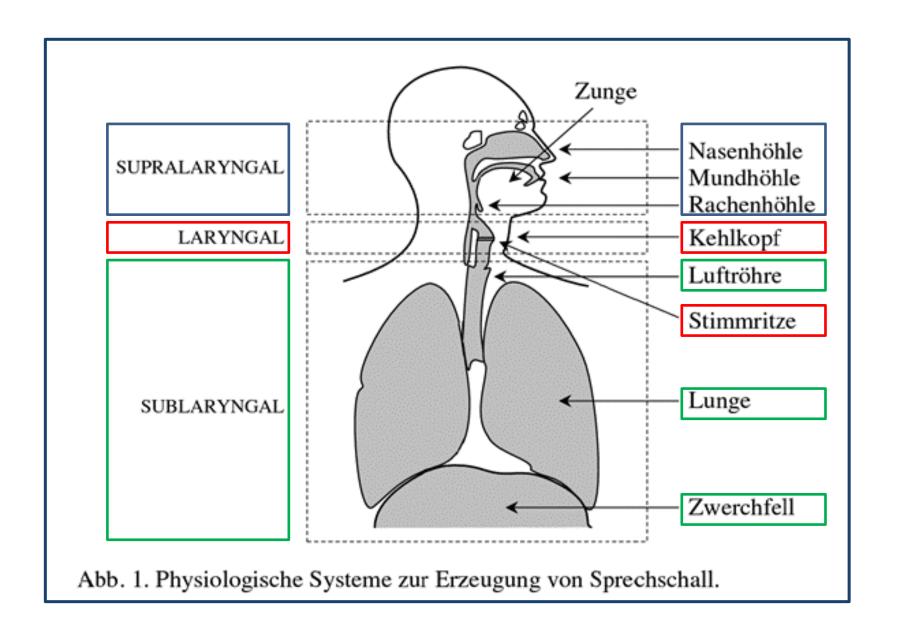


Phonetische Grundlagen

Bistra Andreeva Proseminar Prosodie WS2025/2026

andreeva@lst.uni-saarland.de http://www.coli.uni-saarland.de/~andreeva/ Tonhöhe Wahrnehmungsskal: hoch - tief Grundfrequenz *f0*

quasiperiodische Schwingungen der Stimmlippen



Wahrnehmung

Akustik

Phonation

Physiologische Grundlagen der Phonation

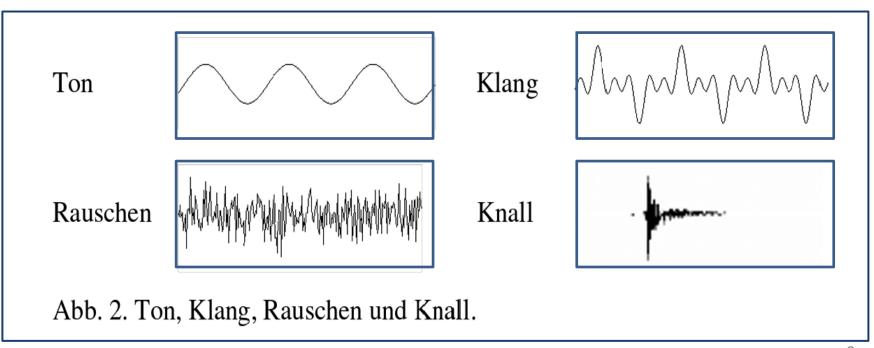
Quelle-Filter-Modell (Fant 1960)

- Quelle der Rohschall, erzeugt im Kehlkopf mithilfe der Atemluft (*Bernoulli-Effekt*)
- Filter das Ansatzrohr (Rachen-, Mund- und Nasenhöhle)

- ➤ Phonation (Stimmgebung) Schallerzeugung im Kehlkopf
- > Artikulation ,Formung' des Schalls im Ansatzrohr

Warum klingt eine Stimme hoch bzw. tief?

- Grundfrequenz (f0) die Anzahl der Öffnungs- und Schließbewegungen (=Schwingungen) der Stimmlippen pro Sekunde
- größere muskuläre Anspannung der Stimmlippen –
 Erhöhung der Schwingungsfrequenz
- Masse der Stimmlippen, subglottaler Druck



https://www.youtube.com/watch?v=iYpDwhpILkQ

Die Grundfrequenz als akustische Größe

- Ton ein Schallereignis, das durch ein Sinuston darstellbar ist (quasiperiodisch)
- Klang die Summe mehrerer Teiltöne
- Geräusch keine periodischen Anteile (andauernd Rauschen; impulsartig – Knall)

- Vokale harmonische Klänge
- stimmhafte Konsonanten harmonische Klänge mit Geräuschanteilen
- stimmlose Konsonanten Geräusche
- Grundfrequenz der größte gemeinsame Teiler der Teiltöne des Klanges
- Maßeinheit Hertz (Hz, Schwingungen pro Sekunde)

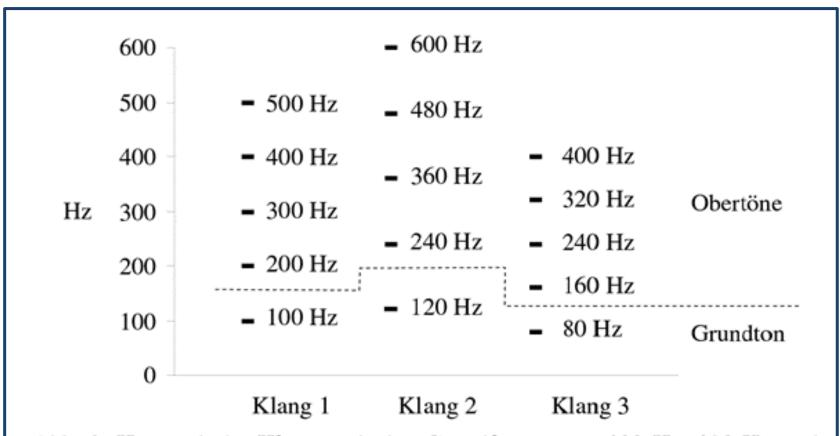


Abb. 3. Harmonische Klänge mit den Grundfrequenzen 100 Hz, 120 Hz und 80 Hz. Darstellung des Grundtons und der ersten vier Obertöne.

Die Rolle der Grundfrequenz für die Tonhöhenwahrnehmung

Grundfrequenz: Wichtiger akustischer Korrelat der wahrgenommenen Tonhöhe.

- *f0*-Erhöhung = Wahrnehmung eines Anstiegs der Tonhöhe
- f0-Senkung = Wahrnehmung eines Abfalls der Tonhöhe

aber

- ➤ Mikroprosodie (die *f0*-Fluktuationen erfolgen in einem zu kleinen Zeitfenster)
- Schallereignisse, die keine *f0* aufweisen (Die Differenz zwischen 2 benachbarten Obertönen entspricht der Grundfrequenz).

Schmalbandspektrogramm: schlechte Zeitauflösung, gute Frenquenzauflösung.

 Alle Teiltöne verlaufen parallel zueinander in Form horizontaler Balken.

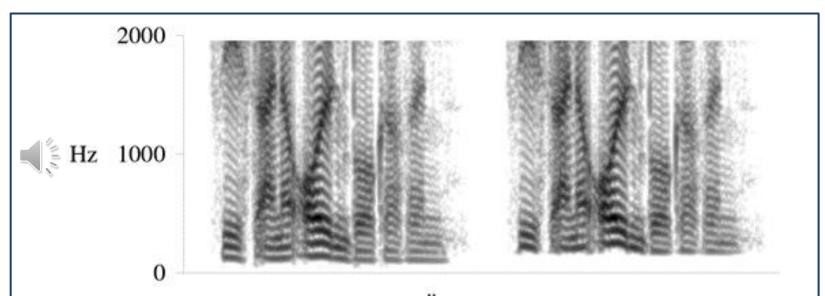


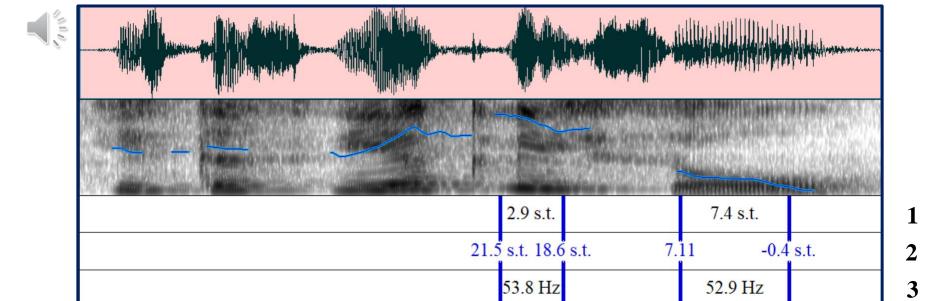
Abb. 4. Schmalbandspektrogramm der Äußerung Sie ist eine Oldenburgerin, links mit allen Teiltönen im Frequenzbereich von 0-2000 Hz und rechts mit den Teiltönen im Frequenzbereich von 150-2000 Hz (ohne Grundton).

Relevant für die Identifizierung der Tonhöhenverläufen:

- die Tonhöhe im Bereich von **Silbenkernen** (Vokale, sonore Konsonanten);
- die Tonhöhe im Bereich von **betonten** Silben;
- die Tonhöhe im Bereich von akzentuierten Silben.

Irrelevant für die Identifizierung der Tonhöhenverläufen:

- die Tonhöhe im Bereich von Silbenrändern;
- die Tonhöhe im Bereich von unbetonten Silben;
- die Tonhöhe im Bereich von **unakzentuierten** Silben.


- $4 \det fO$ -Wert in Hertz
- 3 die Differenz in Hertz
- 2 der f0-Wert in Halbtönen
- 1 die Differenz in Halbtönen

Weitere Skalen:

- MEL
- Bark
- ERB

150.8 Hz

97.9 Hz

345.9 Hz292.1 Hz