Local and Global Acoustic Correlates of Information Structure in Bulgarian

Bistra Andreeva William J. Barry Jacques Koreman

Background

- three elements of information structure:
 - topic (the subject matter, on which new information is to be offered)
 - focus (the new information offered)
 - given information (information given previously or assumed to be known)
- focus types:
 - broad focus
 - narrow focus (contrastive vs. non-contrastive)
- acoustic correlates:
 - duration
 - energy
 - fundamental frequency
 - spectral properties

Background

- Important factors in the realization of the information structure in Bulgarian utterances are:
 - word order, flexible and discourse conditioned, as in all Slavic languages
 - morphological category of definiteness, unusual in the Slavic language family
 - clitic replication of nominal material
 - intonation

Research questions

- Does Standard Bulgarian distinguish between different types of focus?
 - a) non-contrastive and contrastive narrow focus
 - b) broad and narrow focus
- What are the acoustic features associated with these different aspects of information structure in Bulgarian?

Material and Method

- existing speech corpus consisting of read speech for several languages
- 6 sentences
 subject < verb < direct object < indirect object < oblique
- 2 critical words (one early and one late in the sentence)
- different focus on critical words (CWs) elicited by questions:
 - broad
 - narrow non-contrastive (early or late)
 - narrow contrastive (early or late)
- 6 speakers of Contemporary Standard Bulgarian (3m/3f)
- 1080 sentences in total (6 speakers x 6 sentences x 5 focus conditions x 6 repetitions)

Local Measurements

Duration

Duration (ms) of stressed vowels, stressed syllables

F_0

 Mean F₀ (Hz) across stressed vowel of CW

 peak alignment (ms from the F₀ peak to rhyme onset)

Energy

- Mean intensity (dB) of stressed vowel in CW
- Spectral balance = difference between 70-1000 Hz band and 1200-5000 Hz band in stressed vowel of CW

Normalized relative to mean across corresponding units in sentence

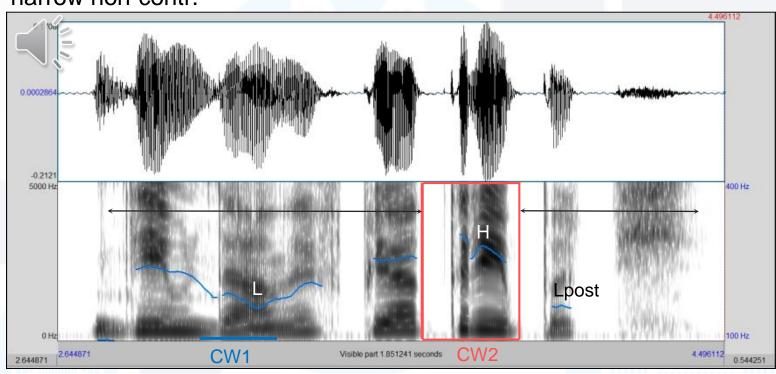
Global Measurements

Duration

 Duration and tempo (ms) of pre-nuclear and post-nuclear interval

 F_0

- minimum F₀ value (Hz) preceding (L) and following the peak (Lpost)
- pitch excursion (s.t.) between the preceding F₀ minimum and the peak (LH) and between the peak and the following F₀ minimum (HLpost)
- Mean F₀ (Hz) across pre- and post-nuclear interval


Intensity

 Mean intensity (dB) across pre- and postnuclear interval

Normalized relative to mean across corresponding units in sentence

Measurements

narrow non-contr.

Statistical analysis

One-Way Repeated Measures ANOVA for CW1 and CW2 separately

with dependent variables:

- parameter for local and global measures

with within-subjects variable:

- focus condition (broad, early narrow, late narrow, contr. early narrow, contr. late narrow)

with between-subjects factor:

subjects

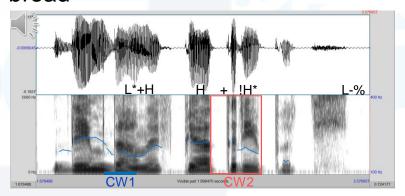
Results: Pitch Accents

broad focus: H+!H*/L*

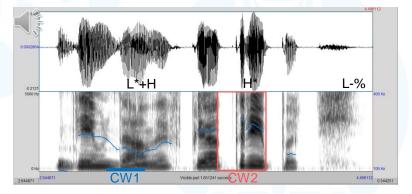
narrow focus: H* (except by SP5 and SP6) ◀

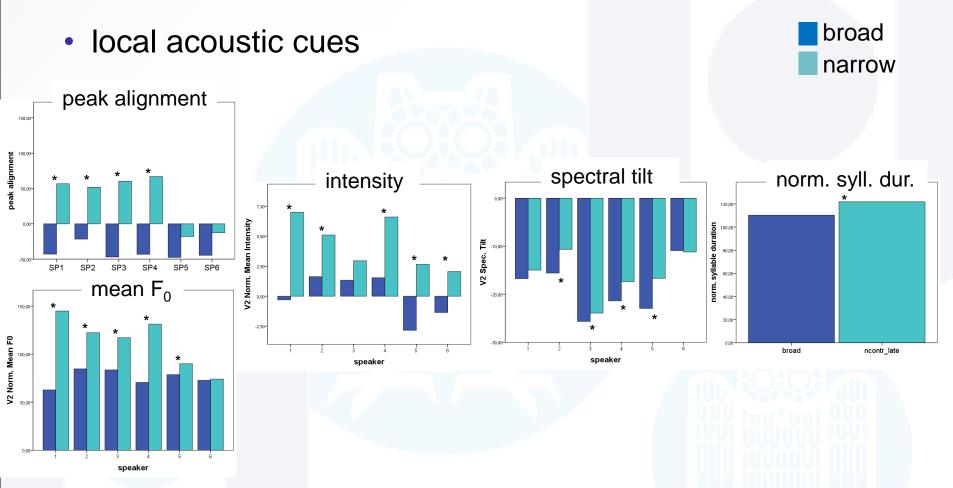
focus on CW1: H close to end of accented syllable (93 %)

focus on CW2: H close to beginning of accented syllable (85%)


Speakers vary as to preferred accent types and phonetic realization:

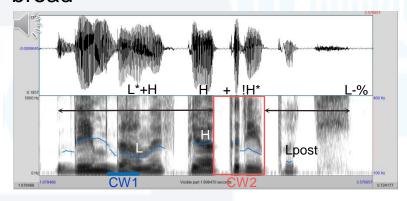
- SP5: exclusively H+!H* in narrow focus regardless of position within the sentence
- SP6: strong preference for H+!H* in the narrow focus condition on CW2
- SP1, 2, 4 and 6: preference for late peak alignment in the contrastive focus on CW1.


local acoustic cues

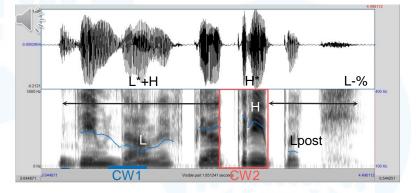

parameter	focus	subject	interaction
peak alignment	***	***	***
syll. duration	***	n.s.	n.s.
vowel intensity	***	***	***
vowel SpecTilt	***	***	***
vowel F ₀ mean	***	***	***

broad

narrow non-contr.

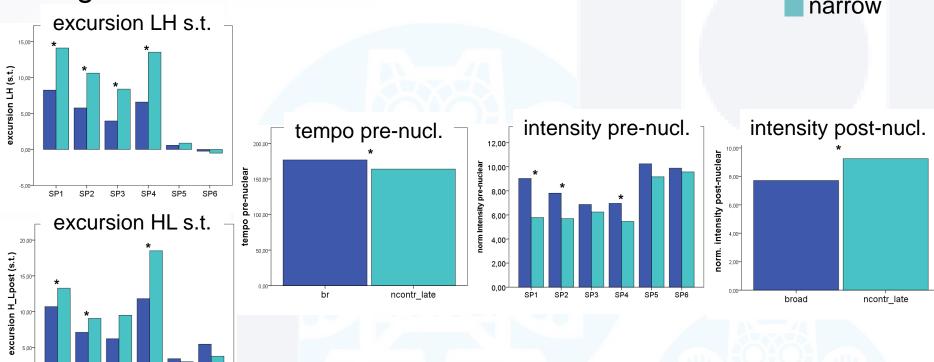


broad focus: earlier peak alignment, lower F₀ in the vowel, lower vowel intensity, greater spectal tilt, shorter syllable durations


global acoustic cues

parameter	focus	subject	interaction
excursion LH	***	***	***
excursion HLpost	***	***	***
tempo pre-nucl.	***	***	n.s.
intensity pre-nucl.	***	***	***
intensity post-nucl.	***	***	n.s.

broad



narrow non-contr.

global acoustic cues

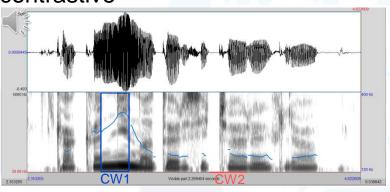
 broad focus: lower pitch excursion, lower tempo and higher intensity in the pre-nuclear interval, lower intensity for the post-nuclear interval

SP3

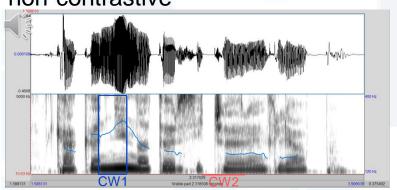
SP4

global acoustic cues

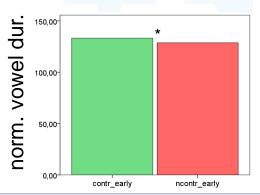
parameter	focus	subject	interaction
vowel intensity	***	n.s.	n.s.

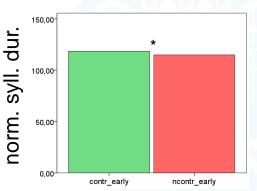

- broad focus: higher vowel intensity
- CW1 not de-accented in narrow focus
- L*+H pitch accents in broad and narrow focus

Results: contr. vs. non-contr. (nucl. acc. on CW1)


local acoustic cues

parameter	focus	subject	interaction
vowel duration	***	n.s.	n.s.
syll. duration	***	n.s.	n.s.


contrastive



non-contrastive

Results: contr. vs. non-contr. (nucl. acc. on CW2)

local acoustic cues

No differences were found between the local measurements for contrast versus non-contrast.

Results: contr. vs. non-contr.

global acoustic cues

No differences were found between the global measurements for contrast versus non-contrast, independent of the position of the nuclear accent.

Summary of the Results

- Speakers vary as to preferred accent types and phonetic realization
- contrastive vs. non-contrastive focus on CW1: local: longer vowel and syllable duration for contr.
- broad vs. narrow focus on CW2:
 - local: different pitch accent types (H* vs. H+!H*/L*) longer duration later peak alignment (but still early in the syllable), greater F₀ excursions higher energy
 - global: same pitch accent type (L*+H) on CW1, but higher vowel intensity for broad longer duration and higher intensity in the pre-nuclear interval for broad lower intensity in the post-nuclear interval for broad

Conclusion

- The all-important function of intonation, namely to transmit the relative weighting of information in speech communication, cannot be captured by a purely phonological description of realized accent types.
- The IS-related patterns of phonetic prominence show a complex interplay between phonological categories and the local and global phonetic signal properties.

Thank you for your attention!

Благодаря Ви за вниманието!

