Grammar Engineering for Deep Linguistic Processing
SS2010
Lecture 7: Unbounded Dependencies

Dan Flickinger, Yi Zhang, Valia Kordoni

Department of Computational Linguistics & Phonetics
Saarland University

Language Technology Lab
German Research Center for Artificial Intelligence

May 2010
Outline

1. Unbounded (or Non-Local) Dependencies
 - Overview
 - Mechanisms
Overview

- Some sentences exhibit phrases that appear “out of place” based on simple head-argument or head-modifier constraints.
- The distance from the position of the “dislocated” phrase to its “natural home” can be quite far (in the limit, unbounded).
- Our grammars need a mechanism for expressing these non-local dependencies.
Examples

(1) *That cat, the dog chased _.
(2) *That cat, the aardvark believes the dog chased _.
(3) *That cat, I know the aardvark believes the dog chased _.
(4) *On that aardvark, you can rely _.
(5) *That aardvark, you can rely on _.
(6) *On that aardvark, you can rely on _.
Mechanisms in the Matrix

- Introduction of the ‘gap’ in SLASH feature
- Percolation of SLASH
- Filling the gap’s requirements
Mechanisms in the Matrix

SLASH introduction
- basic-extracted-subj-phrase
- basic-extracted-comp-phrase
- basic-extracted-adj-phrase

SLASH percolation
- head-valence-phrase

SLASH termination (gap-filling)
- basic-head-filler-phrase
Mechanisms in the Matrix

<table>
<thead>
<tr>
<th>SLASH introduction</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>basic-extracted-subj-phrase</td>
<td></td>
</tr>
<tr>
<td>basic-extracted-comp-phrase</td>
<td></td>
</tr>
<tr>
<td>basic-extracted-adj-phrase</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SLASH percolation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>head-valence-phrase</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SLASH termination (gap-filling)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>basic-head-filler-phrase</td>
<td></td>
</tr>
</tbody>
</table>
Mechanisms in the Matrix

SLASH introduction
- basic-extracted-subj-phrase
- basic-extracted-comp-phrase
- basic-extracted-adj-phrase

SLASH percolation
- head-valence-phrase

SLASH termination (gap-filling)
- basic-head-filler-phrase
Comparison of Tree Topologies

S

NP

Det N

Det N

Det N

the dog

VP

V

chased

V

NP

Det N

Det N

Det N

that cat

Dan Flickinger, Yi Zhang, Valia Kordoni Grammar Engineering
Comparison of Tree Topologies

Dan Flickinger, Yi Zhang, Valia Kordoni

Grammar Engineering
basic-extracted-comp-phrase

\[
\text{basic-extracted-comp-phrase} := \text{basic-extracted-arg-phrase} \& \text{head-compositional} \&
\]

\[
[\text{SYNSEM} \text{canonical-synsem} \&
[\text{LOCAL.CAT} [\text{VAL} [\text{SUBJ} \#\text{subj},
\text{SPR} \#\text{spr},
\text{COMPS} \#\text{comps}],
\text{MC} \#\text{mc}]],
\text{HEAD-DTR} [\text{SYNSEM}
[\text{LOCAL.CAT} [\text{VAL} [\text{SUBJ} \#\text{subj},
\text{SPR} \#\text{spr},
\text{COMPS} \text{gap} \&
[\text{NON-LOCAL.SLASH} \#\text{slash}]
. \#\text{comps} >]],
\text{MC} \#\text{mc}],
\text{NON-LOCAL.SLASH} \#\text{slash}],
\text{C-CONT} [\text{RELS} <! !>,
\text{HCONS} <! !>]].
\]
head-valence-phrase := head-nexus-phrase &
[SYNSEM.NON-LOCAL.SLASH #slash,
 HEAD-DTR.SYNSEM.NON-LOCAL.SLASH #slash].
basic-head-filler-phrase

basic-filler-phrase := binary-phrase & phrasal &
[SYNSEM [LOCAL [CAT [VAL [COMPS < >,
SPR < >],
POSTHEAD +]],
NON-LOCAL.SLASH 0-dlist],
ARGS < [SYNSEM [LOCAL #slash & local &
[CAT.VAL [SUBJ olist,
COMPS olist,
SPR olist],
CTXT.ACTIVATED +],
NON-LOCAL.SLASH 0-dlist]],
[SYNSEM [LOCAL.CAT [VAL.COMPS olist],
NON-LOCAL [SLASH 1-dlist &
[LIST [FIRST #slash,
REST < > & #last],
LAST #last],
QUE 0-dlist,

basic-head-filler-phrase := basic-filler-phrase & headed-phrase.
References I