
of 1 indicates the presence of this element in the set, while a value of 0
indicates its absence. This is a natural form of subset encoding: each of the
2k subsets of a set with k elements is encoded by a specific configuration of
k binary feature values.

The features target lemma and dsubcat take atomic values. For the lat-
ter feature in particular this means that each subcategorization frame is
viewed as a separate value independent of all others, even if it shares some
grammatical relations with them. Consequently, we represent each possible
feature value by an independent binary feature. Of these features, exactly
one will take the value 1, and all other the value 0. This is known as 1-of-k
coding in the machine learning literature (Bishop, 2007).

84



6.3. ROLE RECOGNITION AND CLASSIFICATION

Perception active

FEE

OO�
�
�
�
�
�
�

Perceiver agentive

��

_ej
n

s
{

�
�

�

Phenomenon

���
�

�
�

�
�

�
�

�
�

�
�

�
�

Manner

��

_ M
8

-

(

$

"

 

�

drink
ncsubj

zzuuuuuuuuu xmod

))SSSSSSSSSSSSSSS

she savour
dobj

uukkkkkkkkkkkkkkk
iobj

))RRRRRRRRRRRRRRR

flavour

det
��

with

dobj

��
the eye

ncmod
��

closed

Figure 6.2: Annotated dependency graph for the sentence “She drank,
savouring the flavour with closed eyes”. The word savour evokes the
Perception active frame with the three roles Perceiver agentive, Phe-
nomenon, and Manner. Extracted features are shown as examples in Ta-
bles 6.1 and 6.3.

The extracted features are used to train a linear support vector machine
(SVM) model. We employed the LibLinear implementation by Fan et al.
(2008) with the cost parameter C set to 1.0 (the default). We follow the one-
versus-one approach(Friedman, 1996) for multi-classification. This means
that one SVM is trained for each pair of frames, with the binary prediction
interpreted as a vote for either one or the other of the pair. Each classifier is
trained on all instances of the two frames it chooses between. When labeling
a target predicate, the predictions of all classifiers deciding between any two
of the evokable frames are considered, and the frame with the most votes is
chosen.

Note that under this approach it is possible to apply the frame labeler
to unseen predicates, i.e., predicates for which there are no annotated sen-
tences among the training data, provided a set of frame candidates can be
specified. However, while the model may be able to infer some information
by generalizing across predicates, the quality of those predictions can be
expected to be low. We will address this issue in detail in Chapter 8.

6.3 Role Recognition and Classification

The two stages of role labeling follow a similar approach as the preceding
frame labeling stage. The task now consists of deciding for each node of a
given dependency graph whether it carries a role and, if so, what role label

85



CHAPTER 6. SUPERVISED SEMANTIC ROLE LABELER

should be assigned to it.

The same set of features is used for both tasks. A complete list is shown
in Table 6.3. The upper part lists those features which are not specific to
the graph node being classified. Those overlap to a large extent with the
features used in frame labeling. New features include the set feature roles
which depends on the frame chosen in the preceding frame labeling stage
and incorporates information from the frame lexicon, and the atomic feature
target POS. The lower part lists features which are specific to the given
graph node. All of them except function are atomic features describing the
argument head itself and its surroundings in the sentence. A very important
feature is path. It captures the syntactic relationship between the FEE and
the argument head. As in the case of frame labeling, the selection of these
features follows Johansson and Nugues (2007a).

Role recognition is handled by a single linear SVM with cost parameter
of C = 0.1. This value proved superior to the standard of C = 1.0 in
preliminary experiments. Role labeling is performed by a one-versus-one
set-up of linear SVMs with C = 1.0 and a voting approach similar to the
one employed for frame labeling. The previous frame labeling decision is
taken into account by training frame-specific sets of classifiers. This reflects
the basic concept of Frame Semantics that roles are specific to the frames
they are defined for.

6.4 Evaluation Measures

As SRL constitutes an intermediate task, deriving semantic representations,
but not on its own addressing a specific NLP problem, there are various ways
of evaluating the quality of an automatic SRL system. The most straightfor-
ward approach is to count the number of sentences in a manually annotated
test corpus for which a completely accurate analysis was produced, i.e., for
which all annotation decisions match those of the manually annotated gold
standard. In our context this means that the right frame was annotated on
the given target predicate, and the role-labeled substrings coincide exactly
with those in the gold standard. Counting the relative number of sentences
in the test set for which this is the case, we obtain the evaluation measure
of exact match.

It is important to note that in order to avoid a systematic bias we have
to perform all evaluations on the original form of manual annotation, and
not, e.g., on the labeled dependency graphs produced by our preprocessing
procedure described in Chapter 2. If we were to compare on that level, we
might implicitly make the task easier and so inflate evaluation results. For
example, there may be sentences in the test set for which a role substring
cannot be matched perfectly with a subgraph of the dependency graph. We
could now either exclude such sentence from the test set or map the relevant

86



6.4. EVALUATION MEASURES

Feature Type Description and example value

target lemma atomic lemma of the FEE (savour)
target POS atomic part of speech of the FEE (VVG)
roles set set of roles that can feature in the given frame

({Perceiver agentive, Phenomenon, Manner,
...})

voice binary voice of the FEE (active)
parent word set lemmata of the parents of the FEE ({drink})
parent POS set parts of speech of the parents of the FEE

({VVD})
rel to parent set grammatical relation between the FEE and

its parents ({xmod})
parent has obj binary whether or not any of the parents has an out-

going “object” relation (no)
dsubcat atomic subcategorization frame, i.e., the multi-set

of all outgoing relations of the FEE (dobj,
iobj)

child dep set set set of all outgoing relations of the FEE
({dobj, iobj})

arg word atomic lemma of the argument head (flavour)
arg POS atomic part of speech of the argument head (NN1)
position atomic position of the argument head in the sentence

(before, on, or after), relative to the FEE (af-
ter)

left word atomic lemma of the word to the left of the argument
head in the sentence (the)

left POS atomic part of speech of the word to the left of the
argument head in the sentence (AT)

right word atomic lemma of the word to the right of the argu-
ment head in the sentence (with)

right POS atomic part of speech of the word to the right of the
argument head in the sentence (IW)

path atomic path of grammatical relations from the FEE
to the argument head, omitting steps up-
wards in the graph to verbal heads (dobj)

function set set of relations between the argument head
and all its heads ({dobj})

Table 6.3: Features used by the role classifiers. Example values for the
target argument head flavour in the annotated graph of Figure 6.2 are given
in parantheses.

87



CHAPTER 6. SUPERVISED SEMANTIC ROLE LABELER

role to the closest matching graph node according to the procedure detailed
in Chapter 2. In both cases we would influence the evaluation. Skipping
such sentences might systematically exclude hard cases from the test set,
while a gold standard instance with an imperfectly mapped role might be
easier to predict than the original role-bearing substring, which could not be
mapped in the first place. For an unbiased evaluation, we therefore evaluate
on the level of the annotated substrings of the FrameNet corpus and demand
that these substrings match exactly. In the case of the SALSA corpus, the
original annotation has been carried out on the phrase structure trees of
the TIGER treebank (Brants et al., 2002). Evaluating on the corresponding
substrings, however, is equivalent to evaluating on sets of terminal and non-
terminal nodes, so we apply the same procedure here.

While the evaluation measure of exact match is easy to define, it has
the disadvantage of treating all kinds of errors in the labeling of a sentence
equally. It does not distinguish between a severe mistake, such as labeling
an FEE with a wrong frame or predicting a completely wrong set of roles,
and minor ones, such as the mislabeling of a single role or the precise extent
of a substring. Often, however, it is better to get a partially correct solution
than none at all. In this case, exact match will make it harder for us to
compare different SRL systems: a system might score lower than another
one, i.e., produce fewer perfect analyses, but at the same time also make
fewer fatal mistakes. The latter would not be reflected by the exact match
measure, although – depending on the application – it might make the lower
scoring system preferable.

The most popular way of defining more fine-grained evaluation metrics is
to evaluate the labeling decisions individually and then aggregate the results.
For an SRL system based on Frame Semantics, the labeling of frames is one
of these decisions. As a multi-class labeling decision, it can be evaluated
by frame labeling accuracy, i.e., the relative number of correctly labeled
FEEs in the test corpus. If the correct frame for an FEE is identified, we
then have to evaluate the correctness of the role labeling task. We will first
discuss how to evaluate the recognition of the correct role-bearing substrings.
Usual measures for such a recognition task are precision and recall. They are
defined by counting the number of true positive (TP), false positive (FP),
and false negative (FN) role instances over the test set. A true positive
instance is a role-bearing substring which occurs both in the gold standard
and the prediction for a particular sentence. A false positive accordingly is
a substring which occurs in the prediction, but not in the gold standard,
while a false negative conversely occurs in the gold standard, but not in the
prediction. Precision (P) and recall (R) are then defined as:

P =
TP

TP + FP
(6.1)

88



6.4. EVALUATION MEASURES

R =
TP

TP + FN
(6.2)

Precision thus quantifies the number of true predictions relative to the num-
ber of all predictions, while recall quantifies the same number of true predic-
tions relative to the number of all predictions that should have been made
according to the gold standard. Often, precision and recall are combined
into the Fβ score (Rijsbergen, 1979)

Fβ =
(1 + β2) · P ·R
β2 · P +R

(6.3)

Here β determines the weight of precision relative to recall. Most commonly,
the two are weighted equally (β = 1), thus giving rise to the F1 score:

F1 =
2PR

P +R
(6.4)

This is the harmonic mean of precision and recall. Thus far, these mea-
sures do not take into account the role label, but only the recognition of
role-bearing substrings. We will therefore call them unlabeled precision, un-
labeled recall, and unlabeled F1 score, respectively. If the right role-bearing
substrings were identified, the labeling is again a multi-class decision, which
can be evaluated in terms of role labeling accuracy. We therefore have three
types of measures:

(1) Frame labeling accuracy

(2) Unlabeled precision, recall, and F1 score (for role recognition)

(3) Role labeling accuracy

These correspond to the three stages of our pipeline architecture and there-
fore evaluate the individual components of our SRL system. It should be
stressed, however, that they are equally applicable to any other SRL archi-
tecture: evaluating certain aspects of the result does not require these to
be handled independently in prediction. However, these measures nonethe-
less serialize the evaluation process. We can only sensibly determine the
measures in (2) on sentences labeled with correct frames, as determining
whether roles were correctly recognized does not make sense if the predicted
frame was wrong in the first place. Similarly, we cannot assess the correct-
ness of labels on invalid substrings, so (3) requires a correct solution of the
role recognition task.

There are various ways to address these dependencies. We could base the
evaluation of any stage on gold standard annotations of the preceding stages.
This allows fine-grained evaluation of the components of the SRL system,
but does not well assess overall performance of the system: it might be better
in practice for the sets of instances on which the individual components work

89



CHAPTER 6. SUPERVISED SEMANTIC ROLE LABELER

well to have large overlap. As an extreme example, consider a frame labeler
correctly predicting one half of the instances. If the role recognition also
works well on one half of the instances, it would be best for these two sets
to coincide. In the worst case they are disjoint, so that no correct role
is predicted. Evaluation on gold standard annotations does not capture
such interdependencies. An alternative is to evaluate each stage not on the
complete test set, but on the subset of instances correctly handled by all
previous stages. This takes into account correlation in the errors of different
components, but leads to problems when comparing different systems. For
example, a change in our SRL system or its training data may change the
set of instances for which a correct frame is predicted. This, however, is
exactly the test set for the subsequent evaluation of role recognition. If the
evaluation measures of role recognition improve, we therefore do not know
whether this is actually due to better role recognition, or rather because the
instances with a correct frame label are now in some way “easier” for the
role recognition task than before.

Ultimately, the best solution for our purposes seems to be the definition
of scores aggregating over all labeling decisions. This is commonly done for
role recognition and role labeling by the definition of labeled precision and
labeled recall. These measures differ from their unlabeled variants in that
a true positive (TP) is only counted when a correctly recognized substring
was also labeled with the correct role label. Otherwise, we count it both as
a false positive (FP), since an incorrect role was predicted, and as a false
negative (FN), reflecting the fact that the correct role was missed. This
may seem like penalizing one mistake twice, but is actually necessary for
consistency, as TP + FP must reflect the total number of predicted roles,
while TP+FN is the total number of roles in the gold standard. Decreasing
TP by 1, we therefore have to increase both FP and FN by 1, since the
totals stay the same. The labeled F1 score is then defined in terms of labeled
precision and labeled recall according to (6.4).

We extend the common notion of these labeled scores to also include
the frame labeling decision. This means that a predicted role counts as a
true positive only if its label is correct and the correct frame was predicted
for the sentence in question. Otherwise it is again counted as both a false
positive and a false negative. Following this definition, a frame labeling
mistake causes all the predicted roles to be wrong. This conforms well to
the basic concept of frames in Frame Semantics: if we do not adequately
characterize the situation as expressed in the frame, then any further role
prediction is bound to be misleading and should be regarded as a mistake.

In the evaluation of our experiments in Chapters 7 and 8, we will con-
centrate on the labeled F1 score and on frame labeling accuracy, which can
be assessed on its own as it does not depend on any prededing stage. In the
appendix, we also report results in terms of labeled precision, labeled recall,
and exact match.

90



6.5. SUMMARY

6.5 Summary

In this chapter, we have described the overall architecture of our supervised
SRL system and the implementation of the consecutive stages of frame la-
beling, role recognition, and role classification. Various evaluation metrics
were discussed, ranging from the coarse-grained measure of exact match
to fine-grained ways of evaluating individual system components. We have
argued that measures of intermediate granularity, representing composite
scores over the different stages but still sensitive to the quality of individual
labeling decisions, are most appropriate for our purpose. This led to the
definition of labeled precision, recall, and F1 score taking into account both
frame and role labeling decisions.

The supervised SRL system and the evaluation measures presented here
will be used in the evaluation of our experiments in the following Chapters 7
and 8.

91





Chapter 7

Semi-supervised Learning for
Known Predicates

It ain’t what you don’t know
that gets you into trouble.
It’s what you know for sure
that just ain’t so.

Mark Twain

In this chapter, we describe a first set of experiments, in which we apply
our expansion framework of Chapter 3 to generate novel training instances
for known predicates, i.e., predicates for which some sentences with manual
semantic annotations are available.

We first describe the evaluation procedure carried out to assess the ben-
efit of our semi-supervised SRL approach. Then we instantiate our general
framework by choosing one of the two lexical similarity measures presented
in Sections 4.1 and 4.2, and tuning the weight parameter α discussed in Sec-
tion 4.4. To assess the performance of this instantiation of our model, we
then conduct a number of experiments on subsets of different sizes, sampled
from the English FrameNet and the German SALSA corpus. Finally, we
compare our method to a self-training approach.

7.1 Evaluation Procedure

The goal of our semi-supervised SRL approach is to improve the prediction
quality of a supervised SRL system. A suitable evaluation procedure should
therefore measure the performance of an SRL system when trained on an
augmented training set, generated by applying our expansion algorithm to
a seed set of manually annotated sentences. Comparison with the same
SRL system trained only on the original seed data will then show if and

93



CHAPTER 7. KNOWN PREDICATES

to which extent our expansion algorithm was able to effect an increase in
performance. Our evaluation is thus carried out as follows:

(1) Apply our expansion algorithm from Chapter 3 to a seed set, augment-
ing it to a training set for the SRL system.

(2) Train our SRL system from Chapter 6 on this training set.

(3) Apply the trained system to a test set.

(4) Evaluate labeling performance on the test set by comparing the pre-
dicted annotations with the held-out gold standard annotations.

The seed and test sets in this procedure will vary depending on the specific
experiment. In Sections 7.2 and 7.3 we will carry out experiments to find a
suitable instance of the framework described in Chapter 3: We will choose
between two definitions for the lexical similarity measure lex and determine
an optimal value for the weight parameter α. In the subsequent sections we
will then evaluate the quality of this particular instance of our framework.
It is essential that the choice of this instance is based on a development set
independent of the data used to evaluate its performance. In a realistic ap-
plication of our semi-supervised approach we would not be able to choose
our model based on the specific data we want to derive semantic analyses
for, as this would require gold standard annotations for the very data we
want to label. Choosing an instance of our framework based on a sepa-
rate development set therefore ensures the general validity of our evaluation
results. For our experiments, we chose a random sample of 20% of the in-
stances of verbal FEEs in the FrameNet corpus as a development seed set
(12,134 sentences) and another 10% as a development test set (6,066 sen-
tences). For experiments on the German SALSA corpus, we will apply the
same similarity measure and value of α and therefore do not require a sep-
arate development set. Throughout this and the following chapter, we will
use the entire BNC, comprising 6,026,276 sentences, as our unlabeled ex-
pansion corpus for experiments on English, with RASP parses extracted
from the corpus described in Andersen et al. (2008). For experiments on
German, we will employ a corpus of 20,742,146 sentences of newpaper texts
from “Süddeutsche Zeitung” (years 1995 to 2003). All these sentences were
parsed with the German LFG parser described in Section 2.4.

The present chapter concentrates on role labeling performance, reporting
labeled precision, labeled recall, and labeled F1 scores on instances with gold
standard frame labels. In the case of known predicates, which is considered
here, the frame labeling task is much less interesting than the role labeling
task. Typically, a predicate has a very dominant frame, corresponding to its
most frequent word sense. Moreover, FrameNet does not typically contain
annotated instances for all or even most senses of a predicate. Results on
subsets of the FrameNet corpus therefore do no represent general frame

94



7.2. CHOICE OF LEXICAL SIMILARITY MEASURE

labeling performance very well, yielding overly high accuracy results in the
80% range (Johansson and Nugues, 2007a) or even 90% range (Erk and Padó,
2006), with majority baselines not much lower. The remaining labeling
errors often reflect gaps in the annotation corpus, e.g., predicate senses not
exemplified by any annotated sentences in the training set. Such problems
cannot be solved by our similarity-based approach, as it is not able to induce
frames that are not annotated in the first place. Proposals like that of
Ruppenhofer et al. (2010b), who coarsen the frame structure of FrameNet
by merging similar frames, may be more suitable to alleviate this problem
in practice. We will address the potential of our approach with regard
to frame labeling in the next chapter, where we show that in the case of
unknown predicates there is ample room for improvement.

7.2 Choice of Lexical Similarity Measure

In this section, we compare the influence of the two alternative definitions
of our lexical similarity measure lex that were given in Sections 4.1 and 4.2.
For clarity, we call the measure based on cosine similarity in a distributional
vector space lexcos (see Equation (4.2) on page 52), and the measure based
on bounded Jiang-Conrath similarity in the WordNet hierarchy lexJC (see
Equation (4.15) on page 58). To compare these two measures empirically,
we carry out the evaluation procedure described in Section 7.1 on the de-
velopment seed and test sets. The parameter k of our expansion algorithm
is set to 1, so that we augment the development seed set with the nearest
neighbours of the seeds. In Section 7.4, the influence of this parameter will
be examined in detail.

Table 7.1 shows labeled precision, labeled recall, and labeled F1 scores on
the development test set for the two measures lexcos and lexJC. For syntactic
similarity, the binary measure of equation (4.17) is employed. A range of dif-
ferent values of the logarithmic weight parameter between logα = −3.0 and
logα = 3.0 is considered. Additionally, the special cases logα = −∞ (i.e.,
α = 0, only lexical information) and logα = ∞ (i.e., the limit for α → ∞,
only syntactic information) are shown, which were discussed in Section 4.4.
As a baseline, we also show the performance of the SRL system trained on
the development seed set without any additional training instances. The re-
sults for the baseline and logα =∞ do not depend on the lexical similarity
measure and are therefore identical in the columns for lexcos and lexJC.

The most striking result is the fact that, in spite of incorporating in-
formation from a manually built taxonomy, the measure lexJC performs
consistently worse than lexcos, both in labeled precision and labeled recall.
Whereas lexcos is able to improve over both the baseline and the purely syn-
tactic similarity measure, the addition of any amount of information from
lexJC leads to substantially lower performance. For lexcos, on the other hand,

95



CHAPTER 7. KNOWN PREDICATES

lexcos lexJC

logα P/% R/% F1/% P/% R/% F1/%

−∞ (lex) 47.27 36.84 41.41 42.70 32.79 37.10
−3.0 47.71 37.52 42.00 42.61 33.10 37.26
−2.0 48.23 38.13 42.59 42.78 33.26 37.42
−1.0 47.92 38.06 42.42 42.89 33.52 37.63

0.0 47.83 38.27 42.52 43.13 33.96 38.02
1.0 48.02 38.39 42.67 42.81 33.77 37.76
2.0 47.46 38.12 42.35 42.83 33.71 37.73
3.0 47.73 38.15 42.41 42.91 33.81 37.82

∞ (syn) 47.47 38.09 42.27 47.47 38.09 42.27

baseline 48.16 36.88 41.77 48.16 36.88 41.77

Table 7.1: Labeled precision, recall, and F1 score for the two alternative
measures lexcos and lexJC under various values for the logarithmic weight
parameter logα. Performance on the unexpanded seed set constitutes the
baseline.

best results in precision and recall are attained for intermediate values of
logα, balancing syntactic and semantic information. To explain this per-
haps counterintuitive result, we analyzed the differences in the annotation
instances generated under lexcos and lexJC. While their exact effect on the
machine learning algorithm used in the supervised SRL system cannot be
predicted with certainty, two observations can be made:

First, the limited coverage of the WordNet-based measure lexJC may
cause annotation errors. This is exemplified in the following sentences, show-
ing the Social event frame with its roles Host, Manner, Social event, and
Attendee:

(7.1) In May, [Dundee Port Authority]Host [generously]Manner

[hosted]Social event [a reception]Social event
[for around 50 Council members based in the Tayside area]Attendee.

(7.2) In April, [SCOTVEC]Host [also]Manner [hosted]Social event

[an event]Social event [for policy makers in higher education]Attendee.

(7.3) In April, SCOTVEC [also]Manner [hosted]Social event

[an event]Social event
[for [policy makers in higher education]Host]Attendee.

The sentence (7.1) is manually annotated and functions as a seed for our
expansion algorithm. Under both lexical similarity measures, the same un-
labeled sentence is selected as the most similar neighbour. However, lexcos

leads to the correct annotation (7.2), while under lexJC the incorrect label-
ing (7.3) is inferred. In (7.2) SCOTVEC is correctly aligned to Authority,

96



7.2. CHOICE OF LEXICAL SIMILARITY MEASURE

heading the phrase “Dundee Port Authority”, which leads to correct projec-
tion of the role Host. Under lexJC, however, SCOTVEC cannot contribute
any lexical similarity score as it is not in WordNet. Authority is therefore
aligned to the suboptimal node makers, heading the phrase “policy makers
in higher education”. This causes the incorrect nested annotation in (7.3).1

For the rest of the sentence, the two measures lead to identical alignments.
The role Social event is projected correctly, and the adverb also is misla-
beled as Manner in both cases. The alignment of May and April raises the
similarity scores, but does not lead to role projection, as “In May” – perhaps
incorrectly – was not annotated with any role in FrameNet. The example
therefore shows how coverage limitations of WordNet can lead to incorrect
alignments. By contrast, the distributional model, being completely unsu-
pervised, can be trained on the seed and expansion corpora and therefore
capture information about any lexical item occuring in the graph alignments.

A second potential advantage of the measure lexcos is its better suitabil-
ity for the acquisition of substantially new lexical material. The following
example sentences illustrate this:

(7.4) When he and my mother came to live at the house he bought
[five Aylesbury ducks]Self mover to [swim]Self motion

[on the pond]Area and clear it of weed.

(7.5) [A cloud]Self mover [swam]Self motion [on a cloud-reflecting tile]Area.

(7.6) [Ducks]Self mover [swam]Self motion about [on the lake]Area, beside
which we would sometimes sit of a summer evening after supper,
before going back on duty.

Here, the seed sentence (7.4) gives rise to a substantially novel instance (7.5)
under lexcos, while lexJC cannot detect the validity of this inference and
comes up with the nearest neighbour (7.6), which is correctly annotated, but
much more closely follows the seed – even repeating the word ducks – and
therefore does not provide as much new information. To see how this comes
about, we have to look into the specific graph alignments performed here.
Figure 7.2 shows a labeled dependency graph for the seed sentence (7.4) at
the top, with the five nodes of the alignment domain indicated by double
frames. A complex path (conj−1, ncsubj) occurs, but is not present in
either of the other two sentences (7.5) or (7.6), whose unlabeled dependency
graphs are shown below. It therefore does not enlarge their alignment ranges
, which are again indicated by double frames.

For both sentences, the two lexical similarity measures lead to the same
optimal alignments . Their similarity scores, however, differ. For illustra-
tion, we compute these scores for a weight parameter of α = 1. Table 7.3(a)

1Nested labelings need not be invalid in principle. For example, they often oc-
cur when body parts are mentioned, such as in the sentence [[Her]Agent mouth]Body part

[dropped]Body movement [open]Result.

97



CHAPTER 7. KNOWN PREDICATES

(a) Labeled dependency graph for sentence (7.4)

Self motion

FEE

@@�
�

�
�

�
�

�
�

�

Self mover

��

_cefghijk
m

o
s

y
�

�

Area

oo

�

�

�
�

�
�

�




~

o_

and
ncsubj

tthhhhhhhhhhhhhhhhhhhhhh

conj

��
conj

++VVVVVVVVVVVVVVVVVVVVVVVV

duck

ncmod

��

ncmod

&&LLLLLLLLLL swim

iobj

��

clear
dobj

xxqqqqqqqqqqqq
iobj

��
five Aylesbury on

dobj
��

it of

dobj

��
pond

det

��

weed

the

(b) Dependency graph for sentence (7.5)

swim
ncsubj

zzuuuuuuuuu
iobj

##GGGGGGGGG

cloud

det

��

on

dobj
��

a tile
det

{{xxxxxxxxx
ncmod

''NNNNNNNNNNN

a cloud-reflecting

(c) Dependency graph for sentence (7.6)

swim
ncsubj

ttjjjjjjjjjjjjjjjjjj

ncmodzzttttttttt

iobj
##HHHHHHHHH
ta

))SSSSSSSSSSSSSSSS

duck about on

dobj
��

sit

��
lake

det
��

...

the

Figure 7.2: Dependency graphs of three sentences featuring the predicate
swim. The dependent ta (for a text adjunct delimited by punctuation)
in (c) is due to a parser error.

98



7.2. CHOICE OF LEXICAL SIMILARITY MEASURE

(a) Alignment between (7.4) and (7.5)

n n′ lexcos(n, n
′) lexJC(n, n′)

and — 0.0000 0.0000
duck cloud 0.2482 0.0588
swim swim 1.0000 1.0000

on on 1.0000 1.0000
pond tile 0.2389 0.0586∑

lex 2.4871 2.1174
score 0.5654 0.5188

(b) Alignment between (7.4) and (7.6)

n n′ lexcos(n, n
′) lexJC(n, n′)

and sit 0.0000 0.0000
duck duck 1.0000 1.0000
swim swim 1.0000 1.0000

on on 1.0000 1.0000
pond lake 0.3495 0.8104

— about 0.0000 0.0000∑
lex 3.3495 3.8104

score 0.5377 0.5840

Table 7.3: Alignments between a seed and two different unlabeled sentences,
one favoured by lexcos, the other by lexJC

shows the alignment between the 5 nodes of the alignment domain of the
seed (7.4) and the 4 nodes of the alignment range of sentence (7.5), together
with the resulting lexical similarity scores under the two measures. Not
surprisingly, lexJC rates similarity between duck and cloud as well as pond
and tile very low: the corresponding concepts are far from each other in
the WordNet taxonomy. lexcos, on the other hand, gives somewhat higher
similarity scores. Inspection of the corresponding vectors shows that context
words such as sky and fly contribute most strongly to the cosine similarity
for duck and cloud. Similarly, the vectors of pond and tile are connected
by context words such as surface, edge, and shape, which characterize their
similarity in our context quite well: it is the shape of a plane surface, which
makes both a pond and a tile suitable areas for “swimming”, either in the
literal or the metaphorical sense. Table 7.3(a) also shows the resulting simi-
larity scores according to equation (3.8) from Chapter 3, taking into account
the syntactic similarity of the two aligned edges (iobj and dobj) and the
normalization factor (3.9).

Turning to the unlabeled sentence (7.6), we show alignments to the
seed (7.4) and lexical similarity scores for both measures in Table 7.3(b).
Here the alignment between duck and duck achieves a maximal score of 1

99



CHAPTER 7. KNOWN PREDICATES

under both measures. lexJC also rates the similarity between pond and lake
very high (the synset {pond, pool} is a of the synset {lake}), while lexcos

gives a somewhat lower score on distributional grounds (top context words
for pond are fish, garden, bottom, and pool, while for lake the context words
district, mountain, river, and valley are most frequent). Syntactic similarity
again contributes scores for two edge agreements. The normalization factor,
however, is larger than for sentence (7.5), as the alignment range has two
more nodes: sit and about are not well accounted for. The first one, being
the result of a parser error, is aligned to and without any effect on the sim-
ilarity score, while the second one is unaligned. As a result, the total score
for sentence (7.6) is slightly lower than for (7.5) under lexcos. For lexJC it
is the other way around: The higher similarity for the word pairs (duck,
duck) and (pond, lake) compared with the pairs (duck, cloud) and (pond,
tile) can compensate for the larger normalization factor, so that in total
sentence (7.6) scores higher than (7.5) under lexJC. This is the cause of the
difference in the choice of nearest neighbours.

While in general we cannot expect our method to allow correct inference
for metaphorical usage as seen in this example, there seem to be circum-
stances under which distributional similarity more effectively models role
filler similarity than a hypernymy hierarchy does. Observing that our two
measures lexcos and lexJC seem to model complementary aspects of argu-
ment similarity, we also experimented with various ways of combining them,
e.g., taking averages, maxima, minima, or falling back from lexJC to lexcos

in case of missing lexical items. None of these combinations nor a number
of alternative WordNet-based measures led to better results than lexcos on
its own, confirming our finding that this measure most flexibly models role
filler similarity. Possible role fillers do not seem to be confined to a restricted
subgraph of the WordNet taxonomy, but rather cut across it according to
a number of different semantic criteria. This phenomenon has been stud-
ied in the context of selectional restrictions and selectional preferences, i.e.,
the predicate-specific semantic properties of valid arguments. Li and Abe
(1998), building on the information-theoretic formulation by Resnik (1996),
have proposed to model selectional preferences by tree cuts in a taxonomy.
This allows an argument type to be characterized by a set of different sub-
regions of the taxonomy. However, it is not clear how such a model could
be integrated into our approach. For the remainder of the present chapter
and the following one, we will therefore only consider lex = lexcos.

7.3 Tuning the Weight Parameter

So far, we have not yet settled on a fixed value of the weight parameter α.
Before evaluating our semi-supervised approach in different realistic set-ups
we therefore perform a tuning procedure to determine an optimal value for

100



7.3. TUNING THE WEIGHT PARAMETER

it. There are different possible objective functions which could be used to
optimize α. The most straightforward approach is to measure the quality of
a parameter value by the improvement it brings in terms of our evaluation
metrics, such as labeled F1 score. A drawback of this objective function is
the high computational complexity of its evaluation. For a given value of α,
we have to perform the whole evaluation procedure, including our expansion
algorithm as well as training and application of the supervised SRL system,
to determine performance on the test set.

There are other possible choices of objective functions, which would be
computationally less expensive. For example, instead of generating new
instances from an unlabeled corpus, we could employ our expansion al-
gorithm to infer annotations for sentences of a labeled test set. Ignoring
their true annotations, our algorithm would infer a projected annotation
for each of them, which could then be compared with the held-out gold
annotations to quantify the accuracy of the generated training data. This
would avoid training and testing of an SRL model and therefore be much
cheaper computationally. On the other hand, there are two disadvantages.
First, this evaluation does not involve the selection stage of our algorithm:
each projected annotation would influence the estimated performance of the
semi-supervised approach, even if in a realistic application of the method
it would never be selected into the actual augmented training set. Second,
the accuracy of the novel instances may be a weak proxy for measuring the
success of the approach. In an extreme case, we may tune α to generate
perfectly accurate new instances, which nonetheless fail to improve an SRL
system because they do not contain new information. Tuning for accuracy
of the generated new instances may thus not reflect our actual objective. We
therefore choose to stay with the end-to-end evaluation described above, and
carry out a tuning procedure for this computationally expensive objective
function.

Optimization Problem. The problem of tuning the weight parameter α
is different from the optimization problem discussed in Chapter 5 in sev-
eral ways. First, it has to be solved only once for given similarity measures
lex and syn, which makes a computationally expensive empirical objective
function feasible. Another important difference is that we are now dealing
with a continuous parameter, whose infinite set of possible values rules out
simple enumeration. Many kinds of continuous optimization methods, how-
ever, are inapplicable to our problem. Exact analytic optimization relies on
the differentiability (often even the existence of the second derivative) of the
objective function and on analytic solvability for the roots of the derivative.
These are high requirements, seldom met in practice. Many approximative
approaches such as gradient descent methods similarly rely on differentia-
bility. Our objective function, on the other hand, is non-continuous and
piecewise constant. This can be seen as follows:

101



CHAPTER 7. KNOWN PREDICATES

Let α1 and α2 be two parameter values. If the corresponding values of the
objective function described above differ for these two values, the F1 scores of
the SRL system on the test set have to differ depending on which of the two
parameter values was used in the expansion process generating the training
data. This is only possible if the training sets differ, i.e., if at least one
instance differs. This in turn implies that either the relative similarity of two
unlabeled sentences to one seed sentence was changed, leading to a different
selection of the seed’s neighbours in the selection stage of our expansion
algorithm, or the optimal alignment for a graph pair changed, resulting in
a different role projection for an unlabeled sentence in the labeling stage. In
either case, the properties of the scoring function (3.6) from Chapter 3 allow
us to find a lower bound for the difference of parameter values |α1 − α2|,
except in the case that one of them is in a certain discrete set A of parameter
values. This set represents the parameter values for which there are ties
between two unlabeled sentences or two competing graph alignments, and
an arbitrarily small change of α may thus deliver a different outcome of the
expansion algorithm.2 Outside this discrete set of parameter values we have
therefore shown that a change in the value of the objective function implies
a minimum change in α. Conversely, this means that the objective function
is locally constant outside A. As the discrete set A divides the set of real
numbers into open intervals, it is thus constant on any of these intervals,
with non-continuities in each point of A.

As a piecewise constant function, our objective function cannot be ex-
pected to be maximized by any method involving gradient estimation. Gra-
dient-free algorithms, such as Powell’s method (Powell, 1964), try to find
an optimum of a function of several variables by a clever choice of search
directions. They do not offer any benefit in the case of a single variable,
though. We therefore apply a simple tuning procedure based on grid search,
which evaluates the objective function on a set of equidistant parameter
values. As described in Section 4.4, it is natural to consider the logarithmic
weight parameter logα, ranging from −∞ to ∞. Addition of a constant c
then corresponds to multiplication of the parameter α with a factor ec. We
choose an additive step size of c = 0.2 for logα, which means that the weight
of syntactic similarity is increased by a factor of e0.2 = 1.22 or about 22%
in each step, and evaluate our objective function for those parameter values
between logα = −3.0 and logα = 3.0 that have not already been computed
for Table 7.1.

2The specific required property of the scoring function is that it has a continuous
derivative as a function of α. If this was not the case, there could be an α0 for which the
difference in similarity values oscillates around 0 with increasing frequency for α→ α0 (an
example would be α 7→ α sin 1

α
around α0 = 0, which is differentiable, but whose derivative

is not continuous). This would mean that in any arbitrary small neighbourhood of α0 there
would be parameter values leading to either of the sentences being chosen, which means
that A would not be discrete.

102



7.3. TUNING THE WEIGHT PARAMETER

41.4

41.6

41.8

42.0

42.2

42.4

42.6

−∞ ∞-3 -2 -1 0 1 2 3

-0.6F1/%

logα

F1

s

s s s
s s

s s s s s
s
s s s s s s s s s

s
s
s s s s s s s s s s

s F1 baseline

Figure 7.4: Performance of the expansion method on the development set for
various values of α. The baseline is a classifier trained on the unexpanded
seed set.

Tuning Results. Results of the tuning procedure in terms of labeled F1

scores are shown in Figure 7.4. For comparison, the baseline performance of
an SRL system trained only on the development seed set is indicated by the
horizontal line. It can be seen that except for logα = −∞ all augmented
training sets lead to improved performance. This confirms the preliminary
results from Table 7.1 that our semi-supervised approach is successful in
improving labeling quality, even for non-optimal parameter settings. Fur-
thermore, it is clear that neither lexical information alone nor syntactic in-
formation alone lead to an optimal similarity measure. The former actually
reduces labeling quality, while basing similarity on syntax alone achieves sub-
optimal performance. Finally, while there is some variability in performance
depending on the exact value of logα, it is clearly the intermediate range
of values that lead to best performance. With the exception of logα = −1
(which is probably due to chance), the objective function is relatively stable
between logα = −2 and logα = 1. The empirical maximum in our exper-
iment is at logα = −0.6, corresponding to α = e−0.6 ≈ 0.55. This means
that lex is weighted about twice as strongly as syn. We will thus set α to
this value for all following experiments.

103



CHAPTER 7. KNOWN PREDICATES

7.4 Experiments on Corpora of Different Sizes

In this section, we present results of applying our method to seed corpora
of different sizes. This allows us to assess in which situations and to what
extent our semi-supervised approach can improve the quality of SRL. To
show its general applicability, we conduct experiments on both the English
FrameNet and the German SALSA corpus.

Experiments on FrameNet. For the evaluation of our results we first
set aside a random sample of 10% of the annotations with verbal FEEs in
the FrameNet corpus (disjoint from the development sets) as a fixed test
set (6,066 sentences). The remaining 60% of those annotations, which are
neither in this test set nor in one of the development sets used in Sections 7.2
and 7.3, constitute our complete seed set (36,400 sentences). From this we
extract smaller seed sets according to the following procedure:

For each predicate annotated in FrameNet, we extract a random sam-
ple of n annotation instances. If there are less than n annotated instances
of a predicate in the complete seed set, all of them are extracted. This
procedure yields seed sets of different sizes for different values of n. To fa-
cilitate comparison between the different sets, we enforce monotonicity of
those sets, i.e., we draw the samples in such a way that the seed corpus
for n is a subset of the seed corpus for n + 1. This can easily be achieved
by randomly drawing one sentence per predicate at a time, incrementally
building the seed corpora. The resulting sizes of these corpora can be ex-
pected to be roughly linear in n, at least as long as the pool of annotation
instances for the majority of predicates is not yet exhausted. We apply our
expansion algorithm to each of the seed corpora, producing differently sized
augmented sets by variation of the parameter k of our expansion algorithm,
which controls how many nearest neighbours of a seed are selected. We thus
control corpus size by two parameters: n for the seed corpus size and k for
the amount of generated novel instances.

Figure 7.5 shows the resulting corpus sizes for a number of different
combinations of n and k. The solid line indicates the sizes of the original
seed sets for n = 1, . . . , 6, 8, 10, while the dotted lines represent the sizes of
the augmented sets for k = 1, . . . , 6. While they show a regular pattern,
the sizes of the augmented corpora are not integral multiples of the sizes
of the respective seed corpora. One reason for this is that in the applica-
tion of the expansion algorithm we disregard unrealiable seed instances, i.e.,
dependency graphs which could not perfectly be equipped with semantic
annotations, receiving a mismatch score > 0 in the preprocessing stage de-
scribed in Chapter 2. The number of seeds actually used in the expansion
is therefore smaller than the number of instances in the seed corpus. When
selecting the k nearest neighbours of each of them according to our similar-
ity measure, we therefore do not produce a corpus k + 1 times the size of

104



7.4. EXPERIMENTS ON CORPORA OF DIFFERENT SIZES

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4 5 6 7 8 9 10

only seeds

k = 1

k = 2

k = 3

k = 4

k = 5

k = 6

corpus size

n

s s s s s s s s
c c c c c c c c

c c c c c c c c

c c c c c c c c

c c c c c c
c c

c c c c c c
c

c

c
c c c c c

c
c

Figure 7.5: Corpus sizes of various training sets: the solid line shows the
sizes of the seed sets for n = 1, . . . , 10, while the dotted lines represent the
same sets augmented by k = 1, . . . , 6 nearest neighbours.

the seed corpus. Another reason is that even a seed entering the expansion
process may fail to produce k new instances. This can happen when it is
not the nearest neighbour of a sufficient number of unlabeled sentences and
therefore does not have k neighbours in the selection stage. For example, in
the augmented corpus with n = 10 and k = 6 only 83% of the seeds give rise
to a full 6 new instances. The average number of new instances per seed in
this case is about 5.4.

We apply our expansion algorithm to compare each unlabeled sentences
only to labeled seed sentences featuring the same predicate. Compared to
considering all pairs of predicates, this reduces computational complexity
considerably and increases accuracy of the resulting generated instances.
In the following chapter, dealing with unknown predicates, we will have to
relax this restriction.

Results. We evaluate performance for each of the seed sets and augmented
seed sets by training our supervised SRL system on the respective set and
then applying it to the fixed test set, which makes results between differ-
ent training sets comparable. Figure 7.6 shows results in terms of labeled
F1 score for the FrameNet corpus. Each of the horizontal dotted lines in-
dicates the baseline performance when training on one of the seed sets for
n = 1, . . . , 6. The solid lines then show how this performance improves by

105



CHAPTER 7. KNOWN PREDICATES

1

2

3

4

5

6

0 1 2 3 4 5 6
29

30

31

32

33

34

35

36

37

38

39

40

seeds/predicate F1/%

k

s s s s s s s

s
s s s s

s s
s

s s s s s ss
s s s s s s

s
s s s s s s

Figure 7.6: Improvements in role labeling F1 obtained by expanding seed
corpora of different sizes: the dotted lines show performance of unexpanded
classifiers trained on 1 to 6 seed instances per predicate. Each of the solid
lines starts from such a baseline at k = 0 and for k > 0 shows the im-
provements obtained by adding the k nearest neighbours of each seed to the
respective baseline corpus.

106



7.4. EXPERIMENTS ON CORPORA OF DIFFERENT SIZES

augmenting the seed set. Each of them starts on its respective baseline for
k = 0 (no expansion), but then rises above it for k = 1, . . . , 6.

It can be seen that each expansion leads to improved performance of the
classifier. All improvements for 1 ≤ k ≤ 5 (except k = 5 for 2 seeds per
predicate) are statistically significant (p < 0.05, for details see appendix), as
determined by stratified shuffling (Noreen, 1989). The curves generally show
the largest improvements for k between 2 and 4, declining for higher values
of k. This reflects the trade-off between the acquisition of larger amounts of
novel information and the inevitable introduction of noise due to incorrectly
inferred annotations. For progressively less similar neighbours, the positive
effect of the former is outweighed by the detrimental effect of the latter. The
progressively lower accuracy of the annotations on more distant neighbours
is illustrated by the following example:

(seed) In other academic areas it is assumed that [the teacher]Communicator

knows more than the student, and is there to
[convey]Successfully communicate message [this knowledge]Message,
whether as a corpus or a skill.

(1) However, what is most apparent generally in the provisions de-
scribed is that deaf children are unable to interact, do not con-
tribute to class lessons through speech, are subjected to distorted
and exaggerated mouthings by [teachers]Communicator and pupils in
order to [convey]Successfully communicate message

[specific information]Message (i.e. not natural language interaction)
and are unlikely to have secure peer group friendships.

(2) Elaborate wood and iron work, overhanging eaves, portes cochères,
and [all sorts of architectural ornamentation]Communicator all
[conveyed]Successfully communicate message [a sense of the romance
of travel]Message, identified the station as landmark, and offered
the various companies the opportunity to distinguish themselves
by particular ‘house’ characteristics.

(3) For [a moment]Communicator her eyes and her smile, turned to me,
[conveyed]Successfully communicate message

[a hint of past emotions]Message.

(4) At first [Skip]Communicator [conveys]Succesfully communicate message

[to us]Message that he was competitive and that he had hopes for
the boat.

We show the sentences unabridged to convey a sense of the difficulty they
present to the parser. As a consequence, there are several errors in their syn-
tactic analyses. Nonetheless, syntactic similarity (direct objects of the verb
convey) and lexical information (identity of the word teacher) work together

107



CHAPTER 7. KNOWN PREDICATES

to yield an almost perfect annotation of the most similar neighbour (1), only
missing the extension of the Communicator role to “and pupils”. In the sec-
ond nearest neighbour (2), the choice of frame seems a little bit awkward,
but is actually the best which can be achieved given the seed data: the only
alternative frame annotated in FrameNet for convey is Bringing, which
is clearly not applicable here. Neighbours (3) and (4), on the other hand
show clear role labeling errors in the Communicator and Message roles, re-
spectively. This is reflected in the lower similarity between the aligned role
filler heads (teacher/moment and knowledge/to). The example therefore
illustrates how lower similarity corresponds to lower annotation accuracy.

Another interesting observation that can be made in Figure 7.6 is that
the addition of automatically generated instances often has a positive effect
on role labeling performance similar to – or even exceeding – the addition of
one manually labeled instance per predicate. For example, the corpus with
n=2 seeds per predicate, expanded by k = 2, 3 or 4 nearest neighbours per
seed, leads to better performance than the unexpanded corpus with n = 3
manually labeled seeds per predicate. Similarly, an expanded version of the
n = 5 seeds/predicate corpus closes about 60% of the gap to the n = 6
seeds/predicate corpus.

Generally, the positive effect of our expansion method is largest for cor-
pora with only a few seed instances per predicate. We did not observe sig-
nificant improvements for corpora with 6 or more seeds per predicate. Such
predicates can be considered adequately represented by FrameNet, at least
to the extent to which their word senses are covered. A complete collection
of evaluation results for all training sets can be found in the appendix.

Experiments and Results on SALSA. To confirm the validity of our
results on a different corpus and language, we carried out an analogous
experiment on the German SALSA corpus. We randomly selected 10% of
its instances as a test set (1,949 sentences) and sampled seed sets from the
remaining 90% (17,545 sentences) as described above. All other parameters
are identical to those in the FrameNet experiment. This avoids the necessity
of another development set and allows us to verify that the optimal values
generalize to another corpus.

Figure 7.7 shows evaluation results of this experiment on seed corpora
with n = 1, 5, 10, and 20 sentences per predicate and on the complete seed set
(“all”). We observe a significant increase in labeled F1 scores for all corpus
sizes, even on the complete seed set (p < 0.001 for n ≤ 20 and p < 0.05 for all
but one expansion of the complete set, determined by stratified shuffling, for
details see appendix). Probably as a result of the smaller corpus sizes, im-
provements are much more pronounced than in the case of FrameNet, with
augmented versions of the n = 10 seeds/predicate corpus outperforming the
n = 20 seeds/predicate corpus, i.e., compensating an additional 10 manu-

108



7.4. EXPERIMENTS ON CORPORA OF DIFFERENT SIZES

1

5

10

20

all

0 5 10 15 20
20

25

30

35

40

45

50

55

60

65
seeds/predicate F1/%

k

s
s s s s s s s s s s s s s s s s s s s ss
s s s s s s s s s s s s s s s s s s s s

s s s s s s s s s s s s s s s s s s s s ss s s s s s s s s s s s s s s s s s s s ss s s s s s s s s s s s s s s s s s s s s

Figure 7.7: Results on the SALSA corpus, depiction like in Figure 7.6

80%

85%

90%

95%

100%

1 2 3 4 5 6

relative similarity

k

SALSA
c

c c c c c
c

FrameNet

s

s
s

s s s

s

Figure 7.8: Similarity of the k-th nearest neighbour relative to that of the
nearest neighbour in the FrameNet and SALSA experiments

109



CHAPTER 7. KNOWN PREDICATES

ally annotated instances per predicate. The smaller corpus sizes also make
it feasible to explore relatively high values for k, yet even there we did not
observe significantly declining performance, but rather a leveling-off of la-
beled F1 scores. This is most likely due to the more than three times larger
and more homogeneous expansion corpus (more than 20 million sentences
of Süddeutsche Zeitung compared with about 6 million sentences from the
BNC). Here, more distant neighbours are not likely to be much less simi-
lar to the seed than closer ones. The following example shows a seed for
the predicate anschießen (to shoot) and some of its neighbours. English
word-for-word glosses are provided.

(seed) Wenige Stunden später wurde in Belfast [ein Katholik]Target
[angeschossen]Hit target und schwer verletzt.

Few hours later was in Belfast [a catholic]Target
[shot]Hit target and severely wounded.

(1) [Eine 23-jährige Frau]Target ist in Köln auf offener Straße
[angeschossen]Hit target und verletzt worden.

[A 23-year-old woman]Target was in Cologne on open street
[shot]Hit target and wounded.

(12) [Die Waffenlobby der USA]Target ist [angeschossen]Hit target.

[The US gun lobby]Target is [shot]Hit target.

(19) Noch drei Tage später wollen Jagdaufseher im Wald
[[angeschossene]Hit target und verletzte Tiere]Target aufgespürt
haben.

Even three days later claim gamekeepers in the forest
[[shot]Hit target and wounded animals]Target found have.

Coming from the news domain, all of the 11 nearest neighbours closely follow
the seed in structure and word sense. Only a sentence as distant as the 12th
nearest neighbour shows a different pattern, using anschießen metaphorially
in a play on words, which our expansion algorithm is unable to handle. A
syntactically different sentence is not found earlier than the 19th nearest
neighbour. Here, the target is correctly identified as a modifying participle
of the role filler head.

The intuition that similarity to the seed declines much less rapidly than
in our FrameNet experiments is confirmed by Figure 7.8. Here, we show
the average of the ratios between the similarity scores of the k-th nearest
neighbour and the first nearest neighbour. The values are extracted from
the augmented versions of the seed corpus for n = 6 in both cases. With
increasing k the similarity ratio falls much less steeply for SALSA than for
FrameNet, indicating that the expansion corpus is more slowly exhausted of
sentences that our expansion algorithm can confidently annotate.

110



7.5. COMPARISON WITH SELF-TRAINING

Flexible Selection of Neighbours We tried various methods of mak-
ing the selection of novel instances more flexible than simply choosing the
k most similar neighbours for each seed sentence. One possibility is to set
absolute or relative similarity thresholds, below which a novel annotation
instance is discarded. Alternatively, one could conjecture that a cluster of
relatively similar neighbours can be distinguished from less reliable instances
by a detectable “gap” in absolute or relative similarity scores. None of our
experiments with such methods, however, led to any improvements over the
results shown here. Apparently, the similarity scores themselves are much
less predictive of annotation quality than their relative order for a given seed
sentence.

7.5 Comparison with Self-training

Finally, we want to assess whether the improvements shown in the previous
sections are due to our formulation of projection confidence in terms of
sentence similarity, or whether a simpler method of generating new training
instances could work similarly well. We therefore compare our approach to
self-training, a semi-supervised method that has been successfully applied to
some NLP problems (Mihalcea, 2004; McClosky et al., 2006). Here, instead
of projecting annotations we employ the supervised SRL system, trained
on a seed corpus, to label parts of the expansion corpus. We then add
the resulting annotated sentences to the seed corpus and retrain the SRL
system.

We consider the seed corpora used in the FrameNet experiments of Sec-
tion 7.4. Instead of adding the k nearest neighbours of each seed according
to our similarity score, however, we randomly select k sentences from the
expansion corpus for each seed sentence. These must feature the same pred-
icate as the seed sentence, so that the resulting corpus contains annotation
instances for different predicates in the same proportions as in our earlier
experimente. The selected sentences were labeled by the supervised SRL
system trained on the corresponding seed corpus. As before, the augmented
seed corpus was used to retrain the supervised SRL system, which was then
applied to the fixed test set. Results parallel to those for our earlier exper-
iment are shown in Figure 7.9. As can be seen, the additional annotated
sentences obtained with the self-training method lead to considerably lower
labeled F1 scores in all cases. Performance decreases with growing amounts
of additional training data, showing that the negative effect of annotation
errors in the new instances outweighs the benefit of new information.

This result confirms that our definition of similarity and the correspond-
ing projection approach cannot be replaced by a simple method of self-
training, and are thus crucial for the success of our method and the im-
provements shown in Section 7.4.

111



CHAPTER 7. KNOWN PREDICATES

2

3
4

5

0 1 2 3 4 5 6
31

32

33

34

35

36

37

38

39
seeds/predicate F1/%

k

s
s s s s s s

s

s s
s s s s

s

s s s s s s

s

s s s s s s

Figure 7.9: In the same set-up as shown in Figure 7.6, self-training leads to
lower F1 scores

7.6 Summary

In this chapter, we have described the set-up and reported on results of
several experiments in which we applied our semi-supervised SRL approach
to the task of labeling known predicates, i.e., predicates for which some
manually annotated sentences are available.

We first described an experimental set-up to determine the extent to
which our expansion algorithm improves labeling performance of a super-
vised SRL system. We then conducted experiments to find a suitable in-
stantiation of our expansion framework described in Chapter 3. Comparing
different definitions of our lexical similarity measure, we found distributional
similarity to be superior to WordNet-based similarity measures. This sur-
prising result was analysed theoretically and illustrated by different exam-
ples. Addressing the weight parameter α employed in our similarity score,
we discussed a tuning procedure for it and the properties of an appropriate
objective function. An optimal parameter value was determined by grid
search, empirically confirming the intuition that both lexical and syntac-
tic similarity contribute to the performance of our method. In experiments
on various subsets of both the English FrameNet and the German SALSA
corpus, we found that our method is able to significantly improve role label-
ing performance, especially for smaller corpora. These improvements were
compared to the effect of additional manually annotated instances, showing

112



7.6. SUMMARY

that our approach can replace manual annotation to a substantial degree
and therefore has the potential of reducing annotation effort in practice.
Comparison with a simple self-training set-up showed that the formulation
of our expansion framework is crucial for this result.

In the following chapter, we will address the complementary task of la-
beling predicates without any labeled training data, and apply our expansion
algorithm to generate training instances for them.

113





Chapter 8

Semi-supervised Learning for
Unknown Predicates

We still do not know
one thousandth of one percent
of what nature has revealed to us.

Albert Einstein

In this chapter, we describe a second set of experiments in which we apply
our semi-supervised SRL approach to acquire novel instances for unknown
predicates, i.e., predicates for which no manually labeled instances are avail-
able. Such predicates present a major problem for existing supervised SRL
systems, which due to the lack of specific training material perform poorly
on them, or are even unable to predict frames and roles at all.

We first address the problem of finding frame candidates for an unknown
predicate, proposing two different approaches based on methods from the
literature. We then empirically evaluate our expansion method on the tasks
of frame and role labeling of unknown predicates, drawing on data from the
English FrameNet and the German SALSA corpus.

8.1 Frame Candidates

In the application of our expansion algorithm in Chapter 7, we compared
each unlabeled sentence only to seed sentences featuring the same predi-
cate. This is not strictly necessary in our framework, but reduces its com-
putational cost considerably, and ensures higher precision than allowing the
comparison of sentences with arbitrary predicates. In the acquisition of
instances of unknown predicates, however, this simplification is no longer
possible, as there are no annotated instances of these predicates in the seed
corpus. While this means that we now have to compare predicate-argument

115



CHAPTER 8. UNKNOWN PREDICATES

structures of different verbs, the vast majority of seeds will still be inappro-
priate for a given unlabeled sentence, as two arbitrary predicates are likely
to pertain to enirely different situations. To maintain high precision, and
also to make expansions computationally feasible, we therefore employ a fil-
tering stage, determining which seeds may possibly be relevant for a given
unknown predicate type. Only those sentence pairs passing this initial filter
will then be further considered by the graph alignment algorithm.

We could address the problem by comparing the lemmata of the two
predicates, e.g., measuring their lexical similarity. On the other hand, the
Frame Semantic annotation of the seed sentences allows us to compare un-
known predicates to the frames evoked by known predicates, taking advan-
tage of the disambiguating information provided in the manual annotation.
We follow this approach and determine a set of frame candidates for each
unknown predicate. An unlabeled sentence is then compared only to seed
sentences annotated with one of the frame candidates of the unknown pred-
icate.

Several methods have been proposed to address the coverage problem
of Frame Semantic resources and infer the possible frames of an unknown
predicate. Burchardt et al. (2005) propose a rule-based system making use
of WordNet information, while Johansson and Nugues (2007b) train classi-
fiers to predict whether a predicate may evoke a particular frame or not, also
employing WordNet information. In this section, we focus on the work of
Pennacchiotti et al. (2008), who present two methods, one based on Word-
Net and one that does not make use of lexical resources and is thus more
portable across languages and domains. We describe these two methods and
propose variants of them, which show superior performance in a type-based
evaluation procedure. In the subsequent sections, the frame candidates pre-
dicted by these methods will then be employed in the application of our
expansion algorithm.

Vector-based Methods. Pennacchiotti et al. (2008) propose a vector-
based method for the derivation of frame candidates. The vector space
model they use is similar to the one we defined in Section 4.1. We there-
fore employ this model to represent predicates by co-occurcence vectors and
compute their cosine similarity. Their method first computes a frame vector
~f for each FrameNet frame f as the weighted centroid of the vectors ~v for
each predicate v that may evoke f :

~f =
∑
v∈f

wv,f~v (8.1)

They define the weight wv,f as the relative frequency of v among the predi-
cates evoking f , counted over the same corpus used to build the vector space
model (which in our case is the unlabeled expansion corpus). This allows

116



8.1. FRAME CANDIDATES

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

Accuracy/%

n

weighted centroids

c c c c c c c c c c

c
unweighted centroids

c c c c c c c c c c

c co-hyponyms

s s s s s s s s s s

s
related synsets

s s s s s s s s s s

s
Figure 8.1: Accuracy out of n for different frame candidate methods. Un-
broken lines show our methods, and solid dots indicate use of WordNet
information.

more frequent predicates to exert a stronger influence on the frame vector.
As a variant of this definition, we also consider unweighted centroids, for
which we set all wv,f = 1.

To derive frame candidates for an unknown predicate v0, represented by
a vector ~v0, all FrameNet frames f are ordered by their cosine similarity
cos(~v0, ~f) to v0. The most similar n frames are considered as frame candi-
dates.

WordNet-based Methods. As an alternative to their vector-based meth-
od, Pennacchiotti et al. (2008) also propose a method based on WordNet. It
treats nouns, verbs, and adjectives differently, but here we are only interested
in verbal predicates. Instead of using WordNet similarity measures, which
did not show convincing performance in Johansson and Nugues (2007b),
their method measures similarity between an unknown predicate v0 and a
frame f by counting the number of co-hyponyms of v0 which may evoke f .
(The co-hyponyms of a WordNet synset are the other hyponyms of its hy-
pernyms, i.e., the “sister nodes” in the WordNet graph.) It then considers f
a frame candidate for v0, if this number is greater than a parameter τ , set
to τ = 2 in their experiments.1

Following up on their basic idea, we propose an extension based on counts

1personal communication

117



CHAPTER 8. UNKNOWN PREDICATES

of synonyms, hypernyms, hyponyms and co-hyponyms in WordNet. We
define the WordNet-based similarity of the unknown predicate v0 to the
frame f as:

simW (v0, f) =
∑
v∈f

r(v0, v) (8.2)

where r(v, v′) is 1 if v and v′ are synonyms , 0.5 if one is a hypernym of the
other, 0.25 if they are co-hyponyms, and 0 otherwise. These numbers were
chosen heuristically to represent different degrees of relatedness according
to WordNet. Again, the most similar n frames are considered as frame can-
didates. We found that giving positive scores to pairs related more distantly
than via co-hyponymy did not improve performance, probably because the
verb hierarchy in WordNet is rather shallow and relatively unrelated con-
cepts are included in this case. It therefore seems unlikely that much could
be gained from refining the measure r, e.g., by incorporating one of the
WordNet similarity measures discussed in Section 4.2.

Evaluation. We evaluate the four methods in a leave-one-out procedure
over the verbal FEEs of FrameNet (excluding the 20% of the verbs which will
be considered “unknown” in the experiments of the following sections, so as
not to bias the evaluation of those experiments). Leaving out one of those
predicates in turn, we predict frame candidates for it based on information
about the evokable frames of all other predicates. The resulting candidate
set is then compared with the set of true evokable frames according to the
frame lexicon.2

Figure 8.1 shows evaluation results for the two vector-based methods
“weighted centroids” and “unweighted centroids”, as well as the WordNet-
based methods “co-hyponyms” (for the original method) and “related syn-
sets” (for our extension considering a wider range of related synsets). It
shows the proportion of the tested predicates for which at least one of the
frame candidates is among the true evokable frames, considering sets of
n = 1, . . . , 10 frame candidates. We can see that the “weighted centroids”
method performs worst, ranging from 16.6% for 1 candidate to to 44.5% for
sets of 10 candidates per predicate. Interestingly, performance increases by
a large margin when unweighted centroids are considered instead of weighted
ones. Accuracy increases by about 15%, ranging from 29.1% for 1 candidate
to 61.6% for 10 candidates. Apparently, the stabilizing effect of the centroid
computation, which allows common meaning aspects of the predicates to
reinforce each other and reduces the effect of spurious word senses, is more
pronounced when all predicates are weighted equally. The figure further
shows that the original WordNet-based method “co-hyponyms” performs

2This evaluation is very similar to the one in Pennacchiotti et al. (2008). Their higher
numerical results are due to a different test set, which includes FEEs of all parts of speech,
not only verbs. Moreover, they exclude infrequent predicates.

118



8.2. EVALUATION PROCEDURE

poorly in our experiments. It only slightly outperforms even the “weighted
centroids” method, and does not reach the level of performance shown by
the “unweighted centroids” method, which does not have access to Word-
Net information. This result suggests that the reported improvements of
the WordNet-based method in Pennacchiotti et al. (2008) are due to their
more refined treatment of nouns, which are not considered in our experi-
ments. Finally, our WordNet-based method “related synsets” shows best
performance, leading to large improvements over the three other methods.
Accuracy grows from 53.1% for 1 candidate to 79.2% for 10 candidates.
In the experiments of the following sections, we will therefore consider the
vector-based method using unweighted centroids and our extended Word-
Net-based method to derive frame candidates for unknown predicates.

8.2 Evaluation Procedure

To simulate frame and role labeling for unknown predicates, we divide all
annotated predicates into two sets, one of which is considered “known” and
the other “unknown”. Annotated sentences of unknown predicates serve
as testing data, while annotation instances of known predicates are used
as the seed corpus. We apply our expansion algorithm to generate novel
instances for the unknown predicates, thus complementing the seed corpus.
To assess the effect of our semi-supervised approach, we again compare
the performance of the SRL system from Chapter 6 when trained on this
augmented training set to its performance when trained on the original seed
corpus alone. In the first case, the SRL system will be able to profit from
specific training instances for the predicates in the test set, while in the
second case performance will depend solely upon its ability to generalize
from known to unknown predicates. We will use the same choices of lexical
similarity measure (lexcos) and weight parameter (α = e−0.6) that were found
to be optimal for the experiments in Chapter 7.

To divide the predicates of the FrameNet and SALSA corpora into
“known” and “unknown”, we first sort them by their number of annota-
tion instances. We then mark every fifth predicate in that list (i.e., 20% of
the predicates) as “unknown”. The remaining predicates constitute the
“known” set. For FrameNet, we thus obtain 400 unknown predicates and
for SALSA 98 unknown predicates. While this form of sampling is quasi-
random, our procedure additionally ensures that the sets of unknown pred-
icates show a balanced distribution over annotation frequencies.

The major challenge in labeling instances of unknown predicates is the
identification of correct frames for them. We will therefore focus on the
evaluation measure of frame labeling accuracy. Nonetheless, we have to
assess whether the SRL system is also able to accurately identify the roles of
correctly predicted frames. As discussed in Section 6.4, the most appropriate

119



CHAPTER 8. UNKNOWN PREDICATES

33

34

35

36

37

38

39

0 1 2 3 4 5 6

Accuracy/%

k

s

s s
s s s s

Figure 8.2: Frame labeling accuracy resulting from different values for the
parameter k, which determines the expansion size

evaluation measures for this task are labeled precision, labeled recall, and
labeled F1 score, factoring in both frame and role labeling performance. We
will therefore report role labeling performance in terms of these measures.

8.3 Experiments on English

For our experiments on the English FrameNet data, we split all verbal FEEs
occuring in FrameNet into “known” and “unknown” sets according to the
procedure described in Section 8.2. We exclude all sentences of the devel-
opment corpora used in Sections 7.2 and 7.3. The remaining sentences of
unknown predicates constitute our test set (8,415 sentences), while those of
known predicates make up the seed set (34,051 sentences). As expansion
corpus, we again use the entire BNC, parsed with RASP. In the following,
we separately consider the two frame candidate methods which have been
found to perform well in Section 8.1, one based on a distributional vector
space and one relying on WordNet information.

Vector-based Frame Candidates. We first examine the influence of the
parameter k of the expansion algorithm, which determines the number of
generated training instances per seed sentence. We consider a simple set-
up in which the expansion algorithm is provided with 2 frame candidates
per predicate, derived by the vector-based method. We then vary the pa-

120



8.3. EXPERIMENTS ON ENGLISH

rameter k and add the resulting generated instances to the seed corpus,
producing training sets of different sizes for the SRL system. The resulting
performance of the SRL system on the test set, choosing between the given
2 frame candidates for each predicate, is shown in Figure 8.2. Here, k = 0
indicates the performance when training on the seed corpus alone, while for
k ≥ 1 the performance resulting from the expanded training sets is shown.
We can see that the additional training data leads to substantial improve-
ments in all cases. The following example shows how a seed sentence with
the verb zigzag gives rise to annotations for the verbs snake, scuttle, and
tumble, which are considered unknown in our experiment:

(seed) [Flies]Theme [zigzagged]Motion [across the room]Path, speeding
about their business like bees in a swarm.

(1) [A rubber hose-pipe]Theme [snaked]Motion [across the yard from
the kitchen window]Path, bringing hot water from the tap in the
big sink.

(2) [He]Theme [scuttled]Motion [across the rich thick carpet
like a toddler]Path, making her laugh.

(3) Still locked together [they]Theme [tumbled]Motion

[across the room]Path.

Here, the frame annotation of the first neighbour is incorrect: the correct
frame would have been Path shape. The other two neighbours, however,
provide accurate novel annotation data for the unknown verbs scuttle and
tumble (except for the phrase “like a toddler” which should not be part of
the role Path).

Of course, the neighbours of a seed need not feature different verbs. In
the following example, the three nearest neighbours all exemplify the un-
known verb fall, for which the two frame candidates Change position on
a scale and Motion directional were determined:

(seed) [...] [his glass]Theme [toppled]Motion directional [off the table]Source
and shattered.

(1) But it really made yet more [hair]Theme [fall]Motion directional

[off the top of his bald head]Source.

(2) Not only had £250,000 [worth of equipment]Theme

[fallen]Motion directional [off the back of a submarine]Source, [...]

(3) [...] even if [the VW badge]Theme has [fallen]Motion directional

[off the car]Source [...]

121



CHAPTER 8. UNKNOWN PREDICATES

The seed sentence here gives rise to three correct instances of the frame
Motion directional as training data for the unknown verb fall. The
role annotation only contains minor errors (leaving out “yet more” and
“£250,000”).

While Figure 8.2 shows improvements for all values of k ≥ 1 relative
to the unexpanded training set, the largest gain is obtained for k = 1.
This indicates that the optimal trade-off between quantity and accuracy of
the new instances is slightly shifted compared to the experiment on known
predicates, which showed optimal performance for values of k between 2
and 4 (see Figure 7.6 on page 106). This is not surprising, considering that
now labeled and unlabeled sentences are in general less similar to each other
by virtue of featuring different predicates. A high level of accuracy can then
be restored by resorting only to new instances with high similarity values,
corresponding to high confidence in their annotation.

With the optimal value of k = 1, we now compare the performance of the
unexpanded classifier, i.e., the SRL system trained only on the seed corpus,
and the expanded classifier, i.e., the same system trained on the augmented
training set, for various numbers of frame candidates. In each case, the
expansion algorithm is provided with a number of candidates per predicate,
and the SRL system is then employed to choose between the same frame
candidates. These candidates thus replace the frame lexicon information,
which was available to the SRL system in our earlier experiments on known
predicates.

Figure 8.3(a) shows frame labeling accuracy on the test set for differ-
ent numbers of frame candidates. Performance of the expanded classifier
is compared to that of the unexpanded classifier. In addition, we show a
baseline, which randomly chooses one of the frame candidates for each test
sentence, and the upper bound, which quantifies the proportion of the test
sentences where the correct frame can be found among the frame candidates
at all. We can see that the unexpanded classifiers outperforms the random
baseline by a wide margin. This shows that the SRL system is indeed able to
generalize to unknown predicates, even without specific training data. How-
ever, the expanded classifier in turn performs significantly better than the
unexpanded one for all numbers of frame candidates (p < 0.001)3. The spe-
cial case of 1 candidate shows the performance of type-based frame labeling,
which always assigns the first frame candidate, independent of sentential
context. Of course, both classifiers coincide in this case. However, while the
unexpanded classifier does not improve over this baseline, the expanded one
outperforms it for 2, 3, and 4 candidates. For 2 and 3 candidates the im-
provement is statistically significant (p < 0.001 and p < 0.05, respectively).

3Throughout this chapter, statistical significance of improvements in frame labeling
accuracy is determined by McNemar’s test, while for labeled F1 scores stratified shuffling
(Noreen, 1989) is employed.

122



8.3. EXPERIMENTS ON ENGLISH

(a) Frame labeling accuracy

15

20

25

30

35

40

45

50

55

1 2 3 4 5

Accuracy/%

frame candidates

unexpanded classifier

c c c c c

c
expanded classifier

s s s s s

s random baseline

c
c

c c c
c

upper bound

s
s s s s

s
(b) Role labeling F1 score

11

12

13

14

15

16

17

18

19

1 2 3 4 5

F1/%

frame candidates

unexpanded classifier

c c
c

c
c

c expanded classifier

s
s

s s s

s
Figure 8.3: Results of expanded vs. unexpanded classifiers on FrameNet
data, choosing among different numbers of frame candidates produced by
the vector-based method. For frame labeling, random baseline and upper
bound performance are shown.

123



CHAPTER 8. UNKNOWN PREDICATES

This means that the additional training material enables the classifier to
successfully favour lower scoring candidates over higher scoring ones based
on sentential context.

Figure 8.3(b) shows role labeling performance in terms of labeled F1

scores for the expanded and unexpanded classifiers. (There is no meaningful
random baseline for the task of predicting role spans and labels. Any textual
span could be annotated with any role, so that the probability of a correct
random guess is typically close to 0.) It can be seen that the expanded
classifier again outperforms the unexpanded one. Only in the artificial case
of 1 candidate it produces slightly lower results. Moreover, for 2 candidates
it also significantly outperforms the first-candidate baseline (p < 0.001).
This shows that the expanded classifier is not only able to correctly choose
lower scoring frame candidates for unknown verbs, but also to accurately
label their roles.

The full set of numerical results of this experiment can be found in
the appendix. The overall scale of the labeled F1 scores may seem rather
low. This is due to both the difficulty of the task of predicting fine-grained
sense distinctions for unknown predicates, and the comprehensive evaluation
measure, which takes into account all three stages of the SRL system: frame
labeling, role recognition and role classification.

WordNet-based Frame Candidates. To assess the level of performance
attainable when WordNet information is available, we conducted a similar
set of experiments with frame candidates produced by our WordNet-based
method. The expansion parameter k was left at the value 1 determined pre-
viously. Results in terms of frame labeling accuracy and labeled F1 scores for
the role labeling task are shown in Figure 8.4. They confirm the expectation
that the more accurate frame candidates taking into account WordNet infor-
mation also improve the final frame and role labeling performance. While
substantially higher in absolute terms, the evaluation qualitatively shows
the same picture as in the case of the vector-based method. In terms of
frame labeling accuracy, the unexpanded classifier again outperforms ran-
dom choice of a frame candidate, and is in turn significantly outperformed
by the expanded classifier for all numbers of candidates (p < 0.001), except
in the trivial case of 1 candidate. The type-based first-candidate baseline
is significantly exceeded by the expanded classifier working on 2 frame can-
didates per predicate (p < 0.05). Results in terms of labeled F1 scores
also confirm the earlier results, showing significant improvements of the ex-
panded classifier over both the unexpanded one (p < 0.001 for all numbers
of candidates ≥ 2) and the first-candidate baseline (p < 0.05 for 2 frame
candidates). These results show that, where available, information from a
taxonomy like WordNet can substantially increase labeling performance of
unknown predicates in our semi-supervised approach.

124



8.3. EXPERIMENTS ON ENGLISH

(a) Frame labeling accuracy

15
20
25
30
35
40
45
50
55
60
65
70

1 2 3 4 5

Accuracy/%

frame candidates

unexpanded classifier

c c c c c

c
expanded classifier

s s s s s

s random baseline

c
c c c c

c
upper bound

s
s s s s

s
(b) Role labeling F1 score

13

14

15

16

17

18

19

20

21

22

1 2 3 4 5

F1/%

frame candidates

unexpanded classifier

c
c

c
c c

c expanded classifier

s s s s s

s
Figure 8.4: Results of expanded vs. unexpanded classifiers on FrameNet
data, choosing among different numbers of frame candidates produced by
the WordNet-based method. For frame labeling, random baseline and upper
bound performance are shown.

125



CHAPTER 8. UNKNOWN PREDICATES

8.4 Experiments on German

In this section we conduct a similar suite of experiments on the German
SALSA corpus. Dividing the annotation instances of the SALSA corpus
into known and unknown predicates according to the procedure described
in Section 8.2, we obtain a test set with annotations of unknown predi-
cates (4,532 sentences) and a seed corpus with those of known predicates
(14,962 sentences). As unlabeled expansion corpus we again use the “Süd-
deutsche Zeitung” newspaper corpus.

We first discuss the specific problems of proto-frames and then show re-
sults of expanded and unexpanded classifiers choosing between frame candi-
dates produced by the vector-based method. We also experimented with our
WordNet-based frame candidate method, making use of GermaNet (Hamp
and Feldweg, 1997), which provides a taxonomy like that of WordNet for
German words. However, results did not significantly improve relative to
the vector-based method.

Proto-frames. In contrast to FrameNet, the SALSA project followed a
more data-driven annotation policy and did not choose representative exam-
ple sentences, but rather exhaustively annotated each occurence of a num-
ber of verbs in the TIGER treebank. As a consequence of this decision,
a large number of word senses was encountered that are not yet covered
by the frame lexicon defined by FrameNet. For example, the German verb
kümmern can evoke the FrameNet frame Experiencer obj, which accord-
ing to FrameNet describes a situation in which “some phenomenon (the
Stimulus) provokes a particular emotion in an Experiencer”. This is exem-
plified in:

(8.3) [Die Zweifler]Stimulus [kümmerten]Experiencer obj [uns]Experiencer
nicht mehr.

[The doubters]Stimulus [worried]Experiencer obj [us]Experiencer
no more.

However, the verb kümmern can also have a sense not covered by any existing
FrameNet frame. In the annotation of the SALSA corpus, a proto-frame was
created for this and preliminarily called kuemmern-salsa1. The following
sentence shows an example:

(8.4) [Die Friedensvermittler]Agent müssen sich mehr [um die großen
menschlichen Probleme]Theme [kümmern]kuemmern-salsa1.

[The peace mediators]Agent must more [of the big humanitarian
problems]Theme [take care]kuemmern-salsa1.

126



8.4. EXPERIMENTS ON GERMAN

(a) Frame labeling accuracy

5

10

15

20

25

30

1 2 3 4 5

Accuracy/%

frame candidates

unexpanded classifier

c

c c c c

c
expanded classifier

s s s s s

s random baseline

c
c

c c c

c
upper bound

s s s s s

s
(b) Role labeling F1 score

9

10

11

12

13

14

15

16

1 2 3 4 5

F1/%

frame candidates

unexpanded classifier

c

c
c c c

c expanded classifier

s
s s s

s

s
Figure 8.5: Results of expanded vs. unexpanded classifiers on SALSA data,
choosing among different numbers of frame candidates produced by the
vector-based method. For frame labeling, random baseline and upper bound
performance are shown.

127



CHAPTER 8. UNKNOWN PREDICATES

While representing general concepts, such proto-frames have not yet been
generalized across predicates. In our example this means that kümmern is
the only predicate evoking the kuemmern-salsa1 frame. This shortcoming
of proto-frames, which can be evoked by 237 of the 492 verb types in the
SALSA corpus and make up 38% of the annotated sentences, renders them
inappropriate for the experiments in this chapter. Our method has no chance
of acquiring annotation instances for proto-frames evoked by an unknown
predicate, since these are never exemplified on any other predicate, and in
particular not on any known predicate. In deriving frame candidates, we
therefore do not consider any proto-frames, as they can never lead to correct
annotations in our evaluation.

Results. Figure 8.5 shows results of our approach on the SALSA test
set. We can see that the unexpanded classifier here performs relatively
poorly, not even exceeding the random baseline on 2 candidates. The ex-
panded classifier performs significantly better for all numbers of candidates
(p < 0.001), except for the trivial case of 1 candidate. However, it is not
able to improve over type-based classification, which always assigns the first
frame candidate. As the upper bound shows, considering the first two frame
candidates, instead of only the first one, increases the proportion of test
sentences for which the classifier could possibly find the correct frame by
about 6%. On the FrameNet corpus, the corresponding increase in the up-
per bound was about 12%. For larger numbers of frame candidates, the
upper bound also levels off quickly, showing that further candidates are to
a large extent incorrect.

The difference in the quality of frame candidates can be explained by
the different structure of FrameNet and SALSA. In FrameNet, 2,113 differ-
ent verbs evoke a total of 362 frames, i.e., each frame is associated with an
average of 5.8 verbs. In SALSA, on the other hand, there are only 503 an-
notated verbs, whose senses distribute over 678 frames. This means that
each frame on average is associated with only 0.7 verbs. Even disregarding
the 444 proto-frames, this ratio is still only 2.1 and thus much lower than
for FrameNet. Accordingly, for more than 23% of the frames evoked by un-
known verbs (excluding proto-frames) there is no known verb exemplifying
this frame, compared with only about 8% for FrameNet. On the other hand,
more than 25% of the frames evoked by unknown FrameNet verbs have 10 or
more known verbs exemplifying them, but for SALSA this is only the case
for about 13% of such frames. This shows that due to the different anno-
tation procedure, the potential for generalization to unknown predicates is
much lower in the SALSA corpus than in the FrameNet corpus.

128



8.5. SUMMARY

8.5 Summary

In this chapter, we have applied our semi-supervised SRL approach to the
challenging task of labeling the frames and roles of unknown predicates. We
addressed the problem of predicting frame candidates for unknown predicate
types by adaptation and extension of existing methods from the literature.
A method based on distributional similarity and one based on WordNet-
similarity were chosen for the subsequent experiments. We then applied
the expansion algorithm from Chapter 3 to automatically generate annota-
tion instances for a number of unknown predicates from the FrameNet and
SALSA corpora. Evaluation showed that those instances significantly im-
prove the ability of an SRL system to choose between frame candidates for
predicates which otherwise are not exemplified by any training instances.
Similar improvements were observed in both frame and role labeling per-
formance. In the case of FrameNet, our semi-supervised SRL method also
achieved significant improvements over a type-based approach, which al-
ways chooses the first frame candidate independently of sentential context.
On the SALSA corpus, however, we could not improve upon this dominant
word sense. We analyzed the difference in the experimental outcomes and
concluded that the success of our semi-supervised approach on unknown
predicates depends on the diversity of the predicates in the seed corpus.
This casts doubt on the annotation strategy of exhaustively labeling all in-
stances of a relatively small number of predicates. As we have shown in the
previous chapter, additional instances for known predicates can be success-
fully obtained by semi-supervised learning. Annotation effort is therefore
much better spent on a small number of instances spread over as wide a
range of predicates as possible.

129





Chapter 9

Conclusions

In this final chapter, we summarize the theoretical and practical contribu-
tions of the thesis. We then discuss a few directions for further research,
some of which have already been mentioned in the previous chapters.

9.1 Contributions

In this thesis, we have presented a novel semi-supervised approach to se-
mantic role labeling (SRL). Many state-of-the-art SRL systems, following
the supervised learning paradigm, depend on large corpora with manual
role annotations for good performance. The creation of such corpora re-
quires substantial annotation efforts, which moreover have to be repeated
whenever the system is applied to a new language or domain. Our semi-
supervised approach, on the other hand, improves the performance of su-
pervised SRL systems by automatically inferring additional training data
from an unlabeled corpus. Consequently, it reduces the annotation effort
required to attain satisfactory levels of performance.

We have described an algorithm that annotates selected sentences from
a large unlabeled corpus based on their similarity to sentences from a small
manually labeled seed corpus. Empirical evaluation showed that these novel
annotation instances improve SRL performance on predicates for which only
a few or no manually labeled example sentences are available.

Similarity-based Expansion Algorithm. The expansion algorithm we
presented is based on a similarity measure between predicate-argument struc-
tures, represented by syntactic dependency graphs. We have derived a gen-
eral form for this measure in terms of optimal graph alignments and shown
how to formulate and efficiently solve an integer linear program for the op-
timization problem. Our framework features a lexical similarity measure,
quantifying the similarity of words, and a syntactic similarity measure, tak-
ing into account structural similarity. This formulation easily allows further

131



CHAPTER 9. CONCLUSIONS

research to investigate how the individual similarity measures can be im-
proved. For our experiments, we have shown how to instantiate the frame-
work with measures following common approaches from the literature. We
have also addressed the computational complexity of these similarity mea-
sures. Specifically, we presented efficient algorithms on sparse vector repre-
sentations of distributional and WordNet-based similarity.

Improvements in SRL Performance. We have evaluated our semi-
supervised approach in a number of different experimental settings. For
predicates with a few existing labeled example sentences, we have shown
that additional instances generated by the expansion algorithm significantly
improve labeling performance of an SRL system. Improvements have been
shown to correspond to the effect of 1 or 2 manually labeled instances per
predicate for the relatively large English FrameNet corpus, and up to 10
and more labeled instances per predicate for the smaller German SALSA
corpus. These results highlight that our approach is especially effective on
small resources. We have also addressed the problem of predicates missing
from the annotation corpus, which pose a large problem to supervised SRL
systems. Our semi-supervised method significantly improves labeling perfor-
mance for such predicates over a classifier that has to generalize solely from
instances of other predicates. On the FrameNet corpus, we also observed
significant improvements over a type-based approach, which always labels
predicates with their dominant sense. For SALSA, the potential for general-
ization across predicates was found to be lower, and choosing the dominant
sense could not be improved upon. We concluded that annotation effort is
best spread over a large number of different predicates, each exemplified by
a small number of instances.

9.2 Future Work

Future directions to the research presented in this thesis are many and var-
ied. One straightforward extension would be to replace the measures of lex-
ical and syntactic similarity. However, considering the comparatively poor
performance of the WordNet-based lexical similarity measure discussed in
Section 7.2, it cannot be assumed that measures performing well on other
tasks will automatically be suitable for use in the framework presented here.
We have already mentioned that a more advanced model of selectional pref-
erence might be able to better capture the kind of information required for
measuring lexical similarity in our approach. This raises the research ques-
tion of how selectional preferences can be translated into argument similar-
ity.

Likewise, the syntactic similarity measure offers ample room for future
research. As discussed in Section 4.3, it is unlikely that a syntactic represen-

132



9.2. FUTURE WORK

tation based on a small number of dependency labels will allow the definition
of a measure that is significantly better than our simple binary definition.
However, since the expansion framework is neutral as to the type and num-
ber of edge labels in the dependency graphs, syntactic formalisms with more
fine-grained distinctions, such as head-driven phrase structure grammar or
combinatory categorial grammar, could be employed. It should be interest-
ing to investigate whether such syntactic categories can be leveraged for a
more advanced measure of syntactic similarity.

Another avenue for future research would be the combination of our
approach with methods of cross-lingual annotation projection, which infer
annotations for a target language by projection from semantically anno-
tated corpora of a source language. For languages without any role seman-
tic resource, initial annotations could be created by cross-lingual projection.
As the size of the generated corpus would be limited by the availability of
suitable bi-texts, our semi-supervised method could be applied to infer addi-
tional annotation instances from an unlabeled corpus in the target language,
and thus improve the utility of the resource to an SRL system.

As our method produces novel annotated sentences, it is also suitable for
combination with active learning approaches. In this context, annotation
effort could be reduced by offering automatically pre-annotated sentences
to humans, who then only have to check and possibly correct them. The
selection of sentences to be presented to the annotators could be based on
annotation confidence as quantified by our similarity measure.

The general formulation of our expansion framework allows its applica-
tion to other tasks. Deschacht and Moens (2009) employ a simpler version of
it to augment subsets of the PropBank corpus, observing improvements over
a supervised system for a small seed corpus. They also show that defining
the lexical similarity measure in terms of Jensen-Shannon divergence instead
of cosine similarity can improve performance. Another possibility would be
to employ our framework in paraphrase acquistion, e.g., extending the multi-
ple sequence alignment approach of Barzilay and Lee (2003) with our notion
of graph alignments.

Finally, for the application of our method to resource-poor languages, it
would be interesting to investigate how to reduce the dependence on full syn-
tactic analyses, e.g., by employing shallow parsers or chunkers and defining
an appropriate syntactic similarity measure. Here, the resulting impact on
labeling performance will certainly also depend on the specific language.

133





Appendix: Complete Results

In this appendix, we give complete results for the expansion experiments
of Chapters 7 and 8. Significance tests were performed for frame labeling
accuracy, exact match (both by McNemar’s test), and labeled F1 score (by
stratified shuffling according to Noreen (1989), using the sigf tool (Padó,
2006)). Additionally, we report labeled precision (P) and labeled recall (R).
For simplicity, we only indicate two levels of significance, p < 0.05 with a
single asterisk (*) and p < 0.001 with double asterisks (**).

Known Predicates, FrameNet

This table shows experimental results of adding from 1 to 6 automatically
generated nearest neighbours (NN) to different seed corpora, containing
from 1 to 10 manually labeled sentences per predicate.

Training set Size P/% R/% F1/% Ex. match/%

1 seeds/pred. 2, 092 40.74 23.69 29.96 6.38
+ 1-NN 3, 297 40.52 24.23 30.33 6.81 *
+ 2-NN 4, 481 40.29 24.99 30.85 * 6.97 *
+ 3-NN 5, 649 39.52 25.02 30.64 * 7.35 **
+ 4-NN 6, 803 39.52 25.39 30.92 * 7.30 **
+ 5-NN 7, 947 39.04 25.34 30.73 * 7.12 *
+ 6-NN 9, 076 38.40 25.16 30.40 6.89

2 seeds/pred. 4, 105 45.22 29.81 35.94 9.40
+ 1-NN 6, 500 45.09 30.84 36.63 * 10.19 **
+ 2-NN 8, 850 44.82 31.50 37.00 ** 10.32 **
+ 3-NN 11, 157 44.65 31.85 37.18 ** 10.32 **
+ 4-NN 13, 423 43.99 31.94 37.01 ** 10.15 *
+ 5-NN 15, 652 42.64 31.23 36.05 9.73
+ 6-NN 17, 846 42.57 31.36 36.11 9.63

135



APPENDIX

Known Predicates, FrameNet (continued)

Training set Size P/% R/% F1/% Ex. match/%

3 seeds/pred. 6, 021 45.03 31.29 36.92 9.81
+ 1-NN 9, 492 44.78 32.45 37.63 * 10.35 *
+ 2-NN 12, 874 44.15 32.69 37.57 * 10.37 *
+ 3-NN 16, 179 43.90 33.00 37.68 * 10.68 *
+ 4-NN 19, 424 43.60 33.36 37.80 * 10.35
+ 5-NN 22, 609 43.15 33.26 37.56 * 10.50 *
+ 6-NN 25, 734 42.72 33.17 37.34 10.45 *

4 seeds/pred. 7, 823 44.42 32.21 37.35 9.48
+ 1-NN 12, 321 44.45 33.31 38.09 * 10.20 **
+ 2-NN 16, 688 44.26 34.13 38.54 ** 10.40 **
+ 3-NN 20, 944 43.71 34.20 38.37 ** 10.72 **
+ 4-NN 25, 098 43.37 34.35 38.34 ** 10.57 **
+ 5-NN 29, 166 43.25 34.45 38.35 * 10.67 **
+ 6-NN 33, 142 42.48 34.24 37.92 10.40 *

5 seeds/pred. 9, 515 45.45 33.81 38.78 10.35
+ 1-NN 15, 026 45.47 34.90 39.49 * 10.95 *
+ 2-NN 20, 363 45.03 35.39 39.63 * 11.42 **
+ 3-NN 25, 533 44.56 35.51 39.53 * 11.56 **
+ 4-NN 30, 576 44.44 35.78 39.64 * 11.70 **
+ 5-NN 35, 494 44.22 35.94 39.65 * 11.72 **
+ 6-NN 40, 286 43.74 35.83 39.39 * 11.49 **

6 seeds/pred. 11, 105 46.50 35.44 40.22 10.95
+ 1-NN 17, 553 46.05 36.11 40.48 11.56 *
+ 2-NN 23, 779 45.71 36.67 40.70 12.07 **
+ 3-NN 29, 787 45.16 36.83 40.57 11.92 **
+ 4-NN 35, 623 44.82 36.92 40.49 11.80 *
+ 5-NN 41, 310 44.60 36.91 40.40 12.13 **
+ 6-NN 46, 851 44.07 36.86 40.14 12.02 **

8 seeds/pred. 13, 999 47.60 37.29 41.82 12.25
+ 1-NN 22, 115 47.08 37.71 41.88 12.48
+ 2-NN 29, 907 46.45 38.01 41.81 12.64
+ 3-NN 37, 400 46.01 38.11 41.69 12.69
+ 4-NN 44, 656 45.55 38.12 41.51 12.78
+ 5-NN 51, 705 45.53 38.38 41.65 13.22 *
+ 6-NN 58, 562 45.00 38.24 41.34 13.34 **

10 seeds/pred. 16, 595 48.97 39.02 43.43 13.73
+ 1-NN 26, 180 48.24 39.55 43.47 14.01
+ 2-NN 35, 336 47.11 39.32 42.86 13.80
+ 3-NN 44, 113 46.69 39.45 42.77 13.85
+ 4-NN 52, 602 46.18 39.31 42.47 13.63
+ 5-NN 60, 827 46.22 39.76 42.75 13.68
+ 6-NN 68, 791 45.69 39.58 42.42 13.95

136



APPENDIX

Known Predicates, SALSA

Here, we show experimental results of adding from 1 to 20 automatically gen-
erated nearest neighbours (NN) to different seed corpora, containing from 1
to 20 manually labeled sentences per predicate. Additionally, performance
on the complete SALSA seed corpus is shown (“all seeds”).

Training set Size P/% R/% F1/% Ex. match/%

1 seed/pred. 485 47.30 13.64 21.18 4.93
+ 1-NN 881 52.91 19.34 28.33 ** 7.80 **
+ 2-NN 1,277 55.59 22.58 32.11 ** 10.31 **
+ 3-NN 1,671 55.81 24.53 34.08 ** 12.01 **
+ 4-NN 2,065 56.79 26.09 35.76 ** 13.08 **
+ 5-NN 2,458 55.88 26.80 36.23 ** 13.55 **
+ 6-NN 2,851 56.20 27.77 37.17 ** 13.96 **
+ 7-NN 3,244 57.13 28.08 37.65 ** 14.21 **
+ 8-NN 3,637 56.65 28.50 37.92 ** 14.57 **
+ 9-NN 4,030 56.45 28.67 38.03 ** 14.73 **
+ 10-NN 4,423 55.74 28.76 37.94 ** 14.52 **
+ 11-NN 4,816 55.60 28.56 37.74 ** 14.42 **
+ 12-NN 5,208 55.86 28.93 38.12 ** 14.83 **
+ 13-NN 5,600 55.14 28.76 37.80 ** 14.83 **
+ 14-NN 5,992 55.34 29.10 38.14 ** 15.24 **
+ 15-NN 6,384 55.48 29.55 38.56 ** 15.19 **
+ 16-NN 6,776 55.34 29.55 38.53 ** 15.50 **
+ 17-NN 7,167 55.61 29.67 38.69 ** 15.55 **
+ 18-NN 7,557 55.56 29.92 38.89 ** 15.85 **
+ 19-NN 7,947 55.56 30.03 38.99 ** 15.75 **
+ 20-NN 8,337 55.99 30.09 39.14 ** 15.70 **

5 seeds/pred. 2,008 56.63 32.81 41.55 15.96
+ 1-NN 3,623 59.95 39.14 47.36 ** 20.57 **
+ 2-NN 5,225 59.84 41.32 48.88 ** 21.86 **
+ 3-NN 6,816 59.99 42.82 49.98 ** 23.40 **
+ 4-NN 8,401 60.40 44.38 51.17 ** 24.88 **
+ 5-NN 9,981 60.14 44.75 51.32 ** 25.19 **
+ 6-NN 11,556 60.49 45.55 51.97 ** 25.24 **
+ 7-NN 13,129 60.21 46.00 52.15 ** 25.40 **
+ 8-NN 14,699 60.51 46.77 52.76 ** 25.65 **
+ 9-NN 16,267 60.30 46.65 52.61 ** 25.71 **
+ 10-NN 17,831 60.50 47.08 52.95 ** 26.37 **
+ 11-NN 19,388 60.70 47.45 53.26 ** 26.83 **
+ 12-NN 20,944 60.72 47.79 53.48 ** 26.78 **
+ 13-NN 22,496 60.18 48.01 53.42 ** 26.63 **
+ 14-NN 24,045 60.60 48.07 53.61 ** 26.78 **

137



APPENDIX

Known Predicates, SALSA (continued)

Training set Size P/% R/% F1/% Ex. match/%

5 seeds/pred.
+ 15-NN 25,588 59.87 47.90 53.22 ** 26.73 **
+ 16-NN 27,129 59.74 47.82 53.12 ** 26.42 **
+ 17-NN 28,667 59.55 47.73 52.99 ** 26.58 **
+ 18-NN 30,199 59.58 47.87 53.09 ** 26.42 **
+ 19-NN 31,728 59.87 47.99 53.27 ** 26.73 **
+ 20-NN 33,254 59.83 48.07 53.31 ** 26.89 **

10 seeds/pred. 3,517 58.39 40.87 48.08 21.04
+ 1-NN 6,270 62.19 46.23 53.03 ** 25.60
+ 2-NN 8,993 62.95 49.55 55.45 ** 28.12 **
+ 3-NN 11,688 62.59 50.68 56.01 ** 29.25 **
+ 4-NN 14,358 62.26 51.19 56.19 ** 29.60 **
+ 5-NN 17,011 62.34 51.64 56.49 ** 29.50 **
+ 6-NN 19,651 63.30 52.69 57.51 ** 30.48 **
+ 7-NN 22,282 63.11 52.98 57.60 ** 30.48 **
+ 8-NN 24,900 62.43 52.78 57.20 ** 30.27 **
+ 9-NN 27,510 62.76 53.06 57.51 ** 30.63 **
+ 10-NN 30,109 62.69 53.23 57.58 ** 30.73 **
+ 11-NN 32,696 62.65 53.52 57.72 ** 31.14 **
+ 12-NN 35,276 62.57 53.57 57.72 ** 31.04 **
+ 13-NN 37,849 62.33 53.55 57.60 ** 31.35 **
+ 14-NN 40,413 62.08 53.20 57.30 ** 30.94 **
+ 15-NN 42,968 61.72 53.01 57.03 ** 30.73 **
+ 16-NN 45,514 61.77 52.84 56.96 ** 30.63 **
+ 17-NN 48,053 61.75 52.75 56.90 ** 30.43 **
+ 18-NN 50,582 61.64 52.86 56.92 ** 30.43 **
+ 19-NN 53,103 61.63 52.84 56.89 ** 30.27 **
+ 20-NN 55,612 61.60 52.92 56.93 ** 30.58 **

20 seeds/pred. 6,041 63.14 51.05 56.45 29.60
+ 1-NN 10,648 64.23 54.40 58.91 ** 32.27 **
+ 2-NN 15,156 63.98 56.01 59.73 ** 33.56 **
+ 3-NN 19,599 63.52 56.35 59.72 ** 33.45 **
+ 4-NN 24,002 63.40 56.41 59.70 ** 33.50 **
+ 5-NN 28,367 63.38 56.44 59.71 ** 33.30 **
+ 6-NN 32,699 63.49 56.81 59.96 ** 33.61 **
+ 7-NN 37,005 63.26 56.75 59.83 ** 33.45 **
+ 8-NN 41,278 63.38 56.98 60.01 ** 33.56 **
+ 9-NN 45,517 63.37 57.20 60.13 ** 33.50 **
+ 10-NN 49,729 63.60 57.37 60.33 ** 33.56 **
+ 11-NN 53,908 64.05 57.66 60.69 ** 34.02 **
+ 12-NN 58,060 63.97 57.35 60.48 ** 34.22 **

138



APPENDIX

Known Predicates, SALSA (continued)

Training set Size P/% R/% F1/% Ex. match/%

20 seeds/pred.
+ 13-NN 62,190 63.93 57.66 60.63 ** 33.97 **
+ 14-NN 66,292 63.54 57.49 60.36 ** 33.91 **
+ 15-NN 70,368 63.50 57.37 60.28 ** 33.81 **
+ 16-NN 74,419 63.11 57.26 60.04 ** 33.76 **
+ 17-NN 78,452 63.60 57.29 60.28 ** 34.12 **
+ 18-NN 82,459 63.50 57.43 60.31 ** 34.12 **
+ 19-NN 86,450 63.18 57.18 60.03 ** 34.12 **
+ 20-NN 90,426 62.73 56.89 59.67 ** 33.71 **

all seeds 17,545 65.21 59.90 62.44 35.35
+ 1-NN 29,499 65.79 61.03 63.32 * 36.58 *
+ 2-NN 40,912 65.92 62.05 63.93 * 37.51 **
+ 3-NN 51,995 65.71 61.51 63.54 * 37.51 **
+ 4-NN 62,811 65.52 61.49 63.44 37.40 *
+ 5-NN 73,427 65.94 62.25 64.04 * 38.12 **
+ 6-NN 83,861 65.73 62.34 63.99 * 38.22 **
+ 7-NN 94,130 66.04 62.65 64.30 ** 38.33 **
+ 8-NN 104,253 66.16 62.71 64.39 ** 38.48 **
+ 9-NN 114,247 65.64 62.54 64.05 * 38.17 **
+ 10-NN 124,117 65.90 62.71 64.26 ** 38.33 **
+ 11-NN 133,875 65.53 62.34 63.90 * 38.07 **
+ 12-NN 143,542 65.68 62.37 63.98 * 37.92 **
+ 13-NN 153,128 65.29 62.05 63.63 * 37.71 **
+ 14-NN 162,620 65.74 62.37 64.01 * 37.92 **
+ 15-NN 172,017 65.55 62.28 63.87 * 37.66 *
+ 16-NN 181,339 65.27 62.05 63.62 * 37.56 *
+ 17-NN 190,585 65.43 61.94 63.64 * 37.61 *
+ 18-NN 199,747 65.47 61.94 63.65 * 37.46 *
+ 19-NN 208,830 65.37 61.88 63.58 * 37.66 *
+ 20-NN 217,841 65.56 62.14 63.80 * 37.97 **

139



APPENDIX

Unknown Predicates, FrameNet

Here, we show results of the unexpanded and the expanded classifier choos-
ing between 1 to 5 frame candidates. Results under the vector-based and the
WordNet-based frame candidate method are shown separately. Frame label-
ing accuracy, role labeling performance, and exact match scores are shown,
with significance over the unexpanded classifier choosing between the same
number of candidates indicated by asterisks. For frame labeling accuracy,
we additionally provide the results of the random baseline and the upper
bound.

Vector-based Frame Candidates

Frame labeling accuracy / %
Candidates Random Unexpanded Expanded Upper bound

1 34.22 34.22 34.22 34.22
2 23.16 33.10 38.27 ** 46.31
3 16.54 28.57 35.35 ** 49.63
4 13.33 26.02 35.14 ** 53.31
5 11.37 22.94 33.84 ** 56.83

Role labeling performance / %
Unexpanded Expanded

Candidates P R F1 P R F1

1 21.14 14.37 17.11 19.99 14.01 16.47
2 19.77 14.73 16.88 21.43 16.62 18.72 **
3 16.50 12.67 14.33 19.36 15.35 17.12 **
4 15.00 11.54 13.05 19.30 15.39 17.12 **
5 12.59 9.58 10.88 18.44 14.72 16.37 **

Exact match / %
Candidates Unexpanded Expanded

1 5.09 4.88
2 5.63 6.27 *
3 4.79 5.67 **
4 4.22 5.68 **
5 3.02 5.28 **

For 2 candidates, the expanded classifier also performs significantly better
than the best unexpanded classifier in terms of frame labeling accuracy and
F1 score (p < 0.001), as well as exact match (p < 0.05). For 3 candidates it
performs significantly better in terms of frame labeling accuracy (p < 0.05).

140



APPENDIX

WordNet-based Frame Candidates

Frame labeling accuracy / %
Candidates Random Unexpanded Expanded Upper bound

1 45.50 45.50 45.50 45.50
2 29.61 41.24 46.89 ** 59.23
3 22.20 36.02 44.82 ** 66.60
4 17.31 28.75 44.75 ** 69.23
5 14.45 26.56 43.58 ** 72.25

Role labeling performance / %
Unexpanded Expanded

Candidates P R F1 P R F1

1 24.77 18.94 21.47 23.61 18.72 20.88
2 22.52 17.63 19.78 24.60 20.05 22.09 **
3 19.52 15.20 17.09 24.23 19.79 21.79 **
4 16.18 12.31 13.98 24.59 20.09 22.11 **
5 14.78 11.27 12.78 24.12 19.70 21.69 **

Exact match / %
Candidates Unexpanded Expanded

1 6.54 6.56
2 5.87 7.02 **
3 5.04 7.24 **
4 4.02 7.26 **
5 3.77 7.44 **

For 2 candidates, the expanded classifier also performs significantly better
than the best unexpanded classifier in terms of frame labeling accuracy,
F1 score, and exact match (p < 0.05). In terms of exact match, it also
performs significantly better for 3 candidates (p < 0.05), 4 candidates (p <
0.05), and 5 candidates (p < 0.001).

141



APPENDIX

Unknown Predicates, SALSA

These tables show results of the unexpanded and the expanded classifier
choosing between 1 to 5 frame candidates generated by the vector-based
frame candidate method. Frame labeling accuracy, role labeling perfor-
mance, and exact match scores are shown, with significance over the unex-
panded classifier choosing between the same number of candidates indicated
by asterisks. For frame labeling accuracy, we additionally provide the results
of the random baseline and the upper bound.

Frame labeling accuracy / %
Candidates Random Unexpanded Expanded Upper bound

1 21.50 21.50 21.50 21.50
2 12.51 11.98 20.28 ** 24.82
3 8.58 13.29 19.39 ** 27.52
4 7.02 13.29 19.11 ** 28.55
5 5.91 12.53 17.47 ** 28.64

Role labeling performance / %
Unexpanded Expanded

Candidates P R F1 P R F1

1 19.23 13.84 16.13 17.89 13.37 15.30
2 10.02 8.15 8.99 15.21 12.85 13.93 **
3 11.58 9.56 10.48 14.59 12.65 13.55 **
4 11.49 9.52 10.41 14.36 12.42 13.32 **
5 10.61 8.83 9.64 13.08 11.39 12.17 **

Exact match / %
Candidates Unexpanded Expanded

1 8.44 7.94
2 5.29 7.41 **
3 6.46 7.55 *
4 6.60 7.41 *
5 6.24 6.85

142



Index

1-of-k coding, 84

active learning, 10, 133
alignment domain, 34, 37, 38, 40–44,

46, 47, 59, 72, 76, 79, 97, 99
alignment range, 34, 37, 41–44, 46,

47, 59, 72, 76, 79, 97, 99, 100
antonym, 54
assignment problem, 38, 74

BNC, 6, 8, 64, 94, 120
British National Corpus, see BNC

co-hyponym, 117, 118
co-training, 12
complex path, 38, 39, 41, 42, 70, 97
conjunction, 39, 41, 52
constraint matrix, 74
context window, 50, 51
control, 18, 19, 38
coordination, 18, 38
cross-lingual projection, 12, 133

diathesis alternation, 6, 9, 32
directed acyclic graph, 19, 54
distributional hypothesis, 50

exact match, 27, 86, 88, 91, 135

F1 score, 24, 26, 89–91, 94–96, 101–
103, 105, 106, 108, 110–112,
120, 122, 124, 135, 140, 141

frame candidate, 14, 83, 85, 115–129,
140–142

Frame Semantics, 3, 5, 6, 9, 10, 13,
17, 20–23, 26, 27, 30, 31, 33,
39, 83, 86, 88, 90, 116

FrameNet, 6–9, 13, 18, 20–22, 26, 28,
30, 58, 70, 71, 79, 81, 82,
88, 93–95, 97, 104, 105, 108–
112, 115–120, 123, 125, 126,
128, 129, 132, 135, 136, 140

hypernym, 54–56, 59, 61, 62, 100,
117, 118

hyponym, 55, 56, 61, 100, 117, 118

ILP, 10, 14, 69, 70, 72–76, 78, 80, 131
information content, 55, 56, 59–61,

63–65
information extraction, 3
integer linear program, see ILP

labeling stage, 33, 35–37, 48, 102
Lexical functional grammar, see LFG
lexical unit, 5–9, 21, 83
LFG, 24–26, 30, 94
linear program, see LP
LP, 74

machine translation, 1–3, 38, 50, 70
meronym, 54
mismatch score, 22, 24, 26–28, 104
multiple sequence alignment, 133

NomBank, 9
normalization factor, 46, 66, 99, 100

one-versus-one approach, 85
optimal alignment, 34, 44–48, 73, 77,

97, 102, 131

partial alignment, 76
passive voice, 19

143



INDEX

pipeline architecture, 10, 14, 81, 82,
89

pointwise mutual information, 50, 51
polysemy, 5, 6, 50, 61
precision, 10, 27, 47, 88–91, 94–96,

115, 116, 120
preposition, 1, 2, 6, 23, 24, 39–41, 52
PropBank, 9, 12, 133

question answering, 2, 3

raising, 18, 38
RASP, 18, 19, 24, 26, 28, 30, 40, 63–

66, 94, 120
recall, 27, 47, 88–91, 94–96, 120
recognizing textual entailment, 3

SALSA, 8, 20, 21, 26, 28–30, 88, 93,
94, 104, 108–110, 112, 115,
119, 126–129, 132, 137–139,
142

selection stage, 33, 35–37, 48, 101,
102, 105

self-similarity, 46
self-training, 12, 14, 33, 93, 111
sequence alignment, 38
similarity

bounded Jiang-Conrath, 58, 65,
95

Jiang-Conrath, 54, 56, 57, 60, 62,
64

lexical, 13, 14, 32, 44, 46, 48–52,
54, 63, 66, 67, 72, 93–97, 99,
112, 116, 119, 131–133

Resnik, 55
syntactic, 13, 32, 44, 46, 48, 49,

63, 66, 67, 73, 95, 99, 100,
102, 107, 112, 131–133

Wu-Palmer, 55
Simplex Algorithm, 74
smoothing, 56
Süddeutsche Zeitung, 94, 126
support vector machine, see SVM

transductive, 12
SVM, 10, 12, 85, 86

SVM cost parameter, 85, 86
synonym, 2, 6, 54, 118
synset, 54–56, 58, 59, 61, 63, 64, 100,

117, 118

TiGer Dependency Bank, 26, 28
TIGER treebank, 8, 20, 88, 126
tree kernel, 10, 63

weight parameter, 13, 14, 44, 66, 93,
94, 100, 112, 119

logarithmic, 66, 95, 96, 102
word sense disambiguation, 3, 10, 51,

58, 82
WordNet, 13, 14, 44, 54–61, 82, 95–

97, 99, 100, 112, 116–120, 124–
126, 129, 132, 140, 141

144



Bibliography

Abend, Omri, Roi Reichart, and Ari Rappoport. 2009. Unsupervised
argument identification for semantic role labeling. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language Processing of the
AFNLP, 28–36. Singapore.

Andersen, Øistein E., Julien Nioche, Ted Briscoe, and John Carroll.
2008. The BNC parsed with RASP4UIMA. In Proceedings of the 6th
International Language Resources and Evaluation Conference, 865–869.
Marrakech, Morocco.

Ando, Rie K., and Tong Zhang. 2005. A high-performance semi-supervised
learning method for text chunking. In Proceedings of the 43rd Annual
Meeting of the Association for Computational Linguistics, 1–9. Ann Ar-
bor, MI, USA.

Baker, Collin F., Michael Ellsworth, and Katrin Erk. 2007. SemEval-
2007 Task 19: Frame semantic structure extraction. In Proceedings of the
Fourth International Workshop on Semantic Evaluations, 99–104. Prague,
Czech Republic.

Baker, Collin F., Charles J. Fillmore, and John B. Lowe. 1998. The
Berkeley FrameNet Project. In Proceedings of the 36th Annual Meeting
of the Association for Computational Linguistics and 17th International
Conference on Computational Linguistics, 86–90. Montreal, Canada.

Barzilay, Regina, and Lillian Lee. 2003. Learning to paraphrase: an un-
supervised approach using multiple-sequence alignment. In Proceedings of
the 2003 Human Language Technology Conference of the North American
Chapter of the Association for Computational Linguistics, 16–23. Edmon-
ton, Canada.

Bishop, Christopher M. 2007. Pattern Recognition and Machine Learning.
Berlin: Springer.

Black, E., S. Abney, D. Flickinger, C. Gdaniec, R. Grishman,
P. Harrison, D. Hindle, R. Ingria, F. Jelinek, J. Klavans,

145



BIBLIOGRAPHY

M. Liberman, M. Marcus, S. Roukos, B. Santorini, and T. Strza-
lkowski. 1991. A procedure for quantitatively comparing the syntactic
coverage of English grammars. In Proceedings of the DARPA Speech and
Natural Language Workshop, 306–311. San Mateo, CA, USA: Morgan
Kaufman.

Blei, David M., Andrew Y. Ng, and Michael I. Jordan. 2003. Latent
dirichlet allocation. Journal of Machine Learning Research 3:993–1022.

Blum, Avrim, and Shuchi Chawla. 2001. Learning from labeled and unla-
beled data using graph mincuts. In Proceedings of the 18th International
Conference on Machine Learning, 19–26. Williamstown, MA, USA.

Blum, Avrim, and Tom Mitchell. 1998. Combining labeled and unlabeled
data with co-training. In Proceedings of the Eleventh Annual Conference
on Computational Learning Theory, 92–100. New York, NY, USA.

Borin, Lars, Dana Dannélls, Markus Forsberg, Maria Toporowska
Gronostaj, and Dimitrios Kokkinakis. 2009. Thinking green: To-
ward Swedish FrameNet++. In FrameNet Masterclass and Workshop at
the Eighth International Workshop on Treebanks and Linguistic Theories.
Milan, Italy.

Brants, Sabine, Stefanie Dipper, Silvia Hansen, Wolfgang Lezius, and
George Smith. 2002. The TIGER Treebank. In Proceedings of the First
Workshop on Treebanks and Linguistic Theories, 24–41. Sozopol, Bul-
garia.

Briscoe, Ted, and John Carroll. 2006. Evaluating the accuracy of an un-
lexicalized statistical parser on the PARC DepBank. In Proceedings of the
COLING/ACL 2006 Main Conference Poster Sessions, 41–48. Sydney,
Australia.

Briscoe, Ted, John Carroll, and Rebecca Watson. 2006. The second
release of the RASP system. In Proceedings of the COLING/ACL 2006
Interactive Presentation Sessions, 77–80. Sydney, Australia.

Budanitsky, Alexander, and Graeme Hirst. 2006. Evaluating WordNet-
based measures of semantic distance. Computational Linguistics 32(1):
13–47.

Burchardt, Aljoscha, Katrin Erk, and Anette Frank. 2005. A Word-
Net detour to FrameNet. In Proceedings of the GLDV 2005 Workshop
GermaNet II. Bonn, Germany.

Burchardt, Aljoscha, Katrin Erk, Anette Frank, Andrea Kowalski,
Sebastian Padó, and Manfred Pinkal. 2006. The SALSA Corpus: A

146



BIBLIOGRAPHY

German corpus resource for lexical semantics. In Proceedings of the 5th
International Language Resources and Evaluation Conference, 969–974.
Genoa, Italy.

Burchardt, Aljoscha, Marco Pennacchiotti, Stefan Thater, and Man-
fred Pinkal. 2009. Assessing the impact of frame semantics on textual
entailment. Journal of Natural Language Engineering 15(4):527–550.

Cardona, George. 1976. Panini: A Survey of Research. Mouton.

Carreras, Xavier, and Llúıs Màrquez. 2004. Introduction to the CoNLL-
2004 Shared Task: Semantic role labeling. In Proceedings of the Eighth
Conference on Computational Natural Language Learning, 89–97. Boston,
MA, USA.

———. 2005. Introduction to the CoNLL-2005 Shared Task: Semantic
role labeling. In Proceedings of the Ninth Conference on Computational
Natural Language Learning, 152–164. Ann Arbor, MI, USA.

Carroll, John, Ted Briscoe, and Antonio Sanfilippo. 1998. Parser eval-
uation: A survey and a new proposal. In Proceedings of the 1st Interna-
tional Language Resources and Evaluation Conference, 447–454. Granada,
Spain.

Chan, Yee Seng, and Hwee Tou Ng. 2007. Domain adaptation with active
learning for word sense disambiguation. In Proceedings of the 45th Annual
Meeting of the Association of Computational Linguistics, 49–56. Prague,
Czech Republic.

Chen, Jinying, Andrew Schein, Lyle Ungar, and Martha Palmer. 2006.
An empirical study of the behavior of active learning for word sense dis-
ambiguation. In Proceedings of the 2006 Human Language Technology
Conference of the North American Chapter of the Association for Com-
putational Linguistics, 120–127. New York, NY, USA.

Chomsky, Noam. 1957. Syntactic Structures. Mouton.

Cohn, Trevor, and Philip Blunsom. 2005. Semantic role labelling with
tree conditional random fields. In Proceedings of the Ninth Conference
on Computational Natural Language Learning, 169–172. Ann Arbor, MI,
USA.

Collins, Michael. 2003. Head-driven statistical models for natural language
parsing. Computational Linguistics 29(4):589–637.

Cook, Stephen A. 1971. The complexity of theorem proving procedures. In
Proceedings of the Third Annual ACM Symposium on Theory of Comput-
ing, 151–158. Shaker Heights, OH, USA.

147



BIBLIOGRAPHY

Dantzig, George B. 1963. Linear Programming and Extensions. Princeton
University Press.

Dempster, Arthur P., Nan M. Laird, and Donald B. Rubin. 1977. Max-
imum likelihood from incomplete data via the EM algorithm. Journal of
the Royal Statistical Society. Series B (Methodological) 39(1):1–38.

Deschacht, Koen, and Marie-Francine Moens. 2009. Semi-supervised se-
mantic role labeling using the latent words language model. In Proceedings
of the 2009 Conference on Empirical Methods in Natural Language Pro-
cessing, 21–29. Singapore.

Dipper, Stefanie. 2003. Implementing and Documenting Large-Scale Gram-
mars – German LFG, vol. 9(1) of Arbeitspapiere des Instituts für
Maschinelle Sprachverarbeitung (AIMS). University of Stuttgart, Ger-
many.

Dowty, David. 1991. Thematic proto-roles and argument selection. Lan-
guage 67(3):547–619.

Dridan, Rebecca. 2010. Using Lexical Statistics to Improve HPSG Parsing,
vol. 30 of Saarbrücken Dissertations in Computational Linguistics and
Language Technology. Saarbrücken, Germany: German Research Center
for Artificial Intelligence and Saarland University.

Erk, Katrin, and Sebastian Padó. 2006. Shalmaneser – a toolchain for
shallow semantic parsing. In Proceedings of the 5th International Language
Resources and Evaluation Conference, 527–532. Genoa, Italy.

———. 2008. A structured vector space model for word meaning in context.
In Proceedings of the 2008 Conference on Empirical Methods in Natural
Language Processing. Honolulu, HI, USA.

Fan, Rong-En, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and
Chih-Jen Lin. 2008. LIBLINEAR: A library for large linear classification.
Journal of Machine Learning Research 9:1871–1874.

Fellbaum, Christiane, ed. 1998. WordNet: An Electronic Lexical Database.
MIT Press.

Fillmore, Charles J. 1968. The case for case. In Universals in Linguistic
Theory, ed. Emmon Bach and Robert T. Harms, 1–88. New York, NY,
USA: Holt, Rinehart and Winston.

———. 1976. Frame semantics and the nature of language. Annals of the
New York Academy of Sciences: Conference on the Origin and Develop-
ment of Language and Speech 280:20–32.

148



BIBLIOGRAPHY

Firth, John R. 1957. A synopsis of linguistic theory 1930-1955. In Studies
in Linguistic Analysis, 1–32. Oxford, UK: Philological Society.

Fleischman, Michael, Namhee Kwon, and Eduard Hovy. 2003. Maximum
entropy models for FrameNet classification. In Proceedings of the 2003
Conference on Empirical Methods in Natural Language Processing, 49–
56. Sapporo, Japan.

Forst, Martin. 2007. Filling statistics with linguistics – property design for
the disambiguation of German LFG parses. In Proceedings of the ACL
2007 Workshop on Deep Linguistic Processing. Prague, Czech Republic.

Forst, Martin, Núria Bertomeu, Berthold Crysmann, Frederik Fou-
vry, Silvia Hansen-Schirra, and Valia Kordoni. 2004. Towards a
dependency-based gold standard for German parsers – the TiGer De-
pendency Bank. In Proceedings of the 5th International Workshop on
Linguistically Interpreted Corpora. Geneva, Switzerland.

Friedman, Jerome H. 1996. Another approach to polychotomous classifi-
cation. Department of Statistics, Stanford University.

Fung, Pascale, and Benfeng Chen. 2004. BiFrameNet: Bilingual frame
semantics resource construction by cross-lingual induction. In Proceedings
of the 20th International Conference on Computational Linguistics, 931–
937. Geneva, Switzerland.

Gildea, Daniel, and Daniel Jurafsky. 2002. Automatic labeling of seman-
tic roles. Computational Linguistics 28(3):245–288.

Gordon, Andrew S., and Reid Swanson. 2007. Generalizing semantic role
annotations across syntactically similar verbs. In Proceedings of the 45th
Annual Meeting of the Association of Computational Linguistics, 192–199.
Prague, Czech Republic.

Grenager, Trond, and Christopher D. Manning. 2006. Unsupervised dis-
covery of a statistical verb lexicon. In Proceedings of the 2006 Conference
on Empirical Methods in Natural Language Processing, 1–8. Sydney, Aus-
tralia.

Hamp, Birgit, and Helmut Feldweg. 1997. GermaNet – a lexical-semantic
net for German. In Proceedings of the Workshop on Automatic Infor-
mation Extraction and Building of Lexical Semantic Resources for NLP
Applications, 9–15. Madrid, Spain.

Harris, Zellig S. 1968. Mathematical Structures of Language. New York:
Interscience.

149



BIBLIOGRAPHY

He, Shan, and Daniel Gildea. 2006. Self-training and co-training for se-
mantic role labeling: Primary report. Tech. Rep. 891, Computer Science
Department, University of Rochester.

Jiang, Jay J., and David W. Conrath. 1997. Semantic similarity based
on corpus statistics and lexical taxonomy. In Proceedings of the 10th
Research on Computational Linguistics International Conference, 19–33.
Taipei, Taiwan.

Joachims, Thorsten. 1999. Transductive inference for text classification us-
ing support vector machines. In Proceedings of the Sixteenth International
Conference on Machine Learning, 200–209. Bled, Slovenia.

Johansson, Richard. 2008. Dependency-based Semantic Analysis of
Natural-language Text. Ph.D. thesis, Department of Computer Science,
Lund University.

Johansson, Richard, and Pierre Nugues. 2006. A FrameNet-based se-
mantic role labeler for Swedish. In Proceedings of the COLING/ACL
2006 Main Conference Poster Sessions, 436–443. Sydney, Australia.

———. 2007a. Syntactic representations considered for frame-semantic anal-
ysis. In Proceedings of the Sixth International Workshop on Treebanks and
Linguistic Theories. Bergen, Norway.

———. 2007b. Using WordNet to extend FrameNet coverage. In Proceedings
of the Workshop on Building Frame-semantic Resources for Scandinavian
and Baltic Languages, 27–30. Tartu, Estonia.

Karmarkar, Narendra. 1984. A new polynomial time algorithm for linear
programming. Combinatorica 4(4):373–395.

Khachiyan, Leonid G. 1980. Polynomial algorithms in linear programming.
USSR Computational Mathematics and Mathematical Physics 20(1):53–
72.

King, Tracy H., Richard Crouch, Stefan Riezler, Mary Dalrymple,
and Ronald M. Kaplan. 2003. The PARC 700 dependency bank. In Pro-
ceedings of the 4th International Workshop on Linguistically Interpreted
Corpora at EACL 2003, 1–8. Budapest, Hungary.

Kipper, Karin, Hoa Trang Dang, and Martha Palmer. 2000. Class-based
construction of a verb lexicon. In Proceedings of the Seventeenth National
Conference on Artificial Intelligence and Twelfth Conference on Innova-
tive Applications of Artificial Intelligence, 691–696. Austin, TX, USA.

Klau, Gunnar W. 2009. A new graph-based method for pairwise global
network alignment. BMC Bioinformatics 10(Suppl 1):S59.

150



BIBLIOGRAPHY

Klee, Victor L., and George J. Minty. 1972. How good is the simplex
algorithm? In Inequalities III, ed. Oved Shisha, 159–175. Academic Press.

Kuhn, Harold W. 1955. The hungarian method for the assignment problem.
Naval Research Logistics Quarterly 2(1-2):83–97.

Land, Ailsa H., and Alison G. Doig. 1960. An automatic method for solving
discrete programming problems. Econometrica 28(3):497–520.

Landauer, Thomas K., and Susan T. Dumais. 1997. A solution to Plato’s
problem: The latent semantic analysis theory of acquisition, induction
and representation of knowledge. Psychological Review 104(2):211–240.

Lang, Joel, and Mirella Lapata. 2010. Unsupervised induction of semantic
roles. In Proceedings of Human Language Technologies: The 2010 An-
nual Conference of the North American Chapter of the Association for
Computational Linguistics, 939–947. Los Angeles, CA, USA.

Lee, Lillian. 1999. Measures of distributional similarity. In Proceedings of
the 37th Annual Meeting of the Association for Computational Linguistics,
25–32. College Park, MD, USA.

Levin, Beth. 1993. English Verb Classes and Alternations: A Preliminary
Investigation. University of Chicago Press.

Li, Hang, and Naoki Abe. 1998. Generalizing case frames using a thesaurus
and the MDL principle. Computational Linguistics 24(2):239–248.

Lidstone, George J. 1920. Note on the general case of the Bayes-Laplace
formula for inductive or a posteriori probabilities. Transactions of the
Faculty of Actuaries 8:182–192.

Litkowski, Kenneth C. 2004. SENSEVAL-3 Task: Automatic labeling of
semantic roles. In Proceedings of SENSEVAL-3, the Third International
Workshop on the Evaluation of Systems for the Semantic Analysis of Text,
9–12. Barcelona, Spain.

Litkowski, Kenneth C., and Orin Hargraves. 2005. The preposition
project. In Proceedings of the Second ACL-SIGSEM Workshop on The
Linguistic Dimensions of Prepositions and Their Use in Computational
Linguistic Formalisms and Applications, 171–179. Colchester, UK.

———. 2007. SemEval-2007 Task 06: Word-sense disambiguation of prepo-
sitions. In Proceedings of the Fourth International Workshop on Semantic
Evaluations, 24–29. Prague, Czech Republic.

Lund, Kevin, and Curt Burgess. 1996. Producing high-dimensional seman-
tic spaces from lexical co-occurrence. Behavior Research Methods 28(2):
203–208.

151



BIBLIOGRAPHY

Marcus, Mitchell P., Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated corpus of En-
glish: The Penn Treebank. Computational Linguistics 19(2):313–330.

Màrquez, Llúıs, Xavier Carreras, Kenneth C. Litkowski, and Suzanne
Stevenson. 2008. Semantic role labeling: An introduction to the special
issue. Computational Linguistics 34(2):145–159.

Màrquez, Llúıs, Pere Comas, Jesús Giménez, and Neus Catalià. 2005a.
Semantic role labeling as sequential tagging. In Proceedings of the Ninth
Conference on Computational Natural Language Learning, 193–196. Ann
Arbor, MI, USA.

Màrquez, Llúıs, Mihai Surdeanu, Pere Comas, and Jordi Turmo. 2005b.
A robust combination strategy for semantic role labeling. In Proceedings
of Human Language Technology Conference and Conference on Empirical
Methods in Natural Language Processing, 644–651. Vancouver, Canada.

Màrquez, Llúıs, Luis Villarejo, M. A. Mart́ı, and Mariona Taulé.
2007. SemEval-2007 Task 09: Multilevel semantic annotation of Catalan
and Spanish. In Proceedings of the Fourth International Workshop on
Semantic Evaluations, 42–47. Prague, Czech Republic.

McClosky, David, Eugene Charniak, and Mark Johnson. 2006. Effec-
tive self-training for parsing. In Proceedings of the 2006 Human Language
Technology Conference of the North American Chapter of the Association
for Computational Linguistics, 152–159. New York, NY, USA.

Mehrotra, Sanjay. 1992. On the implementation of a primal-dual interior
point method. SIAM Journal on Optimization 2:575–601.

Mel’čuk, Igor. 2003. Levels of dependency in linguistic description: Con-
cepts and problems. In Dependency and Valency. An International Hand-
book of Contemporary Research, ed. Vilmos Ágel, Ludwig M. Eichinger,
Hans-Werner Eroms, Peter Hellwig, Hand Jürgen Heringer, and Henning
Lobin, 188–229. De Gruyter.

Meyers, Adam, Ruth Reeves, Catherine Macleod, Rachel Szekely,
Veronika Zielinska, Brian Young, and Ralph Grishman. 2004. The
NomBank Project: An interim report. In Proceedings of the Workshop
Frontiers in Corpus Annotation at HLT-NAACL 2004, 24–31. Boston,
MA, USA.

Mihalcea, Rada. 2004. Co-training and self-training for word sense dis-
ambiguation. In Proceedings of the Eighth Conference on Computational
Natural Language Learning, 33–40. Boston, MA, USA.

152



BIBLIOGRAPHY

Mitchell, Jeff, and Mirella Lapata. 2008. Vector-based models of semantic
composition. In Proceedings of the 46th Annual Meeting of the Association
of Computational Linguistics: Human Language Technologies, 236–244.
Columbus, OH, USA.

———. 2011. Composition in distributional models of semantics. Cognitive
Science (to appear).

Montague, Richard. 1973. The proper treatment of quantification in ordi-
nary English. In Approaches to Natural Language, ed. Jaakko Hintikka,
Julius Moravcsik, and Patrick Suppes, 221–242. Dordrecht, Netherlands:
Reidel.

Moschitti, Alessandro, Daniele Pighin, and Roberto Basili. 2008. Tree
kernels for semantic role labeling. Computational Linguistics 34(2):193–
224.

Navigli, Roberto. 2009. Word sense disambiguation: A survey. ACM
Computing Surveys 41(2):1–69.

Nilsson, Jens, Joakim Nivre, and Johan Hall. 2006. Graph transfor-
mations in data-driven dependency parsing. In Proceedings of the 21st
International Conference on Computational Linguistics and 44th Annual
Meeting of the Association for Computational Linguistics, 257–264. Syd-
ney, Australia.

Noreen, Eric W. 1989. Computer-intensive methods for testing hypotheses:
An introduction. Wiley-Interscience.

Ohara, Kyoko Hirose, Seiko Fujii, Toshio Ohori, Ryoko Suzuki, Hiroaki
Saito, and Shun Ishizaki. 2004. The Japanese FrameNet Project: An
introduction. In Proceedings of the LREC Workshop on Building Lexical
Resources from Semantically Annotated Corpora, 9–11. Lisbon, Portugal.

Padó, Sebastian. 2006. User’s guide to sigf: Significance testing by ap-
proximate randomisation.

———. 2007. Cross-Lingual Annotation Projection Models for Role-
Semantic Information, vol. 21 of Saarbrücken Dissertations in Compu-
tational Linguistics and Language Technology. Saarbrücken, Germany:
German Research Center for Artificial Intelligence and Saarland Univer-
sity.

Padó, Sebastian, and Mirella Lapata. 2007. Dependency-based construc-
tion of semantic space models. Computational Linguistics 33(2):161–199.

Padó, Sebastian, Marco Pennacchiotti, and Caroline Sporleder. 2008.
Semantic role assignment for event nominalisations by leveraging verbal

153



BIBLIOGRAPHY

data. In Proceedings of the 22nd International Conference on Computa-
tional Linguistics, 665–672. Manchester, UK.

Palmer, Martha, Daniel Gildea, and Paul Kingsbury. 2005. The Propo-
sition Bank: An annotated corpus of semantic roles. Computational Lin-
guistics 31(1):71–106.

Palmer, Martha, Daniel Gildea, and Nianwen Xue. 2010. Semantic Role
Labeling. Morgan and Claypool.

Pennacchiotti, Marco, Diego De Cao, Roberto Basili, Danilo Croce,
and Michael Roth. 2008. Automatic induction of FrameNet lexical units.
In Proceedings of the 2008 Conference on Empirical Methods in Natural
Language Processing, 457–465. Honolulu, HI, USA.

Pollard, Carl, and Ivan A. Sag. 1994. Head-driven Phrase Structure
Grammar. University of Chicago Press.

Powell, Michael J. D. 1964. An efficient method for finding the minimum of
a function of several variables without calculating derivatives. Computer
Journal 7(2):155–162.

Pradhan, Sameer, Edward Loper, Dmitriy Dligach, and Martha
Palmer. 2007. SemEval-2007 Task-17: English lexical sample, SRL and
all words. In Proceedings of the Fourth International Workshop on Se-
mantic Evaluations, 87–92. Prague, Czech Republic.

Pradhan, Sameer, Wayne Ward, Kadri Hacioglu, James H. Martin,
and Daniel Jurafsky. 2005. Semantic role labeling using different syn-
tactic views. In Proceedings of the 43rd Annual Meeting of the Association
for Computational Linguistics, 581–588. Ann Arbor, MI, USA.

Punyakanok, Vasin, Dan Roth, and Wen tau Yih. 2008. The importance
of syntactic parsing and inference in semantic role labeling. Computational
Linguistics 34(2):257–287.

Resnik, Philip. 1995. Using information content to evaluate semantic simi-
larity in a taxonomy. In Proceedings of the 14th International Joint Con-
ference on Artificial Intelligence, 448–453. Montreal, Canada.

———. 1996. Selectional constraints: An information-theoretic model and
its computational realization. Cognition 61(1-2):127–159.

Riezler, Stefan, Tracy H. King, Richard Crouch, and Annie Zaenen.
2003. Statistical sentence condensation using ambiguity packing and
stochastic disambiguation methods for lexical-functional grammar. In
Proceedings of the 2003 Human Language Technology Conference of the
North American Chapter of the Association for Computational Linguis-
tics, 118–125. Edmonton, Canada.

154



BIBLIOGRAPHY

Rijsbergen, C. J. van. 1979. Information Retrieval. Butterworth-
Heinemann.

Rohrer, Christian, and Martin Forst. 2006. Improving coverage and
parsing quality of a large-scale LFG for German. In Proceedings of the 5th
International Language Resources and Evaluation Conference, 2206–2211.
Genoa, Italy.

Ruppenhofer, Josef, Caroline Sporleder, Roser Morante, Collin F.
Baker, and Martha Palmer. 2010a. SemEval-2010 Task 10: Linking
events and their participants in discourse. In Proceedings of the Fifth In-
ternational Workshop on Semantic Evaluations, 45–50. Uppsala, Sweden.

Ruppenhofer, Josef, Jonas Sunde, and Manfred Pinkal. 2010b. Gener-
ating FrameNets of various granularities: The FrameNet Transformer. In
Proceedings of the 7th International Language Resources andi Evaluation
Conference, 2736–2743. Valletta, Malta.

Saint-Dizier, Patrick. 2006. Syntax and Semantics of Prepositions.
Springer.

Shannon, Claude E. 1948. A mathematical theory of communication. Bell
System Technical Journal 27(3):379–423.

Shen, Dan, and Mirella Lapata. 2007. Using semantic roles to improve
question answering. In Proceedings of the 2007 Joint Conference on Em-
pirical Methods in Natural Language Processing and Computational Nat-
ural Language Learning, 12–21. Prague, Czech Republic.

Sierksma, Gerard. 2001. Linear and Integer Programming: Theory and
Practice. CRC Press.

Steedman, Mark. 1987. Combinatory grammars and parasitic gaps. Natural
Language and Linguistic Theory 5(3):403–439.

Subirats, Carlos, and Miriam Petruck. 2003. Surprise: Spanish
FrameNet. In Proceedings of the Workshop on Frame Semantics, XVII
International Congress of Linguists. Prague, Czech Republic.

Surdeanu, Mihai, Sanda Harabagiu, John Williams, and Paul
Aarseth. 2003. Using predicate-argument structures for information ex-
traction. In Proceedings of the 41st Annual Meeting of the Association for
Computational Linguistics, 8–15. Sapporo, Japan.

Surdeanu, Mihai, Richard Johansson, Adam Meyers, Llúıs Màrquez,
and Joakim Nivre. 2008. The CoNLL-2008 Shared Task on joint
parsing of syntactic and semantic dependencies. In Proceedings of the
Twelfth Conference on Computational Natural Language Learning, 159–
177. Manchester, UK.

155



BIBLIOGRAPHY

Swier, Robert S., and Suzanne Stevenson. 2004. Unsupervised semantic
role labelling. In Proceedings of the 2004 Conference on Empirical Methods
in Natural Language Processing, 95–102. Barcelona, Spain.

———. 2005. Exploiting a verb lexicon in automatic semantic role labelling.
In Proceedings of Human Language Technology Conference and Confer-
ence on Empirical Methods in Natural Language Processing, 883–890. Van-
couver, Canada.

Tesnière, Lucien. 1959. Éléments de Syntaxe Structurale. Klincksieck.
(German translation: Engel, Ulrich. 1999. Grundzüge der Strukturalen
Syntax. Klett-Cotta).

Thater, Stefan, Hagen Fürstenau, and Manfred Pinkal. 2010. Con-
textualizing semantic representations using syntactically enriched vector
models. In Proceedings of the 48th Annual Meeting of the Association for
Computational Linguistics, 948–957. Uppsala, Sweden.

Thompson, Cynthia A. 2004. Semi-supervised semantic role labeling. AAAI
Spring Symposium.

Thompson, Cynthia A., Roger Levy, and Christopher D. Manning. 2003.
A generative model for semantic role labeling. In Proceedings of the 14th
European Conference on Machine Learning, 397–408. Cavtat, Croatia.

Toutanova, Kristina, Aria Haghighi, and Christopher D. Manning.
2008. A global joint model for semantic role labeling. Computational
Linguistics 34(2):161–191.

Weaver, Warren. 1955. Translation. In Machine Translation of Languages,
ed. William N. Locke and A. Donald Booth, 15–23. MIT Press.

Weeds, Julie, David Weir, and Diana McCarthy. 2004. Characterising
measures of lexical distributional similarity. In Proceedings of the 20th In-
ternational Conference on Computational Linguistics, 1015–1021. Geneva,
Switzerland.

Wu, Dekai, and Pascale Fung. 2009. Semantic roles for SMT: A hybrid two-
pass model. In Proceedings of Human Language Technologies: The 2009
Annual Conference of the North American Chapter of the Association
for Computational Linguistics, Companion Volume: Short Papers, 13–16.
Boulder, CO, USA.

Wu, Zhibiao, and Martha Palmer. 1994. Verb semantics and lexical selec-
tion. In Proceedings of the 32nd Annual Meeting of the Association for
Computational Linguistics, 133–138. Las Cruces, NM, USA.

156



BIBLIOGRAPHY

Xue, Nianwen, and Martha Palmer. 2004. Calibrating features for semantic
role labeling. In Proceedings of the 2004 Conference on Empirical Methods
in Natural Language Processing, 88–94. Barcelona, Spain.

Zhu, Jingbo, and Eduard Hovy. 2007. Active learning for word sense dis-
ambiguation with methods for addressing the class imbalance problem. In
Proceedings of the 2007 Joint Conference on Empirical Methods in Natu-
ral Language Processing and Computational Natural Language Learning,
783–790. Prague, Czech Republic.

Zhu, Jingbo, Huizhen Wang, Tianshun Yao, and Benjamin K. Tsou. 2008.
Active learning with sampling by uncertainty and density for word sense
disambiguation and text classification. In Proceedings of the 22nd Interna-
tional Conference on Computational Linguistics, 1137–1144. Manchester,
UK.

157


	1 Introduction
	1.1 Semantic Roles
	1.2 Resources
	1.3 Semantic Role Labeling
	1.4 Semi-supervised Learning
	1.5 Thesis Overview

	2 Preprocessing
	2.1 Dependency Syntax
	2.2 Semantically Labeled Dependency Graphs
	2.3 Parse Selection
	2.4 Evaluation with Different Parsers
	2.5 Syntactic Information in the SALSA Corpus
	2.6 Summary

	3 General Expansion Framework
	3.1 Motivation
	3.2 Structure of the Algorithm
	3.3 Graph Alignments
	3.4 Similarity Scores
	3.5 Annotation Projection
	3.6 Summary

	4 Lexical and Syntactic Similarity
	4.1 Vector Space Model of Lexical Similarity
	4.2 WordNet-based Model of Lexical Similarity
	4.3 Syntactic Similarity
	4.4 The Weight Parameter
	4.5 Summary

	5 Solving the Optimization
	5.1 Scope of the Problem
	5.2 Formulation as Integer Linear Program
	5.3 Complexity of the Integer Linear Program
	5.4 Solution of the Integer Linear Program
	5.5 Average Time Complexity
	5.6 Summary

	6 Supervised Semantic Role Labeler
	6.1 Architecture
	6.2 Frame Labeling
	6.3 Role Recognition and Classification
	6.4 Evaluation Measures
	6.5 Summary

	7 Semi-supervised Learning for Known Predicates
	7.1 Evaluation Procedure
	7.2 Choice of Lexical Similarity Measure
	7.3 Tuning the Weight Parameter
	7.4 Experiments on Corpora of Different Sizes
	7.5 Comparison with Self-training
	7.6 Summary

	8 Semi-supervised Learning for Unknown Predicates
	8.1 Frame Candidates
	8.2 Evaluation Procedure
	8.3 Experiments on English
	8.4 Experiments on German
	8.5 Summary

	9 Conclusions
	9.1 Contributions
	9.2 Future Work

	Appendix
	Index
	Bibliography

