
Improving the feasibility of precision-oriented HPSG parsing

Dissertation
zur Erlangung des akademischen Grades eines

Doktors der Philosophie
der Philosophischen Fakultäten
der Universität des Saarlandes

vorgelegt von

Bart Cramer

aus Stadskanaal, den Niederlanden

Saarbrücken, 2011

2

i

Abstract
This thesis will focus on the feasibility of precision-oriented parsing in the
framework of Head-driven Phrase Structure Grammar (Pollard and Sag 1994).
Such parsers, traditionally based on hand-written grammars, offer detailed se-
mantic analyses of the language. However, there are a number of barriers that
need to be overcome before such a parser can be successfully deployed, most
notably the grammar’s long development time. Statistical parsers are less prone
to this issue, but do not offer the same depth of analysis that hand-written deep
grammars can. A number of approaches (in different linguistic formalisms, of-
ten highly lexicalised) have been proposed that aim to combine the advantages
of both types of parsers, usually by converting/enriching an existing treebank to
a deeper linguistic formalism, after which a deep grammar can be learnt from
the richer resource of annotated data. This thesis has a comparable aim, but
approaches the problem from the perspective of precision-oriented parsing, au-
tomating as much as possible, and crafting by hand what is necessary, for in-
stance because it is not learnable from the available resources. The German
language is taken as object of study.

A full-fledged deep grammar (in the DELPH-IN toolchain, in which the re-
search is embedded) minimally consists of the following components: a set of
constructions, a lexicon, a morphological analyser, a treebank and a disambigua-
tion model based on that treebank. All these components will be created in the
first half of the thesis, trying to minimise the effort that is needed for the creation
of each component. It is argued that HPSG constructions are too complicated to
learn, and are therefore hand-written. Augmented with a small lexicon of syn-
tactically or semantically idiosyncratic lexemes, this forms the core grammar.
Naturally, the core grammar is based on available HPSG analyses of German
(and Dutch) in the literature, of which an overview will be given. One of the
contributions of the specific core grammar in this thesis is the novel treatment of
word order and topological fields, based on an implementation of FSAs in the
typed feature structure formalism that is used in the DELPH-IN framework.

Consequently, the lexicon is constructed automatically from a detailed de-
pendency treebank (the Tiger treebank: Brants et al. 2002), in a deep lexical
acquisition step. The syntactic properties of the lexical entries, such as sub-
categorisation frames and modification constraints, are recognised on the basis
of the dependency labels that define the relation between constituents. Addi-
tionally, a partial mapping between word forms and lexemes is learnt, which
functions as the grammar’s morphological analyser.

A link is made between the output of the grammar and the dependencies that
can be derived from the Tiger treebank. This entails that the normal output of

ii

a DELPH-IN grammar (Minimal Recursion Semantics: Copestake et al. 2005)
will not be used. Instead, the grammar and Tiger treebank are interfaced by
syntactic dependencies. A novel way to test the chain of core grammar, deep
lexical acquisition and MRS conversion is introduced (unit testing), allowing
the grammar writer to track the influence of a change in any of the components
has on the correctness of the grammar. Furthermore, the link between the output
of the grammar and the Tiger treebank makes an automatic disambiguation be-
tween licensed readings possible, allowing the automatic creation of an HPSG
treebank.

A held-out part of the gold standard is used as an evaluation set, showing
the performance of the parser (the combination of a parsing algorithm and the
grammar) on unseen text. The performance is measured across multiple dimen-
sions, such as development time, linguistic relevance and coverage, and is the
background to a larger discussion, in which the grammar is situated in and com-
pared to an array of hand-written and learnt parsers. A number of areas for
improvement were found, and two of them were addressed afterwards: (lack of)
efficiency and robustness. In these experiments, the grammar was left mostly
unchanged, and the PET parser, that takes the grammar as input, was altered.

In its standard setting, the PET parser executes all parser tasks (unifications).
The agenda of parser tasks was changed in such a way that more promising
tasks are carried out first. Less promising tasks are deferred or even discarded.
A generative model of HPSG rule applications is at the basis of determining the
relative order of the tasks’ priorities. A number of strategies were introduced
to decide which tasks are pruned from the agenda. Good results were achieved
using this technology, showing both an increase of accuracy and a manifold
speed-up.

The relative fragility of precision-oriented parsers is the second aspect of the
parser that was improved. A common approach to find an analysis for an unli-
censed sentence is to return a set of recognised fragments. In our experiments,
a variant of this fragment parsing strategy functioned as the baseline. A new
method was introduced, in which highly over-generating robustness rules were
created by the grammar writer. The added rules are meant to take up unrecog-
nised objects, minimising the damage they cause, and are part of the normal
parsing process, although highly dispreferred by the statistical models. The use
of robustness rules yields better solutions than the fragment parsing approach,
but does not cover the entire test set. A combination of both strategies, therefore,
resulted in higher f-scores than fragment parsing, retaining full coverage.

iii

Deutsche Zusammenfassung
Das Thema dieser Arbeit ist die Umsetzbarkeit von Präzisions-Orientiertem
Parsing im Formalismus der Kopf-Gesteuerten Phrasenstrukturgrammatik (Head-
driven Phrase Structure Grammar, HPSG) (Pollard and Sag 1994). Diese Pars-
er, die traditionell auf handgeschriebenen Grammatiken basieren, ermöglichen
detaillierte semantische Analysen einer Sprache. Es gibt jedoch eine Reihe von
Schwierigkeiten, die überwunden werden müssen, bevor ein solcher Parser er-
folgreich angewendet werden kann, insbesondere die langen Entwicklungszeit-
en der Grammatik. Statistische Parser sind weniger anfällig für dieses Prob-
lem, jedoch bieten sie nicht dieselbe Analysetiefe wie handgeschriebene Gram-
matiken. Es wurde bislang eine Reihe von Ansätzen (in verschiedenen, oft hoch
lexikalisierten, linguistischen Formalismen) vorgeschlagen, welche darauf abzie-
len, die Vorteile beider Parsertypen zu kombinieren. Diese Kombination ge-
schieht meist durch das Konvertieren von Baumbänken zu einer tieferen lin-
guistischen Ebene, die es ermöglicht, dass auf Grundlage der reichen Ressource
an annotierten Daten eine Tiefengrammatik gelernt werden kann. Diese Arbeit
verfolgt eine vergleichbare Intention, nähert sich dem Problem aber von der
Seite des Präzisions-Orientiertem Parsings. Hierbei wird so viel wie möglich
automatisiert, wenn nötig, wird jedoch von Hand erstellt, beispielsweise etwas,
was nicht von verfügbaren Ressourcen gelernt werden kann. Das Deutsche wird
hierbei als Test-Sprache verwendet.

Eine vollständige Tiefengrammatik (in der DELPH-IN Toolchain, in welche
diese Forschung eingebettet ist) besteht mindestens aus den folgenden Kom-
ponenten: eine Menge von Konstruktionen, ein Lexikon, ein morphologisch-
er Analysierer, eine Baumbank und ein Disambiguierungs-Modell, das auf der
Baumbank basiert. Diese Komponenten werden in der ersten Hälfte dieser Ar-
beit erzeugt, mit dem Ziel, den Aufwand für die Erstellung jeder einzelnen
Komponente zu minimieren. Es wird argumentiert, dass HPSG-Konstruktionen
zu kompliziert sind um gelernt zu werden und daher handgeschrieben werden
müssen. Dies bildet unter Zufügung eines kleines Lexikons von syntaktisch- und
semantisch-idiosynkratischen Lexemen den Kern der Grammatik. Die Kern-
Grammatik basiert auf HPSG-Analysen des Deutschen (und Niederländischen),
die in der Literatur verfügbar sind. Ein überblick dieser Analysen wird erfolgen.
Einer der Beiträge, den die Kern-Grammatik, die spezifisch in dieser Arbeit en-
twickelt wird, leistet, ist die neuartige Behandlung von Wortreihenfolge und
topologischen Feldern. Diese Behandlung basiert auf der Implementierung von
FSAs in der TDL-Syntax, die im DELPH-IN-Formalismus verwendet wird.

Konsequenterweise wird das Lexikon automatisch von einer detaillierten De-
pendenz-Baumbank (der Tiger-Baumbank) durch die Methode des tiefen le-

iv

xikalischen Erwerbs konstruiert. Die Erkennung syntaktischer Eigenschaften
der lexikalischen Einträge, wie zum Beispiel Subkategorisierungsrahmen und
Modifikations-Constraints, geschieht basierend auf Dependenz-Bezeichnungen,
die das Verhältnis zwischen Konstituenten definieren. Zusätzlich wird ein par-
tielles Mapping zwischen Wortformen und Lexemen gelernt, die als der mor-
phologische Analysierer der Grammatik fungieren.

Es wird überdies eine Verbindung hergestellt zwischen dem Output der Gram-
matik einerseits und den Dependenzen, die aus der Tiger-Baumbank abgeleit-
et werden können, andererseits. Dies bedingt, dass der normale Output ein-
er DELPH-IN-Grammatik (Minimale Rekursions-Semantik: Copestake et al.
2005) nicht benutzt wird. Stattdessen werden die Grammatik und die Tiger-
Baumbank mit syntaktischen Dependenzen verbunden. Eine neuartiger Weise,
die Kette der Kern-Grammatik zu testen, basierend auf tiefem lexikalischem Er-
werb und MRS-Konversion, wird eingeführt werden (Unit Testing). Diese Art
des Testens erlaubt es dem Grammatik-Schreiber, zu verfolgen, welchen Ein-
fluss Veränderungen aller einzelnen Komponente auf die Korrektheit der Gram-
matik haben. Überdies macht eine Verbindung zwischen dem Output der Gram-
matik und der Tiger Baumbank eine automatische Disambiguierung zwischen
lizensierten Lesarten/Interpretationen möglich, was die automatische Erstellung
einer HPSG-Baumbank erlaubt.

Ein zurückgehaltener Teil des Gold-Standards wird als Evaluations-Menge
genutzt um die Performanz des Parsers (die Kombination eines Parsing-Algo-
rithmus und der Grammatik) für unbekannten Text zu prüfen. Die Leistung wird
an Hand multipler Dimensionen, so wie der Entwicklungszeit, der linguistis-
chen Relevanz und der Abdeckung, gemessen. Diese Leistung ist Grundlage für
eine weitere Diskussion, in welchem Rahmen die Grammatik betrachtet und mit
einem Array handgeschriebener und gelernter Parser verglichen wird. Eine Rei-
he von Bereichen, die verbessert werden können, sind gefunden worden, von
denen zwei nachträglich behandelt wurden: (Fehlen von) Effizienz und Robus-
theit. In diesen letzteren Experimenten blieb die Grammatik unverändert und
der PET-Parser, der dir Grammatik als Input nimmt, wurde abgewandelt.

In seinem Standard-Setting führt der PET-Parser alle Parser-Aufgaben (Uni-
fikationen) aus. Die Agenda der Parser-Aufgaben wurde in dieser Arbeit nun
verändert, indem stärker vielversprechende Aufgaben zuerst ausgeführt wurden.
Weniger vielversprechende Aufgaben wurden aufgeschoben oder sogar verwor-
fen. Ein generatives Modell von HPSG-Regel-Applikationen bestimmte die rel-
ative Reihenfolge der Aufgaben-Prioritäten. Eine Reihe von Strategien wur-
den eingeführt, um zu entscheiden, welche Aufgaben von der Agenda gekürzt
werden. Gute Ergebnisse wurden durch diese Technologie erreicht: sowohl ein
Anstieg an Genauigkeit, als auch eine facettenreiche Beschleunigung.

Die relative Fragilität Präzisions-Orientierter Parser ist der zweite Aspekt

v

des verbesserten Parsers. Eine übliche Herangehensweise, um eine Analyse für
einen nicht lizensierten Satz zu finden, ist es, eine Menge nicht erkannter Frag-
mente zurück zu geben. In den Experimenten fungiert eine Variante dieser Frag-
ment-Parsing-Strategie als Baseline. Eine neue Methode wurde eingeführt, im
Rahmen derer stark übergenerierende Robustheits-Regeln vom Grammatik-
Schreiber erstellt werden. Die hinzugefügten Regeln verfolgen den Sinn, nicht
erkannte Objekte aufzunehmen, wodurch der Schaden, den sie anrichten, min-
imiert wird. Diese Regeln sind Teil des normalen Parsing-Prozesses, obwohl
sie von dem statistischem Modell stark dispräferiert werden. Der Gebrauch der
Robustheits-Regeln bringt bessere Lösungen als der Fragment-Parsing-Ansatz,
aber er deckt nicht das vollständige Test-Set ab. Eine Kombination beider Strate-
gien resultierte daher in höheren F-Scores als Fragment-Parsing, unter Bewahr-
ung vollständiger Abdeckung.

Acknowledgements
By definition, the acknowledgements section in a thesis is incomplete. Not
only is the list of people that I would like to thank not exhaustive, I do not do
enough justice to the persons who have contributed to the work described in this
booklet, just by putting a sequence of characters here. I hope I have expressed
my gratitude for your valuable input often and strongly enough, rendering this
piece of text a formality.

I would like to thank Hans, for his courage to take me on as his student, and
for the meaningful meetings we had together. I am also grateful to Stephan,
who has been inspiring and supportive when we discussed experiments, and
conscientious (and strict, when it was necessary!) while I was writing. Yi has
been a great mentor (may I say: pseudo-supervisor?) from the beginning, giving
me a hand when technical problems arose, and helping me shape my research.

The DELPH-IN community has been a great forum, where I have been able
to develop my skills, thanks to the discussions we had, and the constructive
feedback you offered, for which I am very grateful.

I am also greatly indebted to Antske, Micha, Rebecca, Rui, Tania and Valia,
with whom I had nice and vivid discussions during our group meetings.

The financial means to complete my PhD was provided by the DFG (Deutsche
Forschungsgemeinschaft) in the form of a PIRE scholarship, which allowed me
to do research, write a thesis and travel to conferences and research meetings. I
would like to thank Mark and Eugene for being my sponsors during my stay at
Brown University and all people who have made my stay in Providence such a
wonderful experience.

The thesis also marks the end of my time in Saarbrücken. It has been a

vi

great time, during which I have met many fun and interesting people. I will not
name any of them, as any mention would bring up question marks, but saying
y’all have been a great support for me is the least I can do. My gratitude also
goes to the staff in cafés (Ubu Roi, Ausländercafé, White Electric, Crunch Café
and Coffee Company), who have been serving coffee with a smile while I was
working in front of my laptop.

Last but absolutely not least, I would like to thank my parents and Anneke,
who have been listening to my complaints during these years, and who have
provided me the love and support that any human being needs.

CONTENTS vii

Contents

1 Introduction 1
1.1 Thesis outline . 2

2 Background 5
2.1 Parsing and grammars . 5

2.1.1 Deeper analysis of language 7
2.1.2 Head-driven Phrase Structure Grammar 8
2.1.3 A basic parsing algorithm 13
2.1.4 A taxonomy of parsing research 14
2.1.5 Evaluation metrics 17

2.2 Hand-crafted deep grammars 18
2.2.1 The English Resource Grammar 19
2.2.2 The ParGram parser for English 21
2.2.3 The RASP parser . 22
2.2.4 The Alpino parser . 22
2.2.5 Other hand-written grammars 23

2.3 Treebanks . 24
2.3.1 Strategies for efficient annotation 25

2.4 Using treebanks to create grammars 27
2.4.1 Deep grammar extraction for English 28
2.4.2 Deep grammar extraction for German 32
2.4.3 Evaluation issues . 33

2.5 The interplay between grammar and parser 34
2.5.1 Robustness methods 34
2.5.2 Search space restriction 37

2.6 Anatomy of a DELPH-IN parser 39
2.6.1 The grammar . 39
2.6.2 The PET parser . 41

2.7 Motivation . 45

3 Core grammar construction 49
3.1 The German language . 49
3.2 HPSG analyses of German 54

3.2.1 The HEAD-CLUSTER schema and argument attraction . 54
3.2.2 A fronting analysis 55
3.2.3 Complement extraposition 57
3.2.4 Adjunct extraposition 58

3.3 Implementing a core grammar for German 60

viii CONTENTS

3.3.1 Basic building blocks 60
3.3.2 Lexical types . 63
3.3.3 The core lexicon . 64
3.3.4 Semantics vs syntactic dependencies 65
3.3.5 Morphology . 67
3.3.6 HPSG schemata and topological fields 67
3.3.7 Coordinations . 72

3.4 Summary . 73

4 Creation of a deep lexicon 75
4.1 Introduction . 75
4.2 The Tiger treebank . 78

4.2.1 Preprocessing the treebank 79
4.3 Acquisition of the lexicon . 80

4.3.1 Syntactic properties 80
4.3.2 Morphology . 82

4.4 The resulting lexicon . 83
4.5 Summary . 89

5 Leverage of the gold standard 90
5.1 Comparing parsing output with the gold standard 90

5.1.1 Extracting the dependencies from the treebank 90
5.1.2 Role identification in the predicate 93

5.2 Unit testing . 94
5.3 Automatic creation of a dynamic treebank 96

5.3.1 Methodology . 96
5.3.2 Results . 98

5.4 Parsing unseen text . 101
5.4.1 Optimising the disambiguation model 102
5.4.2 Evaluation on the test set 104

5.5 Summary . 107

Interlude 109

6 Agenda-based task pruning 118
6.1 Introduction . 118
6.2 Task-based search space restriction 121

6.2.1 Prioritising parser tasks 121
6.2.2 Task pruning strategies 124

6.3 Experiments . 126
6.3.1 Find the same solution faster 126

CONTENTS ix

6.3.2 Scope of pruning and counting strategies 127
6.3.3 Adjusting global priorities for span length 128
6.3.4 Conditioning on tree leaves 133

6.4 Evaluation . 136
6.4.1 What is pruned? . 136

6.5 Directions for future research 137
6.6 Summary . 138

7 Improving parser robustness 140
7.1 Fragment parsing . 140
7.2 Robustness rules . 142

7.2.1 Motivation . 143
7.2.2 Restricting and dispreferring robustness rules 144
7.2.3 Defining robustness rules 145
7.2.4 Experiments . 146
7.2.5 What the model predicts 150

7.3 Summary . 151
7.3.1 Future work . 151

8 Conclusion 153
8.1 Directions for future work . 155

A Test suite 156

x CONTENTS

1

1 Introduction
Parsing using hand-written, deep computational grammars is sometimes con-
ceived as labour-intensive, inflexible, slow, fragile and hard to evaluate. These
parsers are then contrasted with parsers that are learnt from annotated resources,
such as treebanks. Learnt parsers are deeply rooted in a belief in statistics as the
ordering principle of parsers, and are said to be easy to create, flexible, fast,
robust and easy to evaluate. However, hand-written grammars have their merits,
too. Explicit coding (and testing) of linguistic hypotheses can offer insights into
the language at hand. Moreover, the output that these parsers provide can be
more informative or offer a larger degree of abstraction.

It is the tension between the attitudes of these two schools in current pars-
ing research that is at the heart of this thesis. All experiments are nested in the
framework of the DELPH-IN collaboration effort1, which has been particularly
focused at exploiting the advantages of hand-written grammars, but which also
has been subjected to the allegations listed above. After scrutinising these alle-
gations, the experiments that are presented in the subsequent chapters are meant
to address and potentially overcome them.

From a technical perspective, the DELPH-IN framework is a collection of
linguistic resources (grammars, treebanks) and tools to make best use of these
resources, embedded in Head-driven Phrase Structure Grammar (Pollard and
Sag 1994), a heavily lexicalised, non-derivational linguistic theory. A wide ar-
ray of mature and less mature grammars reside in this framework, mostly hand-
written. Two analysis tools are used. First, the Linguistic Knowledge Base
(Copestake 2002), a parser/generator written in the Lisp language, is used for
development of the grammar, offering a number of visualisation possibilities.
The PET parser (Callmeier 2000) (written in C/C++), with a stronger focus on
efficiency, is used for large-scale parsing experiments. Both systems accept the
same kind of grammars as input (grammars written in a subset of the T DL
framework). Among other possibilities, the [incr tsdb()] system (Oepen
and Carroll 2000b) is used for treebanking purposes, making optimal use of
discriminants to speed up the process.

Creating a grammar by hand (after introspection) can be a costly task. As
a rule of thumb, one could say that it takes at least 10 person years to write a
grammar with a satisfactory balance between coverage, precision and efficiency.
But even given the effort that has been put into the grammar, there will still be
linguistic phenomena that are complicated to analyse properly using rule-based
methods only. Sentences displaying an uncovered phenomenon are likely to

1DELPH-IN is an acronym for DEep Linguistic Processing with HPSG. More information can be
found at: http://www.delph-in.net

2 CHAPTER 1. INTRODUCTION

receive no analysis at all, rendering the toolchain fragile when it is applied to
realistic input. Moreover, linguistic descriptions of sentences in the DELPH-
IN framework (typed feature structures) can be large, and thus computationally
expensive, compared to simple category or dependency labels. This entails that
in an equally long time span, fewer chart items can be built in order to find the
preferred analysis.

Shallow, statistical parsers, learnt from treebanks, are easier to create, but do
not provide the fine-grained analyses that parsers based on hand-written gram-
mars can. Several attempts have been made to cross the bridge between shal-
low and deep parsing, combining the virtues of both approaches, by learning
a grammar from a more detailed treebank. Such treebanks were not available
traditionally, and therefore had to be created by enriching existing treebanks us-
ing heuristic methods. Parsers using these methods (for which I coin the term
deep grammar extraction: DGE) have provided competitive results on existing
benchmark tests. However, the extra information that these enriched treebanks
contain is added in a somewhat ad hoc manner, leading to linguistically unattrac-
tive solutions, especially for less configurational languages, such as German.

1.1 Thesis outline

The thesis is divided in two parts. In the first part, a deep grammar of German
will be constructed within the DELPH-IN toolchain, along with a treebank. The
grammar is a combination of a hand-written core grammar (including a small
core lexicon) and a large lexicon that is automatically derived from the Tiger
treebank. In an Interlude, the separation between the two parts of this thesis,
the grammar is positioned in the landscape of available parsers. The second
part of the thesis is concerned with the PET parser, to address two issues that
are often related with hand-written deep parsers: lack of efficiency and lack of
robustness.

Chapter 2: Background The next chapter introduces many of the concepts
that are used in the thesis. After a basic introduction of the process of
parsing in general, a number of state-of-the-art hand-written grammars will
be discussed. Then, an overview of a number of treebanks is given, in-
cluding methods that are meant to speed up the process of treebank cre-
ation, for instance by employing a grammar to generate possible analyses.
Deep grammars based on treebanks are introduced, and the advantages and
disadvantages of DGE grammars and their hand-written counterparts are
weighed. Practically all deep parsers use some computational techniques to
increase the efficiency and robustness of the parser, and a number of them
will be introduced in this chapter. Because all experiments are embedded in

1.1. THESIS OUTLINE 3

the DELPH-IN framework, a technical introduction is given into the format
and functionality of its two main components: the grammar and the PET
parser. The chapter closes with the motivation for the research that will be
presented in the following chapters.

Chapter 3: Core grammar The first component of the grammar that is built
is a hand-written core grammar. The goal of the core grammar, which
includes a small core lexicon with syntactically idiosyncratic lexemes, is
to model those parts of a language that are hard to acquire from a tree-
bank and are largely dependent on the grammar writer’s view on the lan-
guage. The chapter is divided in three parts: analysis, design and imple-
mentation. First, the reader is presented with a number of basic properties
of the German language, such as its (moderately free) word order and the
topological fields. Then, literature regarding the analysis of German within
HPSG is discussed, and a number of analyses for common linguistic phe-
nomena, such as constituent permutation and extraposition, are proposed.
Last, some details of the implementation of the grammar are given, includ-
ing a novel method to model word order constraints and topological fields
in the DELPH-IN formalism.

Chapter 4: Lexical acquisition In this chapter, the core grammar is extended
with a lexicon in a deep lexical acquisition (DLA) step. The chapter com-
mences with an introduction of methods with similar goals in mind. Then,
an overview of the Tiger treebank (Brants et al. 2002), which will be used
as the source for the DLA algorithm, will be given. This is followed by
a description of the algorithm that is used to extract the lexemes from the
treebank. Some descriptive statistics are given in order to be able to gauge
the size of the lexicon and compare it to existing lexical resources.

Chapter 5: Leverage of the gold standard The Tiger treebank is not only used
as a resource from which lexical information can be extracted. The exper-
iments in chapter 5 employ the treebank as a gold standard. First, it is ex-
plained how the output of the grammar that is created in chapters 3 and 4 are
translated into a form that is compatible with the Tiger treebank. This trans-
lation makes a number of additional applications of the gold standard pos-
sible. A new grammar testing technique, unit testing, is introduced, which
offers the grammar writer the possibility to identify where in the chain of
core grammar, deep lexical acquisition and output conversion mistakes and
omissions are located. The second application is the automatic disambigua-
tion of parsed linguistic data, which can be useful to automatically create
an HPSG treebank from the source treebank. Naturally, a held-out set can
be used to test the performance of the parser on unseen data, an experiment
with which the chapter is closed.

4 CHAPTER 1. INTRODUCTION

Interlude The Interlude is an unnumbered chapter, which forms the bridge be-
tween experiments on the grammar and experiments on the parser. The
grammar engineering paradigm of the previous chapters is evaluated as a
whole, and compared to other grammar engineering paradigms. The com-
parison is with respect to a number of dimensions: linguistic relevance,
level of abstraction, ability to generate, efficiency, coverage, development
time and clean evaluation.

Chapter 6: Efficiency In the Interlude, it was concluded that, although sev-
eral useful optimisation techniques have been implemented, the PET parser
was a relatively slow parser, because it wades through the search space
exhaustively, in contrast to most state-of-the-art competitors. The chapter
starts with a discussion of existing techniques, and it is explained why these
methods are not directly applicable to the PET parser. Instead, a new prior-
ity model on parser tasks is defined, which consists of a simple generative
model of HPSG rule applications. Tasks with a lower priority are executed
later, or might even be pruned away entirely. In the experiments, variants
of the priority model and the different pruning strategies are tried, and an
analysis is made of which tasks are actually being pruned. An evaluation
on a test set reveal 10- to 20-fold speedups, without loss of parser accuracy
(measured in dependency f-score).

Chapter 7: Robustness Another conclusion from the Interlude was the rela-
tively high proportion of sentences for which no analysis at all is returned
by the precision-oriented grammar. Two approaches are applied to the PET
parser. The first is a variant of the well-known fragment parsing approach.
The second approach is the definition of robustness rules in the grammar,
which work as ordinary rules, except that they are penalised firmly by both
the disambiguation model and the priority model. The robustness rules are
meant to induce massive over-generation, which is tamed by the pruning
algorithm from chapter 6. Also, a combination of both approaches is tried,
which yield competitive results (an f-score of 73.1%), compared to hand-
written and DGE parsers. The chapter concludes with a qualitative analysis
of how the robustness rules behave in practice.

Chapter 8: Conclusions This chapter repeats the most prominent results of
this thesis. A number of extensions for future work are also presented.

5

2 Background
The topic of this thesis is parsing: the automatic assignment of linguistic struc-
ture to an utterance. Often, a sort of grammar plays an important role in this pro-
cess. Different types of formalisms for grammars (e.g. context-free grammar,
Head-driven Phrase Structure Grammar) will be introduced in the first section,
as well as a basic parsing algorithm (Cocke-Younger-Kasami: CYK), which
makes use of these grammars. Also, the distinction between shallow and deep
parsers will be discussed. A number of deep parsers based on hand-written
grammars will be presented in section 2.2, along with a characterisation of their
performance and the complexity of their development. An important resource
in in the field of computational linguistics are collections of linguistically anno-
tated linguistic data (so-called treebanks). They are introduced in section 2.3.
How deep grammars can be derived from treebanks is explained in section 2.4.
The grammar plays a pivotal role in the parsing process, but the success of a
parser is also determined by the algorithms that employ the grammars. Atten-
tion to the optimisation of these algorithms in terms of efficiency and robustness
is given in section 2.5. Because a grammar embedded in the DELPH-IN frame-
work is created in this thesis, a separate section is devoted to the specific design
of a DELPH-IN grammar and some of the inner workings of the PET parser.
The chapter is closed by a motivation for the research that is carried out in this
thesis. All in all, this chapter should give the reader enough background to get
a good understanding of the research program that is presented in this thesis.
However, it might still be necessary to follow references to get a thorough un-
derstanding of certain specifics.

2.1 Parsing and grammars
To start understanding what parsing is, let’s consider the following sentence:

(1) A girl gave her cat food.

After a bit of thought, two different meanings for the same sentence come to
mind, both equally plausible:

1. A girl was giving some food to her cat.

2. A girl was giving cat food to some female.

The phenomenon that one sentence can have different readings is called am-
biguity. Syntacticians (researchers who investigate syntax/grammars) often an-
notate sentences with linguistic structures. It is common that two different read-
ings for a sentence also lead to distinct annotations. One of the basic forms of

6 CHAPTER 2. BACKGROUND

annotation is called constituent trees (or: phrase structure trees), and distinct
trees for both readings are given below:

(a)

A girl gave her cat food

ART N V POSS N N

NP NP

VP

S (b)

A girl gave her cat food

ART N V PRON N N

NP NP

VP

S

Figure 2.1: Two different constituent trees for an ambiguous sentence. The non-terminal node labels S, VP, NP
and PP stand for sentence, verb phrase, noun phrase and prepositional phrase, respectively. ART, PRON, V and
N stand for article, pronoun, verb and noun.

Each time two nodes are merged into one node, this upper node is called a
constituent. For instance, in the left tree, ‘her cat’ is a constituent, but ‘gave
her’ is not. For each language, there are clearly some regularities in how words
combine to phrases, and how phrases combine to even larger phrases. One way
to describe such regularities are grammar rules, and a set of such rules is called
a grammar. An example of a certain type of formal grammars (context-free
grammars) is given in figure 2.2. It is said that a grammar generates a sentence if
at least one analysis can be formed that spans the entire sentence, and that only
uses rule productions from the grammar. For instance, the example grammar
generates ‘A girl gave her cat food’, because at least one tree can be formed that
spans the whole sentence (see figure 2.1). On the other hand, it does not generate
‘dog food’, because dog is not in the dictionary. It also does not generate ‘A girl
gave a cat’, because no proper VP can be formed. Most types of grammars
define root conditions. In our example, the set of possible root symbols could
be a singleton set with S, and in that case, the grammar does not generate ‘a
cat’, because NP is not part of the set with start symbols.

It is straightforward to see how the grammar in figure 2.2 can be derived
from the trees in figure 2.1, and this has actually been done (Magerman 1995;

S → NP VP V → gave
VP → V NP N N → girl
VP → V PRON NP N → cat
NP → ART N N → food
NP → POSS N POSS → her
NP → N N PRON → her

ART → a

Figure 2.2: A small context-free grammar for English.

2.1. PARSING AND GRAMMARS 7

Charniak 1996). If a large set of annotated linguistic data is given (a treebank), it
is easy to create a comprehensive grammar for a certain language automatically:
one large pass over all trees is sufficient to derive all grammar rules that occur in
the treebank. If the treebank is sufficiently large, one may assume that it would
cover all possible (morpho-)syntactic phenomena of the language. We will see
later that, although parsers based on such grammars perform reasonably well,
a treebank is never large enough for convergence, due to the creative nature of
language.

2.1.1 Deeper analysis of language

The grammar we have seen so far is fairly superficial, as many aspects of lan-
guage are not included in this grammar. For instance, the English language
knows the rule that the subject and the predicate must have equal number: the
sentences ‘The dogs barks’ and ‘The dog bark’ are clearly ungrammatical. If our
grammar is meant to be an acceptor of language, we certainly want to exclude
such ungrammatical sentences and hence, the grammar needs to be constrained.
A common way to achieve this is to specialise the grammar rules by adding
features:

S [NUMBER sg] → NP [NUMBER sg] VP [NUMBER sg]
S [NUMBER pl] → NP [NUMBER pl] VP [NUMBER pl]

where ‘sg’ and ‘pl’ are abbreviations of ‘singular’ and ‘plural’, respectively.
Initially, this looks like a good idea, but is not practical if more features are
added, and rules have to be added for each possible feature value combination.
A better and more compact approach is to under-specify the features, and use
co-indexation to enforce equality:

S [NUMBER 1] → NP [NUMBER 1] VP [NUMBER 1]

When ‘dogs’ and ‘barks’ are combined with this grammar rule, they will turn
out to be incompatible with each other, because they have ‘pl’ and ‘sg’ as their
values for NUMBER. The process of trying to merge existing feature structures is
called unification. This is an operator that takes two feature structures as input,
and gives a new feature structure as output. A unification will fail when there
is a conflict between the constraints, as will happen in the case with ‘dogs’ and
‘barks’.

In order to take the abstraction one step further, we need to understand the
concepts of complementation and modification. Consider the following exam-
ples:

(2) John runs.

8 CHAPTER 2. BACKGROUND

(3) * John runs the window.

(4) John closes the window.

(5) * John closes.

It is obvious that the second and fourth sentence are ungrammatical (marked
with a star). This is because the verb ‘to run’ is intransitive (it does not need
an object such as ‘the window’ to be complete), whereas the verb ‘to close’ is
transitive (it needs an object in order to be complete). Words or phrases that
are needed before a word can be used by others are called arguments. Different
types of arguments can be distinguished: subjects, specifiers and complements.
The union of all arguments a word has is called a word’s valency.

The following sentence exemplifies modification:

(6) John closed the large window yesterday.

This example shows two modifiers (or: adjuncts). The first is ‘large’, and it
modifies ‘window’; the second is ‘yesterday’, which modifies ‘closed’. Modi-
fiers tend to give more information on the word/phrase that it modifies: it’s not
just a random window, it’s a large window. In terms of grammaticality, modi-
fiers can be left out easily: ‘John closed the window’ is equally grammatical.

2.1.2 Head-driven Phrase Structure Grammar

The feature for NUMBER we introduced above can be represented in a lexical
item. However, properties about modification and complementation can be rep-
resented in the lexicon as well. Consider the lexical entries for the transitive verb
‘eat’ in figure 2.3. Although terms as features, complementation and modifica-
tion are widely accepted in the linguistic community at large, the structures in
figure 2.3 are embedded in a specific linguistic theory called Head-driven Phrase
Structure Grammar (HPSG) (Pollard and Sag 1994), of which a comprehensive
introduction has been written by Bender et al. (2003).

The lexical entry in figure 2.3 showcases a number of HPSG’s basic proper-
ties. The first is the concept of typed feature structure (TFS: Carpenter 1992),
defined by a type (such as synsem or index), and a (possibly empty) mapping of
attributes to values (an attribute-value matrix: AVM). The values in the AVM
are TFSs as well, and causes the structures to be nested. Angle brackets indicate
(ordered) lists. Apart from the TFS formalism, HPSG also dictates that a num-
ber of standard features ought to be used, such as SYNSEM (syntax-semantics),
LOCAL, NONLOCAL, CAT (category) and HEAD. The HEAD feature indicates
what the type of the word/phrase is, such as verb, noun, preposition etc. Often,
the HEAD feature has subfeatures indicating gender, number, countability, etc.

2.1. PARSING AND GRAMMARS 9

word
PHON 〈‘eat’〉

SYNSEM

synsem

LOCAL

local

CAT

category

HEAD
[

verb
MOD anti-synsem

]

VAL

valence

SUBJ

〈

synsem

LOCAL

[
local
CAT|HEAD noun-nom
CONT|INDEX 1

]

〉

SPEC 〈 〉

COMPS

〈

synsem

LOCAL

[
local
CAT|HEAD noun-acc
CONT|INDEX 1

]

〉

CONT

content
INDEX index 3

RELS

〈
3

[
eat-relation
EATER 1
EATEE 2

]〉

NONLOCAL

nonlocal
SLASH〈 〉
REL 〈 〉
QUE 〈 〉

Figure 2.3: Depicted is a full HPSG-style lexical entry for the verb ‘eat’.

The features in VAL reveal the valence of the word. In this case, ‘eat’ is a tran-
sitive verb, because a subject (in nominative case) and an object (in accusative
case) are needed.

Because so much information is in the lexicon, the grammar rules turn out to
be fairly simple and abstract, and not many of them are defined. Hence, HPSG is
considered a strongly lexicalised framework. A construction (or schema, plural:
schemata1) does not impose constraints on the HEAD of its daughters, but on
other grounds. For instance, the HEAD-COMPLEMENT schema requires the head
daughter to have a COMPS list with at least one element, and the first element
should unify with the non-head daughter’s SYNSEM feature. The mother takes
over all complements of the head daughter, except the first; that is cancelled out
against the complement itself. A TFS for the HEAD-COMPLEMENT rule is given
in figure 2.4.

Other schemata that are commonly used in HPSG are HEAD-ADJUNCT, HEAD-
SUBJECT, HEAD-SPECIFIER and HEAD-FILLER. The commonality between all
these rules is that they are headed: the HEAD feature of the head daughter is co-

1I will use the words ‘construction’, ‘rule’ and ‘schema’ interchangeably, although one might
argue that the terms refer to slightly distinct concepts. For instance, a schema can be seen as a rather
abstract entity, whereas several constructions might be based on the same schema.

10 CHAPTER 2. BACKGROUND

head-complement-rule

SYNSEM|LOCAL|CAT

category
HEAD 1

VAL
[

valence
COMPS〈. . .〉

]

HD-DTR|SYNSEM|LOCAL|CAT

category
HEAD 1

VAL
[

valence
COMPS〈 2, . . .〉

]

NH-DTR|SYNSEM 2

Figure 2.4: Shown is the basic structure of one of HPSG’s immediate dominance schemata: HEAD-
COMPLEMENT.

indexed with the mother’s HEAD feature. Hence, HPSG is called a head-driven
formalism. Figure 2.5 shows how a complete sentence can be analysed using
these schemata. All words that are in the subtree with a certain HEAD are called
the projection of the word that introduced that particular HEAD. In the example,
the projection of ‘eat’ is ‘eat cheese tomorrow’, and the projection of ‘cheese’
is ‘cheese’.

In the CONT(ENT) feature, the semantics of the projection of the feature struc-
ture is represented. It consists of a list/set of relations or predicates. Each
predicate has a number of features showing how the relation is connected to
other relations. The INDEX feature indicates which predicate is visible to other
phrases to complete the semantic composition. In the lexical entry in figure 2.3,
the co-indexations show that the EATER and EATEE roles are equated with the
subject’s and complement’s INDEX feature. Rule applications merge the rela-
tions together into a large set, and the INDEX feature of the head daughter is
usually taken over2.

This way to represent the meaning of an utterance has been advocated by
Pollard and Sag (1994), but more advanced formalisms have been proposed as
well. One common extension is Minimal Recursion Semantics (Copestake et al.
2005), which can informally be characterised as predicate-argument structures
with the ability to represent semantic scope of adjuncts as well. Also, the argu-
ments are not named, but numbered: ARG0, . . ., ARGn.

One of HPSG’s specialities is its treatment of unbounded dependencies. Let’s
consider the following sentences:

(7) That is the cheese Antje ate.
(8) That is the cheese he said Antje ate.
(9) That is the cheese we think he said Antje ate.
2In the HEAD-ADJUNCT schema, the modifier is the head. In this schema, the INDEX value is taken

from the non-head daughter.

2.1. PARSING AND GRAMMARS 11

word
PHON 〈‘eat’〉

SS|LOC

[
HEAD 1verb
SUBJ 〈 2〉
COMPS〈 3〉

]

word
PHON 〈‘cheese’〉

SS3|LOC

[
HEAD noun
SPEC 〈 〉
COMPS〈 〉

]

head-complement

SS4|LOC

[
HEAD 1verb
SUBJ 〈 2〉
COMPS〈 〉

]

word
PHON 〈‘tomorrow’〉
SS|LOC|HEAD

[
adverb
MOD 4

]

head-adjunct

SS5|LOC

[
HEAD 1verb
SUBJ 〈 2〉
COMPS〈 〉

]

word
PHON 〈‘will’ 〉

SS|LOC

[
HEAD 6verb
SUBJ 〈 2〉
COMPS〈 5〉

]

head-complement

SS|LOC

[
HEAD 6verb
SUBJ 〈 2〉
COMPS〈 〉

]

word
PHON 〈‘he’〉

SS2|LOC

[
HEAD pronoun
SPEC 〈 〉
COMPS〈 〉

]

subject-head

SS|LOC

[
HEAD 6verb
SUBJ 〈 〉
COMPS〈 〉

]

Figure 2.5: An HPSG analysis for the sentence ‘He will eat cheese tomorrow’. For space reasons, some feature
paths have been omitted. Also some features have been abbreviated.

12 CHAPTER 2. BACKGROUND

cheese

we

think

Antje eats

N
[LOCAL 1]

NP

V

NP
V

[SLASH〈 1〉]

S
[SLASH〈 1〉]

VP
[SLASH〈 1〉]

S
[SLASH〈 1〉]

N
[SLASH〈 〉]

Figure 2.6: The figure shows how a SLASH value can be used to capture unbounded dependencies.

In some linguistic formalisms, it is said that in English relative phrases, there
is a gap after the verb ‘ate’. A gap is a simple feature structure that is not
connected to any material in the sentence. In this case, it indicates that there
should normally have been an object at the gap’s location. Because the gap has
almost no constraints, it will unify with the complement of ‘ate’. The problem
that has to be solved is that the verb ‘said’ is defined to take a verb phrase as its
complement, but this verb phrase should be saturated (have empty valence lists),
such as in the sentence ‘He said (that) Antje ate the cheese’. This is not true for
the phrase ‘Antje ate’, because the complement of ‘ate’ is still missing. An
HPSG solution is to indicate the presence of a gap in the NONLOCAL | SLASH

feature, and discharge the SLASH feature when the missing complement ‘the
cheese’ is observed, high up in the tree. The rule to do the latter operation is
called HEAD-FILLER. See figure 2.6 for an example. Example sentences 7-9
also show why this dependency is called unbounded: the number of times one
can put a phrase between ‘the cheese‘ and ‘Antje ate’ is sort of infinite (although
it can become very hard to understand the utterance in the limit). Generally,
HPSG uses the SLASH feature to facilitate the binding of arguments that are
outside the projection of its head word.

I have now shown a glimpse of the properties of HPSG, which should help
the reader understand the HPSG core grammar for German, whose design will
be presented in chapter 3. However, there are plenty of other grammar for-
malisms for which good grammars and parsers have been constructed, such as
Lexical-Functional Grammar (Bresnan 1982), Combinatory Categorial Gram-
mar (Steedman 2000) and Lexicalised Tree-Adjoining Grammars (Joshi and
Schabes 1997). I will not present the formalisms here, but the reader can

2.1. PARSING AND GRAMMARS 13

S → NP V V → barks
N → N N N → barks
NP → ART N N → dog

ART → the

Figure 2.7: A small context-free grammar for English.

assume that these formalisms have defined their own solutions for the phe-
nomena discussed in this section (complementation, modification and long-
distance/unbounded dependencies).

2.1.3 A basic parsing algorithm

Now we have a better understanding of what a grammar is, and how analyses
of sentences look like, it is a good time to see how computer programs try to
find that analysis automatically. One of the algorithms is the Cocke-Younger-
Kasami (CYK) algorithm (Younger 1967; Kasami 1965), which I will briefly
introduce here. In order to make the algorithm easier to understand, a small toy
grammar is given in figure 2.7. The sentence that will be used for parsing is
‘The dog barks’, which can be read in two ways: there is a dog that barks; there
are dog barks.

CYK parsing is a purely bottom-up chart parsing algorithm. The first step is
to initialise the chart. The chart has generally n(n+1)

2 chart cells, where n is the
number of words. In our example, the are 6 cells (one for each span): (0,1), (1,2)
and (2,3) are lexical cells, and (0,2), (1,3) and (0,3) are phrasal cells, of which
the last one should contain the root node in the end. The cells can be filled with
chart items, if rule applications succeed. The chart initialisation phase consists
of populating the lexical cells by a dictionary look-up. For instance, the span
(0,1) gets one chart item: ART. The span (2,3) receives two items, because the
word ‘barks’ is considered ambiguous by the grammar: one N node and one V
node are inserted.

When the lexical phase is finished, the phrasal items need to be computed.
In pseudo-code (assuming that the grammar is in Chomsky Normal Form, with
only binary rules):

for l = 2...length(input)
for i = 0...length(input)-l

j = i + l
foreach decomposition ((i,k)(k,j))
foreach rule r

foreach chart_item ci_left in chart[i,k]
foreach chart_item ci_right in chart[k,j]
c = match (r, ci_left, ci_right)
if c != NULL
chart[i,j].add(c)

14 CHAPTER 2. BACKGROUND

(0,1) (1,2) (2,3)

(0,2) (1,3)

(0,3)

1:Art 2:N 3:V

4:N

5:NP 6:N

7:S

8:NP

Figure 2.8: Depicted is a full parse chart for the sentence ‘The dog barks’, given the grammar in figure 2.7. The
numbers between brackets indicate what the span of that particular cell is. For instance, (0,2) spans the words
‘The dog’. The numbers before the chart items indicates the order in which the items are created and put on the
chart.

The chart cells (0,2), (1,3) and (0,3) will be visited in this phase, in this order.
For span (1,3), two items need to be combined: ‘dog’ and ‘barks’. Only the noun
compounding rule matches with these two items, and therefore one chart item
is put in chart cell (1,3). When all chart items with span length 2 are computed
(spans (0,2) and (1,3) here), the algorithm moves on to span length 3, which
spans the complete sentence in our case. There are two decompositions of (0,3)
possible: (0,2)(2,3) and (0,1)(1,3). The first will yield the S node (combining
NP/‘the dog’ and V/barks); the second decomposition will result in an NP node
(combining the ART/‘the’ and the noun compound N/‘dog barks’).

When the phrasal phase ends, it can be determined whether the grammar gen-
erates the input sentence, by looking if one of the nodes in the topmost chart cell
is one of the start symbols. However, we are more interested in finding how the
analyses look like. These can be reconstructed when backlinks are kept to the
daughters of each node. Also, we want to know what the best analysis is. Choos-
ing the best candidate parse among all possible analyses is usually achieved by
a statistical model. The process of choosing the best parse according to some
scoring model is called the disambiguation phase.

2.1.4 A taxonomy of parsing research

The task of parsing is perhaps one of the most widely studied subfields of com-
putational linguistics, and a large variety of parsers have emerged over time. To
understand what a parser does, let’s first consider a definition of the task that a
parser is subjected to: given a sentence, assign the correct linguistic structure
to it. This is a fairly uncontroversial definition, but when one tries to fill in

2.1. PARSING AND GRAMMARS 15

h1 e2 {prop past indicative}
{ h3:pron_rel(x4 {3 sg m std_pron})

h5:pronoun_q_rel(x4, h6, h7)
h8:_play_v_1_rel(e2, x4, x9 {3 sg})
h10:time_n_rel(x9)
h11:def_implicit_q_rel(x9, h12, h13)
h10:_yesterday_a_1_rel(e14 {prop untensed indicative, x9) }

{ h6 =q h3
h12 =q h10 }

PRED ’play’

TNS-ASP

 TENSE past
PROG -
PERF -
MOOD indicative

ADJUNCT

 PRED ’yesterday’

TIME +
DEGREE positive
ADV-TYPE vpadv

SUBJ

PRED ’he’
NTYPE [NSYN pronoun]
PRON-TYPE pers
PERS 3
NUM sg
HUMAN +
GEND-SEM male
CASE nom

VTYPE main
PASSIVE -
CLAUSE-TYPE decl

Figure 2.9: Depicted are (a) an MRS structure and (b) an LFG f-structure for the sentence ‘He played yesterday’.

the details, there is not much agreement upon what the correct linguistic anal-
ysis is. I would like to refer to figure 2.9, where the preferred output of the
simple sentence ‘He played yesterday’ is given for two parsers. The top figure
is an account of the semantics of the sentence, in the form of Minimal Recur-
sion Semantics (MRS: Copestake et al. 2005) roughly comparable to predicate
logic, with the additional possibility to underspecify scope. It is composed of
elementary predications (EPs), where each predicate/relation has a set of ar-
guments, relating to other predicates. More on MRS will explained in section
3.3.4. The lower output is an f-structure, which is a syntactic representation. It
is in the form of an untyped AVM. The figure functions as an illustration of the
divergence between the different parsers. Also note that the differences tend to
become larger when the sentences contain more complex phenomena. Not only
the output is different across parsers, there exists also a wide array of distinct
designs for parsers. An important building block of one method (probabilistic
context-free parsing) has already been introduced before (a context-free gram-
mar), but there are many more methods and formalisms. Some parsers are even
entirely statistical, not making use of any sort of grammar.

Unfortunately, it is beyond the scope of this thesis to give an all-encompassing
overview of all parsers. However, a crude division of all current parsers is given
in figure 2.10. The most principal component in describing the variance between
all different parsers3 is linguistic depth, and hence I will differentiate between

3In this thesis, I will use the term parser for both the algorithm and the combination of algorithm

16 CHAPTER 2. BACKGROUND

All parsers

Shallow parsers Deep parsers

Constituency-based Dependency-based Hand-written Treebank-derived

Figure 2.10: A taxonomy of active fields of parsing research.

shallow and deep parsers.
The first really successful parsers were shallow parsers or statistical parsers.

For instance, the seminal work of Magerman (1995) created an entirely proba-
bilistic version of a context-free grammar, whose probabilities were learnt from
a treebank, the Penn Treebank (Marcus et al. 1994). Although the method is
very simple, it works reasonably well. Later systems (Collins 1997; Charniak
2000; Charniak and Johnson 2005) were improved variants of these systems, for
instance by adding an adjunct/complement distinction or a better parse disam-
biguation component based on a discriminative model. Whereas these systems
were all based on phrase structure trees, other parsers have put their focus on
syntactic dependencies (Nivre 2007; McDonald et al. 2005), also learnt from
treebanks. The main advantage of dependency-based output is that it provides a
very natural way to capture long-distance dependencies or non-contiguous trees.

The natural opponent of shallow parsers are deep parsers. ‘Deep’ can mean a
number of things here, and this term is interpreted in different ways by different
researchers. However, the following properties correlate fairly well across deep
parsers:

The output is more informative Shallow parsers tend to give simple output
only, such as constituent trees or simple dependencies. Deep parsers are
capable to give a more detailed analysis of a sentence (as we have seen in
figure 2.9 already). For instance, it can give morpho-syntactic information
(such as tense, number, etc.). Also passivisation of a sentence can be de-
tected, such that the agent and the patient roles of a verb can be assigned
correctly4. In the MRS (Minimal Recursion Semantics) formalism (Copes-
take et al. 2005), the scope of adjuncts can be modelled as well.

The grammar only accepts grammatical sentences A number of deep gram-
mars are also acceptors, meaning that the grammar was written to reject (i.e.
not give any analysis) for sentences that were not licensed by the grammar.

and grammar. The meaning of the word should be clear from the context.
4Consider the sentences ‘Antje eats the cheese.’ and its passivised variant ‘The cheese is eaten

by Antje.’. The subjects of these sentences are ‘Antje’ and ‘The cheese’, respectively. However, the
agent (‘Antje’) and patient (‘the cheese’) roles are filled by the same actor in both sentences.

2.1. PARSING AND GRAMMARS 17

This type of grammar can for instance be useful for an application judg-
ing the grammaticality of text produced by humans (Bender et al. 2004).
Also, these grammars can form the basis for large-scale hypothesis testing
in studies on syntax (Bender 2008b). An alternative name for such gram-
mars is precision(-oriented) grammars.

The grammar can be used for generation Some deep parsers are bi-direction-
al: the output of the parser can be fed into a generator, which will then gen-
erate grammatical sentences from it. This feature is highly dependent on
whether the grammar is also meant as an acceptor: if the grammar licenses
ungrammatical sentences, it will also generate ungrammatical output.

Apart from the individual merits listed above, there are also downsides to
deep parsers. If the grammar was written to be an acceptor, it is hard to reach
wide coverage on open domains, as there can always be constructions that do
not fit the expectations of the grammar writer, resulting in a false negative. A
second disadvantage of this approach is that the detailed symbolic models of
language require a lot of human attention to be created. Generally, the develop-
ment time is at least 10 person years, if not more. To be able to train statistical
models (to allow for the automatic disambiguation between different readings
of a sentence), treebanks have to be created as well, adding to the total cost of
producing a hand-written grammar.

Many have sought ways to increase the scalability of deep parsers (both in
terms of development speed and coverage), and a large family of parsers have
arisen that were automatically derived from existing treebanks. Although deep
parsers were long conceived to yield inferior results to state-of-the-art statistical
parsers, these so-called treebank-derived parsers were able to fill the gap, not
the least because sophisticated statistical models could be trained from readily-
available treebanks. Treebank-derived parsers will be discussed in section 2.4,
but first we’ll delve into hand-crafted deep grammars.

2.1.5 Evaluation metrics

Before a number of parsers are introduced in more detail, it is important to
understand which metrics are used to evaluate the performance of a parser. The
first set of metrics is on the level of individual sentences:

coverage Indicates for how many sentences at least one analysis is returned.

annotation rate Indicates for how many sentences the exactly correct analy-
sis is among the n-best list of analyses (as decided by the disambiguation
model).

18 CHAPTER 2. BACKGROUND

exact match Indicates for how many sentences the exactly correct analysis is
ranked as number one by the disambiguation model.

Given the definitions of these types of evaluations, it can be concluded that
the set of covered sentences is a subset of the set of annotated sentences and
that the set of annotated sentences is a subset of the set of sentences for which
the entirely correct reading is returned. All three types of evaluation can be
criticised. The ‘coverage’ metric would in principle be fairly easy to crank up,
as it does not assess the quality of the parses. As an extreme example, the
grammar w∗ has full coverage, but the resulting analyses are not informative.
‘Annotated’ and ‘exact match’ bear the risk of being too optimistic, as the person
who is doing the evaluation might be tempted to be too permissive in accepting
readings.

Presenting per-sentence numbers is not the standard in the parsing field at
large. Evaluations based on smaller units (e.g. words) offer the advantage to be
able to give credit to almost-correct parses as well. Such granular evaluations
are usually presented using the following formulas, for precision, recall and f-
score, respectively:

P =
retrieved ∩ relevant

retrieved
(2.1)

R =
retrieved ∩ relevant

relevant
(2.2)

F = 2 · P ·R
P +R

(2.3)

In these formulas, retrieved is the set of predictions made by the algorithm,
and relevant are the facts as stated by the gold standard. Hence, retrieved ∩
relevant equals the set of correct predictions. Precision is defined as the propor-
tion of all predictions that is correct, and recall is defined as the proportion of all
facts that are predicted. F-score is the harmonic mean of recall and precision,
which penalises large difference between precision and recall.

2.2 Hand-crafted deep grammars

Over the decades, a wide variety of hand-written deep grammars have evolved.
This section will go through the properties and performance of four of them.
Three of the discussed parsers are for English (the English Resource Grammar
(ERG), the XLE LFG parser and the RASP parser); one is for Dutch (the Alpino
parser).

2.2. HAND-CRAFTED DEEP GRAMMARS 19

2.2.1 The English Resource Grammar

The English Resource Grammar (ERG) (Flickinger 2000) is embedded within
the DELPH-IN framework and is therefore based on the HPSG linguistic frame-
work and uses the MRS formalism (Copestake et al. 2005) for its output. The
time to develop the ERG can be estimated to be at least twenty person years. Its
main data structure, the type hierarchy, contains around 4500 types, of which
950 are leaf lexical types. These lexical types are in a many-to-many relation
with the lexicon, which contains over 35,000 items. 33 lexical, 43 morpholog-
ical and more than 200 phrasal rules have been devised. Large-scale parsing is
done using the PET parser (Callmeier 2000), an agenda-driven parser for HPSG
grammars, of which more details are given in sections 2.5 and 2.6.

Several papers evaluating the ERG’s performance have been published. The
first one, in which the Redwoods treebank is introduced (Oepen et al. 2004)
only evaluates the parser on a per-sentence basis (we will come back to this
specific type of treebanks, dynamic treebanks, in section 2.3.1). Because the
focus of the grammar writer might be on improving the results of this treebank,
an overly rosy picture of the grammar’s performance can be created. It would
be better, therefore, to have a truly independent treebank, against which the
grammar writer does not evaluate the grammar too often.

The first attempt to test the ERG on independent data has been carried out
by Baldwin et al. (2004), who applied the ERG to the British National Cor-
pus (Burnard 2000). It was found that 32% of the sentences have full lexi-
cal span5 of which 57% of the sentences receive a parse, of which 83% show
the correct parse in all parses. At first sight, this indicates poor performance:
0.32·0.57·0.83 ≈ 0.15. This is due to a number of issues, lexical insufficiencies
being the largest one: either a lexical item was not present in the lexicon at all
(68% of all sentences), or the word was known, but was not assigned the correct
lexical type by the lexicon (40% of the non-covered sentences). Other impor-
tant shortcomings were identified as well: missing or ill-devised constructions
(40% of the non-covered sentences), and the remaining 20% of the non-covered
sentences were due to fragments, garbage input, incorrect preprocessing or re-
source exhaustion. Although the numbers are interesting, one can question how
telling these percentages are, given that the percentages are only extracted from
32% of the corpus (those sentences with lexical span). One might think that
longer sentences have a larger chance of having a lexical gap, and the division
between the different categories in the error analysis might just as well be dif-
ferent for longer sentences. It is also not clear how cases are counted in which

5This means that for each word, a lexical entry is found in the lexicon. The procedure takes
multi-word lexical entries into account, meaning that there must be a path from the start to the end of
the sentence using only lexical items.

20 CHAPTER 2. BACKGROUND

the grammar falls short on several points in the sentences.
Since this paper, much effort has been geared specifically towards cross-

domain coverage, and this is demonstrated by the results presented by Ytrestøl
et al. (2009), in which articles from Wikipedia are preprocessed and parsed,
after which the correct reading of each sentence is picked by an independent
annotator. The resulting treebank is codenamed ‘WeScience’. The grammar’s
coverage varied between 81% and 91%, depending on the section, which is
much higher than in the previous study on the BNC, even though the mean sen-
tence length is comparable: 17.9 words per sentence (w/s). The proportion of
all sentences for which the ERG was able to deliver the perfect analysis (the an-
notation rate) was estimated to be around 60%. The improvement of the results
on unseen text can be attributed both to a better grammar (both its construc-
tions and the lexicon) and better robustness facilities (unknown word handling,
sophisticated pre-processing). The latest publication (Flickinger et al. 2010)
showed even better numbers on unseen text from Wikipedia: around 85% of
all sentences received at least one parse, and roughly two-third of the parsed
sentences was assigned the entirely correct parse by the disambiguation model.

The authors note that the annotation rate is quite a bit lower than the one
reported for the original Redwoods treebank (Oepen et al. 2004): 60% vs 82%.
A plausible explanation for this difference is twofold. First, the linguistic data in
the Redwoods treebank is a lot simpler, exemplified by the fact that the average
sentence length is somewhere between 7 and 8 w/s. Second, the grammar
and the Redwoods treebank have been developed concurrently, meaning that
the ERG’s developers had the chance to add constructions and lexical entries.
This was not the case for the WeScience (Ytrestøl et al. 2009) and WikiWoods
(Flickinger et al. 2010) treebanks, for which ‘out-of-the-box’ experiments were
conducted. Therefore, it is unfair to make a straight comparison between the
annotation rates for the Redwoods and WeScience treebanks.

So far, only sentence-level results have been shown. However, it is also in-
teresting to give the parser credit for sentences that receive an almost entirely
correct analysis. Before one can do an evaluation in a more granular manner
for MRS, each MRS should be broken up into smaller, atomic pieces. How
these pieces should look like is not a straightforward problem, and one specific
way to do this is presented by Dridan (2009), called Elementary Dependency
Match (EDM). For realistic, independent text (the ws02 and cb sets), the ERG
reaches f-scores between 63% and 70% if only NAMES and ARGS are counted,
and f-scores between 65% and 73% are reported if NAMES, ARGS and PROPS

are taken into account. For all these results, precision scores consistently higher
than recall, because non-covered sentences severely harm the recall metric, but
not the precision metric6.

6There is ongoing (but unpublished) work on creating a bi-directional conversion of the grammar’s

2.2. HAND-CRAFTED DEEP GRAMMARS 21

2.2.2 The ParGram parser for English

The Lexical-Functional Grammar (LFG) (Bresnan 2001) counterpart of the ERG
is the ParGram parser (Maxwell and Kaplan 1993; Riezler et al. 2001) for En-
glish. The grammar features both a c-structure (in the form of phrase structure
trees) and an f-structure (in the form of attribute-value matrices (AVMs)), as
defined by the LFG formalism. From an algorithmic perspective, this can be
very beneficial, as the phrase structure can be determined in polynomial time,
whereas AVM unifications can take exponential time in theory (see (Maxwell
and Kaplan 1993) for more details). In total, the grammar consists of more than
300 rules, and has a lexicon that is comparable in size to the ERG: almost 10,000
verb stems are identified. However, there are not many words in the lexicon for
the other categories, as these are automatically recognised by a morphological
analyser.

The parser’s most important evaluation paper (Riezler et al. 2001) focuses
on derivations of two resources: the Penn Treebank (Marcus et al. 1994) and
the Brown corpus (Francis et al. 1982). From the first, a subset of 700 sen-
tences (from section 23) has been annotated manually (King et al. 2003) with f-
structures (in the form of predicate-argument structures), which indicate depen-
dency relations between words (such as one word being the subject of another),
but which also gives morpho-syntactic information about the words themselves
(such as number and tense). On average, this set has 19.8 words and 31.2
predicate-argument structures per sentence. This resource is called the PARC700
corpus7. The second data set that was used for evaluation is the Susanne corpus,
of which 500 sentences were annotated with grammatical relations by Carroll
et al. (1999), to which I will refer as SUSANNE5008. The evaluation was done
by converting the grammar’s output (f-structures) to the grammatical relations
scheme by a (possibly error-prone) hand-written procedure.

The coverage of the ParGram grammar is reported to be 74.7% (PARC700)
and 79.6% (SUSANNE500) on a per-sentence basis, which is comparable to the
ERG. However, when robustness measures are taken (fragment and skimming,
to be explained in section 2.5.1), full coverage is obtained. The authors report f-
scores of 78.6% (PARC700) and 73.0% (PARC700, only dependency relations),
and 74.0% on the SUSANNE500 set (also only dependency relations). A later
evaluation of the parser (Kaplan et al. 2004) yielded a slightly improved f-score
on the PARC700 set: 79.6%.

MRS to a format called Dependency MRS.
7The names Dependency Bank, or DepBank, are also found in the literature.
8The Susanne corpus, in turn, is a subset of the Brown corpus (Francis et al. 1982).

22 CHAPTER 2. BACKGROUND

2.2.3 The RASP parser

The RASP parser (Briscoe and Carroll 2002; Briscoe et al. 2006) is another
example of a hand-written grammar for English. It is a tag sequence grammar
(Briscoe 2006), a formalism that uses phrase structure trees augmented with
features. Almost 700 grammatical rules have been devised. The grammar’s de-
velopment time is estimated to be 2 years only. The output is usually formatted
as grammatical relations, as proposed by Carroll et al. (1998).

The authors report a coverage rate of 85% on SUSANNE500 (Carroll et al.
1999), their development set. For independent evaluation, the RASP system was
evaluated on a re-annotated version of the PARC700 set (Briscoe and Carroll
2006) with grammatical relations (as opposed to f-structures). On this set, 84%
of the sentences yielded an analysis that fulfilled the root condition, and an
f-score of 79.7% is reported. However, due to the differences in annotation (f-
structures vs grammatical relations; more details are given in the paper), this
does not directly compare to the 79.6% performance of the ParGram grammar
as reported by Kaplan et al. (2004).

2.2.4 The Alpino parser

The last parser I will discuss is the Alpino parser (Bouma et al. 2000; Van Noord
2006) for Dutch. This is a left-corner parser (Van Noord 1997), based on a hand-
written HPSG grammar. Instead of using a purely unification-based formalism,
the grammar is based on Definite Clause Grammars (Pereira and Warren 1980),
implemented in PROLOG, allowing the grammar to use a richer set of opera-
tions, such as set membership. As we will see later, this can make the linguistic
description of certain phenomena significantly easier. The grammar contains
about 600 rules, indicating a fairly “constructional approach”, of which the au-
thor claims that it is more efficient than a very lexicalised grammar (a grammar
that encodes the bulk of the information of the grammar in the lexicon, and
relies on a few very general schemata only). From the start, much effort has
been invested into providing coverage for a wide range of domains9: the gram-
mar’s lexicon contains approximately 200,000 named entities; lexical rules to
identify dates and other special named entities; a number of error-correcting
heuristics; unknown word guessing based on the word’s orthographemic prop-
erties. The grammar outputs syntactic dependencies in the form of a directed
acyclic graph, allowing for node re-entrancies for raising, control and ellipsis in

9Nowadays, this also holds for the ERG, although this focus on wide coverage has only come in a
later stage.

2.2. HAND-CRAFTED DEEP GRAMMARS 23

coordination10.
An interesting choice of the authors is to prefer the concept accuracy metric

rather than f-score as measure of success:

CAi = 1−
Di
f

max(Di
g, D

i
p)

(2.4)

where Di
f is the number of missing or incorrect relations in sentence i, and

Di
g and Di

p are the number of relations in the gold standard and the produced
parse, respectively. Intuitively, one can see it as the inverse normalised distance
to the gold standard parse, hence a slightly harsher metric than dependency f-
score. The authors present results for three different data sets, of which only
one (Trouw) is sufficiently challenging (newspaper text) and independent (not
used as the grammar’s development set). For this data set, a concept accuracy
score of over 90% is reported.

2.2.5 Other hand-written grammars

Although I have introduced mostly grammars/parsers for English in this chapter
(and actually most work in in the parsing community has been geared towards
the English language), there have been considerable efforts to create grammars
for other languages as well. Two large initiatives are aiming to facilitate the
conscientious process of crafting grammars in a multi-lingual environment. The
first is the ParGram project (Butt et al. 2002). Apart from the grammar for En-
glish discussed before, there are a few other grammars attached to that project,
for German (Dipper 2003; Rohrer and Forst 2006), Japanese, Norwegian and
Urdu.

A number of HPSG grammars are embedded in the DELPH-IN commu-
nity, for French, German (Müller and Kasper 2000), Japanese (Siegel and Ben-
der 2002), Modern Greek (Kordoni and Neu 2005), Norwegian (Hellan and
Haugereid 2003), Portuguese (Branco and Costa 2008), Spanish (Marimon et al.
2007) and Wambaya (Bender 2008a).

DELPH-IN is also the home of the Matrix project (Bender et al. 2002), which
provides grammar engineers with a starters kit for writing HPSG grammars, en-
suring a basic level of consistency in the design of the feature geometry. Also,
many of the technical practicalities have been taken care of. The natural exten-
sion of the Matrix is the Matrix customisation system (Bender and Flickinger
2005; Drellishak 2009). In this setting, a linguist can fill out a form, answering

10The reader might notice that the Alpino dependency scheme is very similar to the Tiger treebank’s
scheme. The Tiger treebank has indeed been an inspiration for the Alpino annotation scheme, but the
re-entrancies in the Tiger treebank are only used for coordinations, not for raising and control.

24 CHAPTER 2. BACKGROUND

rudimentary questions about the language at hand (about word order, existence
of determiners, gender etc.). The system will return a customised grammar, of-
fering a grammar with a number of words and lexical types, which can actually
parse (and generate) a few basic sentences in that language. This can speed up
the initial steps in the grammar writing process greatly, because the wheel need
not be re-invented every time a certain phenomenon is implemented.

2.3 Treebanks

Treebanks and other annotated resources are an indispensable resource for cur-
rent language technologies. They are used in many different circumstances and
for different purposes. However, they face the same problem as hand-written
deep grammars: the large investments that are needed in order to create a valu-
able resource (although the investments that are needed for treebanks are an
order of magnitude smaller than for hand-written grammars). Any sizable tree-
bank needs several person years by educated annotators to construct, which is
time-consuming and expensive. This section will start out by giving an overview
of a number of treebanks, and will explain how previous studies have made at-
tempts to reduce the development time of treebanks, for instance by using exist-
ing grammars/parsers.

The value of a treebank depends on a number of factors. The first is the for-
mat that the treebank uses. Is the atomic unit a constituency or a dependency?
Are crossing edges allowed? Are links between the nodes labelled? The sec-
ond factor is the level of detail that is used in the annotation guidelines. More
labels generally means that finer distinctions are being made. The third factor
is the level of consistency that the resource keeps. If the same linguistic phe-
nomenon is annotated differently in different places, this has a negative effect
on the value of using this resource for either training or evaluation purposes.
Usually, the workflow enforces some sort of checking or double annotation to
reduce inconsistencies. The last factor determining the usability of a treebank is
its size. For evaluation purposes, it can be relatively small (<1000 sentences).
However, if the treebank is going to be used for training a certain symbolic or
statistical model, it generally needs to be at least one order of magnitude larger
to be useful.

One of the first large-scale treebanks, the Penn Treebank (Marcus et al. 1994),
uses a constituent tree format, with a small number of additions. First, traces
were put in the trees, to indicate long-distance dependencies. Second, functional
tags were added to some nodes, to indicate whether a certain node is the subject
of the clause, for instance. Although this resource has been immensely useful
for the evolution of the field of parsing, there was also criticism on the treebank’s

2.3. TREEBANKS 25

format, the most important being that constituent-based evaluation is not very
useful for languages with less configurational word order than English.

Therefore, dependency-based representations have been proposed, for in-
stance by Lin (1998), yielding a more suitable representation in cross-linguistic
settings. The most basic form is where the sentence is transformed into a di-
rected acyclic graph (dag), with the edges being labelled. Small variations exist
in whether the edges of the graph can cross (non-projectiveness), and whether a
node can have more than one incoming edge (introducing a re-entrancy). Some
schemes also convey grammatical features, such as number or case, or even
pronoun type. Also, no consensus exists on what a word is. Is ‘vice versa’ one
word, or two? And what about ‘to walk’? In some schemes, ‘to’ is just seen
as a marker of ‘walk’, and is not represented as a separate node in the even-
tual graph. Some annotation schemes, such as Minimal Recursion Semantics
(Copestake et al. 2005) even go one step further, aiming for a semantic repre-
sentation rather than a syntactic one. See section 3.3.4 for more details.

2.3.1 Strategies for efficient annotation

The creation of a treebank is a costly and complicated task. Well-trained an-
notators have to spend time on the annotation of the text, and many problems
can arise. For instance, a sentence may have more than one plausible analy-
sis, or none, or the annotators might not agree with each other. The annotation
scheme is therefore never undisputed, which might lead to inconsistencies over
time, or between annotators. Hence, the process of creating treebanks is of in-
terest: can their development be sped up? And what influence does that have on
the accuracy? Can one treebank be converted to another format without losing
information and/or consistency?

The procedure to create the Penn Treebank (Marcus et al. 1994) was simple,
but cumbersome. First, the words were given part-of-speech tags using a tagger,
and correct by the annotators. Then, the output of a parser (the Hindle parser:
Hindle 1989) was hand-corrected as well, but because the parser left many found
constituents as fragments, it required considerable additional effort from the
annotators attaching these constituents to the main tree. Some other widely-used
examples of manual annotation are actually re-annotations of existing resources.
A part of section 23 of the Penn Treebank (the de facto evaluation standard
for many studies on statistical parsing) has been manually annotated with f-
structures (in the form of predicate-argument structures) (King et al. 2003) and
grammatical relations (Carroll et al. 1999). A subset of 500 sentences from the
Brown corpus has also been re-annotated with grammatical relations. Given the
size of the latter sets, these are mainly used for evaluation purposes.

26 CHAPTER 2. BACKGROUND

The Tiger treebank (Brants et al. 2002) is an interesting example, because
two very different methods have been used to create the treebank. The first
method makes heavy use of statistical models. Initially, all terminal nodes, of
which the TnT part-of-speech tagger (Brants 2000) is confident that the tag can
be computed correctly (in about 84% of the cases), it is automatically assigned,
whereas the others are tagged by the annotator. When the sentence is tagged, an
iterative annotation process is started, in which a statistical model (a Cascaded
Markov Model) proposes new phrases one by one, and the annotator can inter-
vene after each new proposed phrase. Around 71% of the model’s proposals
were readily accepted by the annotators, whereas the others needed some kind
of intervention. The most interesting part of this approach was that annotation
speed could be improved without a previously-existing resource: each time a
few sentences were annotated, the statistical model could be re-trained such that
the following predictions would be of higher quality.

The second method for the creation of the Tiger treebank was to use the out-
put of an existing LFG parser for German (Dipper 2000). Because the major-
ity of the sentences yielded too many parses, an Optimality Theory (Prince and
Smolensky 2004) scheme was used to partially disambiguate between the analy-
ses, reducing the average number of parses to 16.5 (but with a median of 2). The
annotator could then choose between those parses, which was then converted to
the Tiger treebank annotation scheme using the transfer procedure described by
Zinsmeister et al. (2002). Promising as this technique looks, the grammar was
not mature enough to give good coverage, returning no analysis for 50% of the
presented sentences11. Furthermore, only 70% of the covered sentences (hence
35% of the complete set) contained the correct parse among the ones presented
to the annotator. The workflow used in this study is not unique: the PARC700
(King et al. 2003), covering a part of section 23 of the Penn Treebank, and the
Alpino treebank (van der Beek et al. 2002) have been developed in a similar
fashion, although the disambiguation is aided in different ways and a solution
was presented in a majority of the cases.

A special case of grammar-aided treebanks are dynamic treebanks (Oepen
et al. 2004; Rosén et al. 2009), which is of specific interest for large hand-
written grammars. Instead of recording the output of the parsing process (MRSs
or f-structures, for instance), the process of getting to these outputs is retained.
In the case of the Redwoods treebank (Oepen et al. 2004), the typical workflow
consists of: parsing the sentence; extracting the 500 most probable readings
from the packed forest; manually disambiguating which parses are deemed cor-
rect (which might turn out to be none, or more than one). The disambiguation
step is discriminant-based (Carter 1997), speeding up the annotation process

11These figures improved in a later version of the grammar.

2.4. USING TREEBANKS TO CREATE GRAMMARS 27

considerably. The relation between a chosen reading and the chosen discrim-
inants is bi-directional: from the set of resolved discriminants (or: decisions)
the resulting tree12 can be computed; on the other hand, all decisions can be
reconstructed if the correct tree is chosen. The use of dynamic treebanks has
the advantage that when the grammar is updated in the future, the treebanking
software can infer which choices were made by the annotator, so that updat-
ing the treebank can be done with minimal effort, as these choices can be re-
applied: only new discriminants will be presented to the annotator. Speeding up
the annotation can be done by resolving certain discriminants from an existing
resource, for instance part-of-speech tags, as carried out by Tanaka et al. (2005).

Another method for creating a new treebank is by converting a treebank in
one formalism to a new one in another formalism. Usually, this is achieved by
using an automatic procedure, using heuristics written by a human. The heuris-
tics can be in the form of scripts/macros, or a sort of transfer rules. The latter is
done by Forst et al. (2004), who created TigerDB by a double conversion: first,
the trees from the Tiger treebank are converted into an LFG gold standard for
German, after which a DepBank-like format is extracted from the f-structures.
Apart from the possibility to train statistical models from this resource, the main
goal of the authors was to create a resource with which a sensible cross-parser
evaluation can be carried out. We will see more examples of such treebank
conversion heuristics in the next section, where treebanks are used to aid the
construction of deep grammars.

2.4 Using treebanks to create grammars
Magerman (1995) and Charniak (1996) were among the first to show that it
is straightforward and effective to learn a statistical parser (based on a PCFG)
from an existing treebank. This work has been extended by many, and parsing
section 23 of the Penn Treebank has been the de facto standard evaluation set
for statistical parsing for more than a decade. Later, statistical parsers using
dependency-style evaluations (Lin 1998) came into existence, with very good
results as well (Nivre 2007; McDonald et al. 2005). In order to create training
sets for these parsers, the Penn Treebank was automatically converted to de-
pendency graphs. With the success of these conversions, the belief came that
parsers using more sophisticated linguistic formalisms could also be learnt from
a treebank. In this section, we will look at a number of these studies, converting
the Penn Treebank to the LTAG, CCG, LFG and HPSG formalisms. Afterwards,
two studies on creating German grammars will be introduced. For the range of
studies in this section, I coin the name deep grammar extraction (DGE).

12If not all discriminants have been resolved, this is a set of trees. Also, all readings can be rejected
if none of the readings is correct.

28 CHAPTER 2. BACKGROUND

2.4.1 Deep grammar extraction for English

The algorithm that Xia et al. (2000) describe, reads off a Lexicalised Tree-
Adjoining Grammar (LTAG: Joshi and Schabes 1997) from the Penn Treebank.
First, the treebank is binarised, and heads, complements and adjuncts are ex-
plicitly labelled. The main instrument to do this is a head-percolation table in
the spirit of Magerman (1995). It seems that traces are discarded in this step,
indicating that long-distance dependencies can not be resolved. Second, the ele-
mentary trees (tree fragments to which the dictionary maps) are extracted, each
being either a predicate-argument tree (a head with its arguments), a modifica-
tion tree (a word modifying something else) or a coordination tree. Notice that
this scheme leaves out the possibility to have an elementary tree that needs a
complement before it can function as an adjunct. Hence, a preposition is rep-
resented as a tree that needs an NP as its complement, but it is not equipped to
modify anything afterwards, for instance a verb or a noun, so it must be selected
for by another word. In the example they give (Figure 6), some other unexpected
trees come out: ‘by then’ is analysed as ‘then’ modifying ‘by’. These are taken
out using an extra filter, indicating which elements can modify other elements.
After this filtering, the number of elementary tree templates is just over 6000.
When certain categories (e.g. all verbal categories that only differ with respect
to their morpho-syntactic information) are merged in the treebank, this number
drops to below 3000.

The authors evaluate their method not in terms of parsing accuracy (which
would depend on a lot of other factors, such as the quality of the disambiguation
model and robustness measures), but on the proportion of words in section 23
that have the correct word-tag pairs in the learnt dictionary (column three in
table 2.1). The other columns indicates how the word-tag pairs that are not learnt
can be broken down. 2 · 2 categories can be identified: having seen the word
or not, and having seen the template or not. So (sw,st) means: this word/tag
combination is not in the dictionary the algorithm learnt, but the word was seen
in the text, but was connected to another template, and the template has been
observed as well, but has been assigned to other words. A later study (Chiang
2000) evaluates the parsing success using this grammar, which was competitive
by that time’s standards: labelled recall was 86.9%, labelled precision 86.6%.
Current top algorithms have f-scores of around 91%.

(Hockenmaier and Steedman 2002; Hockenmaier and Steedman 2007) present
a very similar algorithm for Combinatory Categorial Grammar (CCG) (Steed-
man 2000). The lexical types of CCG are not unlike the ones in LTAG, although
there is one major difference: the elementary trees in the study by Xia et al.
can only specify adjuncts modifying a certain phrasal category (S, VP, etc.),
whereas the adjunct in CCG can also specify whether the modified category

2.4. USING TREEBANKS TO CREATE GRAMMARS 29

Method]tags Learnt Not learnt
(sw,st) (uw,st) (sw,ut) (uw,ut)

LTAG, normal 6099 92.6% 4.7% 2.5% 0.25% 0.02%
LTAG, compressed 3014 94.0% 3.4% 2.5% 0.08% 0.01%
CCG 1129 94.0% 2.2% n.a. 0.02% 3.83%
HPSG 2345 95.0% 2.2% 2.7% 0.10% 0.00%

Table 2.1: Per tag evaluation of some of the treebank conversion methods.

needs complements. A second major difference is the explicit utilisation of the
traces in the treebank. For instance, in the relative phrase ‘what IBM bought’,
‘bought’ receives a transitive verb entry in the dictionary. When the sentence
is parsed, special operators (type-raising and composition) are used to correctly
identify ‘what’ as the object of ‘bought’. The attractiveness of this approach
lies in the higher degree of generalisation of the lexicon: only one lexical en-
try is needed for the verb ‘bought’. A third enhancement is the treatment of
argument clusters, as in ‘bought 2 books yesterday and 1 book today’. Here, a
coordination of two non-constituents (‘2 books yesterday’ and ‘1 book today’)
is necessary, for which the CCG formalism provides a nice way solution. A
few type-changing operators were added to facilitate a compact analysis of top-
icalisation (‘The other half, we may have before long’) and NP extraposition
(‘Factories booked $236.74 billion in orders in September, [NP nearly the same
as the $236.79 billion in August]’).

This grammar has been evaluated in the spirit of Xia et al.’s study (table
2.1). As was expected, there was a large improvement in the compactness of the
lexicon (second column), with equal performance (third column), indicating for
how many words in section 23 of the Penn Treebank the correct lexical type was
assigned to that particular word in the learnt lexicon. Clark and Curran (2004a)
present parsing results of this parser on the basis of labelled syntactic dependen-
cies that are extracted from section 23 of the Penn Treebank. The parser shows
an f-score of 86% on labelled dependencies, but one remark must be made with
respect to these results. The conversion procedure of Penn Treebank-style trees
to CCG is bound to contain errors, and because the syntactic dependencies used
for evaluation are created using the same conversion procedure as the training
set, the parser might be biased towards errors introduced by the conversion pro-
cedure.

Cahill et al. (2002) showed how a grammar in the framework of Lexical-
Functional Grammar (LFG: Bresnan 2001) can be extracted from the Penn Tree-
bank as well. In contrast to the monostratal nature of CCG, this study needs less
work to be converted, as the LFG’s c-structures are phrase structure trees. First,
all nodes in the phrase structure tree are augmented with functional annotations,
or f-descriptions, based on a set of hand-written regular expressions. From these
augmented trees, rules can be learnt. An example of an extracted rule, including

30 CHAPTER 2. BACKGROUND

its functional annotations, is:

S → NP
↑ SUBJ =↓

VP
↑=↓

(
ADV

↓∈↑ ADJN

)

In short, this means that the NP f-structure co-indexes with the SUBJ at-
tribute in the f-structure of the S node, and that an optional adverb can mod-
ify the VP. Hence, the functional annotations fully determine the f-structure of
the whole sentence. The importance of long-distance dependency (LDD) res-
olution, as shown in the studies on CCG and HPSG, is also underlined by a
subsequent study (Cahill et al. 2004). Now, they call the previously derived
f-structures proto f-structures, because certain parts of the derivations are non-
deterministic, due to rules such as the following:

S → S
↑ TOPIC =↓

↑ TOPIC =↑ COMP∗COMP

NP
↑ SUBJ =↓

VP
↑=↓

where the ∗ here is to be read as the Kleene star, requiring zero or more instantia-
tions (LFG functional uncertainty). That means that when this rule matches, the
NP might match the VP’s complement, or the VP’s complement’s complement
etc. A probabilistic model is created, choosing the candidate that maximises the
product of the subcategorisation conditioned on the verb’s lemma, and the joint
distribution of the type of LDD and path that is taken.

The authors present two parsing architectures: pipelined and integrated. In
the first architecture, the text is parsed using a normal PCFG model, and the
annotation heuristics are used to create the f-structures. The second approach
creates specific rules with different functional annotations, and parse using that
(more sparse) annotated PCFG (A-PCFG), after which the constraint resolver
will compute the f-structures. It turns out that the second, integrated strategy
outperforms the pipeline by a few percentage points (depending on which test
set is taken). More details on the methods are given by Cahill et al. (2005) and
Cahill et al. (2008a).

The methods described above illustrate how the Penn Treebank can be con-
verted to a deeper formalism using a heuristic converter or, in the case of LFG,
how the trees can be annotated automatically. Although this is a sensible ap-
proach, there are limitations in scalability when extending this workflow to other
approaches, because there is only a limited amount of information in the tree-
bank, on the basis of which the heuristics have to operate. This can be seen
in the CCG study already: apart from the standard CCG operators, the type-
changing schemata were added to accomplish some generalisations in order to
get a more compact grammar.

Raising the bar towards deeper instantiations of grammars that are embedded
in constraint-based formalisms is not straightforward. One proposal to develop

2.4. USING TREEBANKS TO CREATE GRAMMARS 31

sign
PHON list

SYNSEM

synsem

LOCAL

local

CAT

category

HEAD

head
MODL synsem
MODR synsem

SUBJ list of synsem
SUBCAT list of synsem

SEM semantics

NONLOCAL

nonlocal
RELS list of local
SLASH list of local

Figure 2.11: The feature geometry of the typed feature structures in the Enju grammar.

a deeper grammar (the Enju parser) is described by Miyao et al. (2004). As op-
posed to the previously discussed studies, Enju does not only inject deep prop-
erties to the grammar by the conversion procedure, but also by defining certain
linguistic properties in the core grammar. In a sense, this was also done when
a CCG for English was created (Hockenmaier and Steedman 2002) by defin-
ing an extra type-changing operator, but the addition of linguistic information
was done more explicitly and elaborately when the workflow for Enju’s gram-
mar was designed. This becomes clear when the geometry of the typed feature
structures within the Enju grammar is observed (figure 2.11). Features such
as MODL, MODR (left and right modification, respectively), SUBJ and SUBCAT

can be equally expressed in the other formalisms, but the possibility to use the
NONLOCAL features stands out.

The geometry in figure 2.11 forms the basis for the construction of seven
HPSG schemata: SUBJECT-HEAD, HEAD-COMPLEMENT, HEAD-MODIFIER,
MODIFIER-HEAD, FILLER-HEAD, HEAD-RELATIVE and FILLER-INSERTION.
These rules define constraints on how words/phrases can be combined, as ex-
plained in section 2.1.1.

The basic tree structure in HPSG does not contain labels for phrase cate-
gories, but applications of the above-mentioned rules (in fact, the schemata ab-
stract away from these categories). In order to convert the Penn Treebank-style
trees to HPSG-style trees with rule applications, the authors introduce a new
technique. First, the trees are binarised, and each subnode is being annotated
with a label that indicates whether it is the head in that particular rule appli-
cation or not. Also, the information about the traces is used to augment the
head/non-head annotations with information about the NONLOCAL properties
of the nodes (similar to (Hockenmaier and Steedman 2002)). Then, a feature
structure is built at the root node, which should be known: the head is a verb, no
SUBJ and SUBCAT information is needed, and RELS and SLASH are empty lists.

32 CHAPTER 2. BACKGROUND

The annotated rule schemata are re-played downwards. Due to the head/non-
head and NONLOCAL annotations, the correct rule application tree can be con-
structed top-down in a deterministic fashion. The last step is to read off the
lexical types (and the lexical entries in the dictionary) directly from the tree.

The authors report that the Enju grammar acquired 42,000 words, of which
25,000 are nouns and 10,000 are verbs. They arrive at 2,345 templates, of which
1,596 for verbs, and they claim this is significantly less than Xia’s LTAG extrac-
tion method (although a closer inspection of the results seem to suggest that this
is only before applying the filter for very unlikely templates). Lexical coverage
on section 23 of the Penn Treebank was reported to be 95.0%, 1 percent point
higher than in previous studies. The sentential coverage, measuring the pro-
portion of sentences for which for all words the required lexical template was
observed in the training set, was reported to be 43.0%. In a later version of the
parser (Miyao 2006), lexical and sentential coverage rates of 99.1% and 84.1%
were reported. Parsing results (Ninomiya et al. 2006) show labelled precision
and recall of about 87% on predicate-argument structures, induced using the
same procedure.

2.4.2 Deep grammar extraction for German

So far, I only discussed deep grammar extraction methods for English. Similar
approaches have been taken to create valuable resources for German. This is
interesting mostly because one would like to prove that the methods work well
independent of the language or the resources that are chosen. Specifically, it
is sometimes argued that German is harder to parse than English (Kübler et al.
2006), due to the lower degree of configurationality in the German language
and a richer morphology (an introduction to some German syntactic proper-
ties is given in section 3.1). Both properties are reflected in the Tiger treebank
for German (Brants et al. 2002), on which the two studies that I report on are
based. First, the terminal nodes (the words) are annotated with more extensive
morphological information than the Penn Treebank. Second, the data structure
in the Tiger treebank is quite different from the Penn Treebank. It allows dis-
continuous (or: non-projective) trees, which happen in about one third of the
trees. Also, secondary edges 6 used to represent ellipsis in coordinations. The
last main difference between the Tiger treebank and the Penn Treebank is the
relatively high arity of the nodes in the former (> 5 in some cases). A more
elaborate introduction on the Tiger treebank can be found in section 4.2.

Cahill et al. (2005) were the first to adapt their DGE technique to create an
LFG grammar for German. In order to make their algorithm work properly,
the Tiger trees are converted to Penn Treebank-style trees. Discontinuities are

2.4. USING TREEBANKS TO CREATE GRAMMARS 33

removed by adding traces. They report a 74.6% f-score on syntactic depen-
dencies from a 2000-sentence held-out set from the Tiger treebank, which is
significantly lower than for English. This can be attributed to the flat nature of
the Tiger treebank, which poses sparseness problems when the c-structures are
created using an external parser. A subsequent study (Rehbein 2009), devoting
more attention to the type of PCFG parser and morphology, reaches a maximum
f-score of 77.3%.

Hockenmaier (2006) also did a study converting the Tiger treebank to a CCG
treebank. Analogous to the previous study, an additional preprocessing step
was carried out to render the trees in the source treebank projective. This pro-
cess is rather crude: constituents that cause non-projectiveness are attached to
higher nodes, until the discontinuity has disappeared. The paper presents quite
a few details on how certain constructions are handled, such as cluster coordina-
tion and extraposed relative clauses. No parsing experiments are reported, only
lexical coverage numbers on unseen text (similar to the scores in table 2.1).
The lexical coverage turns out to be quite a bit lower (86.7% vs 94.0%) and
the number of lexical types (2506 vs 1129) was higher than the English CCG
counterpart. This indicates a lack of generalisation in the learning process. For
instance, German allows different permutations in saturating its complements.
Because CCG is such a strongly lexicalised framework, different entries have to
be created in the lexicon to account for these permutations. This is unwanted,
because it is known that this type of permutation applies to all verbal lexical
types in German, so learning that the arguments of all verbs can be permuted
for each individual verb separately seems to cause the inferior results.

2.4.3 Evaluation issues

I referred earlier to the claim that German is harder to parse than English, which
is contradicted by Kübler et al. (2006). The results in this section seem to sup-
port this hypothesis, as the grammars for German are performing significantly
worse than their English counterparts. It must be noted, however, that state-of-
the-art results of statistical dependency parsers for German (on the same data
sets) actually compare favourably to dependency parsers for English: > 90%
(Hall and Nivre 2008) vs 88 % (Hall et al. 2007). Therefore, it seems reasonable
to propose the alternative hypothesis that current DGE techniques have a bias
towards languages with a higher degree of configurationality. The method I will
introduce in the following chapters is intended to overcome this variance with
such language-dependent properties.

Another evaluation issue in DGE studies in general is related to the way the
gold standards are created. All studies in this section, both for English and

34 CHAPTER 2. BACKGROUND

German, have resorted to a sort of conversion technique to create a treebank in
the target formalism (HPSG, LFG, etc). The created treebank is then divided
in a training set and a test set, meaning that the grammar is evaluated against
an automatically converted gold standard. There are two (related) objections
against this mode of evaluation. First, there might be errors in the conversion
procedure. The procedure might be designed to create finer distinctions that are
not made in the source treebank, and the discovery of these distinctions is error-
prone. The second objection is that the conversion procedure can discard fine
distinctions that were available in the source treebank. To understand how this
can happen, one has to realise that the distribution of linguistic phenomena in a
corpus probably approximates a Zipfian distribution: there are a few phenomena
that are frequent, and many that are infrequent. However, there is a fair chance
to observe one of these infrequent phenomena in a sentence, because the tail
of infrequent phenomena is long. The writer of the conversion script will most
likely devote more attention to the frequent phenomena, and the fine distinctions
for infrequent phenomena might disappear in the conversion. It is reasonable to
assume that the infrequent phenomena are harder to model than the regular ones,
and therefore one can conclude that it is easier to reproduce the facts in the new
treebank than it was for the source treebank.

2.5 The interplay between grammar and parser

Two challenges are often associated with parsing with deep grammars: robust-
ness and efficiency. In the first case, a deep grammar does not find a solution for
a sentence. This can be due to a variety of reasons, as we will see later. In the
second case, the parser does find an analysis, but the computation takes too long
to be practical. In both cases, there is an interaction between the grammar and
the algorithm that employs the grammar. If the grammar is over-generating, the
computational bounds can be met (time or memory requirements), or the parser
can be too slow. On the other hand, if the grammar is constructed to be fairly
precise, a sentence might not receive any analysis at all, creating the need to
have a fall-back option in case this happens.

2.5.1 Robustness methods

A large subset of existing hand-crafted deep grammars are also precision par-
sers, meaning that they aim to provide a model of grammaticality. An advantage
is that less load is put on the disambiguation model, as the strict modelling of
the language at hand already restricts the solution space. A disadvantage is that
it is hard to reach full coverage with such grammars. The following causes of a

2.5. THE INTERPLAY BETWEEN GRAMMAR AND PARSER 35

non-covered sentence can be identified:

Preprocessing errors A wide variety of errors fall into this category: sentences
or words might be split erroneously, the sentence contains foreign language,
or entities such as dates or addresses (with a very distinct syntax) are not
recognised properly.

Insufficient lexicon The word is not in the lexicon, or the lexical entries in the
dictionary for that word are insufficient (or even incorrect).

Insufficient constructions The grammar writer might not have considered a
certain linguistic phenomenon, or the set of rules does not support the phe-
nomenon13.

Sentence is deemed ‘ungrammatical’ There can be spelling/transcript errors
in the text, or a different dialect or spelling convention is used.

For most applications, returning no analysis is undesirable, and that is what
robustness methods are aiming to counter. Preprocessing is a task with many
‘dirty details’, and can be surprisingly difficult when a parser is applied to text
from a previously unused source. A recently developed technique for the PET
parser is chart mapping (Adolphs et al. 2008), which facilitates the cleaning and
preprocessing of text, such as lightweight named entity recognition, by using a
rewrite system.

Unknown word handling is also an important issue in deep parsing, as we
have seen before (Baldwin et al. 2004). As it turns out, many unknown words
are proper nouns, so assuming that all unknown words are proper nouns is not
a bad first guess. However, one can find reliable cues to determine the type of
a word. One such cue is the word’s orthography. For instance, an English word
that ends with ’ion’ is likely to be a noun, and capital letters indicate proper
nouns14.

Also, the parts-of-speech of the word’s immediate context can be a useful
indicator of the unknown word’s lexical type. The posmapping strategy that is
commonly used when the PET parser is applied to unseen text makes indirect
use of this clue. First, the text is tagged with broad lexical categories (such as
verb, noun etc). The grammar defines a mapping of each tag to one or more lex-
ical types, and each time an unknown word is encountered, the tag is looked up
in the mapping, and the appropriate lexical types are put on the chart. This turns
out to work reasonably well, because the distribution of lexical types follows a
Zipfian distribution: there are a few lexical types that cover a large share of the

13For certain phenomena, it is hard to constrain a rule that supports the phenomenon. In such cases,
the grammar writer can decide to discard the rule, in order to shrink the size of the solution space.

14The ParGram parser for English makes heavy use of these indicators. Most nouns, adjectives and
adverbs are considered to be so predictable that the lexicons for these categories are very small.

36 CHAPTER 2. BACKGROUND

lexical instances, and hence unknown words are likely to be part of this small
set. For example, it is likely that an unknown verb is either an intransitive or
transitive verb, but not an auxiliary.

But even when full lexical span is achieved, the parser might still not find a
solution for the complete utterance. As we have seen before, this can have a
number of causes, but it is hard for the parser itself to identify the cause of the
non-covered sentence. Therefore, fall-back strategies are defined, which usually
give suboptimal solutions. However, it is still considered to be better than giving
no solutions at all.

The most straightforward approach is a technique called fragment parsing.
This algorithm harvests individual fragments from the chart, and combines them
in order to get an analysis that spans the complete sentence. Which pieces are
taken is usually based on a minimum-cost algorithm, where cost is minimised
when the number of fragments is lowest, or where the combined probabilities of
the fragments is highest. This baseline method has been used by many precision
parsers. More details are explained by Kasper et al. (1999), Bouma et al. (2001),
Riezler et al. (2001) and Zhang et al. (2007a), although the algorithms will be
elaborated on in chapter 7 as well, in which I will propose a new method to
achieve a more robust parser.

More innovative is the hybrid approach taken by Zhang and Kordoni (2008).
If the grammar does not license any structure to a particular utterance, a second
parsing stage is invoked, in which a PCFG model elaborates on the chart that
had been formed until then. It will create a so-called pseudo-derivation tree, of
which the unification may not be successful, but a proper semantic representa-
tion for the whole sentence can still be inferred. Because there is no gold stan-
dard for sentences that can not be parsed, it is hard to evaluate the outcome of
an experiment. However, the authors claim that promising results were obtained
in a preliminary experiment. They did a manual inspection of the resulting trees
for a subset of the PARC700 set (King et al. 2003), and for the 54 sentences that
invoked the second stage, the ERG created created pseudo-derivation trees for
41 of them. Of these, 13 were completely correct and 18 had no more than two
crossing brackets.

And what should happen when computational resources are exhausted, i.e.
when a time or memory limit is hit? The usual setting for the PET parser is to
stop parsing, but the XLE parser will fall back to a technique called SKIMMING

(Riezler et al. 2001): instead of going through the search space exhaustively,
there is only a limited amount of work per subtree, making the rest of the parsing
process polynomial instead of exponential.

2.5. THE INTERPLAY BETWEEN GRAMMAR AND PARSER 37

2.5.2 Search space restriction

Quite a few papers have addressed the problem of computational complexity
of deep parsing. Initially, the focus was on creating algorithms that guarantee
that the parser will return identical results to a parser without the modifications.
A popular, non-intrusive method to bring down computational requirements for
parsing is called packing. In context-free grammar packing, if there are two
subtrees creating the same category for the same span, only one of them (the
representative) will be used in the rest of the parsing process. Using pack-
ing in context-free parsing assures that the computational resources that are
needed to complete the parse is quadratic with respect to the sentence length,
and linear with respect to the number of categories. Variants of packing for
deeper formalisms than CFG are introduced as well (Maxwell and Kaplan 1993;
Miyao 1999; Oepen and Carroll 2000a). I will introduce PET’s non-intrusive ef-
ficiency techniques in section 2.6.2.

Another way to speed up a parser is by restricting the search space. These
methods do not guarantee that the optimal solution will be found. However, we
will see that the currently developed methods perform surprisingly well in terms
of speed-up rates, without loss of accuracy. Depending on the exact metric,
such methods can even yield improved results. I will discuss some of these
techniques in this section.

Most deep formalisms are lexicalised at least to a certain degree, and most
work on restricting the search space has aimed at doing so on a lexical level. A
deep parser usually has a dictionary of supertags, which can be characterised as
specialisations of part-of-speech tags. Supertags contain more syntactic and/or
semantic information than a part-of-speech tag, for instance which kinds of
complements a word has, gender, scope information, a noun’s countability etc.
The process of restricting the placement of supertags on the initial chart is called
supertagging. Because this restriction turns out to be very effective, this has also
been called “almost parsing” (Bangalore and Joshi 1999). These techniques
have been applied to a number of deep parsers, for example by Matsuzaki et al.
(2007), Clark and Curran (2004b), and Dridan et al. (2008). Later studies on
the Enju parser did not do the supertagging on the basis of the information on
the words alone, but incorporated a statistical parser into the process. The result
of this stage could then provide an indication of whether the supertag would be
needed in a later stage in the deep parsing process. The shallow parser can be
either a parser based on a CFG (CFG filtering: Zhang and Matsuzaki 2009) or a
statistical dependency parser (Zhang et al. 2010b).

There are also a number of studies on restricting the search space of the parser
on a phrasal level. Cahill et al. (2007) describe how, instead of using the unifi-
cations immediately, they first apply a PCFG parser to the raw text. Subsequent

38 CHAPTER 2. BACKGROUND

unifications are only allowed if the resulting c-structure would not cross brack-
ets with the PCFG tree. The first results they present are poor, showing a large
decrease in parsing time, but also a severe drop in coverage. To counter this,
they propose a hybrid system, in which first the fast but low-coverage parser is
tried, and the full parser is used as a fall-back strategy. This final system reduces
parsing time by 18% without losing accuracy.

However, a more recent study of the same authors shows better results (Cahill
et al. 2008b). Now, the c-structure pruning is not based on isomorphism with
existing trees (modulo unary rule applications), but on the relative probabilities
given by the PCFG within one chart cell. If a subtree receives a score lower
than the highest score in that cell divided by a constant, that subtree is pruned.
The final result they present is a parsing time decrease of around 67%, with a
slight increase of f-score. This is attributed to the fact that less sentences go into
SKIMMING mode under this setting.

Ninomiya et al. (2005) describe two techniques that I will discuss: beam
thresholding and iterative parsing. Beam thresholding prunes away items locally
(within one parse cell), if the item’s figure of merit (FOM) is lower than the
highest FOM in that cell, minus a certain (log) bandwidth. Hence, this approach
is very similar to the one taken by Cahill et al. (2008b), except that the figures of
merit are based on a discriminative model, and not on a generative model. This
restriction strategy does not prevent the creation of very improbable chart items,
however prunes them away after they are created. In parsing with the PET
parser, this could be costly, which it is not the case in Cahill et al.’s method,
because most of the parsing time is in the unification, which is only to follow
after the c-structure pruning.

The second method the authors introduce is iterative parsing. The algorithm
describes how the parser starts with a very small beam initially, pruning away
relatively large parts of the search space. If no parse is found, the beam is
widened until there is an analysis covering the complete span. The implemen-
tation they use makes sure that chart items that have been created (but which
are located outside the beam) are not destroyed, but only temporarily marked
as invalid, so that re-creation of chart items is unnecessary when the beam is
enlarged.

An innovative approach to search space reduction is taken by van Noord
(2009). Instead of relying on a large gold standard treebank, which might not be
available, their system assumes that the output of the parser is good enough to
learn which parser tasks are more promising than others. Hence, the algorithm
parses large amounts of text (40 million words), disambiguates the best solution
according to an already existing disambiguation model, and learn which left-
corner splines are more promising than others. Interestingly, taking the mere
existence of a particular spline in the training set as the criterion already shows

2.6. ANATOMY OF A DELPH-IN PARSER 39

2pl2sg

2per 1pl 3pl

non1sg1sg

3sg

non3sg1or3sg

pernum

Figure 2.12: Depicted is a type hierarchy for person and number (adapted from (Flickinger 2000)).

good results: a speedup of 75% (the average parsing time reduced from 25 to 6
seconds), without loss of accuracy.

2.6 Anatomy of a DELPH-IN parser
A DELPH-IN parser can be divided into two components: the language-in-
dependent PET parser (Callmeier 2000) and the grammar, which is specifically
constructed for one particular language. This thesis encompasses the creation
of such a grammar (in the first part of the thesis) and modifications to the PET
parser (in the second part), and therefore it is necessary to understand the details
of both components to a certain degree. First, I will discuss the formalism of
the grammar, followed by a discussion on some specifics of the PET parser.

2.6.1 The grammar

A central data structure in a DELPH-IN grammar is the type hierarchy. Each
node in the hierarchy is a typed feature structure (Carpenter 1992), with each of
the values in the feature structure being a type of the same hierarchy. Every node
is a specialisation of its parent node(s), because each subnode automatically in-
herits all constraints from its parents, and (potentially) adds extra constraints.
A typical DELPH-IN grammar has a type hierarchy of a few thousand nodes.
Building up a large type hierarchy, creating lexical types and a lexicon is a com-
plicated endeavour. Hence, effort has been put into providing starting grammar
writers with a good starting point. A good candidate for such a starting point is
the Matrix (Bender et al. 2002), as discussed in section 2.2.5.

The type hierarchy defines all sorts of linguistic entities: data types (number,
case, boolean, etc), composite types (sign, synsem, etc), rules and lexical types.
The type hierarchy can be used to create smart generalisations (using under-
specification), so that tight representations can be built (see figure 2.12). This

40 CHAPTER 2. BACKGROUND

is useful, as the word ‘walk’ can get the type ‘non3sg’. This yields more com-
pact representations than when the person and number attributes are separated,
because in that case, two separate items are needed: one representing first and
second person singular, and one for plural.

The second component of a DELPH-IN grammar is the lexicon. This is ba-
sically a mapping from stems to lexical types, and includes a small bit of extra
information (all examples are taken from the ERG):

consumption_n1 := n_-_m_le &
[ORTH < "consumption" >,
SYNSEM [LKEYS.KEYREL.PRED "_consumption_n_1_rel",

PHON.ONSET con]].

Here we see the first example of a T DL expression (Krieger and Schäfer
1994)15. This syntax means that the type consumption n1 is an instantia-
tion of the lexical type n - m le16 and the remaining lines are meant to further
specialise the AVM that was introduced by the lexical type. The angle brackets
are used to indicate lists. Text between quotation marks indicate strings. Ev-
erything else is considered to represent a type from the hierarchy. con is used
here as an indication that the onset is a consonant, which is important for the
‘a’/‘an’ distinction in English. The second line indicates what the key relation
is, in order to attribute a form of semantics to the lexical entry in the lexicon.

The next component is the rule set. Two types of rules are defined: lexical
and phrasal rules. Phrasal rules are mostly simple instantiations of their respec-
tive types in the type hierarchy, as well as lexical rules that do not change the
orthography of a word. Morphological rules (lexical rules that do have an effect
on the orthography) are represented with an additional type of T DL syntax,
in which a transformation mechanism based on regular expressions is used to
represent the orthography changes. Consider the following definition of plural
inflection of English nouns:

n_pl_olr :=
%suffix (!s !ss) (!ss !ssses) (es eses) (ss sses)
lex_rule_infl_affixed &
[ND-AFF +,

SYNSEM mass_or_count_synsem &
[LOCAL plur_noun],

RNAME "LNPL"].

Of course, not all noun inflections are regular, and irregular morphological
rule applications can be represented using the following format, with one (word
form, inflection rule, lexeme) triple per line:

corpora N_PL_OLR corpus

15Actually, current DELPH-IN grammars only use a subset of the expression power of T DL, as
disjunction turned out to be computationally too expensive while parsing.

16When the type hierarchy is defined, the same syntax is used to indicate inheritance. Multiple
inheritance is allowed in this case.

2.6. ANATOMY OF A DELPH-IN PARSER 41

The last major component of a DELPH-IN grammar is the list of root con-
ditions (or: start symbols). This indicates how the root of the parse tree should
look like in order for the parse tree to be considered a valid utterance. Usually,
root conditions require the top node’s complement list to be an empty list. Dis-
tinct root conditions can for instance be defined for declarative, interrogative
and wh-sentences, and separate ones for stand-alone NPs, PPs etc. An example
of a root condition from the ERG is:

root_question := phrase &
[INFLECTD +,
SYNSEM root_synsem &

[LOCAL.CONT.HOOK.INDEX.SF ques],
DIALECT us].

2.6.2 The PET parser

A parser for the data structures described before is the Linguistic Knowledge
Base (LKB) (Copestake 2002). This is a grammar development platform for
HPSG, with some additions to facilitate the treatment of MRS structures. It
comes with a graphical interface, with which typed features structures from the
type hierarchy can be inspected. Apart from being able to parse a sentence (and
being able to give detailed information on the parsing process, including unifi-
cation failures), the LKB can also generate utterances that are licensed by the
grammar, using an MRS structure as input. However, the implementation has its
computational limitations, and that was the reason to develop a replacement: the
PET parser (Callmeier 2000). It is implemented in C/C++, and special attention
has been paid to optimising the computationally expensive TFS operators (uni-
fication and subsumption). However, there is no graphical interface, and neither
can it generate from a semantic input, and both systems thus co-exist.

Parsing with the PET parser consists of the following stages:

Pre-processing The raw text is input into the chart mapping machinery (Adolphs
et al. 2008), which can transform all sorts of different input into the tokeni-
sation that the grammar expects. For instance, the Penn Treebank format
can be converted this way, including repairing tokenisation mismatches, for
instance by a conversion from ‘do n’t’ to ‘don’t’.

Morphological analysis All words are subjected to regular expression-based
rules for morphological analysis, in order to arrive at lexemes. As we have
just seen, this analysis is done using both regular transformations and an
exhaustive list for irregular inflections.

Lexical look-up The possibly inflected words are then matched with lexical en-
tries. The features that were added during the previous stage should match

42 CHAPTER 2. BACKGROUND

with the lexical entry. For instance, a hypothetical grammar for English
would analyse ‘dogs’ as both a third person, singular verb and as a plural
noun, but only the latter analysis will survive in this stage, because ‘dog’
is not a valid verb. Notice that, although morphological analysis is done
before lexical look-up, the morphological rule applications are put higher
in the derivation tree than the lexical entries.

Parsing In this stage, an agenda-based chart parsing algorithm is used (Kay
1980). Under normal circumstances, this stage takes up the lion’s share of
the computation time. Several techniques are used (discussed immediately
hereafter) to reduce the computational requirements.

Solution collection After the parsing stage is finished, the chart needs to be
inspected for correct readings, where ‘correct’ is defined by whether the top
node complies to one of the root conditions specified by the grammar writer.
Also, the different analyses need to ranked with respect to the reading’s
plausibility.

Packing, unpacking and other efficiency techniques

The part in the pipeline that requires most computational resources is the
parsing stage. In order to reduce the computational complexity of parsing, a
type of packing is used. This mechanism, used in most modern parsing algo-
rithms, treats all chart items, residing within the same chart cell and belonging
to the same category, as one node. In the example in figure 2.1 (‘A girl gave
her cat food’), this is achieved by merging the two VP nodes for ‘gave her cat
food’ into one node, and only combining that merged chart item with ‘a girl’,
the subject of the sentence. Only one chart item is thus created in the topmost
chart cell. However, there are still two solutions, and they are obtained by a pro-
cedure referred to as unpacking, which requires one modification to the packing
algorithm: backlinks to all different decompositions have to be created. In the
example, that means that the merged VP node contains two decompositions:
V/NP/N and V/PRON/NP. The solutions are easily retrieved by following the
backlinks, and retrieving the best solution only (which is practical when the so-
lution space is large) is done by only unpacking the most likely decomposition
for each node. Because there can be more than one solution, the data structure
effectively represents a collection of trees, and is therefore called a parse forest.

This method of packing, equivalence-based packing, works well for PCFGs,
but will be less effective when applied to unification-based grammars, because
equivalence of two chart items is bound to be more rare when the descriptions
of the chart items are more detailed (although equivalence-based packing is still
employed in the Enju parser (Miyao 1999)). Therefore, the PET parser uses a

2.6. ANATOMY OF A DELPH-IN PARSER 43

technique called subsumption-based packing (Oepen and Carroll 2000a). In this
case, if there are two chart items X and Y, and X subsumes Y, X will function as
the representative for the rest of the parsing process (although Y is possibly part
of the eventual best solution), because whatever unifies with Y will also unify
with X. Y will not be used in the consecutive parts of the parsing process, and
is therefore called ‘frosted’. Because there are parts of the feature structures
that are very unlikely to be subsumed by other structures (most notably seman-
tic features), these can be discarded from the subsumption test (using packing
restrictors), yielding higher packing rates.

However, this means that retrieving the solutions from the parse forest (un-
packing) is not guaranteed to give valid solutions only, and that re-playing the
unifications is needed when listing the eventual solutions. For instance, if Y is
frosted, and X functions as its representative, and X is used by another rule, uni-
fication of that same rule with Y might lead to a unification failure (because Y
has more constraints than X, by definition). Therefore, whichever procedure is
used to extract the solution from the packed forest, it must be checked whether
the resulting derivation tree indeed unifies as expected.

The simplest method for finding the n-best solutions from a packed forest,
where ‘best’ is defined with respect to a certain statistical model, is to enumer-
ate all possible solutions, and consequently score and rank them. The number of
solutions can be very high for realistically-sized sentences, though, and extract-
ing all possible solutions is not feasible in that case. To prevent this scenario,
Van Noord (2007) presents an unpacking algorithm that can approximate the n
best solutions, based on a search beam, without enumerating the (possibly expo-
nentially large) number of solutions. However, a more recent technique called
selective unpacking has been devised (Zhang et al. 2007b), which can guarantee
that the best n solutions can be found. Although the algorithm is expected to
find the requested solutions within a short time span, it does have an exponential
worst-case time complexity.

Apart from the implementations of packing and unpacking, the PET parser
employs a number of other techniques to improve the efficiency of the parser.
I will discuss three of these techniques here: the rule filter and the quickcheck
filter (Kiefer et al. 1999), and hyper-active parsing (Oepen and Carroll 2000b).
Although all three methods achieved significant speed-ups, they guarantee that
the parser will yield identical results to the basic parsing algorithm. The rule
filter is a filter of tasks on the agenda, based on the combinations of mother
and daughter(s). It is possible that a certain combination of rules will always
fail because one of the daughters introduces a constraint that is incompatible
with a constraint of the mother. These incompatibilities can be computed off-
line (during grammar compilation), and are put in a hash table. Parsing tasks
that introduce an incompatibility can be easily filtered out by one simple table

44 CHAPTER 2. BACKGROUND

look-up. Quickcheck is a mechanism that employs the fact that certain parts in
the feature geometry of a particular grammar cause a unification failure more
often than other parts. These parts can be identified when a small piece of text
is parsed, and the n feature paths that fail most often are retained. In a parsing
session, these paths are (quick-)checked before every unification. If one of the
paths fail, the entire unification is guaranteed to fail as well, and the algorithm
will return that result as well, without doing the actual unification.

Oepen and Carroll (2000b) describe a technique, called hyper-active parsing,
based on the following intuition. Consider a COMPLEMENT-HEAD rule, with the
complement on the left side. Normally, the constraints of the complement side
are fairly loose, because HPSG dictates that the head defines these constraints.
The consequence is that relatively many chart items will match the complement
if the head is not filled. In regular, left-to-right active parsing, the complement
will be filled first, followed by the head, yielding many active chart items that
will fail when the head side of the rule is unified with another chart item. There-
fore, control over the order in which the arguments of the rule are filled can be
beneficial. Hyper-active parsing defines a specific ordering for all rules, so that
certain rules can also be filled right-to-left, which can significantly reduce the
number of parsing tasks that the parser has to execute.

Agenda-based chart parsing

Chart parsing based on an agenda of parsing tasks was first introduced by
Kay (1980). The PET parser is based on this algorithm. One of the algorithm’s
main data structures is the chart. The chart contains items, which are feature
structures associated with a start and end index (i, j). Two types of chart items
(or: edges) are defined: passive and active. A passive edge is a complete edge:
a grammar rule where the daughters (either one or two) have been unified with
other passive edges. An active edge, on the other hand, still needs (at least) one
of its daughters to be filled before it is considered to be complete. Notice that
the algorithm leaves space for rules with a higher arity than 2.

The second large data structure within PET is the agenda. This is imple-
mented as a priority queue, meaning that each task in the queue is associated
with a certain priority. The agenda is initially filled with tasks during lexical
look-up: all lexical items are combined with all rules (regardless of the rule’s
arity). When the lexical stage has finished, the phrasal stage starts. The parsing
stage is a loop, in which the task with the highest priority is popped from the
agenda, and carried out. The loop is terminated when either a resource limit
is hit (in terms of time, memory or number of passive edges) or the agenda is
empty.

Two types of tasks are identified: RULE+PASSIVE tasks and ACTIVE+PASSIVE

2.7. MOTIVATION 45

unary binary

RULE+PASSIVE

binary

ACTIVE+PASSIVE

R

+ P ⇒
R

P

R

+ P ⇒
R

P

R

P1

+ P2 ⇒
R

P1 P2

Figure 2.13: Depicted are the different types of tasks in the PET parser. Not shown are the features structures
imposed by the rules and the chart items. This figure suggests that the daughters are always filled from left to
right, but we have seen before that the other direction is also possible.

tasks. A schematic representation of these tasks is shown in figure 2.13. Due
to the precision-oriented nature of the grammars that are usually used with this
parser, the execution of a task often fails. If this happens, no subsequent action
is taken, and the loop will go to its next iteration. However, if the task succeeds,
the resulting feature structure will be put on the chart. This results in new tasks
to be inserted into the agenda:

• For each inserted passive item, add RULE+PASSIVE tasks that combine the
passive item with each of the rules, and add ACTIVE+PASSIVE tasks that
combine with each of the neighbouring active items.

• For each inserted active item, add ACTIVE+PASSIVE tasks that combine the
remaining gaps in the active item with existing neighbouring passive items
in the chart.

In the standard version of PET, the priority scores only have a heuristic mean-
ing, intended to create a (depth-first) right-corner parser (formulas taken from
the actual code):

Prpassive(i, j, n) = j − i

n
(2.5)

Practive(i, j, n) = j − 2i

n
(2.6)

where i and j are the start and end indices of the task’s span respectively, and n is
the length of the sentence. The heuristics have the effect of a right-corner parser.
Given a sentence with length 3, (passive) task spans are ordered as follows:
(0,3), (1,3), (2,3), (0,2), (1,2), (0,1).

2.7 Motivation
Overseeing the landscape of parsing using hand-written grammars, the largest
issue of this paradigm is scalability. It takes many person years to create a

46 CHAPTER 2. BACKGROUND

grammar with reasonable coverage, and the person years themselves are costly,
as very skilled persons are needed. Also, skilled as the grammar engineer might
be, it is hard to convey all intricacies of the grammar in documentation. The
consequence is that, if the maintainer of the grammar decides to quit, a possible
successor will need relatively much time to get himself acquainted with the
grammar.

Treebank-based deep grammars are supposed to circumvent the issues hand-
written models of language suffer from. By using simpler grammar models,
coverage can be reached quickly, and the workflow is more insightful and re-
producible than for parsers based on hand-written grammars. DGE parsers have
produced state-of-the-art results, also because advanced statistical models could
be trained from the converted treebanks with relative ease. However, they have
a number of disadvantages in common, when compared with their hand-written
siblings:

Generation from these models is not straightforward
Unlike parsing, which can be computed in polynomial time, generation/real-
isation from a semantic form to an utterance can only be done in exponen-
tial time. Therefore, a precise description of the language by the grammar
is necessary in order to keep the computational requirements within reason-
able bounds, when an exhaustive algorithm is used17. Also, the definition
of a precise model of the language prevents the generator to yield ungram-
matical utterances.

The derivation algorithms are biased towards configurational languages
The algorithms presented in section 2.4.2 rely on the fact that the underly-
ing representation is a projective tree. However, treebanks for less config-
urational languages, such as the Tiger treebank for German (Brants et al.
2002), are often not in the form of projective trees, and the authors of DGE
studies for German (Hockenmaier 2006; Cahill et al. 2005) have coerced
the annotations in this treebank into projective trees, potentially losing in-
formation18.

Adding linguistic knowledge to the models is not principled
The level of depth or precision of the resulting parsers is limited by the level
of depth in the treebank. Creating a grammar that is deeper than what the
treebank supports natively always involves making finer distinctions than
the ones that the treebank makes. Currently, these distinctions are made

17Actually, studies on realisation from treebank-derived deep grammars, using non-exhaustive
algorithms, have been performed by Nakanishi et al. (2005) and Cahill and Van Genabith (2006).

18One might attribute the worse results to the language or treebank being harder to analyse (Kübler
et al. 2006). However, results from experiments in statistical dependency parsing suggest that this is
not true (Hall and Nivre 2008).

2.7. MOTIVATION 47

by heuristic algorithms, but an approach that has a better grounding in a
linguistic theory would be desirable.

In the methodology I propose in the first half of this thesis (chapters 3, 4
and 5), I aim to combine the merits from both grammar engineering paradigms.
Roughly, the methodology can be summarised as: automate when possible, en-
gineer manually when necessary.

First, the construction of a core grammar will be discussed (chapter 3). It
gives a detailed account of the language at hand (German), including the rela-
tively free word order (known as non-configurationality) German is known for.
Also, several kinds of long-distance dependencies are covered by the grammar.
Over-generation is prevented as much as possible. The core grammar also in-
cludes a core lexicon, containing syntactically and semantically idiosyncratic
lexemes, which are hard to learn. Because the core lexicon only contains func-
tion words, the core grammar has virtually no coverage. The open class lexicon
is obtained in a symbolic (i.e. non-probabilistic) deep lexical acquisition (DLA)
step (chapter 4), derived from the annotations in the Tiger treebank. Learn-
ing curves will be presented for different parts-of-speech, so one can estimate
whether the lexicon has converged to a stable state. Because the algorithm is
simple and transparent, it is easy to reproduce, and wide coverage is reached
within little development time, therefore improving on the poor scalability of
hand-written grammars.

Statistical models are indispensable for any state-of-the-art parser, and the
presence of a treebank is a prerequisite for the creation of these models. Creating
treebanks manually (or even computer-assisted) is a costly enterprise, adding up
to the total cost of hand-written parsers. In the approach I am taking (chapter
5), the text from the Tiger corpus is parsed using the grammar from the previous
chapters, and the readings are automatically disambiguated using the informa-
tion in the original treebank. Again, this is a large reduction of the needed
development time, compared to treebanks that are constructed manually. The
rest of the chapter is devoted to the performance of the grammar/parser on un-
seen text, when a statistical disambiguation model is learnt from the treebank
using existing technology.

Chapters 2-5 constitute one coherent piece: it explains how the combination
of grammar and treebank can be constructed with the help of the Tiger treebank.
Although the individual parts of this process have been discussed, the Interlude
will discuss how the entire workflow compares to other grammar engineering
paradigms (parsers based on hand-crafted grammars, DGE parsers) in a number
of respects.

In the second part of the thesis, the grammar is used as it has been developed
in the first part. It turns out that the obtained grammar suffers from some of the

48 CHAPTER 2. BACKGROUND

weak points as other deep grammars: low efficiency and lack of robustness. In
chapter 6, efficiency will be improved using a novel pruning algorithm. Instead
of focusing on pruning chart items, the algorithm prunes tasks from the agenda.
A PCFG model of HPSG rule applications is used to compute a new priority
model for the agenda in PET, such that promising tasks are carried out before
tasks that are less likely to contribute to the best analysis. Different counting
and pruning strategies will be explored, as well as a combination of simple
supertagging and phrasal restriction.

Chapter 7 will be devoted to improvements of the parser on the issue of ro-
bustness. This is achieved by the introduction of hand-written, over-generating
robustness rules. The pruning algorithm developed in chapter 6 will be used to
restrict the search space appropriately, in order to minimise the negative con-
sequences in terms of efficiency. This method will be compared to the widely
employed strategy of combining existing fragments of the chart.

The last chapter will be used to wrap up the research that has been carried
out for this thesis. A summary of the conclusions will be presented, as well as
directions for future research.

49

3 Core grammar construction
As mentioned at the end of the background chapter, chapters 3, 4 and 5 form
one coherent part of this thesis, and covers the construction of a wide-coverage
HPSG grammar for German, including a compatible treebank. This chapter
provides more details about the core grammar, containing all the elements of a
grammar, but without a lexicon for open word classes (which will be created in
chapter 4). I will start this chapter by outlining a number of basic properties of
the German language. This is followed by a short summary of existing HPSG
accounts of German. However, I will also explain why some of these accounts
can not be implemented in the DELPH-IN formalism. Next, the basic structure
of the grammar will be outlined: its type hierarchy, its rules, its lexical types
and its core lexicon.

3.1 The German language
This section is meant to give the reader an impression of the German language.
There is no space for an exhaustive discussion about all of the language’s intri-
cacies. The decision to include a phenomenon/construction or not in this section
depends mostly on whether the core grammar in section 3.3 makes an attempt
to correctly model a certain aspect of German.

One of the most widely used classification schemes for languages is the
canonical order of subjects (S), verbs (V) and objects (O). Six different per-
mutations of these constituents can be identified: SVO, SOV, VSO, VOS, OSV
and OVS. English, for instance, is generally considered to be an SVO language:

(10) John
S

eats
V

cheese.
O

This is only a very crude characterisation of a language and such a label is
more of a word order preference than a strict rule. Even English, with a fairly
rigid word order, has counterexamples to the SVO order:

(11) Cheese,
O

John
S

eats.
V

German behaves as a V2 language in declarative sentences, meaning that
the word order can be either SVO or OVS. Adjuncts can be placed before the
verb as well, pushing both subject and object after the verb (with a fairly strong
preference of placing the subject before the object).

(12) Antje
Antje

isst
eats

gerade
currently

den
the

Käse.
cheese.

50 CHAPTER 3. CORE GRAMMAR CONSTRUCTION

(13) Den
The

Käse
cheese

isst
eats

Antje
Antje

gerade.
currently.

(14) Gerade
Currently

isst
eats

Antje
Antje

den
the

Käse.
cheese.

The word order is different when the utterance is a question or a command.
In these cases, the verb is put in first position:

(15) Isst
Eats

Antje
Antje

gerade
currently

den
the

Käse?
cheese?

(16) Iss
Eat

den
the

Käse!
cheese!

On the other hand, the verb ends up last in a clause, when that clause is a
subordinate of another verb:

(17) Ich
I

denke,
think,

dass
that

Antje
Antje

den
the

Käse
cheese

isst.
eats.

I think that Antje is eating the cheese.

All the examples above assume that there is only one verb in a clause. This
is not the case for many sentences, due the presence of auxiliary verbs. If an
auxiliary verb is present in a clause, the position of the main verb (the one that
has its person and number matched with the subject of the clause) follows the
rules given above, but the other verbs move into a verb cluster, at the end of the
clause:

(18) Antje
Antje

hat
has

den
the

Käse
cheese

gegessen.
eaten.

Antje ate the cheese.

(19) Antje
Antje

würde
would

den
the

Käse
cheese

gegessen
eaten

haben.
have.

Antje would have eaten the cheese.

(20) Ich
I

denke,
think,

dass
that

Antje
Antje

den
the

Käse
cheese

gegessen
eaten

haben
have

würde
would

I think, that Antje would have eaten the cheese.

In the large majority of cases, the word order within the verb cluster is de-
termined by the following rule: the dependent verb (‘gegessen’ in the last ex-
ample) is on the left of its immediate dominator (‘haben’). However, there are
some cases where this does not hold, usually observed in subordinate clauses.
This is called the ‘auxiliary flip’ or Oberfeldumstellung:

3.1. THE GERMAN LANGUAGE 51

Vorfeld Left bracket Mittelfeld Right bracket Nachfeld
1 1 ∞ ∞ ∞

Subject Conjugated verb Subject Verb cluster Extraposed material
Object Complementiser Object Verb particle ‘zu’-clauses

Adjuncts Adjuncts Subordinate clauses

Table 3.1: This table gives a summary of how constituents can be placed in different topological fields. The
labels 1 and∞ indicate how many constituents can be placed in that particular field.

(21) Ich
I

denke,
think,

dass
that

Antje
Antje

den
the

Käse
cheese

wird
will

essen
eat

können.
can.

I think that Antje will be able to eat the cheese.

The order of verbs and objects in German is commonly explained using a
model of topological fields1. The field of the first main verb is called the left
bracket (‘die linke Klammer’), and the verb cluster is placed in the right bracket
(‘die rechte Klammer’). The position before the left bracket is called the Vor-
feld (‘forefield’), the positions between the left and right bracket the Mittelfeld
(‘middle field’), and the positions after the right bracket the Nachfeld (‘after-
field’)2. Verb-final clauses are considered to have an empty Vorfeld, and a pos-
sible complementiser (such as ‘dass’/‘that’ or ‘ob’/‘whether’) is located in the
left bracket. Table 3.1 summarises how different kinds of constituents can be
distributed over the different topological fields in each clause3.

One interesting property of German is that subject, objects and adjuncts can
move relatively freely across the Vorfeld, the Mittelfeld and sometimes even the
Nachfeld, as in examples 23-25, with a strikingly small effect on the meaning
of the sentence (permutation of constituents in the Mittelfeld is sometimes re-
ferred to as Mittelfeld scrambling4). There is, however, a preference to place the
subject before the object, so ‘den Käse’ in example (26) should be read to have
more focus.

1Actually, these topological fields are explicitly annotated in one of the treebanks of German,
NEGRA (Skut et al. 1997).

2As the German names Vorfeld, Mittelfeld and Nachfeld are so habituated, I will use these instead of
the respective English translations throughout this thesis.

3More fields are identified by some authors. See for instance (Kathol 1995) for an overview.
4There may be confusion of terminology here. I use the phrase ‘Mittelfeld scrambling’ for different

permutations of constituents within the Mittelfeld. This is different from the phenomenon that is
sometimes referred to as ‘extraction into the Mittelfeld’, in which a constituent is extracted out of a VP
into the Mittelfeld, as in the following example:

(22) Ich
I

plante
planned

über
about

Maria
Maria

gestern
yesterday

ein
a

Vortrag
presentation

zu
to

halten.
give.

Yesterday, I planned to give a presentation about Maria.

The interesting thing about this example is that ‘über Maria’ modifies the noun ‘Vortrag’ but is
extracted out of the verb phrase. See for instance (Müller 1997) for more details on this phenomenon.
The core grammar that is developed in this chapter will not be able to cover this type of extraction.

52 CHAPTER 3. CORE GRAMMAR CONSTRUCTION

(23) Antje
Antje

hat
has

gestern
yesterday

den
the

Käse
cheese

gegessen.
eaten.

(24) Antje
Antje

hat
has

den
the

Käse
cheese

gestern
yesterday

gegessen.
eaten.

(25) Gestern
Yesterday

hat
has

Antje
Antje

den
the

Käse
cheese

gegessen.
eaten.

(26) Den
The

Käse
cheese

hat
has

Antje
Antje

gestern
yesterday

gegessen.
eaten.

The Nachfeld is used for a wide variety of clauses. Among those, the most
important are extraposed relative clauses, subordinate clauses, sentential com-
plements and verb phrase complements, as displayed respectively in the next
examples:

(27) Antje
Antje

hat
has

den
the

Käse
cheese

gegessen,
eaten,

den
that

Bernd
Bernd

empfohlen
recommended

hat.
has.

Antje ate the cheese that Bernd recommended.
(28) Antje

Antje
hat
has

gemeint,
thought,

dass
that

Bernd
Bernd

den
the

Käse
cheese

empfohlen
recommended

hat.
has.

Antje thought that Bernd recommended the cheese.
(29) Antje

Antje
hat
has

gemeint,
thought,

Bernd
Bernd

hätte
has

den
the

Käse
cheese

empfohlen.
recommended.

Antje thought that Bernd recommended the cheese.
(30) Antje

Antje
hat
has

versucht
tried

den
the

Käse
cheese

zu
to

essen.
eat.

Antje tried to eat the cheese.

Except for sentential complements, constituents in the Nachfeld can be placed
towards the Mittelfeld (32). Also, non-finite clauses can be fronted to the Vor-
feld, and can take all (33), none (34) or some (35) of its arguments with it:

(31) Antje
Antje

hat
has

versucht
tried

ihm
him

den
the

Käse
cheese

zu
to

schenken.
give.

Antje tried to give him the cheese.
(32) Antje

Antje
hat
has

ihm
him

den
the

Käse
cheese

zu
to

schenken
give

versucht.
tried.

Antje tried to give him the cheese.
(33) Ihm

Him
den
the

Käse
cheese

zu
to

schenken
give

hat
has

Antje
Antje

versucht.
tried.

Antje tried to give him the cheese.

3.1. THE GERMAN LANGUAGE 53

(34) Zu
To

schenken
give

hat
has

Antje
Antje

ihm
him

den
the

Käse
cheese

versucht.
tried.

Antje tried to give him the cheese.
(35) Den

The
Käse
cheese

schenken
give

wird
will

er
he

seiner
his

Tochter.
daughter.

He will give the cheese to his daughter.

German has a moderately complex morphology. Verbs are inflected for tense,
number, person and mood5. Like English, both regular and irregular verbs are
observed. Nouns exhibit gender, case and number. Most word forms of a lex-
eme are equal to the lexeme’s base form. The inflection of a noun depends on
the noun’s declension class. The subject and the main verb have to agree with
respect to person and number. In contrast to English, noun compounding is done
by concatenating the two nouns: ‘information theory’ versus ‘Informationstheo-
rie’. Adjectives and nouns have to agree with respect to gender and number and
in ‘strongness’, the latter being determined by the (non-)presence and type of
determiner used in the noun phrase. Roughly, this means that case information
needs to be provided by the determiner, but if there is none, the adjective will
exhibit this information.

A peculiarity is the use of separable particles. For example, the verb ‘auswählen’
consists of the particle ‘aus’ and the verb ‘wählen’, and means ‘to pick’. In non-
finite forms (see example 36), the particle prefixes the verb, as well for finite
verbs that are located in the right bracket (in subordinate and relative clauses;
see example 37). When a finite verb resides in the left bracket, however, the
particle remains in the right bracket (example 38). In case the verb is in the
zu-form (to-form in English), ‘zu’ is placed as an infix between the particle and
the main verb (example 39).

(36) Antje
Antje

will
wants

den
the

Käse
cheese

auswählen.
out-choose.

Antje wants to pick the cheese.
(37) ...,

...,
dass
that

Antje
Antje

den
the

Käse
cheese

auswählt.
out-chooses.

..., that Antje picks the cheese.
(38) Antje

Antje
wählt
chooses

den
the

Käse
cheese

aus.
out.

Antje picks the cheese.
5Mood is divided into three categories in the Tiger treebank (Brants et al. 2002): indicative,

subjunctive (German: Konjunktiv) and imperative. The latter is used when the verb is a command
(‘Sit!’). In English, the indicative mood is mostly used, and the subjunctive form is hardly used,
except in sentences such as ‘Had I a hammer, I would hit the nail.’. However, the subjunctive mood
is more widely used in German.

54 CHAPTER 3. CORE GRAMMAR CONSTRUCTION

Antje
Antje

will
wants

den Käse
the cheese

essen
eat

2 NPacc

1 NPnom

lt-aux-inf

COMPS

〈 VPinf[
SUBJ 〈 1〉
COMPS 〈 〉

]〉

SUBJ 〈 1〉

[
lt-verb-transitive
SUBJ 〈 1 NPnom〉
COMPS 〈 2 NPacc〉

]

[
complement-head
SUBJ 〈 1〉

]

[
head-complement
SUBJ 〈 1〉

]

[
subject-head
SUBJ 〈 〉

]

Figure 3.1: A naı̈ve HPSG analysis of the German sentence ‘Antje will den Käse essen’.

(39) Antje
Antje

versucht
tries

den
the

Käse
cheese

auszuwählen.
out-to-choose.

Antje tries to pick the cheese.

3.2 HPSG analyses of German

There is a large literature on HPSG analyses for German (Nerbonne et al. 1994).
Many of them focus on the language’s word order, as it turns out to be hard to
create a formal model of this aspect of the German language. We are looking
for an analysis that not only models the correct word order (and rejects incorrect
ones), but also performs the semantic composition properly. Let’s first take a
look at the naı̈ve analysis of a simple German sentence in figure 3.1, assuming
the HPSG schemata and principles, as introduced in section 2.1.2.

Although this analysis is satisfactory, it does not extend to other word orders,
for instance when a complement or modifier is in the Vorfeld. Consider the
sentence ‘Den Käse will Antje essen’. First, ‘Antje’ and ‘essen’ will connect
correctly using the SUBJECT-HEAD rule. The following step would be to let
‘Antje essen’ be the complement of ‘will’. However, the complements list in the
feature structure of ‘Antje essen’ is not empty, and hence, the unification of the
HEAD-COMPLEMENT rule will fail.

3.2.1 The HEAD-CLUSTER schema and argument attraction

One of the most widely adopted ideas to address this issue has been proposed
by Hinrichs and Nakazawa (1994). The solution consists of two components:

3.2. HPSG ANALYSES OF GERMAN 55

head-cluster-schema

SYNSEM|XCOMP 2

HD-DTR|SYNSEM|XCOMP 〈 1〉 ⊕ 2

NH-DTR|SYNSEM 1

lt-args-attract

SS|LOC|CAT

HEAD aux-verb

VAL

SUBJ 1

COMPS 2

XCOMP

〈[
SS|LOC|CAT|VAL

[
SUBJ 1

COMPS 2

]]〉

Figure 3.2: Depicted are (a) a representation of the proposed HEAD-CLUSTER schema and (b) the type in the
hierarchy that introduces argument attraction. The operator ⊕ signifies list concatenation.

• First, the HEAD-CLUSTER schema is introduced. This schema allows an
auxiliary to take a VP as a verbal complement, without requiring the VP
to have saturated valence lists. The HEAD-CLUSTER schema does not dis-
charge the COMPS list feature, but applies to a newly introduced feature
called XCOMP.

• Lexemes that can act as the head of the HEAD-CLUSTER schema (i.e. hav-
ing a non-empty XCOMP list) do not require the argument to have empty
subject and complement lists. Instead, it identifies its own valence lists
with the remaining subjects and complements, a technique called argument
attraction. In principle, the auxiliary verb can have a semantic connection
to the attracted arguments (for raising verbs6), but no connection is formed
for other auxiliaries.

The definitions of both the HEAD-CLUSTER schema and the LT-ARGS-ATTRACT

type are shown in figure 3.2. This rule can be used for the verb cluster itself, but
also for the connection of the left bracket with the material on its right side (as
for the previous example).

3.2.2 A fronting analysis

It is generally assumed that the first element in the sentence (the Vorfeld) is
fronted, i.e. the dependency between the first constituent in the declarative sen-
tence and the deepest verb is considered to be a long-distance dependency. An
argument supporting this view is that the verb’s arguments are not introduced by

6A typical example of raising is: ‘Antje tried to eat the cheese’, where ‘Antje’ is both the sub-
ject/agent of ‘tried’ and ‘eat’. The lexical type of ‘tried’ should then make a connection between its
own semantic agent slot and the INDEX of the attracted argument.

56 CHAPTER 3. CORE GRAMMAR CONSTRUCTION

Den Käse
The cheese

2 NPacc

würde
would

lt-aux-inf

XCOMP

〈
VPinf[

SUBJ 1
SLASH 2

]
〉

SUBJ 1
SLASH 2

Antje
Antje

1 NPnom

gegessen
eaten

[
lt-verb-transitive
SUBJ 〈 1 NPnom〉
COMPS 〈 2 NPacc〉

]

[
comp-slash
SUBJ 〈 1〉
SLASH 〈 2〉

]

haben
have

lt-aux-psp

XCOMP

〈
VPpsp[

SUBJ 1
SLASH 2

]
〉

SUBJ 1
SLASH 2

[
cluster-head
SUBJ 〈 1〉
SLASH 〈 2〉

]

[
subject-head
SLASH 〈 2〉

]

[
head-cluster
SLASH 〈 2〉

]

[
filler-head
SLASH 〈 〉

]

Figure 3.3: An HPSG derivation for the sentence ‘Den Käse will Antje gegessen haben’. Notice the differences
with the analysis in figure 3.1: argument attraction, the use of the HEAD-CLUSTER schema and the introduction
of fronting using the SLASH feature. A translation for this sentence is ‘Antje would have eaten the cheese’, with
the focus of the sentence on ‘the cheese’. Notice that the argument attraction is not only carried out with respect
to the SUBJ and COMPS features, but also for the non-local feature SLASH.

the auxiliary verb, but by the deepest verb7. The fronting analysis thus makes
sure that the semantic roles are properly assigned: a fronted object is the ar-
gument of the deepest verb, not the auxiliary’s. The fronting is achieved by
moving the argument to the SLASH feature, and the most straightforward way to
do this is by means of a lexical rule. In order to showcase the use of the fronting
analysis and the use of argument attraction and the HEAD-CLUSTER rule, an
analysis of the German sentence ‘Den Käse würde Antje gegessen haben’ is
given in figure 3.3.

The extraction of a constituent to the Vorfeld can also be used for some-
what more complicated (and in principle unbounded) extraction, occurring very
frequently in newspaper text. The structure of the sentence is composed of
a direct speech construction (X says “Y ”), in which one constituent of Y is
fronted (“Y1”, X says, “Y2”). The analysis we give is uses a very specialised
rule (SLASH-ESCAPE). This rule combines two incomplete VP phrases: the first
needs a sentence as its complement, the second needs the extracted constituent.
No constraints are put on the extracted constituent. The SLASH-ESCAPE rule

7One can dispute which verb fronted adjuncts modify. This uncertainty is also expressed in the
Tiger treebank, in which both levels of modification are found.

3.2. HPSG ANALYSES OF GERMAN 57

slash-escape

SYNSEM

[
SLASH 〈 1〉
COMPS 〈 〉

]

HD-DTR
VP

[SYNSEM|COMPS 〈synsem-sentence〉]
NH-DTR

VP
[SYNSEM|SLASH 〈 1〉]

Peter
Peter

sagt Antje
says Antje

will den Käse essen
wants the cheese eat

1 NPnom

VP
[COMPS 〈synsem-sentence〉]

VP
[SLASH 〈 1 NPnom〉]

VP[
slash-escape
SLASH 〈 1〉

]

S[
filler-head
SLASH 〈 〉

]

Figure 3.4: This figure gives the basic structure of the SLASH-ESCAPE rule, and a simple example of how this
rule is used. A translation for the sentence in the example is ‘ “Peter”, Antje says, “wants to eat the cheese” ’.

and an example of its usage are given in figure 3.4.

3.2.3 Complement extraposition

Apart from leftward extraction, German also exhibits some forms of extraction
in the opposite direction. The analyses used in the core grammar are different
for the extraction of complements and modifiers. I will start with the former.
Consider the following sentence:

(40) Antje
Antje

hat
has

die
the

Neigung
urge

gehabt
had

den
the

Käse
cheese

zu
to

essen.
eat.

Antje has had the urge to eat the cheese.

In this example, the noun ‘Neigung’ has a non-finite verbal complement, in
this example realised as ‘den Käse zu essen’. However, there is a verb be-
tween the two constituents, and therefore the noun’s complement should be
moved to a non-local feature by means of a lexical rule. The obvious location
would be SLASH, but this could interfere with the leftward extraction. There-
fore, a new non-local feature RSLASH is brought into existence. Discharging the
RSLASH feature is done using the RFILLER-HEAD rule, analogous to the stan-
dard FILLER-HEAD rule. An analysis for example 40 is given in figure 3.5. This
mechanism can also be used for the rightward extraction of other NP comple-
ments, such as wh-phrases and complementiser phrases:

58 CHAPTER 3. CORE GRAMMAR CONSTRUCTION

die Neigung
the urge

gehabt
had

den Käse zu essen
the cheese to eat

NPacc
[COMPS 〈VPizu〉]

NPacc[
comp-rslash
RSLASH 〈VPizu〉

] V
[COMPS 〈NPacc〉]

VPizuVP[
COMPS 〈 〉
RSLASH 〈VPizu〉

]

VP[
head-rfiller
COMPS 〈 〉
RSLASH 〈 〉

]

Figure 3.5: This figure depicts the relevant portion of the HPSG analysis for the sentence ‘Antje hat die Neigung
gehabt den Käse zu essen’.

(41) Antje
Antje

wird
will

keine
no

Ahnung
idea

haben
have

wo
where

der
the

Käse
cheese

ist.
is.

Antje will have no idea where the cheese is.
(42) Antje

Antje
wird
will

die
the

Eindruck
impression

haben,
have

dass
that

Bernd
Bernd

den
the

Käse
cheese

isst.
eats.

Antje will have the impression that Bernd eats the cheese.

3.2.4 Adjunct extraposition

Extraposition of adjuncts to the Nachfeld is done in a different way, and the anal-
ysis I propose is heavily indebted to the one proposed by Crysmann (2005). The
most prominent form of adjunct extraposition is relative clause extraposition:

(43) Antje
Antje

hat
has

sich
REFL

über
at

den
the

Käse
cheese

gefreut,
rejoiced,

den
that

Bernd
Bernd

gegessen
eaten

hat.
has.

Antje looked forward to the cheese that Bernd ate.

The basic idea behind the analysis is to collect all possible anchors in the ANC

feature when creating non-verbal constituents. The type of each anchor is ref-
index. When a constituent is connected to the verb, the set of anchors is made
visible to the extraposed material, so they can be combined. This combination is
achieved using a newly introduced ANC-BIND rule8. In order to ensure the com-
patibility between the material in the Nachfeld and the anchor, the subfeatures

8As said earlier, the PET parser does not support sets. Therefore, the collection is encoded as a list,
in such a way that the rightmost anchor is the head of the list. There are n BIND-ANC rules to connect
the extraposed material to the i-th element in the list. Small experiments showed that no gains were

3.2. HPSG ANALYSES OF GERMAN 59

anc-bind-1
SYNSEM [ANC 〈 〉]
HD-DTR

VP
[SYNSEM|MOD|CONT|INDEX 1]

NH-DTR
VP

[SYNSEM|ANC 〈 1〉 ⊕ list]

über
at

den Käse
the cheese

gefreut
rejoiced

den Peter gegessen hat
that Peter eaten has

P NP[
ANC 〈 1〉
INDEX 1

]

PP[
head-complement
ANC 〈 1〉

] V
[COMPS 〈PP, REFL〉]

VP[
complement-head
ANC 〈 1〉
COMPS 〈REFL〉

] RC
[MOD|INDEX 1]

VP[
anc-bind-1
ANC 〈 〉
COMPS 〈REFL〉

]

Figure 3.6: This figure illustrates how an extraposed adjunct (a relative phrase in this case) can be connected to
an anchor in the Mittelfeld. At the top, a definition of the ANC-BIND rule is given. Below, a (partial) analysis
is given for the sentence in example 43. The analysis shows how a collection of anchors is built up within
the non-verbal constituent (in this case a PP, containing only one anchor), and how it is connected using the
ANC-BIND rule.

for gender and number within the anchor are matched against the requirements
in the MOD feature of the extraposed material. This is particularly important
for relative phrases, where the relative pronoun’s gender and number need to be
equal to the gender and number of the noun that the relative phrase modifies.
An analysis for example 43 is given in figure 3.6.

The original paper (Crysmann 2005) only focuses on the extraposition of rel-
ative clauses, but it became apparent that this analysis is applicable to the extra-
position of comparative phrases as well (if one includes the adjectival INDEXes
as well in the list of anchors):

(44) Antje
Antje

denkt
thinks

dass
that

dein
your

Käse
cheese

herrlicher
more-delicious

ist
is

als
than

mein
my

Käse.
cheese.

achieved with n > 3. Another implementation detail is that the PET parser can not maintain lists that
are used for both collection and discharging. Therefore, the feature ANC-ALL is used for collection,
and when the anchors are taken up by the verb phrase, they are moved to the ANC-ACTIVE feature,
which can be discharged by the ANC-BIND rules.

60 CHAPTER 3. CORE GRAMMAR CONSTRUCTION

Antje thinks that your cheese is more delicious than my cheese.

3.3 Implementing a core grammar for German

While the previous section shows how the analyses will eventually look like,
this section goes into more detail on how a grammar can be written in the T DL
framework (Krieger and Schäfer 1994) to reach these analyses. As has been dis-
cussed earlier, the grammar implementation should be able to cover a number of
linguistic phenomena, while constraining local ambiguity and over-generation.
Also, the grammar should be written in a compact and well-structured manner,
in order to keep the grammar understandable, and thus maintainable.

3.3.1 Basic building blocks

Many grammars within the DELPH-IN framework are extensions of the lang-
uage-agnostic Matrix grammar (Bender et al. 2002) or its customisation kit
(Bender and Flickinger 2005). However, due to the history of the develop-
ment of the project, the core grammar in this chapter does not use it as its
starting point. The initial intention behind the project was to use Miyao et al.’s
(2004) technique to create a grammar for German, using the Tiger treebank as
the source treebank. In this stage, the Matrix grammar would introduce too
much complexity, and for many phenomena, additional grammar engineering
would be necessary. Hence, the additional value of using the Matrix grammar
was not large enough. However, it quickly became apparent that a conversion
of the source treebank into HPSG derivation trees, using heuristic conversion
rules only, would yield poor results9: either the core grammar would remain
rudimentary, and the grammar would suffer from unacceptable over-generation
and would model the German language unsatisfactorily, or more effort would be
put into grammar engineering, with a linguistically more appealing grammar as
a result. As the project proceeded, the second solution received more attention,
and more Matrix-compliance was achieved as a side effect, in terms of the nam-
ing of features, most notably for the semantics. However, the grammar never
reached full compatibility.

As explained in section 2.6.1, the type hierarchy is one of the key structures
of a grammar. Lexemes and rules are just instantiations of the types in the hi-
erarchy. The top node of the type hierarchy is represented by the top type. In
the core grammar, all variables, for person, number, mood, tense, verbal forms,
inflection classes, agreement information, etc are directly attached to the top
node. The large majority of these variables are featureless and make heavy use

9I will propose another methodology to achieve this conversion in section 5.3.

3.3. IMPLEMENTING A CORE GRAMMAR FOR GERMAN 61

sign-match

SYNSEM

LOCAL

CAT

HEAD

[
head
MOD synsem
EXTRA bool

]

VAL

SUBJ list
COMPS list
XCOMP list
SPR list
SPEC list

LINEAR linear
LINEAR-C linear-c

CONT

mrs

HOOK

[
hook
LTOP handle
INDEX individual

]

RELS diff-list
HCONS diff-list

PLACE-V linear-v
PLACE-N linear-n
PLACE-O linear-o

NONLOCAL

SLASH local
RSLASH local
REL local
QUE bool

ANC

[
anc
ANC-ALL diff-list
ANC-ACTIVE diff-list

]

C-CONT mrs
INFL bool
STEM string

Figure 3.7: This figure shows the basic feature geometry of the core grammar. Most of the features are known
to the reader familiar with HPSG, and the XCOMP and ANC features have been discussed in section 3.2. The
PLACE-X and LINEAR features will be introduced later in this section.

62 CHAPTER 3. CORE GRAMMAR CONSTRUCTION

synsem-match
LOCAL local
NONLOCAL nonlocal
ANC anc

top

... ...synsem

synsem-no-match

...

Figure 3.8: Three variants of synsem are defined. synsem is the top of this subhierarchy, but leaves undeter-
mined whether it should be a synsem-match or synsem-no-match, and defines no subfeatures. synsem-no-match
indicates that it should not match a synsem-match. The features that are normally associated with a synsem are
introduced by the type synsem-match.

of multiple inheritance, as advocated by Flickinger (2000). Most other daugh-
ters of the top node are familiar categories from HPSG: sign, synsem, local,
nonlocal, etc. Because one type (e.g. local) introduces the other (e.g. cat), a
minimal feature structure can be read off from the type hierarchy. The feature
geometry of the core grammar is shown in figure 3.7.

In a number of cases, introducing all subfeatures for a type is not necessary,
and hiding these subfeatures will yield feature structures that are easier to read
and, as a side effect, speed up computations. Also, sometimes one needs to
express that a certain type should not be there. To accomplish this behaviour,
some types are organised as synsem in figure 3.8.

Seven types of heads are identified in the core grammar: verbs, nouns, deter-
miners, adjectives, adpositions, adverbs, and other. Some of the head types re-
ceive additional features. For example, verbs have a feature to indicate whether
the verb is an infinitive, a finite verb, a participle, an imperative or a ‘zu’+infini-
tive (comparable to the English ‘to’+infinitive). Nominal heads display whether
the NP contains a determiner, and whether this head can be followed by an ap-
position. The powerset of the heads is defined as well, allowing to select for any
disjunction of heads. Some head features are defined for multiple heads. For in-
stance, DEGREE is a useful feature for both adjectives and certain adverbs, and
agreement features are added to verbs, nouns, adjectives and determiners.

A subhierarchy of the sign-match type is shown in figure 3.9. Roughly, this
type divides into a few streams. For instance, all inflectional rules derive from
lex-infl-rule, all lexical rules (following the inflection) stem from lex-deriv-rule,
and all phrasal rules stem from phrase, of which some of the subtypes are de-
picted in the figure as well. All lexical items derive from lex-type. Not shown
are the constraints that the types introduce, which take care of the creation of
MRSs, introduce HD-DTR and NH-DTR for headed structures, and make sure

3.3. IMPLEMENTING A CORE GRAMMAR FOR GERMAN 63

sign-match

word-or-lex-rule

lex-item

lex-rule

lex-rule-or-phrase

structure-unary structure-binary phrase

str-non-headed str-headed

lex-infl-rule lex-deriv-rule str-nh-un str-nh-bin str-h-bin str-h-un

Figure 3.9: The subdivision of the sign type into lexical types and several sorts of rules. For space reasons,
some abbreviations are used: ‘str’ for structure; ‘h’ and ‘nh’ for headed and non-headed, respectively; ‘un’ and
‘bin’ for unary and binary, respectively.

that inflected words can not be inflected again.

3.3.2 Lexical types

In earlier studies (Cahill et al. 2005; Miyao et al. 2004), the lexical types (or
dictionary templates) were created dynamically. The advantage of this approach
is the reduced development time, and there is the possibility that the algorithm
finds lexical types of which the grammar writer might not have assumed that
they existed10. Because this study exhibits a more constructionalist approach
to some of German’s non-configurational properties than Hockenmaier (2006),
the permutation of constituents in the (Mittelfeld is taken care of by rules, not
separate lexical entries), one can expect a more overseeable set of lexical types.
Therefore, the set of lexical types is defined by the grammar writer, and not by
the algorithm. Excluding non-auxiliary verbs, 94 lexical types are defined.

This does not entail that no form of automation can be used in defining the
lexical types. Especially for verbs, there is time to gain: all non-auxiliary verbal
lexical types are created automatically using a script, enumerating all different

10There are a number of objections against this argument. Often, these lexical types are very rare,
and it is not likely that the resulting grammar will profit from having learnt this type, also because the
disambiguation model will not favour them in the analyses. There is also a significant risk that the
surprising lexical type is an error, introduced by the algorithm or the treebank. A related issue is that,
exactly because the phenomenon is so infrequent and idiosyncratic, it is likely that the annotations in
the treebank will be conflicting. This will yield an inconsistent grammar, which leads to unnecessary
ambiguity.

64 CHAPTER 3. CORE GRAMMAR CONSTRUCTION

combinations of subject types (nominative NP, expletive ‘es’, CP), and all pos-
sible sets of complements (NPs in different cases, CPs, PPs, wh-phrases, direct
speech, etc) up to size three. Smart typing takes care of agreement of between
subject and conjugated verb, between subject and the reflexive (if one is defined
by the type), and the proper composition of arguments in the MRS. In total, 897
possible combinations of complements for non-auxiliary verbs created in this
manner.

A special kind of lexical types is formed by generic lexical types, which is
used by PET’s unknown word handling mechanism, usually subtypes of existing
lexical types. For instance, if an unknown word is seen, its (guessed) part-of-
speech tag can be used to spawn generic lexical types in the parse chart. The
core grammar contains generic lexical types for 12 different head types.

3.3.3 The core lexicon

Another difference to previous DGE methods is that a core lexicon is defined.
All lexemes in the core lexicon share some of the following (correlating) char-
acteristics:

• They have idiosyncratic syntactic or semantic properties. That means that
it would be hard for a deep lexical acquisition (DLA) procedure to derive
what the lexeme’s properties are.

• There is no agreement on the linguistic properties for these lexemes. For
instance, argument attraction as a way to describe German auxiliary verbs
was not a part of the original HPSG proposal, but has been accepted as
a good solution later. New advances can be incorporated with ease (and
evaluated properly) when a core lexicon has been constructed.

• These lexemes are frequent in usual text. This has the consequence that
small improvements to these lexemes will have a relatively large influence
on the performance of the grammar at large. Also, errors in the DLA pro-
cedure are prevented this way.

• Not many lexemes are connected to one lexical type, indicating that these
word classes are fairly closed. For instance, there is only one future auxil-
iary verb in German.

The core grammar contains approximately 550 lexemes, divided over the fol-
lowing categories:

• Auxiliary verbs (for future and past tense, modal verbs, raising and control
verbs)

3.3. IMPLEMENTING A CORE GRAMMAR FOR GERMAN 65

• Pronouns (demonstrative, personal, reflexive, relative, interrogative, indefi-
nite)

• Determiners (definite, indefinite, demonstrative, possessive, interrogative)

• Adpositions (pre-, post- and circumpositions, preposition/article contrac-
tions (‘im’;‘in the’), preposition/adverb contractions (‘wobei’; ‘where by’))

• Complementisers

• A small number of special adverbs for comparative constructions

• A few multi-word adverbs

3.3.4 Semantics vs syntactic dependencies

All types concerning the semantics (in the format of Minimal Recursion Seman-
tics (Copestake et al. 2005)) are taken over verbatim from the Matrix grammar.
Put very briefly, an MRS can be regarded as a set of semantic frames (relations),
carrying a predicate, and defining zero or more roles (ARG1, ARG2, etc), each
of them filled by other frames. The distinctive feature of the MRS formalism is
the ability to underspecify semantic scope. For instance, regard the following
sentence (a), with two distinct meanings (b) and (c):

(45) a. Every dog chases some cat.
b. All dogs chase the same cat.
c. All dogs chase a different cat.

The two meanings can be represented in predicate logic as follows:

∃y ∀x dog(x), cat(y), chase(x, y)
∀x ∃y dog(x), cat(y), chase(x, y)

However, it can be summarised in one MRS formula, leaving the scope of
both quantifiers (‘every’, ‘some’) underspecified:

h1:every(x, h3, h8), h3:dog(x), h4:chase(x, y),
h5:some(y, h7, h9), h7:cat(y)

Equating h8 = h4 and h9 = h1 yields the first reading, where the existential
quantifier outscopes the universal one. On the other hand, if h8 = h5 and h9 =
h4, the second meaning is realised. By not equating any handles, both meanings
(and no other meaning) can be embedded in one reading. See (Copestake et al.
2005) for more details.

The implementation of the formalism in the DELPH-IN framework reveals a
number of other differences between MRS structures and standard syntactic rep-
resentations. For instance, observe figure 3.10, which gives the ERG (Flickinger

66 CHAPTER 3. CORE GRAMMAR CONSTRUCTION

LTOP h1
INDEX e2

RELS

proper_q_rel
LBL: h3
ARG0: x6
RSTR: h5
BODY: h4

 named_rel

LBL: h7
ARG0: x6
CARG: ”Antje”

 "_eat_v_out"

LBL: h8
ARG0: e2
ARG1: x6

HCONS {h5 qeq h7}

Figure 3.10: The MRS as output by the ERG on the sentence ‘Antje is eating out’.

2000) output of the sentence ‘Antje is eating out’. It is obvious that there is not a
one-to-one relation between words and relations. First, some words are consid-
ered to be semantically void. For instance, the verb ‘eat out’ is made up of two
words, but only introduces one semantic relation. The particle ‘out’ has a lexical
entry, but does not introduce a semantic relation, as it is assumed that the verb
that takes up the particle carries all semantic content. On the other hand, some
words are directly related to more than one relation. In the example, the re-
lations with predicate names proper q rel and named rel are introduced
by the name ‘Antje’ directly. Another difference is that two types of relations
are defined: normal and special relations. The first are language-specific, and
are usually connected to open word classes. In the format in the example, these
are embraced in double quotes. Special relations introduce meaning that is not
entirely lexical. The quantification relation in figure 3.10 is an instance of such
a relation.

However, the extra assets of the MRS formalism compared to syntactic de-
pendencies will not be used in this thesis (although the active/passive distinc-
tion is made). There are two reasons for this design choice. The first is that
a large part of the extra information is not included in the Tiger treebank, the
most important being the difference between scopal and intersective modifiers.
The consequence is that the deep lexicon acquisition procedure can not prop-
erly derive its lexical entries, most notably the adverbs. Hence, the resulting full
grammar would be incorrect. In practice, this means that the LTOP features in
HOOK and the LBL features in the individual relations remain underspecified.
HCONS will always be an empty list.

The second reason to not use the entire expressiveness of the MRS formalism
is that there would be no way to compare the grammar’s output against the Tiger
treebank, and hence, there would be no gold treebank. Evaluation could then
only be done by treebanking a small corpus by hand. On the other hand, the
availability of a straight comparison against the Tiger treebank will create large
advantages, which we will exploit in later chapters: the dependencies can be
used for unit testing (section 5.2), and a large-scale dynamic HPSG treebank
can be created automatically (section 5.3).

3.3. IMPLEMENTING A CORE GRAMMAR FOR GERMAN 67

3.3.5 Morphology

As we have seen in section 3.1, German is considered to be a language with a
moderately complex morphology, for three parts-of-speech: verbs, nouns and
adjectives. German morphology is for a large part predictable from a word’s
stem and the desired morpho-syntactic properties, and the PET parser supports
morphological rules based on regular expressions. However, to simplify the
DLA process, the core lexicon (and the lexical entries from the DLA step) as-
sume that all verbs are irregular, which can be represented as (word form, in-
flectional rule, stem) triples. In total, 99 inflectional rules are devised in such a
way that maximal generality of the rules is achieved (i.e. that one rule can cover
more than one cell in the inflection table). The following is an example of an
inflectional rule:

ir-verb-npd-pr-13-pl-k :=
%suffix (xyx xyx)
lex-infl-rule-verb-npd-fin &
[SYNSEM.LOCAL.CAT.HEAD.AGR agr-pr-13-pl-k].

This inflectional rule will specialise the verb’s AGR feature: after application
of the rule, the lexical item has present tense, is either first or third person plural,
and is in the subjunctive mood (German: Konjunktiv). The suffix part is present
for technical reasons, otherwise the parser will not recognise the rule as an in-
flectional rule; the suffix is crafted such that it will never match. The ‘npd’ (‘no
particle deletion’) infix in the parent type indicates that no particle needs to be
deleted from the COMPS list, because it is already contained in the verb. Hence,
there are two different entries in the inflections lists for the verb ‘ablehnen’ (‘to
reject’) with the same AGR feature:

ablehnt IR-VERB-NPD-PR-3-SG-I ablehnen
lehnt IR-VERB-PD-PR-3-SG-I ablehnen

For the core lexicon, the lexeme’s inflection triples were entered manually.
The discovery of the inflection of words in the dynamic lexicon (from the DLA
procedure) is slightly more complicated, and will be discussed in section 4.3.2.

3.3.6 HPSG schemata and topological fields

Eight generic immediate dominance schemata are defined in the core grammar:

• STRUCTURE-HEAD-ADJUNCT

• STRUCTURE-HEAD-SPECIFIER

• STRUCTURE-HEAD-SUBJECT

68 CHAPTER 3. CORE GRAMMAR CONSTRUCTION

• STRUCTURE-HEAD-COMPLEMENT11

• STRUCTURE-HEAD-CLUSTER

• STRUCTURE-HEAD-FILLER

• STRUCTURE-HEAD-RFILLER

• STRUCTURE-HEAD-APPOSITION

They are organised according to the following scheme, inspired by Müller
(2002): each HEAD-X derives from the other HEAD-NON-X schemata. If the
HEAD-X schema affects a certain part of the feature structure (e.g. SUBJ), then
the HEAD-NON-X schema defines a kind of standard behaviour for that fea-
ture (e.g. copy the SUBJ feature from the head daughter). For instance, these
are definitions for STRUCTURE-HEAD-NON-SUBJECT and STRUCTURE-HEAD-
SUBJECT12:

structure-head-non-subject :=
structure-headed-binary &

[SYNSEM [LOCAL.CAT.VAL.SUBJ #subj],
HD-DTR.SYNSEM [LOCAL.CAT.VAL.SUBJ #subj]].

structure-head-subject :=
structure-head-non-complement &
structure-head-non-cluster &
structure-head-non-adjunct &
structure-head-non-filler &
structure-head-non-apposition &
structure-head-non-specifier &

[SYNSEM [LOCAL.CAT.VAL.SUBJ < >],
HD-DTR.SYNSEM [LOCAL.CAT.VAL.SUBJ < #subj >],
NH-DTR.SYNSEM #subj].

However, STRUCTURE-HEAD-SUBJECT is still not finished. We have seen
before that topological fields are a crucial tool for describing word order of
German in the verbal domain, and a core grammar for German should model this
aspect appropriately. What is proposed in this section is a flexible and powerful
solution to define topological fields in terms of a finite state automaton (FSA).
The FSA that models the topological fields in the verbal domain is given in
figure 3.11. The states/vertices represent the topological fields themselves. The
FSA’s edges indicate how an analysis can proceed through different topological
fields while creating an analysis bottom-up. Let’s see which path in the FSA is
followed for the following sentence (see figure 3.3 for an HPSG analysis):

(46) Antje
Antje

würde
would

den
the

Käse
cheese

gegessen
eaten

haben.
have.

11In fact, STRUCTURE-HEAD-COMPLEMENT has three variants, eliminating the first, second or third
complement from the COMPS list. These are necessary for the potential different orderings of comple-
ments.

12Later, we will see why STRUCTURE-HEAD-NON-RFILLER is not in this list.

3.3. IMPLEMENTING A CORE GRAMMAR FOR GERMAN 69

start rb nf mf lb vf

did-vfdid-lbdid-mfdid-nfdid-rbstart

can-notcan-vfcan-lbcan-mfcan-nfcan-rb

linear-v

Figure 3.11: These figures show how the treatment of topological fields can be regarded as a finite state automa-
ton, and how this mechanism can be implemented in a hierarchy of typed feature structures. The abbreviations
‘vf’, ‘mf’ and ‘nf’ stand for Vorfeld, Mittelfeld and Nachfeld, respectively; ‘lb’ and ‘rb’ stand for ‘left bracket’
and ‘right bracket’.

Antje would have eaten the cheese.

The deepest verb is ‘gegessen’, which is in the ‘start’ state initially. ‘gegessen’
is combined with ‘haben’, which forms together the right bracket. There is no
Nachfeld, so that phase is skipped. Instead, the next state is ‘mf’ (Mittelfeld),
when the complement ‘den Käse’ is coupled with the right bracket. There is no
path in the FSA from ‘mf’ to ‘nf’, which entails that this phrase excludes the
possibility to combine with any constituent in the Nachfeld later in the process.
The last two steps are also taken, after which the FSA ends in the Vorfeld state.
From here, there are no outgoing edges in the FSA, meaning that the tree for the
entire phrase can not combine with anything else from here.

This FSA needs to be implemented in the T DL framework (Krieger and
Schäfer 1994). At the basis of the implementation is a subhierarchy of the linear
type. This type has three daughters, one for each domain: linear-v, linear-n and
linear-o. A subdivision of the linear-v type is shown in figure 3.11. Under
linear-v, there is a can layer and below the can layer, there is the did layer. Both
the can and did layer contain one type for each topological field. Additionally,
there is a start node in the did layer. The did layer inherits from the can layer
using a many-to-many relation, indicating which states can follow the current
state: every line from the did layer to the can layer equals an arrow in the
corresponding FSA. In the example in figure 3.11, if the current phase of the
constituent is Mittelfeld, it can remain in the Mittelfeld stage or move on to the
left bracket (but not to the Vorfeld or Nachfeld). A vertical line means that a

70 CHAPTER 3. CORE GRAMMAR CONSTRUCTION

certain topological field can be repeated. Vertices with no outgoing connections
are represented in the did layer via a can-not node.

Every subtree in an analysis has one of the did types in its LINEAR feature,
which indicates in which state the subtree currently is. The content of the LIN-
EAR feature can be used by the root conditions (determining whether a certain
constituent spanning the complete utterance is indeed a correct sentence): the
root condition for declarative sentences requires the Vorfeld to be completed
(i.e. the LINEAR feature to be did-vf), while interrogative sentences should be
have its LINEAR feature set to did-lb.

The rules in the grammar make use of the LINEAR feature. For each topolog-
ical field, a structure type is created, in which the LINEAR features are checked
and updated. For instance:

structure-mittelfeld := structure-verbal &
[NH-DTR.SYNSEM.LOCAL.PLACE-V did-mf,

HD-DTR.SYNSEM.LOCAL.CAT.LINEAR can-mf,
SYNSEM.LOCAL.CAT.LINEAR did-mf].

This type makes sure that the head daughter is allowed to engage in a Mit-
telfeld rule. This can be any did-subtype of can-mf. Also, the rule marks the
newly created constituent as did-mf. The PLACE-V feature introduces extra pos-
sibilities. For instance, a verb can mark that one of its complements should
only appear in certain topological fields. Furthermore, a modifier can define in
which topological field it should appear13, and with smart typing in the can and
did layers, even sets of topological fields.

A tentative definition of STRUCTURE-MITTELFELD-SUBJECT-HEAD is as
follows:

structure-mittelfeld-subject-head :=
structure-mittelfeld &
structure-head-subject &
structure-head-last.

This is not a complete definition yet. The reader might have wondered what
the interplay is between non-local constructions and the rule presented before.
How does a certain rule know whether the ANC-ALL features from both daugh-
ters should be merged or not? And what to do with the RSLASH features from
both daughters? It turned out that this behaviour does not coincide on the
generic schema level (e.g. STRUCTURE-HEAD-SUBJECT), but it does fit com-
fortably on the level of individual rules (e.g. STRUCTURE-MITTELFELD-SUB-
JECT-HEAD). Therefore, the definition of STRUCTURE-MITTELFELD-SUBJECT-
HEAD should define its behaviour in terms of how and whether the NONLOCAL

and ANC features should percolate upwards:
13Seen from this perspective, the PLACE-X features share some characteristics with the POST-HEAD

Boolean feature in the Matrix grammar.

3.3. IMPLEMENTING A CORE GRAMMAR FOR GERMAN 71

structure-mittelfeld-subject-head :=
structure-mittelfeld &
structure-head-subject &
structure-head-last &
structure-rslash-from-nh &
structure-rel-from-nh &
structure-anc-add-none &
structure-anc-active-nh.

Summarising, each rule that is finally instantiated by the parser is a combina-
tion of the following dimensions:

• An HPSG schema

• A topological field

• Head-first or head-last

• Non-local properties

So far, it has been assumed that the right bracket is not empty, with a right-
branching analysis. In case the right bracket is empty, we follow Crysmann
(2003), and use a left-branching analysis. This makes the FSA for verb slightly
more complicated, with one hierarchy for either direction of branching. The
FSA for the left-branching analyses is simpler, because only three fields are de-
fined (the right bracket and Nachfeld cease to exist in this scenario). Separable
verb particles are considered as normal complements of the verb, and are put in
the Mittelfeld (and not in the right bracket). This is more efficient for the same
reason as put forward by Crysmann (2003): in that case, the gap was highly
underspecified, and the same holds here for the particle, leading to large local
ambiguities. A disadvantage of this (compared to the situation where the parti-
cle is considered to be part of the right bracket) is that rightward extraposition
to the Nachfeld can not be analysed by the core grammar, if the right bracket
only consists of the separable particle:

(47) Antje
Antje

isst
eats

den
the

Käse
cheese

auf
up

den
that

Bernd
Bernd

mitgebracht
brought

hat.
has.

Antje eats up the cheese that Bernd brought.

We have seen examples for the verbal domain only so far, but two different
domains are defined as well: nominal and other. This means that the entire no-
tion of word order is implemented by using FSA to model topological fields.
For the nominal domain, the core grammar defines five fields: head noun, de-
terminer, pre-determiner, post-determiner/pre-noun and post-noun. For all other
heads (e.g. adverbs, adjectives), the topological field structure is simpler: first,
branch leftward (take elements on the right side of the head), and then branch
rightward.

72 CHAPTER 3. CORE GRAMMAR CONSTRUCTION

3.3.7 Coordinations

An important part of a deep grammar is the implementation of coordination
structures. I will not delve into details about this part of the core grammar,
however, but there are a few examples I would like to highlight.

Coordinations of verb phrases often display a form of ellipsis, which means
that a certain part of the phrase is deleted (or: elided), because the hearer is able
to infer what the deleted part is. Consider the following sentences:

(48) [Antje
Antje

will
wants

den
the

Käse
cheese

essen
eat

] und
and

[Peter
Peter

will
wants

das
the

Bier
beer

trinken.
drink.

]

Antje wants to eat the cheese and Peter wants to drink the beer.
(49) Antje

Antje
[isst

eats
den
the

Käse
cheese

] und
and

[trinkt
drinks

das
the

Bier.
beer.

]

Antje eats the cheese and drinks the beer.
(50) Morgen

Tomorrow
will
wants

Antje
Antje

[den
the

Käse
cheese

essen
eat

] und
and

[das
the

Bier
beer

trinken.
drink.

]

Tomorrow, Antje wants to eat the cheese and drink the beer.
(51) Morgen

Tomorrow
will
wants

[Antje
Antje

den
the

Käse
cheese

essen
eat

] und
and

[Peter
Peter

das
the

Bier
beer

trinken.
drink.

]

Tomorrow, Antje wants to eat the cheese and Peter wants to drink the
beer.

(52) Morgen
Tomorrow

[will
wants

Antje
Antje

den
the

Käse
cheese

essen
eat

] und
and

[will
wants

Peter
Peter

das
the

Bier
beer

trinken.
drink.

]

Tomorrow, Antje wants to eat the cheese and Peter wants to drink the
beer.

In examples 48-50, the subject (‘Antje’) is elided, and it functions as a subject
in the second conjunct as well. The adverb ‘morgen’ is elided in examples 51-
52. The core grammar properly models that the elided constituent plays a role
in both conjuncts. For instance, ‘Antje’ fulfills the subject role for both ‘essen’
and ‘trinken’ in the first three examples.

Another example where constituents play multiple roles in one phrase is when
non-maximal noun phrases are coordinated:

(53) Von
From

seinen
his

Beschäftigten
employees

verlange
demands

er
he

vor
for

allem
all

Arbeitsmoral
labour-ethics

und
and

3.4. SUMMARY 73

ordentliches
orderly

Auftreten.
demeanour.

He particularly demands labour ethics and orderly demeanour from his
employees.

(54) Der
The

französische
French

Multi-Unternehmer
multi-entrepreneur

und
and

ehemalige
former

Minister
minister

Bernard
Bernard

Tapie...
Tapie...

In these examples, the modifier ‘vor allem’ and the apposition ‘Bernard Tapie’
should be connected to both elements of the coordinated phrase (‘Arbeitsmoral’
and ‘Auftreten’ in example 53; ‘Multi-Unternehmer’ and ‘Minister’ in example
54). Another peculiar coordination, at the interface of morphology and syntax,
that the core grammar covers is the following:

(55) die
the

blutigen
bloody

Kasten-
castes-

und
and

Religionskriege
religion-wars

In this case, it seems as if there is a coordination between ‘Kasten-’ and
‘Religions’, both of them modifying ‘kriege’14.

The implementation of coordination structures can be a tedious part of writ-
ing a grammar. There are a few reasons for this. First, coordination of con-
stituents can often be analysed using non-lexical solutions only. For instance,
the coordination of two singular NPs containing count nouns yields a plural NP,
in both English and German. A coordination of mass nouns, on the other hand,
yields a singular NP. Another source of complexity is that rules for coordina-
tions frequently introduce much ambiguity, which can only be constrained on
the basis of the semantics of the conjuncts, and not on the syntactic properties.
Some rules for coordinations have been implemented in the core grammar, but
the balance between the amount of sentences that displayed this kind of coor-
dinations was relatively small, and did not weigh out the computational conse-
quences. A number of rules for asyndetic coordinations (coordinations without
a coordinator, such as ‘und’/‘and’) were therefore not used eventually.

3.4 Summary

In the remainder of the thesis, the core grammar will play a major role, being
the base for the results in the forthcoming experiments. The main motivation for
the workflow I present in chapter 3-5 was that hand-written formal grammars are

14This is not expressed in the annotation scheme of the Tiger treebank (Brants et al. 2002), however,
in which a coordinated NP is created, with the left conjunct have a TRUNC part-of-speech tag (from
‘truncated’). The core grammar mimics the Tiger annotation in this case.

74 CHAPTER 3. CORE GRAMMAR CONSTRUCTION

not scalable: it takes much effort to create and it is hard to maintain. Regarding
the first aspect, the development time for the core grammar was around 1 per-
son year, which is much less than existing hand-written grammars for German
(Crysmann 2005; Dipper 2003). The modularity of the grammar constructions
and the compact size of the set of lexical types contribute to the maintainability
of the grammar.

The second contribution of this chapter is a flexible and powerful way to
model topological fields by means of finite state automata, using only the re-
stricted variant of the T DL formalism that is used in the DELPH-IN tools.
This analysis can easily be extended to other languages, more topological fields
and more domains.

The grammar itself, as a resource, is a valuable addition in the landscape of
(German) deep parsers. Although no novel linguistic analyses are presented, the
core grammar is a synthesis of existing HPSG accounts of a non-trivial range of
phenomena that occur in the German language. However, the development of a
deep grammar is a continuing exercise, and there are a number of constructions
that the core grammar is not able to analyse satisfactorily (yet), for instance
because no analysis is known in the literature, or because readily available anal-
yses would cause the grammar to overgenerate too much. The following is a
non-exhaustive list of uncovered phenomena:

• Subjectless passive sentences;

• Partial VP fronting;

• Free relatives;

• Gapping;

• Auxiliary flip (or: Oberfeldumstellung);

• Extraposition crossing a particle in the right bracket;

• Extraction into the Mittelfeld (Müller 1997).

At this point, evaluation of the core grammar per se is hard to achieve, as it
has virtually no coverage. One could use a test suite to this end: a carefully cre-
ated collection of grammatical and ungrammatical utterances that tests whether
certain linguistic phenomena are covered and whether ungrammatical utterances
are properly rejected. I also used this approach (see appendix A), mostly for re-
gression testing during development. However, the risk of test suites is that only
phenomena that the grammar writer deems important are included, possibly ob-
scuring shortcomings of the grammar. An alternative method of evaluation (unit
testing) of the core grammar’s constructional coverage will be given in section
5.2.

75

4 Creation of a deep lexicon
Because the lexicon in the core grammar from the previous chapter only con-
tains function words, and no content words, it has practically no coverage. The
lexicon plays a pivotal role in lexicalised grammars, and the construction of the
lexicon is an immense task: lexical entries contain detailed descriptions of the
words on a morphological, syntactic and semantic level. It can save the gram-
mar writer a lot of time if there was a resource from which this information
could be inferred. In this chapter, the Tiger treebank (Brants et al. 2002) is used
for this purpose.

The chapter commences with a small introduction in which the approach fol-
lowed in this chapter is compared to the methods in earlier deep grammar ex-
traction studies. This is followed by an overview of the Tiger treebank. To
facilitate the subsequent step, a preprocessing stage is proposed. Finally, a deep
lexical acquisition (DLA) step is carried out, of which some descriptive statis-
tics are given. Note that although much of the work in this chapter is described
in (Cramer and Zhang 2009), there have been considerable improvements since,
so the results presented in this chapter provide an up-to-date account of this
work.

4.1 Introduction
Acquiring deep lexical resources is an important task for deep parsing. As has
been noted by Baldwin et al. (2004), omissions in the lexicon are a frequent
reason for parse failure for the ERG (Flickinger 2000), and there is no reason
to assume that this is different for other lexicalised grammars. However, creat-
ing a deep lexicon can be a very time-consuming task, if done manually. With
increasingly large and detailed linguistic resources (such as treebanks and dic-
tionaries) available, researchers have sought ways to leverage these to shorten
the development time for their systems.

In section 2.4, a number of deep grammar extraction methods have been dis-
cussed. The main advantage of these methods is that lexical entries can be
deduced, or even read off from annotated training data, with high precision and
recall. The algorithms that are presented pose two prerequisites:

1. A sufficiently informative treebank should be available.

2. There should be the possibility to convert this treebank into a format that
conforms to the target formalism.

Preliminary efforts to convert the trees from the Tiger treebank into HPSG
derivation trees (not reported on in this thesis) proved to be fruitless, mainly

76 CHAPTER 4. CREATION OF A DEEP LEXICON

caused by the fact that HPSG parse trees are not simple binarisations of the
Tiger trees. The second condition can thus not be fulfilled. The Tiger treebank
provides the algorithm enough information to couple lexemes to the appropriate
lexical types that are defined in the core grammar. This simplifies the acquisition
process considerably, but it leaves the responsibility to cover certain phenomena
to the core grammar. Other than that, there are three other major differences
to the workflows from the previous deep grammar extraction algorithms (see
section 2.4).

The first is a consequence of including a small lexicon in the core grammar:
not all lexical items need to be derived. The lexemes that are supposed to be
contained in the open word lexicon are complementary to the lexemes in the core
lexicon. For instance, no new prepositions or auxiliary verbs should be learnt
in the DLA procedure. In section 3.3.3, it has been shown why lexemes with
idiosyncratic properties are already contained in the core lexicon. This might
render the DLA procedure more straightforward. The word classes that will
be identified by the DLA algorithm are: (non-auxiliary) verbs, nouns, names,
adjectives and adverbs.

The second difference with previous approaches is that the set of lexical types
is defined by the grammar writer beforehand, and thus, there is no need for
constructing them automatically. This difference has also been discussed in
section 3.3.2. Sometimes, the inference of such lexical types is artificial. In the
study by Miyao et al. (2004), for instance, the building blocks (synsems for NPs,
PPs, etc) are defined by the grammar writer, and this already shapes the space
of lexical types that the algorithm can find: it is unlikely that truly novel types
are discovered.

In the approach that is explained in this chapter, the grammar writer can easily
add details that are hard to find by a heuristic procedure. The lexical types are so
detailed, that the algorithm can not be expected to discover all the very specific
details of the lexical type it is supposed to find. For example, adverbs that can
modify adjectives have fairly strong preferences on where they are located with
respect to the adjective they modify, so this distinction needs to be made. How-
ever, this distinction is not useful for adverbs modifying verbs, as they can be
placed in either the Vorfeld, Mittelfeld or Nachfeld. So, for some adverbs there
is a generalisation over placements, and for some adverbs this generalisation is
not there. Hence, given the level of descriptive detail for these lexical types,
all lexical types are given beforehand by the grammar writer, and the lexical
acquisition algorithm only needs to associate lemmas with the existing lexical
types.

The third difference to previous approaches is that for some phenomena, a
constructionalist solution has been chosen instead of an entirely lexical one.
Therefore, one can expect that the number of lexical types is relatively re-

4.2. THE TIGER TREEBANK 77

Das Meer hat Kamine geschaffen in die das Meer seine Wellen presst und das Wasser zu singen beginnt

The sea has chimneys created in which the sea his waves presses and the water to sing starts

NP

DET HD

PP

HD OBJ

NP

DET HD

NP

DET HD

VZ

PM HD

NP

DET HD

VP

MO SB OA HD

VP

SB OC HD

CVP

CJ CJCD

NP

HD RC

VP

HD OA

S

SB HD OC

MO

Figure 4.1: An example graph from the Tiger treebank, adapted from s16695. A verbatim translation of the
(somewhat poetic) sentence is: ‘the sea has chimneys created in which the sea the waves pushes and (in which)
the water to sing starts’. The dashed line indicates a secondary edge.

stricted, compared to, for instance, the approach taking by Hockenmaier (2006).
Strongly lexicalised analyses for these phenomena would lead to predictable
variations of the same lexical type and hence, unnecessary local ambiguity. Per-
mutation of arguments and adjuncts in the Mittelfeld is a good example of this:
several lexical entries are needed in a true lexicalist approach (possibly leading
to sparseness), whereas only one entry is needed by the more constructionalist
approach in this study. See section 3.3.6 for further details on the constructions
that achieve this behaviour.

Although the algorithm contains a small number of statistical components, it
is mostly based on a hand-written heuristic algorithm, comparable to previous
deep grammar extraction methods. The advantage is that the process can be
tightly controlled, in order to maintain a high level of quality in the lexicon.
On the other hand, this entails that extra work needs to be done, and that the
workflow becomes highly language- and resource-dependent, and much of the
work is not transferable to other projects (even though the process itself is more
replicable than just hand-writing).

78 CHAPTER 4. CREATION OF A DEEP LEXICON

4.2 The Tiger treebank

Following Hockenmaier (2006), Cahill et al. (2005) and Rehbein (2009), I use
the Tiger treebank (Brants et al. 2002)1 to extend the core grammar. The text
comes from a German newspaper (Frankfurter Rundschau). The corpus consists
of more than 50,000 sentences, with an average sentence length of 17.6 tokens
(including punctuation tokens). As explained in section 2.3.1, the treebank is
constructed by having a model propose an analysis, which is then corrected by
an annotator. This model has been either a statistical model (Brants 2000) or a
linguistic model (Dipper 2000).

The Tiger treebank is a dependency treebank, meaning that the edges between
the nodes have labels, in this case to denote grammatical functions. Even though
the basic structures are trees, formally, the trees might by non-projective (i.e.
have crossing edges). This allowed the annotators to easily represent German’s
relatively free word order. The importance of this is underlined by the fact that
around one-third of the sentences receive a non-projective analysis. An example
of a tree from the treebank is given in figure 4.1.

Secondary edges are used to represent ellipsis in coordinations, and turn the
tree into a directed acyclic graph (DAG), as can be seen in figure 4.1. In this
case, the constituent ‘in die’ (‘into which’) is not only connected to ‘presst’
(‘presses’), but also has a secondary edge to ‘beginnt’ (‘starts’), indicating its
role of modifier in both conjuncts. Note that, because a secondary edge also
bears a label, a constituent can play different roles in each conjunct, although it
does not happen very often in practice.

The annotation scheme defines 26 phrase categories, 56 part-of-speech tags
and 48 edge labels. The treebank also encodes number, case and gender at
the noun terminal nodes, and additionally, degree at adjectival terminal nodes.
Tense, person, number and mood is annotated at verb terminals. Whether a
verb is finite, an infinitive or a participle are encoded in the part-of-speech tag.
Inflection classes are not annotated.

The annotation guidelines indicate that the subject should be attached to the
S-node, whereas the other arguments and adjuncts of the deepest verb should
be attached to that verb. This means that if an argument or an adjunct appears
in the Vorfeld (instead of the subject), combined with a sentence including an
auxiliary, this results in a non-projective tree. Subject control can be identified
by observing a verb with an OC (clausal object) dependent, which itself is has the
VP category, with ‘zu’ (‘to’) + an infinitive as its head. There are two exceptions
to the rule that only subjects can be sisters of auxiliary verbs. The first is object
control, in which the object is a sister of the auxiliary. The second is that adverbs

1http://www.ims.uni-stuttgart.de/projekte/TIGER/TIGERCorpus/, freely avail-
able for non-commercial use.

4.2. THE TIGER TREEBANK 79

in the Vorfeld are explicitly marked as modifiers of the auxiliary, not of the
deepest verb. 2

4.2.1 Preprocessing the treebank

The annotation format posed a number of problems for the DLA algorithm.
Therefore, before the extraction process is started, a number of preprocessing
steps are carried out. This preprocessed variant of the corpus is also used for all
other experiments in this thesis.

The most important peculiarity in the treebank is that in many phrases, no
head is explicitly indicated. This was done in order to retain theory-independence.
For instance, there are disputes about whether the determiner or the noun is the
head of a noun phrase/determiner phrase. Therefore, the designers of the format
chose to annotate determiners, adjectival modifiers, nouns and names in NPs
with the edge label NK (noun kernel). A head-finding procedure in the spirit
of Magerman (1995) and his successors is used to re-annotate all NKs into ei-
ther DETs, MOs, HDs and APPs. Similar arguments arise for PPs and CPs, for
which it is not entirely clear whether the adpositions and complementisers are
the heads of the respective phrases, or rather markers. In the preprocessing step,
these are split into a HD and an OBJ, where the phrase category of the OBJ is
identified automatically on the basis of the head. Particles in circumpositions
are marked with the label AD.

The second large transformation involves verb-particle combinations. In Ger-
man, the particle is sometimes attached to the verb, and sometimes separated,
depending on whether the verb phrase is verb-final or not, and on the morpho-
logical properties of the verb (see examples 36-39 in section 3.1). The annota-
tion format gives different lemmas for both cases; the particle is only included
if the particle is attached to the verb in the source text. To improve on this, if the
particle is not included in the lemma, it is prefixed. For instance, in the sentence
‘Er wählt den Käse aus’ (‘He chooses the cheese out’), the lemma of the verb is
changed from ‘wählen’ (‘choose’) into ‘auswählen’ (lit. ‘out-choose’).

Other than these two major changes, a number of smaller changes are carried
out as well. The ADJD part-of-speech tag, for example, can mean either a pred-
icative or an adverbial form of an adjective. This is disambiguated into ADJA or
ADV, respectively.

2The Alpino annotations, whose format was influenced heavily by the Tiger treebank, solve this
in a more elegant way, by not distinguishing between primary and secondary edges, and adding
more dependencies between verbs and their dependents. Subject and object control and passive
constructions are more easily identified, because links between all subjects/objects and all verbs are
established. For instance, in a (Dutch translation of) the sentence ‘The cheese is eaten.’, a subject
dependency is made between ‘cheese’ and ‘is’, and an object dependency is established between
‘cheese’ and ‘eaten’.

80 CHAPTER 4. CREATION OF A DEEP LEXICON

4.3 Acquisition of the lexicon
With the preprocessed version of the Tiger treebank in place, the process to
automatically derive the deep lexicon can be started. The algorithm’s skele-
ton is straightforward: a simple top-down traversal of the tree. Depending on
the phrasal category of each non-terminal node, different types of information
are collected, and attributed to the head of the non-terminal node. Morpholog-
ical features are extracted from terminal nodes. After all sentences have been
processed this way, the accumulated information is used to determine the set
of lexical types that the word connects to, and how each word is inflected (if
applicable).

4.3.1 Syntactic properties

Which kinds of syntactic features are recorded and attributed to the phrase’s
head node, depends on the category of the phrase:

S and VP For each normal verb, the type of subject is determined, being ei-
ther a nominative NP, the expletive ‘es’ (comparable to ‘it’ in ‘it rains’)
or a CP. Also, the subcategorisation frame is discovered, for which the al-
gorithm has the following components at its disposal: genitive, dative and
accusative objects, PP objects, separable verb particle, reflexives, predica-
tives, CPs and three types of verbal complements (wh-phrases, full sen-
tences, ‘zu’-phrases). A maximum of three complements (excluding the
subject) is enforced.

NP A number of complements are identified, but only one complement per lex-
ical entry is allowed. Possible complements are: zu+infinitive phrases, wh-
phrases, CPs, PP objects and full sentences. It is also determined whether
the noun allows appositions (if seen once, this is concluded). Some nouns
can also directly modify verbs, which is also picked up.

AP Comparable to NPs, only one complement is allowed. Possible comple-
ments are: PP objects and dative and accusative NPs. Modification con-
straints are encoded in the lexical type in the core grammar, so they do not
need to be discovered in the DLA algorithm.

AVP Adverbs do not have any complements, but sometimes they allow for (pos-
sibly extraposed) comparative phrases, denoted by function label CC, even
though the degree of the adverb is not set to comparative. An example of
such an adverb is ‘gleichermaßen’ (‘equally’), allowing for a phrase such as
‘gleichermaßen drastische wie unpopuläre Maßnahmen’ (‘equally drastic
as unpopular measures’), where the PP headed by ‘wie’ (‘as’) is connected

4.3. ACQUISITION OF THE LEXICON 81

to the adverb. Some adverbs can be used as object in a PP (‘bis morgen’;
‘until tomorrow’). This information is collected as well.

All phrases For complementation, the head of the phrase selects for the de-
pendent. The reverse is true for adjuncts: they select for the head. These
modification constraints are also picked up, but only for adverbs, because
these constraints are already defined for adjectives and adpositions in their
respective lexical types. The procedure does not only discover which kind
of head the adverb modifies, but also the position of the adverb with respect
to the head. For instance, ‘genug’ (‘enough’) in the phrase ‘schnell genug’
(‘quickly enough’) can only be placed after the head in the adverbial phrase,
not before.

All phrases above assume that the lexical type of the head can be determined
correctly on the basis of the context of its mother. For instance, when a noun
phrase is observed, the properties of the head noun only depend on the elements
within the noun phrase, and not on elements outside. This assumption works
well for most head types, but is not sufficient to correctly determine the lexical
type of verbs, for which a somewhat wider context window is necessary. More
specifically, the subject is attached to the conjugated verb, whereas the proce-
dure above, discovering the subcategorisation frame of the deepest verb, is only
at the level of the deepest verb, so the type of subject is not readily available
to the algorithm. The situation is more complex when one of the deeper nodes
is also a coordinated VP. Also, passive constructions need to be accounted for,
meaning that the subcategorisation frame of the deepest verb must at least con-
tain an accusative NP as object, and the agent does not need to be expressed
altogether. The solution I propose is to do one run beforehand, identifying (sub-
ject, deepest verb, passive) tuples, in which the first two elements point to nodes
in the tree, and the last is a boolean. The procedure for finding the subcate-
gorisation frames is then carried out for each tuple. In the following (somewhat
artificial) example, all three complications are exhibited:

(56) Antje
Antje

wollte
wanted

den
the

Käse
cheese

essen
eat

aber
but

wurde
was

abgelenkt.
distracted.

The first pass yields the following set of tuples:

Subject Deepest verb Passive
Antje essen false
Antje abgelenkt true

For each tuple, the subcategorisation frame will be determined correctly: both
‘essen’ and ‘ablenken’ are transitive verbs.

82 CHAPTER 4. CREATION OF A DEEP LEXICON

4.3.2 Morphology

As explained in section 3.1, German has a moderately complex morphology, and
this aspect of the lexical acquisition process turned out to be particularly hairy.
In the most straightforward scenario, for each word category for which mor-
phology is involved (verbs, nouns and adjectives), inflection triples are recorded,
which map the word form via a morphological rule to the word form’s lemma.
The morphological rules are hand-written (see section 3.3.5), but are only meant
to specialise the features involved in describing the morphology. Let’s consider
the word ‘essen’ (‘eat’), of which a number of word forms have been observed,
at a certain point in the lexical acquisition process:

essen IR-VERB-INF essen
isst IR-VERB-3-SG-PRES-IND essen
esst IR-VERB-2-PL-PRES-SUBJ essen
aßen IR-VERB-3-PL-PAST-IND essen
aßen IR-VERB-1-PL-PAST-SUBJ essen

The problem is that over 70 of these forms have to be learnt (for verbs), and
that many of the slots will not be filled using this naı̈ve strategy. In other words,
data sparseness poses a serious problem for the morphological component of
the DLA algorithm. A (partial) solution lies in a phenomenon called syncretism:
the knowledge that different inflections of a lemma have identical word forms.
For instance, it is known that the first-person plural form of a German verb is
always identical to the third-person plural form. Given this piece of knowledge,
the table above can be automatically extended with the following rows:

aßen IR-VERB-1-PL-PAST-IND essen
aßen IR-VERB-3-PL-PAST-SUBJ essen

What we need is a systematic way to achieve this. The inflectional rules them-
selves are already designed to make maximal use of syncretism. There is no
inflectional rule for ‘1.pl.past.ind’ in the core grammar, but a more abstract rule
‘pa-13-pl’ does exists, covering all inflections that are in the present tense, are in
either first of third person and are plural. The mood is left undetermined, mean-
ing that the word forms are equal for both indicative and subjunctive mood. A
mapping from MORPH values to the inflectional rules is necessary, for instance:

‘1.pl.pres.ind’ → ‘pa-13-pl’
‘3.pl.pres.ind’ → ‘pa-13-pl’
‘1.pl.pres.subj’ → ‘pa-13-pl’
‘3.pl.pres.subj’ → ‘pa-13-pl’

Now, when a word form is observed in the source treebank (e.g. ‘1.pl.past.ind’),
this is mapped to the correct inflectional rule (‘pa-13-pl’). The triple (word form,
inflectional rule, lemma) is eventually recorded3:

3Here, we see a clear example of the interdependence between the core grammar and the DLA
algorithm. Because syncretism is exploited, the inflection rules had to be changed in the core grammar

4.4. THE RESULTING LEXICON 83

aßen IR-VERB-NPD-PA-13-PL ablehnen

This works well for verbs. For adjectives, however, there are usually multiple
word forms for one MORPH, due to the fact that this form also depends on the
‘strongness’ of the NP (determined by presence and type of determiner). This
strongness is not annotated in the Tiger treebank. This is solved by not looking
at the MORPH value, but by identifying the suffix of the adjective. Given the
rather regular nature of adjectival inflection, this seems to work well. Also,
each suffix maps to a set of AGR values, rather than singletons:

‘er’→ { sm-m-n-sg, s-f-gd-sg, s-*-g-pl }
where the AGRs have four features: inflection class (strong, mixed and/or weak),
gender, case and number. This is a fairly good solution: even though there are
as many as 3 · 4 · 2 · 3 = 72 cells in the inflection tables, there are only a small
number of suffixes (‘-e’, ‘-er’, ‘-en’, ‘-es’, ‘-em’).

Discovering the morphology of German nouns poses another problem to this
machinery: the declension class of nouns needs to be identified (which is also
not annotated in the Tiger treebank). For feminine and neuter nouns, there
is only one class, but for masculine nouns, there are three candidates: strong
nouns, inanimate weak nouns and animate weak nouns. Apart from these cate-
gories, there are words like ‘Prozent’ (‘percent’), of which number and case are
left undetermined in the Tiger treebank, and nouns such as ‘Anfang’ (‘start’),
that have case undefined, and have the ability to modify verbs. The solution I
put forward for this is to heuristically discover to which inflection class each
noun belongs, and to create separate morphology mappings for each inflection
class.

Although these algorithms have been successful in handling German’s mor-
phology in a more principled way, there is another source of confusion: errors
and inconsistencies in the treebank. To counter these, multiple candidate inflec-
tion triples are recorded, but only the candidate with most votes is kept.

4.4 The resulting lexicon

Gauging the reliability of the DLA procedure is hard, just by looking at the
entries themselves. To give the reader an impression of the results, a number
of examples in the lexicon are given in table 4.1. A manual pass through a
representative part of the lexicon, testing the validity of the entries, would be
cumbersome, and the evaluation would be subjective. Neither would such a
check say anything about the completeness of the lexicon (which is impossible
anyway). Therefore, only descriptive statistics will be presented in this section,
which can be roughly compared to other state-of-the-art grammars. I am aware

84 CHAPTER 4. CREATION OF A DEEP LEXICON

noun + adp noun + cp noun + izu
Zweifel (an) Zweifel Zögern
Zusammenhang (mit) Zuversicht Zwang
Zusammenarbeit (mit) Zusatzfrage Zustimmung
Zugriff (auf) Zeitungsmeldung Zusage
Wissen (um) Wissen Zeitsouveränität

noun + sent noun + wh adj + adp adj + NPacc
Zeit Wahl zählend (zu) zusammenfassend
Werbeaussage Tip zurückgehend (auf) zierend
Weisung Schätzung verärgert (über) wählend
Vorurteil Schimmer verurteilt (zu) wiederholend
Vorstellung Prognose vertröstet (auf) wert

adj + NPdat verb + izu verb + sent
zuwider zögern zitieren
zustehend zwingen zeigen
zugänglich wollen wissen
zugewiesen wissen winken
zugetan werben wiederholen

verb + part verb + refl verb + adp
zusichern zusammenstellen zählen (zu/auf)
zustandekommen zurückverfolgen zwingen (zu)
zustechen zurechtfinden zweifeln (an)
zustimmen zufriedengeben zusteuern (auf)
zutreffen zieren zittern (um)

Table 4.1: This table shows five lexemes for a number of lexical types.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16−20 21−25 26−30 54 63

Lexical types

F
re

qu
en

cy
 (

lo
g1

0)

0
1

2
3

4

Figure 4.2: This graph shows the distribution of the number of lexical entries per verb. The lemmas having 54
and 63 lexical entries are ‘machen’ (‘to make’ or ‘to do’) and ‘sein’ (‘to be’), respectively. Note that the vertical
scale is logarithmic; there are 2734 verbs with only one lexical type, and 932 with only two.

4.4. THE RESULTING LEXICON 85

Part-of-speech Lemmas Lexical entries Inflection triples
Verbs 4543 9235 18745
Nouns 33835 34821 51303

lt-noun-mod 228
lt-noun-noapp 30086
lt-noun-noapp-adp 255
lt-noun-noapp-cp 100
lt-noun-noapp-izu 150
lt-noun-noapp-sent 81
lt-noun-noapp-wh 12
lt-noun-app 3749
lt-noun-app-adp 47
lt-noun-app-cp 30
lt-noun-app-izu 55
lt-noun-app-sent 20
lt-noun-app-wh 8

Names 12445 12783 na
Adjectives 7318 8018 50480

lt-adj 7722
lt-adj-adp 69
lt-adj-npacc 102
lt-adj-npdat 125

Adverbs 2654 4577 na
lt-adv-verb 2424
lt-adv-adj left 981
lt-adv-adj right 11
lt-adv-adp left 250
lt-adv-adv left 369
lt-adv-adv right 55
lt-adv-nbar right 170
lt-adv-np left 317
lt-adv-none 303

Table 4.2: This table gives a breakdown of the size of the acquired lexicon, excluding the entries in the core
lexicon. The type lt-adv-none is for adverbs such as ‘morgen’, that can also be used as a noun phrase (‘bis
morgen’; ‘until tomorrow’). The abbreviation ‘adp’ stands for adposition, ‘izu’ is for ‘zu’+infinitive clauses,
comparable to the English ‘the ability to eat cheese’, and ‘sent’ stands for a sentential complement. A further
breakdown of the lexical types of verbs is given in table 4.3.

86 CHAPTER 4. CREATION OF A DEEP LEXICON

Lexical type Entries % of entries % of lemmas
lt-verb-reg-npnom-npacc 2259 24.46% 49.72%
lt-verb-reg-npnom 1574 17.04% 34.65%
lt-verb-reg-npnom-refl 593 6.42% 13.05%
lt-verb-reg-npnom-part 560 6.06% 12.33%
lt-verb-reg-npnom-npacc-part 545 5.90% 12.00%
lt-verb-reg-npnom-adp 288 3.12% 6.34%
lt-verb-reg-npnom-npacc-npdat 248 2.69% 5.46%
lt-verb-reg-npnom-npdat 203 2.20% 4.47%
lt-verb-reg-npnom-sent 200 2.17% 4.40%
lt-verb-reg-npnom-npacc-adp 192 2.08% 4.23%
lt-verb-reg-npnom-cp 162 1.75% 3.57%
lt-verb-reg-npnom-refl-part 157 1.70% 3.46%
lt-verb-reg-npnom-refl-adp 130 1.41% 2.86%
lt-verb-reg-npnom-izu 117 1.27% 2.58%
lt-verb-reg-npnom-npacc-npdat-part 113 1.22% 2.49%
others (182 lexical types) 1894 20.51% na

Table 4.3: Breakdown of the occurrence of the lexical types of verbs in the lexicon. The third column indicates
the percentage of all lexical entries having this lexical type, adding up to 100%. The fourth column shows the
proportion of lemmas having this lexical type. For instance, half of the verbs can function at least as a transitive
verb.

of the relative weakness of this type of evaluation, but an alternative method of
evaluation (of the entire development chain) will be applied in section 5.2.

The results of the deep lexical acquisition procedure, based on the first 45k
sentences in the Tiger treebank, are summarised in table 4.2 (the remaining 5k
sentences will be used for evaluation purposes in the empirical experiments).
Almost 60k lexical entries (lexemes) and their syntactic properties are discov-
ered, many of which are nouns or names. This skewed distribution is perhaps
even more pronounced than in other languages, because German can invent an
innumerable number of nouns by compounding two or more atomic nouns to-
gether.

The large majority of the entries (86%) is filled with ‘just nouns’ (‘lt-noun-
noapp’ in table 4.2), not having complements, and not allowed to have appo-
sitions. The proportion of is even higher for vanilla adjectives (‘lt-adj’: 96%).
The question then arises: is it worthwhile to spend effort finding the remaining,
more complex entries? That depends on the frequency of usage. One might ar-
gue that there is a positive correlation between frequency of the usage of a word
and its syntactic and semantic complexity. From this, one might infer that the
more complex lexical entries are probably frequent enough to have impact on
the accuracy of the grammar on unseen text.

A somewhat worrying trend can be observed in the rightmost column in table
4.2, indicating how many inflection triples are found in total. As alluded to
before, smart typing of the agreement features can lead to significant reductions
in the number of inflection triples. However, even though special attention has
been given to this aspect, no satisfactory results are obtained, as the DLA stage

4.4. THE RESULTING LEXICON 87

●
●
●

● ● ● ●

●
●

●

●

● ●

0 10000 20000 30000 40000

0
50

00
15

00
0

25
00

0
35

00
0

Sentences

Le
xi

ca
l e

nt
rie

s

● verbs
nouns
names
adjectives
adverbs

Figure 4.3: Learning curves of different parts-of-speech versus input size.

has not been able to cover the complete inflection tables. This is especially
true for nouns, for which 1.5 inflection triples are found per lemma, but for
which typically four slots are to be filled. The figures look better for verbs
and adjectives, but it must be realised that there are far more word forms to be
discovered for these parts-of-speech.

More details on the acquisition of verbs are presented in table 4.3 and figure
4.2. Table 4.3 shows the distribution of lexical types over the lexicon, ordered
by class frequencies. Not unexpectedly, the intransitive and transitive types are
most frequent, with almost half of the lemmas being identified as transitive. In
total, 197 verbal lexical types are found. However, the first 15 already account
for almost 80% of the lexical entries. Interestingly, none of the alternative sub-
jects (CPs, expletive ‘es’) occur in the top-15. Figure 4.2 shows the skewedness
of the distribution of the lexical types over the entries in the lexicon: most of
the verb lemmas only associate with one (2734) or two (932) lexical types, and
only a few lemmas (all of them frequent) have many more lexical entries, most
notably ‘machen’ (‘to make’/‘to do’) and ‘sein’ (‘to be’).

It is also interesting to see whether the learning process has converged. This
is depicted in figure 4.3. One can clearly see that the nouns and names categories
are still growing near-linearly, but that the other categories are getting closer to
convergence. On the other hand, we can hypothesise that the marginal lexicon
in a possible next chunk of training data mostly consists of easily-identifiable
lexical types. As explained in section 3.3.2, the core grammar has a number
of generic lexical types, that map parts-of-speech to deep lexical types. For
verbs, these are the intransitive and transitive lexical types. Hence, it would be
interesting to see how many lexical entries are added that are not either transitive

88 CHAPTER 4. CREATION OF A DEEP LEXICON

or intransitive. This gives a better indication of whether a parser based on this
grammar would perform better on unseen text. It turns out that for the first 5000
sentences, the proportion of non-generic learnt lexical entries is around 51%, but
rises to 68% in the last chunk of 5000 sentences. In other words, the later in the
learning process, the more non-trivial verbs are discovered. The following table
shows these statistics for a number of parts-of-speech (names are not included,
as all entries are generic lexical types):

Part-of-speech % in first 5000 % in last 5000
Verbs 50.8% 67.8%
Nouns 3.8% 2.1%
Adjectives 2.8% 2.2%
Adverbs 46.7% 54.7%

Table 4.4: This table indicates the proportion of learnt lexical entries that do not map to a generic lexical type.
The second column shows this number in the first 5000 sentences, the third column of the last 5000.

But how does the resulting lexicon compare against other lexica within the
DELPH-IN framework? This is illustrated in table 4.5. For each grammar
(where Cheetah is the codename of the grammar that is developed in this the-
sis), the number of lexical types, the number of lexical entries and the number
of ‘standard’ lexical entries are given for a number of parts-of-speech. What
is considered a ‘standard’ lexical type is usually clear from the distribution of
lexical types in the lexicon: usually, there is a limited set of types that take up
the majority of the lexicon. Although the numbers are not entirely comparable,
especially not across languages, they do give a crude idea of the sizes and levels
of detail that the lexicons offer. The difference between the numbers of lexical
types between the ERG and the grammars for German is striking: the ERG has
a larger inventory of lexical types, allowing finer distinctions between individ-
ual lexemes. The lexicon of Cheetah is slightly larger than the lexica from the
other grammars, especially when one realises that most adjectives in the GG are

Verbs Nouns
LTs LEs SLEs LTs LEs SLEs

Cheetah 197 9235 3833 13 34821 33835
GG 105 5065 1775 23 21797 20327
ERG 324 8373 3576 252 18378 14064

Adjectives Adverbs
LTs LEs SLEs LTs LEs SLEs

Cheetah 4 8018 7722 9 4577 2424
GG 17 10169 9936 12 4935 4615
ERG 96 5707 3459 83 2085 925

Table 4.5: This table gives the number of lexical types, the number of lexical entries in the lexicon and the num-
ber of ‘standard’ lexical entries in the lexicon for a number of grammar in the DELPH-IN framework. ‘Cheetah’
is the codename of the grammar that is developed in this thesis. The GG (German Grammar: Crysmann 2005)
and the ERG (English Resource Grammar) are mostly hand-written grammars.

4.5. SUMMARY 89

counted twice, because the predicative reading and the attributive reading are
considered separate types.

4.5 Summary
In this chapter, a deep lexicon has been derived from the Tiger treebank, which
connects seamlessly with the core grammar from chapter 2. Like previous stud-
ies, a hand-written heuristic procedure was developed for this purpose. How-
ever, no new lexical types needed to be created, and lexical entries that were
already in the core lexicon were ignored in this process. This resulting proce-
dure is straightforward, and easy to maintain. Extra attention has been given
to the morphology of German, and specific tools have been crafted in order
to counter data sparseness and to reduce the effect of annotation errors in the
treebank. The resulting lexicon was obtained with relatively little effort, and is
comparable in size to lexica of state-of-the-art, hand-written grammars.

The combination of core grammar/lexicon and the deep lexicon that was cre-
ated in this chapter forms a coherent formal account of the German language.
In the next chapter, attention will be paid to how this new resource can be used,
for instance to create a treebank or to parse unseen text.

90 CHAPTER 5. LEVERAGE OF THE GOLD STANDARD

5 Leverage of the gold standard
So far, the Tiger treebank (Brants et al. 2002) has been used as the source for a
deep lexical acquisition step. However, it can be used as a gold standard as well.
First, an explanation is given in section 5.1 on how gold syntactic dependencies
are extracted from a held-out set from the Tiger treebank. These should be com-
parable to the output of the parser, which in our case is a (restricted) form of
Minimal Recursion Semantics (Copestake et al. 2005). Therefore, I show how
these MRSs can be converted to syntactic dependencies in Tiger’s annotation
format in the second section. The grammar’s output can now be compared to
the gold standard, which opens an array of possibilities. First, a new type of
evaluation will be introduced in section 5.2: unit testing. The procedure checks
whether the complete chain of core grammar, deep lexical acquisition and MRS-
to-dependencies conversion works without flaws, independent of the quality of
the used disambiguation model. Section 5.3 explains how a decent part of the
static Tiger treebank can be turned into a dynamic treebank (Oepen et al. 2004)
automatically, by parsing the text from the corpus first, and selecting the best
reading by using the dependencies extracted from the Tiger treebank. Finally, a
number of experiments will be presented in section 5.4, showing the adequate-
ness of the grammar and its associated disambiguation model on parsing unseen
text.

5.1 Comparing parsing output with the gold stan-
dard

5.1.1 Extracting the dependencies from the treebank

In order to be able to do an evaluation against the gold standard, we should
define more precisely what that gold standard is. The definition in this study is as
follows: a set of (head, label, dependent) dependency triples. This is computed
by assigning a head/dominator to each phrase, and assigning one triple for each
non-dominator child in the phrase to the dominator, using the label that the non-
dominator child bore. Secondary edges are treated equally as normal edges.
Although some forms of headedness were already made more explicit during
the preprocessing phase in section 4.2.1, there are still some phrases where a
form of dominator-dependent relation needs to be established:

PH/RE phrases Some CPs, PPs and NPs do not have a head, but are divided
between a PH (placeholder) and RE (repeated element) chunk. In this case,
the PH is seen as the head.

5.1. COMPARING PARSING OUTPUT WITH THE GOLD STANDARD 91

Das Meer hat Kamine geschaffen in die das Meer seine Wellen presst und das Wasser zu singen beginnt

The sea has chimneys created in which the sea his waves presses and the water to sing starts

NP

DET HD

PP

HD OBJ

NP

DET HD

NP

DET HD

VZ

PM HD

NP

DET HD

VP

MO SB OA HD

VP

SB OC HD

CVP

CJ CJCD

NP

HD RC

VP

HD OA

S

SB HD HD

MO

ROOT ROOT hat presst SB Meer
hat SB Meer Meer DET das

Meer DET Das presst OA Wellen
hat OC geschaffen Wellen DET seine

geschaffen OA Kamine beginnt MO in
Kamine RC und beginnt OA Wasser

und CJ presst Wasser DET das
presst MO in beginnt OC zu

in OBJ die zu OC singen

Figure 5.1: Figure 4.1 repeated, but this time, the gold standard syntactic dependencies are given as well.

92 CHAPTER 5. LEVERAGE OF THE GOLD STANDARD

INDEX e2

RELS

 "_det_der_DET_rel"
ARG0: x5
ARG1: x4

["_noun_meer__rel"
ARG0: x4

] "_v_haben_SB-OC_rel"
ARG0: e2
ARG1: x4
ARG2: e8

[
"_noun_kamine__rel"
ARG0: x10

] "_v_schaffen_SB-OC_rel"
ARG0: e8
ARG1: x4
ARG2: x10

 "_adp_in_MO-OBJ_rel"

ARG0: e14
ARG1: e13
ARG2: x15

["_rel_der__rel"ARG0: x15

] "_det_der_DET_rel"
ARG0: x19
ARG1: x18

[
"_noun_meer__rel"
ARG0: x18

] "_pposat_sein_DET_rel"
ARG0: x23
ARG1: x22

[
"_noun_welle__rel"
ARG0: x22

] "_v_pressen_SB-OA_rel"
ARG0: e26
ARG1: x18
ARG2: x22

 "_coord_und__rel"

ARG0: e13
L-INDEX: e26
R-INDEX: e28

 "_det_der_DET_rel"

ARG0: x31
ARG1: x30

["_noun_wasser__rel"
ARG0: x30

]

 "_v_zu_SB-OC_rel"
ARG0: e36
ARG1: x30
ARG2: e34

 "_v_singen_SB_rel"

ARG0: e34
ARG1: x30

 "_v_beginnen_SB-OC_rel"

ARG0: e28
ARG1: x30
ARG2: e36

 rel-clause

ARG0: e40
ARG1: x10
ARG2: e13

Figure 5.2: An MRS, as produced by the grammar, is depicted. The LTOP, HCONS and LBL features are omitted,
as they are not used for determining the final dependencies.

Coordinations In normal coordinations, the coordinator is taken to be the head.
In asyndetic coordinations, the leftmost conjunct is taken.

DL nodes In reported speech, a DL (discourse-level constituent) is split be-
tween a DH (discourse-level head) node and an RS node (reported speech).
The former is assigned the head role in this case.

VZ phrases It seems more obvious to treat ‘zu’ (‘to’) as the head in these
phrases, and use the verb as its dependent.

An example of how the dependency extraction works is given in figure 5.1.
Normally, the number of dependencies is equal to the number of words (if the
ROOT dependency is included in the count), but not in this case, because one
extra dependency is generated due to the use of the secondary edge, where the
PP that introduces the relative phrase is copied into the second VP conjunct. It
should be noticed that the extraction of the dependency triples is not hampered
by the non-projectivity of the tree, introduced by the extraposed, coordinated
relative clause.

5.1. COMPARING PARSING OUTPUT WITH THE GOLD STANDARD 93

5.1.2 Role identification in the predicate

Now that the gold standard is in dependency triple format, we need to make sure
that the output of the parser can follow the same format. The native format of
the output of a DELPH-IN grammar is Minimal Recursion Semantics, which is
an unordered set of elementary predicates, with a predicate and a set of argu-
ments. However, the core grammar only makes use of a restricted subset of the
functionality of MRS, as explained in section 3.3.4. An MRS structure that the
grammar produces is given in figure 5.2, and these should be converted to the
gold standard dependencies in figure 5.1.

First, the ARGx naming scheme has to be changed into syntactic dependen-
cies. Normally, MRS predicate names are built according to a strict coding
scheme, encoding the relation’s part-of-speech, the lemma and the semantic
sense. In the scheme in this grammar, the sense field is going to be an enu-
meration of the syntactic roles that the individual arguments play. As a con-
sequence, the transitive verb ‘pressen’ (‘press’) has the following predicate:
v pressen SB-OA rel, where SB stands for subject, and OA for accusative

object. The ARG0 argument is the relation’s index, and will not be changed in
this step. The other arguments can then be re-labelled using the sense field.
In the previous example, ARG1 will become SB, and ARG2 OA. This step is
illustrated in the following example1:

 "_v_pressen_SB-OA_rel"
ARG0: e26
ARG1: x18
ARG2: x22

will become:
 "_v_pressen_SB-OA_rel"

ARG0: e26
SB: x18
OA: x22

In some cases, the head does not select for the dependent, but the other way
around: modifiers (MO, MNR, AG, PG) and determiners (DET, AG). Therefore,
these have to reversed. In the example above, that means that the dependen-
cies between ‘in’ (‘in’) and ‘presst’ (‘presses’) (and ‘beginnt’; ‘starts’) are af-
fected. This reversal process is also necessary for determiners, because the as-
sociated label is not always DET, but can be AG as well for some determiners
(e.g. ‘dessen’; ‘whose’). Therefore, the determiner decides the dependency la-
bel, not the noun, and therefore the syntactic function that the determiner plays
is encoded in the predicate name of the determiner.

The last step is to dissolve all non-lexical relations. For a few phenomena,
it would be illogical to identify lexical roles in the relation. The core grammar

1In this step, also L-INDEX and R-INDEX, which are involved in the representation of coordinations,
are transformed into CJs.

94 CHAPTER 5. LEVERAGE OF THE GOLD STANDARD

solves this by introducing non-lexical relations. In the example in figure 5.2,
REL-CLAUSE is such a non-lexical relation. This is removed, and an RC link
between ‘Kamine’ (‘chimneys’) and ‘und’ (‘and’) (the latter representing both
relative clauses) is established. What follows is an illustration of this:

[
"_n_kamine__rel"
ARG0: x10

] rel-clause
ARG0: e40
ARG1: x10
ARG2: e13

 "_coord_und__rel"

ARG0: e13
CJ: e26
CJ: e28

will become:
 "_n_kamine__rel"

ARG0: x10
RC: e13

 "_coord_und__rel"

ARG0: e13
CJ: e26
CJ: e28

The conversion process is realised as a structured script. The algorithm al-
ways succeeds, although the conversion might be incorrect for a number of cor-
ner cases.

5.2 Unit testing

During the development of a grammar, the grammar writer needs to keep track
of the consequences of modifications that are made. The consequences are mul-
tidimensional, and the grammar writer needs to keep a good balance between
these: (exact match) coverage, efficiency, overgeneration, etc. For instance, the
introduction of a rule that covers a fairly infrequent phenomenon, but which
also forms a source of severe local ambiguity might be revised or even rejected
by the grammar writer. In the grammar development set-up in this thesis, doing
such regression testing is even more important, because there are quite a few po-
tential points of breakdown in the entire chain: not all lexical entries might be
correctly derived from the treebank or the MRS-to-dependencies conversion can
contain errors. Also, there can be sentences for which the core grammar lacks,
for instance by missing or too constrained constructions, or due to an omission
in the core lexicon.

Profiling a hand-written test suite in the [incr tsdb()] system (Oepen
and Carroll 2000b) has been the most common way to do regression testing
within the DELPH-IN framework, and this regression testing paradigm is widely
used within the grammar engineering community. Test suites have a number of
virtues. For instance, they are systematic and diagnostic: all phenomena that the
grammar covers are included, and when a certain modification in the grammar
causes one sentence in the test suite to fail, it is instantly clear which linguistic
phenomenon is not covered anymore. Furthermore, test suites provide the pos-
sibility to test whether the grammar properly rejects negative items. Therefore,
if the goal of the grammar writer is to write a grammar that models the language
as precisely as possible, test suites are a good means to assist reaching that goal.

5.2. UNIT TESTING 95

However, test suites have one particular shortcoming: the data is artificial.
This means that the sentences are usually fairly short, and that the distribution
of phenomena in real-life text is not reflected in test suites. In other words, the
influence of infrequent phenomena is overestimated. If the aim of the grammar
writer is to maximise the grammar’s quality (as indicated by a quality measure of
choice) on unseen text, test suites are less appropriate. The procedure I propose
(unit testing) is meant as a tool to focus the grammar writer’s attention towards
those linguistic phenomena that have the largest impact. Also, regressions are
discovered not only in the core grammar, but also in the DLA procedure and the
MRS-to-dependency conversion.

The unit test works as follows. Instead of deriving the lexicon from a large
set of sentences, the DLA procedure is applied to only one sentence. That same
sentence is then parsed by the resulting grammar, and all resulting MRSs are
then converted to dependencies in Tiger format. If one of the analyses contains
the exact match, this sentence passes the test; otherwise, it fails. Notice that the
quality of the disambiguation model has no influence on the results. The unit test
only checks whether the pipeline of core grammar, DLA procedure and MRS-
to-dependency conversion works well. When results from earlier development
cycles are kept, regressions can be easily spotted. Apart from the fail/success
measurements, statistics about the grammar’s efficiency and ambiguity are also
output.

During the development of the grammar, the first 500 sentences of the Tiger
treebank have been used for quality assurance. Currently, 48% of this set pass
the unit test. Most of the development has gone into optimising the toolchain
for this set, and hence evaluating the errors on this set will give an erroneous
picture of where the problems in the chain are located. Therefore, the first 55
sentences outside the first 500 sentences which do not pass the unit test are
taken, after which the source of the error is tracked down manually. The results
of the experiment are summarised in table 5.1. As the data clearly show, lacking
constructions in the core grammar is the main cause for failing the unit testing
procedure. Examples of such missing constructions are gapping, complicated
coordinations, ‘weder... noch...’ (‘neither... nor...’) coordinations and paren-
thetical constructions. However, and this is where the long tail of grammatical
constructions appears, there is not a single failure among these that occurs more
than once. A solution might be easy to implement for some of the failures,
but might have too severe ramifications in terms of efficiency: a PP coordina-
tion without coordinator (an asyndetic coordination) is only permitted when the
heads of both PPs are equal. If this constraint would be omitted, this would be
a large source of ambiguity; however, asyndetic PP coordinations with distinct
heads do occur in the Tiger treebank, and cannot be parsed completely correctly.
The other categories in table 5.1 show the same kind of flat distributions, which

96 CHAPTER 5. LEVERAGE OF THE GOLD STANDARD

Category]
Error in gold standard 3
Core grammar 31
Acquisition 7
MRS conversion 7
Timeout 1
Unclassified 6
Total 55

Table 5.1: A division of the reasons for failing to reproduce the correct dependencies during unit testing.

indicates that the low-hanging fruit has been harvested, and much time would
have to be invested in order to raise the percentage of sentences passing the unit
test.

5.3 Automatic creation of a dynamic treebank
No modern-day, wide-coverage grammar can do without a treebank. Its most
well-known use is for training disambiguation models (Toutanova et al. 2005;
Riezler et al. 2001; Malouf and Van Noord 2004). Treebanking by hand takes
much effort, and therefore, this section investigates how this can be sped up, if
a treebank in a different format or linguistic formalism is already available. The
deep grammar extraction community has used forms of heuristic conversion
processes, for instance by adding f-structures (Cahill et al. 2002) or feature
structures (Miyao et al. 2004). However, as argued in section 2.7, there are
several reasons to opt for the core grammar/DLA combination in this study, but
a disadvantage of this workflow is that it does not automatically yield a treebank.

5.3.1 Methodology

In this study, an attempt is made to convert the Tiger treebank to HPSG deriva-
tion trees that are compatible with the grammar that has been constructed until
now. Roughly, the methodology consists of a parsing stage, after which the dis-
ambiguation is done automatically using the information from the source tree-
bank. This idea is not new. For instance, Riezler et al. (2001) used the Penn
treebank annotations to train a model that distinguishes readings from the LFG
parser that are compatible with the Penn treebank annotations, and readings that
are not compatible. Because the authors restricted the training set to those sen-
tences for which no more than 1000 readings were returned, the training set only
consisted of 10k sentences. When the guiding gold standard data and the parser
output are very anisomorphic, the procedure can become cumbersome. In the
study by Zhang et al. (2009), the gold standard consists of dependencies, and
the authors used simple heuristics on the HPSG parse trees to find the head of

5.3. AUTOMATIC CREATION OF A DYNAMIC TREEBANK 97

a phrase, in order to recover the dependencies. They only took the parse with
the highest unlabelled dependency accuracy score, but do not set a minimum
on that score. Hence, each sentence that receives a parse is treebanked. In this
study, the advantage of the source treebank being isomorphic is not there, and
the methodology is more similar to the one by Zhang et al. (2009). The ef-
fort to make the grammar’s output compatible with the dependency triples from
the Tiger treebank (see section 5.1) renders a heuristic head-finding procedure
redundant. Also, more stringent criteria are used: the score will be labelled f-
score, and a minimum f-score is required for the sentence to be treebanked (in
order to exclude poor readings).

Instead of opting for a stand-off annotation format, the idea of dynamic tree-
banks is used in this study, as explained in section 2.3.1 (Carter 1997; Oepen
et al. 2004; Rosén et al. 2009). This has a number of consequences, some of
them positive, some of them negative. A downside is the impossibility to tree-
bank extragrammatical data. However, there are a number of advantages, too, as
summarised by Oepen et al. (2004). The most important one for this grammar
has to do with the grammar’s future. It is well conceivable, as will be discussed
in the Interlude, that this grammar is only an intermediate step towards a more
advanced grammar. Therefore, there must be easy ways to have the treebank
co-evolve with the grammar, and that is exactly what is accommodated by the
update function of dynamic treebanks.

Creating a dynamic treebank consists of two stages:

1. Parsing

2. Disambiguating

During the parsing stage, the PET parser (introduced in section 2.6) (Callmeier
2000) is used. Common state-of-the-art techniques (subsumption-based pack-
ing, selective unpacking, hyper-active parsing) are turned on. As input, the text
from the training set of the Tiger treebank (s1-s45000) is used. Together with
the raw text, the gold part-of-speech tags are input (although mapped to broader
categories2, for practical reasons). These are used to restrict search space, using
one of the methodologies of Dridan et al. (2008), in which only those lexical en-
tries whose types are subtypes of the part-of-speech tag are put onto the chart.
For each sentence, a maximum of 500 readings is recorded.

The disambiguation stage is fairly similar to the one described in section 5.2
on unit testing. From all readings the MRSs are extracted, and converted into
Tiger-style dependencies, and the labelled f-score compared to the gold standard
is computed. If the highest f-score is above a certain threshold β, that best

2The chosen tag set is: ADJ, ADP, ADV, CARD, DET, KON, NE, NN, OTHER, PART, PRELAT,
PRON, TRUNC, VFIN, VIMP, VINF, VIZU, VPP.

98 CHAPTER 5. LEVERAGE OF THE GOLD STANDARD

Description] % of all % of parsed
Total 44993 100.0%
Not parsed 13827 30.7%

No analysis 11304 25.1%
Timeouts 2510 5.6%
Lexical errors 13 0.0%

Parsed 31166 69.3% 100.0%
0 < n ≤ 100 24177 53.7% 77.6%
100 < n < 500 3465 7.7% 11.1%
n = 500 3524 7.8% 11.3%

Annotated, β = 1.0 20379 45.3% 65.4%
Annotated, β = 0.9 25168 55.9% 80.8%
Annotated, β = 0.8 28656 63.7% 92.0%
Annotated, β = 0.7 29996 66.7% 96.3%

Table 5.2: This table lists the results for the treebanking experiment. n stands for the number of readings a
sentence receives. β is the treebanking threshold.

reading is accepted; if none of the readings exceeds the threshold, all readings
are rejected.

A maximum of 500 readings is recorded. Which 500 readings are recorded in
case the grammar licenses more than 500 readings depends on the disambigua-
tion model. However, no model is available initially. Therefore, only 6000
sentences are parsed and treebanked, from which 500 readings are extracted
randomly (using a Maximum Entropy model with no features). From those
sentences that are treebanked successfully, a disambiguation model is trained
(Toutanova et al. 2005). Then, the parsing and disambiguation stage are re-
peated once, using the complete training set this time. This bootstrapping of a
basic disambiguation model hopefully pulls as many correct readings as pos-
sible in the pool of 500 readings per sentence. The basics of the training of
Maximum Entropy-based disambiguation models will be explained in section
5.4.

5.3.2 Results

A summary of the results is given in table 5.2. The first striking observation is
that the grammar’s ambiguity rates are relatively low, suggesting that the control
the grammar writer has in this paradigm pays off: three quarters of the parsed
sentences yield less than 100 readings. Only for 11.3% of the parsed sentences,
the grammar licenses more than 500 readings. It is only for this part of the total
set that the disambiguation model could be relevant. For around 25% of the sen-
tences, the grammar did not recognise the structure of the sentence. Timeouts3

3Parsing stops after 60 seconds. No memory limit was enforced.

5.3. AUTOMATIC CREATION OF A DYNAMIC TREEBANK 99

Rank] %
r = 1 16767 66.62%
1 < r ≤ 10 6121 24.32%
10 < r ≤ 100 1869 7.43%
100 < r ≤ 500 411 1.63%

Table 5.3: This table describes how the ranks of the annotated readings are distributed. For this table, β = 0.9.

were observed in 5.6% of the sentences4. Lexical errors indicates that a certain
word was not recognised, and neither was its part-of-speech, in order to spawn
one of the generic lexical types.

Looking at the treebanking results, the parser can reproduce the exact set of
gold standard triples for around 45% of the input sentences. This number rises
to 56% when the treebanking threshold β is lowered to 0.9, and rises to 64%
when β is lowered even further to 0.8.

The quality of the disambiguation model (trained on 6000 sentences) can be
assessed by looking at table 5.3. For all sentences that are treebanked (with
β = 0.9), around two third of them already have rank 1, and more than 90%
have a rank of 10 or smaller. This is a first indication that the disambiguation
model works well, and will be elaborated on in section 5.4.

An important factor determining the chance of success for the treebanking
procedure is the length of the sentence. This is illustrated in figure 5.3. The up-
per graph shows the distribution of sentence lengths in the Tiger treebank. The
middle graph gives an indication of how sentence length influences ambiguity.
The graph clearly shows that the number of readings rises with longer sentences.
The bottom graph shows that the success of the treebanking procedure is highly
dependent on sentence length. Each bin is divided in four categories (ranked
from light to dark gray in figure 5.3):

• Treebanked successfully (β = 0.9)

• At least one analysis but not treebanked

• No error, but no analysis

• Error

Longer sentences show larger proportions of timeouts and unanalysed sen-
tences, while the proportion of annotated sentences tends to become lower. The
proportion of sentences where at least one analysis is presented, but none of
them having an f-score exceeding β, is fairly constant in the entire range of
sentence lengths.

4The so-called ‘quickcheck’ technique (Kiefer et al. 1999) was not used for this experiment. Later
experiments will give lower percentages of the number of timeouts.

100 CHAPTER 5. LEVERAGE OF THE GOLD STANDARD

1 20 40

Sentence length

F
re

qu
en

cy

0
10

0
30

0
50

0

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●
●
●●●

●
●●

●●●●●● ●●●●●●
●
●●●●●

●
●●●●
●
●●

●
●●
●
●●
●
●●
●

●
●

●

●●
●
●●●
●
●●●●●

●

●
●
●
●
●●●●●●
●
●●

●

●

●
●
●●
●●
●●
●●●●●

●

●●
●
●●●●
●
●●
●●
●

●

●

●

●

●

●
●●●●●
●

●

●●●

●

●

●

●●

●

●●
●
●●
●
●●●

●

●●
●

●
●

●

●
●●

●
●

●

●●

●

●●●●●
●
●
●
●●●●●

●
●

●

●●
●
●●●

●
●

●

●

●
●
●

●●

●

●

●

●

●●●

●
●

●●

●●

● ●

●

●

●

●

●

●

●

●
●
●
●

●●●

●

●●

●

●

●●

●

●

●

●
●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●●●
●●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●●

●●●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●●

●●

●

●

●

●

●

●

● ●●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●

●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●

●

●

●

●●●●●

●

●

●●●

●

●●●

●

●●●●●●

●

●

●

●●●

●

●●●●

●

●●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●●●●●

●

●

●●●●●●

●

●

●

●

●●●

●

●●●

●

●

●

●●

●

●●●●●●●●●

●

●●●

● ●

●

●

●●

●●

●

●

●●●●●●

●

●

●

●

●

●●●●●

●

●

●●

●

●

●

●

●

●

●●

●

●●●●●●●●●

●

●●●●●●●●●●●● ●●●●●●●●●●●●●●

●

●●●

●

●●

●

●●●●●●●● ●

●

●●●●●

●

●●

●

●●

●

●●●●●●●●

●

●

●●●

●

●●

●

●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●● ●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●

●

●● ●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●● ●●●●●

●

●●●●●

●

●●

●

●●●●●●●●●●

●

●●●●

0 10 20 30 40

0
10

0
20

0
30

0
40

0
50

0

Sentence length

R
ea

di
ng

s

1 20 40

Sentence length

P
er

ce
nt

ag
e

0
20

40
60

80
10

0

Figure 5.3: These three graphs indicate how the system performs with respect to sentence length. The first graph
describes the distribution of the corpus’ sentence length. The second shows for a subset of 1000 sentences how
the number of readings correlate with sentence length. The bottom graph indicates how many sentences result
in (from bottom to top): error; no error, but no readings; at least one reading but not annotated; annotated, with
β = 0.9.

5.4. PARSING UNSEEN TEXT 101

Depending of the reader’s perspective, the annotation effort can be perceived
as either a failure or a success. The results are nowhere near the percentages (ap-
proaching 100%) reported in other deep grammar extraction studies. However,
an informative HPSG analysis is given for those sentences that did receive an
annotated reading (45% or 56%). Before, the largest HPSG treebank for Ger-
man contained around 3500 sentences, with fairly simple linguistic data (7.2
input tokens per sentence, on average), after a large amount of manual disam-
biguation (Wahlster 2000).

It is hard to estimate the development time of the treebank, because the time
to create the link between the parser output and the Tiger treebank was the
largest part of the work, and could be considered part of the process of grammar
writing as opposed to creating the treebank. It seems reasonable to assume that
this procedure of constructing a discriminant-based treebank is not slower than
a manual approach.

5.4 Parsing unseen text

The results from the parsing stage from the previous section are positively bi-
ased, in a number of respects. First, the algorithm parses text on which the DLA
algorithm has been run, and hence, there are few unknown words. Also, the
results are based on the best score among all readings that are returned by the
parser, which is equal to the oracle score of the disambiguation model. In a
realistic scenario, only the highest-ranked solution is evaluated. In this section,
the performance of the grammar on parsing unseen text will be evaluated. First,
the development set is used to set a number of parameters related to the train-
ing procedure of the disambiguation model. After all parameters are set to their
optimal values, one run will be done on the test set. The results from that ex-
periment will function as a reference to which the experiments in the following
chapters should be compared.

In order to improve the reproducibility of the results, the exact conditions
will be given here. The PET parser is used, revision 766 from the Subversion
repository5, compiled from source, but with one difference: after the timeout
(60 seconds) is reached, the parser will not fail, but the unpacking routine will
be called, in order to find the solutions that were found until then, if any. This
should give a small increase in coverage in comparison to the stock version of
PET. The input to the parser is the raw text, annotated with gold part-of-speech
tags, which will prevent the parser to spawn lexical types that are not compliant
to the part-of-speech, as explained by Dridan (2009).6

5https://pet.opendfki.de/repos/pet/main
6The exact command-line to invoke the PET parser is: cheap -cm -yy -mrs

-default-les=traditional -packing=15 -sm=sm.mem -nsolutions=1 -timeout=60

102 CHAPTER 5. LEVERAGE OF THE GOLD STANDARD

v-vorfeld-f-h

empty-det v-mittelfeld-lb-h-c-1

lt-name

Antje

v-slash-subj

v-branch-left

ir-verb-npd-pr-3-sg-i

lt-verb-npnom-npacc

isst

empty-det

ir-noun-2a-bse

lt-noun-nomod-noapp

Käse

gp=0 empty-det

lt-name

v-mittelfeld-lb-h-c-1

v-slash-subj empty-det

gp=1 v-vorfeld-f-h

empty-det

lt-name

v-vorfeld-f-h

v-mittelfeld-lb-h-c-1

v-slash-subj empty-det

Figure 5.4: Shown is a parse tree of a simple sentence, as output by the grammar, accompanied by a number of
features extracted from it, with different grandparenting levels. The translation for the sentence is ‘Antje eats
cheese’.

5.4.1 Optimising the disambiguation model

In this section, only one factor is being varied: the statistical disambiguation
model. The PET parser currently supports one type of disambiguation model:
the standard Maximum Entropy model. Adopting the same naming conventions
as Toutanova et al. (2002), the probability of a specific reading of a sentence is:

P (ti|s) =
exp

∑
j=1,...,m fj(ti)λj∑

i′=1,...,n exp
∑

j=1,...,m fj(ti′)λj

Here i is the reading identifier and j is the feature identifier. fj(ti) is the
feature extraction function, which denotes the number of times feature j occurs
in reading ti. Informally, the learning procedure will try to maximise the condi-
tional likelihood of all sentences in the training set by adjusting the weights λj ,
assuming that this will give the best results when the model is applied to held-
out linguistic data. One reason for the attractiveness of this type of modelling is
german.grm, where sm.mem is different for all experiments in this section.

5.4. PARSING UNSEEN TEXT 103

Setting Result
sent β Exact match Precision
RANDOM 15.0% 74.8%
45k 1.0 24.6% 83.8%
45k 0.9 24.6% 84.1%
45k 0.8 24.5% 84.1%

1k 0.9 20.2% 80.8%
2k 0.9 20.6% 81.5%
3k 0.9 21.6% 82.0%
4k 0.9 21.8% 82.4%
5k 0.9 22.2% 82.5%

10k 0.9 23.0% 83.0%
20k 0.9 23.6% 83.5%
30k 0.9 24.2% 83.8%
40k 0.9 24.6% 84.0%
ORACLE 29.4% 88.8%

Table 5.4: Results indicating the influence of changing the training procedure of the disambiguation model.
These results are based on the development set. ‘sent’ indicates on how many sentences the model is trained
(these sentences might be annotated or not). β is the parameter for the annotation threshold.

that it scales well with very large numbers of features (in the order of millions).
Although learning is computationally complex, decoding the probability of a
new sentence given a certain model is straightforward, if the feature extraction
function is easy to compute. In the experiments in this section, only those fea-
tures that are recognised by the stock version of the PET parser are used. These
are local parse trees, appended with a number of (grand-)parents. In figure 5.4,
a parse tree with some of its associated features is depicted.

The quality of the disambiguation models will be evaluated using a number of
statistics. On the sentence level, there is the ‘exact match’ metric, indicating for
how many sentences the perfect solution has been found. Second, I will report
on the precision of the parser’s predictions on the level of syntactic dependen-
cies. Both evaluation metrics are not particularly informative without context,
and therefore a lower and an upper bound will be provided. As a lower bound, a
RANDOM selection strategy is chosen7. Because precision-oriented parsers try
to keep the number of analyses for a given sentence low, this baseline can per-
form surprisingly well. The second piece of context is the ORACLE score, which
indicates the maximum performance of the model, if the best reading would al-
ways be picked. Between these two scores, there is a spectrum, and a model’s
performance can be assessed by looking at the location on this spectrum.

The results are summarised in table 5.4. Two variables can be altered. The
first is the size of the training set (45k is the complete training set). The num-
ber of actual training instances depends on the second variable, β, the f-score

7In practice, this is done by using a disambiguation model with no features. It gives the same
score to all readings, and therefore the decision to rank one reading over another reflects a chance
distribution.

104 CHAPTER 5. LEVERAGE OF THE GOLD STANDARD

threshold that is used to decide whether a certain sentence should be annotated
or not (see section 5.3). The disambiguation procedure works reasonably well.
Compared to the RANDOM baseline, there is a 66% reduction of errors on the
dependency level (relative to the ORACLE score). It must be taken into account
that these scores are calculated over the covered sentences, which on average
are slightly shorter than the entire treebank (12.9 vs 15.9 words per sentence,
excluding punctuation tokens).

A second observation is that the training parameters have surprisingly little
influence on the results. Changing the β parameter has little effect. Lowering
β increases the training set (as more sentences will be accepted for annotation),
but possibly with a lower quality. Hence, the training procedure might learn
wrong generalisations. On the other hand, setting β will shrink the training set,
and using less training instances usually leads to a degradation of results when
machine learning methods are applied. However, the precision of the disam-
biguation model is fairly robust against these changes, without any noticeable
difference between the results.

This result suggests that there is enough training data in the first place, or,
in other words, that the training algorithm converges already after a smaller
amount of data. We checked this by using smaller parts of the treebank for
training the disambiguation model. The outcome was that, after a training set of
5k (of which around 2750 are annotated), the model’s precision is already ap-
proaching the precision of the model trained on the full training set, a somewhat
surprising result. One might attribute this result to two factors: the relatively
small amount of ambiguity, and the high level of abstraction of the features.

5.4.2 Evaluation on the test set

The optimal parameters for training the disambiguation model have been found,
it is time to test the performance on truly independent linguistic data: the test
set. The results are summarised in table 5.5, and will function as a reference
point for the results of the experiments that will be carried out in consequent
chapters. The average time to parse the sentence is just over 4 seconds, which is
the same order of magnitude as other DELPH-IN parser. 60.4% of the sentences
receive at least one analysis, which is about 10% lower than in the treebanking
experiments. For 21.7% of the sentences, the parser yielded the exactly correct
parse. Compared to the development set, it appears that the parser was able to
sustain its high precision on the dependency level (83.7%). The f-score on the
test set is 54.9%. Generally, it is reassuring that the parameter settings that were
chosen in the previous section generalise well to the test set.

The results in table 5.5 are best compared to the ones presented by Forst

5.4. PARSING UNSEEN TEXT 105

Sentence-level
Avg parse time 3.92s
Coverage 60.4%
Exact match 21.7%

Dependency-level
Recall 40.8%
Precision 83.7%
F-score 54.9%

Table 5.5: This table shows the result of the parser on the test set, using the best parameters from the develop-
ment set to train the disambiguation model (β = 0.9).

(2007), who applied a hand-written grammar in the LFG framework to an-
other subset of 1600 sentences from the Tiger treebank. The author reports a
dependency-only f-score of 77.2%. Their coverage is reported to be 86.4% on
that data set (Forst 2007). Another source of comparison is the performance
of two treebank-induced LFG grammars, as reported by Rehbein and Van Gen-
abith (2009), where dependency-only scores are presented of 72.7% (for their
own work) and 78.6% (for work done by Cahill et al. (2005)). Although the
results are not immediately comparable, because they use a different subset and
tag set (Forst et al. 2004), this does give a clear indication that the grammar, as
it stands now, is not state-of-the-art, mostly caused by the low coverage score.

The results in table 5.6 give more insight in the performance of the parser on
a number of aspects. Let’s first observe the aggregate results at the bottom. The
average recall, precision and f-score are repeated from table 5.5. Extra columns
are added for the f-score when a random reading was selected (the baseline), and
when the best possible reading was selected (oracle upper bound). The relative
improvement between the lower and upper bound is given in the rightmost col-
umn. The disambiguation model achieves a 70.2% relative improvement over
the entire test set.

Table 5.6 also shows how the parser performs on different tags. A prominent
observation is that there is a large variation between the observed scores on these
tags. When a certain tag is not recognised correctly in many sentences, this
can be due to two sources: the grammar per se or the disambiguation model.
The ORACLE f-score indicates how the grammar performs, irrespective of the
disambiguation model. When the oracle f-score for a tag is lower than the micro-
average8 oracle f-score (57.7%), this indicates that the formal model does not
suffice to model this tag correctly. The relative improvement shows how apt the
disambiguation model is to pick the correct reading from the readings that are
licensed by the grammar.

Relatively good scores are achieved for the ROOT, DET, SB, EP (expletive

8The micro-average averages over all instances in all classes (tags in this case). A macro-average
is the average over all classes, thus giving more weight to instances of infrequent classes.

106 CHAPTER 5. LEVERAGE OF THE GOLD STANDARD

Label] Recall Precision F-score Rel.
RANDOM Observed ORACLE impr.

MO 9530 39.6% 79.0% 43.8% 52.8% 57.2% 66.8%
DET 5517 49.6% 98.0% 65.5% 65.9% 66.1% 63.8%
OBJ 5159 46.1% 94.0% 59.9% 61.9% 62.3% 81.7%
SB 3618 45.0% 89.9% 53.2% 60.0% 62.7% 71.5%
CJ 2769 30.2% 81.3% 40.5% 44.0% 46.6% 57.6%
ROOT 2500 54.0% 89.5% 61.9% 67.4% 68.0% 89.9%
OC 1934 43.6% 84.8% 49.7% 57.6% 57.8% 97.5%
OA 1446 42.5% 74.9% 39.1% 54.2% 58.1% 79.7%
MNR 1356 28.5% 64.9% 30.5% 39.6% 53.9% 39.0%
AG 1098 43.9% 91.6% 50.3% 59.4% 60.8% 85.9%
PNC 857 10.4% 98.9% 17.7% 18.8% 18.8% 100.0%
APP 677 35.2% 30.6% 19.5% 32.6% 40.9% 61.3%
PD 514 29.2% 85.2% 29.3% 43.5% 48.4% 74.5%
RC 405 34.6% 76.1% 31.8% 47.6% 57.3% 62.0%
OP 314 37.9% 66.9% 28.9% 48.4% 60.9% 60.9%
REFL 280 34.6% 95.1% 32.5% 50.7% 52.0% 93.5%
NG 276 33.7% 63.3% 35.5% 44.0% 58.7% 36.6%
SVP 271 35.1% 99.0% 51.8% 51.8% 51.8% na
DA 255 29.4% 64.1% 26.1% 40.3% 42.4% 87.2%
PM 235 38.7% 98.9% 55.6% 55.6% 55.6% na
PAR 214 0.0% 0.0% 0.0% 0.0% 0.0% na
RE 138 8.7% 80.0% 11.9% 15.7% 17.0% 75.0%
NMC 135 10.4% 100.0% 9.9% 18.8% 18.8% 100.0%
CC 116 21.6% 64.1% 20.1% 32.3% 38.7% 65.4%
EP 87 48.3% 76.4% 37.2% 59.2% 64.3% 81.2%
SBP 82 18.3% 78.9% 14.5% 29.7% 34.3% 76.8%
AD 55 18.2% 83.3% 26.9% 29.9% 31.9% 59.5%
OG 12 16.7% 33.3% 8.7% 22.2% 22.2% 100.0%
other 192 0.0% 0.0% 0.0% 0.0% 0.0% na
total 40042 40.8% 83.7% 48.3% 54.9% 57.7% 70.2%

Table 5.6: Listed in this table are the scores for the individual dependencies. The column under the symbol]
indicates how often the given dependency tag is observed in the gold standard. The rightmost column gives the
error reduction that the disambiguation model achieves. The dependencies under ‘other’ are: AMS, CD, NK,
AC, CP, PH, JU, DM, VO, OA2, RS, PG, –, AVC, HD, ADC, CM, SP, UC.

subject) and OBJ (complements of adpositions) tags. The f-scores are signifi-
cantly higher than the micro-averaged f-score. In the case of the DET and OBJ

tags, this is mostly due to the tight modelling of the formal grammar, as there
is not much difference between the oracle and random scores for these tags. On
the other hand, the disambiguation model properly models the ROOT, SB and EP

tags, with high degrees of relative improvement between the upper and lower
bounds.

It is widely accepted that coordinations are difficult to model. Formal models
for these constructions are tedious to create, and the rules usually introduce
much ambiguity. The low score for CJ (44.0%) is therefore not a surprise. The
source of the errors lies in both the grammar and the disambiguation model:
both the oracle f-score (46.6%) and the relative improvement (57.6%) are below
the micro-averages by a large margin.

5.5. SUMMARY 107

The parser’s observed f-score is just below average on the most common tag:
MO (adverbial modification; PP modification of the verb). Another modifier tag,
MNR (PP modification of the noun), is recognised correctly in fewer cases. PP
attachment is a common source of errors for both grammar-based and statistical
parsers, because it is hard to constrain the over-generation and because there are
no obvious features that can distinguish plausible analyses from less plausible
analyses. The fact that the relative improvement score is below average is thus
not surprising, but that the oracle f-score is below par is an unexpected result.

PNC (multi-word proper nouns) and NMC (multi-word numbers) suffer from
a similar problem: they consist of more than one word (the tags are annotated on
the relation between the individual parts between the lexical tokens). The low
recall and high precision figures indicate that the lexical item is used appropri-
ately during parsing, in those cases that the proper multi-word lexical item is in
the lexicon. However, the DLA procedure has been unable to capture enough of
these multi-word units. Better preprocessing facilities might help to overcome
this issue. A similar conclusion can be drawn for the REFL tag, which shows low
recall and high precision as well. Reflexives are fairly productive in German,
and it might be more suitable to model reflexives as a verbal modifier rather than
as a complement of the verb.

Modelling appositions (APP) turns out to be troublesome for the parser as
well. The grammar allows any name to have appositions, as well as nouns which
appear as the head of a head-apposition construction in one training sentence.
It appears that the discovery of lexical items from the second category is insuf-
ficient, given the low oracle f-score. Because the head-apposition construction
in the core grammar hardly constrains the head and the apposition, this must be
due to the lexical acquisition.

The dependency tag PAR indicates parenthetical modifiers. As can be seen,
this tag has not been implemented in the core grammar, nor is it a tag that can
be inferred during the DLA stage. This is a typical case of a dependency that
is not hard to model: it combines an unsaturated verbal phrase with a saturated
phrase (regardless of its head). However, this definition of parenthetical modi-
fiers would incur a heavy efficiency penalty, due to the massive overgeneration
it would cause. Hence, this tag is not covered by the grammar.

5.5 Summary

The experiments in this chapter were meant to make maximal profit of the ex-
istence of a large, detailed gold standard treebank. In order to do so, the Tiger
treebank was converted to dependency triples, and the output of the parser was
shaped to facilitate the comparison between that output and the gold standard.

108 CHAPTER 5. LEVERAGE OF THE GOLD STANDARD

This entailed a divergence from the MRS formalism, which is the de facto stan-
dard within the DELPH-IN community. The resulting output format is more
similar to the predicate-argument structures that the Enju parser produces and
the predicates-only output within the LFG community.

The combination of different grammar engineering paradigms entails that dif-
ferent points of breakage are brought into existence. A new method for identify-
ing and quantifying the sources of errors (quality assurance) in a deep grammar
extraction has been presented (unit testing), taking advantage of the direct com-
parability of the deep grammar’s output and the dependency treebank that was
achieved before. A prominent result of experiments was that insufficient con-
structions within the core grammar was the main reason for not being able to
fully reproduce the original Tiger annotations.

The same methodology was used to automatically convert the Tiger treebank
into a full-fledged dynamic HPSG treebank. At the time of writing, this tree-
bank is the largest HPSG treebank for German, containing the most realistic
text. It was argued that a conversion by parsing (as opposed to using a heuristic
procedure) was the only reliable strategy to reach a maintainable and transparent
grammar-treebank symbiosis. For 45% of the sentences in the original treebank,
an HPSG analysis compatible to the grammar from chapters 3 and 4 was found
that can reproduce the entire set of dependency triples in the gold standard.
When a small margin of error is tolerated, this percentage goes up to 56%.

Furthermore, experiments exploring the aptitude of the parser to analyse un-
seen linguistic data were presented. One interesting observation is that the re-
sults did not change much for a fairly wide range of settings for the disambigua-
tion model training procedure. Also, a small treebank was already sufficient
to reach the learning optimum. The results for the independent test set were
promising: the parser’s coverage exceeded 60%, of which more than one-third
were given the exactly correct parse. On the dependency level, recall and pre-
cision turned out to be 40.8% and 83.7%, respectively, yielding an f-score of
54.9%. Results on the individual tags were mostly in line with the expectations,
showing lower scores for coordination and PP attachment, and higher scores for
tags indicating complementation.

5.5. SUMMARY 109

Interlude
At this point in the thesis, an entire grammar, including a statistical disambigua-
tion model, has been built up from scratch. I will refer to the grammar as ‘Chee-
tah’ (as in: a family member of Tiger). Now concrete results are available on
Cheetah’s achievement on unseen text, it is time to reflect on what has been
achieved so far. Although a direct comparison is very hard to make across lin-
guistic paradigms, languages and data and evaluation sets, I will try to make
a fair and balanced comparison with other approaches within the entire pars-
ing community, which I will divide in four categories: statistical dependency
parsers (Nivre 2007; McDonald et al. 2005), deep grammar extraction (DGE)
parsers (Clark and Curran 2004a; Cahill et al. 2005; Miyao et al. 2004), parsers
based on hand-written grammars (Van Noord 2007; Riezler et al. 2001), and
one particular group of instances of hand-written grammars: DELPH-IN gram-
mars (Flickinger 2000; Crysmann 2005; Siegel and Bender 2002). Because each
parsing paradigm has its advantages and disadvantages, the comparison will be
multi-dimensional. A summary of the comparison is given in table 5.7.

Linguistic relevance

One of the reasons to use hand-written, precision-oriented grammars is that they
grant us the possibility to test linguistic hypotheses on a large scale. Two types
of such testing can be distinguished. The first is to encode certain linguistic
predictions in the grammar. When trying to parse text (either unseen text or a
test suite), one can learn from coverage and ambiguity rates whether the predic-
tions about the language were accurate or not (Bender 2008b). Due to the scale
of these experiments, it also becomes possible to test whether there are inter-
actions between hypotheses. The second way to use deep parsing technology
for hypothesis testing is by creating large treebanks, which can be queried for
certain phenomena. An example is the study by Bouma and Spenader (2009),
who investigated how Dutch reflexives behave in different contexts. Interesting
about this work is that a treebank need not be available, as the output of the
parser is considered to be accurate enough.

Cheetah offers a systematic, integrated formal account of the most promi-
nent aspect of the German language. However, no publications offering new
insights into formal models of German have appeared (Crysmann (2005) offers
a good example how this has been done for German before). But there is no
reason to assume that it could not. A grammarian can alter the lexical types,
remove constraints or add constructions. Possible effects of such changes can
now be tested on a large scale. In comparison to the HPSG grammar for German

110 CHAPTER 5. LEVERAGE OF THE GOLD STANDARD

D
EL

PH
-I

N
gr

am
m

ar
s

H
an

d-
w

rit
te

n
gr

am
m

ar
s

D
ee

p
gr

am
m

ar
ex

tra
ct

io
n

St
at

is
tic

al
pa

rs
er

s

Linguistic relevance - - + +
Level of abstraction - = = +
Ability to generate - = + +
Efficiency ± ± - ?
Coverage ± ± - -
Development time + + - -
Clean evaluation + = = =

Table 5.7: This table describes how Cheetah compares to existing parsing paradigms on a number of dimensions.
‘+’ means that Cheetah compares favourably against the other categories; ‘-’ means the opposite; ‘=’ indicates
equal performance on this particular domain. ‘?’ indicates that no clear answer can be found in the literature,
and ‘±’ means that within the category, there are some to which Cheetah compares favourably, and some to
which they do not.

(Crysmann 2005), the grammar writer can profit from a compatible gold stan-
dard and a higher coverage (these relative advantages do not apply to the more
mature LFG grammar for German, for which extensive documentation is avail-
able (Dipper 2003)). Such changes are easier to make with Cheetah than with a
completely hand-written grammar, because the lexicon derivation algorithm can
be changed: if a refinement of a lexical type is made into two others, the lexi-
con derivation algorithm might be able to make this distinction as well, hence
rendering a manual pass over the lexicon unnecessary. Also, because there is a
large treebank in stand-off format available, the grammar writer can test whether
a change increases the annotation rate (see section 2.1.5). In a DELPH-IN set-
ting, the grammar writer typically needs to check by hand whether the newly
covered sentences indeed contained the correct solution.

The space to evaluate linguistic hypotheses using purely treebank-based par-
sers seems very slim9: more linguistic information can only be added in the
procedure that converts the source treebank to the target formalism. Cheetah’s
workflow therefore offers a more principled way to add linguistic knowledge
into the grammar, which is showcased by a more elegant, constructionalist so-
lution of permutation of adjuncts and complements.

9Not really linguistic, but certain cognitively inspired models of languages, such as adaptor
grammars (Johnson et al. 2007), offer insights into language, although their view on human language
capacities is predominantly probabilistic.

5.5. SUMMARY 111

Level of abstraction

As was discussed in chapter 2, syntactic dependencies are nowadays the most
widely used modality for parser evaluation, both within the deep and shallow
parsing communities. Cheetah followed this trend, by using the syntactic de-
pendencies directly derived from the Tiger treebank. The term ‘syntactic de-
pendencies’ suggests, however, a sort of unified view on how this annotation is
done, but in fact, there is no consensus on this topic. The available schemes
differ widely. To assess the complexity of the task, one could suggest that there
is a correlation between the number of different tags that are used in the anno-
tation scheme and the complexity of the task for the parser, because the parser
needs to be able to make finer-grained distinctions. However, if a certain label
were partitioned into several labels following a deterministic procedure, the new
dependency set would be as complex as the old set, even though there are more
labels in the new set. Also, there are disagreements about whether dependency
graphs can be non-projective and whether secondary links should be allowed.
On top of that, even if there is agreement on the fact that scheme A is more
complex than scheme B, this does not necessarily entail that scheme A is also
more informative than scheme B for a certain upstream application.

These complications are there for syntactic dependencies alone. Some re-
search groups prefer to evaluate their parsers using a superset of the information
that syntactic dependencies offer. For instance, the XLE parser and the gram-
mars within DELPH-IN also output variables, for instance to denote number,
gender and even animateness. The DELPH-IN community takes this format
one step further in the abstractness hierarchy, by using a form of (flat) semantics
as their output (MRS: Copestake et al. 2005). The MRS formalism allows the
grammar writer to specify (or underspecify) semantic scope, and aims to ab-
stract away more from the actual surface form than dependencies do, meaning
that MRSs across languages are more similar to each other than less abstract
syntactic/semantic representations.

To the extent that it can be assessed properly, I conclude that the complex-
ity of the task Cheetah is evaluated on is roughly as high as the problem DGE
parsers and statistical dependency parsers are trying to solve. This is also true
for the hand-written Alpino grammar (Van Noord 2006). In principle, Cheetah
is also able to output variables, although they have not been evaluated for the
studies in this thesis. However, there is still a gap to close with respect to the
DELPH-IN grammars, as semantic scope can not be represented. Other differ-
ences, for instance the assignment of void semantic representations to a number
of categories (particles, auxiliary verbs, complementisers, infinitival ‘zu’), can
be realised in the core grammar and lexicon with relatively little effort.

112 CHAPTER 5. LEVERAGE OF THE GOLD STANDARD

Ability to generate

Most attention in this thesis is devoted to parsing. However, the bi-directional
nature of DELPH-IN grammars is a distinctive feature (Velldal and Oepen 2005),
and is used for (among other things) transfer-based machine translation (Bond
et al. 2005). One of the prerequisites for doing generation is a grammar that does
not suffer too much from over-generation. Technically, it is possible to generate
from Cheetah, but no real experiments have been carried out. The main barrier
is the exhaustiveness of the generator in the DELPH-IN toolchain, which leads
to too large a computational burden even for slightly less constrained grammars.

Generation from treebank-derived grammars is theoretically possible, though.
It has been successfully done both with the Penn Treebank-based grammars for
LFG (Cahill and Van Genabith 2006) and HPSG (Nakanishi et al. 2005). This
leads me to argue that such experiments should be within reach for Cheetah as
well, if the generation algorithm is adapted accordingly.

Efficiency

As we have seen in section 5.4, Cheetah needs around 4 seconds per sentence on
unseen newspaper text. This is already after a certain amount of pruning on the
basis of the part-of-speech tags. Cheetah’s efficiency is therefore comparable to
the ERG. The XLE grammar for English is a little faster, with about 2 seconds
per sentence (without pruning; taken from table 2 by Cahill et al. (2008b)), or
around half a second, if only the core grammar is used (Kaplan et al. 2004) (this
is the normal grammar, but without support for certain infrequent phenomena,
such as topicalisation). Van Noord (2009) does not give average parse times
when parsing exhaustively, but using pruning, at least 6 seconds per sentence
are needed to get good results. On the other hand, some DGE parsers are fairly
slow, because these parsers do not strongly restrict the search space using their
constraints: without pruning, parse times for the Enju system (without pruning)
are reported to be around 2 minutes per sentence (Ninomiya et al. 2005). No
such numbers are reported for other DGE parsers in the CCG of LFG formalism.

Many DGE parsers have resorted to statistical methods for constraining the
search space, both on the lexical (Clark and Curran 2004a; Matsuzaki et al.
2007) and phrasal (Ninomiya et al. 2005; Zhang et al. 2010a) levels, yielding
impressive reductions of parse times. Such methods have also proved to be
successful for hand-written parsers, even though the constrained nature of these
grammars is meant to keep ambiguity rates under control (Cahill et al. 2008b;
van Noord 2009). It is clear, on the other hand, that such restriction strategies
give larger speedups for treebank-derived parsers than for precision-oriented

5.5. SUMMARY 113

parsers, because the redundancy in the parse charts of the former type is larger,
and hence pruning these unlikely items is easier. It seems that the PET parser is
one of the few deep parsers that still use exhaustive parsing, and it is an obvious
choice to adopt pruning strategies for the PET parser as well. We will look into
this in chapter 6.

Coverage

When writing a grammar by hand, there is a constant trade-off between effi-
ciency/precision and coverage, and the results from section 5.4 are the result
of a series of choices between these two. However, it is clear that the set of
applications that this parser can be used for, is severely restricted if only results
are returned for around 60% of the sentences.

The coverage number for Cheetah does not compare favourably to current
state-of-the-art parsers, both treebank-derived or hand-written. The former usu-
ally report coverage numbers approaching 100%, the latter around 80%, de-
pending on the type of text. The coverage number reported in chapter 5 (just
above 60%) is lower than both the ERG and the XLE parser (for English), and
for the German LFG parser (Rohrer and Forst 2006) (although the out-of-the-
box coverage of an existing DELPH-IN grammar for German was lower than
Cheetah’s (Cramer and Zhang 2009)). It seems plausible to attribute this dif-
ference to the shorter development time measured in person months, and more
syntactic phenomena deserve attention in order to resolve this.

There is also another way to perceive coverage, and that has to do with the
way the parser acts when the grammar does not license the utterance. Most
current algorithms that are used for parsing with large hand-written grammars
employ a form of fallback strategy, for instance by outputting fragments. This
lifts the coverage to 100%, even though not all sentences are licensed by the
grammar. In this respect, the PET parser is an outlier, because only preliminary
work has been done on this type of robustness measures. Chapter 7 will look
into a number of strategies to handle such situations.

Development time

One of the main motivations for the workflow behind Cheetah was practical
in nature: it takes an extra-ordinary amount of time and expertise to create a
wide-coverage grammar manually. This is true for the development of the for-
mal model (constructions, lexical types, lexicon) and for the annotation of a
realistically sized treebank. The methods that have been proposed shorten the
development time of each of these components. Compared to state-of-the-art

114 CHAPTER 5. LEVERAGE OF THE GOLD STANDARD

hand-written grammars, gaps in the inventory of lexical types and constructions
are spotted with more ease due to the unit testing procedure. Also, the lexicon is
derived automatically, and no labour-intensive re-iterations over the lexicon are
needed when the inventory of lexical types is modified. Last, a decent portion of
the source treebank can be automatically converted to a rich, dynamic treebank
in the target formalism using an automatic disambiguation procedure. In total, I
would estimate the total time to create the resources to be 2 person years.

The workflow of treebank-derived deep parsers guarantees a shorter devel-
opment cycle than for Cheetah. For these parsers, the development process
is more straightforward, because the shape of the core grammar is consider-
ably simpler10. On the other hand, more is required from the heuristic anno-
tation/conversion procedure, for which scalability issues can be expected when
more depth is required.

Treebank-derived and hand-written deep parsers are not incomparable cate-
gories of parsers. Rather, they should be regarded as extremes on a dimension
that indicates the amount of manual effort that is invested into the grammar.
Cheetah is located somewhere in the middle of this line, trying to combine the
best of both worlds. Compared to the treebank-derived parsers, there is only lit-
tle more development time, but it has large advantages in terms of the ability to
generate and linguistic relevance. On the other hand, compared to hand-written
grammars, there is a large speedup in terms of development time, with only a
relatively small penalty in terms of depth of the output.

I should make some general remarks here about the cost of the grammar in
relation to the treebank. Of course, it also takes labour and expertise to create
the source treebank, and one could argue that, if one wishes to compare the de-
velopment time of different parsing paradigms, the time to create that treebank
should be counted in as well. The counterargument is that the goals that tree-
banks serve are manifold, and that some treebanks have been used in thousands
of studies. Therefore, the development efforts of creating the treebank should be
divided by the number of beneficiaries of the treebank, which is a large number
for the Tiger treebank.

Clean evaluation

The standard type of evaluation within the machine learning community is to
split the available data in a training set and a test set (and possibly a develop-
ment set). The experiments in this thesis clearly follow this paradigm, and learnt
parsers (either shallow or deep) generally use this form of evaluation as well. It
must be said, though, that this paradigm is not entirely flawless. For instance,

10This is called the specification step in the development of the Enju parser (Miyao et al. 2004).

5.5. SUMMARY 115

when a community has converged to a certain test set, evaluations are repeated
many times on the test set, with the possible danger that the algorithms that
are developed are incidentally geared towards that specific set. Similar com-
ments can be made about the domain of such sets, to which learnt parsers are
particularly sensitive, more so than hand-crafted parsers, which are meant to be
universal. This criticism does for instance apply to the repeated evaluation on
section 23 of the Penn Treebank (Marcus et al. 1994).

A distinction between training and testing sets is not applicable to hand-
written grammars. The evaluation of hand-written grammars outside the DELPH-
IN framework is often done with respect to a stand-off format (e.g. Van Noord
2006). When no stand-off annotation is available, which has been the case for
DELPH-IN grammars, one might be tempted to report statistics on the coverage
or annotation rate on a certain development set, in which the grammar and the
treebank are co-developed (Oepen et al. 2004). However, such scores are biased,
because special attention has been paid to that particular set of linguistic data.
Later, results from out-of-the-box experiments, in which the grammar writer
has not seen the data beforehand, have been reported for the ERG (Ytrestøl
et al. 2009; Flickinger et al. 2010). Also, work has gone into designing evalua-
tion paradigms that give a finer-grained picture of the quality of a returned parse
(Elementary Dependency Match: Dridan 2009), instead of a binary one. What
is still lacking, however, is a robust evaluation of sentences that are not licensed
by the parser, which, according to Flickinger et al. (2010), still forms approxi-
mately 15% of realistic data. Because gold standard MRSs within DELPH-IN
have only been created when the sentence was covered, this poses a problem
for a more granular evaluation paradigm. Cheetah is not affected by this issue,
because the gold standard dependencies are available in a stand-off format.

Outlook

The larger question that this thesis is trying to answer is the one of feasibility.
Most of the work in chapters 3, 4 and 5 was devoted to reducing the workload,
and to automate as much as possible in the process. This was achieved, but
there were also some downsides. Compared to DELPH-IN grammars, there
is a loss of abstraction, as true MRS structures can not be created. The fact
that the lexicon was learnt automatically also caused more over-generation and
ambiguity than observed in carefully handcrafted grammars. Last, grammars
that are entirely learnt by an algorithm have the advantage that (almost) full
coverage can be achieved.

From here, two directions of research can be chosen: trying to coerce Cheetah
into a DELPH-IN-style grammar or trying to improve on other factors that neg-

116 CHAPTER 5. LEVERAGE OF THE GOLD STANDARD

→ coverage

→
de

pt
h

Figure 5.5: A schematic representation of two strategies of creating DELPH-IN grammars.

atively influence the adoption of deep parsing (and HPSG parsing in particular),
most notably efficiency and coverage.

Making the grammar a ‘true’ DELPH-IN grammar requires the output of
the grammar to be enhanced. The output of Cheetah is currently geared to-
wards Tiger-style dependencies (although the agent-patient distinction is prop-
erly made), meaning that the level of abstraction should be brought to a higher
level, in order to reach a view on semantics that is common within DELPH-IN.
A number of modifications have to be implemented. For instance, all lexemes
that can act as a modifier must specify whether the modification is intersective
or scopal, either by changing or specialising lexical types. When a lexical type
is specialised into a number of novel types and the information for this special-
isation can not be found in the source treebank, a manual pass over the lexicon
is necessary to decide with which lexical type that lexeme should be associated.
Constructions dealing with modification need to be adapted accordingly as well.
Furthermore, the predicates of some lexical entries need to be changed. For ex-
ample, all personal pronouns need to have the same, abstract predicate name,
having only different morpho-syntactic variables. There is a list of syntactically
divergent words already (in the core lexicon), and they are most likely the ones
that need their semantics changed.

One question that comes to mind when discussing these issues is: what is the
most efficient strategy to create precision-oriented deep grammars? Two sce-
narios can be distinguished (see figure 5.5 for a visualisation of the scenarios).
In the first scenario, the developers start out with a high level of abstraction
(MRS) from the start, and write the entire grammar manually. However, this
method has proved to be very labour-intensive. The alternative method is to
follow Cheetah’s workflow, and when the grammar is in the state that Cheetah
is at this point in the thesis, alter the grammar to make it entirely DELPH-IN
style. Cheetah’s level of development after two person years of work makes me
believe that the second scenario is more efficient.

5.5. SUMMARY 117

As mentioned above, there are two other large obstacles that prevent the adop-
tion of large-scale HPSG precision parsing using the PET parser. The first is the
relative lack of efficiency. Computing the feature structures is expensive, and
so far, the algorithm of the PET parser will search through the complete search
space. Some studies have indicated that large speed gains can be expected, with-
out loss in accuracy, and I will investigate in chapter 6 whether those speed-ups
can be achieved with the PET parser as well.

The second obstacle is the lack of a good fallback strategy in PET when the
parsing stage fails. Rule-based systems in the field of artificial intelligence have
always been criticised for their brittleness: if there is input that does not conform
to the rules’ expectations, it is not obvious how the system should behave. In the
case of PET, when the sentence is not covered by the grammar, the parser will
fail, and output nothing. However, if precision-oriented HPSG parsing aims to
be wide-coverage, better strategies have to be invented. In chapter 7, a number
of strategies will be investigated, among them the use of robustness rules in
combination with the search space restriction strategies from chapter 6.

118 CHAPTER 6. AGENDA-BASED TASK PRUNING

6 Agenda-based task pruning
Under the assumption that ambiguity can be tamed satisfactorily by defining
constraints, deep parsers have often relied on an exhaustive search through the
search space in order to find the best analysis. In this setting, only after con-
structing the complete parse forest, the analyses are extracted from the forest,
and ordered with respect to a certain statistical disambiguation model. This re-
quires the grammar to be very compact, and even then, true ambiguity can be
pervasive enough to reach the parser’s computational boundaries. Many deep
grammar extraction parsers have already resorted to search space restriction
(Ninomiya et al. 2006; Clark and Curran 2004b), which is a logical choice:
these grammars are fairly permissive in the structures that they allow to com-
bine, and therefore, an exhaustive search strategy would cause a large computa-
tional burden. Lately, more and more work has gone into restricting the search
space for precision-oriented grammars as well (Cahill et al. 2008b; Dridan 2009;
van Noord 2009), with promising results.

Apart from the pursuit to make the parser faster, there is also a case to make
for making parse times more predictable. For instance, imagine that parsers
A and B have equal average parse times: 2 seconds. Parser A always takes
2 seconds to finish the parse, whereas parser B usually needs 1 second, but
sometimes 10 seconds. In most cases, parser A is preferable because the end
user of a system that depends on either parser will not end up being frustrated
by unexpected long lags. Hence, predictability is a valuable asset when we
evaluate the efficiency of a parser.

In this chapter, a novel type of search space restriction, agenda-based task
pruning, is investigated. The chapter starts with a comparison of existing meth-
ods to see which kind of model is most suitable for integration into the PET
parser. Then, the generative model is explained, on which a model for priori-
tising parser tasks is based. This is followed by the introduction of a number
of pruning strategies, along with the results that these models achieve on the
development set. The chapter is closed by a discussion of the results on the test
set, as well as some directions for further research.1

6.1 Introduction

As has been extensively discussed in section 2.5.2, a number of studies have
successfully applied search space restriction strategies in order to ameliorate
the efficiency of various parsers. Methods to reduce the computational demands
of parsers can act on two different levels: lexical and phrasal. Lexical restriction

1Parts of this research have been published previously (Cramer and Zhang 2010).

6.1. INTRODUCTION 119

has been proved to be useful for a number of parsers (Clark and Curran 2004b;
Van Noord 2006; Ninomiya et al. 2006), including the PET parser (Dridan et al.
2008; Dridan 2009). Actually, a form of such a restriction is already used in the
reference experiments in chapter 5: only those lexical types that are subtypes
of the gold standard parts-of-speech were put on the chart. In the experiments
described by Dridan (2009), this cut parse times for the ERG (Flickinger 2000)
in three, when the input was annotated with automatically assigned parts-of-
speech from a tagger. However, this was at the cost of a small, but significant
loss of correct readings.

Good results have been obtained with phrasal restriction as well. Cahill et al.
(2008b) introduced a beam search for each chart cell in the XLE parser, based
on a generative model conditioned on LFG’s c-structures. They report a 60-70%
speedup, with a slight increase of coverage (which is due to less sentences going
into SKIMMING mode). Ninomiya et al. (2005) show how a beam can be intro-
duced in the Enju parser, although not only a beam on chart cells is defined, but
also on the sets of cells with the same span size. Also, each chart cell is assigned
a limit of the number of chart items it can contain. The probabilities are based
on a discriminative model (without non-local features). Under its best settings,
speedups of more than 99% are reported, although it must be noted that an av-
erage parse time in the order of minutes was observed when no restriction was
applied. Another approach is presented by van Noord (2009), who presents a
pruning algorithm, in which statistics on splines (a goal category with a number
of parser steps to reach that goal) are used to predict which parser steps to filter.
The resulting average parse times (with equal accuracy scores) are decreased
by a factor between 3 and 4. The innovation of this technique lies in the fact
that no annotated training data is needed, because the output of the parser on
unannotated text is used as training data2. Another interesting point is the pos-
sibility to prevent certain tasks to be carried out instead of filtering the results
afterwards, as is done by the chart pruning algorithms presented by both Cahill
et al. (2008b) and Ninomiya et al. (2005).

Lexical and phrasal restriction both have their own specialities in terms of
what they can prune successfully: lexical methods are more useful to deter-
mine whether certain sequences of tags are probable, and phrasal methods have
other types of information to their disposal, which can determine whether cer-
tain combinations of rules are more likely to be part of the final solution than
other candidates. It appears reasonable to assume that a combination of both
types of restriction can be complementary, as is done by Zhang et al. (2010a)
for the CCG formalism.

It is important to realise that the expectations that one should have when
2It must be said that the algorithm assumes that the disambiguation model is good enough, which,

in turn, is based on annotated data.

120 CHAPTER 6. AGENDA-BASED TASK PRUNING

applying restriction strategies are directly dependent on the degree of local am-
biguity that the grammar allows. For instance, the more care is put into the
quality and compactness of the lexicon, the less lexical restriction is going to
help. The same holds on the phrasal level: if the grammatical constructions are
tightly constrained, there is probably less value in making an attempt to prune
chart items. In other words, the less restricted the grammar is, the more densely
populated the parse chart will be, and the more effective pruning strategies can
be.

Lexical restriction with the PET parser has been investigated before (Dridan
2009), but applying limitations on the number of phrasal items has not. Given
the good results for the Alpino, XLE and Enju parsers, it would be interesting to
see whether such methods could be applied to the PET parser (Callmeier 2000)
as well. However, because PET has a flexible agenda of parser tasks (Erbach
1991) (see also section 2.6.2), existing restriction algorithms are not immedi-
ately transferable to PET. For instance, van Noord’s (2009) model cannot be
used, because the parser does not define splines, over which the guiding statistic
is calculated. Furthermore, the methods as proposed by Cahill et al. (2008b)
and Ninomiya et al. (2005) are not suitable either. Their restriction algorithms
assume that, at one given point in time, it is certain that all items in a particular
chart cell have been found. Restriction on that cell is then applied. In the PET
parser, there is no such point in time3, making it impossible to use these re-
striction algorithms. The same argument holds for the study by Ninomiya et al.
(2005), in which also a beam on the set of cell with the same span length level is
applied (global thresholding). For this technique, there must be a specific point
in time at which all chart cells with a certain span length are known, which,
again, is not the case for the PET parser. Also, their approximation of the out-
side probabilities (Goodman and Shieber 1998) (which is necessary to ensure
comparability of chart items with different yields) is impossible to port to the
PET parser.

The method that will be developed for the PET parser bears most similarity
to the one described by Cahill et al. (2008b), because the same statistical model
is used: a generative model (to be explained in the next section). However, there
is one principal difference between their generative model and the one for PET:
in LFG, the c-structures (LFG’s context-free backbone) can be used, whereas
HPSG does not define such a structure. Instead, the generative model will be
conditioned on the HPSG rule application tree (or: derivation tree). It is not
the first time that this type of modelling is used in conjunction with DELPH-IN
grammars. Toutanova et al. (2005) have experimented with such models for
parse disambiguation. The main result of this study was that disambiguation

3It would be straightforward to create a priority model that triggers such behaviour, however. I
will expand on this possibility in section 6.5.

6.2. TASK-BASED SEARCH SPACE RESTRICTION 121

with discriminative modelling is more accurate than with generative models,
but that the performance difference between the two is not very large, at least if
grandparenting is used in the generative model4. The idea of using a context-
free backbone of HPSG rule applications is therefore not new, but it has never
been used for search space restriction.

The second difference to Cahill’s study (and to most other studies) is that
the pruning algorithm works on agenda tasks, rather than on chart items. The
algorithm will make an attempt to favour tasks that are more promising, in the
sense that they have a larger probability to be included in the correct parse. Less
promising tasks are either deferred, or discarded altogether if the limit for the
number of tasks has been reached. This has the consequence (as already noted
by van Noord (2009)) that the execution of unifications is prevented, rather than
their results being pruned, with an extra speed-up as a possible advantage.

6.2 Task-based search space restriction

6.2.1 Prioritising parser tasks

The implementation of the PET parser is based on an agenda of tasks (see sec-
tion 2.6.2 for more background information). Each task consists of exactly one
unification. Tasks are ordered in a priority queue, and therefore each task is
assigned a certain priority. The basic parsing loop starts when lexical items are
put on the chart. Each time an item (either lexical or phrasal) is put on the chart,
the parser will spawn new tasks trying to combine the new chart item with ex-
isting neighbouring chart items. These tasks are executed in order of priority,
and whenever a tasks succeeds, a new chart item is created, which in turn causes
more tasks to be put on the agenda. This interaction between agenda and chart
continues until the agenda is empty, after which the solutions are harvested from
the chart.

Currently, the priorities of the tasks are based on a heuristic, aiming to reach
the top of the chart as soon as possible. That will be changed in this chapter: the
priorities of tasks will be based on whether the task is likely to be part of the final
solution or not. As mentioned before, the guiding heuristic will be a generative
model of HPSG rule applications. To better understand how the priority model
works, let’s consider the example in figure 6.1. The treebank contains a total
of 9 trees, and a corresponding PCFG (without smoothing) is given in the same
figure. A generative model predicts the probability of a given tree (including its
leaves), from the top. So, the generative probability of a tree is the product of

4One remark is in place here. The used grammar has received considerable attention in the
meantime, and the treebanks are now larger and contain more complex text. Hence, it must be seen
whether the results from that study extend to the contemporary situation.

122 CHAPTER 6. AGENDA-BASED TASK PRUNING

5x

subj-head

V

barks

spec-head

ART

the

N

dog

3x

subj-head

head-adj

ADV

loudly

V

barks

spec-head

ART

the

N

dog

1x

spec-head

ART

the

noun-compound

N

dog

N

barks

ROOT → subj-head 8
9

ROOT → spec-head 1
9

subj-head → spec-head V 5
8

subj-head → spec-head head-adj 3
8

head-adj → V ADV 1

spec-head → ART N 8
9

spec-head → ART noun-compound 1
9

noun-compound → N N 1

Figure 6.1: The upper part of this figure denotes a treebank of derivation trees (including the counts of the trees,
so in total the treebank contains 9 trees). The lower half is a description of the PCFG of rule applications that is
derived from the treebank.

the probabilities of all rule applications. Therefore, given this PCFG model, the
generative probability of the leftmost tree is 8

9 · 58 · 89 ≈ 0.493 (if the generative
model is not conditioned on the words). The probability of the rightmost tree
is 1

9 · 1
9 · 1 ≈ 0.111. Therefore, if the parser would be presented with the

sentence ‘The dog barks’, the disambiguation component would choose for the
first reading, because the generative probability of the first reading is higher
(which corresponds to our intuition). In this study, the generative model is not
used for disambiguation, but for parser task prioritisation, which means that
nodes that are likely to lead to the final solution are carried out before tasks that
are less probable. Some less probable items will even be discarded altogether.

There are two options for choosing the symbol that is used for leaf nodes in
the derivation tree: the name of the lexical entry and the name of the lexical type.
The difference is that two different words with the same properties share their
lexical type, but not the name of the lexical entry. Therefore, there are much
fewer lexical types than lexical entries, and in order to reduce data sparsity,
lexical types are used.

Although the example computation above is top-down, the PET parser works
bottom-up, meaning that the actual computation has to follow this order as well.
The lexical chart items receive a probability of 1 (we will experiment with this
setting in section 6.3.4). Each time a new phrasal item E is created from chart
item(s) Ei, using the production rule α → β, where β is either one or two

6.2. TASK-BASED SEARCH SPACE RESTRICTION 123

symbols, the following score is calculated5:

p(E) = p(β|α) ·
∏

i

p(Ei) (6.1)

At first sight, equating the probability of this imaginary chart item with the
task’s priority seems like an attractive strategy. This can be done, because the
generative score of the possibly resulting chart item can be computed before the
actual unification takes place. However, there is another aspect to this. Consider
the following two rule productions, together with their respective frequencies in
the training set (where c() is to be read as a count function):

Rule production c(α→ β) c(α) p(β|α)
α1 → β 10 100 0.10
α2 → β 2 20 0.10

If there are two adjacent chart items that unify with β, we certainly want the
application of α1 to have higher priority than the application of α2. However,
both rule applications have the same relative frequency. Therefore, the proba-
bility of applying a rule α, irrespective of the daughters, must also be included
when calculating the priority of a task:

Pr = p(α) · p(E) (6.2)

where p(α) is the probability of applying rule α, and p(E) is the generative
probability of the possibly resulting chart item.

It might be that the generative score of an item needs to be estimated, without
having seen that particular combination of rule and daughters in the training
set. To do this, a common technique called smoothing is used. Smoothing takes
away a little bit of probability mass from observed events, and grants it to unseen
events. I will use one specific type of smoothing here: Lidstone smoothing
(Lidstone 1920), which adds a certain parameter δ to all counts. The unobserved
event also gets a count of δ. The result is that if the left-hand side of a context-
free rule α is observed c(α) times, and rule application α → β has been seen
c(α → β) times, the conditional probability is not c(α→β)

c(α) (which it would be

without smoothing), but c(α→β)+δ
c(α)+Nδ , where N is the number of production rules

with the same left-hand side. Unknown productions have c(α → β) = 0, and
hence their probability is estimated to be δ

c(α)+Nδ . Typically, δ � 1, and has
been set to 0.01 in the experiments in this chapter.

An unsolved problem in the priority model is to find a sound solution for
the packing mechanism. Let’s assume we have a situation, in which the agenda

5Naturally, log probabilities were used in practice, to prevent underflow.

124 CHAPTER 6. AGENDA-BASED TASK PRUNING

contains task Tα→AX , that connects chart items A and X using rule α. The
priority of this task is denoted as Pr(Tα→AX). Later on in the process, chart
item B is created, but packed under A. Hence, no new tasks will be spawned.
However, it is possible that, were it calculated, Pr(Tα→BX) > Pr(Tα→AX).
Ideally, the priority of Pr(Tα→AX) would be updated to reflect this change. The
described problem might not be so large, given that the most probable items are
tried first anyway, and combining two items with fairly large probabilities is
likely to give more probable items than a combination of two items with lower
probabilities. Also, the packed item (B in the example) can still be found by the
selective unpacking procedure. There might be solutions to solve this issue, but
the priorities will be left unchanged in the experiments in this chapter, in order
to keep the algorithm simple.

6.2.2 Task pruning strategies

In this section, I define three pruning strategies (LOCAL, STRIPED and GLOBAL6),
and three counting strategies (ALL, SUCCESS and PASSIVE). These dimensions
are orthogonal, meaning that 9 different combinations can be made.

The pruning strategy defines how rigidly the tasks are tied to specific chart
cells, and the three variants are represented schematically in figure 6.2. The LO-
CAL strategy assigns a constant number of tasks to one particular cell; STRIPED

assigns a fixed number to all tasks with the same span length; GLOBAL defines
one number of tasks for the complete sentence. The main parameter is t, which
determines how many task slots are allocated for one specific chart cell. The
total number of slots depends on both t and the length of the sentence (n), and
are divided in such a way that for equal t and n, the total number of task slots is
equal for all strategies. For instance, let’s consider a sentence of length n = 3
(as in figure 6.2), and set the cell size to t = 1000. Using the LOCAL strategy,
there are 1

2n(n+ 1) = 6 chart cells, and hence the total number of tasks slots is
t12n(n + 1) = 6000. If the STRIPED strategy is chosen, the number of cells for
each span length is set proportional to the number of cells with that size: t(n−i),
where i is the span length. There are 3 chart cells with span length 1, 2 cells
with span length 2, and 1 cell with span length 3. The total maximum number of
tasks is then

∑
0<i≤n t(n− i), which equals 3000 + 2000 + 1000 = 6000. The

total number of slots for the GLOBAL strategy is set by the agenda to t12n(n+1),
which is 6000 as well in this example.

All strategies try to cut out parts of the search space that are unlikely to con-
tribute to the final result. However, the evidence on the basis of which the

6Note that what is called STRIPED in this chapter, is acting on the same level of the chart as the
GLOBAL pruning strategy as defined by Ninomiya et al. (2005).

6.2. TASK-BASED SEARCH SPACE RESTRICTION 125

(0,1) (1,2) (2,3)

(0,2) (1,3)

(0,3)

(0,1) (1,2) (2,3)

(0,2) (1,3)

(0,3)

(0,1) (1,2) (2,3)

(0,2) (1,3)

(0,3)

LOCAL STRIPED GLOBAL

Figure 6.2: A schematic representation of the three different restriction strategies. In LOCAL, each cell is closed.
All cells with the same span length are in one counting space in the STRIPED strategy. In GLOBAL, all cells are
in the same counting space.

pruning strategies base their decisions is different. The LOCAL strategy uses
the availability of many chart items in one cell as a pointer that some of them
will not be necessary. However, it can not discriminate between good and bad
spans, and hence, the bad spans will receive an equal amount of attention as the
good ones. A tightly constrained grammar can only partially prevent this. On
the other hand, the strategies with a wider scope (STRIPED, GLOBAL) do allow
‘leaking’ of attention between the different chart cells, but these strategies bear
the risk that one chart cell containing many tasks with high priorities will use up
the complete reservoir of available tasks in one counting space, leaving no slots
for other potentially useful chart cells. As we will see later in this chapter, the
comparability of priorities between different chart cells is a major concern, and
will prevent the successful deployment of STRIPED and GLOBAL.

Orthogonal to the pruning strategies, there are also three different counting
strategies: ALL, SUCCESS and PASSIVE. In the first case, all executed tasks
are counted. The second strategy only counts successful tasks, i.e. ones whose
unification succeeds. The third strategy will only count those tasks that have led
to a passive item on the chart for that particular span. The packing mechanism,
although it is used in the experiments, does not affect the counting: if a task
succeeds, but the resulting chart item is packed, it is still counted. Irrespective of
counting strategy, only phrasal tasks are counted, including ones having a span
length of 1, because preliminary experiments showed that exhaustive parsing
for inflectional and lexical rules was necessary to get good results.

One thing that was left unanswered so far is how the span of a certain task
can be determined. For chart items, as done in other pruning studies, this was
obvious, because their algorithms acted on the chart item level. However, the
definition of the span of a task is less straightforward. For unary RULE+PASSIVE

and binary ACTIVE+PASSIVE tasks (see figure 2.13 for an illustration of these
types of tasks), we already know all daughters of the resulting chart item, and
hence we can just project the span of this chart item to be the span of the task.

126 CHAPTER 6. AGENDA-BASED TASK PRUNING

This is not applicable to binary RULE+PASSIVE tasks, because the span of only
one of the two daughters is available to the algorithm. As an approximation, the
span of the only known daughter will be considered the span for this task.

6.3 Experiments

In this section, we will see how the different strategies work in a number of
settings. As we are trying to find the optimal parameters to restrict the search
space, the first experiments are carried out using the development set. When the
best settings are found, these will be used for the test, so that the results can be
compared to the reference results from chapter 5.

In the result figures that come, five different metrics are used to measure
the success of the pruning strategies. On the sentence level, the proportion of
sentences that are covered and that give the exact parse are recorded. On the
dependency level, recall, precision and f-score are recorded. The x-axis is mea-
sured in average parse time that the parser needed to complete the parse. Each
dot in a graph represents one particular trade-off between time and quality, and
is determined by the parameter t, the size of the cell: larger t should result in
higher parse times, but also higher quality. Two points of reference are given.
First, there is the situation where no task pruning is done. This is indicated by
the single, solid point at the right side of the graphs, along with the horizontal
dashed line. Second, a priority model is used where each task receives a random
priority between 0 and 1, but pruning is still executed. Hence, this baseline is
represented as a trade-off between time and quality as well (the dashed curve).
For this baseline, the best of the three counting strategies is taken, to make the
baseline competitive. For all pruning strategies, the PASSIVE counting method
turned out to perform best.

6.3.1 Find the same solution faster

The first experiment in this chapter tests the price of the generative model. In-
stead of the original priority model, the generative model is used. The idea is
that for those sentences that hit the timeout limit, the good solution might be
found within the 60 seconds more often, because promising tasks are carried
out earlier. No pruning takes place. The result of this experiment is promising
(table 6.1). The overhead of the additional generative model is small. A small
increase in coverage is observed, showing that more often a correct solution
can be found for some of the sentences that reach the computational limit (60
seconds).

6.3. EXPERIMENTS 127

Reference +PCFG
Sentence-level

Avg parse time 3.92s 4.16s
Coverage 60.4% 60.5%
Exact match 21.7% 21.7%

Dependency-level
Recall 40.8% 40.8%
Precision 83.7% 83.8%
F-score 54.9% 54.9%

Table 6.1: This table shows the performance of the parser on the test set, the only difference being whether the
heuristic priority model or the priority model based on the generative model is used.

6.3.2 Scope of pruning and counting strategies

A large set of results is depicted in figures 6.3, 6.4 and 6.5, for the three differ-
ent restriction strategies LOCAL, STRIPED and GLOBAL, respectively. Glancing
over all graphs, a number of global observations can be made. The first is that
all curves follow the expected trend, with higher values for t yielding better re-
sults. The second is that the precision remains high and constant (between 80%
and 84%), independent of the type of pruning. The random models perform
reasonably well in terms of precision.

Of the three pruning strategies, the LOCAL strategy is performing best. For
instance, when the cell size is set such that the average time is about half a
second, for almost all sentences the optimal f-score has been reached already,
showing a tenfold speedup relative to the situation where no pruning is applied.
In this setting, the coverage increases slightly (from 63.5% to 65.4%), because
sentences that were too long and/or complex to parse in the exhaustive setting,
now become feasible to parse within the 60 second window. However, no ad-
ditional exact matches are found. The recall number shows a larger increase
(from 42.5% to 45.4%) over the unpruned setting compared to the increase of
the coverage number, because the newly parsed sentences are longer on aver-
age. Precision is slightly below the one in the unpruned setting (84.1% versus
83.5%). Instead of looking at the point where the optimum is reached first,
the intersection with the horizontal dashed line can also be observed. In other
words, how long does it take to get an f-score equal to the unpruned setting? It
turns out that this is achieved with an average parse time of 0.164 seconds, a
speedup of 96.6% (roughly 30 times faster).

Significantly worse is the performance of the STRIPED strategy. Compared
to the other two pruning strategies, there is a large divergence between the dif-
ferent counting strategies: PASSIVE is showing significantly better scores than
ALL and SUCCESS. The curve of ALL is even below the RANDOM-PASSIVE

baseline. However, even though the coverage is slowly converging towards the
score for the non-pruned parser, the baseline score for exact match is reached

128 CHAPTER 6. AGENDA-BASED TASK PRUNING

more quickly. The baseline f-score is reached after at an average cost per sen-
tence of around 1 second (with the PASSIVE counting strategy), which is almost
a five-fold speedup. Precision scores are slightly higher than for the LOCAL

pruning strategy.
The GLOBAL strategy shows the least attractive time-quality trade-offs, with

all curves scoring below the RANDOM-PASSIVE baseline. Only the curve for
exact match follows the baseline. No large difference between the counting
strategies is recorded.

One remarkable finding is that the RANDOM-LOCAL model scores surpris-
ingly high, and when the graphs are compared, it performs better than RANDOM-
STRIPED and RANDOM-GLOBAL, which suggests that a per-cell restriction is, a
priori, the most sensible type of restriction, regardless of the counting model. In
fact, the RANDOM-LOCAL restriction shows better time/quality trade-offs than
the curves for STRIPED and GLOBAL that do use the priority model, which is
a somewhat disappointing result. I will analyse the causes of this behaviour
below.

6.3.3 Adjusting global priorities for span length

We have seen before that the GLOBAL strategy performs poorly. It also seems
that this is due to lack of coverage, as the metrics that indicate the correctness
of the results (precision, exact match) are fine. One of the possible causes is
that the priorities of tasks with different span lengths are compared directly,
which may be inappropriate. However, if one thinks about the effect of a rule
application, the probability of a chart item will always be smaller (or equal) than
the product of its daughters. This has a negative effect on the priorities of tasks
aiming to create items high up in the chart. The consequence of this strategy is
that practically exhaustive parsing is done at the bottom of the chart (items with
small span lengths), and that when the top of the parse chart is reached, the limit
on the number of tasks has already been hit.

To counter this problem, an extra experiment has been conducted. If one
considers the reduction of the log probability caused by a rule application as a
price, then one could imagine that the average price of a rule application within
the complete subtree is a good heuristic for determining whether that subtree is
a promising candidate or not. This is achieved by using an alternative formula
for the priorities:

Pr =
log(p(R)p(X))

n
(6.3)

where n is the span length, which is an approximation of the number of rule ap-
plications, because unary rules are not counted in this metric. The consequence

6.3. EXPERIMENTS 129

●

●
●

●
● ● ● ●

0 1 2 3 4 5

0.
50

0.
60

0.
70

Coverage

df_local_all$time

● all
success
passive
random−passive

●●●
● ● ● ● ●

0 1 2 3 4 5

0.
15

0.
20

0.
25

0.
30

Exact match

df_local_all$time

● all
success
passive
random−passive

●

●
●

● ● ● ● ●

0 1 2 3 4 5

0.
30

0.
40

0.
50

Recall

df_local_all$time

● all
success
passive
random−passive

●●● ● ● ● ● ●

0 1 2 3 4 5

0.
75

0.
80

0.
85

0.
90

Precision

df_local_all$time

● all
success
passive
random−passive

●

●
●

●
● ● ● ●

0 1 2 3 4 5

0.
45

0.
50

0.
55

0.
60

F−score

● all
success
passive
random−passive

Figure 6.3: These graphs show the results for restriction using the LOCAL strategy.

130 CHAPTER 6. AGENDA-BASED TASK PRUNING

●

●

●

●

0 1 2 3 4 5

0.
50

0.
60

0.
70

Coverage

df_striped_all$time

● all
success
passive
random−passive

●

●
●

●

0 1 2 3 4 5

0.
15

0.
20

0.
25

0.
30

Exact match

df_striped_all$time

● all
success
passive
random−passive

●

●

●

●

0 1 2 3 4 5

0.
30

0.
40

0.
50

Recall

df_striped_all$time

● all
success
passive
random−passive

●
● ● ●

0 1 2 3 4 5

0.
75

0.
80

0.
85

0.
90

Precision

df_striped_all$time

●
● ● ●

● all
success
passive
random−passive

●

●

●

●

0 1 2 3 4 5

0.
45

0.
50

0.
55

0.
60

F−score

● all
success
passive
random−passive

Figure 6.4: These graphs show the results for restriction using the STRIPED strategy.

6.3. EXPERIMENTS 131

●

●

●

●

●

0 1 2 3 4 5

0.
50

0.
60

0.
70

Coverage

df_global_all$time

● all
success
passive
random−passive

●

●

●
●

●

0 1 2 3 4 5

0.
15

0.
20

0.
25

0.
30

Exact match

df_global_all$time

● all
success
passive
random−passive

●

●

●

●

●

0 1 2 3 4 5

0.
30

0.
40

0.
50

Recall

df_global_all$time

● all
success
passive
random−passive

● ● ● ●

●

0 1 2 3 4 5

0.
75

0.
80

0.
85

0.
90

Precision

df_global_all$time

● all
success
passive
random−passive

●

●

●

●

●

0 1 2 3 4 5

0.
45

0.
50

0.
55

0.
60

F−score

● all
success
passive
random−passive

Figure 6.5: These graphs show the results for restriction using the GLOBAL strategy.

132 CHAPTER 6. AGENDA-BASED TASK PRUNING

●

●

●

●

●

●

0 1 2 3 4 5

0.
50

0.
60

0.
70

Coverage

df_spandiv_all$time

● all
success
passive
random−passive

●
●

●
●

● ●

0 1 2 3 4 5

0.
15

0.
20

0.
25

0.
30

Exact match

df_spandiv_all$time

● all
success
passive
random−passive

●

●

●

●

●
●

0 1 2 3 4 5

0.
30

0.
40

0.
50

Recall

df_spandiv_all$time

● all
success
passive
random−passive

● ● ● ● ● ●

0 1 2 3 4 5

0.
75

0.
80

0.
85

0.
90

Precision

df_spandiv_all$time

● all
success
passive
random−passive

●

●

●

●

●

●

0 1 2 3 4 5

0.
45

0.
50

0.
55

0.
60

F−score

● all
success
passive
random−passive

Figure 6.6: These graphs show the results for restriction using the GLOBAL strategy, with the span length
correction.

6.4. EVALUATION 133

is that the unary rule applications will be dispreferred slightly.

The results are shown in figure 6.6, and they show a remarkable improve-
ment over the initial GLOBAL strategy: all curves are now above the RANDOM-
PASSIVE line. Equal results to the exhaustive strategy are reached now at an av-
erage parse time of almost 2.6 seconds, which entails a 55% speedup. However,
this result is still below the random baseline for the LOCAL pruning strategy.

This illustrates how the lack of comparability of the generative scores be-
tween chart items in different cells can form a major problem. The technique
discussed here is an attempt to ameliorate this between chart items with differ-
ent span lengths. The same problem crops up for chart items with the same
span length, but different spans, which can affect the results for the STRIPED

strategy. For instance, consider span (a, a+m), which contains words that only
spawn high-frequency lexical types. Another span (b, b + m) contains words
that spawn lexical types with lower probabilities. Tasks with span (a, a + m)
are more likely to get high priorities than tasks with span (b, b +m), although
there is no reason to assume that span (b, b+m) needs less attention than span
(a, a + m). Preliminary experiments were conducted to counter this (for in-
stance by penalising frequent leaves), but this had no effect.

6.3.4 Conditioning on tree leaves

So far, the stochastic models assumed that the words were not there. The models
also assumed that all lexical items that a word spawned should receive equal
probabilities. However, we might also be interested in the probability that a
lexical type is spawned by a word. If the distribution of lexical types for a
specific word is very different from the a priori distribution of lexical types, it
might be advantageous to condition the lexical types on the word as well. In
the example in figure 6.1, this could be imagined by adding an extra layer of
words in the rule set, with rules such as ‘ART→ the’. The conditioning in this
experiment is done on the basis of the word form, not on the lemma.

The results are shown in figure 6.7. Only results using the LOCAL restriction
are given, using different counting strategies. The results are nearly identical
to the curves shown in figure 6.3, with a slightly quicker convergence to the
maximum score. An f-score higher than the reference score is already found
with an average parse time of 0.140 seconds, which is more than 34 times faster:
the best result so far.

134 CHAPTER 6. AGENDA-BASED TASK PRUNING

●

●
●

● ● ●

0 1 2 3 4 5

0.
50

0.
60

0.
70

Coverage

df_lex_local_all$time

● all
success
passive
random−passive

●
●● ● ● ●

0 1 2 3 4 5

0.
15

0.
20

0.
25

0.
30

Exact match

df_lex_local_all$time

● all
success
passive
random−passive

●

●
● ● ● ●

0 1 2 3 4 5

0.
30

0.
40

0.
50

Recall

df_lex_local_all$time

● all
success
passive
random−passive

●●● ● ● ●

0 1 2 3 4 5

0.
75

0.
80

0.
85

0.
90

Precision

df_lex_local_all$time

● all
success
passive
random−passive

●

●

● ● ● ●

0 1 2 3 4 5

0.
45

0.
50

0.
55

0.
60

F−score

● all
success
passive
random−passive

Figure 6.7: These graphs show the results for restriction using the LOCAL strategy, with lexicalisation.

6.4. EVALUATION 135

Unrestricted t = 250 t = 750
Sentence-level

Avg parse time 3.92s 0.19s 0.42s
Coverage 60.3% 60.4% 61.9%
Exact match 21.7% 21.4% 21.7%

Dependency-level
Recall 40.7% 41.1% 42.5%
Precision 83.7% 83.7% 83.3%
F-score 54.7% 55.1% 56.3%

Table 6.2: Depicted are the results of applying the restriction technology to the test set. The pruning strategy
used is LOCAL; counting strategy is ALL. Lexical conditioning is used. Two different cell sizes t are shown,
and compared to the reference result from chapter 5.

0 5 10 15 20 25 30

0
10

20
30

40
50

60

Length

P
ar

se
 ti

m
e

mean
mean+sd
max

0 5 10 15 20 25 30

0
10

20
30

40
50

60

Length

P
ar

se
 ti

m
e

mean
mean+sd
max

Figure 6.8: Depicted are two graphs that indicate how sentence length and parse time are related. The top
graph depicts the variant in which no search space restriction is applied. The bottom graph depicts the restricted
variant (LOCAL, ALL, t = 750). For each graph, the bottom line gives the mean parse time; the middle line the
mean parse time plus the standard deviation; the top graph the maximum parse time.

136 CHAPTER 6. AGENDA-BASED TASK PRUNING

All Near-lexical Not near-lexical
Setting Exec Prun Exec Prun Exec Prun
Exhaustive 1046 0 167 0 879 0
LOCAL, ALL, t = 1500 690 192 127 37 564 154
LOCAL, ALL, t = 750 513 209 99 63 414 147
LOCAL, ALL, t = 250 280 210 60 97 220 113

Table 6.3: This table shows how many tasks are executed and discarded, for different task pruning settings,
for 50 sentences of length 20 from the Tiger test set. For clarity, all numbers have been divided by 1000.
The meaning of ‘near-lexical’ is explained in the running text. The abbreviations ‘exec’ and ‘prun’ stand for
‘executed’ and ‘pruned’, respectively.

6.4 Evaluation

The results from the previous section have been reached after much experimen-
tation, and the question is whether the results extend to the test set as well. As
can be seen in table 6.2, this is largely the case. The reduction of average parse
time (without loss in f-score) turns out to be 95%, although the figure for ex-
act match decreases slightly. Also, when somewhat larger margins are allowed,
the speedup decreased to around 90%, but the proportion of covered sentences
increased with 1.6% percent point, and the f-score increased with 1.9 percent
point. Compared to the other search space restriction study with PET (Dridan
2009), the reduction in parse time seems to be significantly higher (with the
reservation that different grammars have been used), and with almost no de-
crease in accuracy.

Another question is the one of predictability. If we know the length of a
sentence, can we be sure that the reaction of the parser is within certain bounds7?
Figure 6.8 is meant to give an impression of how parse times are divided. The
lowest line indicates the mean parse time necessary to complete the parse forest.
The second line shows the mean parse time plus one standard deviation. The
maximum recorded parse time is given by the dotted line. It can be clearly seen
that for sentences up to length 30, the restricted variant is not only much faster,
but also much more predictable: all sentences can be parsed within 6 seconds.

6.4.1 What is pruned?

One aspect of the search space restriction deserves extra attention: what is actu-
ally being pruned? To test this, 50 sentences from the test set that consist of 20
words are selected and parsed. This is slightly longer than the average sentence
length in the Tiger treebank, but this can give a better insight in the nature of
the pruned tasks than for sentences that hardly benefit from search space restric-

7Of course, this is only one way to define predictability. Predictability can also be assessed with a
regression model, for instance.

6.5. DIRECTIONS FOR FUTURE RESEARCH 137

tion. All tasks that the parser either executes or discards are recorded, including
the type of task (RULE+PASSIVE or ACTIVE+PASSIVE), the span of the task
and the name of the rule. A task is called near-lexical if the span length is 1
(for RULE+PASSIVE tasks) or 2 (for ACTIVE+PASSIVE tasks). This means that
near-lexical tasks only combine lexical chart items.

The outcome of this experiment is given in table 6.3. As can be expected,
the total number of tasks that is executed is lower when stricter pruning settings
are used. The number of pruned near-lexical tasks is higher with lower t. It is
interesting, however, to note that the number of pruned tasks that are not near-
lexical is lower with more aggressive pruning of tasks. This observation is not
as illogical as it seems at first sight, though: pruning of a task might result in
one chart item less to be put on the chart, which in turn might prevent a large
quantity of new tasks to be spawn. Therefore, the lower in the parse chart the
pruning is applied, the larger the possible accumulated effect is. Given table 6.3,
I conclude that the effect of the task pruning strategy, although originally set up
as a phrasal restriction mechanism, is mostly due to pruning at the near-lexical
level.

6.5 Directions for future research

As argued in section 6.1, existing methods for search space restriction were not
immediately portable to the PET parser, mostly because the flexible agenda of
PET does not define a single point in time at which it is certain that a chart
cell will not receive new chart items. The experiments in this thesis have thus
focused on pruning the search space on the basis of agenda tasks. However,
the agenda can be changed in such a way that a fixed order of chart cells is
enforced. The array of techniques as introduced by, for instance, Ninomiya et al.
(2005) and Cahill et al. (2008b) will then be available, and it will be interesting
to directly compare the effectiveness of methods that prune agenda tasks and
methods that prune chart items.

Another point of attention is that the current statistical model underlying the
priorities has its limitations. The main issue is that grammars that are used
in conjunction with the PET parser fairly often make use of unary rules. On
the lexical level, chains of length 3 or 4 are not uncommon. The use of unary
rules (either lexical or phrasal) introduces two distinct sources of inaccurate
modelling:

• It is always true that a unary node has a lower (or equal) probability than its
only daughter, and the priority model has no good way to compensate for
this inequality. Hence, the generative model is biased towards trees with
less unary rule applications. Discriminative modelling does not suffer from

138 CHAPTER 6. AGENDA-BASED TASK PRUNING

this problem, and therefore, basing the priorities on a discriminative model
might be a sensible thing to try. A similar approach for a greedy best-first
strategy was already tried by Zhang et al. (2007b), but was not used for
pruning the search space.

• A unary rule application can hide valuable information from the genera-
tive model. A good example of this within the PET parser is that inflec-
tional rules are between the lexical type and phrasal rules. It would make
sense to condition phrasal rule applications on the lexical type rather than
on the inflectional rule. For instance, if a lexical type reveals that it has
no complements, an instance of the HEAD-COMPLEMENT rule is not very
promising. However, the intermediate inflectional rule application blocks
this inference. Incorporating more context, such as grandparenting infor-
mation might help to overcome this issue, as has also been suggested by
Toutanova et al. (2005).

6.6 Summary

In this chapter, a number of strategies to reduce the computational requirements
for the agenda-based PET parser have been presented. The underlying model
is a generative model, based on HPSG rule application trees, which has been
trained on the treebank that was created in section 5.3. The leaves of the tree
are the lexical types. The priorities of the tasks on the agenda (a priority queue)
are based on the generative scores of the possibly resulting chart item, corrected
with the probability of the applied rule, in order to promote these tasks within
the agenda. The exact way of pruning was determined by three factors:

Chart cell size The limit that is set on the number of task slots per chart cell.

Pruning strategy Three different pruning strategies have been introduced: LO-
CAL, STRIPED and GLOBAL, differing in the degree to which the tasks were
allowed to ‘leak’ to other chart cells.

Counting strategy What exactly is counted is defined by the counting strategy.
Three counting strategies have been defined: ALL, SUCCESS and PASSIVE.

The results for the different pruning strategy were mixed. The strategies that
offered the parser flexibility in terms of which chart cells it could give more
attention (GLOBAL and STRIPED) performed significantly worse than the rather
rigid allocation of attention (LOCAL). In fact, the random baseline of the LO-
CAL strategy performed surprisingly well. The differences between the differ-
ent counting strategies were small, except when the STRIPED pruning strategy
was used. A last experiment, in which the lexical items on the chart were also

6.6. SUMMARY 139

conditioned on the word form gave a small extra improvement. Final results
on the test set, using the LOCAL pruning strategy, indicated that a speedup of
95% can be achieved without negatively affecting f-score. With slightly less
aggressive pruning, the average parse time can be reduced by 90%, resulting
in a small increase of coverage, recall and f-score. It was also showed that the
parse times were not only lower, but also more predictable, as no slow outliers
were recorded for sentences up to length 30. Last, additional analysis revealed
that the most effective pruning takes place at the near-lexical level, because the
effect of pruning accumulates to higher levels.

140 CHAPTER 7. IMPROVING PARSER ROBUSTNESS

7 Improving parser robustness
In the previous chapter, we have looked at one factor that bars wide adoption
of deep parsing technology: lack of efficiency. Another factor, fragility, is ad-
dressed in this chapter. Fragility can be defined as the inability of the parser to
give an output for an unexpected input. Unexpected inputs can be, for instance,
very long and/or complex sentences exhausting computational resources, incor-
rect punctuation or sentences that the underlying grammar does not identify as
part of the language (extra-grammaticality). In this chapter, the focus is on the
latter type of fragility, and two methods (fragment parsing, robustness rules) to
improve the PET parser on this aspect are applied and compared.

7.1 Fragment parsing

The most widely used strategy within the deep parsing community to cope with
extra-grammatical input is fragment parsing (or: partial parsing). If there is no
chart item that spans the complete sentence and fulfills the root condition, sev-
eral existing chunks are combined in order to create an analysis that does span
the entire sentence. There are a number of variations of this idea, depending on
how it is decided which combination of chart items is the best one. For instance,
a heuristic that selects the partial parses minimising the number of chunks is a
sensible option (Riezler et al. 2001). A heuristic on the basis of a shortest-path
algorithm is given by Kasper et al. (1999), in which the chart is depicted as a di-
rected acyclic graph (a similar approach has also been used by Van Noord et al.
(1999)). In this graph, each word wi is a vertex, and an edge (wi, wj) represents
a chart item spanning words wi to wj . Each edge is associated with a certain
cost/length, and the shortest-path algorithm tries to find the path (or: combi-
nation of chart items) minimising that cost. In this case, a fragment parse is
defined as that shortest path. The cost function that was used was fairly simple.
Phrasal items receive a cost of 1, lexical items a cost of 2. Input items (items
that did not pass lexical processing) were given a very large penalty, practically
prohibiting including input items from being included in the partial parse.

This cost function was extended by Zhang et al. (2007a) to include the Max-
imum Entropy score of the item. Therefore, their cost function is an additive
combination of the segmentation score and the Maximum Entropy scores of
the combined passive items. Because there can be tens of thousands of passive
items on the chart, and the segmentation score function is difficult to compute,
finding the shortest path is computationally expensive, and therefore two differ-
ent approximations are used. In Model I, only the sum of the Maximum Entropy
scores of the individual spans is computed, leaving the segmentation aside. For

7.1. FRAGMENT PARSING 141

each chart cell, the best passive item can be found, and only that item has to be
considered when finding the shortest path, making the search feasible. Model II
first finds a restricted number of reasonable segmentations, after which the en-
tire subgraph can be searched. Because the search space is not searched exhaus-
tively, the algorithm can not guarantee that the optimal solution will be found.
Although the experiments were carried out successfully, an evaluation against a
gold-standard target data set was not possible. Instead, they used the output of
the RASP parser (Briscoe and Carroll 2006), and computed the normalised dis-
tance between RASP’s RMRS output (Copestake 2007) and the partial parse as
output by the different models they evaluate. Model II clearly outperformed the
shortest-path algorithm by Kasper et al. (1999) and Model I on this evaluation.

In contrast to the partial parsing algorithm by Zhang et al. (2007a), the al-
gorithm that is introduced here is able to find the optimal solution (which min-
imises the cost function), even though the best partial parse is defined both in
terms of properties of the segmentation and the quality of the individual items.
The first step is to define a score s(ti) for a passive item ti:

s(ti) = ·MaxEnt(ti)
− c · IsLexItem(ti)

− c2 · IsNotRoot(ti)

− c3
(7.1)

Four terms are distinguished in this score function. MaxEnt(ti) is the score
that the disambiguation model returns for the tree that ti represents (as retrieved
by the selective unpacking mechanism (Zhang et al. 2007b)). IsLexItem(ti) is
a function that returns 1 when ti is a lexical item, and 0 otherwise. Similarly,
IsNotRoot(ti) is a function that returns 1 when ti is not compliant with any
of the root conditions. Each item also receives a constant penalty of size c3.
The score of a partial parse T is then the sum of the scores of the individual
subtrees1:

s(T) =
∑

ti∈T
s(ti) (7.2)

The behaviour that will emerge from this specific score function is remi-
niscent of Optimality Theory (Prince and Smolensky 2004), which defines a
strict ordering of violable constraints2. For instance, both IsNotRoot(ti) and
IsLexItem(ti) are constraints that can be violated, but the penalty for violat-
ing the IsNotRoot(ti) constraint in one of the subtrees is much larger than for

1One might use the score s(T) as a confidence score, which can be useful information for an
upstream application using the parser.

2Thanks to Emily Bender for this insightful comment.

142 CHAPTER 7. IMPROVING PARSER ROBUSTNESS

No FP FP
t = 750 Unrestricted t = 250 t = 750

Sentence-level
Avg parse time 0.42s 3.94s 0.19s 0.42s
Coverage 61.9% 99.8% 99.8% 99.8%
Exact match 21.7% 22.0% 21.7% 22.0%

Dependency-level
Recall 42.5% 58.2% 58.2% 59.3%
Precision 83.7% 79.1% 79.1% 79.0%
F-score 54.7% 67.0% 67.0% 67.7%

Table 7.1: This table shows the results of applying the fragment parsing algorithm to the test set, compared to a
particular setting of t (the restriction parameter), taken from table 6.2.

violating the IsLexItem(ti) constraint. The largest penalty is a constant (c3),
penalising the mere existence of a subtree. Effectively, this constant penalty has
the consequence that the algorithm will always prefer combinations with fewer
chunks. The OT behaviour of the constraints only emerges if c is set to a large
enough value, meaning that a combination of violations of lower-ranked con-
straints can not override a single violation of a higher-ranked constraint. In the
experiments in this chapter, c is set to 100.

The algorithm to find the fragment parse T that maximises s(T) is straight-
forward. Because the segmentation preference is already intrinsic in each sub-
tree, no real search has to be performed. First, the ti with the highest score is
retrieved for each chart cell (using selective unpacking). This is followed by a
simple 1-best CYK parsing algorithm to find the best combination of subtrees,
maximising the total score s(T).

An indication of the performance of the partial parsing algorithm with this
cost function is given in table 7.1. As expected, almost the entire test set receives
an analysis, which is accompanied by a rise of dependency recall from 42.5%
to 59.3% (t = 750). However, this is at the cost of lower precision, indicating
that the additional set of covered sentences is of lower quality. This comes as
no surprise, given that the grammar does not license these sentences in the first
place. The partial parsing algorithm is a fall-back strategy, after all. The reader
might wonder how the exact match rate can be higher if no dependency is added
when two chunks are combined. This is due to the acceptance of one-word
utterances, of which the only word is not recognised as a valid root normally.
The fragment parsing algorithm will consider this item as a valid root, assigning
it the ROOT dependency label.

7.2 Robustness rules
Fragment parsing has been the standard strategy within the deep parsing com-
munity to deal with extra-grammatical sentences. Here, a novel method to re-

7.2. ROBUSTNESS RULES 143

duce the fragility of the parser will be introduced: robustness rules. Two types
of robustness rules can be distinguished, both of them extending the set of sen-
tences that the grammar accepts, but with different aims in mind. The first type
of robustness rules aims to counter specific combinations of chart items. This is
similar to the approach that was taken to do grammar and style checking in the
CHECKPOINT project (Crysmann et al. 2008), in which extra rules were added
to give an analysis for extra-grammatical sentences. The use of a so-called mal-
rule would then pin-point the location and nature of the mistake. For instance, a
special rule was made to detect subject-verb disagreement. The second type of
robustness rules consists of rules that aim to relax existing constraints on a wide
scale. They are over-accepting, i.e. sentences that would otherwise be rejected
by the grammar will now be given an analysis. It is this type of robustness rules
that is experimented with in this chapter.

7.2.1 Motivation

The robustness rules (henceforth: RRs) in this chapter are also meant to accept
extra-grammatical sentences. In contrast to mal-rules, however, the RRs are not
aiming to cover one particular combination of constituents, but are rather meant
as a catch-all rule. To see in which cases robustness rules can be useful, let’s
consider the following example. Assume that the grammar only lists the verb
‘run’ as an intransitive verb.

(57) ‘John ran the marathon yesterday’

Because the lexicon does not contain the transitive variant of the lexeme
‘run’, no regular parse will be returned. A fragment parsing approach would
probably come up with the following solution:

John ran the marathon yesterday

subj-h

In this case, ‘John’ will correctly be identified as the subject of ‘ran’. How-
ever, no dependencies are established between ‘the marathon‘ and ‘ran’, or ‘yes-
terday’ and ‘ran’. The former is hard to establish, due to the missing lexical
item. However, the latter should be doable: the grammar identifies ‘yesterday’
as an adverb that can modify verbs. If we could create a robustness rule that
would absorb the object (‘the marathon’), it would at least be able to identify
the modifier dependency between ‘ran’ and ‘yesterday’.

144 CHAPTER 7. IMPROVING PARSER ROBUSTNESS

John

ran the marathon

yesterdaym-robust

h-adjunct

subj-h

In other words, a fragment analysis solely combines items at the top level,
whereas a robust parser would ideally be able to overcome barriers in both the
lower and the higher regions of the chart, meaning that the damage of unrecog-
nised material can be localised and thus minimised. The robustness rules that
will be proposed in the following are intended to achieve that.

7.2.2 Restricting and dispreferring robustness rules

The nature of the robustness rules will be such that they will (massively) over-
generate. Therefore, the restriction algorithm from chapter 6 (task-based agenda
pruning) will be used to restrict the search space that they will introduce. Ro-
bustness rules get a very large, constant penalty in the generative model that
underlies the priority model. The consequence is that at first the parser will try
to build the parse forest with the restricted set of rules, because tasks involving
subtrees with only rules from the standard grammar will always have a higher
priority than tasks using an item with a robustness rule application in its sub-
tree. When this is finished, the robustness rules try to fill the gaps. Especially
in the success and passive strategies, tasks with robustness rules are discarded
if already enough chart items are found for a particular span, meaning that the
parser automatically focuses on those parts of the chart that have not been filled
before.

A similar strategy is chosen for the Maximum Entropy-based disambiguation
model. When two chart items can be combined using a regular rule and a ro-
bustness rule, the disambiguation model prefers the regular rule. This will be
accomplished by adding a very large penalty to the MaxEnt score, each time
a robustness rule is applied. This penalty is set to be c4 (see equation 7.1 for
the meaning of c), so that when fragment parsing and robustness rules are com-
bined, robust subtrees will be dispreferred more than lexical items, non-root
items and items in general. This entails that when the fragment parsing model
can choose between combining three fragments without robustness rule appli-
cations somewhere in the subtrees, or two fragments with any number of RR

7.2. ROBUSTNESS RULES 145

structure-robust

SYNSEM

 LOCAL

[
CAT 1

CONT
[

HOOK 2
RELS 3 ⊕ 4

]
]

NONLOCAL 5

ROBUST +

MN-DTR

sign

SYNSEM

 LOCAL

[
CAT 1

CONT

[
HOOK 2
RELS 3

]
]

NONLOCAL 5

ROBUST -

RB-DTR

[
sign
SYNSEM|LOCAL|CONT|RELS 4
ROBUST -

]

Figure 7.1: Depicted is the TFS that forms the basis for all robustness rules that are used in this chapter.

applications, the fragment parsing model will choose the former, even though
more fragments need to be combined. In terms of Optimality Theory, this means
that the model considers the avoidance of a RR as the least attractive constraint
to violate.

7.2.3 Defining robustness rules

When defining RRs, one must realise that there can be an interaction between
the use of RRs and the unification-based packing mechanism. When the chart
is built up, items that are subsumed by an existing item are marked as ‘frosted’,
and the latter (more general) item functions as the representative node in the
remainder of the parsing process. When unpacking the best solution, the best
derivation tree is extracted from the packed forest, which might include a frozen
node. Because this frozen node has more constraints than its representative, this
derivation tree is not guaranteed to be free of unification failures, and hence,
before outputting, this is checked by replaying all the unifications in the deriva-
tion tree. This procedure is repeated until a sound, unifying derivation has been
found.

What happens when an item in a chart cell is very general? Many nodes will
be packed under that item, and hence the chart will remain compact. However,
the unpacking process will become problematic, because many of the proposed
derivation trees will be incorrect, leading to excessive computation times for the
unpacking stage.

Therefore, we chose to define robustness rules such that the resulting chart
items will be equally constrained as their daughters. They are all binary, and
have one common ancestor in the type hierarchy (see figure 7.1). All rules have
a MAIN daughter and a ROBUST daughter. The co-indexations are used for two

146 CHAPTER 7. IMPROVING PARSER ROBUSTNESS

purposes. The first is to give the resulting chart item syntactic properties that are
identical to its MAIN daughter. The second is to concatenate the relations from
both daughters, so that the dependency triples from the ROBUST daughter also
percolate up. As can be seen, no new dependency triple is added between the
two items when they are combined using a robustness rule. The ROBUST feature
is used to prevent the application of two robust rules consecutively. Additional
constraints (not shown) make sure that morphological processing is finished,
and that both parts are not involved in a coordination.

This definition of structure-robust is a blueprint for the robustness rules that
are actually used in the experiments. The instantiated rules in the grammar
are robustness rule pairs (henceforth: RRPs), which differ in the ordering of
the MAIN daughter and the ROBUST daughter. The RRPs that are used in the
experiments are given in table 7.2. An RRP is defined by three properties (POS,
Sat and NonLoc) for both daughters. ‘POS’ indicates which parts-of-speech
both daughters should have in order to unify. The ‘Sat’ variable determines
whether the daughter is allowed to have non-empty VAL features, such as SUBJ

and SUBCAT. A ‘+’ means that the constraint is put in place; a ‘-’ means that
no additional constraint is enforced. The variable ‘NonLoc’ is defined similarly,
indicating whether the daughter can have non-empty NON-LOCAL features, such
as SLASH and REL.

The set of RRPs is divided in groups of 4 variants (a-d), which differ in
the four different combinations of Sat and NonLoc for the ROBUST daughter.
RRPs 1 to 4 are distinct in the type of parts-of-speech they accept for both
daughters. RRPs 1a-d do not constrain the part-of-speech of the MAIN daughter,
whereas the others only accept verbs. RRPs 2a-d do not place restrictions on
the ROBUST daughter, whereas RRPs 3a-d and 4a-d only accept verbs and non-
verbs, respectively.

7.2.4 Experiments

The first choice that needs to be made is which restriction strategy is chosen.
Given the superior results in chapter 5, the lexicalised LOCAL model will be
used. However, the counting strategy must still be determined. The differences
in the performance between the counting strategies were negligible when the
restriction was only used for parse time reduction, but it will be shown later
that this is not the case when RRs are used. The SUCCESS counting strategy
will be used, with t set to 150, which is a fairly restrictive setting, in order to
avoid an unnecessary number of RR applications. The effect of varying t will
be investigated later.

Table 7.2 lists coverage results of the grammar, augmented with different

7.2. ROBUSTNESS RULES 147

●
●

●
●

●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
70

0.
80

0.
90

1.
00

Coverage

df_all$time

● all
success
passive

● ● ● ● ●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
15

0.
20

0.
25

0.
30

Exact match

df_all$time

● all
success
passive

●

●
●

●
●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
50

0.
60

0.
70

Recall

df_all$time

● all
success
passive

● ● ●
●

●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
70

0.
80

0.
90

Precision

df_all$time

● all
success
passive

●

● ● ●
●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
60

0.
65

0.
70

0.
75

F−score

● all
success
passive

Figure 7.2: Depicted are the results of applying the three different counting strategies on the development set,
when the grammar is augmented with RRP 2b.

148 CHAPTER 7. IMPROVING PARSER ROBUSTNESS

RRP MAIN daughter ROBUST daughter Coverage
POS Sat NonLoc POS Sat NonLoc

Baseline na 63.8%
1a Any - - Any - - 60.6%
1b Any - - Any - + 61.6%
1c Any - - Any + - 63.4%
1d Any - - Any + + 64.5%
2a Verb - - Any - - 83.3%
2b Verb - - Any - + 83.8%
2c Verb - - Any + - 78.5%
2d Verb - - Any + + 76.1%
3a Verb - - Verb - - 71.6%
3b Verb - - Verb - + 71.6%
3c Verb - - Verb + - 71.8%
3d Verb - - Verb + + 69.1%
4a Verb - - Non-verb - - 78.4%
4b Verb - - Non-verb - + 78.1%
4c Verb - - Non-verb + - 73.4%
4d Verb - - Non-verb + + 73.2%

Table 7.2: This table shows how the different robustness rule pairs are defined. Three properties of both the
MAIN daughter and the ROBUST daughter are shown: ‘POS’ indicates which parts-of-speech are allowed in
either of the two daughters; ‘Sat’ indicates whether a saturated VAL feature is enforced; ‘NonLoc’ indicates
whether the daughter is required to have empty NON-LOCAL features. The rightmost column shows the propor-
tion of the sentences in the development set that the augmented grammar covers. The LOCAL pruning strategy
is used, with the SUCCESS counting strategy, using t = 150.

RRPs, on the development set. Models 1a-d, in which the part-of-speech of the
MAIN daughter is not constrained, turn out to have too permissive constraints. In
fact, the recorded scores are below the baseline (the grammar without RRPs)3.
The other RRPs, which require the MAIN daughter to be headed by a verb,
perform better. RRPs 2a-2d give the best scores, with, at best, an increase of 20
percent points in coverage. RRPs 3a-d and 4a-d show that most of the increase
in coverage can be attributed to combinations of verbal phrases and non-verbal
phrases (RRPs 4a-d), compared to combining verbal phrases to other verbal
phrases (RRPs 3a-d). Constraining whether the ROBUST daughter is allowed
to have non-empty VAL features influences the increase in coverage. However,
placing restrictions on the NON-LOCAL features has virtually no effect, perhaps
due to the fact that in most cases when a chart item with a non-empty NON-
LOCAL feature is present, a similar chart item that does contain an empty NON-
LOCAL feature is likely to exist as well.

In the end, RRP 2b is chosen, in which no constraints on the VAL feature are
enforced, but in which restrictions are put on the NONLOCAL feature. Figure

3This seems to be a bug in the PET parser. It was checked that the ordering of tasks strictly
followed the expected pattern, in which all regular tasks were carried out first, after which the RRPs
come into play. In theory, this should only slow down the parser, but should not have a negative
effect on the coverage. The bug turned out to be somewhere in the interaction between the packing
mechanism and the RRPs, but the exact cause of the bug was not discovered. The bug also occurs
with the other RRPs, but less frequently.

7.2. ROBUSTNESS RULES 149

Robustness strategy None FP RRP2b RRP2b + FP
Counting strategy ALL ALL SUCCESS SUCCESS
t 750 750 150 150
Sentence-level

Avg parse time 0.42s 0.42s 0.99s 1.02s
Coverage 61.9% 99.8% 81.3% 99.6%
Exact match 21.7% 22.0% 20.6% 20.9%

Dependency-level
Recall 42.5% 59.3% 58.1% 69.1%
Precision 83.3% 79.0% 80.0% 77.6%
F-score 56.3% 67.7% 67.3% 73.1%

Table 7.3: This table shows how augmenting RRP 2b to the grammar affect the results on the test set, either in
conjunction with fragment parsing (FP) or not. The definition of the RRP can be found in table 7.2. For ease of
comparison, the results of the parser without the robustness rules (section 7.1) are also included.

7.2 shows the time/quality trade-off for this particular RRP, using the differ-
ent counting strategies (the different curves) and the setting of t (the individual
points on the curves). As already alluded to previously, the PASSIVE strategy
scores significantly worse than the other two strategies (ALL and SUCCESS).
None of the three strategies seems to converge to a maximum coverage score.
With higher t, the dependency precision declines slightly.

Now that the influence of the counting strategy and the parameter t can be
assessed properly, the SUCCESS counting strategy is chosen, t being set to 150
(equal to the experiments listed in table 7.2). These settings are used for parsing
the test set, for which the results are listed in table 7.3. The results from table 7.1
are copied into this table to facilitate a comparison of the methods. Compared
to the baseline (applying no robustness measure), the robustness rules cover
almost 20 percent points more sentences, yielding an increase of 15.6 percent
point on recall. However, this is at the cost of two factors: precision and speed.
A drop of more than 3 percent points in dependency precision is recorded, and a
small drop of exact match readings is also observed. The average time necessary
for building the parse forest reaches approximately 1 second, due to the larger
search space. Given the over-generating properties of the robustness rules, this
is a remarkably low speed penalty, meaning that the restriction algorithm is able
to properly constrain the application of the robustness rules. Interestingly, the f-
score of using the robustness rules is almost as high as the f-score for fragment
parsing (67.3% vs 67.7%), although almost 18.5% less sentences receive an
analysis.

The result of applying both robustness rules and fragment parsing is shown in
the rightmost column in table 7.3. Similar to applying fragment parsing alone,
almost full coverage is achieved. However, on the dependency level, recall is
almost 10 percent point higher than with just fragment parsing (at the cost of
a penalty of 2.4 percent point on precision). Given that both fragment pars-

150 CHAPTER 7. IMPROVING PARSER ROBUSTNESS

Head Count
Adjective 4
Adverb 2
Coordinator 5
Determiner 7
Name 3
Noun/pronoun 13
Particle 8
Preposition 13
Verb 32
Total 87

Table 7.4: The distribution of the heads of the ROBUST daughters from a sample of 87 robustness rule applica-
tions.

ing and robustness rules do not introduce dependencies, it logically follows that
the number of chunks that were connected in the setting with both fragment
parsing and robustness rules is lower than in the setting using fragment parsing
alone. Hence, the intuition that the robustness rules are able to overcome lo-
cal obstacles (recall the examples in section 7.2.1) appears to be correct. This
is an interesting finding, because fragment parsing has been the main type of
robustness method so far in the literature.

7.2.5 What the model predicts

Manual inspection shows that the robustness rules do not solve one specific
problem. Instead, they function as a catch-all mechanism. To illustrate this,
a sample from the development set was taken, in which a robustness rule was
applied at least once. For those sentences, a number of basic properties of the
ROBUST daughter were recorded. In total, 87 robust rule applications were in-
spected.

One of the motivations for using robustness rules instead of fragment parsing
was the possibility to combine chunks located low in the parse chart. This is
indeed confirmed in the sample, as only 13 applications were at the root of
the derivation tree. Another interesting trait of the methodology was that in the
majority of cases (50), the ROBUST daughter spanned just one word. In the other
cases, the ROBUST daughter was usually a small phrase. Another dimension is
the head type of the ROBUST daughter. This distribution is listed in table 7.4.
Although one category is certainly the largest (verbs), the distribution is fairly
flat, showing the inclusive character of the robustness rules.

7.3. SUMMARY 151

7.3 Summary

In this chapter, two methods to overcome extra-grammaticality of the input have
been investigated. First, a variant of the well-known partial parsing method has
been implemented. In contrast to the two models introduced by Zhang et al.
(2007a), all characteristics of the segmentation are already contained in the
score of each subtree, meaning that the optimal solution can be found within
a reasonable time span. The shortest path (the combination of fragments incur-
ring the lowest cost according to the cost function) could then be found using a
simple variant of the CYK algorithm. On the test set, this resulted in almost full
coverage, and an increase of f-score from 56.3% to 67.7%. A small decline of
precision was recorded.

The second method to overcome extragrammatical sentences is to use over-
generating hand-crafted robustness rules. The main idea behind this concept is
that when an unrecognised object is found, a robustness rule can take up this
unrecognised object, after which the regular parsing routine can be resumed.
The advantage of this method is that the dependency between items left and
right of the unrecognised object can be recovered, which a fragment analysis
is not able to do. The restriction algorithm from chapter 6 was used to make
sure that the proliferation of the robustness rule applications was constrained
and dispreferred properly. A number of experiments were carried out to dis-
cover which definitions of the robustness rules worked best, and to determine
which parameters of the task pruning algorithm gave the most advantageous
time/quality trade-offs. After these parameters were set, the grammar, aug-
mented with the robustness rules, was used to parse the test set. The coverage
on the test rose almost by 20 percent points, yielding an f-score of 67.3%. When
the robust grammar was combined with fragment parsing, (almost) full coverage
was reached again, but the recall rose by almost 10 percent points, compared to
fragment parsing alone, indicating that the grammar with the robustness rules in-
deed manages to recognise dependencies that were impossible to recover when
using fragment parsing alone. In this setting, an f-score of 73.1% is achieved.
This score is a few percent points below state-of-the-art f-scores as reported by
Rehbein and Van Genabith (2009), which are in the range between 75% and
79%.

7.3.1 Future work

Although this work has shown substantial improvements in terms of f-score, a
few possible paths of research have not been taken. First, the statistical models
(both for the tasks’ priorities and the ordering of solutions for the disambigua-

152 CHAPTER 7. IMPROVING PARSER ROBUSTNESS

tion model) are fairly unprincipled, as all applications of RRs are penalised
equally. A more sophisticated framework for preferring one robustness rule
over another might prove beneficial for the effectiveness of the method. This
can be combined by writing more specialised robustness rules for specific un-
covered phenomena. A very specialised robustness rule (for instance combining
an unknown verb/particle combination) would then be preferred over a catch-
all robustness rule, as they have been defined in this chapter. Also, one can
conceive situations in which one application of a robustness rule is better than
a really improbable combination of regular rules. The current model can not
cover such situations, because the penalty given to the application of an RR is
too high. Statistically more sound priority and disambiguation models could
be trained from treebanks using the robustness rules as well. The treebanking
methodology of section 5.3 certainly leaves space for this type of modelling.

So far, the robustness rules were agnostic about the dependency that they con-
tributed. However, a fair guess can sometimes be made, based on basic prop-
erties (e.g. part-of-speech) of the MAIN and ROBUST daughters. For instance,
if the MAIN daughter is a verb, and the ROBUST daughter is an accusative noun
phrase, the dependency is likely to be OA. Simple, rule-based heuristics could
provide such dependencies in the future.

153

8 Conclusion
The aim of the research that is described in this thesis was to find techniques that
improve the feasibility of precision-oriented HPSG parsing. We have looked at
several aspects that have negatively influenced a wide adoption of technology
from the DELPH-IN framework, such as the time to develop a grammar and
an accompanying treebank, modularity and maintainability of the grammar, ef-
ficiency and robustness. The strengths and weaknesses on these aspects of a
number of grammar engineering paradigms have been outlined in chapter 2.

In chapter 3, a core grammar for German was developed, after an analysis
of a subset of linguistic phenomena that occur within the German language and
an overview of existing linguistic descriptions of these phenomena. Although
no novel analyses have emerged from this exercise, the grammar is a valuable
addition in the landscape of (German) deep parsers, being the computational
synthesis of existing linguistic analyses available in the literature. Also, a flex-
ible and powerful way to model topological fields by means of finite state au-
tomata was introduced, using only the restricted variant of the T DL formalism
that is used in the DELPH-IN tools. A core lexicon was included to account for
syntactically idiosyncratic lexemes.

Chapter 4 showed how the core grammar was extended with a deep lexicon,
extracted from the Tiger treebank (Brants et al. 2002). Like previous studies,
a hand-written procedure was written for this purpose. Specifically, attention
was paid to deriving deep lexical features, such as complementation patterns,
modification constraints and morphological features. The resulting lexicon is
comparable in size to the lexicon of an existing HPSG grammar for German
(Crysmann 2005), but the level of granularity of the tags was slightly lower.

Apart from extracting a lexicon from it, the Tiger treebank has been used as a
gold standard in chapter 5. First, a conversion procedure was set up in order to
convert the MRS-shaped output into a dependency-style format, in order to be
able to compare to the Tiger treebank’s syntactic dependencies. This opened up
an array of possibilities. A new regression testing procedure (unit testing) was
created, which positively influences the grammar writing scheme by pointing
out and quantifying sources of error in the chain of core grammar, lexical acqui-
sition and output conversion. Second, a treebank could be created by parsing the
data with the grammar, and exploit the gold standard dependencies to automat-
ically disambiguate between possible analyses. When a small margin of error
was tolerated, 56% of the original Tiger treebank could be converted to a full-
fledged dynamic HPSG treebank this way. Last, a test set was extracted from
the treebank to evaluate the parser’s performance on unseen text. Slightly over
60% of the sentence received at least one analysis, of which 21.7% received the

154 CHAPTER 8. CONCLUSION

exactly correct parse. On the dependency level, recall and precision scores of
40.8% and 83.7% were recorded, respectively, yielding an f-score of 54.9%.

In the Interlude, the entire grammar engineering paradigm of creation of a
core lexicon, deep lexical acquisition and automatic treebank construction was
compared to other paradigms on a number of relevant dimensions: linguistic
relevance, level of abstraction of the output, ability to generate, efficiency, cov-
erage, development time and clean evaluation. One of the outcomes of the anal-
ysis was that the combination of the PET parser and the grammar from the first
chapters scores below par on two dimensions: efficiency and coverage.

The lack of efficiency is addressed in chapter 5. In these experiments, the
agenda of the PET parser (a priority queue of parser tasks) is manipulated, com-
pared to the exhaustive strategy that is used normally. The priorities of the
agenda tasks are based on a generative model of HPSG rule applications. Less
likely combinations of rules and chart items receive lower priorities, and are
either deferred or even deleted. A number of pruning strategies and counting
strategies are tried. The experiments clearly indicated that the LOCAL pruning
strategy produced superior results compared to the alternatives. Changing the
counting strategy has virtually no effect when the LOCAL pruning strategy is
used. In the most optimal setting (which is determined in experiments on the
development set), the average time to produce the packed forest (on the test set
from the Tiger treebank) is reduced from 3.9 seconds to 0.2 seconds, a speedup
of around 95%, yielding equal f-scores. A small increase of f-score (+1.6%) is
measured when the cell size is increased slightly, due to the lower number of
timeouts.

In chapter 6, experiments aiming to reduce the fragility of the parser are car-
ried out. As a baseline, a fragment parsing algorithm has been implemented,
which has been the de facto fall-back standard in deep parsers facing similar
issues. These experiments yielded coverage scores approximating 100% when
applied on the test set, with an f-score of 67.7%. As an alternative, hand-written,
massively over-generating robustness rules have been introduced. The basic in-
tuition of the robustness rules is that unrecognised material can be taken up
by the robustness rule, after which the regular parsing routine can be resumed,
minimising the damage of the unrecognised obstacle. The over-generation of
the robustness rules is constrained by the agenda pruning algorithm from the
previous chapter. After exploring the effectiveness of a number of definitions
for these robustness rules, one particular definition was chosen, and applied to
the test set. This yielded a coverage score of 81.3%, but an f-score approach-
ing the one of the fragment parsing approach (67.3%), despite the significantly
lower number of sentences receiving any analysis at all. Combining both ap-
proaches yielded the best results, with almost full coverage and an f-score of
73.1%, which approximates state-of-the-art results for hand-written and DGE

8.1. DIRECTIONS FOR FUTURE WORK 155

parsers of German.

8.1 Directions for future work
The experiments have yielded insights in several aspects of precision-oriented
HPSG parsing, but there are ample possibilities for future research, building
on the research outlined in this thesis. A number of possible extensions have
already been outlined in the summaries of the individual chapters, but I would
like to highlight two other directions here.

Currently, the grammar’s constructional coverage is too low to be considered
wide-coverage. A number of uncovered phenomena are already listed in section
3.4, but it might also be insightful to study more closely the analyses listed by
Dipper (2003). An extension of the core grammar, including a more principled
approach to its morphology, is therefore a necessary step to improve the gram-
mar. Apart from extending the grammar’s coverage, one might opt to restore the
semantic nature of the MRS structures as output of the grammar. This would
entail that the direct link between the grammar and the source treebank is re-
moved, but this link is not needed anymore for updating the treebank (given that
it is a discriminant-based, dynamic treebank). However, an alternative form of
evaluation would have to be shaped, because no straight evaluation against the
Tiger treebank’s syntactic dependencies is possible anymore.

Another interesting direction of research comes to mind as well, integrating
the technology from each individual chapter. In the introduction in chapter 1, I
already alluded to the tension between two schools of parser engineering: sta-
tistical parsing and grammar-based parsing. The grammar that has been created
in chapters 3-5 is a blend between these schools, as it is the combination of a
hand-written core grammar, a lexicon derived using symbolic learning and a dis-
ambiguation model based on statistical learning. However, no answer has been
given to the question to which degree the ‘ideal’ parser is hand-written or learnt.
In the paradigm that has been laid out in this thesis, it becomes possible to test
this systematically. Aspects of the language that are now handled by the formal
model can be left to the statistical model by removing or relaxing constraints
from the core grammar. Doing this would have caused an unacceptable compu-
tational burden, but the task pruning mechanism assures that the computational
cost remains within bounds.

156 APPENDIX A. TEST SUITE

A Test suite
What follows is a copy of the test suite. The marks on the left indicate whether
the sentence is currently accepted by the grammar or not.

x Es gibt Käse
x Der Käse stinkt
x Antje isst den Käse
x Antje schenkt mir den Käse
x Der Käse ist Käse
x Der Käse ist herrlich
x Antje freut sich auf den Käse
x Antje freut sich darauf
x Antje schlägt Käse vor
x Antje denkt dass der Käse herrlich ist
x Antje sagt der Käse stinkt
x Antje weiß wo der Käse liegt
x Antje weiß wer stinkt
x Antje weiß was Peter isst
x Antje weiß auf welchen Käse Peter sich freut
x Antje weiß mit welcher Butter Peter das Brot isst
x Bestimmt stinkt der Käse
x Seit gestern stinkt der Käse
x Weil es Käse gibt isst Antje den Käse
x Antje schenkt mir den Käse ohne ihn zu essen
x Den Käse schenkt Antje mir
x Mir schenkt Antje den Käse
x Antje versucht den Käse zu essen

Den Käse versucht Antje zu essen
x Bestimmt versucht Antje den Käse zu essen
x Antje will den Käse essen
x Den Käse will Antje essen
x Antje sieht mich den Käse essen
x Mich sieht Antje den Käse essen
x Den Käse sieht Antje mich essen
x Den Käse essen sieht Antje mich
x Antje hat den Käse gegessen
x Der Käse wird von Antje gegessen
x Der Käse soll von Antje gegessen werden
x Der Käse ist von Antje gegessen worden
x Antje hat den Käse zu essen versucht

157

Antje hat den Käse versucht zu essen
x Antje hat versucht den Käse zu essen
x Antje hat den Käse essen wollen

Peter denkt dass Antje den Käse wird essen können
x Peter denkt dass Antje den Käse essen können wird
x Der Käse ist herrlicher Käse gewesen
x Isst Antje den Käse
x Wird Antje den Käse essen
x Wo isst Antje den Käse
x Welchen Käse isst Antje
x Wer isst den Käse
x Und der Käse stinkt
x Käse isst Antje nur mit Brot
x Dem Mann zufolge isst Antje den Käse
x Selbst der herrliche Käse von Antje stinkt

Der gegessene Käse stinkt
Der von Antje gegessene Käse stinkt

x Antje der Käse stinkt
x Der Käse des Mannes stinkt
x Frau Antje stinkt
x Dieses Mal isst Antje den Käse
x Antje isst dieses Mal den Käse
x Antje hat keine Ahnung wo der Käse liegt
x Antje hat keine Neigung den Käse zu essen
x Der Kampf um den herrlichen Käse
x Antje hat Sorgen dass der Käse stinkt
x Die 3 liegen
x Der Käse den Antje isst stinkt
x Der Käse auf den Antje sich gefreut hat stinkt
x Antje isst den Käse der stinkt
x Das Brot mit dem Antje den Käse isst stinkt
x Der Mann dessen Brot Antje gegessen hat stinkt
x Die Frau deren Brot Antje gegessen hat stinkt
x Die Männer deren Brot Antje gegessen hat stinken
x Der Mann auf dessen Brot Antje sich freut stinkt

Der Käse ist eine Woche alt
Das ist sich entwickelndener Käse
Das ist der mir zustehende Käse

x Der Käse ist bestimmt fast unglaublich herrlich

158 APPENDIX A. TEST SUITE

x Der Käse stinkt und das Brot stinkt
x Der Käse stinkt und Antje will den Käse essen

Stinkt der Käse und will Antje den Käse essen
Antje stinkt und will den Käse essen

x Antje will mir den Käse schenken und das Brot essen
x Bestimmt will Antje mir den Käse schenken und das Brot essen
x Antje und Peter essen den Käse
x Antje isst den Käse und das Brot
x Der Käse und Käse stinkt
x Der Käse liegt bei dem Brot und neben der Butter
x Der Käse ist herrlich und kostbar
x Der herrliche und kostbare Käse stinkt
x Früher oder später wird Antje den Käse essen
x Vier- bis fünfhundert Männer
x Im Kindes- und Jugendalter

Was denkt Antje dass sie gegessen hat
Wer denkt Antje dass den Käse gegessen hat
Wie denkt Antje dass Peter den Käse gegessen hat

x Wer sagt Peter hat den Käse gegessen
x Was sagt Peter hat Antje gegessen
x Wie sagt Peter hat Antje den Käse gegessen
x Wir sagt Peter haben den Käse gegessen
x Den Käse sagt Peter haben wir gegessen
x Bestimmt sagt Peter haben wir den Käse gegessen
x Peter hat den Käse gegessen auf den Antje sich gefreut hat
x Peter hat sich auf den Käse gefreut den Antje gegessen hat
x Peter hat die Neigung den Käse zu essen auf den Antje sich freut
x Antje denkt dass dein Käse herrlicher ist als mein Käse
x Antje denkt dass Peter herrlicheren Käse isst als ich
x Antje hat herrlicheren Käse als du gegessen
x Antje hat herrlicheren Käse gegessen als du

BIBLIOGRAPHY 159

Bibliography
ADOLPHS, P., S. OEPEN, U. CALLMEIER, B. CRYSMANN, D. FLICKINGER,

and B. KIEFER. 2008. Some fine points of hybrid natural language parsing.
In Proceedings of LREC, 1380–1387.

BALDWIN, T., E.M. BENDER, D. FLICKINGER, A. KIM, and S. OEPEN. 2004.
Road-testing the English Resource Gammar over the British National Cor-
pus. In Proceedings of LREC, 2047–2050.

BANGALORE, S., and A.K. JOSHI. 1999. Supertagging: An approach to almost
parsing. Computational Linguistics 25.237–265.

BENDER, E.M. 2008a. Evaluating a crosslinguistic grammar resource: a case
study of Wambaya. In Proceedings of ACL-HLT , 977–985.

—— 2008b. Grammar engineering for linguistic hypothesis testing. In Pro-
ceedings of the Texas Linguistics Society X Conference: Computational Lin-
guistics for Less-Studied Languages, 16–36.

——, and D. FLICKINGER. 2005. Rapid prototyping of scalable grammars:
Towards modularity in extensions to a language-independent core. In Pro-
ceedings of IJCNLP, 203–208.

——, D. FLICKINGER, and S. OEPEN. 2002. The Grammar Matrix: An Open-
Source Starter-Kit for the Rapid Development of Cross-Linguistically Con-
sistent Broad-Coverage Precision Grammars. In Proceedings of the Work-
shop on Grammar Engineering and Evaluation at CoNLL, 8–14.

——, D. FLICKINGER, S. OEPEN, A. WALSH, and T. BALDWIN. 2004. Ar-
boretum: Using a precision grammar for grammar checking in CALL. In
InSTIL/ICALL Symposium, 83–86.

——, I.A. SAG, and T. WASOW. 2003. Syntactic theory: A formal introduction.
CLSI Publications.

BOND, F., S. OEPEN, M. SIEGEL, A. COPESTAKE, and D. FLICKINGER.
2005. Open source machine translation with DELPH-IN. In Open-Source
Machine Translation: Workshop at MT Summit X, 15–22.

BOUMA, G., and J. SPENADER. 2009. The distribution of weak and strong
object reflexives in dutch. In Proceedings of the seventh workshop on Tree-
banks and Linguistic Theory (TLT 7), Groningen, 103–114.

——, G. VAN NOORD, and R. MALOUF. 2000. Alpino: wide-coverage com-
putational analysis of dutch. In Proceedings of Computational Linguistics
in the Netherlands (CLIN), 45–59.

160 BIBLIOGRAPHY

——, G. VAN NOORD, and R. MALOUF. 2001. Alpino: Wide-coverage com-
putational analysis of Dutch. Language and Computers 37.45–59.

BRANCO, A.H., and F. COSTA. 2008. A Computational Grammar for Deep
Linguistic Processing of Portuguese: LXGram, version A. 4.1. Technical
report, Department of Informatics, University of Lisbon.

BRANTS, S., S. DIPPER, S. HANSEN, W. LEZIUS, and G. SMITH. 2002.
The TIGER Treebank. In Proceedings of the Workshop on Treebanks and
Linguistic Theories, 24–41.

BRANTS, T. 2000. TnT: a statistical part-of-speech tagger. In Proceedings of
the Sixth Conference on Applied Natural Language Processing, 224–231.

BRESNAN, J. 1982. The mental representation of grammatical relations. The
MIT Press.

—— 2001. Lexical-functional syntax. Wiley-Blackwell.

BRISCOE, T. 2006. An introduction to tag sequence grammars and the RASP
system parser. Technical report, University of Cambridge.

——, and J. CARROLL. 2002. Robust accurate statistical annotation of general
text. In Proceedings of LREC, 1499–1504.

——, and ——. 2006. Evaluating the accuracy of an unlexicalized statistical
parser on the PARC DepBank. In Proceedings of COLING-ACL, 41–48.

——, ——, and R. WATSON. 2006. The second release of the RASP system. In
Proceedings of COLING-ACL, 77–80.

BURNARD, L. 2000. Users reference guide for the British National Corpus.
Technical report, Technical report, Oxford University Computing Services.

BUTT, M., H. DYVIK, T.H. KING, H. MASUICHI, and C. ROHRER. 2002. The
parallel grammar project. In International Conference On Computational
Linguistics, 1–7.

CAHILL, A., M. BURKE, M. FORST, R. ODONOVAN, C. ROHRER, J. VAN

GENABITH, and A. WAY. 2005. Treebank-based acquisition of multilin-
gual unification grammar resources. Research on Language & Computation
3.247–279.

——, M. BURKE, R. O’DONOVAN, S. RIEZLER, J. VAN GENABITH, and
A. WAY. 2008a. Wide-coverage deep statistical parsing using automatic
dependency structure annotation. Computational Linguistics 34.81–124.

BIBLIOGRAPHY 161

——, M. BURKE, R. ODONOVAN, J. VAN GENABITH, and A. WAY.
2004. Long-distance dependency resolution in automatically acquired wide-
coverage PCFG-based LFG approximations. In Proceedings of ACL, 320–
327.

——, T.H. KING, and J.T. MAXWELL III. 2007. Pruning the Search Space of
a Hand-Crafted Parsing System with a Probabilistic Parser. In Proceedings
of the Workshop on Deep Linguistic Processing at ACL, 65–72.

——, J.T. MAXWELL III, P. MEURER, C. ROHRER, and V. ROSÉN. 2008b.
Speeding up LFG parsing using c-structure pruning. In Proceedings of the
Workshop on Grammar Engineering Across Frameworks at COLING, 33–
40.

——, M. MCCARTHY, J. VAN GENABITH, and A. WAY. 2002. Auto-
matic annotation of the Penn Treebank with LFG F-structure informa-
tion. In Workshop on Linguistic Knowledge Acquisition and Representation-
Bootstrapping Annotated Language Data at LREC, 8–15.

——, and J. VAN GENABITH. 2006. Robust PCFG-based generation using
automatically acquired LFG approximations. In Proceedings of ICCL-ACL,
1033–1040.

CALLMEIER, U. 2000. PET–a platform for experimentation with efficient
HPSG processing techniques. Natural Language Engineering 6.99–107.

CARPENTER, B. 1992. The Logic of Typed Feature Structures: With Applica-
tions to Unification Grammars, Logic Programs, and Constraint Resolution.
Cambridge, UK: Cambridge University Press.

CARROLL, J., T. BRISCOE, and A. SANFILIPPO. 1998. Parser evaluation: a
survey and a new proposal. In Proceedings of LREC, 447–454.

——, G. MINNEN, and T. BRISCOE. 1999. Corpus annotation for parser evalu-
ation. In Proceedings of the workshop on Linguistically Interpreted Corpora
(LINC) at EACL, 35–41.

CARTER, D. 1997. The TreeBanker. A tool for supervised training of parsed
corpora. In Proceedings of the Workshop on Computational Environments
for Grammar Development and Linguistic Engineering, 9–15.

CHARNIAK, E. 1996. Tree-Bank Grammars. In Proceedings of the National
Conference on Artificial Intelligence, 1031–1036.

—— 2000. A maximum-entropy-inspired parser. In ACM International Con-
ference Proceeding Series, 132–139.

162 BIBLIOGRAPHY

——, and M. JOHNSON. 2005. Coarse-to-fine n-best parsing and MaxEnt dis-
criminative reranking. In Proceedings of ACL, 173–180.

CHIANG, D. 2000. Statistical parsing with an automatically-extracted tree
adjoining grammar. In Proceedings of ACL, 456–463.

CLARK, S., and J.R. CURRAN. 2004a. Parsing the WSJ using CCG and log-
linear models. In Proceedings of ACL, 104–111.

CLARK, STEPHEN, and JAMES CURRAN. 2004b. The importance of supertag-
ging for wide-coverage CCG parsing. In Proceedings of COLING, 282–288.

COLLINS, MICHAEL. 1997. Three generative, lexicalised models for statistical
parsing. In Proceedings of ACL, 16–23.

COPESTAKE, A. 2002. Implementing Typed Feature Structure Grammars.
CSLI Publications, Stanford, CA, USA.

—— 2007. Semantic composition with (robust) minimal recursion semantics. In
Proceedings of the Workshop on Deep Linguistic Processing at ACL, 73–80.

——, D. FLICKINGER, C. POLLARD, and I. SAG. 2005. Minimal Recursion
Semantics: An Introduction. Research on Language & Computation 3.281–
332.

CRAMER, B., and Y. ZHANG. 2009. Construction of a German HPSG grammar
from a detailed treebank. In Proceedings of the GEAF workshop at ACL-
IJCNLP, 37–45.

——, and ——. 2010. Constraining robust constructions for broad-coverage
parsing with precision grammars. In Proceedings of COLING, 223–231.

CRYSMANN, B. 2003. On the efficient implementation of German verb place-
ment in HPSG. In Proceedings of RANLP, 112–116.

—— 2005. Relative Clause Extraposition in German: An Efficient and Portable
Implementation. Research on Language & Computation 3.61–82.

——, N. BERTOMEU, P. ADOLPHS, D. FLICKINGER, and T. KLÜWER. 2008.
Hybrid processing for grammar and style checking. In Proceedings of COL-
ING, 153–160. Association for Computational Linguistics.

DIPPER, S. 2000. Grammar-based corpus annotation. In Workshop on Linguis-
tically Interpreted Corpora (LINC) at COLING, 56–64.

—— 2003. Implementing and Documenting Large-scale Grammars–German
LFG. Arbeitspapiere des Instituts für Maschinelle Sprachverarbeitung
(AIMS) 9.

BIBLIOGRAPHY 163

DRELLISHAK, S., 2009. Widespread but Not Universal: Improving the Typo-
logical Coverage of the Grammar Matrix. University of Washington disser-
tation.

DRIDAN, R., 2009. Using lexical statistics to improve HPSG parsing. Saarland
University dissertation.

——, V. KORDONI, and J. NICHOLSON. 2008. Enhancing performance of lex-
icalised grammars. In Proceedings of ACL-08: HLT , 613–621. Association
for Computational Linguistics.

ERBACH, G. 1991. A flexible parser for a linguistic development environment,
74–87. Springer.

FLICKINGER, D. 2000. On building a more effcient grammar by exploiting
types. Natural Language Engineering 6.15–28.

——, S. OEPEN, and G. YTRESTØL. 2010. Wikiwoods: Syntacto-semantic
annotation for english wikipedia. In Proceedings of LREC, 1665–1671.

FORST, M. 2007. Filling statistics with linguistics: property design for the
disambiguation of german lfg parses. In Proceedings of the Workshop on
Deep Linguistic Processing at ACL, 17–24. Association for Computational
Linguistics.

——, N. BERTOMEU, B. CRYSMANN, F. FOUVRY, S. HANSEN-SCHIRRA,
and V. KORDONI. 2004. Towards a dependency-based gold standard for
German parsers–The TiGer Dependency Bank. In Proceedings of LINC at
COLING.

FRANCIS, W.N., H. KUČERA, and A.W. MACKIE. 1982. Frequency analysis
of English usage: Lexicon and grammar. Houghton Mifflin Harcourt.

GOODMAN, J.T., and S. SHIEBER, 1998. Parsing inside-out. Harvard Univer-
sity, Cambridge, MA dissertation.

HALL, J., J. NILSSON, J. NIVRE, G. ERYIGIT, B. MEGYESI, M. NILSSON,
and M. SAERS. 2007. Single malt or blended? A study in multilingual
parser optimization. In Proceedings of the CoNLL Shared Task Session of
EMNLP-CoNLL 2007, 933–939.

——, and J. NIVRE. 2008. A dependency-driven parser for German depen-
dency and constituency representations. In Proceedings of the Workshop on
Parsing German at ACL, 47–54.

HELLAN, L., and P. HAUGEREID. 2003. NorSource: An exercise in Matrix
grammar-building design. In Proc. the Workshop on Ideas and Strategies
for Multilingual Grammar Development, ESSLLI 2003, 41–48.

164 BIBLIOGRAPHY

HINDLE, D. 1989. Acquiring disambiguation rules from text. In Proceedings
of ACL, 118–125.

HINRICHS, E., and T. NAKAZAWA. 1994. Linearizing AUXs in German ver-
bal complexes, volume 46, 11–37. Center for the Study of Language and
Informatics.

HOCKENMAIER, J. 2006. Creating a CCGbank and a Wide-Coverage CCG
Lexicon for German. In Proceedings of ACL, 505–512.

——, and M. STEEDMAN. 2002. Acquiring compact lexicalized grammars
from a cleaner treebank. In Proceedings of LREC, 1974–1981.

——, and ——. 2007. CCGbank: a corpus of CCG derivations and dependency
structures extracted from the Penn Treebank. Computational Linguistics
33.355–396.

JOHNSON, M., T.L. GRIFFITHS, and S. GOLDWATER. 2007. Adaptor gram-
mars: A framework for specifying compositional nonparametric Bayesian
models. Advances in Neural Information Processing Systems 19.641.

JOSHI, A.K., and Y. SCHABES. 1997. Tree-adjoining grammars. Handbook of
formal languages 3.69–124.

KAPLAN, R.M., S. RIEZLER, T.H. KING, J.T. MAXWELL III, A. VASSER-
MAN, and R. CROUCH. 2004. Speed and accuracy in shallow and deep
stochastic parsing. In Proceedings of HLT-NAACL.

KASAMI, T. 1965. An efficient recognition and analysis algorithm for context-
free languages. Technical report, AF-CRL-65-758, Air Force Cambridge
Research Laboratory, MA.

KASPER, W., B. KIEFER, H.U. KRIEGER, C.J. RUPP, and K.L. WORM. 1999.
Charting the depths of robust speech parsing. In Proceedings of ACL, 405–
412.

KATHOL, ANDREAS, 1995. Linearization-Based German Syntax. Ohio State
University dissertation.

KAY, M. 1980. Algorithm schemata and data structures in syntactic processing,
35–70. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

KIEFER, B., H.U. KRIEGER, J. CARROLL, and R. MALOUF. 1999. A bag of
useful techniques for efficient and robust parsing. In Proceedings of ACL,
473–480.

KING, T.H., R. CROUCH, S. RIEZLER, M. DALRYMPLE, and R. KAPLAN.
2003. The PARC 700 dependency bank. In Proceedings of the International
Workshop on Linguistically Interpreted Corpora (LINC) at EACL, 1–8.

BIBLIOGRAPHY 165

KORDONI, V., and J. NEU. 2005. Deep analysis of Modern Greek. In Lecture
Notes in Computer Science, 674–683.

KRIEGER, H.U., and U. SCHÄFER. 1994. TDL: a type description language
for constraint-based grammars. In Proceedings of COLING, 893–899.

KÜBLER, S., E.W. HINRICHS, and W. MAIER. 2006. Is it really that difficult
to parse German? In Proceedings of EMNLP.

LIDSTONE, G.J. 1920. Note on the general case of the Bayes-Laplace formula
for inductive or a posteriori probabilities. Transactions of the Faculty of
Actuaries 8.80.

LIN, D. 1998. A dependency-based method for evaluating broad-coverage
parsers. Natural Language Engineering 4.97–114.

MAGERMAN, D. 1995. Statistical decision-tree models for parsing. In Pro-
ceedings of ACL, 276–283.

MALOUF, R., and G. VAN NOORD. 2004. Stochastic attribute value gram-
mars. In IJCNLP-04 Workshop Beyond Shallow Analyses-Formalisms and
statistical modeling for deep analyses.

MARCUS, M.P., B. SANTORINI, and M.A. MARCINKIEWICZ. 1994. Building
a large annotated corpus of English: The Penn Treebank. Computational
Linguistics 19.313–330.

MARIMON, M., N. BEL, S. ESPEJA, and N. SEGHEZZI. 2007. The Span-
ish Resource Grammar: pre-processing strategy and lexical acquisi-tion. In
Proceedings of the workshop on Deep Linguistic Processing at ACL, 105–
111.

MATSUZAKI, T., Y. MIYAO, and J. TSUJII. 2007. Efficient HPSG parsing with
supertagging and CFG-filtering. In Proceedings of the 20th International
Joint Conference on Artificial Intelligence (IJCAI 2007), 1671–1676.

MAXWELL, J.T., and R.M. KAPLAN. 1993. The interface between phrasal and
functional constraints. Computational Linguistics 19.571–590.

MCDONALD, R., F. PEREIRA, K. RIBAROV, and J. HAJIC. 2005. Non-
projective dependency parsing using spanning tree algorithms. In Proceed-
ings of HLT/EMNLP, 523–530.

MIYAO, Y. 1999. Packing of feature structures for efficient unification of dis-
junctive feature structures. In Proceedings of ACL, 579–584.

——, 2006. From Linguistic Theory to Syntactic Analysis: Corpus-Oriented
Grammar Development and Feature Forest Model. University of Tokyo dis-
sertation.

166 BIBLIOGRAPHY

——, T. NINOMIYA, and J. TSUJII. 2004. Corpus-oriented grammar develop-
ment for acquiring a Head-driven Phrase Structure Grammar from the Penn
Treebank. In Proceedings of IJCNLP.

MÜLLER, S, 1997. Spezifikation und Verarbeitung deutscher Syntax in Head-
Driven Phrase Structure Grammar. Saarland University dissertation.

MÜLLER, S. 2002. Complex Predicates: Verbal Complexes, Resultative Con-
structions, and Particle Verbs in German. Stanford, CA, USA: CSLI Publi-
cations.

MÜLLER, STEFAN, and WALTER KASPER. 2000. HPSG analysis of German.
In Verbmobil: Foundations of Speech-to-Speech Translation, ed. by Wolf-
gang Wahlster, Artificial Intelligence, 238–253. Springer.

NAKANISHI, H., Y. MIYAO, and J. TSUJII. 2005. Probabilistic models for
disambiguation of an HPSG-based chart generator. In Proceedings of the
International Workshop on Parsing Technology, 93–102.

NERBONNE, J.A., K. NETTER, and C.J. POLLARD. 1994. German in Head-
driven Phrase Structure Grammar. Center for the Study of Language and
Inf.

NINOMIYA, T., T. MATSUZAKI, Y. TSURUOKA, Y. MIYAO, and J. TSUJII.
2006. Extremely lexicalized models for accurate and fast HPSG parsing. In
Proceedings of EMNLP, 155–163.

——, Y. TSURUOKA, Y. MIYAO, and J. TSUJII. 2005. Efficacy of beam thresh-
olding, unification filtering and hybrid parsing in probabilistic HPSG pars-
ing. In Proceedings of the Ninth International Workshop on Parsing Tech-
nology, 103–114.

NIVRE, J. 2007. Inductive dependency parsing. Computational Linguistics 33.

OEPEN, S., and J. CARROLL. 2000a. Ambiguity packing in constraint-based
parsing: practical results. In Proceedings of NAACL, 162–169.

——, and ——. 2000b. Parser engineering and performance profiling. Natural
Language Engineering 6.81–97.

——, D. FLICKINGER, K. TOUTANOVA, and C.D. MANNING. 2004. LinGO
Redwoods. Research on Language & Computation 2.575–596.

PEREIRA, F.C.N., and D.H.D. WARREN. 1980. Definite clause grammars for
language analysis–a survey of the formalism and a comparison with aug-
mented transition networks. Artificial intelligence 13.231–278.

BIBLIOGRAPHY 167

POLLARD, C.J., and I.A. SAG. 1994. Head-Driven Phrase Structure Gram-
mar. Chicago, IL, USA: University Of Chicago Press.

PRINCE, A., and P. SMOLENSKY. 2004. Optimality Theory: Constraint inter-
action in generative grammar. In The 12th West Coast Conference on Formal
Linguistics.

REHBEIN, I., 2009. Treebank-based grammar acquisition for German. Dublin
City University dissertation.

——, and J. VAN GENABITH. 2009. Automatic acquisition of LFG resources
for German-as good as it gets. In Proceedings of LFG-09. CSLI Publica-
tions.

RIEZLER, S., T.H. KING, R.M. KAPLAN, R. CROUCH, J.T. MAXWELL III,
and M. JOHNSON. 2001. Parsing the Wall Street Journal using a Lexical-
Functional Grammar and discriminative estimation techniques. In Proceed-
ings of ACL, 271–278.

ROHRER, C., and M. FORST. 2006. Improving coverage and parsing quality
of a large-scale lfg for german. In Proceedings of LREC.

ROSÉN, V., P. MEURER, and K. DE SMEDT. 2009. LFG Parsebanker: A toolkit
for building and searching a treebank as a parsed corpus. In Proceedings of
the Seventh International Workshop on Treebanks and Linguistic Theories
(TLT7), 127–133.

SIEGEL, M., and E.M. BENDER. 2002. Efficient deep processing of Japanese.
In Proceedings of the 3rd Workshop on Asian Language Resources and In-
ternational Standardization.

SKUT, W., B. KRENN, T. BRANTS, and H. USZKOREIT. 1997. An annotation
scheme for free word order languages. In Proceedings of the fifth conference
on Applied natural language processing, 88–95.

STEEDMAN, M. 2000. The Syntactic Process. Cambridge, MA, USA: MIT
Press.

TANAKA, T., F. BOND, S. OEPEN, and S. FUJITA. 2005. High Precision
Treebanking-Blazing Useful Trees Using POS Information. In Proceedings
of ACL, 994–997.

TOUTANOVA, K., C.D. MANNING, D. FLICKINGER, and S. OEPEN. 2005.
Stochastic HPSG parse disambiguation using the Redwoods corpus. Re-
search on Language & Computation 3.83–105.

168 BIBLIOGRAPHY

——, C.D. MANNING, S. SHIEBER, D. FLICKINGER, and S. OEPEN. 2002.
Parse disambiguation for a rich HPSG grammar. In Proceedings of the First
Workshop on Treebanks and Linguistic Theories, 253–263.

VAN DER BEEK, L., G. BOUMA, R. MALOUF, and G. VAN NOORD. 2002. The
Alpino dependency treebank. In Proceedings of Computational Linguistics
in the Netherlands (CLIN) 2001, 8–22.

VAN NOORD, G. 1997. An efficient implementation of the head-corner parser.
Computational Linguistics 23.425–456.

—— 2006. At last parsing is now operational. In Verbum ex machina: actes
de la 13e conférence sur le traitement automatique des langues naturelles
(TALN 2006): Leuven, 10-13 avril 2006, 20–42.

—— 2007. Using self-trained bilexical preferences to improve disambiguation
accuracy. In Proceedings of the 10th International Conference on Parsing
Technologies, 1–10.

VAN NOORD, G. 2009. Learning efficient parsing. In Proceedings of EACL,
817–825. Association for Computational Linguistics.

——, G. BOUMA, R. KOELING, and M.J. NEDERHOF. 1999. Robust gram-
matical analysis for spoken dialogue systems. Natural language engineering
5.45–93.

VELLDAL, E., and S. OEPEN. 2005. Maximum entropy models for realization
ranking. In Proceedings of the 10th MT-Summit (X).

WAHLSTER, W. 2000. Verbmobil: foundations of speech-to-speech translation.
Springer verlag.

XIA, F., M. PALMER, and A. JOSHI. 2000. A uniform method of grammar
extraction and its applications. In Proceedings of EMNLP, 53–62.

YOUNGER, D.H. 1967. Recognition and parsing of context-free languages in
time n3*. Information and control 10.189–208.

YTRESTØL, G., D. FLICKINGER, and S. OEPEN. 2009. Extracting and Anno-
tating Wikipedia Sub-Domains. In Proceedings of the Seventh International
Workshop on Treebanks and Linguistic Theories, 185–197.

ZHANG, Y., B-G. AHN, S. CLARK, C. VAN WYK, CURRAN J., and
L. RIMELL. 2010a. Chart Pruning for Fast Lexicalised-Grammar Parsing.
In Proceedings of COLING.

——, and V. KORDONI. 2008. Robust parsing with a large HPSG grammar. In
Proceedings of LREC.

BIBLIOGRAPHY 169

——, ——, and E. FITZGERALD. 2007a. Partial parse selection for robust deep
processing. In Proceedings of the Workshop on Deep Linguistic Processing
at ACL, 128–135.

——, and T. MATSUZAKI. 2009. Junichi Tsujii. 2009. HPSG supertagging: A
sequence labeling view. In Proceedings of IWPT , 210–213.

——, ——, and J. TSUJII. 2010b. A simple approach for HPSG supertagging
using dependency information. In Proceedings of NAACL-HLT , 645–648.

——, S. OEPEN, and J. CARROLL. 2007b. Efficiency in Unification-Based
N-Best Parsing. In Proceedings of the Tenth International Conference on
Parsing Technologies, 48–59.

——, R. WANG, and S. OEPEN. 2009. Hybrid Multilingual Parsing with HPSG
for SRL. In Proceedings of CoNLL.

ZINSMEISTER, H., J. KUHN, and S. DIPPER. 2002. TIGER TRANSFER-
Utilizing LFG Parses for Treebank Annotation. In Proceedings of the LFG02
Conference.

