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Abstract

A single transition separating transfer of coherence between two scaar-couded nuclel of spin
% is down to be obtainable in a time of 3/(sqrt(7)xJ) s by radiofrequency irradiation o
amplitude 2xJ/3 Hz at the agenfrequencies of one single transition d eat nuwleus. This
result represents a further development of the Single Transition Cross Polarisation (STCP)
method, recently invented by Ferrage, Eykyn and Bodenhausen (2000, which produces the
same transfer using a ansiderably longer irradiation time. The results are derived anayticaly
using a novel method d transfer charaderisation by the agenfrequencies of the transferring
Liouwvlli an, theredter verified experimentally and by numericd simulation.
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Fundamental concepts and definitions

Basic quantum physics

Wave functions

Acoording to the postulates of quantum medianics, any system can be cmpletely described
by a wave function, which is a cmplex-valued function ower all degrees of freedom of the
system.

W:D - C, (X,X,,X%s,...)0D 1)

where the set D onwhich A is defined may consist of an arbitrary number of variables (for a
particle, this may be wordinatesin time and space.

Choice of base

Considering g a member of alinea set of functions (for instance L?) it may be decomposed
into a linea combination d other functions of the same set. It is often useful to expresswave
functions in terms of an orthogonal series of base functions, which may be finite or infinite
depending of the nature of the definition set of the functions. In the cae of afinite series, all
functions of the space ca be represented by vedors. There usualy exist severa different
alternatives for orthogonal base to expressawave functionin, providing diff erent advantages.

Operators

Every measurable quantity may be represented by an operator, mapping the space of wave
functions onto itself.

A:L - L, where WOL (2

The outcome of such a measurement is however constrained to ore of the egenvalues of the
operator, that is, it hasto fulfil the equation

AP =AY ©)

where A is an eigenvalue of operator A and W the crrespondng eigenfunction.

Expectation values

In quantum physics, the scdar product between two elements of a vedor space(eg. L) is
usually written < |® > and may be defined"

<WY|P>= XA’DHJ * (X)D(x)dx (4)

where * denotes complex conjugate.

! Gasiorowicz, p45
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To bein line with this notation, ore usually writes a wave function W as | lP) and its complex

conjugate W* as <LIJ| This is commonly referred to as ‘Dirac notation’ and will be used
throughou this and the following chapters.

An expedation value of an olservable A ona cetain system represented by W isthe average
value that an infinite number of measurements would yield. In accordance with the definitions
made aowe, it may be defined as

<A>=<Y[A|Y> (5)

The Schrddinger equation
The time evolution d a quantum system is defined by the time-dependent Schrodinger
equation:

|Li W=HY (6)
21T Ot

where H is the Hamiltonian representing the total energy of the system, h is the Planck

constant and i?=-1. In quantum descriptions of NMR, the term is often dropped (or — more

strictly —included in the Hamiltonian), to yield a somewhat more cmpad notation:

9 w=iznfiy 7
ot

which will be used throughou this presentation. This way, the Hamiltonian is expressed in
Hz, an energy unit that is easy to relate to the radio frequency radiation emitted by spin
systems.

Quantum statistics

Ensemble

An ensemble may be defined as a (presumably very large) number of quantum systems,
identica except for that any member may be in any quantum state.

Density operator
When deding with an ensemble of identicd systems, it is convenient to represent it using only
enough information to cdculate the evolution d the expedation value of an olservable onthe

ensemble. Given the observable A on the ensemble of quantum systems |W,,>, its expedation
value iswritten:

<A>:;<L|Jn|A|LPn> (8)

Reformulating (8) with the am of separating observable and wave functions, the same
expedation value may be expressd
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As=trtA S|\ |E
<A> rD |;| ) n|[ (9)

It is now possble to define anew operator, colleding the ntributions to any observable
expedation value from al (possbly infinite) members of the ensemble:

6= 3 |w)w| (19

In acmrdance with (9), the expedation velue of any observable A the ensemble can be
written:

<A >=tr (A |6) (11)

Orthonormal bases in Liouville space

Just as wave functions, density operators may be defined as belonging to alinea vedor space
(usually referred to as Liouvill e spacg and may be decomposed into linear combinations of
elements of this ace If the wave functions on which an operator operates can be represented
by vedors, the operator may be represented by a matrix thus fitting into the definitions of
linea algebra.

Single transition operators

Considering a system of two spin Y%, it is posgble to span the entire sixteen-dimensional
Liouvill e spaceby single transition operators'

ja2 =jug REI) =1 +1,
di{x,y,z} P=w-1, (12
09 =] & e =] & T = identity operator

To span the complete Liouvill e space four additional operators are needed:

) -7 _71 T14) 7 & 47 ¢
09 =718-18  1%9=18+18,

13
169218418 16921813 >
X — I'xx y=y y —ly>x Xy

Worth nding is that there ae no “z-diredion” operators correspondng to the latter four, and
that they do nd correspondto any detedable magnetisation. Further, there is a constraint on
the sum of the four “z-diredion” operators reducing the dimensionality of the subspacein
which the operator evolvesto fifteen, instead of sixteen dmensions.

The coommutation rules for the ST operators are & foll ows:

'Ernsteta.p 36
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[¢9,1891=i1¢ as for cyclic permutations thereof.

(109,197 =152, 1591 = 10,1891 = 1§

. r, s, t, u are permutations of {1,2,3,4} (19
[169 7697 = j09 [0 N
x 1y y 'z 2 X

[149,1691=[112,1¢91=0 ab0{xy,2

The Liouville-von Neumann equation

From the Schrodinger equetion (7), ore can easily derive an equivalent equation for an
ensemble of quantum systems represented by a density operator. This equation is cdled the
Liouvill e-von Neumann equation (LVN equation) andis usualy written

d .

{00 =-2AH©.60)] (15)
where the ommutator bradkets are defined as
[A B]=AB - BA (16)

A symbalic solutionto (15) may be written

—2ﬂIﬁ (tydt ~ ezn'IH‘ (t)dt

o(t)=e (0 a7

where the two exporential functions represents a time dependent, untary transformation o
the initia state. In general this transformation is too complex to be cdculated anayticdly. In
NMR however, the density operator usualy has rather few dimensions and the Hamiltonian
may in addition dten be cnsidered constant for a finite number of time intervals. This
permits the cdculation d rather smple analyticd solutions.

If the Hamiltonian isindependent of time, (17) simplifiesto
G(t) = e—zmﬁ 6t=0 ezmﬁ (18)

Here the exporentia functions can (at least in finite-dimensional cases) easily be cdculated
by choasing a suitable base that renders the Hamiltonian dagonal.

Hamiltonian super operator

As an dternative to commutator formalism, one may instead view the cmmmutation d the
Hamiltonian with any other operator as a mapping of a Liouvill e spaceonto itself. Such a
transformation may be represented by a super operator and is defined in two aternative forms
(using operator and tensor formali sm) below.

HoquAw = (HkiDji - HigOi)Aw

Having defined the Hamiltonian super operator H,itis possble to simplify the LVN equation
(15) to aform analogous to dfferential equations:
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d .o\ A4
aa(t)— 2rHa(t) (20)

A symbalic solution equivaent to (17) then reals:

6'(1:) - e—2niIH (t)dté_ (21)

t=0

asfor the simpler case of atime-independent Hamiltonian:

G()=e?™ G (22)

Relaxation theory

The master equation

Including only the nuclea spinsin a description d a quantum system — as in equation (10) —
works well on a time scde of one or a few milliseconds (in liquids). However, for the
evolution d the system over alonger period d time, the gpproximation kress down sincethe
spin system will evolve towards thermal equili brium with its surroundngs (often referred to
as ‘the lattice). This is equivalent with a loss of coherence and is mediated by randam
interadions affeding only a few ensemble members at atime. These interadions are therefore
impossble to include in a Hamiltonian universal for the whole ensemble a used in (7), (15),
(20) etc. Instead, ead member of the ensemble would have to be treded as a part of a
guantum system of interadions between first interadions between all members of the
ensemble and seaondtheir interadions with the surroundngs.

Such a system is however too complex to fully represent in any theoreticd model. Instead an
approximation can be made, provided the number of ensemble members is high and their
interadions very fast in comparison with the period ore wishesto describe.

Then, in acordance with the laws of statisticd medanics, the loss of coherence is
exporential by nature and may therefore be described by a mere decay rate @wrredionterm to
the LVN equation, expressed in super operator form (20):

%&(t) = 2riAG (1) - 20RG (1) - 6.) 23

The decy rates represented by R, the relaxation super operator, are propationa to the
deviation d g (t) from its (norirradiated) state of thermal equili brium, denoted ..

Solving the master equation

By including bath the Hamiltonian commutator and the rel axation super operator in ore single
super operator, often cdled the Liouvilli an:

A A

F=id -R (29

aswell asnating that d(f ‘Hiéeq) / dt =0, ore might rewrite the master equation (23) as:
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%ﬁfm +FRa, = znfﬁaa) +f-1ﬁwqu 25

This is (provided the Hamiltonian is time independent) nothing but a system of ordinary
differential equations of the first degree which can be solved in the same way as equation

(22):

6(t) +F*RG, =" %&0 +F R, 26)
For amore @mpad notation, two additional definiti ons are often made:*

6.=-F"R6,, - 6., =-R*(6,, 6'()=6()-6. (27)
allowing for (26) to be written:

6'(t) =e?"'6", (28)

'Ernst et d.p. 16
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Conventional cross polarisation

Solid state cross polarisation

The technique of cross polarisation was originally introduced by S. R. Hartmann and E. L.
Hahn in the ealy sixties as a way of transferring coherence between nuwclel in solid state
NMR®. It consists of continuowsly irradiating the two nuclei between which a transfer is to
take place atheir respedive Larmor frequencies. If there ae dipdar interadions between the
two nuwlel (that may be of the same or of different nuclear spedes) an interchange of
coherent magnetisation will then take placethat may be used to transfer coherence from one
nucleus to the other.

Liquid state cross polarisation

The use of cross pdarisation in liquid state NMR was nat investigated urtil in the late
seventies’. The experimental methods are quite the same & in solid state NMR: the two nuclei
between which atransfer of coherenceis to take place ae irradiated at their respedive larmor
frequencies for alimited period d time. The wherencetransfer is however mediated by scdar
couding (that is through chemicd bonds) instead of through dipdar interadions diredly
between spatially close nuclei.

X

Deooupling

| nucleus
excitation
pulse

A/\/\/\/\/\/\r\/

S i\/\/\/\/\/\/vv

Figure 1: Liquid state CP sequence

The use of the methodis by far nat as widespreal as its lid state curterpart, mainly due to
its high sensitivity to violation d the Hartman-Hahn (HH) condtion, which is described
below. Good HH cdibration is often unoliainable for the full sample volume becaise of
inhamogenities in the RF excitation fields. This is in turn dwe to the fad that the excitation
coil s are optimised for detedion rather than for producing homogeneous fields®.

! Hartmann, Hahn
2Maudsley et al.
3 Levitt, p. 30
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The Hartman-Hahn condition

A common feaure of bath solid and liquid state CP is the way the irradiation field strengths
must be alapted to ead ather for the transfer to be dficient. In terms of their rotating adion
on their respedive nuclea spin, bah fields must be of equal strength (expressed in Hz, or
equivalently). This condtion beas the name of the CP inventors' and may be explained by
Liouvilli an degeneracy theory, which is however only outlined in this review.

Hard pulse alternatives

The CP method achieves a transfer of in-phase aherence from one nucleus to anather. This
may also be acomplished by employing sequences of hard puses, spacal by periods of free
precesson unar the J-couding Hamiltonian. The latter method ads on a very broad range of
chemicd shifts of both heteronuclel, whereas CP has a high frequency seledivity.

The most basic hard puse sequence for coherence transfer through J-cougding is the INEPT
pulse sequence It transfers—just like CP — only in-phase wherence

X y
I /4 H /4 I /4 H /4
|

| nucleus
excitation
pulse

|
[

Figure 2: INEPT puse sequencefor coherencetransfer in J-couped heteronuclea pairs

Y Hartmann, Hahn
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Single transition cross polarisation

A Jcouding between two nwlel gives (as described previously) rise to two energy
eigenstates on ead nuwleus. In terms of density operators, they will correspond to single
transition coherence operators that with an appropriate rotational transformation o the
coordinate frame can be rendered independent of time.

Single transition cross paarisation is a recent development of the original liquid state adoss
poarisation method. Just as for conventional cross podarisation, the am is to transfer
coherence from nuclei with ore particular precesson frequency to nuwclei with ancther. The
differenceliesin the way that single transition coherences are transferred. Where conventional
CP will transfer only in-phase @herence which is equivalent with a particular linea
combination d the two ST coherences, STCP will transfer ead single transition to orly one
singletransition d the target nucleus, respedively.

Model of the considered system

Single transition crosspaarisation (STCP) is a phenomenonthat takes placein scdar-couped
heteronwclea pairs, just as conventional liquid-state aoss polarisation. To model such a
system, it is wufficient to regard the evolution d a 4x4 density matrix that yields a sixteen-
dimensional Liouwilli an space

E (Hz)

4 BB
fG9=fe°- 32

4
f39=fy' - 312 3 Ba
ap 3= + 42

f(l'z):fozml
aa

Figure 3: Quantum states and transitions of a J-couded peir of nuclei with spin ¥2

Coordinate frame for a time independent Hamiltonian

Considering a J-couded pair of nuclei (below dencted | and S), the Hamiltonian expressed in
a frame rotating with the Larmor frequencies of ead nuwleus consist only of one term
containing the scdar couging.

AL =18, (29)

In order to include terms for RF fields irradiating on the exad frequencies of one of the single
transition coherences of ead nuwleus in a time-independent manner, a transformation
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consisting of arotation with half the frequency of the J-cougding on ead nucleusis necessary,
yielding arotating frame Hamiltonian:

Art=a0 8 + 27 +28 (30)
2 2

It is now possble to form the total Hamiltonian duing the irradiation period by adding the
termsfor theirradiation intensities, Q; and Qs.

A= a8, +30, 428, +0/0, +Q.8, (31
To smplify the analyticd treament of the LVN equation containing this Hamiltonian, ore
might make arestriction to the cae where Q, = Qs in ather words when the Harman-Hahn

condtionisfulfill ed. Introducing the variable w, defined as:
IQ| 2 + QS2 Q
W:f :\/Ej (32

it is posgble to write the whole Hamiltonian as propartional to J. This means that expressed in
this way, the J-couging strength aff eds only the speed or time scde of the evolution d the
system during the irradiation period and no aher of its dynamic properties.

A

A_ e IZ-I-SZ |X+SX

+ +w
zZ7~Z 2 \/E

) (33

Characteristics of solutions for on- and off-resonance transfer

In order to have aSTCP, there ae two basic requirements that have to be fulfill ed at the end
of the irradiation period. First, in order to be an efficient CP transfer, as much as possble of
the magnetisation onthe source nucleus shoud be transferred to the target nucleus. Seoond,
all magnetisation transferred from one of the single transitions of the source nucleus sioud
end up on or of the two STs of the target nucleus in order for the transfer to be ST
Separating.

From this, two condtions may be set up for the on- and df-resonancetransfers respedively to
be STCP transfers:

Beginning with all magnetisation on o single transition d the source nucleus, (i) more than
90% of it shal be on the target transition and (ii) lessthan 0.3%6 of it on the undesired
trangition d the target nucleus by the end d the transfer.

The development of the system during the irradiation period is governed by equetion (20):
%6(0 = 27iHG(t) —the LVN equation in super operator form — which acaording to (22) has

a solution &(t)=e*™G,_,, since the Hamiltonian is time independent. To find which

combinations of transfer field strengths (w) and transfer durations (t) fulfil s the requirements,
solutions of the were caculated for arange of field strenghts O<wJ<J, marking the aeas
that match ead o the requirements. The time evolution during the on-resonance transfer was
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cdculated with 6., =S and the off-resonance withg,_, = S®*?, bah using the same
Hamiltonian.

0.8

0.67

0.47

0.27

Figure 4: Encircled areas fulfilli ng condtions for more than 90% magnetisation at desired ST
(thicker line) and lessthan 0.3% at undesired ST (thinner line) using on-resonancetransfer.

N

o S \\V

(

0.8

0.6

0.47

0.27

Figure 5: Encircled areas fulfilli ng condtions for more than 90% magnetisation at desired ST
(thicker line) and lessthan 0.9% at undesired ST (thinner line) using off -resonancetransfer.
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Looking for areas encircled by bath a thin and a thicker line, ore will find that ided STCP
properties for both the on and df-resonancetransfers may be foundaroundthe following pairs
of intensity and duation d theirradiationfields:

Area (from left toright) | Field strength (wJ) in|lrradiation duration (t) in seconds
Hz
(i) 0.94J 1.15J%
(ii) 0.44J 2.3J¢
(iiil) 0.32J 3.35J1
(iv) 0.24J 447"

Figure 6: Table of values of field strength and duation for optimal STCP transfer

It isworth naing that the condtion d having a negligible unwanted transfer is better fulfill ed
in between the latter three points than between the first and second. This implies that the
sensitivity to field strength or irradiation time miscdibrationis lower for lower field strengths.
An increased transfer time does however also mean deaease in signal strength due to
relaxation.

Eigenvalue requirements for optimal transfer

To find asimple explanation to this result by studying the analyticd solutionis difficult, since
both eigenvalues and eigenvedors of matrices — even as gnall as 4x4 — generdly take a
complicated form. A hint of when the right requirements may be fulfilled can hovever be
obtained by just studying the @genvalues of the Liouwilli an.

Hamiltonian and Liouvillian eigenfrequency theory

An eigenvalue A; of agiven operator H is by definition any value that fulfil s the egquation
HY =AW i 0{1.n} (34
where n is the dimension d the function space ad ¥, the agenfunction correspondng to A;.
A linea operator representing a one-to-one mapping from one vedor spaceof dimension n
into another will have nxn eigenval ues:

HAﬁij =K ﬁij i D{l“n} (35)
As a onsequenceof its definition (22), the nxn eigenfrequencies k; of the Hamiltonian super
operator may be cdculated from those of the Hamiltonian:

Ky = A=A, i, jO0fL.n} (36)

Out of these, n will be equa to zero (where i=j) and the other will form (n*n)/2 peairs of
paositive and regative red eigenvalues.
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Eigenfrequencies of the transfer Hamiltonian
Normalised by the inverse of the wuging constant J and expressed in eigenbase of R the
transferring Hamiltonian — defined in equation (33) — may be written:

B 3 Ja2w V2w O E
1pfaw -1 0 Jawp 37
4 EL/EW 0o -1 \/_W[

g0 Jaw Jow -1 E
Sincethe Hamiltonian is a hermitian operator, its matrix representation is slf-adjoint and hes

red eigenvalues. They represent the egenfrequencies of the normalised Hamiltonian and will
depend onw in anontrivial way that is expressed anayticdly below.

JMH=

A, _ 1 _cosu +sinu A \/_COSLI
J 12 32 N 7 127 3 ©

. (39)
A, 1 _cosu  sinu Ao 1
J 12 32 N J 4
where

2
u:—arctar"qW\/16+13W +8w' ) and x =+/2+ 3w (39
3 J3(8-9w?)

Eigenfrequencies of the transfer Liouvillian

For a system of two spin %2 (for which n=4), this gives sx nonzero eigenvalue pairs, which
may be expressd:

Kip _ Koy _ 1 cosu smuX 0 Kis  Ka _ smu L co

— e T c— I y — — T ——

3771 T3 ez TR R

& = —& E \/_COSU X (i), & = —K_ = E COSU San X (iv), (40)
J J 3 J J 3 &F /6

Ky _ Ky _ SiNU cosu Ki  Ka sinu

—2 =282 = T -0 X (), —==—-—= = = 2——X (vi)

J J NN J J J6

where u and x are defined asin (39).

Plotting the dsolute values of these gives the following image of their dependence of the
Qtot/\] raIiO, W:
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Figure 7: Liounwlli an eigenfrequency (1=1xJ) dependence of w (Qiq/J ratio)

At zero field strength, al eigenfrequencies are dther equal to zero o J, just as one might have
expeded. With increasing field strength, eigenvalues begin to dverge, first forming two
groups of three aound Oand J respedively. At w=0.5they are more or lessevenly distributed
between 0 and 1.5¢J and at w=0.94 an intersedion accurs between the @solute values of
eigenvalues (ii) and (vi). This intersedion corresponds to area(i) of Figure 6 which is where
condtions for a optimal STCP transfer are fulfill ed. In analogy with this, areas (ii), (iii) and
(iv) in the same figure will correspond to intersedions of multiples of the agenvalues in
equations (40).

Transfer field strength for optimal transfer

Setting eigenvalue (ii) + egenvalue (vi) = 0 yields the equation:
1

2

Seaching for a solution with orly the expresson inside the parenthesis equal to zero givesthe
standard trigonametric equation with alowest solution d u=T76.

(cosu —+/3sinu)x =0 (41)

cosu=+/3sinu O u:g (42
Acoording to equations (39), tan(3u) is equal to a polynomia fradion o w. But since

'm _tanu=oo, it is required for the nominator, \/5(8 -9w?), to have aroot there. This gives

u-ml2

the foll owing important requirement for the total field strength of an ogimal transfer:
J3B-9w?)=0 O \NzigJE (43)

With the Hartmann-Hahn condtion fulfill ed, this means that the two irradiation field strengths
shoud be two thirds of the J-couping strength.

2
Q=05 =33 (44)
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Irradiation duration for optimal transfer

At afield intensity of wJ = 272313=4/8/93, the agenvalues of the transferring Liouvlli an
takes asimple form:

Kip o _Ku _ 27 Ki_ Ku _ VT o

J J 3 7 J J 3 7

&:—&:l &:—&:ﬂ' 4
] 7 =3 ] ] 3 (49)
@:—&ZE'FE(V) &——&:ﬂ—i (vi)

J J 3 37 J J 3 3

It is the two equal eigenfrequencies (ii) and (iv) that will be (equally) resporsible for the
undesired coherence transfer. For an optimal coherence transfer, their contributions shoud
cancd out. This may happen orly when the mmplex value of the égenvecdor propagator €™
is purely imaginary. In that case, if -2TiK 3t =-J7 211 Jt:ot/3 =-211, the total irradiation time
tiot Must be:

t = i (46)

tot \/7\]

in order to oltain a single transition separating coherence transfer. It will thus transfer
coherence from the irradiated single transition d the source nucleus to the irradiated ST of the
target nucleus, as well as from the norirradiated ST of the source nucleus to the non
irradiated ST of the target nucleus.

Hard pulse alternatives

If the am isto oltain a ST separating coherence transfer that will ad on J-couded pairsin a
broad range of chemicd shifts, many different variants of hard puse sequences can be used.
In analogy with the INEPT sequence (Figure 2, p 9) for interchanging either the in-phase or
the aiti-phase @herences of two J-coupged nuwclel, there eist pulse sequences that
interchange both in- and anti-phase wherence, thereby also interchanging the single transition
coherences.

One such sequence that transfers both single transition coherences from one nucleus (denoted
I) to ancther (denoted S) is $rown below. The time T denotes 1/J, where J is the cougding
strength in Hz. As a mnsequence of the symmetry between the pulses on ead o the nuclel,
the transfer will work in bah ways, interchanging their magnetisation.

/4 I /4 1/4 I

B N i

Figure 8: Pulse sequencefor single transition separating coherence transfer
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Application: separating transfer of ST coherences

The general aim of the experiments undertaken here is to study the evolution d different
single transition coherences during the ST irradiation period. This srves primarily two
purposes. first to test the @rredness of the theoreticd model by comparison with the
numericaly cdculated results, seand to see whether the STCP method redly does obtain a
one-to-one ST coherence transfer and to what disturbing fadors this property may be
sensitive.

Experimental aspects

Field matching

In order to oldain a good Hartmann-Hahn match o the two irradiation fields, a standard
method d cdibration was used. It consist of two sequentia CP sequences, transferring
magnetisation from proton to the target nucleus, de-phasing the magnetisation d non
irradiated or nonJ-cougded nuwlei with a shaped gradient pulse, finaly transferring the
remaining magnetisation bad for detedion onthe proton.

By varying one of the irradiation fields over a range of amplitudes while keeping the other
constant, the optimal amplitude ratio is easily found,correspondng to the cmbination giving
the strongest deteded signal.

The use of gradients

Magnetic field gradients have awide range of usesin NMR. They are of crucial importanceto
magnetic resonance imaging, where they form the basic principle for discriminating one point
in space from ancther. In NMR spedroscopy of homogeneous samples (where no such
distinctionis necessary) they also have important uses.

The basic ideabehind the use of gradients is very smple. It uses the fad that the precesson
frequency of a nuclea spin is diredly propational to the magnetic field strength. Applying a
gradient in that field will thusintroduce adifferencein precesson frequency along the spatial
dimension d the gradient. This will cause nuclei of identicd moleaules to emit radiation at
different frequencies during the time the gradient is applied — which is the principle used for
imaging. The nuclel experiencing a strong magnetic field will ‘move @ead of those
experiencing a weaker one, causing coherently precessng nuclel to be cnstantly more and
more de-phased during the gradient field.

The most important applicaion to NMR spedroscopy is to use this de-phasing property of
gradients to reduce or completely eliminate unwanted signals. This is achieved by putting the
magnetisation that one wishes to deted in a state where it is na precessng with time. In a J-
couped pair of nuclel for instance this may be dong I, S; or I.S,. Applying a magnetic field
gradient for alimited time- usualy around ore milli sescond— will then de-phase dl coherently
precessng magnetisation, rendering it undetedable. Then, the magnetisation d interest can be
turned into detedable aherences through any suitable pulse sequence

Water suppression

One of the most common situations in which suppresson d al signals arising from a
particular moleale is when alarger moleaule of interest is dislved in a solvent consisting of
small moleaules (i.e. water). In that case, the signal produced by the solvent will be so much
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stronger than the signal of interest that it may render it undetedable (or at least leave less
dynamic range of signal intensity for the signal of interest) or conced possbly important parts
of it.

There eists a multitude of tedhniques of how to separate the solvent signal from the one of
interest’. The technique used in the experiments performed for this review is based on puised
gradients, along the principles described in the previous dion.

Creation of single transition coherences
In order to enable the study of how single transition coherences are transferred from one

nucleus to ancther, it is useful to be aleto creae astate where dl magnetisationis along one
of the two single transitions of anucleus.

The ided state would be to be ale to go from having al magnetisation along |, to having it
along only one of the single transitions, i.e. I + 214S,. Unfortunately, the two single transition
coherences are separated in the sense that their magnetisation may be interchanged, bu not
merged into one single mherence precessng with ore frequency.

Excitation d only one of the two single transition coherences is posshle in a number of
different ways. One is a simple pulse sequence designed by the author, consisting of only two
14 puses on the same nucleus with x- and y-phase respedively, separated by a total delay of
1/2 (1=1/J) and pashly atepulse oneadt o the nuclei to refocus chemicd shifts.

/4 /4

S
Figure 9: Pulse sequencefor creaion d single transition coherence

Exciting one of the single transitions, the pulse sequence leaves the other one dong the z-
diredionthus with apotential of interading with latter parts of alonger series of pulses.

The use of a gradient does however alow for the wmplete dimination d this passble
disturbance Adding a gradient pulse dter the pulse sequence described above dephases the
excited single transition coherence, after which the remaining the remaining magnetisation
can then be turned into a pure single transition coherence by asimple 172 puse.

L Wider et a
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/4 /4

. A

Figure 10: Pulse sequencefor credion d single transition coherence diminating longitudinal
magnetisation

Full pulse sequence used in experiments

To verify the ST separating transferring property of the optimised STCP method, a very
straightforward method was used. By creding one pure single transition coherence on the S
nucleus, transferring it by STCP yields the exad ratio between the resulting transferred ST
coherences onthe | nucleus, hopefully 1:0.

For increased seledivity and signal strength, conventional CP sequence was used to transfer
magnetisation from the | nucleus to the S nucleus. The magnetisation onthe J-coupged S
nuclel was then turned into Z-diredion magnetisation by a 172 puse on the S channd,
followed by two pused gradients and a 172 | channel pulse to de-phase the magnetisation o
all other nuclei.

Employing a combination d 174 and 1t puses as well as a pulsed gradient (as described in
Figure 10, p 20) a pure ST coherence was then creded onthe S nucleus, followed by a STCP
transfer for which the duration, tio, was varied to enable the study of the time evolution duing
the transfer.
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ttot
/4 /4

cP 1 Dephasingnor+J- ST coherence excitation . stcp !
' coupled coherence ! : :
. A A A |

Figure 11: Pulse sequence used in experiments

Application to slowly relaxing molecule (tboc-glycine)

In order to test the genera applicability and deted possble pradicd difficulties of the
method, it was first applied to a smple and well-known moleaule with amost negligible
transverse relaxation rates. tboc-glycine.

Simulations

To cdculate the time evolution d a STCP transfer on this gnall, slowly relaxing moleaule, a
numericd approach implemented in C++ invoking the Gamma subroutine padkage' was used.
Since phenomena due to relaxation are negligible on the timescde of interest, relaxation was
completely ignored. The reason for not chocsing a fully analyticd approach was only the
convenience of using a method consistent with the ones used for simulations taking relaxation
into acourt.

For a J-coupged 'H - **N pair with a @uging strength J=94 Hz in the moleaule, the time
evolution o the ‘goal’ transition 1®? aswell asthe ‘undesired’ transition I was cdculated
for atransfer field strength of 62 Hz (equals a89 Hz total transfer field).

This gives a Hamiltorian H7; =048, + (7, - §,)/2+2(7, +$,)/3) which was t to ad

tot
onresonarce on — that is irradiating the @genfrequency of — an initial state g, , = éil'z’,
yielding the foll owing time evolution d the @solute anount of the STs on the target proton
(percentage relative to maximal transferred coherence):

! Smith et al.
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——1(2,4)
—=—1(1,3)

Figure 12: Simulated evolution o onrresonance STCP transfer negleding relaxation

The transfer evolution o the other, off-resonarce ST coherence on the °N nucleus was
cdculated in the same manrer, bu using an initia state ,_, = S®*, which shoud be
transferred to the 1®* ST coherence

——1(2,4)
—=—1(1,3)

t (ms)

Figure 13: Simulated evolution d off-resonance STCP transfer negleding relaxation

For the transfer of both coherences, there is an irradiation duation t,, :3/(ﬁ x94) =12 ms
(46) for which the transfer to the ‘undesired’ transition is eliminated. Since the transfer will
constitute a linea transformation d the initia state density operator, the one-to-one
transferring property will include any combination d the two ST coherences on the N
nucleus.

Experiments

To determine the exad frequencies of the single transitions of the *H and >N nuclei, aHSQC
experiment was performed (withou any decmugding). The midde frequency in-between the
doubet of a 94 Hz J-couded ®N-'H pair was measured in beath frequency dimensions to be
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used for the initial conventional CP transfer, and the highest frequency of the doullets for the
following STCP transfer.

Applying the pulse sequencein Figure 11, the &solute anplitude of the ST coherences onthe
proton for arange of durations of the STCP irradiation period, to yield the foll owing result for
the mherencetransferred on-resonarce

110%
100% -
90% -
80% -
70% -
60% -
50% -
40% -
30% -
20%
10% -

0% -

——1(2,4)
—=—1(1,3)

Figure 14: Measured evolution d on-resonance STCP transfer in tboc-glycine

The same procedure was repeaed transferring a ST coherence off -resonance, again producing
results agreang with the simulations.
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70% -
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Figure 15: Measured evolution d off-resonance STCP transfer in tboc-glycine

Application to fast relaxing molecule (viscous sucrose)

Since the total transfer time of an optimised STCP experiment is comparable to the one of
conventional CP, it shoud be possble to apply it to the study of ‘fast relaxing’ moleaules,
such as large proteins. To prove this, the method was applied to retural-abundance *H-'°C
pairsin aviscous sugar solution with relaxation times of around 10ms.
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Preparation and characterisation of the sample

The sample was prepared by mixing 0.703 g sucrose with 0.360 g deuterated water at a
temperature of 60 °C in order to form a 66% close-to-saturated sucrose solution, withou
risking polymerisation to take place.

The transverse relaxation rate of the protons was measured by a standard CPMG experiment,
yielding monoexporentialy decaing intensities of al peéks originating from the sugar
moleaule. At atemperature of 300K, arelaxation rate of 103s™ was measured — equivalent to
atransverse relaxationtime of 9.7ms.

3,00E+08 {"w.
e — (103,00t
2,00E+08 - *oey. e
* e,
1,00E+08 1 Ml SR
* -9 S
0,00E+00 ‘ ‘ ‘
0 0,005 0,01 0,015 0,02
t(s)

Figure 16: Measured proton pedk intensity as afunction d delay before detedion

As for the tboc-glycine sample, the frequencies and cougding constant of a seleded J-couded
heteronwclea pair was measured using an undeocouped variant of the standard HSQC
experiment.

The J-couping of the seleded pair was measured to be 175Hz.

Compensating for peak broadening

The high relaxation rate of the protons will yield a fast-decging signa, for which — if
originating from a frequency f, — the time dependence ca be expressed:

@2t -2)
gty=e T t (47)

Transforming into frequency space (using fourier transform over the positive time ais) still
using Hz as frequency unit, yields a smple mmplex-valued fradional expresson reading its
maximum at f=f,

1

G(f) = J’ g(t)e®™ dt = T
%o = 2ni(f - )

2

(48)

! Morgan, Jeffrey, p 3473
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Considering a pe& at fo=0 with a transverse relaxation time of 9.7 ms, this expresson takes
the form:

1
) =103+ 27 (49
The @solute value of this expresgon at 175 Hz offset is 9.33% of its maximal pesk vaue.
Measuring intensities of single transition peeks of J-couded pairs in fast-relaxing moleaules
like this one, this implies that there will be a ©nsiderable overlap between even guite distant
pe&ks. If there ae dso urcouded nuwclel at the same chemicd shift as the wuded ores (asis
the cae here), thisthird peak will further interfere with the other two.

-200 -100 0 100 200

Figure 17: Calculated magnitude spedrum of exporential decgy with 9.7ms relaxation time

If, however, the precesson frequency of the nucleus of interest is known, ore ca easly
compensate for the overlap o the threepeaks, provided the signals from which they origin can
be mnsidered monaoexporential. Sincethe signal is nothing but a linea combination d al its
comporents, the ‘true’ pe&k intensities can be cdculated just by solving the linea system of
equations formed by the wntributions of ead o the three peks at eah o the three
frequencies:

Ilmeasured: IlreaIG(O) + |£eaIG(J/2) + |£ealG(J)

| o= PG (=J/2) + 1 2'G(0) + 1 £ G(I / 2) (50)
I:’r’neasured: IlreaIG(_J) + |£eaIG(—.J /2) + |§eaIG(0)

where |, indicates the mmplex pedk intensities and J the scdar couging strength.

In matrix algebrathis may be written

I_measured: [G]I_real (51)
with the solution:
|_real — [G]—l rmeasured (52)

Thus, the ‘true’ ped intensities for threeoverlapping pedks (with the same relaxation time) on
a omplex-valued spedrum may be cdculated just by multiplying all the measured intensities
with an inverse of this G matrix cdculated ‘once andfor al’ in advance
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Simulations

Again using the Gamma padkage of C++ subroutines, a prediction d the time evolution d the
amplitude of the two single transitions of the target nucleus was cdculated using numericd
diagonalisation d the transferring Liouwilli an.

To set the dements of the relaxation super operator, a phenomenadlogicad approach was used,
first assuming that any crossrelaxation a correlation rate is negligible. The remaining auto-
decay rates of all ST coherences defined in equations (12) and (13) was <t either acording to
a CPMG measurement (as for the four observable ST coherences on proton and **C) or by
extrapadation d the relaxation rates of similar moleaules under similar conditions.

For the onresonance transfer, an evolution very similar to that of a nonrelaxing system
shoud be obtained, except for a cnsiderable deaease in signa strength and an incomplete
elimination d the transfer to the undesired transition. This relaxation-induced imperfedion o
the ST separating property of the transfer if however merely around 5% of the desired
coherence amplitude & the duration o optimal transfer t,, = 3/(\/7 x170)=6.7 ms, which will

permit measurements of sufficient predsionin virtually all pradicd applications.

——1(2,4)
—=—1(1,3)

t (ms)

Figure 18: Simulated evolution o onrresonance STCP transfer in sucrose

The time evolution d the by off-resonarce transferred ST coherence differs smewhat more
from its nonrelaxing courterpart, bu the anourt of coherencetransferred to the undesired ST
till stays around %% the anplitude of the desired ST coherence
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Figure 19: Simulated evolution d off-resonance STCP transfer in sucrose

Experiments

Applying CP puses to a solution as viscous as 66% sucrose imposed an experimental
difficulty that had na been foreseen. The viscosity causes sgnificant distortionin bah the By
and B; field, causing parts of the sample to be irradiated by fields at mismatched frequency or
with intensities nat fulfilli ng the HH condtion.

These dfeds add together to increase the anourt of undesired coherence in the signal and —
somewhat more cnfusingly — causes it to seamingly evolve slower than expeded from the
couping strength. A transfer time that produces below 15% of undesired ST coherence may
be picked, but it corresponds ati,: = 8 msrather than the theoretica value of ti,; =6.7 ms.

The general appeaance of the evolution d the ST coherence transferred on-resonarce shares
many feaures with the result of the smulation, bu differs significantly in ogimal transfer
time.

——1(2,4)
—=—1(1,3)

Figure 20: Measured evolution d on-resonance STCP transfer in sucrose
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For the ST coherence transferred off-resonance the diff erences from the smulations prevail: a
optimal transfer time can be found creaing much less than 13% undesired ST coherence
compared to the desired ore, but it is sgnificantly longer than the theoretica value.
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Figure 21: Measured evolution d off-resonance STCP transfer in sucrose
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Summary and conclusions

In the theoreticd sedion, the method d Single Transition Cross Polarisation (STCP) is
investigated anayticdly, withou invoking the seaular approximation d the transferring
Hamiltonian that has been used in previous theoreticd descriptions. Relaxation is however
negleded. Through this approadh, it is demonstrated that it is possble to reduce the transfer
time for the method davn to about one-third of that propased in the original article’.

To explain this result, a novel analyticd tod is introduced for the analysis of quantum
coherence transfer, based onthe a@genfrequencies of the transferring Liouwvilli an. Using this
todl, the ided intensity of the irradiation fields is cdculated to be Q=2J/3 Hz for both nwclei

and the total transfer time tio= 3/(ﬁJ) s. Both expresgons differ from previous estimates
based onthe seaular approximation.

The experimental sedion contains a predse verificaion d the predicted properties of the
optimised STCP method applied to a slow-relaxing moleaule (tboc-glycine), at the same time
diredly verifying the single transition separation property of the transfer. The posshility of
obtaining a single transition separating transfer in a fast-relaxing moleaule (viscous sucrose
with a T, of 10 ms) is also demonstrated, athough experimenta difficulties due to the
viscosity of the sample introduce cetain dfferences from the simulated time evolution o the
system. This suggests that applicaion to an isotope-enriched large proteins of comparable
relaxation rates would be preferable to completely verify the gopli cability of the method.

! Ferrage @ al.
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Abbreviations

CP CrossPolarisation

CPMG Carr-Purcdl-Meiboam-Gill experiment for
transverse rel axation rate measurement

HH Hartmann-Hahn

HSQC Heteronuwclead  Single  Quantum  Coherence
spedroscopy

INEPT Insensitive Nuclei Enhancement by Polarisation
Transfer

LvN equation Liouvill eevon Neumann equetion

NMR Nuclea Magnetic Resonance

RF Radio Frequency

ST Single Transition

STCP Single Transition CrossPolarisation

TROSY Transverse Relaxation Optimised Spedroscopy
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Symbols

O Denates that an element belongsto a set, e.g.
WL , usualy implying it has certain properties.

[ Complex conjugate

[1? Inverse of scdar, operator or super operator

{...} A set consisting of the dements within the bradkets

= Denates equivaence eg. (A=B) = (B=A)

W Denates deduction, e.g. (A>B, B>C) 0 (A>C)

[A, I§] Commutator between A and B: [A, é] = AB - BA

tr{ A} Traceof operator A

<WY|o> Inner product of W and @

| W><o | Outer product of W and @

A Arbitrary operator

] Arbitrary wave function

I Explicit vedor representation

[G] Explicit matrix representation

J The scdar couging constant (Hz)

T Inverse scdar couding constant = 1/J ()

Q Irradiation field strength (Hz)

w Combined irradiationfield — J-cougding ratio =
Qiot/J (unitlesy

T, Transverse relaxation time ()

o Spin system density operator

H Hamiltonian operator (Hz)

H Hamiltonian super operator (Hz)

R Relaxation super operator (Hz)

Ia Liouvilli an super operator = iH-R (H2)

a, B Spin function elgenstates

A Operator eigenvalue, indexed by i

K Super operator eigenvalue, double indexed by i and
j by reasons of convenience

Ci Unitary secondrank tensor:

O; =(Lif i=j, 0 dherwise)
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