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ABSTRACT

This paper starts with a brief overview of advances
in the development ofspeech recognition systems, with

. particular emphasis on the past decade. It then moves
on to make two points. First, successful development
of speech recognition system will depend on our abil-
ity to understand human communication through spo-
ken language, to capture the essential features of the
process in appropriate models, and to develop the nec-
essary computational framework to make use of these
models for machine understanding. Second, just as hu-
man communication using spoken language is an active
process of understanding, we must begin to investigate
methods that will combine speech recognition and nat-
ural language processing technology to achieve speech
understanding. Examples to support these arguments
will be provided.

INTRODUCTION
Spoken language is the most natural, flexible,

efficient, and economical means of communication
among humans. As computers continue to play an
increasing role in our lives, it is important that we
seriously address the issue of providing a grace-
ful human-machine interface through spoken lan-
guage. Research in speech coding and synthesis
has matured over the past decade to the extent
that speech can now be transmitted efficiently and
generated with high intelligibility. Spoken input to
computers, however, has yet to cross the thresh-
old of practicality. To be sure, the last decade has
witnessed dramatic improvement in speech recog-
nition technology. Nevertheless, current speech
recognition systems still fall far short of human.
capabilities of continuous speech recognition with
essentially unrestricted vocabulary and speakers,
under difficult acoustic conditions.

Why is it so hard to develop computer systems
to recognize speech? One of the primary reasons is
the variabilities that one finds in spoken language
communication. Speech can be produced by many
speakers with diverse vocal tract anatomies and

I '11:;01:2m supported by DARPA under Con-
ract 14—89- 4332, monitored throu h th

Naval Research. 5 e mm °f

74

sociolinguistic backgrounds. Even for a particu-
lar speaker, the characteristics of the signal can
vary over a wide range, depending on his or her
physiological and psychological states. Many ex-
ternal factors, such as the acoustic environment

and the types of microphone can also significantly
alter the resulting signal. One may be tempted
to dismiss these variabilities as undesirable noise
imposed on the otherwise invariant signal. In re-
ality, however, the process of encoding linguistic
information in spoken language is highly stochas-
tic in nature. Speakers of a language can convey
the same underlying message with many choices
of words and linguistic constructs. Furthermore,
even though the inventory of phonemes for a lan-
guage is quite small, their acoustic-phonetic real-
izations depend critically on the context in which
they appear, as illustrated in Figure I. For exam-
ple, while the initial /t/ in the words “two" and
“ten” share some acoustic similarities, there are

also significant difierences that one can readily ob-

serve. The burst release for the first /t/ is lower in
frequency than the second, a direct consequence
of anticipatory coarticulation caused by the fol-
lowing rounded vowel /u/. By the same token,
the acoustic similarities of the three lel's in the
words “seven,” “less,” and l‘ten" areovershadowed

by the apparent difi’erences. The second /e/ shows

articulatory undershoot due to lateralizatiou, as

evidenced by the lowering of its second formant,
whereas the last /e/ is heavily nasalized, indicated
by the smearing of the first formant. Figure l also
contains more subtle examples of contextual vari-
ations. For example, the spectra for the alveolar
strident fricatives in the words “is” and “less" both
tilt upwards near the end, but for apparently dif-

ferent reasons. In the first case, the upward tilt
is due to the following lateral consonant, and is
often accompanied by a brief period of epenthetic
silence, followed by the relatively sudden lateral re-
lease. In the second case, the upward tilt is due to
the following dental fricative, which has a more an-
terior place of articulation. To be sure, remarkable

advances have been made in various disciplines of
phonetic science, so that we now have a far better
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Figure 1: Digital spectrogram of the sentence l‘Two plus seven is less than ten," spoken by a male talker. Also

included are phonetic and orthographic transcriptions that are aligned with important acoustic landmarks in the

signal. The spectrogram illustrates some of the acoustic-phonetic variations often found in continuous speech.

understanding of many aspects of this variability
than we did a few short decades ago. Nevertheless,
researchers in automatic speech recognition have
not been able to capitalize on the vast amount of
knowledge, primarily because of the lack of a uni-
fying computational framework to make use of it.

i will start this paper with a brief review of the
state of the art in speech recognition by machine,
with particular emphasis on the past decade. This
will be followed by my assessment of the factors
contributing to the improvement in systems‘ per-
formance. I will use the remainder of the paper

to make two points. First, successful develop-
ment of speech recognition systems will depend on
our ability to understand human communication
through spoken language, to capture the essential
features of the process in appropriate models, and
to develop the necessary computational framework
to make use of these models for machine under-
standing. Second, just as human communication
using spoken language is an active process of un-
derstanding, we must begin to investigate methods
that will combine speech recognition and natural
language processing technology to achieve speech
understanding. Indeed, many of the applications
of human/machine interface through spoken lan-
guage require systems possessing the capability of

solving a problem interactively with a user. To il-
lustrate my points, l will draw liberally from our

own experience in developing speech recognition

and speech understanding systems. This is done
primarily for the sake of familiarity, and not eth-
nocentricity.
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STATE OF THE ART IN SPEECH
RECOGNITION

Defining the Parameters

Speech recognition systems can be character-
ized by many parameters. An isolated-word speech
recognition system requires that the speaker pause
briefly between words, whereas a continuous speech
recognition system does not. ‘Some systems re«
quire speaker enrollment; a user must provide sam-

ples of his or her speech before using them. Other
systems are said to be speaker-independent in that

no enrollment is necessary. Some of the other pa,

rameters depend on the specific task. Recognition

is generally more difficult when vocabularies are

large or have many similar sounding words. The

language model is the artificial grammar that re-
stricts the combination of words. The simplest

language model can be specified as a finite-state

network, where the permissble words following each

word are given explicitly. More general language

models approximating natural language are speci-

fied in terms of a context-sensitive grammar. One

popular measure of the difficulty of the task, com-

bining the vocabulary size and the language model,

is psi-plenty, P, defined as:

N

"1l7 : loggP(w.-|w.'_1, ...w1)
P = 2 |=l

where the w,- are the sequence of all words in all

sentences, N is the total number of words, and

P(w;|w;_|‚ ...w1) is the probability of the ith word

given all preceding words. Perplexity is related to



the average number of words allowed at each node

in the language model.” Finally, there are some
external parameters that can affect speech recog-

nition system performance, including the charac»

teristics of the environmental noise, the type and

the placement of the microphone, speaker’s level

of physiological and psychological stress, and vari-

ations in speaking rate.

Performance Review

What follows is a snapshot of current perfor-
mance of smne typical systems on a variety of
tasks. It is intended to be illustrative, rather than

exhaustive. Interested readers are referred to an
extensive review by Mariani for additional infor-
mation [32].

Performance of speech recognition systems is
typically described in terms of word error rate, E,
defined as:

s=(1—s—+—I’f—D)1oo%

where N is the total number of words in the test
set, S, I, and D are the total number of substitu-
tions, insertions, and deletions, respectively. Note
that insertion and deletion are meaningful mea-
sures only for continuous speech recognition sys-
tems.

Low Pan-21mg Tasks One of the most pop-
ular, and potentially most useful task with low
perplexity (P = 1]) is the recognition of digits.
For American English, speaker-independent recog-
nition of digit strings spoken continuously and re-
stricted to telephone bandwidth can achieve an er-
ror rate of 0.8% when the string length is known.
When the string length is unknown, the error rate
increases to 1.4% [48]. This represents a significant
improvement over the best systems only a. decade
ago, which had an error rate of 2%, for digits spo-
ken in isolation by known talkers, recorded under
high quality conditions [13]. The French isloated
digit recognition system developed at CNET per-
formed robust enough to be deployed over public
telephone network [l4].

Another potentially useful task is the recogni-
tion of English alphabets (P = 26). Despite the
low perplexity, English alphabet recognition is a
very challenging task, since many of the letters
are acoustically similar. In 1983, Cole reported an
error rate of 10.5% on speaker-independent recog-
nition of isolated digits with a system that makes
use of acoustic features known to be important for
fine phonetic contrast [9]. Staying with the same
philosophy but using an artificial neural net classi-
fier, Cole recently achieved a speaker-independent
Fain rate of 4% for isolated letters of the alphabet
11 .

aPel'plienity for the English language has been estimated
from text to be between 150 Ind 200.
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Moderate Perplexity 'I‘asks In the eighties, a
number of researchers have pursued speech recog.

nition tasks with a, vocabulary of a few hundred
words and moderate perplexity. One of the best
known is the 1,000-word Resource Management
(RM) task, in which inquiries can be made on var.
ious naval vessels in the Pacific ocean. This task
was made popular by the fact that it is the da.
ignated task for common evaluation among con.
tractors of the U.S. Defense Advanced Research
Projects Agency’s Strategic Computing Program.
As a result, speech data for system training and
testing, as well as evaluation procedures, have been
developed and are readily available [37].

The best speaker-dependent results on the RM
task were achieved by BBN and MIT Lincoln Lab-
oratory. Using a word-pair language model that
constrains the possible words following agiven word
(P = 60), these systems achieved a word error rate
of less than 2% on continuously spoken sentences
[38]. The BBN BYBLos system can also operate
in a speaker-adaptive mode, in which the system
adapts its models and parameters using only 40
sentences from the new speaker. A 45% reduction
in word error rate for the new speaker can be real-
ized with rapid system adaptation [24]. The ARM
system developed at RS RE in the United Kingdom
achieved an error rate of 13.2% on a 497-word task
with no language model (P = 497) [42]. For com-
parison, researchers at IBM reported a word error
rate of 9% on the 1,000-word Laser Patent task
(P = 24) only a few short years ago, and it was
the best result at that time [2].

Over the past few years, good performance on
speaker-independent recognition for moderate per-
plexity is beginning to emerge, the best known
being the SPHlNX system developed at Carnegie
Mellon University [27]. On the RM task (P = 60),
SPlllNX achieved a speaker-independent word error
rate of 4.5% [38].

High Perplexity Tasks High perplexity tasks
with a. vocabulary of thousands of words are in-
tended primarily for the dictation application. To
make the task manageable and performance rea-
sonable, however, the systems are typically speaker-
dependent, and require that the speaker pause be
tween words. Researchers at IBM’s T. J. Watson
Research Center are among the most active and
successful in this area. For example, the TAN-
GORA system achieved word error rate of 2.9%
and 5.4% on a. 5,000-word and a 20,000 word of-
fice dictation task [1]. Similar efforts can also be
found in Canada and France [28,34]. The INRS
86,000-word system achieved an error rate of 7.2%,
whereas researchers at IBM-fiance reported an
erorr rate of 12.7% on their 200,000word system.
Discussion

The improvement in speech recognition tech-
nology over the last decade was brought on by



several factors. First and foremost, there is the

coming of age of the utilization of stochastic mod»

elling techniques. The AT&T digit recognition

system, the BYnLos and SPHINX continuous speech

recognition systems, as well as all the high per-

plexity systems mentioned earlier are all based on

some form of hidden Markov modelling (HMM).

HMM is a doubly stochastic model, in which the

generation of the underlying phoneme string and

their surface acoustic realizations are both repre

sented probabilistically as Markov processes [41,

40]. HMM is powerful in that, with the availability

of training data, the parameters of the model can

be trained automatically to give optimal perfor-

mance. While the application of HMM to speech

recognition started nearly twenty years ago [21,3],

it was not until the past few years that it gained

wide acceptance by the research community.

Second, much work has gone into the develop-

ment of large speech corpora for system develop-

ment, training, and testing [6,25,37,53,19,5]. Some

of these corpora are designed for acoustic pho-

netic research, while others are highly task spe

cific. These corpora permit researchers to quantify

the acoustic cues important for phonetic contrasts

and to determine parameters of the recognizers in

a statistically meaningful way. The importance of

their availability cannot be overstated.

Third, progress has been brought about by the

establishment of standards for performance evalu-

ation. Less than a decade ago, researchers trained
and tested their systems using locally collected
data, and had not been very careful in delineating
training and testing sets. As a result, it is very
difficult to compare performance across systems,

and the system’s performance typically degrades

when presented with previously unseen data. The
recent availability of a large body of data in the

public domain, coupled with the specification of
evaluation standards [37], has resulted in uniform

documentation of test results, thus contributing to

greater reliability in monitoring progress.

Finally, advances in computer technology also
indirectly influenced our progress. The availability
of fast computers with inexpensive mass storage
capabilities has enabled many researchers to run
many large scale experiments in a short amount of
time. This means that the elapsed time between
an idea. and its implementation and evaluation is
greatly reduced.

INCORPORATING SPEECH
KNOWLEDGE

Successful systems developed over the last decade
are very different from their predecessors. Instead

' of relying on heuristic rules and intense knowledge

Engineering, these system derive their power from
Well formulated mathematical formalisms and au—
tomatic training procedures. Nevertheless, it is
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noteworthy that researchers have generally found
that performance of these HMM-based systems
can be improved when speech knowledge is in-

corporated, even if only crudely. For example,

the use of triphone models conditioned on the left

and right neighbors for a given phoneme implicitly

models coarticulation, resulting in approximately

50% reduction in word error rate [27].

While it is hard to speculate on what future

speech recognition systems would be like, I be-

lieve there are many ways current systems can be
made more powerful by the proper utilization of
speech knowledge. In this section, I will provide

two examples in the area of signal representation
and feature extraction.

Signal Representation

Current speech recognition systems perform sig-

nificantly worse than humans on the same task,

even under ideal circumstances [10]. When the

operating conditions deteriorate, the difference be-

tween human and machine performance becomes

even more dramatic. There is clearly much to be

learned from studying the process by which human

listeners decode the speech signal. While little

is known about the decoding process beyond the

eighth cranial nerve, advances in auditory physi-

ology and psychophysics [15,22,411] have begun to

shed some light on the nature of representations

of the speech signal in the human peripheral audi-

tory system. As a. result of this pioneering work,

many researchers have begun to propose speech

signal representations that take into account these

known properties of the auditory system [31,23,12,

18,44].

In the recognition system under development

in our group, the speech signal is first transformed

into a representation based on Senefl’s auditory

model [44]. The model has three stages. The first

stage is a bank of linear filters, equally spaced on

a critical-band scale. This is followed by a nonlin-

ear stage that models the transduction process of

the hair cells and the nerve synapses. The output

of the second stage bifurcates, one brand) corre-

sponding to the mean firing rate of an auditory

nerve fiber, and the other measuring the synchrony

of the signal to the fiber’s characteristic frequency.

We believe that outputs from various stages

of this model are appropriate for different oper-

ations in our system. The nonlinearities of the

second stage produce sharper onsets and offsets

than are achieved through simple linear filtering.

In addition, irrelevant acoustic information is of-

ten masked or suppressed. These properties make

such a representation well-suited for the detection

of acoustic landmarks. The synchrony response,

on the other hand, provides enhanced spectral peaks.

Since these peaks often correspond to formant fre~

quencies in vowel and sonorant consonant regions,



we surmise that the synchrony repruentation may

be particularly useful for performing fine phonetic

distinctions.

There has been some evidence suggesting that

a representation based on auditory modelling can

offer performance advantage, especially when the

signal is degraded by noise [16.20.8]. Recently, we

conducted a set of formal evaluations that com-

pares several different signal representations [33].

To limit the scope of our investigation, we selected

the task of classifying up to 16 vowels in Ameri-

can English, using a multi-layer perceptron (MLP)

classifier with a single hidden layer [29]. Vowel to-

kens were extracted from the TlMIT corpus [26].

'Ikaining and test sets consist of more than 20,000

tokens (from 500 speakers) and about 2,000 tokens

(from 50 speakers), respectively. Three different

types of spectral representations were compared,

one based on Seneif’s auditory model, one based

on mel-frequeucy cepstral coefficients [35], which

are very popular among the HMM-hased systems,

and one based on a cepstrally-smoothed discrete

Fourier transform. To strive towards a fair and

meaningful comparison, the mel-frequency filters
were carefully designed to resemble the critical-
band filters of the auditory model. In addition,
the dimensionality of the feature vectors was con-
strained to be equal. Specifically, a40-dimensional
vector, covering a frequency range of 6 kHz, was

computed once every 5 msec. The tut tokens
were either presented to the classifier unchanged,
or were corrupted by additive white noise at an

averaged signal-to-noise ratio of approximately 10
dB.

Classification performance is summarised in 'Ib-
ble 1. For clean testing tokens, the auditory based
representations hold a small but consistent advan-
tage over the other representations. When the
test tokens are corrupted by noise, this advantage
becomes more substantial. These results suggest
that the outputs of the auditory model are more
immune to noise degradation, and thus will pro-
vide better and more robust performance for pho-
netic classification.

Table 1: Compsr'nons of vowel classification ac-
curacy (in %) for Seneff's auditory model (SAM).
mel-fiequency cepetral coefficients (MFCC), and cep-
Itrally smoothed dm Fourier tramform (DPT).

Feature Extraction

Most of the current speech recognition systems
do not attempt to extract acoustic attributes that
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are known to signify phonetic contrasts, but in-

stead use the spectral vectors directly for phonem.

and word classification. This choice is partly d“

to the fact that it is difficult to implement reliable

algorithms to automatically extract the acoustic

attributes, even if we know qualitatively what they

are. For example, there does not yet exist a for-

mant tracker that can determine formant frequen.

cies reliably, especially in reg'ons where the direc-
tion and the extent of formant transitions provide
important information about the place of articular
tion for consonants. These algorithms also tend to

perform poorly near retroflexed and/or nasalized
vowels, making incorrect formant assignment that
will lead to catastrophic classification errors.

We have recently experimented with a novd

procedure for the extraction of acoustic attributes
for phonetic classification. We approach this prob
lem by first defining a set of general property de-
tectors based on our knowledge of acoustic phonet-
ics. We then determine the optimal settings of the
parameters by a search procedure, using a large

body of training data 139,49]. This procedure is
illustrated in Figure 2. In this example, we ex-
plore the use of the spectral center of gravity as a
general property detector for distinguishing front
from back vowels. It has two free parameters, the
lower and upper frequency edges. An example of
this measurement for a vowel token is superim-
posed on the spectral slice below the spectrogram,
with the horizontal line indicating the frequency
range. To determine the optimal settings for the

free parameters, we first compute the classification
performance on a large set of training data for all
combinations of the parameter settings. The re-
sults are displayed in the middle~right panel in this
figure as a performance landscape, where highe-

values correspond to better performance. We then
search for the maximum on the surface defined by
the classification performance. The parameter set.

tings that correspond to the maximum are chosen

to be the optimal settings. For this example, the
classification performance of this attribute, using

the automatically selected parameter settings, is

shown at the top right corner. Note that an at-
tribute can also be used in conjunction with other
attributes, or to derive other attributes.

We believe that the procedure described above
is an example of successful knowledge engineer-

ing in which a speech scientist provides the knowl-
edge and intuition, and the machine provides the

computational power. Frequently, the settings re-

sult in a parameter that agrees with our phonetic
intuitions. In this example, the optimal Satin!”
for this property detector result in an attribute
that closely follows the second formant, which is
known to be important for the front/back distinc-
tion. Our experience with this procedure 5W“
that it is able to discover important acoustic p1.
rameters that signify phonetic contrasts, without



2: An example of interactive discovery of
acoustic attributes for phonetic clauification.

resorting to the use of heuristic rules.

Do these attributes offer performance advan-

tage over the direct use of spectral information?

We recently performed an experiment on a task

of classifying 38 phoneme labels using 55,000 and

9,000 training and testing tokens, respectively, from

350 speakers [30]. The input to an ANN classifier
is either the spectral vectors from the auditory

model plus segment duration (a. 241-dimentional

» vector), or a set of 80 automatically determined

acoustic attributes. The performance for the spec-

tral and attribute representations were 72% and

74%, respectively. This result suggest that the

use of acoustic attributes can improve classifica-

tion performance by a small amount, but at po-

tentially considerable computational savings, since

the input vector has been reduced by a factor of

three.

FROM RECOGNITION T0
UNDERSTANDING

Speech Understanding: The Issues

Speech communication among humans is an

active process that utilizes many different sources

of knowledge, some of them deeply embedded in
the linguistic competence of the talker and the lis-

tener. For example, utterances such as ‘‘let us

pray” and “lettuce spray" can presumably be dis-
ambiguated based on acoustic-phonetic knowledge
alone, which can be determined from the signal.

However, distinguishing others, such as I‘meet her
at the end of the street” and “meter at the end of
the street" will require syntactic knowledge. Still
others, such as “it is not easy to recognize speech"
and “itisnoteasytowreckanicebeach,” can-

not be disambiguated without knowledge of dis-
course context. 0n the one hand, higher level lin-
guistic knowledge can serve to constrain the per-

' '” word , Thus, for ‚‘ the
phoneme sequence /wunlt/ is more likely to be
“Where is it” than “wear is it," simply because the
first one makes more sense. On the other hand,
such knowledge helps us understand the meaning
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of an utterance, which is essential in spoken lan-
guage communication. The dual role of filtering
and understanding played by syntactic, semantic,

and discourse knowledge enables us to converse

freely, and to solve problems jointly using spoken
language.

All of the systems reviewed earlier have as their

goal the production of an orthographic transcrip-
tion of what was actually spoken. As long as the
proper word sequence is produced by the system, it

matters little what the underlying linguistic mes-

sage is. As a result, linguistic knowledge is utilized
only to constrain the search space. The constraints

are typically implemented as a statistical grammar
that specifies the probability of a word given its
predecessors. While these simple language models
have been effective in reducing search space and
improving performance, they do not begin to ad-
dress the issue of speech understanding. Indeed,

many applications suitable for human/machine in-

teraction using spoken language require a system

possessing the capability of solving a problem in-
teractively with a user. In addition to converting

the speech signal to text, the computer must also

understand the user’s request. so as to generate an

appropriate response.

Speech understanding systems offer a new set

of challenges to researchers, and raise several im-

portant research issues. Perhaps the most im-

portant one is the integration of speech recogni-

tion and natural language processing technolog to

achieve speech understanding. Researchers in each

discipline need to investigate how to exchange and

utilize information so as to maximize system per-

formance. In some cases, one may have to make

fundamental changer in the way systems are de

signed. For example, most natural language sys-

tems are developed with text input in mind; it

is assumed that the entire word string is known

with certainty. This assumption is clearly false for

speech input, whereby many words are competing

for the same time span, and some words may be

more reliable than others because of varying sig-

nal robustness. Therefore, one many not be able

to use existing natural language systems without

making some modifications.

Another issue related to spoken language sys—

tem development is that the system must operate

in a realistic application domain, where domain-

specific information can be utilised to translate

spoken input into appropriate actions. For exam-

ple, the verb “serve” conveys two entirely different

meanings, depending on whether one is discussing

a restaurant or a tennis match. Realistic appli-

cation is critical to collecting data on how people

would like to use machines to access information

and solve problems. The use of a constrained task

also makes possible rigorous evaluations of sys-

tem performance. Finally, the system must beg‘n



to deal with interactive speech, where the com-

puter is an active conversational participant, and

where people produce spontaneous speech, includ-

ing false starts, hesitations, and the use of words

and linguistic constructs unknown to the system

[46].

An Example: The MIT VOYAGER System

Over the past two years, we have begun a re-

search program on speech understanding system

development. In this section, we will briefly de-

scribe one such system [50,52].

. Task Description For our first attempt at ex-

ploring issues related to a fully-interactive spoken-

language system, we selected a. task in which the

system knows about the physical environment of

a specific geographical area, and can provide as-

sistance on how to get from one location to an-

other within this area. The system, which we call

VOYAGER, can also provide information concerning

certain objects located inside this area. The cur-

rent version of VOYAGER focuses on the geographic

area. of the city of Cambridge, Massachusetts be-

tween MIT and Harvard University, and has a vo-

cabulary of only 350 words. Nevertheless, it can

carry on a reasonable conversation with the user
and answer a variety of queries, as illustrated in

Figure 3.

User: where can i get some chinese food

' VOYAGER: I know of two Chinese places.

(VOYAGER shows them on the
map.)

User: which one is closest to me
VOYAGER: Where are you?

User: mit
VOYAGER: The nearest Chinese place that I

know of is Royal East.

User: how far is it
VOYAGER: Royal East is about one half miles

from MIT.
User: how do i get there
VOYAGER: I will try to find the best way to

walk there. If you are on the same

side of the street as MIT, follow the
traffic

Figure 3: Example of a conversation between a user
and VOYAGER that partly illustrates the system’s abil-
ity to handle discourse information. All words in the
user’s queries are represented in lower case, with no
punctuation, to underscore the fact that such informa-
tion is not available to the system.

VOYAGER is made up of three components. The
first component, SUMMIT, converts the speech sig-
nal into a set of word hypotheses. The natural lan-
guage component, TINA, then provides a linguistic
interpretation of the set of words. The parse gen-

80

erated by the natural language component is then
transformed into a set of query functions, which

are passed to the back-end for response genera-
tion. Currently VOYAGER can generate responses

in the form of text, graphics, and synthetic speech.

Speech Recognition The SUMMIT system [49,
51] starts the recognition process by first trans-
forming the speech signal into a representation
that models some of the known properties of the
human auditory system [44]. Using the output of
the auditory model, acoustic landmarks of vary-
ing robustness are located and embedded in 3. hi-
erarchical structure called a dendrogram [17]. The
acoustic segments represented in the dendrogram

are then mapped to phoneme hypotheses, using a

set of automatically determined acoustic peu-ame—

tors in conjunction with conventional pattern recog-
nition algorithms. The result is a phoneme net-
work, in which each arc is characterized by a vec-
tor of probabilities for all the possible candidates.

Words in the lexicon are represented as pro-
nunciation networks, which are generated auto-

matically by a set of phonological rules. Probar
bilities derived from training data are assigned to
each arc, using a corrective training procedure, to
reflect the likelihood of a. particular pronunciation.
Presently, lexical decoding is accomplished by us-
ing the A‘ algorithm [4] to find the best path that
matches the acoustic-phonetic network with the
lexical network. '

Natural Luggage Our spoken language inter-
faces make use of a natural language component
called TINA [45], which is specifically designed to
accommodate the integration of speech recogni-
tion with natural language processing. TINA is
designed so that its grammar rules and associated
probabilities can be automatically trained from a

set of correctly parsed sentences. This approach

has many advantages, including ease of develop-
ment, portability, and, most important for use

with a speech recognition system, low perplexity.

We have, in fact, shown experimentally that gram-
mar probabilities can substantially reduce the per—

plexity of the resulting language model [45].

The grammar is entered by the developer as

a set of simple context-free rewrite rules, which

are augmented with parameters to enforce syn-
tactic and semantic constraints. The rule set is

transformed automatically to a network form. The

parser uses a best-first search strategy. Control in-

cludes both top-down and bottom-up cycles, and

key parameters are passed among nodes to deal

with long-distance movement and agreement con-

straints. The probabilities provide a natural mech-I

anism for exploring more common grammatical
constructions first. TINA also includes a new strat-

egy for dealing with movement, which can han-

dle efficiently nested and chained gaps, and reject!
crossed gaps.



Control Strategy The integration of the speech

recognition and natural language component is cur-

rently achieved using an N-best algorithm [7,47,

52], in which the recognizer can propose its best

N .complete sentence hypotheses one by one, stop-

ping with the first sentence that is successfully an-

alyzed by the natural language component TINA.

in this case, ’rmA acts as afilter on whole sentence

hypotheses. If all top N word string candidates

fail to parse, then the system provides the canned

response, “I'm sorry but I didn’t understand you.”

Application Back End Once an utterance has

been processed by the language understanding sys-

tem, it is passed to an interface component which

constructs a command function in order to gen-

erate the appropriate response. Figure 4 gives an

example of how a query is transformed into a com»

mand function. ‘Note that the functions can be

nested to construct more complicated functions.

The back-end also has some rudimentary but nev-

ertheless effective discourse capability, so that it

can deal with simple anaphora, as well as ambigu-

ous queries, as illustrated in Figure 3.

Query: Where is the nearest bank to MIT?

Function: (LOCATE (IEAREST (BAIK nil)

(SCHOOL "HIT")))

Figure 4: Example of the translation of a query into

a command function for accessing the necessary infor-

mation from the database.

Performance Evaluation In order to evaluate

VOYAGER’s performance, we collected a corpus of

some 5,000 spontaneously spoken sentences from

100 speakers [46]. The system was trained on ap-

proximately 70% of the data and tested on 10%.

Errors in the system can occur in several ways;

the recognizer can mis-recognize a word, the nat-

ural language system can fail to generate a parse,

an unknown word can appear, or a query can be

outside of vowrcen's domain. All in all, the sys—

tem could correctly execute approximately 52% of
the queries from unknown users [52]. Only 12% of

the queries resulted in incorrect response from the

SyStem, which can be viewed as catastrophic error.

The remaining 36% of the queries prompted the

“I’m sorry but I didn’t understand you” message.

Currently, VOYAGER is implemented on a SUN-

4 workstation, using four commercially available

Signal processing boards, and runs in 3-5 times

real-time.

CONCLUDING REMARKS

Why have advances in speech science in general

and phonetic science in particular contributed so
little to speech recognition research? I believe that

one Of the primary reasons must be the fact that
our knowledge in this area is very spotty. In many
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areas, we know quite a bit more than we did a few

decades ago. However, every shred of knowledge
we possess is more than offset by the vast amount
that still eludes us. Locally, the jigsaw puzzle
is beginning to fit together, but the overall pic-
ture is far from clear. For example, we know that
phoneme durations can be very important in sig-
nifying phonetic contrast. Despite great gains in
our knowledge about segment duration, however,

we still do not have an adequate durational model
that can simultaneously account for variables such

as local phonetic context, higher level linguistic
constraints, and speaking rate [36]. Without the
complete picture, linguistic use of segment dura-
tion for speech recognition is likely to meet with

only limited success.

I don’t mean to sound pessimistic. Quite the

contrary, I think there are ways speech knowl-

edge can help to improve recognition performance,

and in this paper I have only given a few ex-

amples. Over the past decade, there appears to

be a gradual polarization in the positions taken

by researchers on speech recognition. Some re-

searchers, mostly engineers enchanted by the ele-

gance of mathematics and the power of comput-

ing, believe that the problem will be solved if only

we can have enough training data. In their view,

speech science has very little to contribute to the

solution of the problem. Others, mostly speech

scientists who had devoted decades to trying to

understand human speech communication, scorn

the use of statistical modelling. For them, the so-

lution will not emerge until wetrnlj' discover the

key that unlocks the speech code. Neither of these

extremes can possibly be right. While decades

may pass before we can develop systems capable

of understanding unconstrained spoken language,

we are fast approaching a time when real systems

with restricted capabilities will begin to emerge.

These systems will in all likelihood operate only

in limited domains, but will nevertheless help us

interact with computers with greater ease and ef-

ficiency, thereby making them more accessible to

more people. Success in developing these systems

will most likely belong to those who can incorpo-

rate the vuired knowledge, however incomplete,

into a proper computational model, whose param-

eters can be determined using a. large body of data

and the vast amount of computing power that is

at our disposal.
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