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Abstract

This thesis is concerned with intelligent tutoring systems with natural lan-
guage interfaces, which combine research from the fields of dialogue modelling
and pedagogical science. Their development is motivated by the discovery that
the learning gains achieved by human one-on-one tutoring are much higher
than those achieved by traditional classroom instruction. The mechanisms
which have been proposed as the cause of this difference include deep explana-
tory questioning by the tutor and self-explanation by the student, both of
which target the student’s deep understanding of domain concepts. Such in-
teractions have been found to exhibit recurring dialogue patterns known as
dialogue frames.

A further pattern in conversational communication is that of grounding,
the process by which conversational partners reach mutual understanding and
repair communication errors. The store of their mutual beliefs which is built
up through grounding is known as the common ground. Just as the tutor re-
quires the student to show evidence of understanding of domain concepts, so
too does the speaker expect the hearer to indicate in the course of grounding
that the utterance content has been understood. Our research will use con-
cepts from grounding and the structure of dialogue frames to investigate the
tutor’s choice of whether to accept or reject solution steps or to ask explana-
tory questions which request evidence of understanding.

We consider the following hypotheses: First, by modelling the structure of
discussions of solution steps, we can maintain a representation of what the
student has shown evidence of having understood, based on the outcomes of
previous such discussions. And second, knowing that discussion elicits self-
explanation, we can then use this representation to predict whether to enter
into a discussion of the latest contribution, using only features drawn from
the previous dialogue and from the analysis of the steps the student just con-
tributed. The computational model we will propose to investigate these ques-
tions will account for subdialogues which are solution step discussions, and is
based on a concept which we will call task-level grounding. Task-level ground-
ing is the process by which contributions to the current solution are proposed,
possibly discussed and finally accepted or rejected. The object of this process
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is the student’s deep understanding of domain concepts.
We evaluate the model in two stages. First we train a classifier from anno-

tated data to predict whether to request evidence of understanding from the
student or not, thereby entering into a solution step discussion. We find that
the classifier takes advantage of the information maintained in our task-level
grounding model, which confirms our first hypothesis. Although it performs
well for acceptance and rejection of steps, the performance for the decision
whether to request evidence of understanding is low. This result is mitigated
by the second evaluation, in which we elicit ratings of the model’s output in
context from human experts. The model’s output is rated as similarly appro-
priate compared to the corpus, which confirms our second hypothesis. We
also find that the task of detecting when to perform requests for evidence of
understanding is difficult even for human experts.
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Zusammenfassung

Diese Arbeit befasst sich mit intelligenten Tutorsystemen, bei denen Forschun-
gen aus den Bereichen Dialogmodellierung und Pädagogik vereint werden.
Die Motivation hinter der Entwicklung solcher Systeme beruht auf der Fest-
stellung, dass bei Einzelunterricht durch Menschen höhere Lerneffekte erzielt
werden als bei herkömmlichem Gruppenunterricht. Zu den Mechanismen,
die dahinter vermutet werden, gehören unter anderem tiefgehende Erklärungs-
fragen durch den Tutor sowie die Erklärung der eigenen Lösungen durch den
Lernenden. Ziel beider Mechanismen ist das tiefgehende Verständnis des Ler-
nenden für Konzepte in der Domäne. Solche Dialoge weisen wiederkehrende
Muster auf, die dialogue frames genannt werden.

Ein weiteres Muster in der menschlichen Kommunikation ist grounding,
der Prozess, durch den Dialogpartner versuchen, einen Zustand des gegenseit-
igen Verständisses zu erreichen und Kommunikationsfehler zu beheben. Der
sogenannte common ground enthält die Gesamtheit ihrer gemeinsamen An-
nahmen. So wie der Tutor einen Beweis für das tiefgehende Verständis der
Domänenkonzepte von dem Lernenden verlangt, erwartet beim grounding
auch der Sprecher, dass der Hörer zeigt, dass der Inhalt seiner Äußerungen
verstanden wurde. Unsere Forschung verwendet Konzepte aus dem ground-
ing und die Struktur von dialogue frames, um die Entscheidung von Tutoren
zu untersuchen, ob ein Lösungsschritt akzeptiert oder abgelehnt werden soll,
oder ob eine Erklärungsfrage gestellt werden soll.

Wir betrachten folgende Hypothesen: (1) Durch das Modellieren der Struk-
tur von Diskussionen über Lösungsschritte ist es möglich, aufgrund des Ver-
laufs bisheriger Diskussionen eine Repräsentation dessen zu verwalten, was
der Lernende bisher verstanden hat. (2) Da Diskussionen zu Erklärungen der
eigenen Lösungen führen, ist es möglich, aus dieser Repräsentation heraus die
Entscheidung des Tutors für oder gegen eine Diskussion vorherzusagen, und
dabei nur Merkmale aus dem bisherigen Dialog und der Analyse des aktuellen
Lösungsschrittes heranzuziehen. Das operationale Modell basiert auf unserem
Konzept des task-level grounding. Dies bezeichnet den Prozess, in dem Lö-
sungsbeiträge vorgeschlagen, möglicherweise diskutiert und anschließend en-
tweder akzeptiert oder abgelehnt werden können. Gegenstand dieses Prozesses
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ist das Verständis des Studenten der Domänenkonzepte.
Schließlich evaluieren wir das Modell in zwei Phasen. Zunächst wird ein

Klassifizierer anhand annotierter Daten trainiert, um vorherzusagen, ob von
dem Lernenden ein Beweis für das Verständnis verlangt werden soll. Dies be-
deutet auch das Eröffnen einer Diskussion über den letzten Lösungsschritt.
Wir stellen fest, dass der Klassifizierer die Informationen nutzt, die von dem
Modell des task-level grounding verwaltet werden. Damit wird unsere erste Hy-
pothese bestätigt. Obwohl der Klassifizierer gute Resultate für Akzeptanz und
Ablehnung von Lösungsschritten erzielt, sind die Erbegnisse im Hinblick auf
die Entscheidung, ob ein Beweis des Verständnisses verlangt werden soll, nicht
zufriedenstellend. Diese Resultate werden jedoch gemäßigt durch eine zweite
Evaluierung, bei der die Vorhersagen des Klassifizierers durch menschliche Ex-
perten bewertet werden. Die Vorhersagen werden von den Experten im Ver-
gleich zum durch das Korpus dargestellten Goldstandard als ähnlich angemes-
sen angesehen. Dies bestätigt unsere zweite Hypothese. Wir stellen zudem
fest, dass die Aufgabe, zu erkennen, wann nach einem Beweis verlangt werden
soll, auch für menschliche Experten sehr schwierig ist.
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1
Introduction

Education is part of everyone’s lives, starting from an early age and usually last-
ing for many years. In systems of formal schooling the use of computer-based
learning technology has become the norm across the full range of school sub-
jects. Using computers in the classroom takes advantage of multimedia to en-
gage students in challenging and entertaining tasks [58]. Formal subjects such
as mathematics or physics are particularly suited to being taught using these
tools because there are well-defined curricula and because the material lends it-
self to automatic analysis. Some teaching systems go beyond the provision of
study material and presentation of exercises and use more natural interfaces,
offer adaptive feedback and tailor their behaviour to a student model. Such
systems are referred to as intelligent tutoring systems (ITSs) [58, 156, 180].

Bloom [22] and Cohen et al. [54] have demonstrated the benefits of one-on-
one tutoring in comparison to classroom teaching. Students who were given
individual tutoring on average achieved a learning gain of 0.4 to 2.3 standard
deviations above those who had covered the same material in a traditional
classroom setting [22]. Cohen et al. [54] find that even when tutors are knowl-
edgeable about the material but otherwise untrained as tutors, this benefit still
exists. Unfortunately there is a clear resource bound when it comes to pro-
viding such teaching methods in the school system, because it is too expensive
to provide dedicated tutors for every student. The potential benefits of one-
on-one tutoring have therefore motivated a vein of research on the provision
of ITSs which mimic the behaviour of human tutors [87, 2, 129, 217, 72, 77].
Their common goal is to develop models and systems with which students can
interact using natural language dialogue.
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1 Introduction

Instruction by humans through natural language has been shown by Moore
[142] to be more effective than automatically generated natural language, and
studies of human tutoring have identified certain individual features of tuto-
rial dialogue which can account for its effectiveness as measured by learning
gain. These include for instance directed questions to elicit explanations [86],
student initiative [176, 60], collaborativity [85, 68, 187] and self-explanation
[42, 3]. These studies indicate that it is the interaction with the system rather
than the mere exposure to the material which causes the direct positive effect
on the student’s learning [199].

Tutoring has been investigated across a wide range of domains, from well
defined closed world simulations [163] to less well defined open domains such
as ethics [99]. One domain which is formally well defined but whose theories
are open ended is mathematics, and as such it is a suitable candidate for ITS
research [2, 217]. This is especially true of mathematical theorem proving. Al-
though it is less well investigated for tutoring than other fields of mathematics
and offers strong challenges, it holds promise for intelligent tutoring systems
because as Hersh [98] argues, it is the explaining aspect of proofs that leads to
learning. Further, there are a number of automated reasoners for mathematics
which can support the system by analysing the student’s input.

Graesser et al. [86] have shown that questions cause students to explain, so
motivated by the learning effect of explanations, ITSs should try to ask the
student questions about the content which is to be learned. But under what
conditions should the tutor provoke explanations by engaging the student in
a discussion about the content at hand? Tutors ask questions depending on
what they believe the student’s current knowledge state to be [46], so whether
the student has shown evidence of having understood certain concepts will be
one of these conditions.

A second direction from which it is possible to analyse discussions in tuto-
rial dialogue is from the point of view of grounding. Successful conversational
communication depends strongly on the coordination of meanings and back-
ground assumptions as to the state of the world [49, 183, 188]. Dialogue par-
ticipants try to achieve a situation in which they mutually believe that their
utterances are being interpreted as intended and that their assumptions as to
the shared knowledge, the common ground, agree. To this end, they engage in
a process called grounding [51, 191], whose purpose is to ensure explicit align-
ment of beliefs. Grounding can serve to avoid or recover from communication
failures arising from problems which may range from low level signal-related
issues through the interpretation of the propositional content up to the com-
municative intentions of speech acts [174].

Tutoring is inherently prone to misalignment of beliefs beyond the level of
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1.1 A model for solution step discussions

the communicative intentions of speech acts: namely at the level of deep under-
standing of the tutored domain. This is partly because tutoring interactions
are characterised by an asymmetry of the knowledge possessed by the tutor
and the learner [83, 146, 119]. There is also an uncertainty on the part of the
tutor as to the learner’s deep understanding and the overall knowledge state.
Indeed Chi et al. [46] have shown that tutors tend to have difficulties in esti-
mating the learner’s deep understanding. The posing of questions in tutoring
can nevertheless facilitate the maintenance of the belief states of the student
and tutor [84], particularly concerning the student’s deep understanding of
the concepts in the tutoring domain. The tutor’s beliefs about the student’s
understanding will form a second condition influencing the tutor’s decision
whether to discuss contributions or not.

Our work will take advantage of theories from dialogue modelling, such
as grounding, in the context of ITSs for mathematics in order to model the
circumstances in which tutors ask explanatory questions in reaction to contri-
butions of solution content from the student.

1.1 A model for solution step discussions
This thesis proposes a model for solution step discussions, which are subdia-
logues in tutorial dialogue in which an individual contribution to the current
solution is discussed by the student and tutor. Tutors enter into such discus-
sions in order to elicit explanations from the students, either because they
suspect the student may not know the concepts, or simply with a view to the
learning effect of the explanation. Students, when engaged in such discussions,
must offer explanations of their solution steps, thereby demonstrating that
they have understood the concepts necessary to perform such steps. This in-
teraction leads to the student experiencing a learning effect and to the tutor
having a better model of the student’s knowledge state.

Our model will take advantage of two theories of grounding in dialogue
which maintain and align the content of the common ground [51, 191]. The se-
quences of actions which they account for result in typical subdialogues which
are pervasive in communication [166] and which Chi et al. [46] have found
also occur in tutorial dialogue.

Another account of subdialogues comes from an analysis of the collabora-
tive nature of tutorial dialogue by Graesser et al. [85]. They find recurring
local patterns known as dialogue frames, which describe the structure of dis-
cussions between the student and the tutor about the student’s answers. They
consist of five phases: a question is posed by the tutor, and is followed by an an-
swer from the student. The tutor gives feedback on this answer, and then may
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enter into a phase of collaborative improvement of the answer, where elabora-
tions of the answer, hints or traces of explanations can take place. Finally the
tutor assesses the student’s understanding of the answer. The collaborative im-
provement phase is what sets tutoring apart from classroom instruction, and
it is here that the learning effects of tutoring are achieved.

In considering how to combine previous work on dialogue modelling and
pedagogical science to account for discussion of solution steps the following
research questions have emerged:

• By modelling the structure of the discussion in the dialogue frame of a
student’s contributed solution steps, can we maintain a representation
of what the student has shown evidence of having understood, based on
the outcomes of previous such discussions?

• Knowing that discussion elicits self-explanation, which in turn leads to
learning, can we then use this representation to predict whether to enter
into a discussion of the latest contribution, using only features drawn
from the previous dialogue and from the analysis of the steps the student
previously contributed?

The computational model we will propose to investigate these questions
will account for subdialogues which are solution step discussions. It is based
on a concept which we will call task-level grounding [30, 31], a notion inspired
both by grounding and by dialogue frames. Task-level grounding is the pro-
cess by which contributions to the current solution are proposed, possibly
discussed and finally accepted or rejected. What is being grounded is the stu-
dent’s deep understanding of domain concepts.

Sequences of task-level grounding actions follow patterns similar to those
found in dialogue frames. A task-level grounding interaction begins with the
contribution of a solution step by the student. It may be discussed in order
for the tutor to ascertain that the student in fact understands the concepts in-
volved in the step, but only when the tutor is convinced about the student’s
understanding will the step be accepted. When such an interaction ends with
the acceptance of the solution step then it has the side-effect that this con-
tent is added to the common ground of the dialogue—in other words, the stu-
dent and the tutor come to mutually believe that the student has successfully
demonstrated mastery of this content. This way the common ground serves
as a rudimentary model of the student’s knowledge state, to which concepts
that the student successfully uses are continually added. The content of the
dialogue state representation is used to choose the tutor’s future actions, there-
fore the model allows the student’s knowledge state to be taken into account
in deciding whether to enter into discussions in the future.
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1.2 Methodology

The methodology we will follow in investigating our hypotheses begins with
the qualitative analysis of a corpus of tutorial dialogues on mathematical theo-
rem proving. We will analyse the corpus to try to find evidence of the occur-
rence of dialogue frames, and to categorise the types of actions that tutors and
students perform in this kind of tutorial dialogue. With this categorisation in
mind we will propose task-level grounding, a model for dialogue frames which
is similar in style to Traum’s grounding acts model [191] but in which the ob-
ject of the grounding process is the student’s deep understanding of domain
concepts.

Based on the categorisation of actions and their occurrence within the di-
alogue frame, we will then develop our computational model of task-level
grounding to describe solution step discussions. It will be a finite-state model
of the legal sequences of actions in the dialogue frame, and will maintain a dia-
logue state representing the student’s knowledge state in the common ground.
We will use the information state update approach [193], in which a dialogue
model is characterised as a set of transitions between states which are triggered
when dialogue participants perform dialogue moves. The information state
can include a representation of the common ground [135].

A further line of previous research which we will build upon is machine
learning for dialogue systems. Walker [204] has shown for instance that the
choice of the system’s action can be successfully modelled using machine learn-
ing, whereby the action is predicted given a representation of the state of the
previous dialogue and the most recent user utterance. We perform a series
of experiments whose goal is to learn a classifier which predicts the tutor’s
task-level grounding actions, in particular, whether the tutor should ask an
explanation-eliciting question after a solution step has been proposed. The
classifier is trained on features which the dialogue model maintains in its dia-
logue state representation. Such a classifier can play the role of action selection
algorithm in an implemented ITS. Our goal with the classifier is to demon-
strate the usefulness of the dialogue model: If the classifier uses features from
the dialogue state representation and predicts the tutor’s actions well, then we
can conclude that it is useful to maintain these features in an ITS with dia-
logue capabilities. A prerequisite for such machine learning experiments is the
existence of labelled data. To this end we will annotate our corpus with the
concepts we introduced in the model of task-level grounding, namely the task-
level grounding actions, and with the mathematical content of the student’s
solution steps.

Finally we perform a further validation of the model with a subjective hu-
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man expert rater study, in which we ask expert tutors to rate the output of
the model and the actions in the corpus in context. We surmise that some of
the classifier’s misclassifications may in fact be appropriate actions in context,
because a tutor typically has the option to perform any one of a number of
possible actions. This evaluation will allow us to compare how appropriate
different possible actions are in the same context. Our hypothesis here is that
the model’s predictions will be rated as well as the corpus actions. We also
elicit ratings of an accept/reject baseline in order to measure the difficulty of
the prediction task for human experts.

We envisage a number of potential benefits of the model whose develop-
ment this thesis reports. Firstly, the recognition and assignment of dialogue
structure can help interpret what a dialogue participant intends. For instance,
obligations can be a source of expectations for what the student may do [194],
which offers a constraint for the interpretation of intentions which might oth-
erwise be ambiguous [35]. Secondly, our model explicitly handles the ques-
tions which elicit self-explanation, which leads to learning [44], and the ques-
tions themselves (or their answers) help tutors to model students’ knowledge
states [86]. Finally, having a representation of the student’s knowledge state to
act as a rudimentary student model helps an ITS choose an appropriate action,
in our case it helps decide when to ask questions about the latest contribution.
Our model facilitates this by augmenting the representation of the student’s
knowledge state when the student has shown evidence of understanding of
content. This in turn informs the future decisions about whether to discuss
this content again or not.

1.3 The contributions of this thesis
We see the following contributions emerging from this thesis:

• We offer an analysis of students’ and tutors’ behaviour in tutorial dia-
logues on mathematical proofs, which focuses on actions which affect
their belief states.

• We propose a model of dialogue frames for this type of tutorial dia-
logue. It borrows concepts from Traum’s grounding acts model, and
like Traum’s model it is computational, in the sense that it can be imple-
mented and used in a run-time system.

• We contribute an annotation of the corpus with the concepts drawn
from our model and with mathematical concepts, as well as the schemata
and guidelines developed for this task.
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• We show that machine learning can be used to predict task-level ground-
ing actions, and the classifier’s predictions are similarly appropriate when
compared to the corpus as a gold standard. This result also shows us
which information from the previous dialogue is important in choosing
such actions.

1.4 Thesis structure
This thesis is structured as follows. We begin in Chapter 2 with a review of
the contributing fields of pedagogical science, dialogue modelling and intel-
ligent tutoring systems. We present theoretical and empirical results as well
as implementations of dialogue-based ITSs, including the DIALOG project,
the research project within which this work was conducted. Our model is
motivated by a corpus of one-on-one tutoring sessions which was collected
by the DIALOG project. Chapter 3 presents our qualitative analysis of this
data, which is a categorisation of the types of actions that students and tutors
perform with regard to the discussion of solution steps. We show that the
dialogues exhibit structures which correspond to the definition of dialogue
frames of Graesser et al. [87].

Chapter 4 details the concept of task-level grounding and our proposed
model of solution step discussion which is based on it. We describe the simi-
larities between task-level grounding and Traum’s grounding acts model, and
argue that task-level grounding accounts for the same subdialogues in our cor-
pus as the dialogue frame model does. We give the details of the action types
and the finite-state model which describes their possible sequences, and present
a series of examples.

Having developed a rule-based model for solution step discussion we would
like to validate it in two ways. First we will perform a quantitative analysis
of the occurrence of the actions we identify in Chapter 3. Second we will use
the information that the model maintains for a series of supervised learning
experiments. To support both of these goals we develop annotation schemata
on three levels to perform an annotation of the corpus, which is reported
in Chapter 5. The annotation levels are task-level grounding actions, dialogue
moves following an adaptation of the DAMSL schema [5] and the mathematical
content of the solution steps.

In Chapter 6 we present the results of the supervised learning experiments
and describe how the experiments confirm our hypotheses about the use of
dialogue features in choosing task-level grounding actions. We show how we
derived the data set from the annotated corpus and present five experiments
in turn, followed by a misclassification analysis.
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The further evaluation of the classifier is reported in Chapter 7. Here we
take a subset of the misclassified cases from the previous chapter and use them
to generate stimuli for a rating experiment. We introduce the approach of
using expert human raters, and present our experimental design to have the
classifier’s choices rated against the gold-standard corpus. We then present the
results and a discussion. Chapter 8 offers some conclusions and an outlook.
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2
Dialogue modelling for effective

ITSs

The research direction which we will follow in this thesis combines results and
theories from dialogue modelling, pedagogical science and intelligent tutoring
systems. This chapter presents previous work in each of these three fields.
The overarching theme is the belief states of tutors about their students with
respect to deep knowledge about the domain of teaching, and the dialogue
structures which arise in relation to this.

In the field of dialogue modelling we will review developments culminating
in general models of dialogue agency, in which an agent’s actions are influ-
enced by its beliefs, goals and intentions. We focus of matters of mutual belief
as well as its attainment and maintenance through the process of grounding.
We also present briefly some approaches to implementation, including the in-
formation state update approach.

We then review a series of studies in the area of educational psychology
which show that natural language tutoring is highly effective compared to tra-
ditional classroom instruction. We present a number of features which have
been proposed to explain this, including the mechanism of self-explanation,
which has been shown to lead to strong learning effects. Self-explanation
prompted by explanatory questions is found within dialogue structures called
dialogue frames, which occur frequently in tutorial dialogue. We also present
some views on the use and utility of belief states and common ground in tutor-
ing.

Finally we look at the state of the art in ITSs which use dialogue interfaces.
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We first highlight some of the practical issues involved in an end-to-end auto-
mated tutorial dialogue system, as well as some aspects of teaching mathemat-
ics in this context. We then review a series of ITSs which are relevant to our
research, either because they implement sophisticated dialogue models or be-
cause they teach difficult mathematical domains. Following this we give an
outline of the DIALOG project, the research project within which the work
reported in this thesis has been conducted.

2.1 Issues and approaches in dialogue modelling
Tutorial dialogue is a form of task-oriented dialogue, and for modelling task-
oriented dialogue many different approaches have been proposed. This section
reviews general-purpose dialogue modelling, with a particular focus on how
the beliefs of dialogue participants are handled.

2.1.1 Dialogue modelling
A dialogue model describes patterns of interaction between dialogue partici-
pants. It encodes legal sequences of utterances and maintains a representation
of the state of the interaction. Dialogues are typically modelled at the level of
speech acts, which are defined by Austin [11] as the action a speaker performs
by saying something. A speech act is made up of a locutionary act, which is
the act of speaking the words, an illocutionary act, which is the act the speaker
wants to perform with the utterance, and a perlocutionary act, which is the
effect that the utterance has on the listener. The term speech act has come to
denote only the illocutionary aspect. In more recent dialogue systems research
the concept of speech act has been extended to the concept of dialogue act, or
dialogue move [153], as used for example in the DAMSL taxonomy [5]. A dia-
logue move uses dimensions to encode the different functions of the utterance,
and these summarise the intentions of the speaker. The backward-looking
function encodes the relationship of the utterance to the preceding discourse,
and the forward-looking direction constrains the future beliefs and actions of
the participants, and affects the discourse. The forward-looking function cor-
responds to the purpose of the utterance, and is close to Austin’s speech act.
An example is (2.1), which has as its backward-looking function the reference
to a previous utterance in the discourse, and has the forward-looking function
of imposing an obligation on the hearer to give an explanation.

(2.1) Could you explain that please?

A dialogue system embeds a dialogue model and uses it to choose the next
move that the system should perform. Early research on dialogue modelling
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investigated the regularities of local sequences of actions. The notion of turn-
taking was encoded by Sacks et al. [168] with a set of rules which apply at
points in the dialogue where the turn can change hands. A more advanced
notion related to turn-taking is that of adjacency pairs [122, 170]. These are
pairs of adjacent utterances produced by different speakers in which the first
speaker offers the turn to the second. They are ordered into a first and a second
part, and the first part restricts the type of utterance which can occur in the
second part, such as question-answer or greeting-greeting.

Later models focus on dialogue as an interaction between agents, and try
to capture what it is that makes these agents perform utterances. They use to
a greater or lesser degree the concepts of beliefs, desires and intentions (BDI)
of an agent. An agent’s beliefs are what it holds to be true about the world,
its desires are the goals it wishes to achieve, and its intentions are the actions
that it will execute to achieve those goals. The agent’s beliefs include beliefs
about other agents’ beliefs, for example “A believes that B knows a fact P”.
Since dialogue is a collaborative process [52], agents will cooperate to achieve
their goals, and will form joint intentions, which are “joint commitments to
perform a collective action while in a shared mental state” [55, pg 3].

Cohen and Perrault [56] propose an early BDI model by formalising speech
acts in a planning framework. They see the intentions which underlie speech
acts as plans and the performer of the speech acts as the agent carrying out
such plans. An agent’s beliefs about itself or other agents are captured by the
modal operator BELIEVES. Planning operators representing the speech acts
for requesting and informing are formalised in a STRIPS-like system.

Litman and Allen [127, 128] also propose a formalisation speech acts using
planning. Their approach builds on work by Grosz and Sidner [92] which
showed that the structure of a task-oriented dialogue mirrors the structure of
the task under discussion, and that a dialogue can be structured into segments
according to the intentions being followed by the conversational partners in
those segments. They advance Cohen and Perrault’s formalisation by differ-
entiating between domain plans, which express knowledge about the task at
hand, and discourse plans, which are generated by discussing a domain plan.
This allows the dialogue to contain for instance clarification subdialogues and
topic changes. The motivation is the fact that subdialogues such as clarifica-
tions do not have a corresponding element in the task-level plan. They are
thus part of the discourse plan but not the domain plan. Plans are generated
from the goals and intentions of agents and stored on a stack of executing, sus-
pended and completed plans which represents one agent’s view of the joint
plan that it and the other agent are constructing and executing.
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Poesio and Traum [152] have proposed a model which unifies models from
the BDI tradition with discourse representation theory [111], a model of the
semantics of anaphora. Their representation of the context of the dialogue,
which they call the discourse situation, includes information about agents’
mental states, including their beliefs.

Complex dialogue genres such as negotiation [200] or collaborative plan-
ning [95] exhibit phenomena such as mixed initiative, topic changes and pos-
sible differing conflicting goals. These require solutions which can handle the
agents’ planning process explicitly. Blaylock and Allen [21] have proposed
a model of dialogue based on a formal model of collaborative problem solv-
ing for agents. It is motivated by two kinds of plan-based dialogue models:
those that model planning dialogue as joint activity, for instance SharedPlans
[90, 91, 131], and those that model plan execution, for instance Cohen et al.
[57]. The model covers both planning and execution in the same dialogue by
abstracting to the level of agent-based collaborative dialogue, in which plan-
ning and execution can take place in an interleaved way, and different agents
jointly choose and execute different parts of the same plan.

2.1.2 Maintenance of belief in dialogue

An important element of the dialogue models based around agency is the be-
liefs an agent holds, because they constitute the agent’s view of the world and
of the state of its conversational partner. However beliefs not only inform an
agent’s choice of action, they are also affected in turn by the actions that that
agent and others perform. This also holds for mutual belief, in other words
what an agent believes that another agent believes, and vice versa [48], and suc-
cessful conversational communication depends strongly on the coordination
of meanings and mutual background assumptions as to the state of the world
[49, 183, 188]. As the dialogue progresses the store of mutual beliefs held
by the dialogue participants grows. This store is called the common ground
[182], and in the following we review a number of dialogue theories have been
developed which focus on this.

Many approaches to dialogue modelling, including the BDI theories above,
work under the assumption that assertions are simply added to the common
ground, but this is an idealised situation. Utterances are not always correctly
understood, and non-understanding can be signalled by using a token like
“Pardon?”, meaning that the content of an utterance could not be added to
the common ground. The process by which the common ground is estab-
lished and maintained during a dialogue is known as grounding [50, 51]. In
performing grounding, the shared beliefs of the dialogue participants are con-
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stantly aligned as new information is added to the dialogue. It is also a way to
recover from the communicative failures associated with misunderstandings.
The term grounding can refer to both the performance of a grounding utter-
ance like “I see...” and the act of assimilating commonly held information.

Clark and Schaefer [51] see grounding as the process of adding informa-
tion to the common ground by way of contributions. In their Contribution
Model a contribution made by a speaker is considered to be grounded when
the hearer has shown to have understood the propositional content which was
uttered. In the presentation phase the speaker presents a contribution for the
hearer’s consideration. In the acceptance phase the hearer demonstrates hav-
ing understood the contribution by one of five methods, including continued
attention, making a relevant next contribution, and backchannel acknowledge-
ment of the utterance. Traum [191] proposes the Grounding Acts model, a
computational approach which avoids the problem in Clark and Schaefer’s the-
ory that acceptances also have to be accepted. A set of grounding acts manipu-
late the content and status of the discourse unit, which represents the content
which is to be grounded. They include initiation, acknowledgment, and re-
pair. A finite state machine models the sequences of grounding acts which lead
from the speaker’s initiation to the hearer’s acknowledgment, thereby adding
the content to the common ground of the dialogue. Traum’s model has been
implemented in the TRAINS system [190].

The common ground is part of the broader dialogue context, which repre-
sents the state of the interaction between the dialogue participants. In making
an analogy between a baseball game and a dialogue game, Lewis [124] pro-
poses the conversational scoreboard as a representation of the current state of
the dialogue. The scoreboard is a list of the values of all contextual parameters
which describe the dialogue. What can occur in the dialogue is constrained
by the values in the conversational scoreboard, and its values evolve in a rule-
governed way as the dialogue progresses.

Stalnaker [182] proposes a context which represents the commonly accepted
information at a given point. At some time point t there is a set of assumptions
which are commonly held at t . When an utterance is made, its descriptive con-
tent can be added to the context if it is not inconsistent with the context. How-
ever, as Ginzburg [80, 79] argues, this view of context, due to its lack of an
inner structure, does not account for the discursive potential of the dialogue.
In Stalnaker’s account new things have as a precondition the totality of what
has been hitherto accepted into the common ground, which is not always the
speaker’s intention.

Ginzburg proposes a notion of context which, in addition to the common
ground, explicitly represents what is being discussed in the dialogue at time t .
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Figure 2.1: General architecture of a spoken dialogue system (from [137],
page 113).

He extends the discourse context with LATEST-MOVE in order to introduce
an aspect of locality into the context. LATEST-MOVE stores the syntactic
and semantic content of the newest utterance of the dialogue. However not all
utterances relate to the utterance directly preceding them, and for this reason
Ginzburg proposes a more general account of what is being discussed in a dia-
logue, known as questions under discussion (QUD). This is a partially ordered
set of questions which are currently being discussed, and its maximal element
is the current topic of discussion. New questions are added to the top of the
QUD as new topics of discussion. A question can be removed from the QUD
if information is added to the common ground which decides the question, or
which indicates that no information about the question can be provided.

The concept of belief in dialogue modelling will be important in this work
because we want to model what the tutor believes the student to currently
know. We will see in Section 2.2.2 that the achievement of common ground
between the tutor and student can be one of the mechanisms behind questions
in tutorial dialogue.

2.1.3 Embedding a dialogue model in a dialogue manager

In a dialogue system a dialogue model is implemented within a dialogue man-
ager, which connects modules of the system and controls their execution. The
dialogue manager allows information to be passed from one module to the
next through its representation in the dialogue model. A general architecture
for spoken dialogue systems proposed by McTear [137] is shown in Figure 2.1.
The external communication in the diagram refers to back end systems with
which a dialogue system may communicate. For instance an information de-
livery dialogue system will access a database to find the information that the
user is seeking. For a tutorial dialogue system the external communication is
with an expert system which can analyse the student’s task-related input, or
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with a store of pedagogical knowledge, or with a student model.
The techniques used for the implementation of a dialogue model in this

setting depend on the complexity of the dialogue genre. For simpler tasks such
as command and control of machines, finite state methods are often suitable
[138]. Here the dialogue is encoded statically in a finite state machine in which
nodes represent dialogue states and edges represent actions, or dialogue moves.
Such models are however inflexible and cannot vary for instance initiative.
Information seeking tasks like flight timetable information [97] can use form-
based models of dialogue [10]. The system tries to fill slots in the form which
represent the information that is needed to perform a database lookup. Slots
can be filled out of order, and overanswering is possible.

More recently the information state update (ISU) approach [193] has been
developed within the TRINDI project. It is motivated by the need to be able to
formalise different theories of dialogue management to allow evaluation and
comparison. From an engineering perspective, the ISU approach is motivated
by the fact there are no hard and fast rules governing the design of dialogue
systems, leading to bad support for reusability. The ISU approach proposes
a unifying view of dialogue management based around the information state,
in which domain independent theories can be implemented in a reusable foun-
dation. The information state of a dialogue is “the information necessary to
distinguish it from other dialogues” [193, pg 3]. It represents the cumulative
effect of previous actions in the dialogue, and provides a context for future
actions. It is similar to concepts such as the conversational score [124] or dis-
course context [92].

The ISU approach provides a method for specifying a theory of dialogue,
defined by the following components:

• An information state

• Representations for the information state

• A set of dialogue moves

• A set of update rules

• An update strategy

The information state is the description of the state of the discourse and its par-
ticipants which is maintained by the dialogue manager. It stores dialogue level
knowledge, such as the common context, linguistic and intentional structure,
or aspects of beliefs or obligations, depending on what theory of dialogue it
formalises. This context then forms the basis for the choice of action of the
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dialogue manager. For each aspect of dialogue context that should be mod-
elled, a representation must be chosen. This can range from a simple data
structure like a list or a string to a more complex representation such as an
attribute-value matrix, a term in a lambda calculus, or a discourse representa-
tion structure.

Dialogue moves provide an abstraction away from utterances and other di-
alogue actions to a description of their function. When a dialogue move is
performed its content may result in a change being made to the state of the
dialogue. Which dialogue moves a dialogue theory includes is influenced by
the theory itself and the domain of the dialogue. As a dialogue progresses, the
information state which describes it must be updated to reflect the effect that
actions of the dialogue participants have on the dialogue context. How these
updates take place is governed by update rules. Update rules fire in reaction
to observed dialogue moves, and are specified by applicability conditions and
effects. If the conditions are satisfied by the information present in the infor-
mation state, then the effects of the rule can be carried out. The effects are
changes that will be made to the information state. Thus update rules can be
seen as transitions between information states. In order to control how up-
dates are made to the information state, an update strategy must be declared.
This is an algorithm which decides which update rules should be allowed fire.
Options for this algorithm include allowing the first applicable rule to fire,
allowing all applicable rules to fire, or choosing between rules based on proba-
bilistic information. The information state update approach has been used in
a number of research dialogue systems [116, 135, 23] as well as for example
the tutorial dialogue system BEETLE [59] or the Witas project [120]

2.2 Dialogue-based one-on-one tutoring

We now review research from the field of pedagogical science which has in-
vestigated the use of dialogue in one-on-one tutoring. The role of the student
in the interaction is to solve an exercise or series of exercises, or to answer
questions from the tutor. The tutor guides the student through the solution
construction process, offering feedback and remediation if needed. One-on-
one tutoring is normally differentiated from classroom situations because in
the classroom the interaction between the student(s) and the tutor does not
take place to the same extent [85]. One-on-one tutoring is also different from
peer learning, or collaborative learning, in which multiple learners interact
[68, 94, 187]. In this case there is no tutor present, and learning is an outcome
of the knowledge exchange between the peers. In the following we will simply
use the term tutoring to refer to one-on-one tutoring.
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Tutoring has been shown by Bloom [22] to be more effective than class-
room instruction. This study compared groups of learners who received in-
struction either in normal classroom situation, in a classroom situation but
with feedback, and in a tutoring situation. Students who were given individual
tutoring on average achieved a learning gain of 0.4 to 2.3 standard deviations
above those who had covered the same material in a traditional classroom set-
ting. Cohen et al. [54], in a meta-analysis of school tutoring studies, also found
benefits of tutoring over classroom teaching, and showed that this benefit still
exists even when the tutors are knowledgeable about the material but not nec-
essarily trained as expert tutors. Lu et al. [133] however found differences
between expert and non-expert tutors which led to the expert tutors being
more effective, such as using demonstration, summaries and prompts. Tutor-
ing has also been shown by VanLehn et al. [199] to be more beneficial than
studying text in certain conditions. They found that the target audience of the
text affected whether it was less effective than tutoring or not. Texts tailored
to novices or intermediates were equally effective as tutoring, whereas reading
of intermediate texts by novices was less effective than tutoring.

The effectiveness of natural language explanations in tutoring by humans in
comparison to automatically generated text has been shown by Moore [142],
who compared explanations generated by an ITS to explanations generated
by human tutors in the same dialogue state. This raises the question of what
characteristics of natural language tutoring cause a learning effect. As an aside,
since our work will only consider the text modality, we will not concentrate
on the effects of spoken dialogue tutoring. Although for instance Litman et al.
[130] have shown spoken dialogue to be more effective in human-human in-
teractions, most tutorial dialogue systems still rely on typed communication.
The work we review here does not concern characteristics of tutorial dialogue
which are specific to either the spoken or written modality.

There have been many studies suggesting and demonstrating different facets
of tutorial dialogue which may be responsible for its effectiveness, such as Chi
et al. [45] or Merrill et al. [139]. The features which are proposed include the
collaborative nature of tutorial dialogue [85, 94], student initiative [176, 60],
directed questions from the tutor to elicit explanations [86], self-explanation
by the student [42, 3] and tailored feedback and hinting from the tutor [104,
214].

Tutorial dialogue is collaborative in the sense that the tutor and the student
are working on the common goal of solving an exercise, or more abstractly, the
goal of learning new content. Their interaction allows tutoring to be seen as
a collaborative activity in the sense of Clark [48]. Graesser et al. [85], whose
work is presented in more detail in the next section, find that patterns of col-
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laborativity lead to learning. In a study of face to face human-human tutoring
they recognise cooperation between the tutor and student to solve the task,
for instance when the tutor fills gaps in the student’s knowledge. The collab-
orative nature of the dialogue manifests itself in the high number of turns per
question in comparison to classroom instruction. Hausmann et al. [94] inves-
tigate co-construction of knowledge as a learning device in collaborative learn-
ing groups. They find that collaborativity facilitates co-construction, which
leads to more generated knowledge by learners.

Student initiative is attributed to contributions which change the course of
the tutorial session [175]. Core et al. [60] have measured student initiative in
a comparison of didactic and socratic tutoring strategies, hypothesising that
didactic dialogue would exhibit more tutor initiative and socratic dialogues
would have mixed initiative. They annotated initiatives in a corpus of human-
human dialogues and found no relation between initiative and learning in the
didactic condition, but the socratic condition was more interactive, and inter-
activity correlated with learning. Shah et al. [176] have categorised initiatives
in a corpus and find the student’s initiatives include requests, challenges, re-
fusals to answer and conversational repair.

In a study of the questions asked by students in a corpus of human-human
dialogues, Graesser and Person [84] find that students ask questions 240 times
as frequently as students in classroom instruction. Questions are categorised
by quality, and the study finds that the quality of questions correlates with stu-
dent achievement, whereas the quantity does not. Deep reasoning questions
correlate highly with achievement. A follow up study [86] looks at the ques-
tions asked by the tutor, and argues that why, how and what-if questions elicit
explanatory reasoning from students, such as justification.

Demonstrations by the student of explanatory reasoning are a form of self-
explanation when they are performed in the context of the student’s previous
answer. Students studying examples or textbook text learn with greater under-
standing when they explain the study materials to themselves [43]. Chi [42]
has examined self-explanations in dialogue interactions. She considers three
possibilities for the effectiveness of tutoring: that the tutor’s actions cause
learning, for instance asking questions, that the student’s answers are responsi-
ble, in this case self-explanations, or that it is a combination of the two, which
results in the co-construction of knowledge. In a case study she finds evidence
for the latter two hypotheses. VanLehn et al. [197] have implemented the
effects of self-explaining in a computational cognitive model which acquires
both domain and derivational knowledge.

Interacting with the student while the student is solving an exercise gives
the tutor the opportunity to offer the student tailored feedback when mistakes
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are made. Hume et al. [104] see hinting as prompting the student to recollect
information or to make an inference needed to solve a problem, and as such
they are seen as being part of a socratic approach to tutoring. Hints can for
instance take the form of complete or partial steps in the solution, a concept
which should be used in the next step or pointers for the student on how to
approach the problem.

2.2.1 Dialogue frames in tutoring

In an examination of what features of one-on-one tutoring make it more ef-
fective than classroom instruction, Graesser et al. [85] analyse a corpus of
dialogues between students and non-expert tutors. Their data is drawn from
transcripts of two groups of learners: a group of 27 undergraduate students
learning research methods, and a group of seventh grade pupils learning alge-
bra. Tutoring took place face to face.

Graesser et al. highlight the features they found in the data which contribute
to the learning effects of tutoring. They observe processes of collaborative
problem solving, which has been identified by Roschelle [167] as an element
of collaborative learning, as well as being a more general aspect of communi-
cation [51]. It is most salient when the tutor and student work on problems
and answer questions, where the median number of turns in the answer to
questions was five and ten for the two groups respectively. They identify a per-
vasive dialogue pattern in collaborative exchanges which they call the dialogue
frame. It consists of the following five phases:
Phase 1 Tutor asks a question, which can be repeated or specified further

if the student signals that the question was not understood.
Phase 2 The student offers an answer, which in the data was often found

to be incomplete or only semi-coherent.
Phase 3 Tutor gives feedback on the answer. This feedback was classified

as either positive, negative or neutral, and some feedback was non-
verbal.

Phase 4 Tutor and student collaboratively improve the quality of the an-
swer, and there are many strategies which the tutor can follow to
achieve this. The tutor can for instance elaborate on the answer,
give hints, pump the student for more information, or trace an
explanation or justification.

Phase 5 The tutor assesses the student’s understanding of the answer, for
instance by explicitly asking whether the student understood, al-
though the authors refer to the fact that the answers to such ques-
tions are not necessarily reliable.
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1. Tutor: Now what is a factorial design?
2. Student: The design has two variables.
3. Tutor: Uh-huh.
4. Tutor: So there are two or more independent variables and one *PAUSE*

Student: dependent variable.
5. Tutor: Do you see that?

Student: Uh-huh.

Figure 2.2: Example of a dialogue frame, numbered with phases, from [85].

Phases four and five are do not occur in classroom instruction, therefore
the benefit of tutoring must at least in part lie here. Graesser et al. identify
two further features of tutoring which typically occur in phase four of the
dialogue frame. The first is question answering [84], which is identified as
leading to the exploration of deeper levels of comprehension. Tutors asked
deep explanatory questions with a much higher frequency than in classroom
interactions, and such questions were highly correlated with deeper levels of
cognition. The second is student explanation, where a correlation was found
between correct answers and achievement.

An example of a dialogue frame taken from their data is given in Figure 2.2.
Here the tutor gives initial positive feedback on the student’s answer, but fol-
lows it with a completion question, which the student answers correctly. The
tutor finally assesses the student’s understanding of the material with a straight-
forward comprehension-gauging question. Dialogue frames have been used in
subsequent work to inform studies of explanation and questioning in tutoring,
for instance by Chi [42] and VanLehn et al. [199].

2.2.2 Belief and knowledge states in tutorial dialogue

We saw in the previous section that belief is a crucial part of how agents act
in dialogue, and the same is true of students and tutors in tutorial dialogues.
It is characterised by a strong asymmetry of knowledge between the tutor
and student [83, 146, 119]. They enter the dialogue with differing levels of
expertise in the domain at hand, and knowledge should pass from the tutor to
the student. Lee and Sherin [119] argue that this inequality makes it difficult
for the tutor to interpret students’ explanations correctly. It also influences
their roles in the dialogue: the tutor carries a certain authority, and can for
example ignore the student’s requests. The student, on the other hand, has no
such freedom, and is obliged for instance to answer questions when asked, and
to justify claims which the tutor would be free to state without justification.

Since tutoring involves imparting knowledge to a student, tutors should
ideally monitor their students’ knowledge states. According to Good [83] the
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tutor needs to know what knowledge the student does not have in order to
offer additional knowledge of the right size and complexity. However tutoring
is prone to misalignment of belief at the level of deep understanding of the
domain; in other words, tutors and students do not always have the same view
of their knowledge states. Chi et al. [46], by measuring how well tutors detect
different kinds of misunderstandings, show that tutors tend to have difficulties
in estimating the learner’s deep understanding and that human tutors do not
seem to maintain an accurate model of student’s knowledge level during the
tutoring process. Similarly, Putnam [157] finds that experienced tutors did not
attempt to form detailed models of the students’ knowledge before attempting
remedial instruction.

Some studies do point to tutors’ ability to infer what their students know.
Nückles et al. [147] show that tutors who are better informed on the learners’
prior knowledge can better adapt their feedback. An investigation of student
questions and answers by Person et al. [151] finds that the quality of their
answers allows the tutor to infer the student’s understanding, but also finds
that answers to comprehension-gauging questions are very misleading.

Common ground in tutoring is referred to in many studies related to the
collaborative aspect of tutoring. Even though previous work indicates that tu-
tors do not build exact models of students’ knowledge, Graesser and Person
[84] argue that the posing of questions in tutoring can nevertheless facilitate
the maintenance of the belief states of the student and tutor. Their categorisa-
tion of action types includes question-generation mechanisms, one of which
is monitoring the common ground between participants, otherwise known as
grounding. An explicit model of common ground can feed into a module that
monitors the student’s performance [136, 140].

A number of researchers have considered the role of grounding and ground-
ing acts in the pursuit of pedagogical goals in tutorial dialogue. Chi et al. [46]
uses an annotation of grounding acts to recognise when tutors have detected
knowledge deficits. The performance of an accepting grounding act indicates
no deficit was diagnosed, whereas the performance of a repair, request for re-
pair or request for acknowledgment indicates some deficit was found. Baker
et al. [13] argue that learning from grounding is the basis of collaborative learn-
ing, and Pata et al. [150] show how student grounding acts serve to inform
tutoring scaffolds.

In summary, this section has presented studies about what features of tu-
torial dialogue cause it to be so effective compared to classroom instruction.
They give an indication of what kinds of behaviour ITSs should try to emu-
late if they want to reproduce the learning gains shown by students who have
taken part in one-on-one tutoring.
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2.3 Tutorial dialogue systems

Research in the area of implemented dialogue-based ITSs has been motivated
by the promise of recreating the kind of interaction which has been shown to
lead to learning effects in human-human tutoring. In this vein many aspects
of the research reviewed in Section 2.2 above have been implemented in sys-
tems which combine pedagogical theories with natural language dialogue in-
terfaces. Dialogue-based ITSs have a history going back at least to Carbonell’s
SCHOLAR system in 1970 [36]. Since then many different systems have
been proposed covering a variety of domains and targeting different aspects
of dialogue-based interaction. In this section we review some of the more re-
cent developments of ITSs which have tackled some of the same problems as
our research, namely those which deal with formal domains such as mathemat-
ics and which implement sophisticated dialogue models. We also present the
goals of and research carried out in the DIALOG project in more detail, within
which our research was carried out.

The designer of a tutorial dialogue system faces a number of tasks in addi-
tion to dialogue modelling. The input from the student must be processed by
an interpretation module which can determine the student’s intention and the
task-relevant content, if any, of the utterance. Although allowing the student
full expressive freedom would be in keeping with the assumption that inter-
activity leads to learning, such freedom makes utterance interpretation more
difficult. When precise understanding is needed, tutorial systems either use
menu- or template-based input, or use closed-questions to elicit short answers
which exhibit little syntactic variation [81].

The complexity of the domain of instruction puts high demands on the do-
main reasoning abilities of an ITS. As we introduced in Section 2.1.3 above, a
tutorial dialogue system accesses an expert system to analyse the domain con-
tent of students’ inputs. This analysis, containing for instance a measure of the
correctness of the input, is necessary to offer appropriate feedback [215]. The
domain reasoner should also maintain a model of the task based on a general
representation of domain concepts, so that contributions can be assessed in the
context of the task solution built so far. The approach of tracing through pre-
authored solutions can often be sufficient for simple domains [96], but more
complex domains require a deeper semantic analysis, such as that of Makatchev
and VanLehn [134].

Related to domain reasoning is student modelling. The primary role of
the student model is to encode the student’s knowledge state, or mastery of
concepts. As such the student model can take advantage of the same represen-
tation of the domain as the domain reasoner. Additionally the student model
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may contain further measures such as errors the student has committed, or
cognitively motivated properties such as affect or motivation.

An ITS should follow some teaching strategy to inform its feedback. This
can include what hints are given when, how errors are dealt with or how the
system reacts to the student’s affective state [154]. Corbett et al. [58] highlight
the question of when and in what form advice should be presented to the
student. A system should make this choice based on the student and task
models, thereby adapting its feedback to the student’s current performance
[78]. For instance hints containing relevant concepts should be chosen so that
the concepts help the student solve the current problem and are not too far
away from the student’s current knowledge state.

2.3.1 Teaching mathematics

Developers of ITSs which teach mathematics, especially proving, face further
challenges, primarily in the area of domain reasoning. The domain reasoner
must work with a formalisation of the mathematical theory which is being
tutored, and mathematics formalisation is a non-trivial task which itself has
developed into a fully-fledged field of research (see for example Kamareddine
et al. [110]). Complex tasks such as theorem proving required deep sophisti-
cated analysis in order to provide the correct feedback to the student. One of
the characteristics of mathematical proofs is that there is not one unique solu-
tion, in other words there is typically a selection of correct solutions to a given
problem which the student might propose. This means that approaches based
on pre-authored answers are not suitable [67]. A step must be analysed as part
of the previously constructed proof, therefore its correctness is only derivable
in context.

A number of systems for teaching mathematics have been built upon pre-
existing, general purpose provers, including for instance the CMU proof tu-
tor [171], Proofweb [109] and WinKE [61] for propositional and first order
logic, or ETPS [8] for higher-order logic. These systems focus on pure logic
and proof construction. Proof construction works essentially as follows: The
student selects a formula to be modified and can then try to apply a deduction
rule, mostly without having to state the result of the application of the rule.
A drawback of these types of system is that students must first learn the com-
mands and input syntax to be able to interact with the system. Furthermore,
students are able to construct a proof by randomly applying rules, without
getting a deeper understanding of the meaning of these rules. In this regard it
has also been shown that logic alone does not help humans do more abstract
proofs [71]. Consequently some tutorial systems support teaching mathemat-
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ics at a more abstract level, comparable to the type of mathematics taught in
schools. These include the EPGY Theorem Proving Environment [181], the
Geometry Tutors [113] and Tutch [1].

There is also evidence that teaching proving is amenable to the same effects
of natural language tutoring as other domains. Hersh [98] sees proofs in the
classroom as complete explanations for students. By concentrating on the
detail in proofs these explanations become more informative for the students,
which leads to better understanding. Yackel [213] argues that explanations
and justifications serve communicative functions, which suggests they will fit
well into dialogue-based tutoring.

2.3.2 Implemented ITSs

In this section we review some of the important systems which implement
dialogue interfaces for tutoring. They are relevant to our work either because
they teach mathematics or because they use advanced dialogue management
techniques.

The same group of researchers who proposed the dialogue frames model,
presented here in Section 2.2.1, have implemented this model in Autotutor
[87, 89]. It teaches Newtonian physics and computer literacy through a multi-
modal interface using text, diagrams and an animated talking head. A problem
is presented to the student, who offers an answer of about one paragraph in
length. The answer is then discussed with the system in a mixed initiative
dialogue. The student’s answer is analysed using latent semantic analysis, a
probabilistic method which measures the similarity of the answer to a correct
answer.

Autotutor follows the explanation-based constructivist theories which we
introduced in Section 2.2. Its set of possible feedback actions includes asking
a question, for instance to repair an error or to request a clarification, giving
a hint or an example, answering a student question, affective feedback, for in-
stance commenting on the student’s ability, as well as positive, neutral and
negative feedback. Its dialogue model which chooses these actions is an imple-
mentation of the dialogue frame. It is a finite state model in which actions are
chosen based on conditions on the edges, for example the result of the anal-
ysis of the answer or the student’s knowledge goal state. A drawback of this
approach is that it can not engage in multi-turn dialogues to handle one partic-
ular remediation. Autotutor has been successfully evaluated, showing learning
gains for deep levels of comprehension.

One of the more advanced dialogue models among all ITSs is used by the
Beetle system [218, 217]. It teaches conceptual knowledge in the area of basic
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electricity and electronics using a combination of multiple choice questions
and exercises in a simulated electronics laboratory. The development of the
Beetle system has focused on models for dialogue management. Its dialogue
manager is implemented using the information state update approach, and is
based on the EDIS system [135]. The dialogue manager connects an interpre-
tation module, which processes input text and user interface actions, an up-
date module, which maintains the dialogue state and encodes conversational
expertise, and a response generation module, which uses a three tier architec-
ture [59, 216]. In the first tier a deliberative planner synthesises abstract plans
at the start of the session and after planning failures. The second tier is a
sequencer which refines the abstract plans, and finally on the third tier a con-
troller generates concrete actions which realise the plan. Tutorial actions such
as feedback are chosen at the second tier, and the choice of action depends on
the current dialogue state, including for instance the content of the student’s
latest utterance and any active obligations. The dialogue state also includes the
common ground, however this is only updated, and is not used in the process
of choosing actions.

BeeDiff [32] shares a number of the components of Beetle [33], but teaches
mathematical differentiation and basic algebra through natural language. It
uses a text interface with formula entry so that formulas can be embedded in
utterances. The dialogue with the system is mixed initiative. From a corpus
analysis a task model and a set of feedback types were derived [32]. Beetle and
BeeDiff use the same dialogue manager, parsing and reference resolution mod-
ules, but have separate interpretation and generation subsystems. The tutorial
strategy implemented in BeeDiff targets local pedagogical aims. It accepts new
tasks from the student, gives hints when requested, and gives diagnoses in re-
sponse to new terms offered as solutions.

Whereas pedagogical actions in Beetle are encoded directly in the planning
operators, BeeDiff is more adaptive due to its flexible domain reasoner [215].
The domain reasoner is responsible for the diagnosis of students’ terms rep-
resenting steps in the derivation and for the content of hints. It generates an
extended representation of terms and differentiation rules from which a solu-
tion model can be built for a new task. Terms are matched against the model
and hints are generated from possible next steps in the model.

PACO [163] is a tutorial dialogue system based on a model of collaborative
discourse, motivated by the fact that tutorial dialogue is a collaborative interac-
tion. It teaches procedural tasks in simulated environments, such as repairing a
gas turbine. It is developed using the COLLAGEN framework [162], a partial
implementation of the tripartite model of discourse [92, 91]. COLLAGEN
agents use the discourse state to generate a set of utterances and domain actions
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and then choose one of these to perform. PACO encodes procedural knowl-
edge (domain dependent recipes) in COLLAGEN’s declarative language. The
procedural knowledge is then used to construct plan trees, which form the in-
tentional structure of the discourse. Plan trees are a partial implementation
of SharedPlans. This plan representation can be used to determine next steps
in the procedure being taught. A discourse representation algorithm updates
the discourse state after each utterance using near-miss plan recognition. Tuto-
rial behaviour is encoded in the discourse acts that PACO can perform. The
choice is based on a ranking of acts as well as their conditions on the discourse
state. For example giving the initiative back to the student , which PACO
realises by saying “You take it from here”, is ranked higher than teaching the
step at hand.

Although tutorial dialogue does indeed seem to be a collaborative undertak-
ing, Dzikovska et al. [69] argue that collaborative problem solving models do
not account for 28% of the student utterances that occur in tutorial dialogue.
Their study is based on the corpus collected by the LeActiveMath project,
which consists of human-human dialogues on procedural differentiation prob-
lems. While CPS models are able to account for planning future actions, which
can consist of proposing actions, evaluating options, agreement, they do not
address actions that have been performed in the past, which are found to be
evaluation, explanation and knowledge statement.

Evens et al. [72] have developed the CIRCSIM system, which teaches med-
ical students about the human circulatory system and focuses on tutor be-
haviour and the generation of hints. The system asks the student to predict
the effects of changes to certain physiological parameters. The domain is for-
malised as a concept map linking dependent variables which measure physi-
ological states. After the student offers an answer the system enters into a
dialogue to remedy any errors that the student has made, for instance where
the student has forgotten to mention a dependent variable.

The dialogue model in CIRCSIM is a tree structure which approximates
the intentional structure of Grosz and Sidner [92], and is constructed using a
tutorial planner [76]. Each correction mechanism, which is a realisation of a
remediation tactic, is expressed as a dialogue schema. Dialogue schemata are
derived from the analysis of transcripts of human tutors and are made up of
sections, where each section is a plan operator. The output of the planner
is a set of discourse goals from which the system’s utterances are generated.
The discourse goals include hints, elicitations and prompts. The plan can be
updated during the dialogue in the case of problems, such as when the student
fails to produce the correct answer to a question.

The first PACT Geometry tutor, which is one of the Cognitive Tutors [7],
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has already been shown to achieve learning gains by requiring students to ex-
plain each element of their answer [2]. Aleven et al. [3] present the Geom-
etry Explanation Tutor, which adds natural language dialogue capability to
the PACT Geometry tutor and also targets self-explanation. In the interaction
with the system students are required to give fully accurate and complete ex-
planations of their answers. If an initial explanation is incomplete, the system
will give feedback guiding the student towards a complete explanation. The
feedback is based on a categorisation of the explanation at that point, for in-
stance in terms of completeness, what rules were referenced and whether they
were used wrongly.

In an evaluation the learning gain of students who gave natural language ex-
planations was not found to be significantly better than those who gave menu
based explanations, although the authors note that the subjects already had
high pretest scores, and therefore may not represent typical students [4]. All
explanations in the Geometry Explanation Tutor must be given in full regard-
less of content, and the system does not allow any flexibility to accept partial
explanations, for example from knowledgeable students.

Longer explanations of answers in the domain of qualitative physics are anal-
ysed by the Why-Atlas system [198, 108]. Statistical methods such as latent
semantic analysis are sufficient for short answers such as those handled by Au-
totutor above, but here students offer multisentential essay-like answers which
contain chains of reasoning. These longer answers require more exact analy-
sis in order to support appropriate feedback. They are first transformed into a
logical form before being compared with pre-authored standard answers [134],
however authoring the answers for a new domain is highly time-intensive. The
dialogue model in Why-Atlas is a finite-state machine with reactive planning,
in which complex topics are handled with subnetworks. The system has been
evaluated against a reading only condition, but learning gains were found only
for fill-in-the-blanks post test questions.

2.3.3 The DIALOG project
The research reported in this thesis has been carried out as part of the DIALOG
project1 [14, 15, 16, 20]. The goal of the project was to investigate the issues
and challenges involved in natural language tutoring of mathematical proofs,
and to work towards a conversational tutoring system helping students to
construct proofs of mathematical theorems. The envisaged scenario was that
students would construct mathematical proofs in communication with a text-

1The DIALOG project was a collaboration between the Computer Science and Computational Linguistics
departments of the Saarland University within the Collaborative Research Centre on Resource-Adaptive
Cognitive Processes, SFB 378 (http://www.coli.uni-sb.de/sfb378).
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based dialogue system. Proof steps are embedded in the student’s utterances,
and may be verbalised. The dialogue system in turn interfaces with an au-
tomated theorem prover. The role of the automated theorem prover is to
evaluate and verify the proof steps which the students propose. During the
interaction the student is given feedback after each utterance, for instance con-
cerning the correctness of the proof step, or offering hints and remediation.

Areas of investigation

The project investigated a number of specific areas relevant to natural language
tutoring. Because little data was available on the characteristics of the language
used in tutorial dialogue on mathematical proofs, two Wizard-of-Oz exper-
iments [62] were conducted to gather dialogue data. In each experiment a
group of students interacted over a chat interface with a human tutor, who
guided them in constructing proofs of a series of theorems. In the first experi-
ment the proofs were in the area of naive set theory, in the second experiment
in binary relations. The result was two corpora of computer-mediated tuto-
rial dialogues. We will reported on the data collection experiments and the
corpora in more detail in the next chapter. The analysis of the data identi-
fied issues in natural language understanding, tutoring strategy, mathematical
reasoning and dialogue management.

The analysis of the language used by students in the corpus has been inves-
tigated by Wolska and Kruijff-Korbayová [209], Horacek and Wolska [101],
and Wolska et al. [212]. Such language is characterised by a range of interleav-
ing of mathematical formulas and natural language. Utterances may consist
completely of formulas, completely of natural language expressions, or may
mix the two, as shown in (2.2). The expressions are often imprecise and infor-
mal, for instance in (2.3), in which the word “contain” can conceivably mean
either the subset or element relation. Referring expressions are used to refer to
mathematical objects and to previously uttered formulas and their constituent
parts [210]. Many different types of errors occur, including syntactic errors in
formulas, type errors between operators and objects, or semantic errors [102].

(2.2) B contains no x ∈A

(2.3) . . . then all A and B must be contained in C

The task of the input analysis module is two-fold. It should construct a
representation of the utterance’s linguistic meaning and it should identify and
separate the parts of the utterance which constitute meta-communication with
the tutor (for instance “I don’t understand what the task is”), which are not to
be processed by the mathematical reasoner, from parts which convey domain
knowledge, that should be verified by the reasoner. The result of the analysis
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is a representation of the linguistic meaning of the utterance, a set of dialogue
moves that the utterance realises, and in case of solution steps, a formal repre-
sentation of the content of the step [209], which can be further processed by
the mathematical reasoner.

To support the generation of appropriate feedback each proposed proof step
needs to be analysed by the system in the context of the partial proof devel-
oped so far. Issues involved in processing such mathematical content have
been identified by Benzmüller and Vo [16]. They highlight the declarative
style used by students to present proof steps, that is, very often the students
only described the conclusions and some (or none) of the premises of their in-
ferences. This is in contrast to the procedural style employed in many proof as-
sistants without language capabilities where proof steps are invoked by calling
rules. Proof steps can be underspecified, in other words part of their content
can be left unstated, and there is much ambiguity in the expressions used to
present the steps.

The analysis of the proof step takes place in the context of the proof that
has been constructed by the student so far. The representation of the proof is
maintained by a mathematical theorem prover. The theorem prover used in
the DIALOG project is the Omega system [177], which was chosen because
it reasons at a level close to that at which humans reason [103]. Proof steps
are verified by comparing the formula which the step derives to all possible
continuations of the current proof object [12, 67]. If the formula matches
one of these continuations, then the step was correct and the proof representa-
tion may be extended accordingly. If there is no such continuation the step is
considered incorrect. The proof object contains the rules and premises which
were used to derive the step, and these can be returned to the dialogue system
in order to form part of the feedback offered to the student, or to inform a
student model.

Benzmüller et al. [19] and Schiller et al. [173] have investigated further
properties of proof steps including granularity. Granularity evaluation re-
quires analysing the complexity or size of a proof step rather than just its
correctness. An approximate measure of step size could be for instance the
number of inference rule applications necessary in a given calculus to derive
the step. Schiller and Benzmüller [172] have cast granularity analysis as a
classification problem, where the granularity of a proof step ranges from too
coarse-grained to too fine-grained. Overall the proof manager offers an anal-
ysis of the proof step in the context of the proof so far which includes the
correctness of the step, the rules and premises used to derive it, and a categori-
sation of its granularity status.

The tutorial manager embodies a pedagogical theory. The first Wizard-of-
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Figure 2.3: The envisaged architecture of the DIALOG system

Oz experiment compared the effectiveness of a didactic and a socratic teach-
ing strategy with respect to a minimum feedback baseline. Work within the
project [196, 75, 74] has followed this to propose a pedagogical module which
relies internally on an ontology of mathematical concepts and a taxonomy of
hints, such as the elicitation or giving away things like concepts or inference
rules. Based on a simple student model, previously generated hints, and the
categorisation of the current step, a hinting algorithm may generate a hint to
be presented to the student.

The flexible analysis of students’ statements requires a tight interleaving of
natural language and mathematical analysis. This is facilitated by the dialogue
manager, which enables intercommunication between other system modules.
Initial work in the project focused on models for dialogue management [26],
using an agent-based blackboard architecture to allow modules to share infor-
mation. In [28] we have proposed a model of how pragmatic information,
proof state information and tutoring state information can be combined into
a single representation of dialogue state within the dialogue manager.

The different aspects of processing are brought together in the system ar-
chitecture illustrated in Figure 2.3. The modules which embody the research
directions outline in this section share information through the dialogue man-
ager. For instance the proof content of the interpreted utterances from the
NLU module is passed to the proof manager for analysis. The tutorial man-
ager receives much information about the dialogue state, including the actions
performed by the student and the analysis of the steps by the proof manager.
The dialogue manager embeds a dialogue model whose state representation
stores this information centrally. This design has been used for the implemen-
tation of a demonstration system [27], which illustrated the interaction of the
modules for a small number of example dialogues. We will see in the coming
chapters how the work reported in this thesis fits into this proposed architec-
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ture, and how it takes advantage of the information supplied by each of the
modules, primarily the interpretation of the utterance by the NLU module
and the analysis of its proof step by the proof manager.

2.4 Summary
In this chapter we have seen how results from dialogue modelling and peda-
gogical science contribute to the provision of effective ITSs with natural lan-
guage interfaces. We presented theories which see dialogue as an interaction
between conversational agents who are motivated by their beliefs, and saw
how the process of grounding allows them to align their beliefs with their di-
alogue partners. We summarised a number of studies on what mechanisms
lead to the effectiveness of one-on-one tutoring, among them self-explanation.
We also reported evidence for the use of belief about student knowledge states
by tutors and grounding in tutorial dialogue. We presented a theory of dia-
logue structure in which the collaborative aspects of tutoring occur, namely
dialogue frames.

We then reviewed a number of ITSs which implement some of these the-
ories. These use a wide breadth of techniques in dialogue modelling, from
quite rigid, such as Autotutor, to more flexible, such as Beetle and BeeDiff.
PACO implements a sophisticated dialogue model, but has been found to not
cover the full range of actions in tutorial dialogue. Few systems target self-
explanation, and those that do, such as the Geometry Explanation Tutor, fol-
low strict dialogue patterns. Task modelling, a particularly important issue in
ITSs for mathematics, is handled by purpose-built systems, whereas except for
the DIALOG project, no dialogue based ITSs use general purpose mathemati-
cal reasoners.

In the rest of this thesis we will build on the results presented in this chap-
ter. Our proposal will combine aspects of grounding and dialogue frames in
a model for solution step discussions, in which the tutor may decide to pose
explanatory questions concerning the student’s answers.
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3
Dialogue phenomena

Our investigation into the phenomena found in tutorial dialogue on math-
ematics and our development of a model to account for them will both be
based on an analysis of a corpus of human-human tutorial dialogue. The cor-
pus was collected in the context of the DIALOG project using the Wizard-of-
Oz paradigm and involves tutors guiding students through proofs on binary
relations over a text-based chat interface. This chapter is a qualitative analysis
of the data in that corpus.

Our hypothesis for the analysis of the corpus is that it will exhibit the same
local structures as those that have been highlighted by Graesser et al. [85] and
presented in Section 2.2.1, namely dialogue frames. In order to investigate this
we must consider the task that the student and the tutor are solving, which is
the construction of a solution to a mathematical exercise, and the actions that
they perform in doing this. For instance the student makes contributions to
the solution under construction, and the tutor gives the student feedback on
these contributions. We will show that each of these actions has a role to play
in the completion of a dialogue frame.

We begin this chapter with a presentation in Section 3.1 of the corpus col-
lection experiment and an outline of the data which was collected. Section 3.2
gives a characterisation of the data by example. We first look at its mathe-
matical aspects and the proofs that the students construct and then consider
the range of actions performed by the students and tutors, respectively. We
also present the specific phenomena of informationally redundant utterances.
Section 3.3 shows excerpts from the corpus annotated with dialogue frames
in order to illustrate their occurrence and the kinds of actions that make up

33
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the different parts of the frame. Finally in Section 3.4 we review other corpus
analyses in tutorial dialogue and argue that our categorisation of the range of
possible actions is comparable, before summarising the chapter.

3.1 Corpus collection
Our work is based on the second of two corpora of human-human dialogues
collected by the DIALOG project [14]. The goal of the first corpus collec-
tion experiment [211] was to gain data to support an initial investigation into
the tasks which arise in building a natural language tutorial system for math-
ematics. These included the analysis of mixed mathematical and natural lan-
guage [101] and the analysis of students’ proofs as sequences of proof steps
[16]. The second experiment was carried out in order to collect more data on
mixed-language interaction in a more complex domain of mathematics [18].
A further goal was to investigate the effect of variation in the presentation of
the learning material from terse mathematical to verbose linguistic style. This
section presents the second experiment and the resulting corpus.

3.1.1 Experimental setup

The experiment was carried out using the Wizard-of-Oz paradigm [62]. The
user, here the student, is led to believe that the system with which he or she is
interacting is fully automated, however in fact it is just a front-end, and the role
of the system is being played by a human expert at a different location. In the
case of this experiment human tutors provided the system’s utterances. The
37 participants were university students who had previously taken at least one
lecture course in mathematics at university level. They were informed that
they were interacting with a conversational tutorial system with natural lan-
guage capabilities. Four expert tutors alternated in the role of wizard. The
tutors’ background with respect to teaching mathematical proofs was the fol-
lowing: One was a senior lecturer with several years of experience in lecturing
a course Foundations of Mathematics, the second was a trained mathematics
teacher with a few years of teaching experience, the third was a recent graduate
with a degree in teaching mathematics, and the fourth was a doctoral student
in Institute of Theoretical Mathematics at Saarland University with several
years of experience as a teaching assistant in various mathematics courses. All
those involved were paid for their participation.

The procedure of the experiment was as follows. First the students were
given printed material introducing the concepts and definitions of logic, set
theory and binary relations, and were allowed time to study this. One group
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W. (R ◦ S)−1 = S−1 ◦R−1

A. (R∪ S) ◦T = (R ◦T )∪ (S ◦T )
B. (R∪ S) ◦T = (T −1 ◦ S−1)−1 ∪ (T −1 ◦R−1)−1

C. (R∪ S) ◦ S = (S ◦ (S ∪ S)−1)−1

E. Assume R is asymmetric. If R is not empty (i.e. R 6= ;), then R 6= R−1

Figure 3.1: The theorems to be proved in the experimental session

was given a formal presentation of the material, the other group was given
a presentation using natural language descriptions. The study material is de-
scribed in Section 3.1.2 below. The students then began their interaction with
the dialogue system. The system appeared to the students as a chat-like in-
terface [17], in which they could see the previous utterances in the dialogue.
All communication with the tutor was typed, and the interface allowed the
use of buttons and Latex commands to input mathematical symbols such as
∪. The students could copy and paste content from previous utterances. The
language of the interaction was German and each experimental session took
115 minutes.

The students were asked to prove up to four theorems, which are listed in
Figure 3.1. In all theorems R and S stood for binary relations on a carried set
M . Theorem E was given to students who had difficulty with the other tasks.
Each theorem was presented to the student after the previous one had been
completed. Each theorem that the student proved could be used as an identity
in the subsequent proofs. The students were instructed to enter individual
proof steps rather than complete proofs and to think aloud, and both students
and tutors were free to express themselves in any way they liked. The tutors
were given instructions on what constitutes Socratic teaching, but were not
restricted to any teaching strategy.

The tutors were asked to annotate the mathematical content of the students’
steps, if present. There were three dimensions: correctness, which referred to
the logical correctness of the step in the range “correct”, “incorrect”, and “par-
tially correct”, granularity, which is a subjective measure of step size ranging
from “too fine-grained” to “acceptable” to “too coarse-grained”, and relevance
to the current proof, in the range “relevant”, “partially relevant” and “irrele-
vant”. For each dimension a “not applicable” choice was allowed. The students
did not see these annotations.

3.1.2 Study material
The study material, which was taken from Bronstein and Semendjajew [25],
contains the mathematical knowledge which students were to use in solving
the exercises. It was presented to students in two forms: A formal version
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which used mathematical notation in its concepts and definitions was given
to 20 of the participants, and a verbose version which used natural language
explanations to the remaining 17. Their content was otherwise the same. An
example of the difference in expression is shown in this explanation of the
subset relation between sets:

Formal: Verbose:
If A and B are sets and

∀x(x ∈A⇒ x ∈ B)

holds, then A is called a subset of B.
We write A⊆ B.

If A and B are sets and it is the case
that every element of A is also an
element of B, then A is called a sub-
set of B. We write A⊆ B.

The study material begins with a refresher on propositional and predicate
logic, including the definitions of the logical connectives and quantifiers and
identities such as the DeMorgan laws, modus ponens and the distributivity
properties of ∨ and ∧. The basic concepts of set theory are presented, which
define set element, extensionality and subset. This is followed by the set op-
erators such as union and intersection as well as cross product. Finally the
definitions for binary relations are given: for a relation R on a set M , it defines
R ◦ S, the relation product or composition of relations, R−1, the inverse of
a relation, and a set of further properties of relations such as reflexivity and
symmetry. It is these definitions concerning binary relations that the students
are expected to apply when solving the exercises.

In the rest of this thesis we will make use of the list of definitions taken from
the study material, therefore we now give the full list in Table 3.1. We have
grouped the definitions concerning propositional logic in “prop”, and those
concerning predicate logic including quantifiers in “quant”. The set operator
properties in “set_prop” include for instance distributivity, associativity or
commutativity of set operators in relation to one another. We have included
in this list the first three of the four theorems that the students are asked to
solve. This is because these theorems are available to students as identities
after they have been solved, and can be applied in proof steps as the other
definitions can be.

3.1.3 The resulting corpus
In addition to the dialogue transcript the experimental setup also gathered an
audio recording of the students thinking aloud, a video of the subject using
the software, a screen recording, and the wizard’s audio commentary. We
will only concern ourselves with the written dialogue data. For each turn
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Group Name Content

logic prop propositional logic
quant predicate logic

set theory

subset definition of subset
psubset definition of proper subset
exten set extensionality
set_prop set operator properties
union definition of union
intersection definition of intersection

binary relations composition composition of relations
inverse relation inverse

identities
identity1 (R ◦ S)−1 = S−1 ◦R−1

identity2 (R∪ S) ◦T = (R ◦T )∪ (S ◦T )
identity3 (R∪ S) ◦T = (T −1 ◦ S−1)−1 ∪ (T −1 ◦R−1)−1

Table 3.1: The set of mathematical definitions in the study material

No. utterances
1 2 3 4 5 6 7 8 9 10

Student turns 822 83 16 2 1 0 0 2 0 0
Tutor turns 550 445 69 14 1 0 0 1 3 2

Total turns 1372 528 85 16 2 0 0 3 3 2

Table 3.2: Turns by number of utterances for student and tutor

the transcript contains the timestamp of the turn, the text of the utterance
and, for the tutor’s turns, their annotations of the correctness, granularity and
relevance of the previously entered step.

The corpus contains 37 transcripts with a total of 2011 turns. Student turns
accounted for 926 of these, tutor turns 1085. The number of utterances per
turn is shown in Table 3.2. The table shows that the large majority of turns,
1372 in total, contained only one utterance, and only 5.6% of turns contained
more than two utterances. The longer turns of 5 utterances or more were
nearly all a result of either recapitulations of the complete proof by the tutor,
or of students entering complete proofs in one turn, which they were explic-
itly asked not to do. There were an average of 54.3 turns per session. Most
students attempted at least two exercises, as shown in Table 3.3, and 15 stu-
dents were able to attempt all four.
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No. exercises
1 2 3 4

No. students 4 11 7 15
Cumulative 37 33 22 15

Table 3.3: Number of exercises attempted by how many students

3.2 Characterisation of the data
In this section we describe by example the kinds of dialogues in our corpus and
the different actions that we observe the students and tutors performing. A
typical example of a full exercise is shown in (3.4)1. The tutor sets the exercise
and then the student contributes a sequence of formulas. The formulas are the
conclusions of proof steps, which are the building blocks of proofs. A proof
step consists of a newly-derived formula along with the rules used to derive
it and the premises it was derived from. The rules and premise need not be
explicitly stated, in this case they are underspecified. A sequence of proof steps
from axioms to the theorem constitutes a complete proof of that theorem. In
the first step for instance, S8, the identity from exercise B is applied to the
left-hand side of the theorem in order to derive the formula (R ∪ S) ◦ T =
(R ◦T )∪ (S ◦T ). Here both the rule and premise used remain underspecified.

The tutor gives feedback on each step that the student contributes. In this
example the feedback is very minimal—the tutor simply accepts or rejects each
of the steps in turn. When the tutor sees that the proof is finished he indicates
this to the student, in utterance T13. Having finished the exercise the student
is presented with the next one.

(3.4) T8: Please prove (R∪ S) ◦T = (T −1 ◦ S−1)−1 ∪ (T −1 ◦R−1)−1

S8: (R∪ S) ◦T = (R ◦T )∪ (S ◦T )
T9: That’s correct!
S9: (R ◦T )∪ (S ◦T ) = (T −1 ◦R−1)−1 ∪ (T −1 ◦ S−1)−1

T10: How did you get this? Use smaller steps!
S10: (R ◦T )∪ (S ◦T ) = ((R ◦T )−1)−1 ∪ ((S ◦T )−1)−1

T11: That’s right!
S11: ((R ◦T )−1)−1 ∪ ((S ◦T )−1)−1 = (T −1 ◦R−1)−1 ∪ (T −1 ◦ S−1)−1

T12: That’s also right!
S12: (T −1 ◦R−1)−1 ∪ (T −1 ◦ S−1)−1 = (T −1 ◦ S−1)−1 ∪ (T −1 ◦R−1)−1

T13: This exercise is also correct!

The tutor can also give more detailed and helpful feedback on the wrong
steps that the student is contributing than in the example above. In (3.5) the

1Although our corpus is in German, for simplicity of presentation we have translated the examples for this
chapter into English. We will include German to English glosses in any cases where this is necessary or
helpful. Sx and Tx label the xth student and tutor turn respectively, and Sx-y is used for the yth utterance
within the xth turn.
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tutor uses hints to guide the student to the right next proof step by highlight-
ing the errors in each of the student’s contributions. In utterance T8 the tutor
refers to a syntactic error in the formula and in T10 to a wrong instantiation
of the definition of composition.

(3.5) S8: Then (R∪ S) ◦T is {(x, y) | ∃z(z ∈M ∧ ((x, y) ∈ R∨ (x, y) ∈ S)∧ (y, z) ∈ T ).
T8: not correct. The error is presumably in the last “and”-expression.

...
S10: Then (R∪ S) ◦T is {(x, y) | ∃z(z ∈M ∧ ((x, y) ∈ R∪ S)∧ (y, z) ∈ T )}
T10: not correct. Your variable names are not consistent.

A more complex example, in (3.6), shows that the feedback that tutors give
to students is not restricted to the just the subsequent utterance. Here the
tutor and the student enter into a discussion addressing the deficiencies of the
latest step. The tutor asks the student to contribute more detail in order to
show how the step was concluded. This example, and this kind of action by
the tutor, will be taken up again later in this chapter, in Section 3.3.

(3.6) S8: ∃x, so that (a, x) ∈ (R∪ S) and (x, b ) ∈ T
T8: What does this follow from?
S9: That follows from the definition of relation product for binary relations:

(a, x) ∈ R and (x, b ) ∈ S, then R ◦ S
T9: More precisely: it follows from (a, b ) ∈ (R∪ S) ◦T

These examples are typical for the corpus, and show one of the important
characteristics of the data: student initiative. After having presented the exer-
cise that the student should solve, the tutor leaves the student to lead the so-
lution construction process. This agrees with Merrill et al. [139], who argue
that expert tutors should leave student in control and free to reason through
problems themselves in order to achieve learning. Only when the tutor must
ask questions or give the student directions, as in T8 in (3.6) above, does the
initiative change hands.

3.2.1 Mathematical aspects
One characteristic of the mathematical content of the corpus which is illus-
trated by the examples above is the terseness of the students’ utterances. In
their analysis of the corpus, Benzmüller et al. [18] find that the 40% of the
utterances in the formal study material group and 15% in the vebose group
contain only symbolic content. They also find that the average number of
natural language tokens per dialogue session is 36.3 (with a standard deviation
of 19.43) at an average of 51 turns. Considering that these averages include the
tutor’s turns, whose expressions are much more verbose, this indicates that
the students mostly use mathematical expressions. In the utterances which
do include both mathematical expressions and natural language tokens there
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is often a complex overlap between the two. Benzmüller et al. [15], inves-
tigating a similar corpus of tutorial dialogues on mathematical proofs, find
recurring structural phenomena whereby mathematical and natural language
is interleaved, such as in (3.7) and (3.8). Wolska and Kruijff-Korbayová [209]
have proposed models for parsing these types of utterances.

(3.7) S4: B contains no x ∈A

(3.8) S9: If (y, z) ∈ R and (z, x) ∈ S, then (z, y) ∈ R−1 and (x, z) ∈ S−1

Benzmüller and Vo [16] find that students in such dialogues use a declar-
ative style to express proof steps, and usually only present the result of the
proof step, in other words the formula which has been derived. Possible other
elements of the proof step, such as the premises, axioms or rules used to derive
the step are very often left underspecified.

The structure of the proofs that the students construct is usually quite linear,
due to the simple nature of the theorems that the students are asked to prove.
A rewriting style is often used, in which in order to prove A = B , the steps
in the proof are rewrites of the left hand side of the form A = A′, followed
by A′ = A′′ and eventually A′′′ = B . This is illustrated by the proof style used
in (3.4). Each equation follows from the previously stated equation. Another
approach, which is occasionally used explicitly, is to use the definition of set
extensionality to split an equality between two sets into subproofs, namely the
subset and superset relations between the sets, and is introduced for instance
with the proof step in (3.9). Other standard proof structures such as proof by
induction or contradiction are not required by the theorems the students were
asked to prove. Overall the linear structure used by the students means that
each proof step usually follows from the previously contributed proof step.
Most often the relationship is that the formula derived by the previous proof
step forms one of the premises for the new proof step.

(3.9) T0 Please prove (R ◦ S)−1 = S−1 ◦R−1

S0: Proof using ⊆ and ⊇
T1: Right, you can do it like that.

3.2.2 Categorisation of students’ actions

In this section we give a categorisation by example of the kinds of actions that
students perform in the corpus. The most common action that the student
performs is the contribution of mathematical content in order to advance the
current solution, an example of which is the utterance in (3.10). The student
has given the premise and the formula which has been derived from it.

(3.10) S4: If (a, b ) ∈ (R ◦ S)−1 , then it holds that (b ,a) ∈ (R ◦ S)
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The contribution of a new solution step is a claim that the formula con-
tained in the step is true, in other words derivable from the current state of
the solution which has been constructed so far. The step has some relation to
the material under discussion, that is, it follows logically or by some chain of
proof argument. There are a number of ways this content is contributed to
the solution. The simplest way is when the student merely states the formula
that the solution step derives, as in all of the student’s contributions in (3.4)
above. The student leaves the further elements of the step and its intended
relation to the solution so far implicit. However even though the intention of
the utterance with respect to its content is not stated, in this corpus the tutors
assume that the bare statement of a formula is in fact a solution step because
of the proving task that the student has been set.

A more verbose way to contribute to the current solution occurs when
students use linguistic markers to indicate the intended effect. In (3.11) the
words “It follows that” show that the following content is being proposed as
a formula which is true. Other cues which are found in the corpus can be
more specific, including “hence”, “it holds” and “from this”. These indicate
that the formula has been derived from some previously stated formula in the
dialogue. Some linguistic cues are necessary for the correct interpretation of
the step, for instance assumptions are always marked, as in (3.12).
(3.11) S4: It follows: (x, y) ∈ S−1 ◦R−1

(3.12) S0: Let (x, y) ∈ (R ◦ S)−1.

As we outlined in the previous section, solution steps have a number of
elements, including the derived formula and the rules used to derive it. In
addition to the derived formula the students may additionally state the rule
which was used, such as the definition of relation composition in (3.13), or the
premise, such as the (a, b ) ∈ (R◦S)−1 in (3.10) above. A combination of both is
also possible. The cues that are used to identify rules include “by the definition
of” or “according to exercise W”. Premises are identified for instance with “it
follows from”, or “since X holds, we conclude”.
(3.13) S4: Then (z, b ) is in R−1 and (a, z) in S−1

T4: Correct.
S5: According to the definition of ◦ it follows that (a, b ) is in S−1 ◦R−1

Closely related to the contribution of new solution steps is the augmenta-
tion of existing, previously contributed solution steps with additional content.
This normally happens after the tutor has asked for the student to supply this
additional content, in which case the link to the previous step which is be-
ing extended is clear. The elements of the step which are added, most often
premises and derivation rules, are introduced with the same linguistic cues as
are used when these elements are included directly in the initial contribution
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of the step. An example is shown in (3.14). The student has performed a large
proof step in deriving the formula in S8, and the tutor asks for a justification
for the step. The student supplies the main rule used, which augments the
step.
(3.14) S7: But this means: (z, y) ∈ R−1 and (x, z) ∈ S−1

T7: Now it is correct
S8: Therefore it follows: (x, y) ∈ S−1 ◦R−1, which was to prove.
T8: Correct. Give a (simple) justification for the last step of the proof.
S9: This follows directly from the definition of relation product.
T9: Correct. You have solved the exercise.

Not all utterances which contain mathematical content are intended to be
contributions to the solution. Students also state mathematical knowledge for
other reasons, although these are less common than solution contributions.
One reason is to refer to a part of a step which is about to be performed,
as in (3.15), in which the student repeats the definition of relation product.
Such an action makes the knowledge salient in the dialogue and tells the tutor
what concepts or goals or approaches will be used in the coming step. The
student can state a solution strategy they are about to follow, such as a proof
by cases, or the use of set extensionality, as in (3.9) above. They can also restate
a previously proved identity, either just by stating the formula or saying that
it has been previously proved (3.16).
(3.15) S0: The relation product of two binary relations R, S in a set M is defined as

R ◦ S := {(x, y) | ∃z(z ∈M ∧ (x, z) ∈ R∧ (z, y) ∈ S)}
T0: That’s right.

(3.16) S16: According to exercise A (R∪ S) ◦T = (R ◦T )∪ (S ◦T )
T16: Yes, you have proved this already.
S17: Since (R ◦T )−1 = T −1 ◦R−1, it also holds that R ◦T = (T −1 ◦R−1)−1

T17: You have drawn a correct conclusion.

Students ask various questions seeking information about the task at hand.
Since students typically have the initiative, they can ask these at nearly any
point in the dialogue. They ask for very general hints when they are stuck
or do not know what the right next step in the proof should be, using open
questions like “what should I do now/next?”, or “please give me a hint”. This
often occurs after the student has had several contributions in a row rejected
by the tutor. Such requests for help are made more concrete when the student
asks for a specific kind of help. Students for instance ask tutors to reveal the
next step in the proof, as shown in (3.17), or ask for the tutor to explain certain
concepts or to explain how they are used, as in (3.18). They also ask the tutor
to evaluate steps that have been contributed, for instance as shown in (3.19).
(3.17) S0: How should I start?

T0: You have to show the equality of two sets. Please look up how to do this.
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Type Action

Solution step contribution New step
Augment existing step

Knowledge statement

Future step
Strategy
Concept
Previously proved

Request

Hint
Next step
Explain concept
Evaluation
Task state

Task state Describe

Table 3.4: Range of student actions by type

(3.18) S4: What does (R ◦ S)mean?
T4: (a, b ) ∈ (R ◦ S) holds if and only if there is a z ∈ M with (a, z) ∈ R and

(z, b ) ∈ S.

(3.19) S13: Okay. So: (R∪S)◦T = {(x, y) | ∃z(z ∈M∧((x, z) ∈ R∧(z, y) ∈ T )∨((x, z) ∈
S ∧ (z, y) ∈ T ))} Is that right?

T12: Yes, very good. And now?

The final type of action is realised by utterances in which students talk about
the state of the proving task. For instance they sometimes describe what in
their view is the state of the task, namely that the task is done, as shown in
(3.20). They also make explicit reference to the state of the task when they
need to restart or go back to a previous state, as in (3.21). The students also
ask questions asking the tutor to give them this information about the state of
the task, such as “Am I done?”

(3.20) S13: Thus (a, b ) ∈ R ◦T ∩ S ◦T q.e.d.

(3.21) S26: Start again. (S ◦ (S ∪R)−1)−1 = (S ∪R) ◦ S−1

T26: Good.

To summarise we list the categorisation of actions that students perform
in Table 3.4. Note that we have restricted ourselves here to task or domain
related actions, so we do not consider off-topic utterances.

3.2.3 Categorisation of tutors’ actions
The most common thing a tutor has to do in our corpus is give direct feed-
back on a solution step that the student has just contributed. That the tutor
is mainly concerned with feedback has to do with the fact that the student
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has the initiative and leads the solution construction process. There is a broad
range of actions available to the tutor in this situation. The simplest are to
accept or reject the step without giving any further comment, such as the
acceptances in utterances T9 and T11 of (3.4) on page 38. This is not very in-
formative feedback, because it does not tell the student why the step is being
accepted or rejected, but nevertheless it is the most common way the tutors re-
act. Similarly brief ways the tutors use to express acceptance include “correct”,
“that’s right”, or “go on”, and for rejection “wrong”, or “that’s not right”.

Another way the tutor can react to a contributed step and implicitly indicate
rejection is to draw attention to a flaw, as has been analysed for this data by
Horacek and Wolska [102]. The tutor can simply inform the student that the
step was erroneous (“you’ve made an error”), or the information can be more
specific, for instance telling the student that there is a syntactic problem like
a missing bracket, that a variable is not quantified, or that some symbol has
been mixed up, as illustrated in (3.5). The range of possibilities is limited only
by the range of types of error that the tutor can recognise.

The tutor can give the student directed hints in order to remediate deficien-
cies that have been recognised in the student’s solution or skills in general. A
taxonomy of possible hints has been developed for tutoring mathematical the-
orem proving by Tsovaltzi et al. [196], who analysed the first DIALOG corpus.
In order to help the student continue constructing the solution, the tutor can
give away for instance full solution steps, concepts which are relevant in the
current solution state, or strategies that the student should follow. Although
the tutor’s choice of hint and the content of hints will not be dealt with in
this thesis, we will look more closely at one kind, namely elicitation, because
requests will be relevant to the model we will propose in the coming chapters.

Eliciting information from the student is an important part of the tutor’s
range of options for remediation. Requests in tutorial dialogue, when they
come from the tutor, are different to requests in other forms of task-oriented
dialogue. When a tutor makes a request, the aim of the request is not to find
out the answer, as would be the case in other dialogue genres. Instead the
tutor already knows the answer but wants to ascertain whether the student
also knows it. Its function is to check understanding rather than to request
actual information. It is a way of finding out the student’s knowledge state and
how well he knows the concepts that are being tutored. (3.22) is an example
of a series of such questions. The tutor asks the student a number of questions
in a row to find out at what concept level the remediation should start. Only
when the tutor has found out that the student does not know the basic concept
of cross product does he begin to explain the series of concepts.

(3.22) S17: Backward application of the relation product: (a, b ) ∈ (R ◦T )∪ (S ◦T )
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T17: That’s much too fast. Do you understand the concept of a relation?
S18: No
T18: Do you know the concept of cross product?
S19: No
T19: Ok. You have a set M. The ordered pairs from this set M ×M : = {(a, b ) | a ∈

M ∧ b ∈M} are the elements of the cross product. Did you understand that?
S20: yes
T20: A relation R is a subset of M ×M : R⊆M ×M
S21: Okay, and how does the proof go on from here?

As with hints in which information is given away to the student, there are
various elements that the tutor can elicit from the student. For instance, he
can ask the student whether he understands a particular concept, as illustrated
in (3.22) above for the concepts of relation and cross product, although this
relies heavily on self-assessment by the student, and is not necessarily reliable
[123].

The tutor can also use elicitation-type actions in the feedback on specific
steps, for instance to ask the student to explain the reasoning used to derive a
new solution step, as in (3.23). While this kind of request does elicit domain
content from the student, it is not a hint in the usual sense because it is con-
cerned with a step that has been performed rather than one that is to come.
It is a way of requiring the student to self-explain, which is a tactic which has
been shown to lead to a learning effect [43]. The tutor can be more specific
with this kind of elicitation and ask the student to fill in parts of a step that
were not explicitly stated in the initial contribution of the step. This is an-
other way to elicit a self-explanation from the student, because it requires that
reasoning be demonstrated explicitly.
(3.23) T28: Why does this (correct) relationship hold?

Requests for explanation are triggered by the tutor’s suspicion that the stu-
dent may not fully understand the concepts that are required to derive a step.
For instance if the step is too long the tutor may not accept that the student un-
derstood each individual substep, especially if he suspects the student is weak.
Requests for augmentation or explanation in such a situation act as requests to
show evidence of understanding of concepts and reasoning. When the student
does show this, the tutor can conclude that the student understands these con-
cepts and the tutor can maintain a better model of the student’s expertise. We
will use this notion of evidence of understanding in the model which will be
presented in Chapter 4.

The answers that students give to the different types of elicitations follow
the categorisation of actions from the previous section. For instance, the typ-
ical response to an elicitation of a concept definition will be much like a state-
ment of a concept. When the tutor asks the student to fill in parts of an already
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Type Action

Give feedback Accept
Reject

Highlight error Highlight error

Hint

Give away step
Give away concept
Give away strategy
Elicit step
Elicit concept
Elicit strategy

Request Explain reasoning
Missing step element

Table 3.5: Range of tutor actions by type

contributed step, the answer from the student will be a step augmentation. We
summarise the categorisation of the tutor’s possible actions in Table 3.5. Note
that due to the fact that we will not concentrate on hinting, this categorisation
is far from exhaustive. However it does serve to put the actions which we will
focus on later, namely feedback and requests, into the context of the broader
range of possible actions.

3.2.4 Informationally redundant utterances

One characteristic of tutorial dialogue which applies to both student and tu-
tors is their use of informationally redundant utterances (IRUs) [112, 201].
Sometimes it is necessary to repeat information that has already appeared in
the dialogue, for example to make a known fact salient again to support an ar-
gument [202]. Such utterances are informationally redundant, which means
that the proposition they express is entailed, presupposed or implied by a pre-
vious utterance in the discourse. We have found that such utterances can con-
tain linguistic markers which signal that they are IRUs, for instance, “as you
know” or “of course”. Such marking signals to the hearer that the speaker
expects that the hearer knows the information in the utterance already, and
emphasises the reminding function of the utterance. This is particularly rele-
vant in the context of giving the student hints.

If an IRU does not include this marking then it is an indication that the
dialogue participants may have misaligned beliefs about what information has
been uttered so far, due perhaps to short-term memory bounds or a previous
misunderstanding. In order that this does not happen unintentionally, the tu-
tor attaches marking to utterances when these would otherwise falsely indicate
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that misalignment has taken place. We will look at IRUs in detail again as a
case study to demonstrate the use of the model which will be presented in the
next chapter, and therefore we describe the phenomena with some examples
here. In (3.24) the content of utterance S10, namely that the formula embed-
ded in the utterance holds, is repeated in utterance S18 without any marking
indicating that it is informationally redundant. This could indicate that the
student is no longer aware that this content had been uttered, so to realign the
student’s beliefs the tutor explicitly reminds the student that the proof step
had already been performed. In (3.25) the tutor acts in a similar way, this time
during the recapitulation of the proof. The formula which was successfully
derived in S2 is used again, and the tutor makes this repetition explicit with
the particle “of course”.
(3.24) S10: It holds that (R∪ S) ◦T = {(x, y) | ∃z(z ∈M ∧ (x, z) ∈ (R∪ S)∧ (z, y) ∈ T }

T10: That’s right!
. . .

S18: By definition it holds that (R∪ S)◦T = {(x, y) | ∃z(z ∈M ∧ (x, z) ∈ (R∪ S)∧
(z, y) ∈ T }

T18: That’s right! You’ve already performed this step.
(3.25) S2: A∩B = ;

. . .
T4: Right. Now what?

. . .
T8: . . . The justification could for instance be: Let x be an arbitrary element of B ,

then it can’t be in A (since of course A∩B = ;) . . .
(German: . . . (da ja A∩B = ; ) . . . )

The data shows that misalignment between student and tutor can be ob-
served in the case of informationally redundant utterances. Unmarked IRUs
(such as S18 in example (3.24) should trigger strategies for realignment, and
conversely, when IRUs are to be generated as part of pedagogical strategies
(such as T8 in example (3.25)), these should be marked as such in order to
avoid the student falsely concluding that misalignment has occurred.

3.3 Occurrence of dialogue frames
Dialogue frames [85] were presented in Section 2.2.1 as a model of the local
structure of interactions between students and tutors in one-on-one tutoring.
In this section we show by example that dialogue frames also occur in our
corpus, and list the actions from the previous section which may occur in the
dialogue frame phases. We first identify some parallels between the five phases
and their expected realisation in our corpus, motivated by the characteristics
of our tutoring scenario as outlined in Section 3.2.
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Phase 1, in which the tutor asks a question, is seldom realised in our data.
The reason for this lies in the proving task. The theorem which is to be proved
is the only question per se. The initiative in constructing the solution is left
with the student, and in effect each contribution could be seen as an answer to
an implicit question from the tutor “What is the next proof step?”. However
such a question is rarely posed. Phase 2 of the dialogue frame, in which the
student offers an answer, is realised in our data by utterances in which the
student either contributes a new step or augments an existing step.

In phase 3 the tutor provides initial feedback on the student’s answer. In our
corpus this phase will nearly always be realised by the next utterance from the
tutor after the student has contributed a solution step, since the tutors give
direct feedback after every step. Phase 4 in the dialogue frame is a possible
multi-turn sequence of collaborative improvement of the answer the student
has offered. Into this category fall many of the different kinds of hints that
tutors can perform in our scenario, such as pumping as a remediation tactic, or
giving away or eliciting explanations or justifications. Phase 5, the assessment
of the student’s understanding of the answer, would be realised by a request
from the tutor as to whether the student understands a particular concept
which was used in the answer. However this occurs very seldom in our data.

According to [85], all phases but phase 2 may remain unrealised in a dia-
logue frame, and indeed we do not expect many occurrences of phases 1 and
5. We also expect to sometimes see an overlap between the feedback phase and
the collaborative improvement phase. This will occur when the tutor’s initial
feedback on a contributed step is an elicitation. The elicitation is intended to
improve the content of the step, but it may also implicitly include an element
of feedback on the step itself. For instance we saw in (3.23) that the tutor can
realise both of these actions in one utterance. In such cases phase 3 is con-
flated with the first utterance of phase 4. Phase 4 is also where evidence of
understanding may be elicited from the student. Asking the student to aug-
ment the step has the parallel effect of requiring the student to demonstrate
understanding of the concepts, as described in Section 3.2.3.

We can now examine some examples from our corpus annotated with the
phases in the dialogue frame. In (3.26) we see two simple cases of the student’s
contributions being accepted by the tutor. The contribution in S0 corresponds
to phase 2 and the tutor’s acceptance in T0 to phase 3. Because the tutor
is immediately satisfied that the student has understood the answer, phases 4
and 5 do not take place and the dialogue frame is closed. Such a sequence,
consisting of a contribution followed by an acceptance or rejection of the step
by the tutor, is the simplest and most common realisation of a dialogue frame
in our data. S1 and T1 form a new dialogue frame which is the same as the
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first except that phase 4 is realised in T1-2 by the tutor, who elaborates on
the answer to tell the student that the step could have been performed more
simply.

(3.26) Phase
S0: (R ◦ S)−1 = {(x, y) | (y, x) ∈ (R ◦ S)} 2
T0: correct 3

S1: (R ◦ S)−1 = {(x, y) | (y, x) ∈ {(x, y) | ∃z(z ∈ M ∧ (x, z) ∈ R ∧
(z, y) ∈ S}}

2

T1-1: okay, 3
T1-2: but you could have done that more simply 4

The example in (3.6) above exhibits a longer phase 4 of collaborative im-
provement. We repeat it here in (3.27) with the dialogue frame annotation.
The student, in S8, has applied the definition of relation composition to sim-
plify the left-hand side of exercise B ((R ∪ S) ◦ T ), however without having
previously introduced the pair (a, b ). The appropriate step in between would
have been “Let (a, b ) ∈ (R∪ S) ◦ T .” The tutor does not give direct feedback
about the correctness of the step, which would have constituted phase 3 of the
dialogue frame, but rather begins phase 4 by querying the missing elements of
the step in order to ascertain whether the student understood the step or not.
The student correctly supplies the rule that was used along with its definition.
This satisfies the tutor that the student has understood the use of the rule, but
the tutor then goes on and improves the answer further by stating the premise
which was still missing from the step.

(3.27) Phase
S8: ∃x, so that (a, x) ∈ (R∪ S) and (x, b ) ∈ T 2

T8: What does this follow from? 4

S9: That follows from the definition of relation product for binary
relations: (a, x) ∈ R and (x, b ) ∈ S, then R ◦ S

4

T9: More precisely: it follows from (a, b ) ∈ (R∪ S) ◦T 4

The interaction in (3.28) is more complex and begins with the student’s
contribution in S19, phase 2 of the dialogue frame. It consists of two contri-
butions, however only the first one (S19-1) is discussed. Although the identity
the student has applied is stated, the contribution is incomplete in that it leaves
implicit the premise from which the formula in S19-1 was derived. The iden-
tity in question is exercise W, which states that (R ◦ S)−1 = S−1 ◦ R−1. The
tutor is not satisfied with the incomplete step and responds with a request to
elaborate the answer in T25, which begins phase 4 of the dialogue frame. This
is an example of when phase 3, the tutor’s initial feedback, is implicitly realised
by the first utterance of the collaborative improvement phase 4. In S20 the stu-
dent applies the definition of inverse to the identity from exercise W to derive
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(R ◦ S) = (S−1 ◦ R−1)−1. The tutor accepts this in T26 but still wants the stu-
dent to justify the initial contribution. S20 and T26 continue the collaborative
improvement of the student’s step by adding elements to the step. Finally in
S21 the student provides the right missing premise, which is the instantiation
of the identity for the sets R and T . The tutor is now satisfied that the student
understands the component parts of the step which was begun in S19-1, and
accepts the step, closing phase 4.

(3.28) Phase
S19-1: (R ◦T ) = (T −1 ◦R−1)−1 (by exercise W), 2

S19-2: then it must also hold that (S ◦T ) = (T −1 ◦ S−1)−1 2

T25: Why does this follow from exercise W? 3/4

S20-1: (R ◦ S) = (S−1 ◦R−1)−1 (according to exercise W), 4

S20-2: then it must also hold that (S ◦T ) = (T −1 ◦ S−1)−1 and (R ◦
T ) = (T −1 ◦R−1)−1

4

T26-1: All other steps are appropriate, 4

T26-2: but the justification for (R ◦T ) = (T −1 ◦R−1)−1 is still miss-
ing.

4

S21: (R ◦T )−1 = (T −1 ◦R −1) (by exercise W) 4

T27: Yes. 4

From these examples it is clear that we can recognise dialogue frames in
this data. The realisation of phase 4 can become quite long if the discussion
of a particular step extends over many utterances, however we will see in the
model proposed in Chapter 4 that an internal structure can be assigned by
categorising the actions that the student and tutor perform.

3.4 Comparison with other corpus analyses of
tutorial dialogue

As we introduced in Chapter 2 there have been many other analyses of cor-
pora of tutorial dialogue. Here we review some of their findings on the range
of actions that are typically performed by students and tutors. Dzikovska et al.
[69], in an analysis of a corpus of tutorial dialogue on the subject of differenti-
ation as part of the LeActiveMath project, find many of the same action types
as we have presented here. They find help requests, which correspond to our
requests for concepts and hints, and progress evaluation and task progress ref-
erences, which are equivalent to our references to the task state. They find
that explanations are used in both the forward and backward direction. For-
ward explanations match our references to steps or to concepts which will be
used in future steps. Backward explanations, which are performed in answer
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to requests from the tutor such as “Why did you do that?”, would be augmen-
tations of solution steps in our categorisation. They find a category of knowl-
edge statement which corresponds to ours, as well as language edits, which we
have not included but which have been analysed for our corpus [209].

A further study of maths differentiation data by Porayska-Pomsta et al.
[155] looks at students’ affective states and the kinds of actions that influence
them. They categorise student actions into 10 broad types including queries
for steps, concepts or hints, corrections, self-knowledge statements, and reflec-
tion, which is sometimes realised as an explanation of reasoning, like our step
augmentation. The tutor’s actions include positive and negative feedback, cor-
rective feedback, in other words drawing the student’s attention to an error,
requests for clarification, hints and hints followed by gauging questions such
as “do you understand that?”. In an analysis of spoken dialogue data in the
domain of physics tutoring, Litman and Forbes-Riley [126] propose a set of
dialogue acts in order to investigate learning gain correlations. They subdi-
vide questions and answers into three and four categories, respectively, and
categorise the tutor’s actions into positive and negative feedback, restatement,
recap, request, bottom out (which reveals the complete answer), hint and ex-
pansion, which reveals new details about the answer.

Graesser et al. [85], analysing the same data from which the dialogue frames
account was developed, categorise the tutor’s actions that they found. They
include positive, negative and neutral feedback, pumping, which corresponds
to our tutor requests, prompts, hinting and elaborations. Chi et al. [45] col-
lected a corpus of face-to-face tutoring on the subject of the human circulatory
system. They find that the tutors’ actions included giving explanations, giving
positive and negative feedback, answering content questions from the student,
prompting, and asking comprehension-gauging questions. They note that be-
cause the dialogues were predominantly controlled by the tutors, the range
of student actions was smaller. This contrasts with our strongly student-led
dialogues. The student actions they identify are self-explanation, asking and
answering questions, responding to scaffolding prompts, and reflecting. This
categorisation has been used as the basis for further corpus analyses such as
[133].

Overall we see an overlap with similar action definitions between these stud-
ies and the categorisation we have presented in this chapter, although there is
some divergence where the goal of the study is different, for instance the inves-
tigation of affect in [155]. This indicates that our corpus exhibits phenomena
typical of other tutorial dialogue corpora, both within and outside of the do-
main of mathematics, and suggests that the model which we will propose for
this data should be applicable to the data collected in other studies.
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3.5 Summary and discussion
The qualitative analysis in this chapter has demonstrated that dialogue frames
occur in tutorial dialogue on mathematical theorem proving. Our starting
point was a corpus of 37 such human-human dialogues, which we presented
in Section 3.1. In Section 3.2 we analysed the mathematical content of the
dialogues and presented the categorisations we have developed for the differ-
ent actions that students and tutors can perform. We also looked at the spe-
cific example of informationally redundant utterances, whose occurrence can
trigger linguistic marking. We then presented examples in Section 3.3 anno-
tated with dialogue frame phases and showed which actions are part of which
phases. The dialogue structures we found indeed reflect phases 2 though 4,
with individual proof steps being proposed (phase 2) the tutor giving feedback
(phase 3) and subsequently optionally elaborating the content (phase 4). Phase
4 includes the tutor’s requests for evidence of understanding during the collab-
orative improvement of the answer. The tutor can use such requests to check
the students’ mastery of concepts and to better monitor the student’s knowl-
edge state. Phase 1 does not occur due to the student’s initiative, and phase 5
is seldom realised.

We argue that dialogue frames systematically recur in the dialogues in our
corpus. As an informal validation of the categorisation we have proposed, we
reviewed the results of other analyses of tutorial dialogue corpora with respect
to the action categories they find in Section 3.4.

The existence of dialogue frames in our data means that we can use them as
a structural mechanism within a model for tutorial dialogue. Such as model
will be proposed in the next chapter. We believe it is useful to model dialogue
frames explicitly because the discussion and collaborative action that they con-
tain encourage students to self-reflect and self-explain, which has been shown
to lead to knowledge discovery [43]. The questions that tutors ask in the elab-
oration phase also allow them to infer the knowledge status of the student,
which Chi et al. [46] have shown tutors have difficulty doing.

In the next chapter we will use this corpus analysis to motivate a rule-based
model to account for the sequences of actions in our corpus which constitute
dialogue frames. In Chapter 5 it will inform the development of an annotation
schema for the corpus. Chapter 6 will propose a model to predict whether to
enter into the elaboration phase 4 or not given the student’s step in the context
of the previous dialogue.
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4
A model of solution step

discussions

In the previous chapter we introduced the concept of dialogue frames in tu-
torial dialogue, proposed by Graesser et al. [85], and showed that they also
occur in our corpus. In this chapter we present our model of solution step dis-
cussion subdialogues, which is an alternative, operational account of dialogue
frames, conceived in the style of Traum’s Grounding Acts theory [191]. It
is a computational model which describes the possible sequences of actions
by tutors and students in such discussions. The model tracks and updates the
state of the tutor’s beliefs about the knowledge state of the student. The sit-
uation in which an update to this state happens is the end of a solution step
discussion. At this point the student has used, successfully or unsuccessfully,
certain domain concepts and has thereby shown to have either understood or
not understood them. The tutor can conclude that the student knows these
concepts and the model extends the belief state accordingly. The architecture
and representations in the model follow previous work on dialogue systems in
the information state update tradition, as we have introduced in Chapter 2.

We begin in Section 4.1 by introducing Traum’s Grounding Acts theory
and arguing that dialogue frames can indeed be accounted for by a grounding-
style model. We show the structural similarities that we have recognised and
will exploit. Section 4.2 presents the architecture of the model. It consists of
representations for the basic concepts of solutions steps, actions and evidence
of understanding, a representation of dialogue state including the common
ground, and a finite-state model of possible sequences of actions. In Section 4.3
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we illustrate the operation of the model with a number of examples and uses
before giving a short discussion in Section 4.4. Much of the material presented
in this chapter has been published in [30] and [31].

4.1 Dialogue frames as grounding exchanges
In the model of dialogue frames proposed by Graesser et al. [85] (henceforth
GPM) students and tutors discuss the content of answers that students con-
tribute. In grounding subdialogues speakers and hearers discuss the content
of utterances that speakers contribute. In this section we first introduce the
concept of grounding and show that the subdialogues described by GPM’s di-
alogue frames and those modelled by Traum’s Grounding Acts theory have
strong conceptual and structural similarities. It is these similarities which mo-
tivate and form the basis of the design of our model, including the types of
dialogue actions and their order.

4.1.1 Modelling grounding

In order to communicate efficiently, participants in a dialogue take into ac-
count the information believed to be mutually known to them. They can use
it to form assumptions about what else their interlocutor might know and
can tailor their utterances to the current audience. The collected informa-
tion is known as the common ground and the process of achieving mutual
understanding in conversation is known as grounding [50, 51, 191]. Dur-
ing grounding dialogue participants try to collaboratively reach a situation
in which the hearer has shown to have understood the propositional content
which had been uttered by the speaker; the content is then considered to have
been grounded. Grounding is a method by which participants can align their
common ground, and is also a way to recover from the communicative fail-
ures associated with misunderstandings. Grounding is therefore crucial for
successful communication.

One of the first detailed models of grounding was proposed by Clark and
Schaefer [51]. In their Contribution Model, grounding is a two-phase collabo-
rative process in which dialogue participants first present and then accept con-
tributions. The combined effect of presentation and acceptance is to augment
the common ground with the content of the contribution. In the presentation
phase the speaker presents an utterance for the hearer’s consideration. The as-
sumption is that if the hearer can give sufficient evidence of having understood
the utterance, then the speaker can believe that the hearer has understood the
utterance. In the acceptance phase the hearer accepts the utterance by offering
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Evidence type Description

1 Display B displays verbatim all or part of A’s presentation
2 Demonstration B demonstrates what he has understood A to mean
3 Acknowledgment B nods or says “yeah” or the like
4 Initiation of relevant

next contribution
B starts the next contribution that would be relevant at a
level as high as the current one

5 Continued attention B shows that he is continuing to attend and therefore remains
satisfied with A’s presentation

Table 4.1: Types of evidence of understanding, as proposed by the Contribu-
tion Model

evidence of having understood it. He assumes that the speaker, upon register-
ing this evidence, will come to believe that the hearer correctly understood
the utterance.

Successful acceptance, and therefore mutual belief that the content was suc-
cessfully understood, is reached in the acceptance phase when the grounding
criterion has been met. It is the situation in which “the contributor and the
partners mutually believe that the partners have understood what the contrib-
utor meant to a criterion sufficient for the current purpose” [51, p. 262]. Dif-
ferent kinds of evidence can be offered by a hearer to demonstrate understand-
ing; these are listed in Table 4.1 for a presenter A and a hearer B. Displaying the
content verbatim is considered to be the strongest form of evidence, whereas
mere continued attention is the weakest. During the course of the ground-
ing process multiple conversational turns may be performed. For instance
the hearer may ask for a repair of the original presentation; the speaker may
then offer this repair or not. The hearer also must not necessarily accept the
presentation immediately.

In proposing a computational model of grounding, Traum [191] highlights
a number of deficiencies of the Contribution Model. The first is the imprecise
termination of the grounding process. Acceptances are simultaneously also
presentations of new content and must be understood before they can fulfil
their accepting function. However this means that they themselves must also
be accepted in order to be understood, which leads to a theoretically endless
chain of acceptances of acceptances. The model does not propose for instance
a primitive acceptance which does not need to be accepted.

A further problem is the strength of the types of evidence which are pro-
posed, because it is not clear that these in fact prove that an utterance has been
successfully understood. A backchannel, which would be classed as the evi-
dence type “acknowledge”, can be given even when the presented content was
not completely understood, for instance to show that acoustic but not neces-
sarily intentional content was understood. Similarly a hearer may manage to
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Grounding Act Description

Initiate Begins a new DU
Continue Adds related content to an open DU
Acknowledge Shows evidence of understanding of previous material
Repair Corrects misunderstanding of the content of the DU
ReqRepair Shows lack of understanding
ReqAck Asks for the other interlocutor to acknowledge the DU
Cancel Abandons the current DU without grounding it

Table 4.2: The set of acts in Traum’s Grounding Acts model

perform a relevant next contribution even if the previous contribution had
not been understood correctly.

Finally the Contribution Model is not suited to operationalisation. Traum
argues that there is no easy way to tell the “state” of the current contribution
while engaged in conversation. It is not always possible to detect whether an
utterance by the initiator of the original contribution is a continuation of that
contribution or a completion, so the hearer can not know if a contribution
is complete and is ready to be accepted. This makes the Contribution Model
unsuitable for implementation in a conversational agent.

To tackle these problems, and with a view to developing a computational
model, Traum has proposed the Grounding Acts model [191, 192]. The con-
tent about which interlocutors try to reach mutual belief is contained in a Dis-
course Unit (DU). The performance of grounding acts manipulates the content
and status of discourse units. These are listed in Table 4.2. Initiate is the equiv-
alent of the presentation of a new contribution in Clark and Schaefer’s model
and acknowledge is the equivalent of their acceptance. An explicit continue
act makes it possible to differentiate between the continuation of an existing
DU and the initiation of a new one, similarly for repair, solving one of the
difficulties of the Contribution model. In a major simplification, acknowledge
collapses the full range of types of evidence listed in Table 4.1. Acknowledg-
ments in this model can therefore be of varying strength.

Grounding acts take the DU from initiation through possible repair to ac-
knowledgment and groundedness. The problem of recognition of the state of
the current DU is solved by having an explicit finite-state model of the stages
that the DU can go through. It defines the (possibly embedded) sequences of
grounding acts which lead interlocutors to mutual belief. This way a conver-
sational agent can know whether the DU has been repaired, is awaiting repair,
or is awaiting acknowledgment. There is no need to be able to look ahead
to interpret the grounding effects of an utterance. The finite-state model is
shown as a set of transitions in Table 4.3, in which I refers to the initiator of
the DU and R to the responder. F is a final state in the model and D is a dead
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In State
Next Act S 1 2 3 4 F D
initiateI 1
continueI 1 4
continueR 2 3
repairI 1 1 1 4 1
repairR 3 2 3 3 3
ReqRepairI 4 4 4 4
ReqRepairR 2 2 2 2 2
ackI F 1 F
ackR F F F
ReqAckI 1 1
ReqAckR 3 3
cancelI D D D D D
cancelR 1 1 D

Table 4.3: Discourse Unit state transition diagram (from [191])

state, which is reached when the DU is cancelled. In the subdialogue in ex-
ample (4.1), taken from [191], the content of the initiating utterance I1-1 and
the continuation I1-2 has been successfully grounded by the acknowledgment
Grounding Act in R1. The state transitions which the DU goes through are S,
1, 1, F.

(4.1) I1-1 Move the box car to Corning initI

I1-2 and load it with oranges contI

R1 ok ackR

4.1.2 Dialogue frames are a kind of grounding
We argue that dialogue frames can be modelled in a similar way to the ground-
ing subdialogues which are described by the Traum’s Grounding Acts theory.
The key parallel which we recognise and exploit is in the object of the ground-
ing process: Both models are concerned with reaching agreement about under-
standing of content. In Grounding Acts this content is contained in the DU,
in our model it is in the solution step. There is however a difference in the
nature of this content. Whereas Traum’s model is concerned with ensuring
correct understanding of the content of an utterance and its intention, the ob-
ject of the grounding process in our model is the student’s deep understanding
of a domain concept. Nevertheless the similarities warrant the reuse of the
notion of evidence of understanding.

A further similarity between grounding and dialogue frames is that contri-
butions, evidence of understanding and acceptance are associated with distinct
roles played by the dialogue participants. In grounding these actions are per-
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formed by an initiator and a responder. The initiator initiates the DU which
is to be grounded, and may continue to add content to it. The responder must
demonstrate evidence of having understood the DU by acknowledging it. In
a dialogue frame the salient roles are those of tutor and student. The student
makes contributions of content and may subsequently add to these. However
it is also the student who is obliged to demonstrate understanding of the con-
tent under discussion. There are two reasons for this obligation. First, the
content under discussion is part of the solution to the task at hand, which
the student must solve. Second, by holding a position of authority the tutor
is in general not obliged to explain any implicit reasoning, whereas the stu-
dent must do so if asked. Clark and Schaefer’s Contribution Model offers a
direct parallel on this issue: In their acceptance phase there is an assumption
that the speaker will believe that the hearer has understood the presentation if
the evidence the hearer offers is strong enough. In a dialogue frame the tutor
will believe that the student has deeply understood the domain content if the
evidence the student offers is sufficiently strong.

The suitability of a grounding-type model for dialogue frames is illustrated
in example (4.2) from the corpus.

(4.2) . . . . . .
S8: From this it follows that: (x, y) ∈ S−1 ◦R−1, which was to be proved
T8: Correct. Please give a simple justification for the last step of the proof
S9: It follows directly from the definition of relation composition
T9: Right. You have completed the exercise

The first utterance is the contribution from the student of a new step in the
current proof. We see this as being conceptually similar to an initiation in the
Grounding Acts theory. In T8 the tutor confirms the correctness of this step,
but also asks for further evidence of understanding from the student. This
intention is similar to a request for acknowledgment in the Grounding Acts
theory. The student fulfils this request by supplying the missing inference rule,
demonstrating understanding of the content under discussion. Now the tutor
considers the evidence supplied so far to be sufficient and accepts the complete
step.

4.2 Elements of the model
The model we propose has at its core the concept of Task-level Grounding
(TLG). TLG is the process by which tutor and student reach a state of mutual
belief about the student’s understanding of task-level concepts. The process is
realised by the actions that the tutor and the student perform in the course of
a subdialogue discussing a solution step. We use the term grounding because
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TLG works in a similar way to Traum’s grounding model, which we will refer
to from now on as communication-level grounding. We use the term task level
because our model is concerned with objects and content which belong to the
task domain of the tutoring session.

At the local level, that is, at the level of individual subdialogues, the model
uses a finite-state automaton to describe the possible sequences of utterances
which constitute a discussion about a solution contribution. This is the equiv-
alent of the state transition model in communication-level grounding. We will
categorise the types of actions that students and tutors can make within such
subdialogues, and describe the effect they have on the continuing dialogue and
on the belief states of the interlocutors. Over the course of the whole dialogue
the model maintains the belief state of the tutor with respect to the student, in
other words, what the tutor believes that the student knows or understands.
Based on the outcome of a discussion subdialogue the global model updates the
common ground of the dialogue, a collection of agreed-upon facts. This allows
the common ground to function as a simple student model, and its content can
be used to inform the tutor’s choice of action in the future. Overall the model
defines a complete tutorial dialogue as a sequence of discussion subdialogues.
Its foundation is a shared representation of dialogue state, including the com-
mon ground and information about the current and previous utterances and
their content.

Our realisation of the dialogue model uses the Information State Update
(ISU) approach [193], which we have introduced in Section 2.1. This is a gen-
eral purpose approach to dialogue modelling which is characterised by an in-
formation state representing the state of the dialogue, a set of dialogue moves,
and a set of rules which update the information state depending on its con-
tent and the dialogue moves that an interlocutor has performed. The update
rules model the effects that utterances have, and define the possible transitions
between information states.

In summary the elements of our model, which we will introduce in this
section, are: a dialogue state in the ISU tradition; a representation of math-
ematical facts in the common ground; a set of Task-level Grounding Actions
(TLGAs); a set of update rules; and a finite-state machine encoding sequences
of dialogue states, whose transitions are annotated with preconditions and ef-
fects.

4.2.1 Contributing modules and assumed capabilities

As we have seen in Chapter 2, a dialogue system is dependent on a number
of back-end modules which provide the domain-specific information that it
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needs to complete the task at hand. Tutorial dialogue systems are dependent
on a number of expert systems, and in developing our model of solution step
discussions we assume that certain modules with certain capabilities can pro-
vide information to the dialogue manager as required. The most important of
these is the mathematical domain reasoner, however we also assume the avail-
ability of modules for natural language analysis and generation, as well as a
tutorial manager. We have already seen the schematic design of such a system,
as envisaged by the DIALOG project, in Section 2.3.3.

The mathematical domain reasoner is an expert system which processes the
content of the solution steps that the student inputs to the system. Because the
dialogues in our data set are concerned with proofs in set theory, our mathe-
matical domain reasoner is more specifically an automated theorem prover
(ATP). When we introduced the architecture of the DIALOG project in Sec-
tion 2.3.3 we described how Omega [177] is the envisaged ATP for the system
due to its flexible human-level reasoning and sophisticated proof object. These
features are not available from standard logic level provers. However within
the lifetime of the project it did not prove possible to connect Omega to our
dialogue model to analyse proof steps at run time. Despite this our model
is conceived with the functionality of Omega in mind. We have extended its
functionality for the purposes of this research to allow it to verify proof steps
in the context of the proof object built so far [66, 67]. The ATP uses an inter-
nal formalisation of the mathematical theory, here binary relations, to analyse
the steps that the student performs. It builds and maintains a tree-like proof
data structure, which represents the current state of the proof and forms the
context of the analysis of further steps. At its root is the theorem to be proved,
at its leaves are tasks, or formulas which have yet to be fully proved. When
there is no task left in a leaf then this leaf has been closed, and when all leaves
are closed the theorem has been proved. The edges in the tree are transforma-
tions of tasks caused by the application of inference rules, in other words they
represent derivations of new formulas. Information about proof steps, such
as which or how many inference rules were applied, can be read directly from
the proof object.

The ATP receives a sequence of proof steps as the dialogue progresses. The
verification of each step is carried out by first expanding the tree, starting from
the current task, using a depth-limited breadth-first search over inference rules.
The student’s step is compared to the newly-created nodes, and if it matches
then it is considered correct. The non-matching nodes are pruned from the
tree. By inspecting the newly created nodes the ATP can tell us which infer-
ence rules were applied how often, which premises were used, and what is left
to prove. This approach has been tested on a subset of the DIALOG corpus,
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and was able to correctly verify 113 out of 116 proof steps [67]. The benefits
of this approach are that there is no need for preauthoring possible proofs in
the style of model tracing approaches, and there is no required order of steps.
The student is free to build any correct proof of the current theorem. Further,
the Omega system reasons at a human-oriented level, which means its set of
inference rules is designed to closely match the rules that mathematicians use.
We further assume for our model the availability of an analysis of the relevance
and granularity of proof steps. Granularity refers to the size of a proof step,
and has been investigated within the Omega project [173, 19]. They analyse
granularity as being dependent on the student, tutor and the state of the cur-
rent task. We were again unable to add the granularity analysis to our model
within the scope of the DIALOG project, however our assumptions of the avail-
able functionality are realistic and are supported by results from the Omega
project.

The tutorial manager embodies a theory of tutoring. Work within the
DIALOG project [74] has proposed a pedagogical module which relies inter-
nally on an ontology of mathematical concepts and a taxonomy of hints, such
as the elicitation or giving away things like concepts or inference rules. Based
on a simple student model, previously generated hints, and the categorisation
of the current step, a hinting algorithm may generate a hint to be presented
to the student. A natural language understanding module should analyse the
student’s input and extract the solution step it contains, if present. We assume
that the dialogue manager receives a solution step and the dialogue moves that
were performed. A natural language generation should verbalise the dialogue
moves which our model outputs.

4.2.2 Concepts from the data
In our analysis of the corpus of tutorial dialogues in Chapter 3 we identified a
number of concepts which we will now use in our formal model of task-level
grounding. We present in turn our definitions of solutions steps, the task-level
grounding acts, and the types of evidence of understanding students can offer.

Solution steps

As we introduced in Section 3.2.1, a solution step is the building block of the
solution that a student is preparing. In tutoring the performance of a solu-
tion step is a knowledge demonstration, that is, a successful solution step is
an indication of mastery of the concepts that it contains. A sequence of so-
lution steps constitutes a possibly partial solution to an exercise. We use an
explicit concept of solution step in our model because it is the object which
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the student and tutor discuss, and it is the equivalent of the discourse unit in
communication-level grounding. For mathematical theorem proving, the so-
lution steps are steps in the proof of a theorem, and are typically derivations
of new valid formulas. The components of such solution steps in our module
are: the newly derived formula, a set of inference rules applied to derive the
formula, and a set of premises from which the formula was derived.

For the possible values of solution step components in the theorem proving
scenario, we orient ourselves to the study material which was given to the
students in the data collection experiment presented in Section 3.1. The range
of inference rules are those listed in Table 3.1 on page 37, and each one is
associated with the number of times it was applied in the solution step. The
types of formulas which may be part of solution steps are those which are
syntactically well-formed using the standard operators and connectives from
mathematical logic, set theory and binary relations, which are also taken from
the study material. From mathematical logic we have ∧, ∨, ¬,⇒,⇔, ∀ and
∃. From set theory we have ∈, ∪, ∩, ⊂, ⊆, ⊃, ⊇, as well as the notation for
pairs (x, y) and the set construction expression A := {x|x = . . .}. From binary
relations we have the connectives ◦, meaning relation composition, and R−1

for the inverse of a relation R. Premises must be formulas which are part of
the partial proof constructed so far.

Solution steps must not necessarily contain all of these components explic-
itly. When they do not, they are said to be underspecified. For instance, a
solution step may be performed by stating only its inference rules and the de-
rived formula. The premises are still part of the proof step in the logical sense,
but the student’s expression of the step left them unstated. The inference rules
may also remain underspecified. If only a subset of either the inference rules
or the premises are stated, then the remaining ones are said to be underspeci-
fied. Underspecification can be partially or fully resolved by explicitly stating
previously missing components, thereby adding them to the step. This is re-
ferred to as augmentation. For instance the solution step under discussion in
example 4.2 on page 58 would be represented after the first utterance by only
the formula “(x, y) ∈ S−1 ◦R−1”; the justifications and premises remain under-
specified. After the student’s second utterance, which is an augmentation, the
step would be represented by the formula, the justification “composition”, and
no specified premises.

Task-level grounding acts

For a solution step to become grounded it must first be proposed by either the
tutor or the student and subsequently accepted by the tutor, provided that the
tutor has sufficient evidence to believe that the student has deeply understood
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Action Description

Propose Proposes a solution step
Accept Accepts the solution step and that the student has understood it
Reject Rejects the step
ReqEv Requests evidence to show understanding of the current step
SuppEv Gives evidence showing understanding of the current step
Abandon Abandons the discussion of the step without accepting or rejecting it

Table 4.4: Task level grounding actions

the concepts used in the step. To reach this state the student may be obliged
to supply evidence of having understood the step, and this evidence can be of
varying strength. It is these actions, used in the course of grounding a solution
step, which we model, and we will refer to them as task-level grounding actions
(TLGA). We list the set of TLGAs in Table 4.4.

The Propose action begins a new discussion subdialogue with the contribu-
tion of a new solution step. It contains the initial content which is to be dis-
cussed, and is the equivalent of Initiate in communication-level grounding. A
proposal may be made by either dialogue participant, but in our data is typi-
cally made by the student. Accept and Reject are both intended to be performed
by the tutor. They inform the student that the solution step was acceptable
(or not acceptable, respectively) as an addition to the current partial solution,
and bring the discussion to an end. Acceptability in this definition depends on
whether the tutor believes that the student did in fact understand the solution
step and its components at a deep domain level.

The actions ReqEv and SuppEv are concerned with ascertaining whether
such understanding is in fact present, with a view to determining the accept-
ability of the step. ReqEv, or “request evidence”, is performed by the tutor to
ask the student to explicitly demonstrate deep understanding of the solution
step in its current state. It could be performed when the tutor believes that
the content provided by the student so far is not sufficient to show that the
student has understood everything, for instance when the step is too complex
or too underspecified for the student’s current level of expertise. SuppEv, or
“supply evidence”, is the student’s action in response to this request, and offers
evidence of having understood the step. Because it is concerned with provid-
ing evidence of understanding, SuppEv is closest in function to Acknowledge
in communication-level grounding. To paraphrase, the performer of a SuppEv
states “yes, I have understood the content which we are currently discussing”,
just as the performer of an Acknowledge does. It is also a function similar to
that of Continue, because it adds related content to a previously proposed so-
lution step. Analogously ReqEv corresponds most closely to ReqAck. Finally
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Type Description

Augment An elaboration of the current step
Reword Paraphrase of the current step
Claim Positive answer to “do you understand?”
Verbatim Repeat back the step verbatim

Table 4.5: Types of evidence of understanding, from strongest to weakest

Abandon ends a solution step discussion subdialogue without either accepting
or rejecting the step.

Evidence of understanding

Whether a solution step is acceptable or not depends directly on the level of
evidence that the student can supply to show that he has understood it fully.
For some steps (given the current state of the tutor’s beliefs about what the
student knows) the mere statement of the step is sufficient, but for others,
further evidence of understanding may be required. Just as Clark and Schae-
fer [51] identify different types of evidence of understanding (which we have
listed in Table 4.1 on page 55), the action SuppEv encompasses a number of
different ways of showing understanding of a solution step. From our analysis
of the data, we propose the four categories listed in Table 4.5 from strongest to
weakest. Although verbatim repetition of the content being grounded is the
strongest evidence type in Clark and Schaefer’s communication level ground-
ing model, at the task level it is the weakest form, since it does not show any
understanding beyond recognition of the original utterance. Claiming under-
standing is an indication of self-reflection on the student’s own belief state, and
is considered a weak form of evidence. For instance Person et al. [151] find
students’ answers to comprehension-gauging questions to be misleading and
that students are often unaware of their knowledge deficits. Rewording is a
strong indication of understanding, but does not add anything to the current
content which is being grounded. The strongest and most prevalent type of
evidence is an augmentation of the current solution step with further informa-
tion. This action shows that the student knows even those components of the
step which were not explicitly stated in the original proposal.

In keeping with the observation within the Contribution Model that evi-
dence must be “sufficient for the current purpose” [50, p. 136], the tutor’s
decision of whether to consider this evidence sufficient to assume understand-
ing of the current content and to licence accepting the step depends at least
on the content itself, the state of the dialogue and of the solution constructed
so far. In general it will also depend on some student model and a teaching
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Speaker Utterance Step TLGA

Tutor Now what is a factorial design? 1 –
Student The design has two variables 2 Propose
Tutor Uh-huh 3 Accept
Tutor So there are two or more independent variable and

one *PAUSE*
4 ReqEv

Student dependent variable 4 SuppEv (Augment)
Tutor Do you see that? 5 ReqEv
Student Uh-huh 5 SuppEv (Claim)

Figure 4.1: Annotated example from [85]

Speaker Utterance TLGA

Student From this it follows that: (x, y) ∈ S−1 ◦R−1, which was to
be proved

Propose

Tutor Correct. Please give a simple justification for the last step
of the proof

Accept, ReqEv

Student It follows directly from the definition of relation compo-
sition

SuppEv (Augment)

Tutor Right. You have completed the exercise Accept

Figure 4.2: Annotation of example (4.2)

strategy. We will return to this topic in Chapter 6, in which we discuss the
selection of the tutor’s action in a given dialogue state.

We now have an inventory of solution steps, TLGAs and types of evidence,
and to illustrate their use we now show the annotation of two examples. Fig-
ure 4.1 shows the annotation of a dialogue excerpt presented in [85], in which
we see that TLG offers an alternative account of the same unit of dialogue
structure. The question posed by the tutor at the start of the excerpt is not
annotated with a TLGA because we assume that solution step discussions be-
gin with the contribution of the step itself. Direct questions are rare in our
data because of the nature of the task, which leads the student to take the ini-
tiative. Steps 4 and 5 are both accounted for as pairs of ReqEv, SuppEv because
they both lead to the tutor being able to add to a private model of what the
student has shown to understand. The example finishes before an final explicit
acceptance is performed.

Figure 4.2 shows the annotation of example (4.2). As we showed above, the
tutor asks for further evidence after the initial proposal of the solution step,
and after an augmentation of the step is able to accept it.
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Figure 4.3: The top-level structure of the information state

4.2.3 Dialogue state

As yet our model describes the function of individual actions within task-level
grounding subdialogues. We must still add two further components which
will extend it into an operational model: a data structure to represent the dia-
logue state, which will contain representations of the concepts we introduced
in the previous section, and a finite state machine defining the acceptable se-
quences of TLGAs.

We model dialogue state in the style of traditional information state-based
theories [193]. These theories, such as those implemented in GoDis [118, 117]
or EDIS [135], typically represent some of the following concepts in their
dialogue state: a dialogue history, some model of interlocutors’ beliefs, plans
or goals, the latest utterance, as well as any task- or theory-specific components
that are required. Our information state will contain representations for the
following elements, which will describe in turn: the common ground (CG),
the latest utterance, solution steps and those that are under discussion, and a
dialogue history. The top-level structure of our IS is shown in Figure 4.3.

We model CG as being similar to that of DeVault and Stone [64], who build
on Lewis’ [124] notion of context as a conversational score. Their objective
normative context is a product of the actions taken by the dialogue partici-
pants in the preceding interaction. In our case, actions in the dialogue result
in the dialogue participants having beliefs about the truth (or falsity) of the
propositions that have been contributed by the student and evaluated by the
tutor. This is combined with the knowledge in the study material that the
students are given before the tutorial session. We assume that it is part of the
CG at the start of the dialogue. The CG is populated by the facts which have
been made true by the actions of the dialogue participants. In our model this
includes the facts that propositions were uttered, the evaluations of those ut-
terances by the tutor, and the facts that the student knows about the domain
as a result of preparatory study.

Our notion of CG is also similar to that of Matheson et al. [135]. The
GND (abbreviation for “grounded”) element in their dialogue state contains
material which has been grounded. Within GND a history of dialogue moves is
stored in GND/DH and the propositions to which the dialogue participants are
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committed are stored in GND/SCP. We will also maintain a set of propositions
in the common ground (in CG/PROPS), namely those which have been agreed
upon in the course of the dialogue. The common ground additionally includes
a stack of discourse obligations in CG/OBL, which are the actions the dialogue
participants are obliged to perform in the future. This topic is taken up in
more detail in Section 4.2.4. Our representation of the common ground is the
following:







PROPS
¦

uttered(student, solnstep1), . . .
©

OBL
¬

obl(tutor, address), . . .
¶







The slot CG/PROPS is a set, and supports element of, add and delete opera-
tions. There are three types of propositions which can appear in it. The fact
that a solution step s was uttered by a speaker A is modelled as uttered(A, s ).
If we have uttered(A, s ) ∈ CG/PROPS we know only that the event took place,
however we do not yet know anything about the truth or acceptability of the
solution step. For this we use the proposition type holds(). Depending on
whether they were accepted or rejected by the tutor, for each solution step
s that has been uttered the common ground will contain either holds(s ) or
¬holds(s ) respectively. The negation of holds() is not intended to express
that the step was wrong, rather it means it was not right. This distinction
is important for irrelevant steps, which may be logically correct but are still
rejected by the tutor in the context of the current solution.

For previous knowledge that the student is assumed to have at the outset of
the tutorial session, we use the proposition prev(). Its argument is a mathe-
matical concept that the student knows, taken from the set of concepts we in-
troduced in Section 3.2.1. For instance if prev(set_union) ∈ CG/PROPS then
the student is judged to know the concept of simple set union.

The representation for solution steps reflects our description of their con-
stituent parts as presented above. A solution step consists of all of the informa-
tion we know about it after it has been analysed by the mathematical domain
reasoner. Its structure is illustrated in Figure 4.4, which is the representation
of the solution step from example (4.2), after the student’s first utterance and
after the evaluation has been provided by the domain reasoner. Each solution
step will be assigned an identification string when it is first uttered in the di-
alogue. The IDs are used to refer to the solution steps in other parts of the
dialogue state, such as in the PENDING and CG/PROPS slots, to avoid hav-
ing to copy the complete structures. The FORMULA slot contains the formula
that was derived in the step. Similarly the PREMISES slot contains a list of such
formulas to encode the premises from which the formula was derived. The in-
ference rules which were used in the derivation of the step are encoded in the
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Figure 4.4: Representation of solution steps in the dialogue state
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Figure 4.5: Representation of utterances in the dialogue state

RULES slot as a list of rule names, taken from the same list we presented in Sec-
tion 3.2.1. The evaluation of the solution step, assuming it is already available,
is encoded along the three dimensions provided by the mathematical domain
reasoner: correctness, granularity and relevance. The possible values of the
correctness slot are “correct”, “incorrect” and “partially correct”. The gran-
ularity slot can have the values “appropriate”, “too coarse-grained” and “too
fine-grained”. The relevance value can be “relevant”, “irrelevant” or “partially
relevant”. All three may carry a “not applicable” value.

We use a separate top-level slot to store the solution steps which are cur-
rently under discussion, which we call PENDING. This slot functions like the
CDU element of the dialogue state in [135], where CDU stands for current dis-
course unit. CDU contains the discourse unit which has been initiated but not
yet grounded. Similarly solution steps which have been proposed but not yet
accepted or rejected, or their IDs, will be stored in PENDING.

The top-level slot LU contains a representation of the latest utterance in the
dialogue; Figure 4.5 shows the representation of the first utterance in exam-
ple (4.2). Traditionally the LU slot stores the speaker of the latest utterance
and a list of the dialogue moves which were realised by the utterance. In our
model the value of LU/SPEAKER is either “student” or “tutor”, and the value
of LU/DMOVES is a set of TLGAs. To these two we add a solution step, if
the utterance in question contained one, and an identification string. The slot
LU/SOLN-STEP contains a structure as shown in Figure 4.4 above.
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Figure 4.6: The FSA describing task-level discourse units

4.2.4 Finite-state model of subdialogue structure

Like in Traum’s model of grounding, the legal sequences of utterances in a so-
lution step discussion subdialogue will be governed by a finite-state machine.
The states in the finite-state machine are dialogue states, whose representation
we have introduced in the previous section. The edges are thus transitions
between dialogue states, and are traversed in reaction to the recognition of
dialogue moves that the tutor or student perform. The traversal of an edge
triggers an update to the dialogue state. The combination of the finite-state
machine and the dialogue state representations is an operational model of so-
lution step discussion subdialogues. From the finite-state machine we will ex-
tract a set of update rules which operate on the dialogue state, and we will use
these in the implementation of the model in an ISU framework.

The finite-state machine is shown in Figure 4.6. In state 1 no solution step
has yet been proposed or is under discussion. The only legal TLGA is Propose,
which begins the subdialogue with an ungrounded solution step. This is the
equivalent of GPM’s phase 2, the contribution of an answer from the student.
The tutor now has three options to respond with: either Accept, Reject or Re-
qEv. These constitute GPM’s phase 3, in which the tutor gives initial feedback
to the student’s answer. If the tutor accepts the step, the subdialogue ends with
it being grounded in state 5. If the tutor rejects it, the subdialogue ends in state
6 without the step having been grounded. In both of these cases phases 4 and
5 are not realised.

If the tutor decides to request evidence of understanding, the subdialogue
enters GPM’s phase 3 — collaborative improvement of the quality of student’s
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contribution. The finite-state machine is in state 3, and now the student
should respond by supplying the requested evidence. In state 4, the tutor has
the same range of choices as in state 2, only now the student has supplied ev-
idence of understanding. The tutor may accept or reject the step, ending the
subdialogue in state 5 or 6 respectively, or may remain in the collaborative im-
provement phase by requesting further evidence from the student. A series of
such requests and answers will eventually allow the tutor to either accept or re-
ject the step. In any state in the model either dialogue participant can perform
an Abandon, which ends the subdialogue in a final state 7. The solution step
under discussion is removed and does not become grounded. In the interest of
clarity in the diagram, these edges are not drawn.

The link between the dialogue state introduced above and the finite-state
model of solution step discussions is realised in the definition of the transi-
tions between states in the finite-state model. The conditions which determine
whether a transition can be made are modelled as constraints on the content
of the dialogue state, and transitions have effects which can change the con-
tent of the dialogue state. This design choice has been made with a view to
implementing the model using the information state update approach.

In order to restrict which TLGAs may be performed in which dialogue
states, we use a rudimentary model of discourse obligations. We follow pre-
vious work [194] in which discourse obligations are a representation of what
an agent should do, induced by a set of social conventions. Their account
of obligations makes no assumptions about shared knowledge, and offers an
account of uncooperative or adversarial dialogues. This property makes obli-
gations attractive for modelling tutorial dialogue, because the tutor’s role is
not one of complete co-operativity. For instance a tutor may respond to an
information request from the student with “You tell me” or even “I’m not
telling you”. Such a response would fulfil the obligation to respond that the
request introduced, but without actually answering the request itself.

Agents deliberate based on both their goals and their obligations, the cru-
cial difference being that obligations must be fulfilled whereas goals must not
necessarily be followed. Obligations encode social norms, such as that asser-
tions should be addressed and requests for action acted upon. For the norms
associated with the tutoring scenario we introduce SuppEvo and Addresso to
denote the obligation on the student to supply evidence to the tutor and the
obligation on the tutor to address the student’s contributions respectively.
The introduction and discharge of obligations is associated with the perfor-
mance of TLGAs as listed in Table 4.6. Obligations are annotated with a sub-
script o to differentiate them from dialogue moves. We will use the notation
obl(speaker,typeo) to denote that an obligation of a particular type is imposed
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Type Introduced by Discharged by

SuppEvo ReqEv SuppEv, Abandon
Addresso Propose, SuppEv Accept, Reject, ReqEv, Abandon

Table 4.6: Obligation types

on a speaker.
Following [114], who develop an ISU-based dialogue model with discourse

obligations, we put the current set of obligations into the common ground
(CG/OBL). This reflects the fact that since obligations are derived from per-
formed utterances, then as long as the student and tutor follow the same social
conventions, they will always have an aligned set of obligations. By using
obligations we do not have to explicitly name the states from the finite-state
machine in either the definition of the transition rules or the dialogue state,
rather they are implicitly encoded in the current list of obligations. Again,
this design choice has been made with a view towards the implementation.

The definitions of the transition rules are listed in Table 4.7. The table con-
tains some notation and operations which we use to write our rules. Equality
of the value of an information state slot is tested with “=”, and membership
of a set object with ∈. We use local variables to store objects for the course of
the execution of a rule with the “let” construct. An object is added to the top
of a list with “push”, and “add” and “del” are used to add to and remove from
a set.

We now go through the intended meaning of each rule in turn. Rule A is
the transition from state 1 to state 2 in Figure 4.6. If the speaker of the last
utterance was the student, and a Propose was performed, then get the evalua-
tion of the solution step from the mathematical domain reasoner, put the step
in the PENDING slot, and introduce an obligation on the tutor to address this
proposal. Rules B and C cover the situation in which the tutor either accepts
or rejects the current solution step. They fire if the last speaker was the tutor,
if an Accept or a Reject, respectively, was performed, and if the tutor currently
has an obligation to address the student’s latest contribution to the solution
step. In both cases the current step is removed from the PENDING slot and
the obligation to address is deleted. In the case of acceptance the proposition
holds(s ) is added to the common ground, for a rejection ¬holds(s ) is added.

The transition in Rule D happens when the tutor requests evidence of under-
standing. Like the previous two rules, the performance of a ReqEv discharges
the obligation to address, so this obligation is deleted. The other effect of this
rule is to introduce an obligation on the student to supply evidence. Rule E
covers the case in which the student supplies the requested evidence. In do-
ing so the obligation to supply evidence is discharged, and a new obligation is
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4 A model of solution step discussions

Rule Definition

A if LU|SPEAKER = student
Propose ∈ LU|DMOVES
Let s := LU|SOLN-STEP

then update s with evaluation
PENDING := s
push( obl(tutor, Addresso), CG/OBL)

B if LU|SPEAKER = tutor
Accept ∈ LU|DMOVES
Let s := PENDING
obl(tutor, Addresso) ∈ CG/OBL

then PENDING := ;
del(obl(tutor, Addresso), CG/OBL)
push(holds(s ),CG|PROPS)

C if LU|SPEAKER = tutor
Reject ∈ LU|DMOVES
Let s := PENDING
obl(tutor, Addresso) ∈ CG/OBL

then PENDING := ;
del(obl(tutor, Addresso), CG/OBL)
push(¬holds(s ),CG|PROPS)

D if LU|SPEAKER = tutor
ReqEv ∈ LU|DMOVES
obl(tutor, Addresso) ∈ CG/OBL

then del(obl(tutor, Addresso), CG/OBL)
add(obl(student, SuppEvo), CG/OBL)

E if LU|SPEAKER = student
SuppEv ∈ LU|DMOVES
Let s := PENDING
obl(student, SuppEvo) ∈ CG/OBL

then del(obl(student, SuppEvo), CG/OBL)
push( obl(tutor, Addresso), CG/OBL)
update pending step

F if Abandon ∈ LU|DMOVES
PENDING 6= ;

then PENDING := ;
CG/OBL := ;

Table 4.7: Transition rule definitions
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introduced on the tutor to address this latest contribution. If the SuppEv utter-
ance added content to the current solution step, this update is also made, for
instance evidence of type Augment resolves underspecification by adding ele-
ments to the solution step such as justifications or premises. Finally an Aban-
don may be performed by either dialogue participant at any time as long as
there is a solution step under discussion. Any pending step or obligations are
deleted, which ends the subdialogue without changing the common ground.

4.3 Examples
To illustrate the operation of the model we now present some examples. The
simplest solution step discussion subdialogue is one in which a proposal from
the student is followed directly by either an acceptance or a rejection of that
proposal by the tutor. This is the trivial case in that no actual discussion takes
place, and in terms of dialogue frames this constitutes skipping step 3, collab-
orative improvement. The majority of interactions in the corpus are of this
type. They are accounted for by the model as a sequence of rule A followed
by rule B, which leads to the update of the common ground with holds(s ).
A more illustrative example is one in which some discussion takes place. We
will go step by step through example (4.2), whose annotation was given in
Figure 4.2.

The performance of a Propose by the student to start the discussion causes
rule A to fire. This updates the dialogue state with the evaluation of the step,
puts it on PENDING, and adds the tutor’s obligation to address it. The full
dialogue state resulting from this update is shown in Figure 4.7. The tutor’s re-
sponse is a ReqEv, which triggers rule D. The pending step remains the same,
but the obligation to address is discharged and the content of CG/OBL be-
comes

�

CG
h

OBL
¬

obl(student, SuppEvo)
¶
i
�

The dialogue is now in state 3 of the finite-state machine, that is, in GPM’s
answer improvement phase. The student performs a SuppEv with evidence
type Augment, which triggers rule E. The result is that the obligation to supply
evidence is discharged and a new obligation obl(tutor, Addresso) to address the
contribution is imposed on the tutor. The solution step is also augmented by
adding the rule name “composition” to the RULES slot. The final utterance
in the example is the tutor’s acceptance of the step under discussion, which
triggers rule B. The pending step is removed, the obligation is discharged, and
the fact that the step holds is added to the common ground. The final dialogue
state is shown in Figure 4.8.
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Figure 4.7: Dialogue state after the student’s Propose

4.3.1 Using the common ground: Detecting misalignment

The benefit of maintaining common ground in a dialogue model for tutorial di-
alogue lies in supporting the action selection algorithm. We will deal with the
question of selection in more detail in Chapter 6, but here we will show exam-
ples concerned with misaligned context. If a tutorial dialogue system knows
more about the current knowledge state of the student, it is better equipped to
tailor its output and handle possible problems. One example of using common
ground to draw conclusions about the student’s knowledge state is in detect-
ing misaligned context. In general if grounding fails then dialogue participants
may reach the state of having differing beliefs about the state of the common
ground. Their CGs are said to be “defective” [183] or misaligned, and this
situation can lead to miscommunication. Tutoring is particularly prone to
such problems because of the inherent asymmetry of knowledge between the
student and the tutor.

A clear manifestation of misaligned context in dialogue is the occurrence
of informationally redundant utterances (IRU), examples of which we have
presented in Section 3.2. An utterance is informationally redundant if the
proposition it expresses is entailed, presupposed or implicated by a previous
utterance in the discourse [201]. If an unmarked IRU is performed then the
information it contains, which has already been grounded, is being repeated
without the speaker indicating that this repetition is being done on purpose.
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Figure 4.8: Final dialogue state after the tutor’s Accept

Predicate Definition

grounded(s ) holds(s ) ∈ CG/PROPS ∨ ¬holds(s ) ∈ CG/PROPS
iru(u) grounded(solnstep_of(u))
misaligned() (iru(LU) ∧ LU/MARKED−) ∨ (¬iru(LU) ∧ LU/MARKED+)

Table 4.8: Predicates to detect misalignment of the common ground

This indicates to the hearer that this information was not in what the speaker
believes to be the CG of the dialogue. The hearer must then conclude that the
CG has become misaligned. The occurrence of IRUs in our corpus has been
highlighted by Karagjosova [112].

We detect misalignment in our model by defining a predicate on the com-
mon ground and the latest utterance. For this we will assume that the natural
language analysis module can recognise whether a utterance was marked for
informational redundancy, for example with a particle such as “of course”.
We extend our representation by adding the slot LU/MARKED with the range
{+,−} to the latest utterance. We then define the set of predicates listed in Ta-
ble 4.8. Informational redundancy is defined in terms of the solution step that
an utterance contains. If the solution step was either accepted or rejected by
the tutor in the previous dialogue, then the step is in the CG, and grounded(s )
is true. An utterance is an IRU if its embedded solution step (accessed by
solnstep_of()) is grounded. The dialogue context is in turn misaligned if
either the latest utterance is an IRU which has not been marked for informa-
tional redundancy, or if the latest utterance is marked for informational redun-
dancy but is not an IRU. Now that we can detect misalignment in the dialogue
model, we are in a position to indicate this to the pedagogical module, which
can take appropriate action to attempt to remedy the problem.1

1Note that the definition of grounded(s ) implies some test of formula equality, and we are assuming only a
simple string representation. This is clearly a strong approximation, and more sophisticated representations
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We now consider again two of the examples of misalignment from Sec-
tion 3.2. For the purpose of example (3.24), repeated here as (4.3), we let s1
stand for the solution step embedded in utterance S10.

(4.3) S10: It holds that (R∪ S) ◦T = {(x, y)|∃z(z ∈M ∧ (x, z) ∈ (R∪ S)∧ (z, y) ∈ T }
T10: That’s right!

. . .
S18: By definition it holds that (R∪ S) ◦T = {(x, y)|∃z(z ∈M ∧ (x, z) ∈ (R∪ S)∧

(z, y) ∈ T }
T18: That’s right! You’ve already performed this step.

The Propose in S10 and the Accept in T10 trigger the update rules A and B,
leading to s1 becoming grounded. The resulting CG is
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When the Propose in S18 is performed the predicate misaligned becomes true
of the current dialogue state because S18 is an IRU (the solution step it contains
is a match of s1, and is therefore grounded) but is unmarked for informational
redundancy. We can conclude that misalignment has taken place and inform
the tutoring module. In the example the tutor decided to remedy the misalign-
ment by reminding the student that the solution step in question had already
been performed.

If the tutorial dialogue system were to generate an unmarked IRU then the
student could mistakenly conclude that the common ground has become mis-
aligned. Therefore detecting IRUs in the output of the dialogue system is also
an important aspect. It is illustrated in example (3.25), repeated here as (4.4).
As a result of the Propose in S2 and the Accept in T4 the CG includes holds(s3),
where s3 is the formula A∩B = ;.

(4.4) S2: A∩B = ;
. . .

T4: Right. . . .
. . .

T8: . . . The justification could for instance be: Let x be an arbitrary element of B
, then it can’t be in A (since of course A∩B = ;) . . .
(German: . . . (da ja A∩B = ; ) . . . )

When the system recapitulates the solution in T8, one of the utterances con-
tains a formula which matches s3. That means that grounded(s3) holds and
that this utterance is an IRU, and to generate it without marking would be

would be possible, for example a context-sensitive definition of formula equality supported by the domain
reasoner.
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a false indication of misalignment. So that the student does not mistakenly
conclude that misalignment has taken place, the tutor adds the marking “of
course” to indicate informational redundancy.

4.4 Summary and discussion
In this chapter we have presented a computational model of solution step dis-
cussion dialogues based on the concept of task-level grounding actions. The
model accounts for the same subdialogues as described by Graesser et al. in an
analysis of tutorial dialogues as dialogue frames. We were able to show that
dialogue frames could be described in a grounding-style model, and the model
we have presented is similar in design to Traum’s Grounding Acts theory. Our
model maintains the common ground in a tutorial dialogue, which is updated
to reflect the tutor’s beliefs about the student’s task-level knowledge state. The
common ground functions as a simple student model. Updates to the common
ground are triggered by task-level grounding actions. For instance when the
tutor accepts a solution step that the student has proposed, this fact becomes
common ground. The decision of whether to accept or reject a solution step
is made at least partially based on what evidence of understanding has been
offered by the student — if the evidence is deemed insufficient the tutor can
demand that the student provides further evidence to show understanding of
the step.

The model is characterised by a set of task-level grounding actions, a dia-
logue state, and a finite-state machine defining transitions between dialogue
states. The dialogue state contains representations of concepts found in the
data, such as solution steps and evidence of understanding. The TLGAs and
the finite-state machine are analogous to grounding acts and the finite-state
model in the Grounding Acts theory. The notion of graded evidence of under-
standing is taken from Clark and Schaefer’s Contribution Model.

The combination of grounding and tutorial dialogue has been advocated by
Baker et al. [13]who argue that learning from grounding is the basis of collab-
orative learning, but admit that this does not guarantee “deeper” understand-
ing. However few tutorial dialogue systems explicitly use a model of common
ground. Rickel et al. [164] use a general dialogue model in a tutoring system
which combines pedagogical expertise with collaborative discourse theory and
plan recognition. Their approach models the knowledge state based on steps
that the student has been exposed to, however without considering whether
the student in fact fully understood these. Zinn et al. [218] present a tuto-
rial dialogue system which maintains common ground in the dialogue model,
however they do not make use of grounding status to structure the dialogue
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locally and the choice of tutoring actions is not informed by the state of the
CG.

We have made certain simplifying decisions in the design of the model. Al-
though it would be useful to be able to refer to objects in the discourse ex-
plicitly, we do not use a discourse model. This restricts our ability to refer to
solution steps or their parts, or to resolve such references used by the student.
We use the common ground as a student model, however it is a rudimentary
one. The representation of mastery of a concept is limited to whether that
concept has been successfully used so far or not. Although the dialogue model
makes no further claims about this, the common ground does form the basis
for deliberation about the student’s knowledge state in the pedagogical mod-
ule.

In the corpus there are situations in which there is more than one solution
step under discussion at a time. To handle this situation it would be possible
to run two instances of the finite-state machine and have two pending solu-
tion steps on PENDING. Like downdating of questions under discussion, one
TLGA could then conceivably ground multiple solution steps. However with-
out a discourse model it would be difficult to attribute actions to the right
instance of the finite-state machine.

Despite these simplifications the design of the model does facilitate certain
possible extensions. A given dialogue model or theory of some other dialogue
phenomenon should be able to interact with ours due to our use of obligations
to implement the finite-state machine. Whenever there is an active obligation
on CG/OBL, but a non-TLGA is performed, the obligation simply remains,
effectively leaving the model in the same state as before. This way we could
for instance combine communication-level grounding such as [135] and task-
level grounding: whenever a communication-level grounding act is recognised,
the TLG model is put on hold until the intended meaning of the utterance can
be grounded. This way problems at the communication level would be solved
before problems at the task level.

Overall we have a continuously updated model of common ground which
can inform a selection algorithm for the tutor’s actions. Much further informa-
tion can be computed from the contents of the common ground, for instance
what rules have been used by the student how often, whether they were of
suitable correctness, granularity and relevance, and so on. In Chapter 6 we
investigate selection in a series of machine learning experiments, and see that
the content of the common ground can contribute to and improve this choice.
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Corpus annotation at three levels

The operational model for solution step discussions which we have presented
in the previous chapter was developed based on a qualitative analysis of the
phenomena found in a corpus of tutorial dialogues. In the course of this analy-
sis we proposed two dimensions of categorisation of utterances in the corpus.
The first, in Chapter 3, is a categorisation of the actions that students and
tutors can perform in relation to the exercise solving task. The second, in
Chapter 4, is a categorisation of the utterances’ function in task-level ground-
ing. This chapter takes the insights from the qualitative analysis and uses them
to inform a quantitative analysis of the content of the corpus.

We will present an annotation of the corpus on three levels. The first is the
task-level grounding action (TLGA) level, for which we develop annotation
guidelines based on the definitions of the TLGAs from Section 4.2.2. The sec-
ond level is the dialogue move level. Here we take the general-purpose DAMSL
dialogue move encoding scheme [5] and extend it to account for the types of
actions we highlighted in Chapter 3. Finally we perform an annotation of the
mathematical content of the student’s proof steps, with the goal of approxi-
mating the output which a mathematical domain reasoner would provide.

There are two main goals which motivate us to carry out these annotation
experiments. The first, which particularly concerns the TLGA and dialogue
move level, is to provide quantitative evidence for the occurrence of the action
types which we have proposed. The second is to use the corpus as a data set
for a series of supervised learning experiments, which we will report on in
Chapter 6. We will also use the corpus for the evaluation of our model, which
will be presented in Chapter 7.
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5.1 Annotation levels
We now present the three annotation levels in turn. For each one we outline
the motivation behind it and the intuitive concepts it is designed to encode.
We present the methodology we applied to prepare the definitions and annota-
tion guidelines, and how the annotation was performed. We give quantitative
results as well as measures of inter-rater agreement. Inter-rater agreement is cal-
culated using Cohen’s Kappa (K) [53]. It is a statistical measure of the extent
of agreement between two raters for categorical annotations which takes into
account chance agreement. It is expressed as

K=
P (A)− P (E)

1− P (E)

where P (A) is the observed agreement between raters and P (E) is the probabil-
ity of chance agreement, which depends among other things on the number
of categories. At K = 1 agreement is perfect and K = 0 means no better than
chance agreement. Negative values are also possible. A value above 0.8 is usu-
ally considered very good and above 0.6 is good [37]. All annotations were
carried out using the annotation tool MMAX2 [145], which includes an im-
plementation of the K statistic.

5.1.1 Task-level grounding actions
In Chapter 4 we proposed a model for task-level grounding along with a set of
action categories. The categories were inspired by Traum’s Grounding Acts
model [191], and capture the different actions that students and tutors can
perform in order to reach mutual belief about the student’s understanding of
mathematical content. We will now use these categories and their definitions
as the basis of an annotation schema for TLGAs. The goal of this annota-
tion is twofold: First, our presentation in the previous chapter was illustrated
with examples, but we would now like to analyse the frequency of occurrence.
Second, we plan to use the corpus as a data set for supervised learning, more
specifically, we plan to learn to predict the tutor’s TLGAs from a dialogue con-
text representation which includes the previously performed TLGAs. For this
task the annotated corpus will serve as a labelled data set.

This is a one-class annotation task. The markables are the turns in the cor-
pus, of which there are 2011 (mean per dialogue = 54.4, sd = 20.1). We in-
troduce two further labels to the original set of TLGAs which are intended
to describe possible combinations of actions at this level. We use AcceptReqEv
and RejectReqEv to capture the combination of Accept with ReqEv and Reject
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TLGA Definition

Propose This action proposes or augments a contribution to the current
solution.

Accept This action is performed by the tutor to take the solution step which
is currently under discussion on board for the current solution, when
the tutor is satisfied about the student’s understanding.

Reject Like Accept, except that the solution step under discussion was not
acceptable and should not become part of the solution.

Abandon This action can be performed by either student or tutor in order to
abandon the step which is currently being discussed.

ReqEv This action is performed by the tutor to try to find out whether
the student really knows how to perform the step that he has just
performed, in other words, whether he really understands it. The
tutor may specifically ask for a type of evidence.

SuppEv This action is the offer of evidence of understanding as requested by
ReqEv

Other This label is used for actions which have a function in the discussion
and acceptance of solution steps, but whose function is not covered
by the labels listed above.

None This label should be given to any utterance which does not contribute
to task-level grounding.

Table 5.1: Definition of categories for TLGA annotation

with ReqEv, respectively. Their introduction is motivated by utterances such
as (5.5), which is simultaneously an acceptance and a request for evidence of un-
derstanding. We also added a None type for utterances which have no relation
to the process of task-level grounding, and an Other act for utterances which
do have such a relation, but which is not captured by the existing categories.

(5.5) T28: Why does this (correct) relationship hold?

Methodology

We used the definitions from Chapter 4 as the basis of the annotation guide-
lines. They explain the scenario of dialogue-based tutoring and outline the
concept of task-level grounding. Each TLGA definition is listed along with
examples. The definitions given in the guidelines are paraphrased in Table 5.1.
The annotator is instructed to follow a decision tree to choose the right TLGA
for a turn, and is encouraged to keep in mind the previous utterance in the di-
alogue when interpreting the intention of the next utterance. The guidelines
also stress the fact that TLGAs may be implicitly realised, for instance an ex-
pression of encouragement can be an implicit acceptance of the latest proof
step. The decision trees for the student and tutor utterances are shown in Fig-
ures 5.1 and 5.2 respectively. In both figures the annotator must first consider
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Figure 5.1: Annotation decision tree for student utterances

whether some step was already under discussion before the current utterance
was performed. If there is such a step, then a solution step discussion is con-
tinuing, and the annotator must decide whether that step is being addressed
by the current utterance. If not, the current utterance may be Propose, Other
or None. If the step is being addressed, then the annotation will be one of the
other moves according to their definitions. For utterances labelled as Other the
annotator was asked to add a comment describing the case. Following these
guidelines, the full corpus was annotated by this author.

To verify the validity of the schema, a validation set of one dialogue session
containing 46 turns was annotated by an independent annotator, an under-
graduate student of computational linguistics who had also taken lectures in
pragmatics. He was familiar with the data in the corpus but not with the con-
cepts of task-level grounding or its annotation. The dialogue was chosen at
random from those which had at least one occurrence of a ReqEv act. This
restriction was made in order to find a dialogue in which it was likely that a
variety of TLGAs appear.

Results

The K value for the validation set of 46 turns is 0.51, which is below the thresh-
old for tentative agreement [37]. In examining the parallel annotations the
problem seems to concern the Propose and None categories. Rater 1 (this au-
thor) categorised 14 utterances as proposals, 13 of which were also categorised
as proposals by rater 2. Rater 2 however categorised a further 9 utterances
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Figure 5.2: Annotation decision tree for tutor utterances

as proposals which were categorised as None by rater 1. This difference had a
strong effect on the overall K value because propose is by far the most common
category. We list the by-class K values in Table 5.2. For Propose and None these
were 0.54 and 0.13 respectively, and the cause of this seems to lie with content
statements by the tutor. Where rater 1 considered content statements by the
tutor (for instance the statement of the task, statements of concepts, referrals
to study material) as not having any contribution to task-level grounding, rater
2 classed these as Propose. The remaining classes either show a good or very
good K value (Accept, Reject and AcceptReqEv) or occurred very seldom.

The distribution of TLGAs is given in Table 5.3. We find a very small
number of Other acts by both student and tutor, which indicates that the avail-
able categories are covering the kinds of actions that contribute to task-level
grounding. 584 of 2011 turns (29%) have no TLG role. These include for in-
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TLGA Total annotations K

Propose 36 0.54
Accept 18 0.86
Reject 6 0.64
Abandon 0 n/a
Reqev 0 n/a
Suppev 4 0.47
AcceptReqEv 6 0.64
RejectReqEv 1 -0.01
Other 2 -0.02
None 19 0.13

Table 5.2: K by class, validation set

TLGA Student Tutor

Propose 693 1
Accept 0 516
Reject 0 147
Abandon 0 0
ReqEv 0 18
SuppEv 20 0
AcceptReqEv 0 11
RejectReqEv 0 10
Other 3 8
None 210 374

Table 5.3: Distribution of TLGAs

stance posing the theorem, task management, and much of the remediation,
such as direct content questions from the student or explanations from the tu-
tor. Although we decided in our model that tutors can also add content to the
solution under construction, we only see one Propose from the tutor. It may
be that contributions from the tutor do occur but have been categorised in this
dimension into None, and indeed the tutor’s role in a tutorial dialogue is such
that his contributions are not proposals in the strictest sense, since they do not
need to be accepted by the student. Other than the single Propose the actions
are completely partitioned into Propose and SuppEv for the student and Accept,
Reject, ReqEv, AcceptReqEv, RejectReqEv for the tutor.

5.1.2 Dialogue moves

The annotation of dialogue moves is intended to encode the general pragmatic
function of utterances as well as their function in relation to the task at hand.
In our case the annotation we propose in this section has been developed to
describe utterances in tutorial dialogues. The set of moves and their defini-
tions are based on the categorisation of action types which we performed in
Chapter 3 and on a further analysis of another corpus of tutorial dialogues
on mathematical theorem proving. To ensure the taxonomy of moves we pro-
pose is generally applicable we will design it as an extension of a widely used
dialogue move schema, DAMSL (Dialogue Act Markup in Several Layers) [5].
We will also apply the annotation schema to an excerpt from a third corpus of
tutorial dialogues.

DAMSL provides a top level structure for an ontology of dialogue moves,
and has as its dimensions forward-looking function, backward-looking func-
tion, communicative status (whether the utterance was intelligible and suc-
cessfully completed) and information level (the semantic content of the ut-
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terance). The forward dimension captures utterances which are either asser-
tions, requests or commands. The backward dimension captures utterances
which relate to the previous discourse, such as agreeing or disagreeing, address-
ing questions, signalling the understanding status of previous utterances, or
which stand in some information relation to previous utterances. DAMSL uses
an information-level dimension to characterise the content of the utterance,
which can be related to the task, task management or communication manage-
ment. Communication management refers to conventional phrases like saluta-
tions or references to the communication channel, and is not further specified
here. Utterances which contribute to the task at hand are of type task, those
which contribute to the task solving process are task management. DAMSL
provides for a fine-grained description of dialogue moves but is intended to be
refined and extended to account for specific phenomena in a given dialogue
genre.

The material presented in this section has been published in Buckley and
Wolska [29] and Wolska and Buckley [208].

Methodology

The development and validation of the taxonomy of dialogue moves uses three
corpora of tutorial dialogues. We analyse the first corpus which was collected
in the context of the DIALOG project, which we will refer to as Corpus 1
[211], as well as the corpus which was introduced in Chapter 3, which we will
refer to here as Corpus 2. Corpus 1 was also collected using the Wizard-of-
Oz experimental paradigm. Students solved proofs in naive set theory under
the guidance of an expert human tutor playing the role of the system. The
dialogues were conducted in German using the keyboard and a graphical user
interface.

The tutoring strategies in Corpus 1 were restricted according to three exper-
imental conditions: minimal feedback, didactic and socratic. Subjects in the
control group (eight subjects) were tutored according to the minimal feedback
strategy, in which the tutor’s reactions were limited to informing the student
of the correctness and completeness of their contributions. In the didactic
group (seven subjects) the tutor’s strategy focused on disclosing partial solu-
tions to the student in case of lack of progress. In the socratic group (seven
subjects) the tutor was encouraged to lead the student toward the solution
through hinting. The verbosity of the minimal feedback tutors was limited,
while in both other conditions as well as in the second experiment, the sub-
jects and the tutors were unconstrained in terms of the linguistic realisation of
their turns. Corpus 1 contains 775 turns (332 student and 443 tutor turns).

Finally as part of the validation we will use an excerpt from the corpus col-
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lected by the LeActiveMath project (http://www.leactivemath.org). The
LeActiveMath corpus consists of 33 transcripts of tutoring sessions on differ-
entiation, conducted via a chat interface. The tutors were five experienced
mathematics instructors and the subjects were 28 first-year mathematics or sci-
ence undergraduate students, of whom five participated twice. Mathematical
expressions were entered using a formula editor, and text and formulas could
be interleaved. The corpus contains 1650 utterances, 5447 words and 559 for-
mulas. Further details on this data can be found in Callaway and Moore [34]
and Porayska-Pomsta et al. [155].

The development of our annotation schema for dialogue moves proceeded
as follows. In order to build the initial taxonomy we first analysed a devel-
opment set of 18 dialogues containing 299 utterances from Corpus 1. The
purpose of this analysis was to ascertain to what extent the DAMSL annotation
scheme can be used for tutorial dialogue. As DAMSL is a taxonomy with gen-
eral applicability we expected the non-genre specific elements to be suitable.
We also wanted to identify any features of relevant dialogue moves for tutorial
dialogue that were not present in the original taxonomy, motivated by the set
of possible actions arising from our analysis in Chapter 3. We identified an ini-
tial set of task-level moves, and wrote draft annotation guidelines containing
definitions of each.

To test this initial draft of the taxonomy we used it to annotate four di-
alogues containing 108 utterances taken from both Corpus 1 and Corpus 2
which had not been part of the development set. The annotation was per-
formed independently by this author and a co-developer of the taxonomy. We
compared and discussed the differences in this initial test set, after which we
both extended the taxonomy and refined some existing category definitions.

In order to test the coverage of the final tutoring taxonomy we randomly
selected two subsets of Corpus 1 and Corpus 2 with a total of 64 utterances,
which had not been part of the first or second step of development. In choos-
ing this validation set we avoided utterances consisting of formulas only in or-
der to encourage the occurrence of a wider variety of types of actions. The val-
idation set was annotated independently by this author and the co-developer.
To investigate whether the taxonomy transfers to data outside of but close to
our corpus, we applied it to 74 utterances from the LeActiveMath corpus.

The taxonomy

We now present the resulting taxonomy of dialogue moves. At the general
dialogue level we follow the DAMSL taxonomy and categorise the functions
of utterances according to their relationship with the previous dialogue and
their effect on the dialogue to follow. For these functions we use the forward
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and backward dimensions, respectively. In general, we try to accommodate
the DAMSL categories in order to build as much as possible on existing gener-
ally accepted work on dialogue moves. The main differences between DAMSL
and our categorisation within these two dimensions are the following: We
combine DAMSL’s Action-directive and Info-request in a higher-level category
of Requests, and in place of DAMSL’s Answer, we introduce a more general
Address category in the backward dimension with subcategories Answer, De-
flect, and Neutral, where Deflect accounts for avoiding answering and Neutral
refers to those utterances which simply address a previous information request
without answering it or a previous action directive without acceding to it. The
remaining DAMSL categories were left unchanged.

We further specify the task and task management dimensions in order to
enrich the DAMSL taxonomy to cover tutorial dialogue. Utterances in the
task category have the function of altering the state of the task solution, for
instance by performing a step in the solution, or talking about the task so-
lution without altering it, for instance making statements about previously
performed steps. We divide the task related actions into those which address
the task directly and those which address the solution construction process,
and capture these in the task and task management categories, respectively.

In the previous chapters we have identified the solution step as the building
block of tasks in tutorial dialogue in formal domains. The notion of what is
a contribution in the given dialogue genre, what task-level functions are rel-
evant and what types of task-level contributions there are, is determined by
both the type of the dialogue and participants’ goals. As mentioned above, in
tutoring dialogues, the task-level contributions refer to the solution to a posed
problem. The participants’ roles are those of a student and a tutor. The stu-
dent’s goal is to solve a problem (e.g. prove or compute), while the tutor’s goal
is to teach (e.g. guide towards a solution by giving hints). In other dialogue
genres, the participants’ roles, their goals, and so the definition of a contribu-
tion are different and depend on the dialogue purpose. In problem solving
dialogues, exemplified by Heeman and Allen [95] or Skuplik [179], the par-
ticipants’ roles are those of planning agents and their goals are to construct a
plan for the problem at hand. The main dialogue contribution is thus a step
in a plan. In information seeking dialogues (such as time-table enquiries), the
participants’ roles are those of information “seeker” and “giver” and the goals
are to find out and provide information, respectively. The contributions focus
on enquiry components.

In Table 5.4 we present the top level taxonomy with explanations of the la-
bels and examples. The Task category has three subcategories, which will be
detailed further below: Contribute domain content covers utterances which
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Label Explanation Example

Forward Dimension

Assert makes a claim about the world “It holds that P”
Reassert repeat a claim about the world “It holds that P”
Request introduces an obligation to answer

Action-directive the obligation is that an action is performed “Please show the following ”
Info-request request for a piece of information “What is the definition of...?”

Open-option suggestion of future action without obligation “You could do . . . ”

Backward Dimension

Agreement acceptance or rejection of propositions
Accept accepts a proposal “Ok, that’s right”
Reject rejects a proposal “that’s incorrect”

Address responses to requests
Answer answers a previously posed info-request “yes” or “no”
Deflect shows inability or unwillingness to answer “I can’t answer that”
Neutral addresses without answering or deflecting “Why do you ask?”

Information relation relation to an antecedent utterance
Understanding related refers to problems understanding the speaker

request clarification asks to clarify a previous utterance “what do you mean by X?”
request rephrase asks for a repeat/rephrase of an utterance “could you repeat that?”
signal non-understanding catch-all for understanding problems “pardon?”

Information-level Dimension

Communication management maintaining communication/contact ”Hello!”
Task performing the task

Contribute domain content refers to content for the current solution “let x ∈A”
Address domain content Discuss a performed step “Good idea!”
Request ask for help or information “What’s the next step?”

Task management addressing the task-solving process
Start task starts the solution construction process “please prove P =Q”
Finish task indicates end of solution construction “I’m done”, “q.e.d”
Restart task indicates solution being started again “start again”
Give-up task abandons the current solution attempt “I give up”
Task solution status references to solution progress “Your solution’s not finished”
Check solution adoption Check is solution is acceptable “So shall we do that?”

Other

Table 5.4: The full taxonomy, with explanations and examples

bring new domain content into the dialogue, such as new or continued solu-
tion steps. Address domain content labels utterances which talk about pre-
viously introduced solution steps, for instance evaluations. Request covers a
number of task utterances in which speakers ask for or about concepts in the
domain. The Task management category contains dialogue moves which start,
finish, restart or give up the task, as well as moves which refer to the status of
the task, for instance whether it is complete or not.

Table 5.5 presents the details of the task category of the taxonomy. The
dialogue moves listed here encode the actions which our qualitative analysis
in Chapter 3 highlighted. Domain content is realised by solution steps and
strategies. New steps can be performed and existing steps can be augmented
with missing elements. In addition, the category Provide domain content is
used for domain content which does not perform a solution step, such as ref-
erences to objects which are part of the general state of affairs. After having
been performed, steps can be addressed and discussed, for instances they can
be evaluated as being correct or incorrect. Further information about a step
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Dialogue move

Contribute domain content
Perform step

new solution step
solution step augmentation

Provide domain content
State of Affairs

State strategy
state strategy
state future step

Address domain content
Evaluate step

correct
incorrect

elicit further step information
hint

Request
req explanation

concept def
symbol

req worked example
req domain content

step
solution strategy
step augmentation
req reformulate

Table 5.5: Dialogue moves in the task dimension of the taxonomy

can be elicited or a hint can be given. There are many types of requests in tuto-
rial dialogue; our taxonomy lists those which occur in the data, but this list is
not necessarily exhaustive. Both students and tutors can request explanations
of domain concepts or worked examples. Students can also request that the
tutor supply steps or strategies as a source of help.

Results

Table 5.6 shows the inter-rater agreement values for the annotation of the val-
idation set described above which was taken from Corpus 1 and Corpus 2. In
the annotation we did not consider the category information-relation because
no definition is given by the original DAMSL taxonomy. These results can be
considered very good for the forward dimension and the task management
category, good for the task category, and low for the backward dimension.
Among the categories with the lowest agreement were Neutral at 0.11 and
Step-augmentation at 0.37. In this preliminary evaluation our strategy was
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Dimension K

Forward 0.87
Backward 0.47
Task 0.75
Task Management 0.91

Table 5.6: Inter-rater agreement values by dimension

Utterance Forward Backward Info-level

S: It holds that P (C∪(A∩B))⊆ P (C )∪
P (A∩B)

assert solution-step:new

T: Really? info-request reject signal-incorrect
S: no it’s not, answer
S: the other way around assert solution-step:new
T: that’s right at last assert accept signal-correct

S: R ◦ S := {(x, y) | ∃z(z ∈M∧ . . . assert task:contr:perform:new soln step
T: That’s right! assert accept task:addr:eval:correct
S: now i want the inverse of that assert task:contr:strategy:state-future-step
T: yes? neutral task:addr:hint
S: (R ◦ S)−1 assert neutral task:contr:perform:new soln step
T: = ? info-request request-clar task:req:explanation
S: How will the system answer? info-request neutral
T: What’s the question? info-request neutral
S: Can the system conclude
(R ◦ S)−1 from R ◦ S

info-request neutral

T: yes assert answer
T: But try it yourself! action-dir hint

Figure 5.3: Annotated examples from Corpus 1 and Corpus 2

not to use a category “other” for utterances which did not appear to belong to
any existing category, but rather to try to fit the annotation to the categories
as they are.

For the second part of our validation we now give examples of annotated
data from each of the three datasets introduced above. The examples in Fig-
ure 5.3 illustrate some of the types of problematic utterances which the cor-
pora contain. For instance the utterance “Yes?” is a question and could appear
to be an Information request, but in fact acts more like a prompt to continue,
for which we had no category. Similarly the functions of the questions in se-
quence in the second example are difficult to abstract. We have tagged these as
Neutral, since they discharge the obligations introduced by the questions be-
fore them, but the link between consecutive interrogative utterances is elusive.

In Figure 5.4 we show the information level annotation for an example from
the LeActiveMath corpus on differentiation. In annotating the dialogues on
differentiation with this taxonomy, we find they exhibit largely the same phe-
nomena as the theorem proving data, that is, the same dialogue moves seem to
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Utterance Info-level

T: try this: y = 1/(6x2− 3x + 1) taskmng:start
S: d y/d x =−12x + 3/(6x2− 3x + 1) task:contr:perform:new soln step
T: Bracket problem again task:addr:eval:incorrect
. . .
S: d y/d x = (−12x + 3)/(6x2− 3x + 1) task:contr:perform:augment step
T: Good task:addr:eval:correct

and now what about the power of (6x2− 3x + 1)? task:req:req augment step
. . .
T: yes well done task:addr:eval:correct
T: time to stop taskmng:finish

Figure 5.4: Annotated example from the LeActiveMath corpus

capture the data well. There are some differences, such as the more common
occurrence of step augmentations, possibly due to the computational nature
of the task, and the more common occurrence of task management utterances,
probably because of the shorter exercise length.

As in the case of Accept and ReqEv at the TLGA level, in annotating the
dialogue moves we have found that tutors typically perform utterances which
contribute to many different goals — for instance they can simultaneously
reject proposed solution steps while giving hints on how to continue in the
task. The purpose of multidimensional dialogue move taxonomies is to handle
this very multifunctionality, and while this is successful to a point, conflicts
in the annotation experiment have highlighted some dual functions within
the same category. For instance, utterances simultaneously rejecting steps and
requesting explanations of the errors in the steps were found a number of
times.

Some possible categories have emerged that may need to be added to the
current taxonomy to allow it to cover tutorial dialogue more completely. As
discussed above, a prompt type in the forward dimension seems necessary to
handle cases in which the tutor does not want to give any specific feedback,
but would like the student to continue solving the exercise. Such an action
could be part of a pedagogical strategy which lets students learn by continuing
after mistakes in order to come to contradictory conclusions. We would also
foresee a backward category which corrects a previous utterance. Some similar
categories are proposed by Tsovaltzi and Karagjosova [195], and may be taken
up.

With a view to our second goal in preparing the annotated corpus, using it
to support a series of supervised learning experiments, we have decided to not
yet proceed and annotate the full corpus with dialogue moves. The reason for
this that we have found a strong correlation between the TLGA annotations
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and the task-level dialogue moves. Nearly all utterances which have no anno-
tation at the task-level are also annotated with the TLGA None. Utterances
which are labelled as “new solution step” are always TLGA Propose, similarly
“signal correct” and Accept, “signal incorrect” and Reject as well as “request for
augmentation” and SuppEv. In the forward dimension of the dialogue move
annotation nearly all utterances are assertions, and those which are not are
either TLGA None or Other. This mean that in the context of supervised
learning, having the task-level dialogue move annotation adds very little to the
discriminatory power of a data point.

5.1.3 Mathematical content

The mathematical level annotation describes the content and properties of the
proof steps that the students contribute and uses in its encoding the math-
ematical concepts which we have introduced in the previous chapters. In
Section 4.2.1 we presented the Omega system and its functionality, which in-
cludes the ability to verify proof steps of the sort that occur in our corpus.
Omega constructs a formal proof object which can be inspected and from
which information describing the step can be read, such as the rules that were
applied, their instantiations or the premises that were used. As we however
explained, for technical reasons we were not able to use the Omega system to
process the corpus automatically. Our goal then with this annotation is to ap-
proximate the information that such a domain reasoner would have been able
to provide by performing a manual annotation of mathematical content. The
role of the annotator is to read and to try to follow the proof that the student
offered. At each proof step the annotator has to reconstruct the components
of the step, ideally recognising the same step as the student intended.

Three kinds of attributes will be annotated. We will annotate the rules that
were applied to derive the step, whether those the rules were applied correctly,
and how explicitly the proof step was presented, in other words, whether the
rules or premises were stated by name or not. To this we add the annota-
tions of correctness, granularity and relevance which were added by the tutors
during the corpus collection experiment. Overall the attribute set we use is in-
tended to reflect the information which it is reasonable to expect that a mathe-
matical domain reasoner can compute automatically. This way any model we
derive from the annotation will not make unrealistic assumptions about the
information it must receive from other parts of a hypothetical system.
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Methodology

The markables at the maths level were chosen based on the TLGA annotation.
Any turn which is annotated at the TLGA level as either Propose or SuppEv is
a contribution of a proof step, so therefore it should be annotated for mathe-
matical content. There are a total of 714 maths markables in the corpus (mean
number of maths markables per dialogue session = 19.3, sd = 9.9).

The initial attribute set contained the following attributes. We used one
binary attribute for each of the rules in our standard set from Table 3.1 on
page 37, which in turn was drawn from the study material, as presented in
Chapter 3. These binary attributes encode the fact that the rule was used
in the current step or not. Similarly we have one such attribute for each of
the three identities which are available to the student after they have been
proved. A three-way attribute represents whether the rules in the step were
applied correctly. The three cases are: the right rule was applied correctly; the
right rule was applied wrongly; or the wrong rule was applied. Two binary
attributes encode the explicitness of the expression of the step, one for when
at least one rule was stated and one for when at least one premise was stated.

The meanings of each of these attributes were documented in a set of anno-
tation guidelines. The guidelines introduce the scenario and present the set of
rules which form the basis of the annotation, before defining each of the at-
tributes. The annotator is encouraged to “try to understand what solution the
student is constructing for the current proof”. The motivation was to have the
annotator mentally building the same proof as the student so that hopefully
the same rule applications are recognised.

The annotation was carried out by an external annotator. He was an under-
graduate student of mathematics and computational linguistics, and had had
a number of lectures in mathematics and mathematical logic. He was paid
for his work. After an initial brief discussion of the task he was given the an-
notation guidelines and a single dialogue session to annotate. This subset of
the data consisted of one complete dialogue session of 60 turns containing 27
markables at the maths level. It was annotated independently by the annotator
and this author.

This annotation of the initial data set was then discussed with the annota-
tor in order to align on the interpretation of the annotation guidelines and to
further develop the attribute set. As a result of this discussion a number of
changes were made to the annotation schema. The attributes encoding the ap-
plication of rules were changed from binary to numeric to encode the number
of times a rule was used in the step. The goal here was to be able to recon-
struct a measure of step size from the total number of rule applications from
the annotation. Their range was set at [0,5], because we had yet to observe any
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steps in the data with more than five applications of one rule. Unused rules
are annotated with zero applications. For each rule that was applied, we added
an attribute stating whether the rule was applied correctly. This superseded
the attribute for wrong application of a rule above, because the fact that some
rule was wrongly applied can be read off rule by rule from the annotations of
correct applications.

It was decided that parallel applications of the same rule should be counted
twice, even if conceptually the same action has been performed twice, for ex-
ample when two structurally similar operands are both rewritten the same way
in a single step. An attribute was added for proof steps which do not apply any
rules, but which do contain mathematical content. Since such steps are typi-
cally introductions of simplifying notation, such as “We refer to (R ∪ S) ◦ T
as F ”, or assumptions of facts, such as “let a be element of A”, this attribute is
called “declaration”. Having reached agreement on the annotation schema, we
changed the annotations of the first dialogue to reflect our decisions, and the
annotator annotated the rest of the corpus.

Results

To test interrater agreement we chose at random a dialogue (44 turns, 19 maths
markables) which had close to the mean number of maths markables and
which was not the dialogue in the initial annotation data set. It was anno-
tated independently by this author. The design of this annotation schema is
such that it is not possible to calculate an overall K value. The reason is that the
annotation of markables at the maths level is not a single-decision categorial
annotation, as was the case with TLGA, but rather markables are annotated
with values across multiple features. Proof steps typically contain many rules
and vary across multiple dimensions such as explicitness, correctness etc.

There has been work on calculating agreement values for this kind of an-
notation task [115], but we will take a simpler approach and examine the
K values per attribute. We can calculate K for each individual attribute, since
these are categorical within themselves. The results are listed in Table 5.7. The
attributes for which the there is no K value are those whose rules did not occur
in the test annotation data set. These are annotated by both raters with all ze-
ros, from which it is not possible to calculate a meaningful K value. The two
attributes with the negative K values, quant and set_prop, received one and
two non-zero ratings, respectively, from one rater. This means that the confu-
sion matrix for these rules is heavily weighted towards the (0,0) cell. The low
value is caused by the fact that although the observed agreement is high, so is
the probability of chance agreement. Of the four rules which were used more
often, composition, inverse, and identity1 exhibit K values which may be con-
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Attribute Range K
prop [0,5] 1.00
quant [0,5] -0.03
subset [0,5] n/a
psubset [0,5] n/a
exten [0,5] n/a
set_prop [0,5] -0.05
union [0,5] 0.48
intersection [0,5] n/a
composition [0,5] 0.87
inverse [0,5] 0.80
identity1 [0,5] 0.88
identity2 [0,5] 0.62
identity3 [0,5] n/a
declaration [0,5] 1.00
rule_stated [0,1] n/a
premise_stated [0,1] n/a

Table 5.7: Agreement per attribute

Rule Occ. Wrong appl.
prop 49 6
quant 20 1
subset 3 0
psubset 1 0
exten 15 0
set_prop 8 0
union 122 23
intersection 0 0
composition 265 48
inverse 179 29
identity1 66 9
identity2 27 4
identity3 1 0
declaration 96 1

Table 5.8: Occurrences of rules

Step size 0 1 2 3 4 5 6 7 8 ... 12

No. of steps 41 444 122 50 19 8 5 2 4 0 1

Table 5.9: Distribution of step sizes

sidered “very good” agreement, and identity2 exhibits “good” agreement [37].
We note that the choice of range of [0,5] may unfairly lower the K values be-
cause although it is a range of six possible categories, most rule applications do
not occur so often. In the validation dialogue for instance, all but one proof
step contained less than four applications of any one step.

We can now present a quantitative analysis of the maths annotation level.
The occurrences of each mathematical rule are given in Table 5.8. Here we
see that composition of relations, relation inverse, and the definition of union
are the most frequently used rules. This reflects the fact that relations are the
goal of the tutoring session and that these three operators occur most often
in the theorems which are to solved. These three are also the most frequently
wrongly applied rules, and their ratios of wrong to total applications are very
similar: 18.1%, 16.2% and 18.1% for composition, inverse and union respec-
tively.

The mean step size, calculated as the sum of the number of applications of
all rules in the step, is 1.5 (sd= 1.2). The distribution of step sizes in Table 5.9
shows that the majority (62.2%) of steps contained only one application of
one rule, but that a number of steps used up to eight rule applications. From
the annotation of wrongly applied rules we find that 134 steps have at least one
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Correctness correct incorrect partially correct n/a
532 80 47 51

Granularity appropriate too fine too coarse n/a
579 17 55 59

Relevance relevant partially rel. irrelevant n/a
605 39 8 58

Table 5.10: Distribution of correctness, granularity and relevance
annotations

wrongly applied rule, which is 18.8% of cases. This is close to the 127 steps that
were annotated as being either incorrect (80) or partially correct (47) by the
wizards during data collection. In terms of explicitness, 72 steps name at least
one rule which was applied, but 18 dialogues have no steps at all which name
a rule. For the premises, 18 steps include at least one premise explicitly, but 30
of the 37 dialogues contain no such steps. These results reflect the “formulas
only” style preferred by many students. Finally we give the distribution of
correctness, granularity and relevance annotations in Table 5.10, which shows
that the vast majority (74.5%) of steps were considered correct. Similarly most
steps (81%) were of appropriate granularity, and most (84.7%) were relevant to
the exercise. The high number of “n/a” annotations across all three attributes
is due to annotations of utterances which did not contain proof steps.

5.2 Summary and discussion

In this chapter we have presented an annotation in three levels of the corpus of
tutorial dialogues which was introduced in Chapter 3. The first level was the
annotation schema for task-level grounding actions, which was derived from
the concepts introduced by our computational model of task-level grounding
in the previous chapter. We found an inter-rater agreement K value of only
0.51, however we were able to point to some systematic errors which may
have caused this.

The second level of annotation was dialogue moves. Here we developed
a broad taxonomy of dialogue moves for tutorial dialogue based on the cate-
gorisation of actions from Chapter 3. It is an adaptation and specialisation of
the DAMSL dialogue move taxonomy and includes forward, backward and task
dimensions. Here we achieved good K values, although the validation annota-
tion was not carried out by an external annotator. Finally in this chapter we
presented the annotation of mathematical content, such as rules and the cor-
rectness of their application, which was intended to approximate the function
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of a general-purpose mathematical domain reasoner. In this validation stage
we observed mixed K values depending on the frequency of appearance of the
rules. The overall frequency of application of the rules and the match between
the annotator’s and the wizards’ annotations of incorrectness also indicate the
validity of this annotation level.

Any annotation task with this type of data will find some utterances which
are difficult to categorise. This often has to do with the terseness of the stu-
dents’ expressions—for instance a proposal of a new step and a statement of a
definition or identity are not always distinguishable in the absence of linguistic
tokens. In general backward-looking functions have a stronger negative effect
on inter-rater agreement because it is often not clear what the relationship of
an utterance to its previous discourse is. This is shown by the low K values
for the backward dimension, which at 0.47 is much lower than the other di-
mensions, as well as in the score of 0.37 for the Solution-step augmentation
category in the task dimension, which is heavily dependent on previous con-
text. This result may even point to a general characteristic of tutorial dialogue
which makes computational modelling challenging.

Further independent annotation with larger test sets is certainly necessary
for the each of the three schemata. A further iteration of discussion and adap-
tion of the annotation guidelines would no doubt improve the K values for
TLGA. An external annotation of the three dimensions of dialogue moves
would also surely lead to further development of the dialogue move defini-
tions and would allow us to present stronger evidence for the validity of the
taxonomy. Following this the rest of the corpus could be annotated by exter-
nal annotators.

The result of this chapter, apart from the development of the annotation
schemata, is that the corpus has now been annotated with TLGAs and math-
ematical content. This annotation will allow us to create a data set for super-
vised learning from the corpus. We will use the corpus to learn to predict the
tutor’s choice of TLGA in a given dialogue context. This series of experiments
is presented in the next chapter.
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6
Predicting the tutor’s task-level

grounding actions

In this chapter we add a selection model for the tutor’s task-level grounding
actions to the dialogue model described in Chapter 4. It answers the question
of what the tutor should do in a given situation. Faced with a certain input
from the student in a certain dialogue context, which pedagogically appropri-
ate response should the tutor give? Our proposal is to infer a model of this
decision using machine learning on the data in the corpus, taking advantage
of the fact that we have already performed a detailed annotation, as presented
in Chapter 5. Machine learning has been used extensively and successfully in
dialogue systems research in the past number of years. Our corpus and the
selection task which we wish to solve lend themselves to this approach: our
corpus annotation can be translated into a feature vector representation of di-
alogue contexts, and we have to choose between a relatively small number of
classes, namely the tutor’s TLGAs. This is a typical classification problem.
Such a classifier, which maps from dialogue contexts to dialogue actions, slots
neatly into a dialogue system in the place of a selection algorithm.

The goal of the series of experiments which we present in this chapter is
twofold: First, we want to learn a classifier which we can use together with the
implementation of the dialogue model in order to predict which TLGA should
be performed in which situation. Second, we want to use this learning setup to
investigate a set of hypotheses about the utility of maintaining a sophisticated
model of common ground in a tutorial dialogue model. We will investigate the
effects of varying the feature set used in the classifier, the size and distribution
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of the data set, and we will consider a way to improve performance by splitting
the classification problem into two simpler problems. Overall we hope that
the experiments will show that the information maintained by the dialogue
model presented in Chapter 4 provides the features to train a good classifier
for the choice of TLGA.

This chapter is structured as follows. Section 6.1 introduces the basic con-
cepts of machine learning along with the machine learning algorithms we will
primarily use. We also review some previous applications of machine learning
in dialogue research. In Section 6.2 we list the hypotheses which will be inves-
tigated in the remainder of the chapter. Section 6.3 presents how the data set
has been derived from the existing annotations of the corpus. Our methodol-
ogy and a description of each experiment in turn are detailed in Section 6.4.
We finally summarise the results and discuss the work in Section 6.5.

6.1 Machine learning and dialogue systems
research

Machine learning is the process of inducing from a set of data a function that
models that data. If the set of data is a set of examples of a particular task, then
the learned function is a solution to that task. In this chapter we will apply
a technique called supervised learning, or classification, and in this section
we first briefly introduce the relevant concepts, following [6]. A supervised
learning problem is characterised by a set of examples (xi , ci ), where xi ∈X is
a vector of features whose values describe the example, and ci ∈ C is the label
or class to which the example belongs. X is the feature space of the problem
and C is the set of possible classes. The machine learning process induces a
function f : X → C which classifies new examples x into some class c ′. The
example data are known as instances, and the induced function f is known as
a classifier.

In supervised learning all instances are labelled with a class, in contrast with
unsupervised learning, in which data is not labelled. Machine learning is a
suitable tool for problems for which it is difficult to express a solution pro-
grammatically, for instance because the data set is too large for manual analy-
sis, or because the knowledge required for the solution is otherwise implicitly
applied by humans. The work presented in this chapter is an example of the
second situation: since we can not ask tutors to operationalise their behaviour
in dialogues with students, we will use machine learning to compute a func-
tion for the same task from examples of tutors’ behaviour.

The learning algorithm which we will use extensively in this work is naive
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Bayes [107]. It computes a probabilistic classifier based on the assumption of
independent features, that is, that each feature contributes independently to
the likelihood that an instance is in a particular class. We train a model for
the a-posteriori probability P (c |x1 . . . xn) of a class given a feature vector. With
large numbers of features and large feature value ranges this computation can
become infeasible. We therefore rewrite the probability using Bayes’ theorem:

P (c |x1 . . . xn) =
P (c)P (x1 . . . xn|c)

P (x1 . . . xn)

P (c) is the prior probability of the class c , which is the distribution of the class
in the data set. P (x1 . . . xn|c) is the probability of the features given the class,
which is the information that is learned from a data set. Given the assumption
of the independence of features, this probability can be rewritten as

P (x1|c)P (x2|c)P (x3|c) . . . P (xn, c)

using the definition of conditional probability. P (x1 . . . xn) is the evidence, or
probability of the feature set, which is constant for a data set and can therefore
be dropped. We can calculate the a-posteriori probability for each class c ∈C ,
and from this derive a naive Bayes classifier f , which selects the class with the
highest probability for a given set of feature values:

f (x) = argmax
c∈C

P (c)P (x|c)

We will also compare the naive Bayes learner to a decision tree learner (for
example [158]), which is a rule based approach to classification. A decision
tree is a hierarchical data structure consisting of internal decision nodes and
terminal classification leaves. To classify a previously unseen instance, a deci-
sion tree classifier begins at the root of tree and traverses a path to a leaf. At
each decision node the value of a feature is tested, and the tree branches into
as many subtrees as that feature has possible values. This process effectively re-
peatedly partitions the feature space into ever smaller regions. The leaf which
is reached at the end of the path represents a region containing instances all
of one class, and that class is the classifier’s prediction for the current unseen
instance.

A decision tree is constructed by recursively choosing a feature and parti-
tioning the data set on that feature. In order to prefer smaller trees and shorter
paths, the feature chosen is the one with the highest information gain, which
measures how strongly a feature discriminates the instances. If any partition
contains only instances of one class, then a leaf node is created and labelled
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with this class. The remaining partitions are recursively partitioned on the
feature which is most discriminative for the instances it contains, and so on.
Decision trees are attractive in machine learning because they reduce the clas-
sification task to a small number of decisions in relation to the number of fea-
tures, because the trees themselves are easily interpretable, and because they
can be readily translated into an if-then representation for use in an applica-
tion.

There are a number of applications of machine learning in the field of di-
alogue systems research. As is the case in this work, a data set is typically
drawn from a corpus of human-human dialogues, and its instances represent
utterances or dialogue contexts from the corpus. The feature vector describ-
ing the instances can contain for example information about the lexical items
the utterance contains, its length, punctuation, or the dialogue act is has been
assigned by an annotator. Higher level features are also possible, such as a mea-
sure of user frustration, or information about prosody in a spoken dialogue
setting. The prediction tasks can include tagging utterances with dialogue acts,
with or without features referring to their context, predicting dialogue acts in
a given dialogue context, or predicting entire sequences of dialogue acts. In
general the high cost of data collection means that machine learning work in
dialogue often suffers from data sparsity, and for dialogue strategies there is al-
ways a danger that the model will overfit the data if the strategy space is large
and the data set small in comparison.

The MapTask corpus [38, 189], whose annotation of 128 dialogues includes
12 dialogue acts, has been used as a basis for tagging utterances with dialogue
acts by Louwerse and Crossley [132], who achieve a 58.08% accuracy using
an word n-gram model. Stolcke et al. [185] combine a language model over
dialogue acts with utterance features such prosody and lexical features. They
achieve 71% accuracy on dialogue act tagging using the Switchboard corpus
[82]. Using the BNC, Fernández et al. [73] classify wh-phrases into seven
classes using 10 features representing lexical and syntactic aspects of the cur-
rent and antecedent utterances. They achieve an accuracy of 90.32%.

The work presented here is an example of dialogue strategy learning, that is,
given a dialogue context a classifier should predict what dialogue move should
be performed next. In the VERBMOBIL system, n-gram dialogue act proba-
bilities were used to compute the most likely next dialogue act [161], resulting
in prediction accuracies of between 40% and 72%. Boyer et al. [24] use hidden
Markov models for dialogue act prediction in tutorial dialogue. They use 11
tutoring-specific dialogue act tags, including Assessing Question and both Pos-
itive and Negative Content Feedback. Training on a corpus of around 4,800
dialogues, they achieve a maximum prediction accuracy of 57%.
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More recent approaches have applied reinforcement learning (RL) [186].
The task is not to choose the correct classification, as in supervised learning,
but rather to choose an agent’s action in an environment in order to maximise
an expected reward. A trial-and-error search through the action strategy space
is guided by a reward function which is evaluated from observations of the
effects of chosen actions on the environment. Strategies whose actions lead to
a higher cumulative reward are preferred. RL has been applied extensively in
task oriented dialogue [204, 169, 178, 165], but also to problems in the field
of tutorial dialogue. For instance, Chi et al. [47] cast tutorial dialogue as a
Markov decision process to evaluate the usefulness of 18 individual dialogue
features in choosing whether to elicit content or tell the student that content.
Dialogue contexts are mapped to states, the available dialogue moves to ac-
tions, and the reward function is the learning gain that the students show after
the interaction.

RL is however not suitable in the case of tutorial dialogue because the sources
of a reward function which have been used in previous research on RL for gen-
eral task-oriented dialogue, such as dialogue length, task completion or num-
ber of clarification actions [178, 165], do not necessarily correlate with learn-
ing effects, which should be the measure of a successful strategy for tutorial
dialogue.

6.2 Hypotheses to be investigated
The overall goal of the series of experiments in this chapter is to learn a clas-
sifier to predict the tutor’s TLGA given a dialogue context. The experiments
investigate a number of individual hypotheses about this classification prob-
lem, about the data set and about the feature set we derive from the annota-
tions. First we compare four machine learning algorithms to find out which is
best suited to this problem. Our second and third experiments are concerned
with the class distribution of our data set. We will see that there is a strong
skew between the smallest and largest class in the data set, which can lead to
lower accuracy on the smaller classes. In order to mitigate this effect we hy-
pothesise that it is possible to reduce the class distribution skew, and thereby
improve the overall performance of the classifier, first by downsampling the
larger classes, and second by splitting the classification problem into two sim-
pler problems.

The fourth experiment is motivated by our original assumption that tutors
use information from the previous discourse to tailor their feedback. We hy-
pothesise that a classifier trained on local features, describing only the current
step, will perform less well than a classifier trained on a feature set which addi-

103



6 Predicting the tutor’s task-level grounding actions

tionally includes global features from the previous discourse. Our fifth experi-
ment will apply standard attribute selection algorithms to investigate whether
there may be a distinct feature subset which outperforms even the local and
global feature set. Finally we will perform a misclassification analysis to illus-
trate the nature of the mistakes the classifier makes.

6.3 Preparation of the data set
The data set which we will use for the series of experiments in this chapter
is based on the corpus of dialogues we presented in Chapter 3 and its annota-
tion in Chapter 5. It contains TLGA annotations, the characteristics of the
solution steps which the students contributed, and shallow annotations such
as turn numbers. From the corpus we extract a set of data points which cor-
respond to those dialogue contexts in which the tutor has to choose between
task-level grounding actions. In this section we explain the process of choosing
the data points and computing their full feature sets.

The features which we have chosen come from three different sources. Some
features are taken directly from the annotation of the latest utterance, i.e. the
student’s input to which the tutor should respond. Some are derived from
this annotation. Finally some features are aggregated from the individual ut-
terance annotations over the course of the dialogue. We will refer to the first
two kinds of features as local, because they pertain only to the last utterance
in the dialogue context. Those features which are aggregations of information
from whole previous dialogue we will refer to as global. The full feature set is
the union of the local and global features.

6.3.1 Features from the utterance annotation

Most of the annotations are translated directly into features, and the list of
these is given in Table 6.1. The feature <rule> refers to the mathematical con-
cepts that were used in the solution step. It stands for 14 individual features,
one for each of the mathematical concepts taken from the students’ study ma-
terial, which we introduced in Chapter 3. As in the annotation, correctness,
granularity and relevance may have missing values.

Some of the annotations are not used as features because we have decided
that they are not predictive for the classification that we will try to learn. For
instance, since we are not trying to predict the idiosyncrasies of the four wiz-
ards in the original data collection experiment, we do not include the wizard
identification number as a feature. Similarly the student id is not used. In both
of these cases we are assuming that the participants acted in a more or less sim-
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Feature Type Range

timestamp date and time
tlga nominal Accept, Reject, ReqEv, etc
turnnumber numeric 1. . .
correctness nominal correct, incorrect, partially correct
granularity nominal suitable, too fine-grained, too coarse-grained
relevance nominal relevant, irrelevant, partially relevant
rule_stated boolean 0,1
premise_stated boolean 0,1
<rule> boolean 0,1

Table 6.1: Local features taken directly from the corpus annotation

Feature Type Range

time_to_reply numeric 0. . .
setDefinitionRuleUsedInCurrentStep boolean 0,1
relationDefinitionRuleUsedInCurrentStep boolean 0,1
identityRuleUsedInCurrentStep boolean 0,1
numberOfInterestingRulesInCurrentStep numeric 0. . . 6
numberOfInterestingRuleApplicationsInCurrentStep numeric 0. . .
numberOfUninterestingRulesInCurrentStep numeric 0. . . 8
numberOfUninterestingRuleApplicationsInCurrentStep numeric 0. . .

Table 6.2: Local features computed from the corpus annotation

ilar way, and that any results we find are generalisations over all participants.
The speaker annotation is also not used because the speaker at the data points
which we will extract is always the student.

From these basic features we can compute further features which are mean-
ingful for the task at hand. The additional local features are listed in Table 6.2.
We collate the maths concepts into three groups: setDefinition, relationDefini-
tion, identity. These reflect the split between basic knowledge (setDefinition,
those rules which pertain to naive set theory), the knowledge which the stu-
dent should be learning in the exercises (relationDefinition, the definitions of
inverse and composition) and the mathematical concepts which the student
must derive before using (identity, the theorems which the students prove and
may use in later proofs). If at least one rule in a group has been used in the
current step, the corresponding feature is set to 1. A further split is into what
we call interesting and uninteresting rules. This refers to whether the rules
should be used explicitly by the student or not and whether they are part of
the goal of the tutorial session. The interesting rules are the relation defini-
tions, the identities and the definition of set extensionality, the other rules are
in the uninteresting set. For these two groups we additionally represent the
number of applications made in the current step. The rules in each of these
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Feature Type Range

propSuccessfullyUsedRules numeric 0. . . 1
someRuleFromStepPreviouslySuccessfullyUsed boolean 0,1
allRulesFromStepPreviouslySuccessfullyUsed boolean 0,1
acceptedConsecutiveContributions numeric 0 . . .
acceptancesSoFar numeric 0 . . .
rejectionsSoFar numeric 0 . . .
proportionOfAcceptances numeric 0 . . . 1
proportionOfRejections numeric 0 . . . 1
numberOfJustifiedSteps numeric 0 . . .
numberOfReqestedEvidence numeric 0 . . .

Table 6.3: Global features computed from the corpus annotation

groups are listed in Appendix A.
We omit some original annotations from the list of features because their

meaning is better captured by a computed feature. For instance the timestamp
annotation is not used, instead we calculate the time taken by the student to
reply by comparing the current and previous timestamps. We also remove
each of the annotations of the form<rule> because their meaning is captured
by the rule groupings.

6.3.2 From utterances to instances

There are two tasks involved in deriving a suitable data set from the annotated
corpus. First we must choose which places in each dialogue are decision points
for the tutor’s choice of TLGA and therefore should become the instances in
the data set. If the TLGA of the student’s utterance was either Propose or
SuppEv and the tutor’s response was not None, then an instance should be gen-
erated which contains the features of the dialogue context from the beginning
of the interaction up to and including the student’s utterance. The class of the
instance is the TLGA of the tutor’s response.

Second we must compute the values of the global features of the instance.
Each of the instances in our data set corresponds to a dialogue context rather
than an utterance. This is because the decision we are trying to learn is not
how the tutor reacts to an utterance, but rather how the tutor acts in a situa-
tion. Global features describe the dialogue context up to the student’s utter-
ance. They are aggregations of the annotations of individual utterances in the
dialogue so far, and as such approximate a dialogue history. The global fea-
tures we will use are listed in Table 6.3. The features someRuleFromStepPrevi-
ouslySuccessfullyUsed and allRulesFromStepPreviouslySuccessfullyUsed are
true when some or all, respectively, of the rules which were used in the lat-
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Algorithm 1 Data instance creation
1: Input: the corpus as a sequence of annotated utterances
2: Initialise an empty DialogueContext dc
3: for all pairs of consecutive utterances (u1,u2) do
4: Update dc for the effects of u1
5: if (u1,u2) should be an instance then
6: Copy dc + u2.tlga to set of instances
7: end if
8: end for

est solution step had previously been used in a step which the tutor accepted.
These features capture the case of the student reusing known concepts. The
features acceptancesSoFar and rejectionsSoFar count the number of times the
tutor has responded to a solution step with Accept or Reject, respectively. Pro-
portionOfAcceptances and proportionOfRejections express these as a propor-
tion of the total number of acceptances and rejections in the dialogue so far.
The number of steps in which a justification was explicitly stated is stored
in numberOfJustifiedSteps, and the number of times the tutor has requested
evidence of understanding from the tutor is stored in numberOfReqestedEvi-
dence.

We perform both of these tasks in one pass through the annotated corpus
using the algorithm listed in Algorithm 1. A DialogueContext object main-
tains the current values of each of the global features. Each of these features
may be updated for the effects of each utterance in the corpus (line 4 of the al-
gorithm). For example an Accept performed by the tutor increments the value
of acceptancesSoFar. If the current utterance pair should generate an instance
according to the test above, then a new instance is created containing the cur-
rent values of the global features. Computed features such as those in Table 6.2
or proportionOfAcceptances are computed at this point. The class of the in-
stance is the TLGA annotation of the tutor’s utterance. The implementation
of this algorithm uses the MMAX2 [144]API to extract the annotations from
the corpus, and the Weka [93] API to create the data set. The resulting data
set is represented in Weka’s ARFF format, a plain text file format for instances
sharing a common attribute list.

Finally we removed a small number of outliers. Three complete dialogues,
corresponding to a total of 11 instances, were removed because they had a very
low ratio of instances to total turns, in each case less than 6%. This low ratio
means the student was only very seldom contributing to the solution and the
rest of the dialogue was made up of off-task remediation, which does not con-
tribute to our model. Two further instances were removed because they had
very high values for time_to_reply, namely 1049 and 1409 seconds, whereas
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Class Instances

Accept 505
Reject 141
ReqEv 17
AcceptReqEv 11
RejectReqEv 10

Total 684

Table 6.4: Class distribution of the data set

the other instances of time_to_reply are distributed between 0 and 616 sec-
onds. The resulting data set has a class distribution as shown in Table 6.4.
Here we see the strong class skew which we have mentioned previously, and
which we will examine more closely in the context of experiments 2 and 3.

6.4 Experiments
In this section we present in detail the experiments aimed at finding a good
classifier to predict the tutor’s TLGA from the instances in our corpus. We
first describe our basic methodology, namely ten-fold cross validation, and the
evaluation metrics we will present. We will try to find the most effective com-
bination of settings across a number of dimensions, which will be investigated
in turn by the following experiments. First we consider which learning al-
gorithm is most suitable. We then look at two possible solutions to combat
the problem of the skewed class distribution. The first is downsampling the
data set, the second is splitting the classifier into two simpler problems. We
investigate whether the addition of global features improves performance of
the classifier overall, and finally we test whether there might be a better auto-
matically selected subset of features from the full feature vector. We discuss
the classifier’s misclassifications as well as the overall results of the series of
experiments.

6.4.1 Methodology
A standard approach to training and validating a classifier such as the one we
intend to develop is to hold out a subset of the data set, say 10%, as a test set.
The remaining instances, the training set, are used to train the classifier, and
its performance is measured by how well it predicts the cases in the test set.
Both training and test set are stratified, that is, they are randomly chosen but
in such a way as to preserve the same distribution of classes as the complete
data set. This approach is however not suitable given the class distribution
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of our data set (Table 6.4). Due to stratification, if we were to extract a 10%
test set from this data we would be forced to choose, albeit randomly, a single
instance each from the RejectReqEv and AcceptReqEv classes, and possibly two
instances from the ReqEv class. With this number of test instances it is clearly
not possible to derive any meaningful evaluation metrics.

A more suitable approach to evaluation is n-fold cross validation. Here the
data set is first randomly partitioned into n stratified folds—we will use n= 10,
a standard value. A classifier is then evaluated n times on each of the n folds
in turn, having been trained each time on the union of the instances in the
remaining n− 1 folds. Cross validation is particularly suited to small data sets
such as ours because each instance in the data set appears in a test fold exactly
once. The results of the evaluation are the averaged results over all n folds. In
order to further stabilise the results, we will perform 10 runs of 10-fold cross
validation with the partitions chosen randomly and differently for each of the
10 runs. The results again are the averaged results of the 10 runs.

The learning algorithms we will consider in these experiments, primarily
naive Bayes, are used as implemented in the Weka environment. We use
Weka’s functions for splitting the data set as described above into cross vali-
dation folds, for training a model and evaluating it on test instances, and for
extracting evaluation metrics from the results of cross validation.

The typical single-figure evaluation metric for a classifier is its accuracy (or
equivalently its error rate), which is the percentage of correctly predicted in-
stances in the test set. As we will see in our first experiment below, simply
relying on accuracy to compare how well two classifiers have performed is not
suitable for the current learning task for two reasons. Firstly, the class distri-
bution skew, with 5.5% of all instances in the three smaller classes, means that
a classifier can predict all instances in these classes wrongly and still have an
accuracy of up to 94.5%. This figure, although high, would certainly misrepre-
sent the suitability of the classifier for a tutorial dialogue system. The second
reason is that it is these three classes which we are concentrating on in our
model, which means that we need a metric with which we can quantify the
performance in these classes individually. We will use the f-score, essentially
accuracy per class, which is the harmonic mean of precision and recall. The
precision within a class is proportion of predictions into that class which are
in fact instances of the class. The recall within a class is the proportion of
instances of that class which were correctly predicted. F-score is defined as:

F = 2
precision× recall

precision+ recall

When we compare the results of two different classifiers we are comparing a
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vector of 10 results, one for each of the 10 runs of 10-fold cross validation. The
two vectors are paired because for both classifiers, each i th cross validation run
uses the same partitioning of the data into 10 folds. For most of our samples,
especially in the three smaller classes, we find that the f-scores are not normally
distributed according to a Shapiro-Wilk test. In the remainder of this chapter
we will use the paired Wilcoxon signed rank test [207] to test for significance
of the differences between vectors of f-scores and error rates because it can be
applied to populations which cannot be assumed to be normally distributed.
The paired Wilcoxon signed rank test ranks pairs according to lowest absolute
difference in value. The test statistic V is either the sum of the ranks with
negative difference or those with positive difference, whichever has the lower
absolute value. For our experiments with 10 pairs the highest possible value of
V is 55, meaning that the pairs either all exhibited a positive or all a negative
difference.

The accuracy and f-score per class of the evaluation of a classifier are pro-
vided by functions in the Weka API. We use the statistical software package R
[159] to perform statistical tests and to draw the graphs which appear in the
rest of this chapter.

6.4.2 Choice of learning algorithms
Our first experiment compares the performance of a number of different learn-
ing algorithms on the task of predicting the tutor’s TLGA. We consider a naive
Bayes learner (NB), and a decision tree learner (J48, its implementation in
Weka), as introduced in Section 6.1 above. We also explored the two further
learning algorithms, k-nearest neighbour (kNN) and support vector machine
[40] (SVM). The kNN classifier is based the distances between instances in
features space, and categorises a new instance into the majority class of its k
nearest neighbours. An SVM represents training instances in feature space and
maps them so that there is a plane which maximally separates the instances of
each category. New instances are categorised according to which side of the
plane they fall on. For kNN the number of neighbours is set to five, for the
other learners the default settings are used. The data set given to each learner
is that presented in Section 6.3 above, after outlier removal. We use ten runs
of ten-fold cross validation, as described above, and take the average across the
ten runs of the accuracy as well as the F scores for each of the five classes.

Results

The accuracy scores for each learner are listed in Table 6.5. Although the dif-
ferences between the different learners are not significant according to a cor-
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Algorithm NB J48 SVM kNN

Accuracy (%) 73.66 82.60 73.92 85.38

Table 6.5: Accuracy scores for learning algorithms

rected resampled paired t-test, these results seem to show that J48 and kNN are
performing considerably better than NB and SVM. However, as we discussed
above, only when we consider accuracy class by class can we see which learner
is most suitable for this task. We present the f-scores per class in Figure 6.1.
Here we see that both SVM and kNN have an accuracy of 0% in each of the
three small classes, which is clearly not acceptable for this task. NB and J48
however show sensitivity to these classes despite their size, that is, they are pre-
dicting at least some cases correctly. The Wilcoxon signed rank test shows that
J48 is significantly better than NB for the classes Accept (V = 55, p <= 0.05),
Reject (V = 55, p <= 0.05) and AcceptReqEv (V = 55, p <= 0.05). NB is
significantly better for the classes ReqEv (V = 53, p <= 0.05) and RejectReqEv
(V = 55, p <= 0.05). These results show us that NB and J48 are compara-
bly successful at the classification task, whereas SVM and kNN are not, due to
their insensitivity to the small classes. We will continue with NB in the follow-
ing experiments, and we will compare NB to J48 and to SVM and kNN again
in the experiment in Section 6.4.4 to see which is the more suitable algorithm.

6.4.3 Combating class skew (1): Downsampling
One aspect of our data set which makes learning a good classifier difficult is
the difference in size of the larger and smaller classes. This is problematic, as
described by Weiss and Provost [206], because a classifier tends to prefer the
majority class, whose instances it has seen more often in training and appear
more often in testing. If the prior probabilities are considered by the learn-
ing algorithm then the minority class will be further disadvantaged. There
are three types of approaches to getting around this. The first is to associate a
higher misclassification cost with the minority class, either by integrating this
into the learning algorithm or by altering the class distribution with dupli-
cate instances. Unfortunately we can not use a misclassification cost function
because without further experimental investigation we can not quantify how
much worse the misclassification of a case in the small class is with respect to
a misclassification of a case from the larger classes.

Two further approaches which do not require such information are upsam-
pling and downsampling. Both reduce the skew in the class distribution by
either increasing the number of instances in the minority class or decreasing
the number of instances in the majority class. For our data set upsampling is
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Figure 6.1: F-scores for each learning algorithm by class

not suitable: If instances are simply duplicated we will increase the likelihood
that the model overfits the data. A better method of upsampling is to perturb
rather than duplicate instances, such as in SMOTE [41]. This algorithm gener-
ates new instances on the line in feature space between two existing minority
instances. For our data set this approach is also not suitable because the small
classes are not only small in comparison to the large classes, they are also small
in absolute terms, so that perturbed instances may be strongly misleading. We
have therefore decided to simply downsample the larger classes. Although this
throws away potentially useful instances, it has the advantage that we close the
gap between the class sizes without introducing noise into the smaller classes.
There is also research which indicates that downsampling is slightly preferable
to upsampling [106]. This experiment investigates whether downsampling
improves performance and what level is most beneficial.

The setup of this experiment is as follows: We begin with the full data set
of 684 instances, which corresponds to a 17:1 ratio of largest to smallest class.
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We downsample the data set in turn for each of the ratios 17, 15, 13, 11, 9,
7, 5, and 3:1 using the SpreadSubsample filter in the Weka environment. For
a given ratio, this filter works by randomly discarding enough instances from
any large class until the spread between the size of the smallest and largest class
is at most in this ratio. We take the union of the three small classes as the basis
for the calculation of the spread to the larger class, because these are the classes
which include ReqEv. Similarly the larger class for downsampling is the union
of the Accept and Reject classes, because these do not include ReqEv. With 38
instances in the three small classes, this means that for example at a ratio of
15:1 the downsampled data set contains 570 instances of either Accept or Reject,
and a total of 608.

For each of the downsampled data sets computed this way, we use 10 times
10-fold cross validation to calculate the classifier’s average error rate and aver-
age f-score per class. The learning algorithm used is Naive Bayes.

Results

Figure 6.2 shows the f-scores per class and overall error rate for each down-
sampling ratio. Each point in the graph is the average f-score for that class
achieved by the classifier trained on the data set downsampled to that ratio.
An informal inspection of the graph suggests that 7:1 could be a good choice.
Up to this point the error rate has risen in comparison to the full data set from
22% to 30%, but at downsampling ratios lower than 7:1 it rises more sharply
(to 40%, 46% and finally 59%). At 7:1 the f-scores for the small classes have
all risen significantly in comparison to the complete data set (ReqEv: W = 1,
p <= 0.001; AcceptReqEv: W = 5, p <= 0.01; RejectReqEv: W = 0.5, p <=
0.01, all using a Wilcoxon rank sum test with continuity correction). For the
large classes the f-scores have also decreased significantly, but by much less in
absolute terms: from 88% to 84% for Accept and from 70% to 66% for Reject.

At ratios lower than 7:1 the f-scores become erratic, falling strongly for the
Accept and Reject classes. The total number of instances in the data set becomes
very low. At 7:1 we have 304 instances, which is a data set comparable in size
to other work in supervised learning for dialogue, such as Fernández et al. [73].
We can quantify the improvement in performance due to downsampling by in-
specting the precision and recall values by class for the complete and downsam-
pled data set, which are given in Table 6.6. Precision and recall are calculated
as the average over the ten runs of cross validation. Both metrics fall slightly
for the Accept and Reject classes in going from the full to the downsampled data
set, but the other three classes exhibit a strong and uniform rise. The classifier
is also able to detect a small number of AcceptReqEv cases which previously
were not found. In absolute terms however, the results for the request classes
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Figure 6.2: F-scores by downsampling ratio

may still be considered low. Overall the best trade-off between improvement
of small-class performance, overall error rate and f-score stability appears to
be at 7:1.

6.4.4 Combating class skew (2): Splitting the classifier

In this experiment we investigate a further way of minimising the effect of the
class distribution skew. In short, we will translate our classification problem
from a five-class problem into a combination of a two-class and a three-class
problem, whereby the class skew in each of the two new classifiers is less than
that of the original five-class classifier.

Even after we downsample the data set at a ratio of 7:1, we still must deal
with a class distribution in which the largest class outweighs the smallest class
by 207 to 10 instances. In addition it is the smaller classes which are more
important for our overall task. We can however take advantage of the fact that
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Accept Reject ReqEv AcceptReqEv RejectReqEv

Complete Precision (%) 92.1 66.1 06.8 0 18.8
Recall (%) 84.4 72.6 13.5 0 30.0

Downsampled Precision (%) 89.1 63.8 14.7 05.8 30.1
Recall (%) 78.8 68.6 24.7 09.1 32.0

Table 6.6: Precision and recall values for the complete and downsampled data
sets

Request Not Request Total (C1 distr.)

Accept 11 207 218
Reject 10 59 69
Neither 17 0 17

Total (C2 distr.) 38 266 304

Table 6.7: Frequency distribution of the TLGA annotation of utterances into
the classes accept or not and request evidence or not

there are generalisations which can be drawn across the classes. AcceptReqEv is
conceptually a combination of accepting and requesting evidence, similarly Re-
jectReqEv. ReqEv has no acceptance or rejection element. This generalisation
allows us to redefine our classification problem into two parts: the first is the
decision whether to accept or reject the student’s step, the second is whether
to request evidence of understanding from the student or not. For the former
problem we combine Accept and AcceptReqEv into one class, and Reject and
RejectReqEv in the other. For this classifier a third “neither” class is necessary
for the ReqEv instances. For the latter we draw the classes ReqEv, AcceptReqEv
and RejectReqEv together to form a “request” class, Accept and Reject then con-
stitute the “do not request” class. The resulting class distributions are shown
in Table 6.7. We will use C1 to refer to the acceptance classifier and C2 for the
request evidence classifier. The first two columns in the table correspond to
the class distribution of the downsampled five-class problem. The rightmost
column and the bottom row are the distributions of classes for the classifiers
C1 and C2.

When we have learned classifiers C1 and C2 then we have two predictions
which we can combine to give us a prediction into the original five-class prob-
lem. This mapping is shown in Table 6.8. When C1 predicts Neither then the
result is ReqEv regardless of the prediction from C2. We will refer to the classi-
fier made up of the predictions of C1 and C2 as the “combined” classifier and
we will refer to the classifier for the original five-class problem as the “simple”
classifier.
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C1 C2 Combined

Accept not ReqEv Accept
Reject not ReqEv Reject
neither not ReqEv ReqEv
Accept ReqEv AcceptReqEv
Reject ReqEv RejectReqEv
neither ReqEv ReqEv

Table 6.8: Combining the C1 and C2 predictions into the original problem
space

Request Not Request

Accept 11 207
Reject 10 59

Table 6.9: Contingency table of C1 and C2 classes for dependence test

The experimental setup is as follows. We use the 7:1 downsampled data set
from the previous experiment, which we have shown to be an improvement
over using the full data set, with the full feature set, and we use 10 runs of
10-fold cross validation, but in a slightly different way to the standard method
presented above. For each run and for each cross validation fold we train three
classifiers: C1, C2 and the simple classifier. We then construct the combined
classifier as in Table 6.8. Both the simple and the combined classifier predict
the same five class range, so that we can then evaluate them on the test set of
the fold. From this we calculate the error rate and f-scores as usual.

Independence of C1 and C2 Separating the problems of choosing whether
to accept and choosing whether to request evidence requires that these are in-
dependent decisions. To check this we apply a chi-squared test to test the asso-
ciation between the classifications C1 and C2. Chi-squared measures the differ-
ence between the observed and expected frequencies. If there is no significant
difference between these, then we can conclude that there is no association
between the decisions. The Chi-squared test depends on the assumption that
observations are independent. In our data this is the case because decision was
made in a distinct dialogue context. That is, for each dialogue context, we have
exactly one observation of the classification C1, and exactly one observation
of the classification C2. One dependence which is present by design concerns
the “neither” choice in C1. If an instance is found to be neither Accept nor
Reject, then it is always ReqEv. Our test of independence must therefore not
include these cases, because in effect the classification of these cases by C2 is
ignored. The distribution of the remaining cases is given in Table 6.9. We
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Figure 6.3: F-scores by class for the Simple vs Combined classifiers

apply Pearson’s Chi-squared test with Yates’ continuity correction to this dis-
tribution, which indicates there may be an interdependence between the two
decisions (X 2(1, N = 287) = 5.5744, p <= 0.05). The significance of this test
may be caused by a combination of the high frequency of both acceptances
and non-requests. All other combinations are equally valid and more data may
well improve the distribution. In the interest of simplicity we will continue
with this assumption of the independence of C1 and C2.

Results

Figure 6.3 shows the f-scores in each class for the simple and combined classi-
fiers. There are significant improvements in the performance of the classifier
in four of the five classes: Accept (V = 0, p <= 0.01), ReqEv (V = 0, p <=
0.01), AcceptReqEv (V = 12, p <= 0.05) and RejectReqEv (V = 1, p <= 0.05).
Only the Reject class shows a disimprovement (V = 55, p <= 0.01). The re-
sults show a reduction in error rate from 30.2% to 27.5%, which is significant
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Accept Reject ReqEv AcceptReqEv RejectReqEv

Simple Precision (%) 89.1 63.8 14.7 05.8 30.1
Recall (%) 78.8 68.6 24.7 09.1 32.0

Combined Precision (%) 88.4 63.3 17.6 11.8 35.0
Recall (%) 83.2 64.9 30.0 08.2 38.0

Table 6.10: Precision and recall values for the simple and combined classifiers

(V = 55, p <= 0.01). Looking at the precision and recall results in Table 6.10,
we see that for the Accept and Reject classes precision falls very slightly, as does
recall for Reject, but the recall for Accept improves from 78.8% to 83.2%. The
request classes show strong rises across the board, except for the recall value
for AcceptReqEv, which falls by 0.9%.

We also repeated this experiment using the decision tree learner J48, because
our first experiment (in Section 6.4.2) was not able to show clearly whether the
naive Bayes or decision tree learner was more suitable. The results show that
the naive Bayes learner is more appropriate. Although the combined J48 clas-
sifier has a lower overall error rate (24.8% as opposed to 27.5%), in the three
small classes it performs slightly worse. The average f-score for the classes Re-
qEv, AcceptReqEv and RejectReqEv (21.4%, 13.9% and 12.8%, respectively) is
16%, lower than the average f-score of the naive Bayes learner on these classes,
at 22.6%. We also found that the SVM and kNN learners again proved to be
insensitive to the three small classes. Overall, splitting the classifier into two
separate but simpler classification problems leads to improved performance,
and the improvement is strong across the three classes which benefited most
from the associated reduction in class distribution skew.

6.4.5 The influence of global features
One of the characteristics of tutorial dialogue which we model in this research
is that tutors use some sort of internal model of the student’s knowledge state
in order to tailor feedback in a given dialogue situation. We approximate this
model with the global features which appear in the description of a dialogue
context, such as the number and type of rules the student has successfully used
so far or the number of acceptances and rejections that have taken place. In this
experiment we investigate the hypothesis that the performance of a classifier
is improved by the addition of global features by comparing the performance
of a classifier trained on local features only to one trained on the combination
of local and global features. If the local and global feature set proves to be bet-
ter, then this offers support for our dialogue model’s use of dialogue context
information.
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Figure 6.4: F-scores by class for local against local and global feature sets

The local feature set consists of the annotated features (Table 6.1) and the
computed features (Table 6.2) which pertain only to the current utterance or
the solution step it contains, a total of 18 features. The local and global feature
set adds to this the features which are computed over the course of the dia-
logue, as presented in Section 6.3.2, resulting in a total of 27 features. As usual,
for each feature set we use ten times ten-fold cross validation to compute the
overall error rate and the average f-scores for each class. We use the combined
classifier as described in the previous experiment, and the learning algorithm
is naive Bayes.

Results

Figure 6.4 clearly shows large differences in f-score for each of the classes in-
volving request evidence, which are significant according to a Wilcoxon paired
signed rank test (all at V = 0, p <= 0.01). The decrease in f-score of the re-
maining two classes is smaller, but is also significant (Accept: V = 55, p <=
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Accept Reject ReqEv AcceptReqEv RejectReqEv

Local Precision (%) 86.7 72.1 11.4 0 20.3
Recall (%) 92.6 64.1 08.2 0 36.0

Local + Global Precision (%) 88.4 63.3 17.6 11.8 35.0
Recall (%) 83.2 64.9 30.0 08.2 38.0

Table 6.11: Precision and recall values for the local and local+global feature
sets

0.01; Reject: V = 51, p <= 0.05). The difference in error rate, 22.9% versus
27.5%, is also significant (V = 0, p <= 0.01). The precision and recall results
are shown in Table 6.11. For Accept the recall is lower although the precision is
slightly higher, and for Reject a very small increase in recall is offset by a worse
precision value. The request classes all show improvements in both precision
and recall due to the addition of global features, whereby the recall value of
ReqEv and the precision value of RejectReqEv both rise particularly strongly.

Overall we find that the classifier’s performance for the classes involving re-
quest evidence is improved greatly by the addition of global dialogue context
features, or equivalently, it decreases greatly when these features are removed.
This result supports our hypothesis that global features are useful and impor-
tant for deciding on feedback for the student and, more specifically, that they
are important for deciding whether to engage the student in discussion or not.

6.4.6 Automatic attribute selection
The comparison in the previous experiment of the local and global feature set
with the feature subset containing only local features was motivated by our
underlying model of solution step discussions. There may however be other
feature subsets which perform better than the full local and global feature set.
To investigate this, we compare the performance of the classifier trained on
feature subsets as chosen by a number of attribute selection algorithms. Info-
GainAttributeEval ranks attributes according to their information gain with
respect to the class, which is the approach taken by a decision tree learner.
Information gain is the difference in entropy between the class and the class
given the attribute. Similar to this is GainRatioAttributeEval, which uses an
information gain ranking normalised by the entropy of the attribute. CfsSub-
setEval uses a measure of the individual predictivity of attributes along with
a measure of the degree of redundancy between them. A subset of attributes
is preferred if it has a high correlation with the class but a low correlation
between the attributes in the set. ChiSquaredAttributeEval ranks attributes
by calculating their chi square statistic with respect to the class. A higher chi
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InfoGainAttributeEval cfsSubsetEval

time_to_reply time_to_reply
correctness correctness
proportionOfAcceptances granularity
proportionOfRejections ruleAppliedCorrectly
turnnumber
ruleAppliedCorrectly
acceptancesSoFar
numberOfUninterestingRuleApplicationsSoFar
numberOfInterestingRuleApplicationsSoFar
granularity

ChiSquaredAttributeEval GainRatioAttributeEval

time_to_reply correctness
proportionOfAcceptances ruleAppliedCorrectly
proportionOfRejections granularity
correctness time_to_reply
turnnumber relevance
numberOfInterestingRuleApplicationsSoFar proportionOfRejections
numberOfUninterestingRuleApplicationsSoFar proportionOfAcceptances
ruleAppliedCorrectly tlga
acceptancesSoFar turnnumber
numberOfInterestingRuleApplicationsInCurrentStep acceptancesSoFar

Table 6.12: Feature subsets computed by four attribute selection algorithms

square value implies at the values of the attribute differ strongly for each class,
making it more predictive for the learner. For each algorithm we use the im-
plementations in the Weka environment.

The feature subsets computed by each selection algorithm are shown in Ta-
ble 6.12, and were computed from the full data set of 684 instances. Together
with the complete local and global feature set this gives us five feature sets
to compare. For each one, we use the combined classifier and the naive Bayes
learner and compute average f-scores from ten runs of ten-fold cross validation.

Results

Figure 6.5 plots the f-scores of each of the feature subsets in Table 6.12 for the
five classes. The feature subsets perform slightly better than the complete data
set for the Accept and Reject classes, but for the three ReqEv classes there is no
clear best choice, and a number of f-scores are 0%. This may suggest that the
features which are predictive of the two larger classes do not necessarily predict
the smaller classes well, in which case it is necessary for our classifier to use the
entire feature vector. We can also observe the presence of global features in the
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Figure 6.5: F-scores by class for each attribute selection algorithm

lists of highest-rated attributes. This offers support for the hypothesis tested
in the previous experiment, that the global features improve performance and
are useful—in this case, predictive—for the choice of TLGA. Finally we note
that attributes which do refer to mathematical concepts, such as ruleStated,
premiseStated or setDefinitionRuleUsedInCurrentStep, are less often among
the highest ranked attributes. Instead the most predictive attributes seem to
be those which describe the dialogue context at the level of the student’s and
tutor’s actions, such as time_to_reply and proportionOfAcceptances.

6.4.7 Misclassification analysis

In this series of experiments we have been considering our task as a five-way
classifier, and have presented our results as such. We can however view the
results from the point of view of the generalisation of the individual classes
which we used to split the classifier in two in Section 6.4.4. We argue that in
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Predicted
Accept Reject ReqEv AcceptReqEv RejectReqEv

Accept 172.3 16.4 9.8 5 3.5
Reject 6 38.3 11 0.2 3.5

Actual ReqEv 6.4 2.8 5.1 2.6 0.1
AcceptReqEv 9.2 0 0.9 0.9 0
RejectReqEv 1 3 2.2 0 3.8

Table 6.13: Confusion matrix showing average number of predictions

the case of a misclassification, if the actual class and the predicted class share
a concept, then the mistake the classifier has made is somehow less serious
than other misclassifications. For instance, the classes Accept and AcceptReqEv
both include the acceptance action, so if the classifier wrongly assigns an in-
stance from the class Accept into AcceptReqEv or vice versa, then this wrong
prediction may nevertheless be a reasonable action in the dialogue context.

To investigate how the classifier is misclassifying instances and whether they
may be of this partially acceptable nature, we inspect its confusion matrix. A
confusion matrix is a tabular representation of the predictions a classifier has
made in a supervised learning problem. Each column represents the instances
in a predicted class and each row the instances in an actual class. Each cell
contains the number of predictions made into a class (its column) which were
of a particular actual class (its row). The confusion matrix for a 100% accurate
classifier contains zeros in all cells which are not on the main diagonal—all
other cells represent misclassifications.

In Table 6.13 we present the confusion matrix for the classifier trained in the
experiment in Section 6.4.4, that is, it is trained on the 7:1 downsampled data
and uses the combined classification approach. It shows the average number
of predicted instances in each class over the 10 runs of ten-fold cross valida-
tion1. We see for example that the majority of Accept, Reject and RejectReqEv
instances are on the main diagonal. The fourth row the matrix shows that of
the misclassifications of AcceptReqEv, none are misclassified into classes includ-
ing a rejection aspect. Similarly on average only one instance of RejectReqEv
is misclassified into a class including an acceptance aspect.

To illustrate better what proportions of each class are being misclassified
into which classes we have graphed the data presented in Table 6.13 in Fig-
ure 6.6. In each bar the segments represent the percentage of actual instances of
that class which have been classified into the different classes. We see that the
the majority of AcceptReqEv instances are being classified into Accept, which
suggests that for these instances the C1 sub-classifier for acceptance or rejec-

1The row totals may not exactly equal the actual class distribution due to rounding errors.
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Figure 6.6: Confusion matrix expressed in percentages of the actual classes

tion (see Section 6.4.4) is correct but the C2 classifier is nearly always incor-
rect. The misclassifications of ReqEv are spread quite evenly over the four
other classes. This would indicate that the classifier has not found features
which distinguish ReqEv strongly from any other class, although this task is
made more difficult by the characteristic of ReqEv that it can nearly always
reasonably be performed.

To analyse this we can inspect the results of the ChiSquaredAttributeEval
attribute selection algorithm for the two individual classifiers. For C1 the
chi squared values, with a top ten range of X 2 = 22528 to X 2 = 1397, are
much higher than those of the request/not classifier, which range from X 2

= 10621 to X 2 = 606 for the ten highest rated attributes. This shows that
the feature vector discriminates better for the acceptance decision than the
request evidence decision. The attributes themselves are similarly ranked, but
one major difference is the placing of the attribute correctness. It is highly
predictive for acceptance (second place, X 2 = 11623.6) but much less so for
request evidence (13th place, X 2 = 242.4). On the other hand granularity is
the only attribute which is more strongly predictive for request evidence (X 2
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Predicted
Accept Reject Neither

Actual
Accept 187.4 19.9 10.7
Reject 7.2 48.6 13.2
Neither 9 2.9 5.1

Table 6.14: Confusion matrix for the C1 classifier

Predicted
ReqEv Not ReqEv

Actual ReqEv 15.6 22.4
NotReqEv 33 233

Table 6.15: Confusion matrix for the C2 classifier

= 3358.4) than it is for acceptance (X 2 = 3065).
The difficulty of the ReqEv decision is further illustrated when we inspect

the individual confusion matrices for the C1 and C2 classifiers, shown in Ta-
ble 6.14 and Table 6.15 respectively. The table shows good results for C1,
with an overall accuracy of 79.3%. Precision and recall for the Accept class
are 92% and 87% respectively, and for the Reject class 68.1% and 70.4%. This
shows that C1, and therefore also the combined classifier, is discriminating
well between Accept and Reject. For C2 the accuracy result is also good at
81.8%, however this figure hides the poor performance of the classifier for the
minority ReqEv class, which has precision and recall of 32.1% and 41.1%, re-
spectively. This indicates that the C2 classifier is not able to predict ReqEv
well, and it is this poor performance which causes the combined classifier to
exhibit the low f-scores across the request classes which we saw in its results in
Figure 6.3.

We may also consider what proportions of each class are being misclassified
into classes which may in the context in fact be quite reasonable actions. As
well as Accept and AcceptReqEv as described above, a misclassification in either
direction between Reject and RejectReqEv may be considered reasonable since
they share a common aspect of rejection. Classifying a non-ReqEv instance
into ReqEv is also reasonable because ReqEv may follow many different cate-
gorisations of proof step. The tutor may elect to discuss a correct step in order
to elicit a more detailed explantation exposing more domain content. Equally
the tutor may elect to discuss an incorrect step in order to allow the student
to learn by recognising a contradictory path of reasoning. ReqEv is therefore
always an option open to the tutor. What is considered wrong in all contexts
is a misclassification which crosses the boundary of acceptance and rejection.
The confusion matrix for the C1 classifier in Table 6.14 showed that on aver-
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Right Reasonable Wrong

Accept 83.2 7.1 9.5
Reject 64.9 24.5 10.4
ReqEv 30.0 0.0 70.0
AcceptReqEv 8.2 91.8 0.0
RejectReqEv 38.0 52.0 10.0

Table 6.16: Grouped percentage of misclassified instances, by actual class

age 9.1% of Accept instances were misclassified as Reject and 10.4% the other
way around. If we group the percentages of misclassified instances according
to these definitions, as shown in Table 6.16, we see a relatively low propor-
tion of wrong classifications, except in the case of ReqEv, for which we do not
define reasonable misclassifications.

6.5 Summary and discussion
In this chapter we have developed a classifier for the tutor’s task-level ground-
ing actions. Given a dialogue context whose latest utterance is a solution step
contribution, it predicts the TLGA that the tutor should perform. The fea-
tures we have used to describe the dialogue context come either directly from
the corpus annotation or are computed from it. As we argue in Chapter 5,
the annotations consist of information which is also available to the dialogue
model at run time. The dialogue model can therefore implement the same
algorithm as we have used in Section 6.3.2 to calculate the values of the rest
of the feature vector and this way the classifier can be used “live”. We will
consider this further in our evaluation in the following chapter.

In the course of developing the classifier we have investigated a series of hy-
potheses about how to achieve the best performance, and about how the per-
formance of the classifier allows us to draw conclusions about our underlying
dialogue model. In our first experiment we found that naive Bayes is the most
suitable learning algorithm, and used this to train the classifiers in the sub-
sequent experiments. The next two experiments attempted to deal with the
skewed class distribution which our data set exhibits. We found that by down-
sampling the data set to a maximum spread of 7:1, and by splitting our task
into two separate classification problems, we were able to strongly improve
performance for the classes ReqEv, AcceptReqEv, RejectReqEv at the cost of a
small decrease in the prediction accuracy of Accept and Reject.

Our fourth and fifth experiments focused on the question of which features
from the complete feature set should be used to train the classifier for this task.
Our dialogue model maintains a detailed representation of dialogue context
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which is captured in the feature vector by the global features. These are the
features which pertain to the dialogue history rather than just to the latest ut-
terance. We compared the performance of classifiers trained with and without
the global features, and found that the classifier trained with the global features
is much more accurate across the ReqEv classes. We then considered a series
of feature subsets generated by standard attribute selection algorithms. These
did not lead to any clear improvement over the performance of the classifier
trained using both the local and global features, but did show that global fea-
tures are highly predictive for this task, and that domain independent features
are more predictive than features specific to mathematical content.

The final classifier is thus trained on 7:1 downsampled data, uses the split
classification approach, and is trained using the local and global feature sets. It
has an overall error rate of 27.5%, which however masks a large variance in
accuracy across the classes. Accept and Reject, the largest classes, are predicted
well and the features are strongly predictive (as shown by high X 2 values) for
this task. Across the three request classes we have an average f-score of only
22.6%, however this is a difficult task due to the small amount of data and
the small proportion of instances in these classes. Our series of experiments
has steadily improved the performance in these classes, and would hope that a
larger, more balanced data set may continue this trend.

Finally, our misclassification analysis examined what kind of errors the clas-
sifier makes. We cautiously argue that some misclassifications, for instance
choosing AcceptReqEv in the place of Accept, may in fact be quite reasonable
actions in a given dialogue context. Seen in this light the number of wrong
classifications is much smaller, around 10% or lower for Accept, Reject, Accep-
tReqEv and RejectReqEv. The question of whether these wrong predictions
are in fact reasonable or appropriate in context will be one of the goals of the
evaluation experiment which we will report in the next chapter.

By inspecting the individual confusion matrices for the C1 and C2 classifiers
we saw that C1 is performing well for Accept and Reject but C2 is not perform-
ing well for ReqEv. This is the source of the low f-scores of the combined
classifier for the request classes. There are two possible explanations for this
poor performance: First, it may be that the classifier is not a suitable model of
the decision whether to request evidence or not. In other words, despite the
fact that we observe improved results when adding the global feature set to the
local feature set, this feature set may still not be a sufficient description of the
dialogue context in order to choose ReqEv correctly. The second possibility is
that choosing ReqEv is an intrinsically difficult task, and that statistical meth-
ods can only reach a level of performance which is significantly worse than the
gold standard represented by the wizards’ actions in the corpus.
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The results we have presented so far do not yet allow us to rule out either
of these two explanations. We can however investigate further the question
of whether choosing ReqEv is an inherently difficult task. If this hypothesis
could be confirmed then the performance of our combined classifier would
have to be seen in the light of this difficulty. An assessment of the difficulty of
choosing request actions will be the second goal of the evaluation experiment
in the next chapter.

In the evaluation we will ask human expert tutors to rate the classifier’s out-
put in comparison to a baseline and to the tutor’s original action. Given a
dialogue context and a model prediction which was not the same as the corpus
action, if the expert tutors rate the model’s output as highly as the corpus ac-
tions, then we have evidence that the model’s prediction is equally reasonable
in that context. In this case we can say that the model is choosing pedagog-
ically appropriate actions in context, even if they do not match the original
wizard’s actions. If the baseline, which does not predict request actions, is
rated comparably highly in relation to the model and corpus, then we have ev-
idence that choosing request actions correctly is difficult even for a human, in
which case we may consider the performance of the C2 classifier as acceptable
for the task at hand.
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In Chapter 4 we presented a finite-state model of solution step discussions
which maintains a representation of dialogue state. In Chapter 6 we developed
a classifier which in turn uses this dialogue state information to predict the tu-
tor’s task-level grounding action (TLGA) in a given dialogue context. The eval-
uation in the previous chapter found an accuracy of 72.5% as well as a certain
sensitivity to the ReqEv, AcceptReqEv and RejectReqEv actions. We will refer
to the group of these three as the request actions. The classifier however proved
to have difficulty discriminating requests from non-request actions. This as-
pect of the classification, embodied by the C2 classifier, had a precision and
recall of only 32.1% and 41.1%, respectively.

In this chapter we report on a further evaluation of the classifier in which we
investigate the misclassifications which were initially analysed in Section 6.4.7.
In that analysis we reasoned that the misclassifications which do not cross the
accept/reject boundary, for instance when Accept is misclassified as AcceptRe-
qEv, are not necessarily bad errors, and that the predicted action may in fact be
appropriate, depending on the context of its performance. Our first hypothe-
sis in the evaluation which we present in this chapter is that the predictions of
the model and the actions in the corpus in such cases will be equally appropri-
ate in context even though they are not the same action.

Our second hypothesis concerns the question of the intrinsic difficulty of
the task of choosing whether to request evidence or not. Having found that
the classifier does not perform well for the request classes, we would like to
investigate whether this is due to the design of the classifier or due to the basic
difficulty of the task. If humans are equally bad at detecting when requests

129



7 Evaluation of the model

should be made (as defined by the gold standard of the corpus), then we may
be able to consider the performance of the classifier as not so bad after all.

The methodology we follow elicits ratings of appropriateness from human
raters, mathematics experts with teaching experience, who view and rate the
predictions in context. We will use a baseline which only predicts Accept and
Reject, and each dialogue context will be rated for each of the three experimen-
tal conditions (model, corpus, baseline). By comparing the ratings across the
conditions rather than just the predictions we are effectively smoothing the
differences between accurate and inaccurate predictions, and abstracting the
evaluation criteria from “same prediction” to “same appropriateness rating by
an expert”.

The experiment is a one-factor repeated measures design. If our first hypoth-
esis, about the appropriateness of the model’s predictions, is confirmed we will
find that the ratings assigned in the model condition are not significantly differ-
ent to the ratings in the corpus condition. If our second hypothesis, about the
difficulty of the task, is confirmed we will find that the ratings of the baseline
do not differ significantly from the corpus ratings. In other words, this result
would show that in contexts in which the wizard requested evidence, a simple
Accept or Reject is considered just as good, which shows that it is difficult to
detect the specific conditions which make the ReqEv action necessary.

This chapter is structured as follows. In Section 7.1 we motivate the use
of human rater evaluations as opposed to other approaches to dialogue sys-
tem evaluation, and review some similar studies in the literature. Section 7.2
presents the experimental design. We outline the task the raters should per-
form, the choice and presentation of the stimuli, the restrictions on partici-
pants’ experience, and the procedure which was followed in the experimental
session. Our results are presented in Section 7.3, and Section 7.4 gives a sum-
mary of the experiment and a discussion of the results.

7.1 Evaluation with human expert ratings
Dialogue system evaluation has moved strongly towards evaluation based on
usability metrics such as task completion, dialogue length or number of user
actions [148, 149]. Such metrics can be extracted from the transcripts of dia-
logues between the system and the user and then compared to baseline values
as a measure of how well the system is performing. The PARADISE frame-
work [205] aims to model the general concept of user satisfaction to measure
how well a system performs. Users complete a questionnaire after interacting
with the system in which a set of ratings is collected, such as whether the sys-
tem fulfilled the user’s expectations, whether the system understood what was
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said or whether the user would use the system again in the future. Combined
with the objective measures from the transcript of the dialogue such as num-
ber of turns, a regression model can be fit which estimates the user ratings of
future dialogues from the objective measures. Using this evaluation approach
requires the system to be fully implemented and robust to real users, if not
then parts of the system can be simulated in a Wizard-of-Oz setup.

PARADISE is suitable for dialogue genres such as information seeking, in
which it is clear what the objective measures should be: shorter dialogues, less
clarification requests and higher task completion rates lead to higher user sat-
isfaction. For tutorial dialogue it is less clear what the equivalent objective
measures would be. For instance Graesser et al. [86] argue that questions are
a fundamental component in driving explanatory reasoning, which leads to
learning, so less requests does not necessarily correlate with better tutorial di-
alogue. More typical in tutorial dialogue is evaluation by measuring the learn-
ing gain that students exhibit after interacting with the system [88, 9]. An
evaluation may also involve finding correlations between the student’s learn-
ing gain and some set of relatively objective measures of the dialogue, such as
the dialogue acts performed or the content of utterances [126]. A fully imple-
mented tutorial dialogue system can also be used to focus evaluation on one of
its parts, for instance interpretation errors [70].

For this research the evaluation methods outlined above are not suitable.
During the development of the DIALOG project, which focused on fundamen-
tal rather than applied research, it was not possible to conduct studies includ-
ing pre- and post-tests. The approach of correlating features of the dialogues
that the model produces with learning gain is therefore not available. This
means we can not tell which kind of tutor behaviour or which choice of action
in a given situation leads to a more effective dialogue, whereby effectiveness is
equated with learning gain.

There has been extensive work done within the DIALOG project on inter-
preting the kind of language students use as exemplified by the corpus in Chap-
ter 3 [100, 101]. However the scale of the research reported here is such that
a fully implemented end-to-end system with sufficiently robust input analysis
as well as expressive natural language generation is not possible. This rules
out the option of evaluating the system in a “live” experiment with students.
Indeed the results of such an approach would be strongly affected by how well
the input and output modules work, because the surface realisation of tutors’
utterances has been shown to affect their contribution to learning [65, 130].
This would also be the case for a semi-implemented Wizard-of-Oz scenario in
which a human performs the function of input analysis and output generation.

Instead, the evaluation we plan to carry out uses the ratings provided by
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human experts to compare the output of the model with the gold standard
represented by the corpus. If the ratings given to the action predicted by the
model and the original action in the corpus are the same, then the actions
are equally good in that context, even if they are not the same action. This
approach is an example of what Miliaev et al. [141] refer to as an “intrinsic”
evaluation, as opposed to an “extrinsic” one, in which a system is evaluated
indirectly by measuring some dependent value such as task success. Our gold
standard is thus no longer the actual action that occurred in the corpus, but
rather the rating of that action.

Human judgement evaluations are typically used when a formal measure of
how good an output is is hard to define, or when the measure of success is
subjective. For this reason it has often been used to evaluate natural language
generation (NLG) tasks, where there may be many “correct” ways to verbalise
a communicative intention, and these different verbalisations may be difficult
to compare objectively to one another. Similarly, in dialogue systems there
may also be many correct but incomparable responses in a given situation. We
now briefly review some experimental designs using human judgements in the
fields of NLG and dialogue modelling.

Walker et al. [203] evaluate a multi-modal information presentation system
for tourist information in order to investigate the effect of tailoring output to
the user and the presentation mode. Each subject “overhears”, or hears a play-
back of, a dialogue from the corpus and hears at a given point two responses
corresponding to with and without tailoring (the experimental manipulation).
The subject rates both responses by how much he agrees or disagrees with
“the system’s utterance is easy to understand and it provides the information
that I’m interested in”. 16 subjects heard 4 dialogues, and in each dialogue
6 judgments were made. There was a main effect found of tailoring on the
judgments.

A number of sentence planners are compared within an NLG task by Ram-
bow et al. [160]. The subject sees part of a dialogue as context, and is then
asked to rate six possible system responses for their “understandability, well-
formedness and appropriateness” in that context. 60 subjects each saw five
dialogues with 20 points at which the response possibilities were presented, re-
sulting in 1200 judgements, and it was found that a trainable sentence planner
received significantly higher scores.

The evaluation carried out by Lester and Porter [121] compares an explana-
tion generation system for biology concepts from a knowledge base to human
writers. The “two-panel method” is used. Both the system and a panel of ex-
perts generate explanations for the concepts in the evaluation. Each concept is
explained once by the system and once by a human. This set of explanations
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is sent to a second panel of experts to be rated with A-F grades. The mean and
stderr are calculated to compare the system to the human-generated explana-
tions. Cawsey [39] evaluates EDGE, an explanation generation system. The
evaluation results were that a “small number” of users found the explanation
“instructive and largely coherent”. No comparative evaluation was done. The
evaluation by Miliaev et al. [141] consists of a subjective assessment of text
quality. Nine subjects saw nine texts, three from each of original text, gener-
ated text, and text generated from an edited plan. They rated the “quality and
understandability”. There were no significant differences on the Likert scale
between the three versions, thus it was concluded that they are similar for the
readers.

The study reported by Moore et al. [143], and Porayska-Pomsta [154] is an
example of using human judgements to evaluate a component of a dialogue
system which is not the NLG component. In this tutorial dialogue applica-
tion the experimenters investigate how tutorial feedback is influenced by af-
fect. A subject sees a dialogue fragment which ends with a student utterance
which was either incorrect or partially correct. They then see three possible
tutor responses: The actual response from the corpus, the preferred response
from the model, and the dispreferred response from the model. Four subjects
each saw 20 dialogues and rated how appropriate they thought each response
would have been in that context. The human response and the preferred re-
sponse were not significantly different, and the others were, which supports
the effectiveness of the model.

Stent [184] evaluates a generation module developed within the TRIPS sys-
tem. The goal of the evaluation is to find out how “natural” the generated
output is. The reasons for using human judgements in this case included the
fact that the TRIPS system was not robust enough to support an end-to-end
evaluation, and that such a task-based analysis does not allow conclusions to
be drawn about specific modules or features of a system. In addition, the prop-
erty of “naturalness” is best measured in context by humans.

In three dialogues from the TRIPS corpus the user utterances were replaced
with utterances generated by the generation module. Three judges each rated
6 dialogues (three original and three modified as above). They were told that
there were 7 dialogue participants in all, but not that one of those was the
computer. The judges evaluated the modified dialogues using the originals as
reference material. The evaluation consisted of subjective annotations on ut-
terances, phrases, referring expressions, and so on, as to whether they were
wrongly placed, incorrect, redundant etc. Additionally comments about odd
or incomplete utterances were elicited. The judges were asked to say whether
each of the dialogue participants was a native speaker or not. One judge noted
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the lack of fluency of the computer-generated turns, the other two judges did
not identify the system as the worst of the speakers in terms of naturalness
and the computer utterances received less negative comments than the humans.
Overall “the judges considered the system’s contributions to be at least as co-
herent, informative and robust as those of the humans”.

7.2 Experimental design
Our goal with this experiment is to elicit ratings of the appropriateness of the
actions in context across three conditions: The prediction of the model, the ac-
tion contained in the corpus, and the prediction of a baseline. For this we will
ask raters who are expert tutors to read excerpts from the corpus which end
with a student utterance. One possible response to this utterance for each of
the three conditions is rated. We can then compare the ratings and hopefully
see that for our first hypothesis the model and corpus conditions are similarly
highly rated, and for our second hypothesis that the corpus and baseline con-
ditions are similarly highly rated.

This section presents the experimental design. We detail what rating task
the experts have to complete and how the materials were chosen and presented.
We outline the required profile of the participants and the procedure followed
in carrying out the experiment.

7.2.1 The rating task

The participant’s task in this experiment is to rate the appropriateness of the
tutor’s TLGAs in a given dialogue context. The participant sees a piece of
dialogue context which ends on a student proof step. It is followed by the
actions from the three conditions, each of which is to be given a separate rat-
ing. The task is defined by the rating question which the participant answers
at each stimulus: “How appropriate do you consider the following reaction
from the tutor?”. Appropriateness is been defined in the introductory text
to the experiment as referring to “mathematical and didactic appropriateness”,
and the explanation is given that a reaction is appropriate when it suits the
student’s current knowledge and promotes a possible learning effect. The ex-
act choice of words in this question will have an influence on the ratings, and
other phrasings would have been possible. For instance, asking “How well
would this action contribute to you better understanding what the student
knows?” would focus strongly on what we assume is one of the motivations
behind requesting evidence of understanding of concepts. We could also tar-
get potential learning gain by asking “How well would this action contribute
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to the student learning the material/proof/proving in general?”, but it is not
clear that this would elicit different ratings.

We decided to use the “appropriateness” expression because it is the same
description as was given to the wizards in the corpus collection experiment.
By giving the participants in this experiment the same instructions and asking
them to rate along the same dimension, we implicitly encourage them to act
like the wizards did. Appropriateness is also the most neutral and unspecific
instruction for the raters, and does not bias their interpretation of the task
in any direction. The rating is given on a seven-point Likert scale [125], a
standard technique for mapping subjective responses to scalar values. Each
of the three conditions should be rated as independent options and the rater
should not consider it a ranking task.

7.2.2 Materials
The materials used in the experiment are generated from the annotated corpus
and from the predictions made by the classifier which was developed in the
previous chapter.

Generating the stimuli

Ideally for an evaluation like this one our stimuli would be taken from a test set
of dialogue contexts which had been kept apart from the training data during
the development of the model. However, as we explained in Section 6.4.1, due
to the low frequency of occurrence of requests for evidence of understanding,
splitting the data into a training and test set is not possible. If we had used a
10% split, which is a typical value, we would have had only one or possibly
two instances of ReqEv, AcceptReqEv and RejectReqEv in the test set, from
which it would be impossible to derive meaningful ratings. Instead we will use
ten runs of ten-fold cross validation to generate predictions for the corpus and
baseline conditions for instances in the corpus, as we did in the course of the
machine learning experiments in Chapter 6.

For the model’s predictions we will use the classifier with the optimal pa-
rameters according to the series of learning experiments; this is the classifier
which we trained in Section 6.4.4. It uses the downsampled data set at a ratio of
7:1, resulting in 304 instances, it is trained using the naive Bayes learner, and it
uses the approach of splitting the classification problem into two simpler parts.
Using the classifier’s predictions means we are not strictly using the implemen-
tation of the dialogue model from Chapter 4 in this evaluation. However since
the dialogue model can use the same update algorithm as we implemented for
the creation of the learning instances, it maintains the same dialogue context
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representation as the learner in our previous experiments had. Therefore eval-
uating the classifier’s predictions is equivalent to evaluating the classifier which
predicts based on the content of the dialogue model’s state representation.

Baseline predictions We considered a number of possibilities of how to
generate baseline predictions. A typical and simple approach is to use the ma-
jority class found in the corpus. In our case this would mean that all instances
would be labelled as Accept. This baseline would have an accuracy of 77.9% be-
cause Accept is by far the majority class, with 505 of 684 cases in the complete
learning data set. However for the cases in which the student’s utterance was
incorrect, and the actual tutor’s action was for instance Reject or ReqEv, this
baseline is clearly wrong.

A slightly stronger baseline is a classifier trained from the same data as above
but using only the correctness annotation of the previous student utterance.
The attraction of this baseline is that it is a fair approximation of a simple tu-
torial system, in other words one that acts based only on a shallow analysis
of the most recent input and does not have any access to the previous dia-
logue. Although this classifier predicts both Accept and Reject, it suffers from
the same problem as the majority class baseline, namely that it sometimes pre-
dicts Accept for incorrect steps and Reject for correct steps. Comments from a
participant in a pilot study indicated that rating this combination of context
and action is misleading for the raters.

The baseline we have decided to use is a simple mapping from correctness
value to TLGA. Correct steps map to Accept, incorrect steps to Reject and all
others, in other words partially correct and n/a, map to Accept, because this is
the majority class. This baseline does not get the correct and incorrect steps
wrong like the two above, but can not predict any of the other three TLGA
categories.

Verbalised dialogue moves It is important for this experiment that the
actions in each condition are presented such that the conditions are indistin-
guishable from one another. However we do not want the stimuli to contain
only the name of the TLGA, because in this case raters would have to learn
what each move meant and remember this definition for the duration of the
experiment. We also can not use natural language expressions because this
would given an unfair advantage to the corpus condition. The actions in the
corpus are already verbalised whereas the actions in the model and baseline
condition would have to be generated by some form of natural language gener-
ation. Here the expressivity and naturalness of the wizards’ utterances would
no doubt lead to them being considered better, and the differences in surface
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TLGA Verbalisation

Accept “Tell the student that that was the right next proof step”
Reject “Tell the student that that was not the right next proof step”
ReqEv “Ask the student how the proof step was derived”
AcceptReqEv “Tell the student that that was the right next proof step, but also ask how

the step was derived.”
RejectReqEv “Tell the student that that was not the right next proof step and ask how

the step was derived”

Table 7.1: Verbalisations of the five TLGAs

realisation would be a strong confounding factor.
We have chosen a solution between these two extremes which we will re-

fer to as a “verbalised dialogue move”. This is essentially a template for the
description of a dialogue move, rather than for a surface realisation of an ut-
terance with the same intention. It describes what the dialogue move means
rather than showing a way of realising it. The verbalisations which we will
use for the five TLGAs are given in Table 7.1. This approach has a number of
advantages in the context of this evaluation. Rating the model’s output with
verbalised dialogue moves reflect the fact that it reasons at the dialogue move
level rather than the natural language level. The use of templates avoids hav-
ing to write arbitrary natural language realisations of actions, of which there
could be many. There are of course many different ways to express the in-
tention of an the TLGAs which fit in with our original definitions, however
we considered “the right next proof step” to be a good compromise between
capturing both the correctness of the step and the relevance of the step to the
current task in the current context.

Dialogue context The motivation for our model of TLGA has stressed that
it is crucial that a tutor builds up some internal model of the student’s knowl-
edge state. Only then can the tutor decide with certainty whether a solution
step should be discussed or not. This decision depends on whether the tutor
believes the student has in fact mastered the concepts that occur in the step,
and this belief can only arise from observing the student’s actions in the pre-
vious discourse. The raters in this experiment are effectively rating the appro-
priateness of entering such discussions, therefore it is essential that they have
access to the same context. However we are forced to make some trade-offs.

We have to decide how much context we can realistically present to the
raters. On the one hand a longer dialogue context would mean that the rater
has the opportunity to develop a better internal model of the student’s ex-
pertise, however it would be highly time-intensive to ask raters to read full
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transcripts, some of which are over 50 utterances long, in order to elicit only
one rating. On the other hand the context does have to be long enough for the
rater to have had some chance of recognising what the student might or might
not know from his demonstration of the use of mathematical concepts. We
have decided that the previous context of a rating point should contain at least
all turns going back to the beginning of the exercise in which the step occurs.
If this is less than 8 turns, the preceding exercise is included in its entirety.

In the interest of receiving as many individual ratings as possible from each
participant we decided to present the stimuli in pairs. For each dialogue ex-
cerpt the raters read, they initially see the dialogue transcript up to and includ-
ing a solution step contribution from the student. They are then presented
with the three actions, one for each condition, to be rated. After they have
given the three ratings, they see the dialogue transcript as it actually continued
up to the second stimulus, where they are again asked for three ratings. They
are informed after the first rating that they are now reading the dialogue as
it in fact continued. The second stimulus may occur soon after the first in
the dialogue. In this case the minimum context restriction described above is
fulfilled by the context of the first stimulus.

Choice of dialogue situations to be rated

From the data set of 304 instances we must choose a subset which will be used
to generate the rating stimuli as described in the previous section, because this
is too much to ask participants to rate. The model predicted 72.5% of these
correctly (221 cases), as reported in Section 6.4.4. The experimental stimuli are
chosen from the remaining 83 cases, because it is the ratings of the cases where
the model’s prediction differs from the corpus that are most informative about
whether certain wrong predictions may in fact be appropriate actions in that
context.

We chose the rating stimuli according to the following criteria. The turn
number of the student’s utterance must be at least 8. This is to ensure that
there is enough previous context for the step, as described above. We chose
all instances for which the tutor’s action in the corpus was a request action, of
which there were 31. This choice is due to the focus of our model on solution
step discussions and the tutor’s decision of whether to begin such a discussion
or not. For the same reason we also chose the instances in which the model’s
prediction was a request action, of which there were a further 19 instances. In
order to have all of the stimuli in pairs we added six dummy instances whose
model and corpus predictions were changed so that they also included at least
one request action.

These criteria resulted in a stimuli set of size 56. In all cases the model
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Accept Reject ReqEv AcceptReqEv RejectReqEv

Model 14 10 12 14 0
Corpus 13 6 14 9 8
Baseline 42 8 0 0 0

Table 7.2: Distribution of TLGAs by condition in the stimuli

condition and the corpus condition are different and at least one is a request
action. By always including one request action we focus on the cases in which
we believe the model may be able to predict a good action. This approach
of choosing the data points with the most differentiating potential was also
taken by Porayska-Pomsta [154], who selected the incorrect and partially cor-
rect instances rather than the correct ones in her evaluation. In the case that
the baseline condition is the same as either the model or the corpus, the base-
line is not displayed to the rater and instead is assigned the same rating as the
condition it is the same as received from the rater.

The remaining wrong predictions cross the Accept/Reject boundary, that is,
the model misclassified an Accept into Reject (7.9% of all Accepts) or the other
way around (10.2% of Rejects were classified as Accept). We did not use these as
stimuli because they could confuse the rater and because the prediction is so
wrong that the rating would not be informative. In other words the rater could
not possibly rate “Reject” well if the step was in fact correct, so the difference
in ratings between the accept and the reject is not meaningful.

Table 7.2 shows the distribution of TLGAs in the 50 non-dummy stimuli.
The distribution is balanced for the model and corpus conditions, except that
no stimuli included a prediction of RejectReqEv from the model condition.
There is a strong skew in the baseline condition towards Accept, which is
caused by the high frequency of correct proof steps in the underlying data.
We can now show an example dialogue excerpt as it is presented to the rater.
Figures 7.1 and 7.2 show the first and second stimulus of one pair, respectively.
The stimuli are in German, but here we are interested in illustrating their pre-

sentation rather than their content. In the first stimulus the baseline condition
has been suppressed, in the second all are present.

7.2.3 Experimental procedure

The stimuli were split into four groups so that each participant sees 14 items in
seven pairs. A pilot study with example stimuli indicated this was an amount
of material which could be finished within 30 minutes. The total occurrences
of the TLGAs were balanced in each group. Participants were allocated into
groups in sequence according to the order they began the study.
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7 Evaluation of the model

Figure 7.1: The first stimulus of a pair

To ensure the validity of the study we required that raters had experience
as teachers or tutors. More specifically, we restricted the participants to those
who had taught mathematics for at least one semester as either a schoolteacher,
university lecturer or university teaching assistant. This way each participant
had experience at least in a classroom setting, if not in one-on-one tutoring.
The participants were all volunteers who were recruited by advertising the
study across a number of mailing lists and internet forums for maths teachers,
mailing lists of maths departments at German universities, and direct emails to
members of the teaching staff of the Departments of Mathematics and Compu-
tational Linguistics at Saarland University. No other contact was made with
participants, and they could complete the study any time they liked. The en-
tire study was conducted in German.

The experiment was carried out online according to the following proce-
dure. Participants were reminded of the restriction that only those with expe-
rience teaching mathematics may take part. They were then asked to fill out a
short questionnaire about their teaching background. They were asked about
their university degree (mathematics, mathematics didactics, a maths-related
degree, or other), their teaching experience (schoolteacher, university lecturer
or university teaching assistant), how long ago they taught maths for the last
time measured in semesters, for how long they have taught mathematical foun-
dations in total measured in semesters, and how much experience they have of
teaching logic or proof theory (none, a little, middle, a lot).
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7.3 Results

Figure 7.2: The second stimulus of a pair

In the next step the participants read an introductory text which explained
the scenario of dialogue based tutoring and gave an example of a complete
exercise as it appears in the corpus. The rating task was explained in detail.
The instructions encourage the raters to put themselves in the position of the
tutor and to try to understand what proof the student is constructing in order
to best gauge the appropriateness of the proposed reaction. They were then
shown the 14 stimuli in seven dialogue excerpts as illustrated above in random
order and asked for their ratings of each one.

7.3 Results
The study was completed by ten raters. The website was visited 60 times, but
the remaining 50 visitors did not continue after the introductory text, or rated
only the first stimulus. The stimuli in groups one and four were rated by three
raters, groups two and three were rated by two raters. Two raters in group four
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Figure 7.3: Frequency distributions of ratings by condition

rated only four and 11 stimuli respectively, and one rater in group one rated
only seven stimuli. Including repeat ratings of the same item by different raters
but excluding ratings given to dummy fillers, 110 stimuli in total were viewed
and rated for each of the three conditions.

Among the participants were six who had studied mathematics and four
who had studied mathematics teaching (the German Lehramt degree course).
These were spread evenly over the four groups of stimuli. There were five uni-
versity teaching assistants, two schoolteachers and three university lecturers,
and all but one were currently teaching. Four participants had no experience
teaching mathematical foundations and another four had two semesters’ ex-
perience. The remaining two had taught foundations for 6 and 10 semesters
respectively. The participants’ experience teaching logic and proof theory was
given as none by three participants, a little by a further three, two answered
some and two answered a lot.

The frequency distributions of the ratings in each condition are shown in
Figure 7.3. The graphs illustrate the skew towards the extreme values 1, 6 and
7 in all three conditions. We see that the baseline was rated with 7 more often
than the other two conditions, as well as the unexpected result that the corpus
was rated with 1 more often than the model and baseline predictions.

The use of parametric methods on Likert scale data is a matter for discus-
sion because the data can be interpreted as being ordinal or interval [63, 105].
However we believe that our experiment generates interval data because the
rating scale was expressed as a row of equidistant consecutive integers. In this
case we expect the rater to consider the numbers to represent equal grades of
categorisation, and thus the mean has a meaningful value. The mean rating in
the model condition is 4.41 (sd= 2.22), for the corpus condition it is 4.15 (stan-
dard deviation= 2.29) and for the baseline condition it is 4.57 (sd= 2.36). The
ratings are not normally distributed according to a Shapiro-Wilk normality
test (Model: W= 0.8647, p< 0.001; Corpus: W= 0.8645, p< 0.001; Baseline:
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W = 0.8254, p < 0.001). This result effectively means the interpretation of
the Likert data as interval or ordinal remains moot, because due to the non-
normally distributed data we will use non-parametric tests in the following
analyses. The significance level will be set at 0.05.

We would like to investigate whether the rating that participants have as-
signed to actions varies by condition. Therefore we will carry out an analysis
of variance with condition as the independent variable and rating as the de-
pendent variable. We elicited a rating for all three conditions in each stimulus,
therefore our experiment is a repeated measures design. Because the ratings
are not normally distributed we will use the Friedman test, which analyses
variance based on ranks rather than absolute values. The Friedman test does
not indicate any variance in rating due to the experimental condition (X 2(2)=
0.98, p = 0.612).

This result supports both of our experimental hypotheses. The Friedman
test shows there is no significant difference between the ratings given to the
corpus and the model predictions, which confirms our hypothesis that they
will be considered equally appropriate in context. It also shows there is no
significant difference between the corpus and the baseline ratings, which in-
dicates that finding the right circumstances for requests is difficult even for
human experts.

In order to try to focus the analysis of the data on the question of entering
solution step discussions, we investigated possible effects in subsets of the data
which contain request actions. We first restricted the set of stimuli to those
in which the action in the corpus was a request action, a set of 66 data points.
The means now indicate the model condition being given even higher ratings
on average (mean of model ratings = 4.53, corpus = 3.86, baseline 4.44), and
a Friedman test again showed no significant effect of condition on the rating.
For our second hypothesis this shows that when the cases are reduced to those
where the wizards chose to request evidence, this request is still not being
rated higher than the baseline by the experts. Similarly the subset of 59 data
points in which the model predicted a request action also showed no effect of
condition.

We also looked for differences in ratings in the data set reduced to those
data points in which the student’s most recent proof step had been annotated
as incorrect by the wizard. This set contained 46 of the 110 instances. The
motivation for this test was to see if the baseline still performs as well as the
corpus in cases where a simple Accept is not a suitable answer. The baseline
predicts a large majority of Accept, and these are highly rated, as shown in the
frequency distribution in Figure 7.3. In this subset of the data the baseline
receives 12 ratings of 1 and 10 ratings of 7, which contrasts strongly with the
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distribution of the full data set. The means suggest that the baseline is being
rated lower in this subset (mean rating of the model condition: 4.3, corpus:
4.02, baseline: 3.8) however a Friedman test again did not indicate any effect
of condition on rating (X 2(2) = 1.76, p = 0.419).

Of the five actions, Accept received the highest rating most often, with 60 of
the 151 occurrences, or 39.7%, being rated with 7. The next most frequently
7-rated action was RejectReqEv with five of 16 items, or 31.2%. Reject, Ac-
ceptReqEv and ReqEv followed with 22.2%, 18% and 8.5% respectively. This
preference of the raters for high ratings of Accept explains in part why the base-
line condition receives so many more 7 ratings than the other conditions, as
shown in Figure 7.3.

We investigated whether type of teaching experience of the participants had
an effect on the ratings they gave. The distribution of ratings by teaching ex-
perience of the participants showed 126 ratings from university lecturers, 171
from teaching assistants and 63 from schoolteachers. For the model and cor-
pus conditions a Kruskal-Wallis test showed no significant effect of teaching
experience on the rating. For the baseline condition there was a significant
effect (X 2(2) = 7.54, p < 0.05). A set of post-hoc Wilcoxon tests within the
baseline condition (mean rating from teaching assistants = 5.16, schoolteach-
ers = 4.2, lecturers = 4.01) showed that teaching assistants gave significantly
higher ratings than both schoolteachers (W = 349.5, p <= 0.05) and lecturers
(W = 706.5, p <= 0.05). No other significant differences were found. No
effect was found of the participants’ university degree on their ratings.

As the final part of our analysis we considered whether we could analyse
the full set of 304 predictions from which the stimuli were chosen. We gave
artificial ratings to those data points which had been correctly predicted by the
model and which therefore had not been considered for the generation of the
experimental stimuli. We assigned all corpus actions the rating 4. When either
the model or the baseline classifier predicted the correct TLGA, the model
or the baseline condition was also given the artificial rating 4, in other words
an equal rating compared to the corpus condition. If either the model or the
baseline prediction or both were wrong then they received the rating 3. The
actual number we use here is not important since we are using rank tests rather
than absolute tests, so the magnitude of the difference is not considered.

This assignment of ranks gives us 255 new artificially rated instances. In 192
cases the model had predicted the correct TLGA, in 201 cases the baseline had
predicted the correct action. We add this set to the 110 ratings from the exper-
iment. A Friedman test shows an effect of condition on rating (X 2(2) = 26.76,
p < 0.001), however the subsequent pairwise Wilcoxon tests are not powerful
enough to find a significant difference between any two of the conditions. We

144



7.4 Summary and discussion

suspect the model condition exhibits significantly lower ratings than the other
two in this set based on the means (model = 3.95, corpus = 4.04, baseline =
4.02), however because 255 of the 365 cases used artificial ratings, the mean
values should not be interpreted.

7.4 Summary and discussion
The evaluation presented in this chapter was motivated by two hypotheses
arising from the results of Chapter 6, in which we developed the classifier for
TLGAs. Our first goal was to compare the TLGAs predicted by the model to
those in the corpus. By asking human experts to rate the actions in context we
rewarded cases where the model predicts an action which is different to that
in the corpus but is considered equally appropriate. We hoped to find that the
ratings given to the model condition were as good as the ratings given to the
corpus condition. Our second goal was to show that choosing request actions
is a difficult task for humans, motivated by the less than impressive results
of the classifier for classes involving requesting evidence. To investigate this
hypothesis the raters additionally rated a baseline which was a simple mapping
from the correctness or incorrectness of the student’s proof step to Accept or
Reject respectively. If the task is indeed difficult for human experts then the
baseline would be rated as highly as the corpus condition, showing that the
raters were not able to detect the situations in which requesting evidence was
the gold standard action. Our raters were mathematics experts with teaching
experience, who rated a total of 110 stimuli.

Our first hypothesis was confirmed by the analysis of the experimental data.
We found that the model condition was indeed rated equally highly in compar-
ison to the corpus condition. This tells us that in cases where the model makes
an inaccurate prediction, and considering we concentrated on request actions,
the model’s predictions are on average just as appropriate as the wizards’ ac-
tual actions. Our second hypothesis was also confirmed. We found that the
baseline ratings showed no significant difference in comparison to the corpus
ratings. These two results persisted across two further sets of rated data, first
the subset containing only those stimuli which were in fact request actions in
the corpus, and second the superset of ratings including artificial ratings as-
signed based on accurate or inaccurate predictions by the model and baseline.

We were able to find some other significant results which were not due to
the experimental condition. We observed that Accept received the highest rat-
ing more frequently in proportion to its total occurrences than three of the
other TLGAs. Together with the distribution of baseline predictions which
was strongly skewed towards Accept, this contributed to the baseline frequently
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being awarded the highest rating. We also found that university teaching assis-
tants awarded significantly higher ratings than both lecturers and schoolteach-
ers in the baseline condition.

We can comment on some aspects of the experimental design which may
have influenced the results. The experiment is valid because the raters who
participated have the same mathematical expertise and teaching experience as
the wizards who took part in the corpus collection experiment. Our stimuli
were rated by a maximum of three experts, and there were higher ratings given
by teaching assistants. However to show reliability we would need to have
data from more participants. We have not ruled out possible differences in
the preferred tutoring style of the participants. We do not know how these
tutors would have handled the dialogue situations themselves, instead we must
rely on their self-reporting of their behaviour through the rating task. Some
tutors may favour a more socratic style, in which case they would rate request
actions higher. Some may prefer more formal answers and would consider
for instance missing solution step parts acceptable, and would not rate request
actions as highly. Finally reading the transcript of a dialogue is faster than
taking part in the dialogue itself, because the time taken by the students to
think and type their replies was quite long. Also a reading-based task does not
strictly require that what the student is saying is fully digested by the reader
the way that taking part in the actual dialogue does. So we can not guarantee
that raters took the time to construct the same mental models of their students’
knowledge states as the tutors originally did.

Since the ratings in the experimental data are not normally distributed, we
were forced to use non-parametric tests to analyse the data. This reduces the
data to a ranking of conditions by items, which is exactly what we did not
want our raters to do. The main drawback of this is that the magnitude of the
differences between the conditions is lost, and it is possible that this may have
obscured significant differences between the conditions.

This evaluation has extended the purely statistical evaluation of the classi-
fier for TLGA in Chapter 6. The last chapter showed that a classifier trained
on the data maintained by the dialogue model presented in Chapter 4 achieves
an accuracy of 72.5% and while it is sensitive to the minority request classes,
the precision and recall of the ReqEv decision are low, at 32.1% and 41.1%, re-
spectively. In this chapter we chose a subset of the misclassifications and found
them to be comparably appropriate in context, concentrating on the request
actions. We also found that the baseline of only acceptance and rejection was
rated as well as the other condition, which indicates that choosing ReqEv is a
difficult task for human experts.

Overall we find that the model we have developed over the course of Chap-
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ters 4 and 6 with its representation of dialogue context performs as well as can
be expected for this task. The result that the ratings of the three conditions are
not significantly different indicates that the model is doing just about as well
as human experts at deciding when to request evidence from the student. The
model achieves the results which can be achieved, first as measured by accu-
racy in Chapter 6, then by appropriateness rating in this intrinsic evaluation.
Any claims over and above this we believe can only be substantiated by a full
end-to-end evaluation experiment with learners, in which the performance of
the model could be directly linked to learning gains.
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8
Summary and outlook

This thesis offers a model for solution step discussions in natural language tu-
toring and for the conditions under which tutors pose explanatory questions
to their students. At the core of the model is the notion of evidence of un-
derstanding: Solution steps are acceptable when the tutor believes the student
has shown sufficient evidence of having understood the content necessary to
perform those steps. Our work has drawn on elements of dialogue modelling,
human communication research and pedagogical science.

We began by considering natural language tutoring and highlighting the fact
that it has consistently been shown to lead to more effective learning gains
than traditional classroom instruction. Among the reasons for this effective-
ness which have been proposed and demonstrated in previous studies are the
collaborative nature of tutoring and the opportunity during this collaboration
both for tutors to ask direct questions and for students to answer them. The
consensus is that questioning leads to explaining and self-explaining leads to
learning. Our work is based on the influential theory of Graesser et al. [85]
describing dialogue frames, the patterns in tutorial dialogue in which such col-
laborations occur. A dialogue frame includes a phase of collaborative improve-
ment of the student’s answer, in which the tutor can elaborate on the answer,
give hints, pump the student for more information, or trace an explanation or
justification.

The decision of whether to enter into the collaborative improvement phase
depends on what the tutor believes the student’s knowledge state to be, in
other words the student’s deep understanding of domain concepts. In the con-
text of dialogue based tutoring this led us to consider models of belief and
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agency in dialogue which have been proposed. An agent’s actions are moti-
vated by its beliefs and its beliefs about its conversational partners. They can
reach agreement about their beliefs through the process of grounding, during
which hearers are obliged to demonstrate evidence of understanding.

These two views on evidence of understanding suggested a possible benefit
in combining them in a model for tutorial dialogue. Two research questions
emerged with respect to the use of theories from dialogue modelling in ITSs
with natural language interfaces. The first relates to modelling the student’s
knowledge state based on the tutor’s feedback to solution steps:

• By modelling the structure of solution step discussions, can we main-
tain a representation of what the student has shown evidence of having
understood, based on the outcomes of previous such discussions?

The second research question arises out of the observation that discussions
elicit self-explanation, which in turn leads to learning:

• Can we use the representation of the student’s evidence of understand-
ing to predict whether to enter into a discussion of the latest contri-
bution, using features drawn from the previous dialogue and from the
analysis of the steps the student previously contributed?

We investigated these hypotheses according to the following methodology.
We first analysed a corpus of human-human tutorial dialogues on mathemat-
ical theorem proving and categorised the kinds of actions that tutors and stu-
dents perform. We found a broad range of types in and around solution step
discussions, including statements of content, different kinds of feedback from
tutors, hints, and requests. We also looked for a found evidence of the occur-
rence of dialogue frames. We concentrated in our qualitative analysis on how
tutors ask questions to elicit self-explanations from students, and based on this
we proposed the domain independent notion of task-level grounding. It is the
process by which the tutor and the student reach mutual belief about the stu-
dent’s deep understanding of domain concepts. The student offers evidence of
this understanding by successfully using these concepts in proof steps, and the
tutor can demand such evidence by posing an explanatory question. Task-level
grounding takes place in the course of a solution step discussion, in which a
solution step is proposed, may be discussed, and is finally either accepted or
rejected. Our model of solution step discussions offers an alternative, opera-
tional account of dialogue frames, conceived in the style of Traum’s Ground-
ing Acts theory [191].

In order to test our model, and in order to obtain labelled data to train a clas-
sifier with, we annotated our corpus at three levels. We annotated with a set
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of task-level grounding acts, which are the actions performed by students and
tutors in the process of task-level grounding. We also annotated the mathemat-
ical content of the solution steps in the corpus, and for a subset we annotated
general dialogue moves. Using the annotated data we performed a series of su-
pervised learning experiments. The goal was to train a classifier which could
predict, given a dialogue context and the analysis of a solution step from the
student, whether to enter into a discussion with the student about the step.
The classifier predicted the actions Accept, Reject, ReqEv, and combinations of
those.

The classifier’s performance improved with the addition of features derived
from the previous dialogue, which indicates that the information maintained
by our dialogue model does indeed help decide whether to enter into solution
discussions or not. We found that the performance of the classifier was good
for acceptance and rejection, but for the detection of cases where evidence of
understanding should be requested, the performance was unsatisfactory. This
was in part due to the skewed distribution of classes, but we also hypothesised
that the reason may lie in the intrinsic difficulty of the task. To test this we
performed an evaluation experiment using ratings of appropriateness elicited
from expert human tutors reading excerpts from the corpus. They rated pre-
dictions from the classifier, from an accept/reject baseline, and from the cor-
pus itself. We found no significant difference between the three conditions,
which indicates that the model is performing comparably well in relation to
the gold standard corpus. The similarity of the baseline and corpus ratings
indicates further that humans also have difficulty with the task of recognising
situations in which a request for evidence of understanding should occur. The
performance of the classifier model should be seen in this light.

The model we have proposed and our evaluation results allows us to con-
sider our hypotheses largely confirmed. In terms of the first hypothesis, the
fact that the classifier relies of features from the dialogue history shows that
the model maintains information which is relevant to the choice of whether
to enter into solution step discussions or not. Our second hypothesis is sup-
ported by the results of our evaluation experiment, in which we found that
the model’s predictions were seen as being equally appropriate compared to
the actions that were taken by tutors in the corpus. The low precision and
recall values of the decision whether to request evidence or not are mitigated
by our finding that human experts also find this decision difficult.

While we have shown some potential benefits of using grounding and tu-
toring to structure solution step discussions, much work remains to be done,
primarily due to a number of approximations we have made in our model.
The model does not differentiate between types of request which a tutor may
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make. We see the model as offering an initial decision, that a request should
be made, but leaving the form of this request to a teaching strategy. A combi-
nation of these would allow more adaptive feedback. We also do not consider
degrees of mastery of concepts, instead they are either known or not. A more
sophisticated student model could reason over grades of evidence of under-
standing. As we mentioned in the discussion of the evaluation experiment, an
end-to-end evaluation with students was not possible within the resources of
this research project. We hope that such an experiment would confirm the
utility of the model by linking it directly to observed learning gains. We thus
see many opportunities for fruitful future projects.

ITSs are not yet ubiquitous in the schooling system, but there are already
some notable success stories, such as Cognitive Tutors, which are widely ap-
plied and achieve good results. Considering the fact that dialogue systems in
general are not in as widespread use as was once thought they would be by
now, maybe it is no wonder that tutorial dialogue systems are lagging some-
what behind. Not only are they subject to the same problems as other dialogue
systems, such as interpretation robustness and domain reasoning, it seems that
tutoring is just a hard task for a computer. Nevertheless, the interdisciplinary
field of natural language tutoring is showing consistent evaluation successes.
We hope this thesis will contribute to the closer unification of approaches from
the directions of both dialogue modelling and pedagogical science, and in turn
to their eventual widespread success in the classroom.
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A
Mathematical rule groupings

This appendix lists a number of subsets of the set of mathematical rules taken
from the study material. They are used in the preparation of the corpus for
the supervised learning experiments.

Subset name Rules

Interesting exten, composition, inverse, identity1, identity2, identity3
Uninteresting prop, quant, subset, psubset, set_prop, union, intersection,

declaration
Set def subset, psubset, set_prop, union, intersection
Relation def composition, inverse
Identity identity1, identity2, identity3
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B
Participant background

questionnaire

The following is the text of the background questionnaire given to prospective
participants in the evaluation study reported in Chapter 7.

Liebe(r) Bewerter(in),
danke, dass Sie sich für unser Experiment interessieren, das im Rahmen einer
Doktorarbeit an der Universität des Saarlandes durchgeführt wird. Im Exper-
iment geht es um binäre Relationen im Matheunterricht. Es gibt eine Voraus-
setzung für die Teilnahme:

• Haben Sie bereits mindestens 1 Semester Mathe in deutscher Sprache
unterrichtet, z.B. als Übungsleiter oder Lehrer?

Wenn ja, können Sie bei uns mitmachen.
Bevor es losgeht, haben wir noch ein paar Fragen zu Ihrem Hintergrund:

• Ihr Studium:

– Mathe

– Mathe mit Didaktik, z.B. Lehramt

– Mathenahes Studium, z.B. Physik oder Informatik

– anderes Studium
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• Ihre Erfahrung als Mathelehrer

– Schule

– Uni, als Übungsleiter

– Uni, als Dozent

• Vor wie vielen Semestern haben Sie zum letzten mal Mathe unterrichtet?

• Für wieviele Semester haben Sie Grundlagen der Mathematik, z.B. Men-
gentheorie, Relationen, insbesondere das Beweisen, unterrichtet?

• Wie viel Erfahrung haben Sie im Unterrichten von formaler Logik oder
Beweistheorie?

– Keine

– Ein wenig

– Mittel

– Viel
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C
Introductory text

The following is the introductory text describing the task given to the partici-
pants in the evaluation study reported in Chapter 7.

Hallo Max Mustermann,
in diesem Experiment geht es darum, das Verhalten von Mathetutoren in Di-
alogen mit Studenten zu bewerten. Die Dialoge wurden in folgendem Szenario
aufgezeichnet: Die Studenten, die im ersten Semester waren, sollten Beweisauf-
gaben aus dem Bereich der binären Relationen lösen. Die Tutoren haben auf
die Eingaben von den Studenten jeweils Rückmeldung gegeben. Die Tutoren
und Studenten konnten ausschließlich per Text miteinander kommunizieren
und haben sich vor dem Unterricht nicht gekannt. Hier ist ein Beispiel für die
Aufgabenstellung und den Ablauf einer Interaktion:

S0: was ist ◦

T0: Das Relationenprodukt, auch Komposition von Relationen genannt. Bitte schauen
Sie sich die Definition unter Abschnitt 4 an.

S1: (R ◦ S)−1 = {(z, x)|∃y((x, y) ∈ R∧ (y, z) ∈ S}

T1: Das ist korrekt.

S2: R−1 = {(x, y)|(y, x) ∈ R}

T2: Ebenfalls korrekt.

157



C Introductory text

S3: Also ist S−1 ◦R−1 = {(v, x)|v ∈ S−1 ∧ x ∈ R−1}

T3: Nein. Auch die inversen Relationen, S−1 und R−1 , sind binaere Relationen!

S4: Also ist S−1 ◦R−1 = {(v, x)|∃z((v, z) ∈ S−1 ∧ (z, x) ∈ R−1}

T4: Das ist korrekt.

S5: Das ist gleich {(v, x)|∃z((z, v) ∈ S ∧ (x, z) ∈ R}

T5: Das ist korrekt. Aufgabe geloest!

Der Tutor hat mehrere Möglichkeiten, wie er auf die Eingabe des Studen-
ten reagieren kann. Er kann sie zum Beispiel akzeptieren oder ablehnen, er
kann Fehler beheben, Details verlangen, Hinweise geben, oder versuchen den
Studenten zu motivieren.

Ihre Aufgabe

Ihre Aufgabe ist es, in einem Ausschitt aus einem solchen Dialog mögliche
Reaktion des Tutors auf die letzte Eingabe des Studenten zu bewerten. Sie
sollen angeben, für wie angemessen Sie diese Reaktion halten (mathematisch
und didaktisch), auf einer Skala von 1 (sehr unangemessen) bis 7 (sehr angemes-
sen). Eine Reaktion ist angemessen, wenn sie zu den aktuellen Kenntnissen
des/der Studierenden passt und einen möglichen Lerneffekt befördert.

Versuchen Sie beim Lesen, sich in die Rolle des Tutors hineinzuversetzen
und zu verstehen, welche Lösung der Student präsentiert. So können Sie die
Angemessenheit der Reaktion am besten einschätzen. Sie werden sieben Di-
aloge sehen, in denen jeweils zwei Situationen bewertet werden sollen. Erst
nachdem Sie die erste Situation bewertet haben, sehen Sie wie der Dialog
eigentlich weiterging, um danach die zweite Situation zu bewerten.

Personenbezogene Daten werden nicht gespeichert. Danke dass Sie an un-
serem Experiment teilnehmen!

158



Bibliography

[1] Andreas Abel, Bor-Yuh Evan Chang, and Frank Pfenning. Human-
Readable Machine-Verifiable Proofs for Teaching Constructive Logic.
In Uwe Egly, Armin Fiedler, Helmut Horacek, and Stephan Schmitt,
editors, Proceedings of the Workshop on Proof Transformations, Proof Pre-
sentations and Complexity of Proofs. Universitá degli studi di Siena, 2001.

[2] Vincent Aleven, Kenneth R. Koedinger, and K. Cross. Tutoring answer
explanation fosters learning with understanding. In Susanne P. Lajoie
and Martial Vivet, editors, Proceedings of Artificial Intelligence in Educa-
tion, Open Learning Environments: New Computational Technologies to
Support Learning, Exploration, and Collaboration, pages 199–206, Ams-
terdam, 1999. IOS Press.

[3] Vincent Aleven, Octav Popescu, and Kenneth R. Koedinger. Towards
Tutorial Dialog to Support Self-Explanation: Adding Natural Language
Understanding to a Cognitive Tutor. In Johanna D. Moore, Carol L.
Redfield, and W. Lewis Johnson, editors, Proceedings of the 9th Interna-
tional Conference on Artificial Intelligence in Education, pages 246–255.
IOS Press, 2001.

[4] Vincent Aleven, Octav Popescu, Amy Ogan, and Kenneth R.
Koedinger. A Formative Classroom Evaluation of a Tutorial Dialog Sys-
tem that Supports Self-Explanation. In Vincent Aleven, Ulrich Hoppe,
Judy Kay, Riichiro Mizoguchi, Helen Pain, Felisa Verdejo, and Kalina
Yacef, editors, Supplemental Proceedings of the 11th International Confer-
ence on Artificial Intelligence in Education, Vol. VI, pages 303–312, 2003.

[5] James Allen and Mark Core. Draft of DAMSL: Dialogue act markup
in several layers. DRI: Discourse Research Initiative, University of Penn-
sylvania, 1997.

[6] Ethem Alpaydın. Introduction to machine learning. MIT Press, 2004.

159



Bibliography

[7] John R. Anderson, Albert T. Corbett, Kenneth R. Keodinger, and Ray
Polletier. Cognitive tutors: Lessons learned. The Journal of Learning
Sciences, 4:167–207, 1995.

[8] Peter B. Andrews, Chad E. Brown, Frank Pfenning, Matthew Bishop,
Sunil Issar, and Hongwei Xi. Etps: A system to help students write
formal proofs. Journal of Automated Reasoning, 32:75–92, 2004.

[9] Elizabeth Arnott, Peter Hastings, and David Allbritton. Research
Methods Tutor: Evaluation of a dialogue-based tutoring system in the
classroom. Behavior Research Methods, 40:694–698, 2008.

[10] Harald Aust, Martin Oerder, Frank Seide, and Volker Steinbiss. The
Philips Automatic Train Timetable Information System. In Speech Com-
munication, volume 17, pages 249–262, 1995.

[11] John L. Austin. How to Do Things with Words. Harvard University
Press, 1996.

[12] Serge Autexier, Christoph Benzmüller, Dominik Dietrich, Andreas
Meier, and Claus-Peter Wirth. A Generic Modular Data Structure for
Proof Attemps Alternating on Ideas and Granularity. In Proceedings of
Mathematical Knowledge Management, pages 12–14, Bremen, Germany,
2005. Springer.

[13] Michael Baker, Tia Hansen, Richard Joiner, and David Traum. The
role of grounding in collaborative learning tasks. In Pierre Dillenbourg,
editor, Collaborative Learning. Cognitive and computational approaches,
Advances in Learning and Instruction Series, pages 31–63. Pergamon,
Amsterdam, The Netherlands, 1999.

[14] Chris Benzmüller, Armin Fiedler, Malte Gabsdil, Helmut Horacek,
Ivana Kruijff-Korbayová, Manfred Pinkal, Jörg Siekmann, Dimitra Tso-
valtzi, Bao Quoc Vo, and Magdalena Wolska. Tutorial dialogs on math-
ematical proofs. In Proceedings of the IJCAI Workshop on Knowledge
Representation and Automated Reasoning for E-Learning Systems, pages
12–22, Acapulco, 2003.

[15] Chris Benzmüller, Armin Fiedler, Malte Gabsdil, Helmut Horacek,
Ivana Kruijff-Korbayová, Dimitra Tsovaltzi, Bao Quoc Vo, and Mag-
dalena Wolska. Language phenomena in tutorial dialogs on mathemat-
ical proofs. In Ivana Kruijff-Korbayová and Claudia Kosny, editors,
Proceedings of DiaBruck’03, the 7th Workshop on the Semantics and Prag-
matics of Language, pages 165–166, Saarbrücken, Germany, 2003.

160



Bibliography

[16] Christoph Benzmüller and Quoc Bao Vo. Mathematical domain rea-
soning tasks in natural language tutorial dialog on proofs. In Manuela
Veloso and Subbarao Kambhampati, editors, Proceedings of the 20th Na-
tional Conference on Artificial Intelligence, pages 516–522, Pittsburgh,
Pennsylvania, USA, 2005. AAAI Press / The MIT Press.

[17] Christoph Benzmüller, Helmut Horacek, Ivana Kruijff-Korbayová,
Henri Lesourd, Marvin Schiller, and Magdalena Wolska. DiaWOz-II
- A Tool for Wizard-of-Oz Experiments in Mathematics. In Proceedings
of KI 2006: Advances in Artificial Intelligence, the 29th Annual German
Conference on AI, volume 4314 of Lecture Notes in Computer Science,
pages 159–173. Springer, 2006.

[18] Christoph Benzmüller, Helmut Horacek, Henri Lesourd, Ivana Kruijff-
Korbayová, Marvin Schiller, and Magdalena Wolska. A corpus of tuto-
rial dialogs on theorem proving; the influence of the presentation of
the study-material. In Proceedings of the International Conference on
Language Resources and Evaluation, Genoa, Italy, 2006. ELDA.

[19] Christoph Benzmüller, Dominik Dietrich, Marvin Schiller, and Serge
Autexier. Deep Inference for Automated Proof Tutoring? In Proceed-
ings of KI 2007: Advances in Artificial Intelligence, volume 4667 of Lec-
ture Notes in Computer Science, pages 435–439. Springer, 2007.

[20] Christoph Benzmüller, Helmut Horacek, Ivana Kruijff-Korbayova,
Manfred Pinkal, Jörg Siekmann, and Magdalena Wolska. Natural Lan-
guage Dialog with a Tutor System for Mathematical Proofs. In Ruqian
Lu, Jörg Siekmann, and Carsten Ullrich, editors, Cognitive Systems, vol-
ume 4429 of LNAI, pages 1–14. Springer, 2007.

[21] Nate Blaylock and James Allen. A Collaborative Problem-Solving
Model of Dialogue. In Laila Dybkjær and Wolfgang Minker, editors,
Proceedings of the 6th SIGdial Workshop on Discourse and Dialogue, pages
200–211, Lisbon, 2005.

[22] Benjamin S. Bloom. The 2 Sigma Problem: The Search for Methods
of Group Instruction as Effective as One-to-One Tutoring. Educational
Researcher, 13(6):4–16, 1984.

[23] Johan Bos, Stina Ericsson, Staffan Larsson, Ian Lewin, Peter Ljunglöf,
and Colin Matheson. Dialogue dynamics in restricted dialogue systems.
TRINDI Deliverable D3.2, 2000.

161



Bibliography

[24] Kristy Boyer, Rob Phillips, Eun Young Ha, Michael Wallis, Mladen
Vouk, and James Lester. Leveraging hidden dialogue state to select tuto-
rial moves. In Proceedings of the NAACL HLT 2010 Fifth Workshop on
Innovative Use of NLP for Building Educational Applications, pages 66–
73, Los Angeles, California, June 2010. Association for Computational
Linguistics.

[25] Ilya N. Bronstein and Konstantin A. Semendjajew. Taschenbuch der
Mathematik. Teubner, 1991.

[26] Mark Buckley and Christoph Benzmüller. An Agent-based Architec-
ture for Dialogue Systems. In Irina Virbitskaite and Andrei Voronkov,
editors, Proceedings of Perspectives of System Informatics, volume 4378 of
Lecture Notes in Computer Science, pages 135–147, Novosibirsk, Russia,
2006. Springer.

[27] Mark Buckley and Christoph Benzmüller. System Description: A Di-
alogue Manager supporting Natural Language Tutorial Dialogue on
Proofs. In David Aspinall and Christoph Lüth, editors, Proceedings
of the ETAPS Satellite Workshop on User Interfaces for Theorem Provers
(UITP), pages 40–67, Edinburgh, Scotland, 2005.

[28] Mark Buckley and Dominik Dietrich. Integrating Task Information
into the Dialogue Context for Natural Language Mathematics Tutoring.
In Ben Medlock and Diarmuid Ó Séaghdha, editors, Proceedings of the
10th Annual CLUK Research Colloquium, Cambridge, UK, 2007.

[29] Mark Buckley and Magdalena Wolska. A Classification of Dialogue
Actions in Tutorial Dialogue. In Donia Scott and Hans Uszkoreit, ed-
itors, Proceedings of COLING 2008, The 22nd International Conference
on Computational Linguistics, pages 73–80, Manchester, UK, 2008. Col-
ing 2008 Organizing Committee.

[30] Mark Buckley and Magdalena Wolska. Towards Modelling and Using
Common Ground in Tutorial Dialogue. In Ron Artstein and Laure
Vieu, editors, Proceedings of DECALOG, the 2007 Workshop on the Se-
mantics and Pragmatics of Dialogue, pages 41–48, Rovereto, Italy, 2007.

[31] Mark Buckley and Magdalena Wolska. A Grounding Approach to Mod-
elling Tutorial Dialogue Structures. In Jonathan Ginzburg, Pat Healey,
and Yo Sato, editors, Proceedings of LONDIAL 2008, the 12th Workshop
on the Semantics and Pragmatics of Dialogue, pages 15–22, London, UK,
2008.

162



Bibliography

[32] Charles Callaway, Myroslava Dzikovska, Colin Matheson, Johanna D.
Moore, and Claus Zinn. Using Dialogue to Learn Math in the LeAc-
tiveMath Project. In Proceedings of the ECAI Workshop on Language-
Enhanced Educational Technology, pages 1–8, Riva del Garda Italy, Au-
gust 2006.

[33] Charles Callaway, Myroslava Dzikovska, Elaine Farrow, Manuel
Marques-Pita, Colin Matheson, and Johanna Moore. The Beetle and
BeeDiff tutoring systems. In Proceedings of the SLaTE2007 Workshop,
2007.

[34] Charles B. Callaway and Johanna D. Moore. Determining tutorial re-
mediation strategies from a corpus of human-human tutoring dialogues.
In Proceedings of the 11th European Workshop on Natural Language Gen-
eration, Schloss Dagstuhl, Germany, June 2007.

[35] Sandra Carberry. Plan Recognition in Natural Language Dialogue. MIT
Press, 1990.

[36] J. R. Carbonell. AI in CAI: An Artificial-Intelligence Approach to
Computer-Assisted Instruction. IEEE Transactions on Man-Machine Sys-
tems, 11(4):190–202, 1970.

[37] Jean Carletta. Assessing agreement on classification tasks: The kappa
statistic. Computational Linguistics, 22:249–254, 1996.

[38] Jean Carletta, Amy Isard, Stephen Isard, Jacqueline C. Kowtko,
Gwyneth Doherty-Sneddon, and Anne H. Anderson. The reliability
of a dialogue structure coding scheme. Computational Linguistics, 23
(1):13–32, 1997.

[39] Alison Cawsey. Planning interactive explanations. International Jour-
nal of Man-Machine Studies, 38:169–199, 1993.

[40] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support
vector machines, 2001. Software available at http://www.csie.ntu.
edu.tw/~cjlin/libsvm.

[41] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip
Kegelmeyer. SMOTE: Synthetic Minority Over-sampling TEchnique.
Journal of Artificial Intelligence Research, 16:321–357, 2002.

163

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm


Bibliography

[42] Michelene T. H. Chi. Constructing Self-Explanations and Scaffolded
Explanations in Tutoring. Applied Cognitive Psychology, 10:33–49,
1996.

[43] Michelene T. H. Chi, Miriam Bassok, Matthew W. Lewis, Peter Rie-
mann, and Robert Glaser. Self-explanations: How students study and
use examples in learning to solve problems. Cognitive Science, 13:145–
182, 1989.

[44] Michelene T. H. Chi, Nicholas de Leeuw, Mei-Hung Chiu, and Chris-
tian Lavancher. Eliciting self-explanation improves understanding. Cog-
nitive Science, 18:439–477, 1994.

[45] Michelene T. H. Chi, Stephanie A. Siler, Heisawn Jeong, Takashi Ya-
mauchi, and Robert G. Hausmann. Learning from human tutoring.
Cognitive Science, 25:471–533, 2001.

[46] Michelene T. H. Chi, Stephanie A. Siler, and Heisawn Jeong. Can Tu-
tors Monitor Students’ Understanding Accurately? Cognition and In-
struction, 22(3):363–387, 2004.

[47] Min Chi, Pamela Jordan, Kurt VanLehn, and Moses Hall. Reinforce-
ment learning-based feature selection for developing pedagogically ef-
fective tutorial dialogue tactics. In Ryan S. J. de Baker, Tiffany Barnes,
and Joseph E. Beck, editors, Proceedings of the 1st International Confer-
ence on Educational Data Mining, pages 258–265, 2008.

[48] Herbert H. Clark. Using Language. Cambridge University Press, 1996.

[49] Herbert. H. Clark, editor. Arenas of Language Use. University of
Chicago Press, 1992.

[50] Herbert H. Clark and Susan E. Brennan. Grounding in communica-
tion. In Lauren B. Resnick, John M. Levine, and Stephanie D. Teasley,
editors, Perspectives on socially shared cognition, pages 127–149. APA,
Washington, DC, 1991.

[51] Herbert H. Clark and Emanuel F. Schaefer. Contributing to discourse.
Cognitive Science, 13:259–294, 1989.

[52] Herbert H. Clark and Deanna Wilkes-Gibbs. Referring as a collabora-
tive process. Cognition, 22(1):1–39, 1986.

164



Bibliography

[53] Jacob Cohen. A Coefficient of Agreement for Nominal Scales. Educa-
tional and Psychological Measurement, 20(1):37, 1960.

[54] Peter A. Cohen, James A. Kulik, and Chen-Lin C. Kulik. Educational
Outcomes of Tutoring: A Meta-Analysis of Findings. American Educa-
tional Research Journal, 19(2):237–248, 1982.

[55] Philip R. Cohen and Hector J. Levesque. Teamwork. Noûs, 25(4):487–
512, 1991.

[56] Philip R. Cohen and C. Raymond Perrault. Elements of a Plan-Based
Theory of Speech Acts. Cognitive Science, 3(1):177–212, 1979.

[57] Philip R. Cohen, Hector J. Levesque, José H. T. Nunes, and Sharon L.
Oviatt. Task Oriented Dialogue as a Consequence of Joint Activity. In
Artificial Intelligence in the Pacific Rim. IOS Press, Amsterdam, 1991.

[58] Albert T. Corbett, Kenneth R. Koedinger, and John R. Anderson. Intel-
ligent tutoring systems. In Martin Helander, Thomas K. Landauer, and
Prasad V. Prabhu, editors, Handbook of Human-Computer Interaction,
chapter 37, pages 849–874. Elsevier Science, second edition, 1997.

[59] Mark G. Core, Johanna D. Moore, and Claus Zinn. Supporting con-
structive learning with a feedback planner. In Proceedings of the AAAI
Fall Symposium: Building Dialogue Systems for Tutorial Applications, Fal-
mouth, MA, 2000. AAAI Press.

[60] Mark G. Core, Johanna D. Moore, and Claus Zinn. The role of initia-
tive in tutorial dialogues. In The 10th Conference of the European Chapter
of the ACL, pages 67–74, Budapest, 2003.

[61] Marcello D’Agostino and Ulrich Endriss. WinKE: A Proof Assistant
for Teaching Logic. In Proceedings of the 1st International Workshop on
Labelled Deduction, 1998.

[62] Nils Dahlbäck, Arne Jönsson, and Lars Ahrenberg. Wizard of Oz stud-
ies: why and how. In Proceedings of the 1st International Conference on
Intelligent User Interfaces, pages 193–200. ACM, 1993.

[63] René V. Dawis. Scale construction. Journal of Counseling Psychology,
34(4):481 – 489, 1987.

165



Bibliography

[64] David DeVault and Matthew Stone. Scorekeeping in an uncertain lan-
guage game. In Proceedings of Brandial, the 10th Workshop on the Se-
mantics and Pragmatics of Dialogue, pages 139–146, Potsdam, Germany,
2006.

[65] Barbara Di Eugenio, Davide Fossati, Susan Haller, Dan Yu, and Michael
Glass. Be Brief, And They Shall Learn: Generating Concise Language
Feedback for a Computer Tutor. International Journal of Artificial In-
telligence in Education, 18(4):317–345, 2008.

[66] Dominik Dietrich and Mark Buckley. Verification of Proof Steps
for Tutoring Mathematical Proofs. In Rosemary Luckin, Kenneth R.
Koedinger, and Jim Greer, editors, Proceedings of the 13th International
Conference on Artificial Intelligence in Education, volume 158, pages
560–562, Los Angeles, USA, 2007. IOS Press.

[67] Dominik Dietrich and Mark Buckley. Verification of Human-level
Proof Steps in Mathematics Education. Teaching Mathematics and Com-
puter Science, 6(2):345–362, 2008.

[68] Pierre Dillenbourg. What do you mean by collaborative learning? In
Pierre Dillenbourg, editor, Collaborative-learning: Cognitive and Com-
putational Approaches, pages 1–19. Elsevier, 1999.

[69] Myroslava O. Dzikovska, Charles B. Callaway, Matthew Stone, and Jo-
hanna D. Moore. Understanding student input for tutorial dialogue in
procedural domains. In David Schlangen and Raquel Fernandez, edi-
tors, Proceedings of the Brandial, the 10th Workshop on the Semantics and
Pragmatics of Dialogue, pages 10–17, 2006.

[70] Myroslava O. Dzikovska, Charles B. Callaway, Elaine Farrow, Jo-
hanna D. Moore, Natalie Steinhauser, and Gwendolyn Campbell. Deal-
ing with interpretation errors in tutorial dialogue. In Proceedings of
the SIGDIAL 2009 Conference, pages 38–45. Association for Computa-
tional Linguistics, 2009.

[71] Susanna S. Epp. The Role of Logic in Teaching Proof. American Math-
ematical Monthly, 110(10):886–899, 2003.

[72] Martha W. Evens, Stefan Brandle, Ru-Charn Chang, Reva Freedman,
Michael Glass, Yoon Hee Lee, Leem Seop Shim, Chong Woo Woo,
Yuemei Zhang, Yujian Zhou, Joel A. Michael, and Allen A. Rovick.
Circsim-Tutor: An intelligent tutoring system using natural language

166



Bibliography

dialogue. In Proceedings of the 12th Midwest AI and Cognitive Science
Conference, pages 16–23, Oxford, 2001.

[73] Raquel Fernández, Jonathan Ginzburg, and Shalom Lappin. Classify-
ing Non-Sentential Utterances in Dialogue: A Machine Learning Ap-
proach. Computational Linguistics, 33(3):397–427, 2007.

[74] Armin Fiedler and Dimitra Tsovaltzi. Automating Hinting in Math-
ematical Tutorial Dialogue. In Proceedings of the EACL-03 Workshop
on Dialogue Systems: Interaction, Adaptation and Styles of Management,
pages 45–52, Budapest, 2003.

[75] Armin Fiedler and Dimitra Tsovaltzi. Automating Hinting in an Intel-
ligent Tutorial System. In Proceedings of the IJCAI Workshop on Knowl-
edge Representation and Automated Reasoning for E-Learning Systems,
pages 23–35, Acapulco, 2003.

[76] Reva Freedman. Using a Text Planner to Model the Behavior of Human
Tutors in an ITS. In Michael Gasser, editor, Proceedings of the 1996
Midwest Artificial Intelligence and Cognitive Science Conference, 1996.

[77] Reva Freedman, Carolyn Penstein Rosé, Michael A. Ringenberg, and
Kurt VanLehn. ITS Tools for Natural Language Dialogue: A Domain-
Independent Parser and Planner. In Proceedings of the 5th International
Conference on Intelligent Tutoring Systems, pages 433–442, London, UK,
2000. Springer.

[78] Abigail S. Gertner, Christina Conati, and Kurt VanLehn. Procedural
Help in Andes: Generating Hints using a Bayesian network student
model. In Proceedings of the 15th National Conference on Artificial Intel-
ligence, pages 106–111, Madison, Wisconsin, 1998.

[79] Jonathan Ginzburg. Interrogatives: Questions, facts and dialogue. In
Shalom Lappin, editor, The Handbook of Contemporary Semantic The-
ory. Blackwell, Oxford, 1996.

[80] Jonathan Ginzburg. Dynamics and the semantics of dialogue. In Jerry
Seligman and Dag Westerstahl, editors, Language, Logic and Computa-
tion, Volume 1, CSLI Lecture Notes, pages 221–237. CSLI, Stanford,
1996.

[81] Michael Glass. Processing Language Input in the CIRCSIM-Tutor Intel-
ligent Tutoring System. In Johanna Moore, Carol Luckhardt Redfield,

167



Bibliography

and W. Lewis Johnson, editors, Proceedings of the 9th International Con-
ference on Artificial Intelligence in Education, pages 210–212. IOS Press,
2001.

[82] John J. Godfrey, Edward C. Holliman, and Jane McDaniel. SWITCH-
BOARD: Telephone speech corpus for research and development. In
Proceedings of the IEEE Conference on Acoustics, Speech, and Signal Pro-
cessing, volume 1, pages 517–520, San Francisco, 1992.

[83] David Good. Asymmetry and accommodation in tutorial dialogues.
In R. Beun, M. Baker, and M. Reiner, editors, Dialogue and Instruction,
volume 142 of NATO ASI Series F, pages 31–38. Springer, 1995.

[84] Arthur C. Graesser and Natalie K. Person. Question Asking During
Tutoring. American Educational Research Journal, 31(1):104–137, 1994.

[85] Arthur C. Graesser, Natalie K. Person, and Joseph P. Magliano. Collab-
orative dialogue patterns in naturalistic one-on-one tutoring. Applied
Cognitive Psychology, 9:495–522, 1995.

[86] Arthur C. Graesser, William Baggett, and Kent Williams. Question-
driven explanatory reasoning. Applied Cognitive Psychology, 10:17–31,
1996.

[87] Arthur C. Graesser, Katja Wiemer-Hastings, Peter Wiemer-Hastings,
and Roger Kreuz. Autotutor: A simulation of a human tutor. Cognitive
Systems Research, 1:35–51, 1999.

[88] Arthur C. Graesser, George T. Jackson, Eric C. Mathews, Heather H.
Mitchell, Andrew Olney, Mathew Ventura, Patrick Chipman, Don-
ald R. Franceschetti, Xiangen Hu, Max M. Louwerse, Natalie K. Person,
and TRG. Why/AutoTutor: A Test of Learning Gains from a Physics
Tutor with Natural Language Dialog. In Richard Alterman and David
Hirsh, editors, Proceedings of the 25rd Annual Conference of the Cogni-
tive Science Society, pages 1–5. Cognitive Science Society, 2003.

[89] Arthur C. Graesser, Shulan Lu, George Tanner Jackson, Heather Hite
Mitchell, Mathew Ventura, Andrew Olney, and Max M. Louwerse. Au-
toTutor: A tutor with dialogue in natural language. Behavior Research
Methods, Instruments, & Computers, 36(2):180–192, 2004.

[90] Barbara J. Grosz and Sarit Kraus. Collaborative plans for complex
group action. Artificial Intelligence, 86(2):269–357, 1996.

168



Bibliography

[91] Barbara J. Grosz and Candace L. Sidner. Plans for discourse. In Philip R.
Cohen, Jerry L. Morgan, and Martha E. Pollack, editors, Intentions in
Communication, pages 417–444. MIT Press, Cambridge, MA, 1990.

[92] Barbara J. Grosz and Candace L. Sidner. Attention, intention and the
structure of discourse. Computational Linguistics, 12(3):175–204, 1986.

[93] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian H. Witten. The WEKA Data Mining Software:
An Update. SIGKDD Explorations, 11(1):10–18, 2009.

[94] Robert G. M. Hausmann, Michelene T. H. Chi, and Marguerite Roy.
Learning from collaborative problem solving: An analysis of three hy-
pothesized mechanisms. In Kenneth D Forbus, Dedre Gentner, and
Terry Regier, editors, 26th Annual Conference of the Cognitive Science
Society, pages 547–552, 2004.

[95] Peter A. Heeman and James Allen. The TRAINS 93 dialogues. Techni-
cal note 94-2, University of Rochester, Rochester, New York, 1995.

[96] Neil T. Heffernan and Kenneth R. Koedinger. Building a 3rd generation
ITS for symbolization: Adding a tutorial model with multiple tutorial
strategies. In Proceedings of the ITS 2000 Workshop on Algebra Learning,
Montréal, Canada, 2000.

[97] Charles T. Hemphill, John Godfrey, and George R. Doddington. The
ATIS spoken language systems pilot corpus. In Proceedings DARPA
Speech and Natural Language Workshop, pages 96–101, Hidden Valley,
PA, 1990. Morgan Kaufmann.

[98] Reuben Hersh. Proving is convincing and explaining. Educational Stud-
ies in Mathematics, 24:389–399, 1993.

[99] Rania Hodhod and Daniel Kudenko. Interactive Narrative and Intelli-
gent Tutoring for Ill Defined Domains. In Proceedings of the ITS-2008
workshop on Intelligent Tutoring Systems for Ill-Defined Domains, pages
23–27, 2008.

[100] Helmut Horacek and Magdalena Wolska. Interpreting Semi-Formal
Utterances in Dialogs about Mathematical Proofs. Data and Knowledge
Engineering Journal, 58(1):90–106, 2006.

[101] Helmut Horacek and Magdalena Wolska. Interpretation of Mixed
Language Input in a Mathematics Tutoring System. In Proceedings of

169



Bibliography

AIED-05 Workshop on Mixed Language Explanations in Learning Envi-
ronments, pages 27–34, 2005.

[102] Helmut Horacek and Magdalena Wolska. Handling errors in mathe-
matical formulas. In Mitsuru Ikeda, Kevin D. Ashley, and Tak-Wai
Chan, editors, Proceedings of the 8th International Conference on Intelli-
gent Tutoring Systems, volume 4053 of Lecture Notes in Computer Science,
pages 339–348. Springer, 2006.

[103] Xiaorong Huang. Reconstructing Proofs at the Assertion Level. In
Alan Bundy, editor, Proceedings of the 12th Conference on Automated
Deduction, pages 738–752. Springer, 1994.

[104] Gregory D. Hume, Joel A. Michael, Rovick A. Allen, and Martha W.
Evens. Hinting as a tactic in one-on-one tutoring. Journal of the Learn-
ing Sciences, 5(1):23–47, 1996.

[105] Susan Jamieson. Likert scales: how to (ab)use them. Medical Education,
38(12):1217–1218, 2004.

[106] Nathalie Japkowicz. Learning from Imbalanced Data Sets: A Compar-
ison of Various Strategies. In Nathalie Japkowicz, editor, Proceedings of
Learning from Imbalanced Data Sets, pages 10–15. AAAI Press, 2000.

[107] George H. John and Pat Langley. Estimating continuous distributions
in bayesian classifiers. In Philippe Besnard and Steve Hanks, editors,
Eleventh Conference on Uncertainty in Artificial Intelligence, pages 338–
345, San Mateo, 1995. Morgan Kaufmann.

[108] Pamela Jordan, Maxim Makatchev, Umarani Pappuswamy, Kurt Van-
Lehn, and Patricia Albacete. A Natural Language Tutorial Dialogue
System for Physics. In Geoff C. J. Sutcliffe and Randy G. Goebel, ed-
itors, Proceedings of the 19th International FLAIRS Conference, pages
521–526, 2006.

[109] Cezary Kaliszyk, Freek Wiedijk, Maxim Hendriks, and Femke van
Raamsdonk. Teaching logic using a state-of-the-art proof assistant. In
Herman Geuvers and Pierre Courtieu, editors, Proceedings of the Inter-
national Workshop on Proof Assistants and Types in Education, pages 33–
48, 2007.

[110] Fairouz Kamareddine, Manuel Maarek, Krzysztof Retel, and Joe Wells.
Digitised mathematics: Computerisation vs. formalisation. Review of
the National Center for Digitization, 10:1–8, 2007.

170



Bibliography

[111] Hans Kamp and Uwe Reyle. From Discourse to Logic. Kluwer Academic
Publishers, Dordrecht, The Netherlands, 1993.

[112] Elena Karagjosova. Marked informationally redundant utterances in
tutorial dialogue. In Ivana Kruijff-Korbayová and Claudia Kosny, edi-
tors, Proceedings of DiaBruck’03, the 7th Workshop on the Semantics and
Prgmatics of Language, Saarbrücken, Germany, 2003.

[113] Kenneth Koedinger and John R. Anderson. Reifying implicit planning
in geometry: Guidelines for model-based intelligent tutoring system
design. In Susanne P. Lajoie and Sharon J. Derry, editors, Computers as
Cognitive Tools, pages 15–46. Erlbaum, 1993.

[114] Jörn Kreutel and Colin Matheson. Incremental Information State Up-
dates in an Obligation-Driven Dialogue Model. Logic Journal of the
IGPL, 11(4):485–511, 2003.

[115] Lawrence L. Kupper and Kerry B. Hafner. On Assessing Interrater
Agreement for Multiple Attribute Responses. Biometrics, 45(3):957–
967, 1989.

[116] Staffan Larsson. Issue-based Dialogue Management. PhD thesis, Depart-
ment of Linguistics, University of Gothenburg, Sweden, 2002.

[117] Staffan Larsson, Robin Cooper, Elisabet Engdahl, and Peter Ljunglöf.
Information states and dialogue move engines. Electronic Transactions
on Artificial Intelligence, vol. 3, section D: Special Section on Knowl-
edge and Reasoning in Practical Dialogue Systems, 1999.

[118] Staffan Larsson, Peter Ljunglöf, Robin Cooper, Elisabet Engdahl, and
Stina Ericsson. GoDiS – an accommodating dialogue system. In Pro-
ceedings of the NAACL’00 Workshop on Conversational Systems, pages
7–10, Seattle, Washington, 2000.

[119] Victor R. Lee and Bruce L. Sherin. What makes teaching special? In
Proceedings of ICLS-04, pages 302–309, 2004.

[120] Oliver Lemon, Anne Bracy, Alexander Gruenstein, and Stanley Pe-
ters. Information States in a Multi-modal Dialogue System for Human-
Robot Conversation. In Proceedings of Bi-Dialog, 5th Workshop on For-
mal Semantics and Pragmatics of Dialogue, pages 57 – 67, 2001.

171



Bibliography

[121] James C. Lester and Bruce W. Porter. Developing and empirically eval-
uating robust explanation generators: The Knight experiments. Com-
putational Linguistics, 23(1):65–103, 1997.

[122] Stephen C. Levinson. Pragmatics. Cambridge University Press, Cam-
bridge, 1983.

[123] Magdeleine D. N. Lewa, W. A. M. Alwisa, and Henk G. Schmidt. Ac-
curacy of students’ self-assessment and their beliefs about its utility. As-
sessment & Evaluation in Higher Education, 35:135–156, 2010.

[124] David Lewis. Scorekeeping in a language game. Journal of Philosophical
Logic, 8:339–359, 1979.

[125] Rensis Likert. A technique for the measurement of attitudes. Archives
of Psychology, 140(1), 1932.

[126] Diane Litman and Kate Forbes-Riley. Correlations between dialogue
acts and learning in spoken tutoring dialogues. Natural Language Engi-
neering, 12(2):161–176, 2006.

[127] Diane J. Litman and James F. Allen. A Plan Recognition Model for
Subdialogues in Conversation. Cognitive Science, 11(2):163–200, 1987.

[128] Diane J. Litman and James F. Allen. Discourse Processing and Com-
monsense Plans. In P.R. Cohen, J. Morgan, and M. Pollack, editors,
Intentions in Communication, pages 365–388. MIT Press, Cambridge,
MA, 1990.

[129] Diane J. Litman and Scott Silliman. ITSPOKE: An Intelligent Tutor-
ing Spoken Dialogue System. In Proceedings of the Human Language
Technology Conference: 4th Meeting of the North American Chapter of
the Association for Computational Linguistics (Companion Proceedings),
pages 1–4, Boston, MA, 2004.

[130] Diane J. Litman, Carolyn P. Rosé, Kate Forbes-Riley, Kurt Vanlehn,
Dumisizwe Bhembe, and Scott Silliman. Spoken versus typed human
and computer dialogue tutoring. International Journal of Artificial In-
telligence in Education, 16(2):145–170, 2006.

[131] Karen E. Lochbaum. A collaborative planning model of intentional
structure. Computational Linguistics, 24(4):525–572, 1998.

172



Bibliography

[132] Max M. Louwerse and Scott A. Crossley. Dialog act classification using
n-gram algorithms. In G. Sutcliffe and R. Goebel, editors, Proceedings
of the International Florida Artificial Intelligence Research Society, pages
758–763, Menlo Park, California, 2006. AAAI Press.

[133] Xin Lu, Barbara Di Eugenio, Trina C. Kershaw, Stellan Ohlsson, and
Andrew Corrigan-Halpern. Expert vs. non-expert tutoring: Dialogue
moves, interaction patterns and multi-utterance turns. In Alexander F.
Gelbukh, editor, Proceedings of the 8th International Conference on
Computational Linguistics and Intelligent Text Processing, pages 456–467.
Springer, 2007.

[134] Maxim Makatchev and Kurt VanLehn. Analyzing Completeness and
Correctness of Utterances Using an ATMS. In Chee-Kit Looi, Gor-
don I. McCalla, Bert Bredeweg, and Joost Breuker, editors, Proceedings
of the International Conference on Artificial Intelligence in Education,
pages 403–410, Amsterdam, 2005. IOS Press.

[135] Colin Matheson, Massimo Poesio, and David Traum. Modelling
grounding and discourse obligations using update rules. In Janyce
Wiebe, editor, Proceedings of the 1st Conference of the North American
Chapter of the Association for Computational Linguistics, pages 1–8, San
Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[136] David McArthur, Cathleen Stasz, and Mary Zmuidzinas. Tutoring
Techniques in Algebra. Cognition and Instruction, 7(3):197–244, 1990.

[137] Michael F. McTear. Spoken Dialogue Technology: Enabling the Con-
versational User Interface. ACM Computing Surveys, 34(1):90–169,
2002.

[138] Michael F. McTear. Modelling spoken dialogues with state transition
diagrams: Experiences with the CSLU toolkit. In Proceedings of the 5th
International Conference on Spoken Language Processing, Sydney, Aus-
tralia, 1998.

[139] Douglas C. Merrill, Brian J. Reiser, Michael Ranney, and J. Gregory
Trafton. Effective Tutoring Techniques: A Comparison of Human Tu-
tors and Intelligent Tutoring Systems. The Journal of the Learning Sci-
ences, 2(3):277–305, 1992.

[140] Douglas C. Merrill, Brian J. Reiser, Shannon K. Merrill, and Shari Lan-
des. Tutoring: Guided learning by doing. Cognition and Instruction, 13:
315–372, 1995.

173



Bibliography

[141] Nestor Miliaev, Alison Cawsey, and Greg Michaelson. Applied NLG
System Evaluation: FlexyCAT. In Ehud Reiter, Helmut Horacek, and
Kees van Deemter, editors, Proceedings of the 9th European Workshop on
Natural Language Generation, pages 55–62, Budapest, 2003.

[142] Johanna D. Moore. What makes human explanations effective? In Pro-
ceedings of the Fifteenth Annual Meeting of the Cognitive Science Society,
pages 131–136, Hillsdale, NJ, 1993.
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