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Optimal Experimental Design for Nonlinear Models 
with Non-Gaussian Uncertainties

Table 1. Notation 
θ  parameters 
y  observation (data) 
ξ  design 

( )p θ  prior probability density 
( | , )p y θ ξ  conditional observation density given θ  and ξ  
( | , )p yθ ξ  posterior probability density, given observation y  and design ξ  
2 ( , )d θ θ  squared distance between θ  and θ , dots used for indexing only 

  
  
  
  
  
  

Application: Travel Time Tomography 
Travel time tomography consists of calculating a velocity distribution in some heterogeneous 
medium by recording the travel times of pulses traversing the medium in different directions.
The problem is high dimensional and also, due to refraction, strongly nonlinear. The figure 
below shows a typical application in geophysics, where one seeks to know the velocity profile of 
the subsurface section between two boreholes equipped with seismic wave sources and
receivers. 
 

1.03

1.115

1.302

1.116

1.078

1.189

1.257

1.145

1.145

10 20 30 40 50 60

10

20

30

40

50

60

Nonlinearity gives multiple solutions to one set of travel times 
Even though the information matrix is well-conditioned for all wave velocity profiles, there are 
multiple solutions to some sets of observed travel times (Winterfors and Curtis, 2008).  
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Optimal design for 4-source, 4-receiver setup 
Estimating ( )Q ξ  using Monte Carlo methods (similar to Müller, 1999), optimal source and 
receiver locations ξ  were obtained using a simple steepest descent optimisation algorithm. The 
velocity profile θ  was represented using 3 3×  parameters. 

The Problem with Information Matrices in Nonlinear Problems 
The most common approach to nonlinear experimental design is to use an optimality criterion 
(D, A or E etc.) on the derivative-based information matrix, which is  averaged over a prior 
probability distribution ( )p θ  on the parameter space. 
Information matrices may however fail to describe the uncertainty in parameter estimates. In 
nonlinear problems. Consider a simple nonlinear observation-parameter  
 ( , ) sin( )y η θ ξ θ ε= = +  
where ε  is a Gaussian observational uncertainty. 

Solution: A Non-approximative Approach 
The situation to avoid when designing an experiment is to have very different parameter 
values that can give rise to the same observations. One measure of this capacity for the 
parameter values θ  and θ  is 

2( , ) ( , ) ( | , ) ( | , )
y

R d p y p y dyθ θ θ θ θ ξ θ ξ
∈Ω

= ∫    , 

with 2 ( , )d θ θ  and ( | , )p y θ ξ  as defined in table 1. The integral can be evaluated analytically, as
long as the observational uncertainty is known in closed form. An example of a set of 
observations that can result from both θ  and θ  is marked in red in the figure below. 
In order to access the overall ambiguity ( )Q ξ  in parameter estimates, it is necessary to compute
the expectation of ( , )R θ θ  over all pairs of points ( , )θ θ  in parameter space 

( ) ( ) ( ) ( , )Q p p R d d
θ θ

ξ θ θ θ θ θ θ
∈Θ ∈Θ

= ∫ ∫     . 

 

In the figure above, shades of gray represent probability density over the joint parameter-
observation space. The lower curve represents a posterior probability density ( | )p yθ over the 
range of parameter θ , given an observation y .  
Information matrices will give a good approximation of the width of each of the two peaks in

( | )p yθ  separately. However, the total width of ( | )p yθ is orders of magnitude greater than that 
of each of the peaks (Curtis, 2004). Thus, information-matrix based methods may fail in 
predicting the true uncertainty of parameter estimates in nonlinear problems.  

 

A simple interpretation of ( )Q ξ  can be obtained by applying Bayes’ rule and changing the order 
of integration: 

[ ]2( ) 2 ( | )Var | ,
y

Q p y y dyξ ξ ξ
∈Ω

= Θ∫    ,  

where [ ]Var | ,y ξΘ  is the variance of the posterior probability density ( | , )p yθ ξ . ( )Q ξ is thus 
the expected variance of the posterior, weighted by the marginal distribution ( | )p y ξ in 
observation space. 
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