

Orthography in Language Modeling of Mutual Intelligibility

Andrea Fischer, Klára Jágrová, Irina Stenger Tania Avgustinova, Dietrich Klakow, Roland Marti

Slavic languages: intercomprehensible to various degrees

Objective:

find mechanisms of linguistic coding + statistical evidence of mutual intelligibility

Source: http://en.wikipedia.org/wiki/Slavic_languages

Focus: reading intercomprehension

Aspects:

orthography, morphology, lexis, syntax, semantics

Meaningful Units of Language

Certain **constructions** encode specific information

possibly stark differences between languages

V Evropském *parlamentu* ... (CS), meaning: "parliament" Noun, singular, male, locative case, preceded by adjective, part of PP

(RU) В Европейском парламенте (BG) В Европейския парламент

-OM + -e: prepositive case -ия: determiner (male adjective short)

Identifying Encoding Schemes of Natural Languages

Objective: well-founded statistical model of natural language understanding

 \rightarrow fundamental advance in computational linguistics research

Methods:

statistics, language modeling, machine translation information theory, Slavic linguistics

We expect:

- Diminished intelligibility through missing units
- Confusion through mis-recognition of units

 \rightarrow discover informative elements of natural language

Modeling: Language as Domain

Basic idea: surprisal of statistical n-gram language models correlates with cognitive effort, but n-grams need to be adapted to process a different language Smith, Nathaniel J., and Roger Levy. 2013. The Effect of Word Predictability on Reading Time Is Logarithmic. In Cognition 128.3 (2013). 302-319.

Decoding as Domain Adaptation

- Explicit "latent" space describing each language Decompose words into meaningful units
- \rightarrow decode the words from unknown languages by similarity to known units
- \rightarrow treat them exactly as in-language words would be

Soft Class Language Model for Adaptation

- N-gram class language model
- \rightarrow relax notion of hard classes to soft ones \rightarrow *features*

Each individual word is agglomerate of meaningful units: list of features \rightarrow each feature contributes individually to the word's identity

Preliminary Results: Orthography

Diachronically-based assumptions tested on parallel

Applicability of Diachronically-Based Rules

1) Orthographically identical words (8.79% in CZ-PL vs. 21.25% in BG-RU), 2) Application of transformation rules on remaining word pairs: (91.21% vs. 79.75%), but 3) not all word pairs could be covered by rules: morphological differences \rightarrow will be explored in next project phase \rightarrow rules also tested on other word sets (internationalisms) Pan-Slavic Vocabulary Experiment

list of Pan-Slavic vocabulary for each language pair (high cognate rate)

English	Czech	Polish	Bulgarian	Russian
'horse'	kůň	koń	кон	КОНЬ
'body'	tělo	ciało	Тяло	тело
'sea'	moře	morze	море	море
'brush'	štětka	szczotka	четка	щётка
'head'	hlava	głowa	глава	голова
'cow'	kráva 🛛	krowa	крава	корова
http://www.eurocomslav.de/BIN/inhalt.htm				

Swadesh lists with wider vocabulary range/ higher (non-)cognate rates

95 211 249 103 204 CS-PL BG-RU Prev. identical words Correctly transformed words Intransformable words

0.745

0.745

0.941

0.568

May 28-29, 2015

Modeling Orthographic Differences -- Levenshtein Weights

From this, derive asymmetric substitution costs for Levenshtein distance

Use these as feature weights for individual letters as features project words and use LM

 \rightarrow relative perplexity of L2 text to L1 gives intercomprehensibility score → currently constructing experiments to test correlations

However,

1) letters are likely not the basic units of reading comprehension 2) model is still parametric in **both** languages

 \rightarrow articulation experiments

 \rightarrow build lexing model of native L1 speaker

Levenshtein substitution/deletion costs: 1-prob(L2|L1) $x \rightarrow _$ indicates deletion of letter x

Summary	Next Steps	
Goal: identify mechanisms by which languages en- and decode information	Linguistically:	Information-Theoretically:
Ideas: - surprisal of language models correlates with intelligibility	Lexis: "false friends" and closed word classes	Suitable model classes
- adapt N-gram LMs for cross-language use via latent space and similarity	Morphology: correspondences in grammar	Most informative features
- analyse information-theoretical results with linguistic knowledge	Syntax: word order, complexity of constructions	Inter/intra-language patterns

Contact: C4-all@lsv.uni-saarland.de Web: www.sfb1102.uni-saarland.de/?page_id=296

