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ABSTRACT
Two prosodic agents of a coopera-

tive speech recognition system (namely

ETCvérif) will be presented in this pa-

per. The first agent is processing in—

formation available in micro—prosodic

variations. The second agent is dealing

with linguistically-motivated aspects of

prosody which are exceedingly useful to

constraint solution space in a recogni-

tion task.

1. INTRODUCTION
It is often argued that prosodic can

be used in numerous benefit ways in

an automatic speech recognition pro—

cess (ASR) [1]. Prosody is first in~
volved in phonetically conditioned as-

pects (intrinsic values and coarticula-

tion effects). It is well known for ex-
ample that high vowels (such /i/) have
an intrinsically lower duration than low
vowels (such /a/). A recent study
[2] measured a slight improvement of
a large vocabulary speech recognition
system by inserting a micro—prosodic
model. Among all prosodic functions,
one is of utmost importance from an
ASR point of view: the grouping of re
lated words in socalled prosodic words.
Prosodic structuring can be useful for
verifying and predicting linguistic orga—
nization proposed by other agents (syn-
tactic or/and semantic ones). Numer-
ous studies deal with this function and
recent ones report interesting results
for specific tasks such as disambigua-
tion [3, 4]. Prosody is also reported to
be useful in a speech understanding sys-
tem specially in dialog situation where
events such as repairs [5] and interrupts

occur quite frequently [6]. This area is
however far from the scope of this pa-

per which will detail the first two enun-
ciated points.

2. MICRO-PROSODIC AGENT
This agent is processing informa-

tion available in intrinsic and co-

intrinsic variations of fundamental fre-
quency, intensity and duration pa-

rameters. It provides specially some

weighted hypothesis to Ecérif such

as voice/voiceless diacritic recognition

and voiced obstruent/non-obstruent

consonant distinction. In this section

we will just sum up special points that

are described in depth, from a lexical

access point of view, in [7].

Duration cues

We studied, on several corpora of

French isolated words (ranging from

500 to 1000 words) uttered by sev-
eral speakers, the vowels intrin-

sic durations and the right conso-

nant effect (voice/voiceless and occlu-

sive/constrictive) on the preceeding
vowel. Durations were automatically

obtained based on two different tech—

niques; the first one is using the dura-

tion given by a lexical access module

and the second one is based on non-

contextual phonemic Markov models.

We report hereafter major conclusions

for this studies.

Even if high vowels durations are

on average smaller than the ones of

low vowels, intrinsic vowels durations

are not reliable enough to be used in

our system. In fact, only oral/nasal

vowel distinction can be done (at least
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partially) with low error probability

(see fig. 1).

Contextual effects can be observed

on the average values but seem to be

too fragile for classification techniques

(error probability close to 0.4).
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Figure l. Distributions of anal and nasal
vowel durations on a corpus of 2 speakers’

utterances of 800 tri-syllabic wands.

Intensity cues
We studied on the same corpora, the

distributions of intensity values (mea-
sured by a classical raw power in-
tensity) and we can conclude that
local discrimination between vowels
like /a/ and /i/ (see fig. 2) can
be achieved with a reasonable prob-
ability error (at least for non fi-
nal vowels), while pre—vocalic con-
sonantic distinction can not.

Figure 2. /i/, /y/ and /a/ distributions
measured on initial vowels of tri-syllabic
words

Fundamental frequency cues
We measured this parameter with an
algofithm implementing the amdf tech-
nique with satisfactory results. It pro-
V1des a voice/voiceless decision based
on the shape of amdf curve computed
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for each frame of signal. This method
has been found very suitable for lexical
filtering: more than 60% of a. large lex‘
icon was removed from potential candi-
dates by the only mean of this decision
with low error rate (less than 3%) on a
task of 500 words recognition, each one
uttered by 6 different speakers. In a
top-down approach, the voice/voiceless

distinction was useful too to re—rank

lexical hypothesis with an average gain

of 3 places.

As studied for duration and in-

tensity, intrinsic and cointrinsic fre-

quency values have been considered

and no robust information was dis-

covered, except the obstruent/non-

obstruent consonants distinction that

can be achieved, at least partially, with

reasonable error probability. The ma-

jor cue of this distinction is the concave

shape usually observed on non liquids

intervocalic consonants (see fig. 3).

o u luau) a:

Figure 3. Distributions of a concur»

ity measure Rfo on difl'erent consonants

classes.

3. SUPRASEGMENTAL AGENT

Even if linguistically-motivated aspects

of prosody gave rise to a lot of stud—

ies, there is not yet a unified model on

which all researchers can agree. This

is mainly due to the fact that prosodic

phenomena depend on many distinct

levels of linguistic representation. For

example, even if it is well known that

prosodic cues occur more frequently at

syntactic constituents boundaries; this

rule can be denied by other constraints

such as rhythmic ones. Thus, learns
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ing by example seems to be an efficient

way to solve this conflicting situation.

We report here first results obtained by

a suprasegmental agent based on this

technique.

This agent makes use of an identifi-

cation system of prosodic labels which

points out, in a sentence, the occur-

rences of some particular prosodic cues

(twoway emergence of a vowel funda-

mental frequency, lengthening of its du-

ration, ....) The output of this treat-

ment: a prosodic lattice, as well as

the syntactic decomposition of the sen-

tence, and its phonetic alignment (ob-

tained by an automatic Viterbi align-

ment of allophones models) feed a sta—

tistical module which updates a knowl-

edge source (KS). This KS quantifies ——
for a given corpus — the correlations

between some syntactic, rhythmic and

prosodic units.

Information is organized into a non-

connected oriented graph. Each edge

bears a syntactic and/or rhythmic

constraint automatically derived from

learning observations. Each vertex N

(called a ‘P»node’) contains informa-

tion such as the number of times it

has been visited when processing learn-

ing data, the number of occurrences of
each different prosodic label attached
to observations and a tree structure
Crit(N) (called a ‘SR-structure’) de
scribing the syntactic-rhythmic organi-

zation modeled by N. Each leaf node of
the SR—structure holds all prosodic la-
bels observed at the current constituent
boundaries.

An observation 0 is a SR-structure
with a fully described tree (i.e. syntac—
tic tree with each node containing the
right number of vowels). We denote pa
the depth of the tree and define d as the
number of consecutive levels (beginning
at root node) with fully instanciated
numbers of vowels (p E [O,pa] and p S
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p0). OM is the Sit-structure got from

O by filtering out the p first levels with
rhythmic constraints of the d first levels
(ex. 2 0119.0 is the syntactic structure of
the observation, 01.1 holds the number

of vowels in the observation).

The graph grows automatically by

updating each node holding a SR-

structure that can be unified with 0M

and by creating missing nodes using the

following algorithm:

explore(N, O, p, d)

if (p < Po)
ifElN' : P-node/Crit(N’) = 0r+1.d

then update N'

else create N’ : son of N

explore(N’, O,p +1,j)

3f (d < pa)

ifEl N' 2 P-node/Crit(N') = 0,9,4

then update N'

else create N' : son of N

explore(N’, O,p, d +1)

An observation 0 can at most gener-

ate m’f—Sl P-nodes but in general fac-

torization (depending on the applica-

tion) significantly cuts down the graph

expansion. This organization allows a

user to easily query the system on par~

ticular syntactic-rhythmic structures,

such as for example:

NB(Nl»999999(5).VIRG(2).N1-999(4)),
that describes a number made up of

three distinct groups with respectively

5, 2 and 4 vowels. The system an-

swers by displaying figures of prosodic

parameter contours (see fig. 4) mod-
eled by the selected P—node with unifi-

able information and by providing a

matrix describing the frequency of each

prosodic label observed at this node.

This KS also provides a conve-

nient way of scoring the adequacy
between the measured prosodic cues

and the syntactic-rhythmical struc-

ture that could be partially (internal

node of the tree) or entirely (leaves
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of the description tree) defined in or-

der to give weighted hypothesis for

a specific input. We report here-

after (see fig. 5) results of a num-

ber recognition task. We feed the

system with 500 numbers uttered by

70 speakers on a telephone line.
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Figure 4. Example of f0 contours pro-

posed by the system. Only initial, middle

and final values of each group are taken

into account and linearly smoothed.

For each number, the system is pro

vided with a syntactic structure, a pho—

netic alignment and a prosodic lat-
tice (above 30 different labels). All
these data are automatically computed
from orthographic transcription. The
system’s objective is to predict the
syntactic-rhythmic structure of a 100
numbers test data set. The score of
a specific P—leaf is given by the max-
imum mark assigned to each possible
path from the root to it. The score of a
path is the average scoring of each of its
P~no<lcs and a specific node in a path
is scored by a distance between its lcr
cal prosodic matrix and the input one.
The figure 5 reports the ranking rate of
the 100 observations.

4. DISCUSSION
This study demonstrates that most of
Intrinsic and co-intrinsic phenomena
are difficult to handle, and only few
cues seem to be useful for a recogni-
tion process. On this point, this study
confirms Dumouchel’s conclusions [2]
We propose a user—friendly and effi-
cient system for scoring and/0r pre—
dicting structural linguistic hypotlr
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esis that seems very promising for

further investigation on prosody.
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Figure 5. Ranking of incoming candidates
from an average number of possible ran/cs

of 20.
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