Wintersemester

Vorlesung: Einführung in die Semantik

Übungsblatt 5

5.1 Dies ist die Hans-Peter-Maria-Modellstruktur, bei der Zeitpunkte als Welten reinterpretiert wurden

	$\mathbf{w_1}$	$\mathbf{w_2}$	w_3	
Hans	Н.	Н.	Н.	
Peter	P.	P.	P.	
Maria	M.	M.	M.	
der Präsident	H.	H.	P.	
schläft	$\{H., P., M.\}$	$\{H.,M.\}$	{ <i>P.</i> }	
es regnet	1	0	0	

Berechne in dieser Modellstruktur die Werte der folgenden Aussagen für alle $w \! \in \! W$

- (a) $\forall x (\diamondsuit \text{ schläft } (x) \rightarrow \text{ schläft } (x))$
- (b) $\square \exists x \text{ schläft } (x)$
- (c) $\exists x \Box \text{ schläft } (x)$
- (d)

 schläft(der-Präsident)
- 5.2 Welche der Aussagen unter 5.1 können ihren Wahrheitswert von Welt zu Welt ändern, welche nicht?
- 5.3 Zeige die Gültigkeit der folgenden Formeln in $L_{PM}\,$:
 - (a) $\Box A \rightarrow \Box \Box A$
 - (b) $A \rightarrow \Box \Diamond A$
 - (c) $\Diamond A \rightarrow \Box \Diamond A$

 $5.4~Im~folgenden~ist~eine~schematische~Modellstruktur~f\"ur~L_{PMT}~dargestellt.$

h	t ₁	t ₂	t ₃	p	t ₁	t ₂	t ₃	m	t ₁	t ₂	t ₃	
w ₁ w ₂	a a	a a	a a	w ₁	b b	b b	b b	w ₁	с с	c c	с с	-

				S	t ₁	t ₂	t ₃
w ₁	a c	ь с	c b	-	{a,b} {a,b,c}		

Berechne den Wahrheitswert der folgenden Aussagen für w₁ und t₂:

- (a) $\forall x Sx$
- (b) $\mathbf{F} \forall \mathbf{x} \, \mathbf{S} \mathbf{x}$
- (c) $\Diamond \mathbf{F} \forall \mathbf{x} \, \mathbf{S} \mathbf{x}$
- (d) $\mathbf{F} \diamondsuit \forall \mathbf{x} \mathbf{S} \mathbf{x}$
- 5.5 (a) Definiere den Begriff der Modellstruktur für die temporale Prädikatenlogik mit vorwärtsverzweigender Zeit ($L_{\rm PT}$; Eigenschaften der Relation < angeben!).
 - (b) Nimm an, daß die Zeitoperatoren wie in L_{PT} definiert sind. Finde Beispiele für Formeln, die L_{PT} -gültig, aber nicht L_{PT} -gültig sind. Gibt es auch den umgekehrten Fall? Begründung!
 - (c) Charakterisiere die Eigenschaft der eindeutigen (nicht-verzweigenden) Vergangenheit durch ein Axiom.
 - (d) Die beiden Futur-Operatoren F und G sind in L_{PT} nicht geeignet, die intuitive Semantik des einfachen Futur wiederzugeben. F ist zu schwach, G ist zu stark. Versuche, einen Operator E zu definieren (durch Angabe der Interpretationsregel für EA), der ausdrückt, daß ein Sachverhalt irgendwann eintreten wird.