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]. Introduction 

In systems for automatic recognition ofcontinuous speech an initial segmen- 
tation is required in order to obtain appropriate segments which can be used 
as basic units for the subsequent analysis and classification procedures. The 
syllable structure of the speech signal provides segments which include the 
essential coarticulation effects. A substantial reduction in the number Of 
different syllables is achieved by a further subdivision of each syllable 
segment into two parts: an initial demisyllable ranging from the starting 
point of the syllable to the syllable nucleus, and a final demisyllable ranging 
from the nucleus to the end point of this syllable. In the German language we 
only have to discriminate about 50 initial consonant clusters, 19 vowels 
(short and long vowels, and 3 diphthongs). and there is a maximum of about 
160 final consonant clusters. The efficiency of syllabic segmentation has been 
demonstrated in previous experiments (Ruske and Schotola, 1981). 

2. Demisyllable segmentation 

A syllable is defined here as an ‘acoustic syllable’. According to this defini- 
tion the localization of syllable nuclei as well as the determination of a 
suitable syllable boundary between two consecutive syllable nuclei can be 
based on an evaluation of the loudness contour and on spectral information 
from the speech signal. In our experiments we examined several methods for 
syllabic segmentation of spoken utterances: 
a. The maxima of a smoothed loudness function have proved to be suitable 

candidates for syllable nuclei. An additional vowel/non-vowel classifica- 
tion of the spectrum at the maximum rejects maxima produced by high energy consonants. ' . A demisyllable boundary is indicated by a loudness minimum- A crude vowel classification is performed at intervals of 10 ms using several vowel spectra as prototypes. High estimates of this classifiel' 
indicate syllable nuclei. 

. A set of demisyllable templates is applied consisting of spectral-tem?"ral patterns and which are representative for all possible demisyllable Shapes' The comparison is performed by dynamic programming methods (2.1evel 
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DP matching). This method provides syllable nuclei as well as the syllable 
boundaries. . . . 

Methods a. and b. were used for the following experiments, since they yield 
reliable segmentation results and in addition save computation time. 

3. Recognition of demisyllables 

As a first approach, recognition of German demisyllables was carried out 
using spectral-temporal templates of complete consonant clusters and spec- 
tral templates of vowels. Time normalization was performed by a so-called 
‘dynamic interpolation’ procedure. After normalization a c1ty-block metnc 
was applied for the calculation of similarity. However, template matchmg 
needs a lot of storage and computation time since an unknown consonant 
cluster has to be compared with all reference templates regardless of their 
phonetic structure. _ 

Since knowledge about the gross phonetic structure could consrderably 
reduce the number of templates to be actually compared a second method 
was developed starting from a description of the relevant acoust1c events 
within each segment by evaluating spectral and temporal features or cues 
which can be objectively measured in the signal. These features have been 
defined in some analogy to the classical perception experiments With synthe- 
sized speech sounds which have been reported in the literature (Delattre, 
1968). The cues describe: the ‘loci’ of the first 3 formants of the syllable 
vowel, the formant transitions, formant-like ‘links’ for nasals and liquids‚ 

duration and spectral distribution of bursts and turbulences, pauses, and 

voicing during pauses or turbulences. _ 
A main problem is the depency ofmost ofthe features on phonetic context. 

In the present paper the context dependencies are taken into consderatron 
by collating the results of feature extraction within each demisyllable seg- 
ment. This enables the contextual dependencies between the acousnc fea- 
tures to  be determined statistically from representative speech material. The 

feature vector for an initial consonant cluster as well as for a fmaldem15ylla- 
ble have a fixed number of components. In syllable-initial posmon 1 nasal, 

li‘luid or glide, and up to 2 fricatives or plosives are possrble; m syllable-final 

Position the maximum number of plosives or fricatives can be limited to 3. 

Therefore, initial consonant clusters are completely described by 24 feature 

c°ml>onents and final consonant clusters by 31 components. 888 Table 13 and 
Table Ib. 

4. Feature extraction method 

Feature extraction starts from a spectral representation calculated by linear 

Prediction analysis. From the LPC-coefficients P°W_ef spectra ‘_“_° computed 
With a frequency resolution of about 78 Hz. Der)?!d °“? vmcmg paran;e- 
ter each spectral frame is labelled voiced, unvmced, or Silent, respective Y- 
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Table la. Feature vector for initial consonant elusters 

Component Feature Dimension 
number 

1 First turbulence (or burst) Yes/No 
2 Center of gravity "1 
3 Lower cut-off frequency Hz 
4 Upper cut—off frequency Hz 
5 Duration ms 
6 First pause VCS/N° 
7 Duration of pause ms 
8 Second turbulence (or burst) Yes/No 
9 Center of gravity "1 

10 Lower cut-off frequency HZ 
11 Upper cut-off frequency HZ 
12 Duration ms 
13 Voiceobar YCS/N° 
l4 Duration of voice-bar ms 
15 Nasal or liquid links Yes/N° 
16 Low link H1 
17 High link Hz 
18 Transition of links Hl/ ms 
19 Transition of the formant F. [iz/ms 
20 Transition of the formant F; " ”  ms 21 Transition of the formant F, 1-1d 22 Locus of the formant F . Hz 
23 Locus of the formant F, Hz 24 Locus of the formant F, HZ 

Fmally, formant tracking is performed within voiced parts. Acoustic para- 
meters are then derived from the energy in selected frequency bands which 
allow a gross characterization of the spectral shape; the feature extraction 
procedures are in some accordance with the methods proposed by Weinstein 
et al. (1975). Based on these parameters, a set of mies has been established in 
order to detect voiced and unvoiced turbulences and bursts, pauses‚ and 
llquld and nasal links. After detection the individual features are characteriz- 
ed by gross measurements of their spectral and temporal distribution (6-8- 
center of gravtty, upper and lower cut-off frequency for turbulences, a"d 
spectral peaks for links) and used as co . lla- b1e feature vector. mp0nents Of the C0mm°n demlsy 

5. Classification procedure 

Classdication of the feature vectors is based on Euclidean distance measure- 
$?ziicimlljllgt:ehveefeüäre space. A_rll components are normalized to equal 
vector. the single q,)m en comparmg the unknown vector with a refererlce 
com one ‘ h“ h . ponents are handled in different ways. For all blnary 

p n s w lc mdtcate the presence or absence of a single feature, the 
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Table Ib. Feature vector for final consonant clusters 

Component Feature Dimension 
number 

1 First turbulence (or burst) . Yes/No 

2 Center of gravity Hz 

3 Lower cut-off frequency Hz 

4 Upper cut-off frequency Hz 

5 Duration ms 

6 First pause Yes/No 

7 Duration of pause ms 
8 Second turbulence (or burst) Yes/No 

9 Center of gravity Hz 

10 Lower cut-off frequency Hz 

“ Upper cut-off frequency Hz 

12 Duration ms 

„ Second pause Yes/No 

'4 Duration of pause ms 
15 Third turbulence (or burst) Yes/No 

16 Center of gravity Hz 

17 Lower cut-off frequency HZ 

18 Upper cut-off frequency HZ 
‘9 Duration ms 

20 Third pause Yes/No 

“ Duration of pause ms 

22 Nasal or liquid links Yes/No 

23 Low link Hz 
24 High link Hz 
25 Transition of links Hz/ms 

26 Transition of the formant F. Hz/ms 

27 Transition of the formant F, Hz/ms 

28 Transition of the formant F, Hz/ms 

29 Locus of the formant F, HZ 

30 Locus of the formant F, "1 

31 Locus of the formant F, HZ 

distance is calculated in each case. The distances of the remaining compo- 

nents describing the temporal or spectral characteristics of a certam feature 

are only taken into account in those cases where the correspondm$ ac_°‘_“"° 
feature is present in both vectors. Finally the accumulated distance ls dlv1ded 

by the number of all feature components evaluated during the distance 

measurement. This results in the calculation of an ‘average normaltzed 

distance’ which allows the comparison of all feature vectors even if they 

differ quite considerably as to their current composition- 

6. Recognition experiments 

The speech test material consisted of several hundred initial and final demi- 

slHlables which were automatically extracted from German words spoken by 
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one male speaker. The set of demisyllables contained 45 initial consonant 
clusters and 48 important final consonant clusters, all combined with 8 
vowels. Syllabic segmentation, feature extraction and classification was 
applied to this material. As expected some difficulties arise in the detection of 
the glide /r/ and the liquid /l/ . The consonant /r/ often cannot be discrimi- 
nated from the vowel, whereas in the case of /l/ often parts of the vowel /0/ 
or /u/ were indicated erroneously as liquid links as e.g. in / Iu:/. 

Some of the confusions observed in the feature classification experiments 
can be explained by inspection of the mean values and standard deviations. 
The data display the typical order of the Fz-loci for the plosives: low for the 
labial /p/‚ mid for the dental /t/ and high for the velar /k/. However, the 
standard deviations are rather large so that the corresponding confusions are 
to be expected. A special problem is the discrimination between /m/ and /n/ 
which were often confused. On the other hand, the calculation of the gradient 
of formant-to-link transitions enabled nasals to be discriminated from li- 
quids. From the recognized consonant clusters the recognition scores of the 
single consonants were computed; the average recognition rate for the single 
consonants was about 62% for initial and 68% for final consonants. 

For comparison, the same speech material was processed by template 
matching methods using complete spectral—temporal templates for each 
consonant cluster. Here, the average recognition score was about 4-7% 
better and on average amounted 66% for initial and 75% for final conso- 
nants. Again confusions occurred between the unvoiced and voiced plosives. 
and betWeen the nasals and /1/ and /v/. The fricatives received the best 
recognition scores. It is worth noticing that, roughly speaking, the distribu- 
tion of confusions obtained by template matching is very similar to or even 
identical to that obtained by feature extraction. While the feature extraction 
approach could not yet reach the recognition accuracy of template matchinä 
it has to be bome in mind that the feature vector for a consonant cluster has 
only 24 or 31 components whereas a corresponding template constructed 
from a series of consecutive spectra needs on average more than 500 compo- 
nents; this results in about 20 times more storage and computation time. 
Thus the features components can be seen as an efficient representation of 
the units. In both experiments the recognition scores were not very high; they 
have to  be seen as pilot experiments. But the main goal of this investigation 
was only to compare the efficiency of the two methods. Our own previous 
1nvestigations (with template matching) showed that an 85-90% consonant 
recognition score can be reached with a large training set. This encourages us 
to believe that the recognition scores of the feature approach can be conside- 
rably improved by further optimizing the feature extraction procedures. 
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