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We present a novel approach to define and calculate the expected uncertainty of Bayesian parameter
estimates, prior to collecting any observational data. This can be used to design investigation techniques
or experiments that minimize expected uncertainty. Our approach accounts fully for nonlinearity in the
parameter–observation relationship, which is neither the case for the Bayesian D- and A-optimality criteria
most commonly used in experimental design, nor the case for most other derivative- or information matrix-
based experimental design techniques. Our method is based on analyzing pairs of parameter estimates,
thus forming a “bifocal” measure of ambiguity. Derivatives of observable data with respect to parameter
values are neither required nor calculated. For linear models, our new measure is equivalent to expected
posterior variance, and it is closely related to expected posterior variance in nonlinear models.
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1. INTRODUCTION

Computationally efficient methods to estimate the expected
uncertainty in Bayesian parameter estimates (prior to data col-
lection) have been developed in the field of statistical experi-
mental design. One can broadly divide approaches to optimal
design of experiments into three categories:

(a) Linear methods
(b) Methods that invoke approximation by local linearization

(e.g., Bayesian D- or A-optimality)
(c) Methods that do not use any linear approximations

Linear methods (a) are only applicable to linear models, but
are by far the best studied. They are the subject of several books,
for example Fedorov (1972), Silvey (1980), and Pukelsheim
(1993). For nonlinear models, the vast majority of existing work
is in category (b), which uses local derivatives (linearization)
of the parameter–observation relationship to estimate uncer-
tainty in parameter estimates, averaged with respect to a prior
probability distribution over parameter space. A good review of
these methods can be found in Chaloner and Verdinelli (1995).
However, derivative-based design methods do not work for all
nonlinear models, as demonstrated by the following example.

Consider a single-hand stopwatch where one wants to choose
the angular velocity of the hand for optimal timing precision in a
given time interval of �θ = 60 sec. The time θ is deduced from
the angle y of the single stopwatch hand, which can be read with
some uncertainty of ±εy degrees (◦). As long as the hand will
not complete more than a full 360◦ turn in 60 sec, the uncertainty
in time can be calculated as εθ = (dy/dθ )−1εy , implying that

time uncertainty will be lower, the higher the angular velocity
dy/dθ used.

All derivative- or information matrix-based methods for esti-
mating parameter uncertainty work by analyzing only the deriva-
tive dy/dθ at one or many points along the curve defined by
y(θ ) (see Figure 1). Such methods would here predict lowest
uncertainty when using the highest angular velocity that the
watch motor can produce. This clearly becomes problematic if
the hand may have completed more than one 360◦ turn before
being stopped. Then, for any angle measurement y ± εy , sev-
eral quite different time readings θ ± εθ are possible (Figure 1),
leading to ambiguity in θ , with a total variance that increases
monotonically with the magnitude of the derivative dy/dθ . Any
derivative- or information matrix-based method will select the
design that maximizes the magnitude of dy/dθ , and thus, will
result in the highest possible variance and hence the worst pos-
sible experimental design.

The example above is chosen as the simplest possible case
for which derivative-based nonlinear design methods fail to find
the optimal design, but many others exist, such as Examples 4.1
and 4.2.

Methods in category (c) do not rely on local linearization and
can correctly detect and account for parameter ambiguity, as in
Figure 1. Such methods have been studied by DeGroot (1984),
Müller and Parmigiani (1995), and van den Berg, Curtis, and
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180 EMANUEL WINTERFORS AND ANDREW CURTIS

Figure 1. Schematic example of how high angular velocity of a single hand stopwatch can lead to ambiguous time readings. The central panel
shows an interval ±εy around an observed angle y and two intervals ±εθ around possible (but ambiguous) time readings.

Trampert (2003), among others. These methods are applicable
to a wider class of problems than those in categories (a) and
(b), but typically require substantially more computation than
methods based on linearization. Therefore, design of problems
involving more than two or three parameters and observable
variables have in the past been numerically intractable.

Herein, we present a more efficient method to estimate ex-
pected parameter uncertainty without using linearization. The
resulting ambiguity measure is based on a novel bifocal ap-
proach, replacing the advantages provided by local linearization
with advantages afforded by analyzing pairs of parameter esti-
mates simultaneously. We show that this results in a measure
that is intuitive, efficiently calculable, and which accounts for
full nonlinearity of any model, while being equivalent to the
expected variance when applied to linear models with normally
distributed uncertainties.

Section 2 introduces a formal definition of the observational
ambiguity measure and relates it to other commonly used un-
certainty measures. Section 3 deals with numerical aspects of
evaluating the new measure using Monte Carlo (MC) methods
and of optimizing the measure with respect to the design of
an investigation technique. Two example applications can be
found in Section 4: in one, other fully nonlinear uncertainty
measures are evaluated for comparison; in the other, this is
impossible—only our measure is computationally tractable to
evaluate and optimize.

2. CONCEPTS AND FORMALISM

Consider a set of parameters θ one wishes to obtain knowl-
edge about, and let � be the set of all values that θ can
take. Through some investigation technique/experiment one can

make observations y, related to θ through a known relationship
predicting a probability measure over the set � of all possible
observations, represented by a probability density p(y|θ, ξ ),
conditional on the parameters θ and the design ξ of the investi-
gation technique.

Any preobservation knowledge of the actual values of the pa-
rameters θ is represented by a prior probability density p(θ ) over
the parameter space �, here assumed to be independent of the
design ξ . After having made an observation y (i.e., acquired
data), the state of knowledge about θ can be updated through
Bayes’ theorem, calculating a posterior probability density

p(θ |y, ξ ) = p(y|θ, ξ )p(θ )

p(y|ξ )
, (1)

where p(y|ξ ) is the marginal probability density over observa-
tion space

p(y|ξ ) =
∫

θ∈�

p(y|θ, ξ )p(θ )dθ. (2)

2.1 Bifocal Analysis of Ambiguity

Consider two different points θ̇ �= θ̈ in parameter space �,
where the dots are used as identifiers only and do not denote
time derivatives. It is then possible to define various measures of
how likely these are to give rise to the same observation—and
hence be indistinguishable given such an observation. This is
determined by the extent to which their respective probability
densities p(y|θ̇ , ξ ) and p(y|θ̈ , ξ ) overlap (see Figure 2). The

Figure 2. Schematic example problem of a single parameter θ to be estimated from two observed variables [y1, y2]T = y with normally
distributed observational uncertainties. The bold line and curve show the finite parameter range (left) being mapped into the two-dimensional
observation space (right) by η(θ, ξ ) = ∫

yp(y|θ, ξ )dy. Two parameter values, θ̇ and θ̈ , are shown, for which p(y|θ̇ , ξ ) and p(y|θ̈ , ξ ) (lightly
shaded) partly overlap, so observations within the overlap area (darker shaded) are ambiguous and incapable of discriminating between parameter
values θ̇ and θ̈ . The online version of this figure is in color.
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most straightforward such measure is

Q(θ̇ , θ̈ , ξ ) =
∫

y∈�

p(y|θ̇ , ξ )p(y|θ̈ , ξ )dy. (3)

When designing an investigation technique, Q(θ̇ , θ̈ , ξ ) should
ideally be small when θ̇ and θ̈ are far apart. Equation (3) de-
fines a bifocal measure, simultaneously focusing on two points
(θ̇ , θ̈ ) in parameter space instead of only one, which is the most
common approach. Bingham and Chipman (2007) studied a
similar measure but instead integrated the square root of the
product of the probability densities.

This measure does, however, have two disadvantages: first,
Q(θ̇ , θ̈ , ξ ) is always high for θ̇ = θ̈ even though this case does
not contribute to uncertainty in estimates of the model param-
eters θ . Second, the units of Q(θ̇ , θ̈ , ξ ) are the same as those
of a probability density p(y) over observation space, implying
that Q(θ̇ , θ̈ , ξ ) will, on average, increase with decreased obser-
vational uncertainty (the opposite should ideally be the case).

One way to overcome the first problem is to multiply
Q(θ̇ , θ̈ , ξ ) by the squared distance between θ̇ and θ̈ (assum-
ing that � is equipped with a metric d). The second problem
can be addressed by dividing Q(θ̇ , θ̈ , ξ ) by a measure D� of
average observational probability density

D� =
∫

y∈�

p(y|ξ )p(y|ξ )dy. (4)

This gives the ambiguity measure

R(θ̇ , θ̈ , ξ ) = d2(θ̇ , θ̈ )

D�

Q(θ̇ , θ̈ , ξ ). (5)

The approach of analyzing point pairs (θ̇ , θ̈ ) with overlapping,
or “intersecting,” conditional observation densities, as well as
weighting them by squared distance, is a generalization of the
nonprobabilistic intersection point-pair concept developed by
Winterfors and Curtis (2008).

2.2 Measure of Expected Observational Ambiguity

To create a global measure of the ambiguity of an investi-
gation technique with a given design ξ , it is necessary to take
the expectation of R(θ̇ , θ̈ , ξ ) over all possible point pairs in
parameter space, with respect to the prior density p(θ ):

W (ξ ) =
∫

θ̇∈�

∫
θ̈∈�

p(θ̇)p(θ̈) R(θ̇ , θ̈ , ξ ) dθ̈dθ̇ . (6)

The resulting expected observational ambiguity W (ξ ) is thus
a measure of the average ambiguity of all possible observations,
given an investigation technique with design ξ and a prior dis-
tribution p(θ ) over parameter values. It is crucial to note that
this is not the same as the ambiguity of a particular posterior
distribution p(θ |y, ξ ) that is typically calculated after observa-
tions y have been made. W (ξ ) can therefore be used in planning
and designing the investigation technique described by ξ , prior
to acquisition of any observations.

2.3 Defining an Appropriate Metric

The choice of metric d(θ̇ , θ̈ ) used in (5) plays an important
role in evaluating the quality of any investigation technique. As a
general guideline, d(θ̇ , θ̈ ) should be chosen to be proportional to
the need to discriminate between two points θ̇ and θ̈ in parameter
space.

For example, in the linear scope of Euclidian metrics, one
might define

d2(θ̇ , θ̈ ) = �θT �−1�θ, (7)

where �θ = θ̇ − θ̈ and �−1 is a diagonal matrix of weights
representing the relative importance of each of the component
parameters of θ . If there are parameters affecting the observa-
tions but whose values are of no interest (often called nuisance
parameters, see Silvey 1980), their relative weights can simply
be set to zero. The matrix �−1 can also be nondiagonal, in which
case it can be seen as the inverse of a reference covariance matrix
� in parameter space, to which the covariance of the posterior
distributions should ideally be proportional.

2.4 Relations to Variance

The expected observational ambiguity W (ξ ) relates to the
expected posterior variance in a simple manner, demonstrated by
the following theorems. All proofs can be found in the Appendix.

Lemma 1. Inserting (5) into (6), applying Bayes’ rule,
and changing the order of integration (assuming that both
� and � are complete measure spaces, W (ξ ) < ∞, and
d2(θ̇ , θ̈ )p(θ̇ , y|ξ )p(θ̈ , y|ξ ) is � × � × �-measurable) gives

W (ξ ) = 2

D�

∫
y∈�

p2(y|ξ ) V [�|y, ξ ] dy, (8)

where V [�|y, ξ ] is a functional of the posterior distribution
p(θ |y, ξ ):

V [�|y, ξ ] = 1

2

∫
θ̇∈�

∫
θ̈∈�

d2(θ̇ , θ̈ )p(θ̇ |y, ξ )p(θ̈ |y, ξ )dθ̈dθ̇ . (9)

Theorem 1. If the distance function d is the standard Euclid-
ian distance (i.e.,� is a subset of a vector space), the functional
V [�|y, ξ ] is equal to the variance of p(θ |y, ξ ):

V [�|y, ξ ] =
∫

θ∈�

p(θ |y, ξ )d2 (θ, µ) dθ, (10)

where µ is the expectation of p(θ |y, ξ ).

Since V [·] is well defined for any space with a distance func-
tion d, it can be viewed as a generalization of the variance to all
metric spaces. V [·] can be shown to be invariant under changes
of coordinates (as long as the metric is so), but this article will
only make use of the fact that V [·] can be calculated without the
need for explicitly calculating the expectation of the distribution.

The expected observational ambiguity W (ξ ), as expressed in
(8), is thus twice the expected variance of the posterior, weighted
by p(y|ξ ) corresponding to the marginal probability density
in observation space. Equivalently, W (ξ ) can be interpreted as
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182 EMANUEL WINTERFORS AND ANDREW CURTIS

twice the expected posterior variance of a modified joint prob-
ability distribution p′(θ, y|ξ ) with posteriors identical to those
of p(θ, y|ξ ), but with a modified marginal distribution over ob-
servation space:

W (ξ ) = 2
∫

y∈�

p′(y|ξ ) V [�|y, ξ ] dy, (11)

p′(y|ξ ) = p2(y|ξ )∫
y∈�

p2(y|ξ )dy
. (12)

Using this modified marginal distribution can be thought of
as emphasizing the observations with the highest probability at
the expense of those with a low probability.

In linear models with normally distributed prior and obser-
vational uncertainties, the posterior variance V [�|y, ξ ] will be
the independent of the observation y. The inverse posterior co-
variance matrix �−1

�|y can be calculated

�−1
�|y = �−1

� + JT�−1
�|θJ, (13)

where J is the Jacobian of the linear model, and �−1
� and �−1

�|θ are
inverse covariance matrices for the prior and observational
uncertainty distributions, respectively. Setting �−1

� = 0 corre-
sponds to the case where no prior information is present, in
which case �−1

�|y is equal to the Fisher information matrix.
Taking the expectation with respect to any distribution p(y),
expected posterior variance will (trivially, since it is constant)
also be equal to (13), implying that W (ξ )/2 equals the expected
variance for models with normally distributed prior and obser-
vational uncertainties.

2.5 Relations to Shannon Entropy

Another commonly used measure of the uncertainty repre-
sented by any probability density p(θ ) is the Shannon entropy
(sometimes called differential Shannon entropy to distinguish
from the case of a probability distribution over a discrete space)

H [�] = −
∫

θ∈�

p(θ ) ln (p(θ )) dθ. (14)

The expected Shannon entropy of posterior probability den-
sities can then be defined as

H [�|�, ξ ] = −
∫

y∈�

∫
θ∈�

p(θ, y|ξ ) ln (p(θ |y, ξ )) dθdy. (15)

Minimizing H [�|�, ξ ] with respect to design ξ will maxi-
mize the expected decrease in Shannon entropy of the investiga-
tion technique. Sebastiani and Wynn (2000) demonstrated that
H [�|�, ξ ] can also be calculated using

H [�|�, ξ ] = H [�|�, ξ ] + H [�] − H [�|ξ ] , (16)

where H [�|�, ξ ] is the expected entropy of the observational
uncertainty, H [�] the entropy of the prior distribution, and
H [�|ξ ] the entropy of the marginal distribution in observation
space. If the observational entropy is independent of ξ , so is its
expectation H [�|�, ξ ]. In such cases, the expected posterior
entropy is only dependent on the design ξ through the marginal

observational entropy H [�|ξ ]. Therefore, minimizing the ex-
pected posterior entropy requires maximizing H [�|ξ ]. Finding
an optimal design ξ in this way is called maximum entropy
sampling (Sebastiani and Wynn 2000).

The variance provides an upper bound on the Shannon entropy
through the maximum entropy principle. When � = Rn, this
inequality takes the form (Dembo, Cover, and Thomas 1991)

V [�] ≥ n

2πe
exp

(
2

n
H [�]

)
, (17)

where V [�] and H [�] denote the variance and entropy of any
distribution over �, respectively. Left- and right-hand sides of
(17) are equal only for normal distributions, with covariance ma-
trix proportional to the identity matrix, in the following text re-
ferred to as spherical normal distributions. Writing the expected
variance of the posterior as V [�|�, ξ ] = ∫ p(y|ξ )V [�|y, ξ ]dy,
Theorem 2 is easily derived:

Theorem 2. For the expected variance and expected Shannon
entropy of the posterior probability distribution over � ⊆ Rn,
the following inequality holds

V [�|�, ξ ] ≥ n

2πe
exp

(
2

n
H [�|�, ξ ]

)
, (18)

with equality if and only if all posterior densities p(θ |y, ξ ) are
spherical normal distributions with identical entropy (or equiv-
alently, identical variance).

Combining (18) with (16) and assuming that observational
uncertainty is independent of design, one obtains

V [�|�, ξ ] ≥ K exp

(
−2

n
H [�|ξ ]

)
, (19)

where K is a constant with respect to ξ :

K = n

2πe
exp

(
2

n
H [�|�] + H [�]

)
. (20)

Evaluating the expected posterior variance thus imposes an
upper bound on the expected posterior entropy. Both these mea-
sures are computationally expensive, requiring numerical inte-
gration over both � and �. If one could instead provide an upper
bound on expected posterior entropy using W (ξ ), this would re-
quire less computation. Fortunately, there exists such an upper
bound, as demonstrated by the following theorem.

Theorem 3. The expected observational ambiguity W (ξ ) is
related to the expected Shannon entropy of the posterior distri-
bution over � ⊆ Rn through the inequality

W (ξ ) ≥ n

πe

exp (−H [�|ξ ])

D�

exp

(
2

n
H [�|�, ξ ]

)
, (21)

with equality if and only if all possible posterior densities are
spherical normal distributions with identical entropy, and p(y) is
uniform (i.e., constant for all y where it is nonzero).

Using (16) and assuming that observational uncertainty is
independent of design, (21) can be written

W (ξ ) ≥ 2
K

D�

exp

(
−2 + n

n
H [�|ξ ]

)
, (22)
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A BIFOCAL MEASURE OF EXPECTED AMBIGUITY 183

where K is the constant defined in (20). Theorem 2 and Theorem
3 again demonstrate the similarity of W (ξ ) to the expected
posterior variance, also with respect to how they impose an
upper bound on expected posterior Shannon entropy.

2.6 Comparison With Bayesian and Classical A- and
D-Optimality

Consider an observation–parameter relationship that can be
written in the form

y = η(θ, ξ ) + ε, (23)

where η(θ, ξ ) gives the expected observation, and ε is a random,
zero-mean observational error.

If η(θ, ξ ) is nonlinear with respect to θ , the standard approach
is to approximate posterior covariance matrices ��|y using local
linearization of (23) around a point θ in �: η(θ + �θ, ξ ) ≈
J�θ + η(θ, ξ ), and then approximate the posterior covariance
��|y using (13), for y ≈ η(θ, ξ ). Some scalar function 
 of
��|y , typically its variance (tr[��|y], often referred to as the A-
optimality criterion) or decrease in differential Shannon entropy
(log |��| − log

∣∣��|y
∣∣)/2, often referred to as the D-optimality

criterion, is then integrated over the prior distribution to obtain
an approximate design criterion:

Q
(ξ ) =
∫

θ∈�

p(θ )
(��|y)dθ. (24)

Such an approach works well as long as posterior distribu-
tions are approximately Gaussian. This is clearly not the case if
η(θ, ξ ) is not fairly linear with respect to θ within the width of the
observational error ε. One can check if such strong nonlinearity
is present by studying the curvature of η(θ, ξ ) with respect to
θ (Clyde 1993), but doing so does unfortunately still not guar-
antee approximate normality of all posterior distributions. If
there are self-intersections present in the image of � mapped by
η(θ, ξ ) into � (as in Figure 2), observations near such intersec-
tions will correspond to posterior distributions containing mul-
tiple peaks [as illustrated later in Figure 4(c) and Figure 5(b)].
Even if the individual peaks may be approximately Gaussian,
the full distribution will have very different properties that are
ignored in designs using the above criterions (see Example 4.1).

3. NUMERICAL EVALUATION AND OPTIMIZATION

Section 2 shows that the expected ambiguity measure W (ξ ) is
a viable measure of expected posterior uncertainty. This section
presents methods for estimating and optimizing W (ξ ). The algo-
rithms presented are most efficient for cases where the integral
in R(θ̇ , θ̈ , ξ ), as defined in (5), can be evaluated analytically,
for example, when the shape of the observational uncertainty
p(y|θ, ξ ) is known in some closed form such as a Gaussian,
Poisson, exponential, or Gamma distribution.

The possibility of evaluating the integral over observation
space � analytically is what enables W (ξ ) to be evaluated with
much higher numerical efficiency than other fully nonlinear
methods for estimating expected uncertainty of parameter es-
timates, where the expectation (i.e., integral) over � has to be
estimated using more costly numerical methods. The following
sections will therefore focus on this special case when observa-
tional uncertainty is known in some closed form

p(y|θ, ξ ) = p (y|η(θ, ξ )) , (25)

where p(y|η) is a known closed-form probability density func-
tion with parameters η (e.g., a Gaussian distribution with mean
η). Its parameters η(θ, ξ ) depend in turn on θ and ξ , but this
dependence does not have to be known in closed form. For ex-
ample, η(θ, ξ ) can be defined to be the solution of some set of
differential equations that have to be approximated numerically.

3.1 MC Estimation Strategies

Inserting (25) into (3) one obtains

Q(η̇, η̈) =
∫

y∈�

p(y|η̇)p(y|η̈) dy, (26)

where η̇ = η(θ̇ , ξ ) and η̈ = η(θ̈ , ξ ). Again, the dots are used for
discrimination only and do not denote derivatives. Expressions
for Q(η̇, η̈) for some common observational uncertainty dis-
tributions are shown in Table 1 (for proofs and definitions, see
the Appendix). The expected observational ambiguity W (ξ ) can
then be estimated by MC integration, by approximating (6) as a

Table 1. Expressions for Q(η̇, η̈), given common observational uncertainty distributions

Distribution p(y|η) Q(η̇, η̈)

Multivariate normal
1

K
exp(−1

2
d2(y, η)), where

K = √
(2π )n|�| and

d2(y, η) = (y − η)T �−1(y − η)

√
2n

K
exp(−1

4
d2(η̇, η̈))

Exponential
1

η
exp(−y

η
) y, η ≥ 0

1

η̇ + η̈

Gamma
kkyk−1

ηk�(k)
exp(−ky

η
) y, η, k ≥ 0

k�(k − 1
2 )√

π�(k)

(4η̇η̈)k−1

(η̇ + η̈)2k−1

Poisson
ηy

y!
e−η y ∈ N0, η > 0 e−η̇−η̈I0(2

√
η̇η̈)
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184 EMANUEL WINTERFORS AND ANDREW CURTIS

discrete sum

Ŵ (ξ ) = 2

N2D̂�

N∑
i=1

i−1∑
j=1

d2(θ̇i , θ̈j )Q(η̇i , η̈j )
p(θ̇i)

s(θ̇i)

p(θ̈j )

s(θ̈j )
, (27)

D̂� = 2

N2 + N

N∑
i=1

i∑
j=1

Q(η̇i , η̈j )
p(θ̇i)

s(θ̇i)

p(θ̈j )

s(θ̈j )
, (28)

where {θ1, θ2, . . . , θN } ∼ s(θ ) is a set of random points in
� sampled according to some sampling probability distribu-
tion s(θ ). The symmetry properties of d and Q and the fact that
d(θ, θ ) = 0 have also been used to reduce the number of terms
in the sums. Furthermore, the function η can be pre-evaluated
at the points {θ1, θ2, . . . , θN } creating the set {η1, η2, . . . , ηN },
allowing for it to be evaluated O(N ) rather than O(N2) times
in (27) and (28), reducing computation required for evaluating
functions that may be numerically costly.

The most simple choice of sampling distribution is s(θ ) =
p(θ ), but many other MC methods for sampling of � × � can
be constructed that may be more efficient, depending on the
shape and distribution of d2(θ̇ , θ̈ )Q(η̇, η̈)p(θ̇)p(θ̈). The choice
of algorithm for optimizing W (ξ ) with respect to the design
ξ might also influence the most suitable sampling scheme in
� × �.

3.2 Sampling Based on Metric and Prior

Taking the shape of Q(θ̇ , θ̈ , ξ ) into account when computing
a sampling distribution s(θ ) may be computationally expen-
sive, but it is possible to construct one that is better than using
s(θ ) = p(θ ) by accounting only for the metric d2(θ̇ , θ̈ ). Treat-
ing Q(θ̇ , θ̈ , ξ ) similar to a nonnormalized probability density,
having no information about Q(θ̇ , θ̈ , ξ ), can be represented by
setting it to a constant Q(θ̇ , θ̈ , ξ ) = Q0, yielding

s̃(θ̇ ) = Q0p(θ̇ )
∫

θ̈∈�

d2(θ̇ , θ̈ )p(θ̈)dθ̈, (29)

which can be normalized as s(θ̇) = s̃(θ̇ )/M, where M =
Q0

∫
s̃(θ̇ )dθ̇ .

If � is a subspace of a vector space with metric d2(θ̇ , θ̈ ) =
[θ̇ − θ̈]2 where the inner product is defined as θ2 = θT �θ , � be-
ing some positive definite matrix, s(θ̇ ) takes on the simple form

s(θ̇) = 1

2
p(θ̇ ) + 1

2tr[��]

[
θ̇ − E[�]

]2
p(θ̇), (30)

where � is the covariance matrix of p(θ ) and E[�] its mean.

3.3 Design Optimization

For the optimization of the design ξ , many different ap-
proaches are possible. In general, the optimization of an MC
estimate of an objective function—inherently possessing some
uncertainty—presents a number of new difficulties in addition to
those encountered in the optimization of deterministic objective
functions that can be evaluated exactly. This problem has been
treated by several authors, such as Robbins and Monro (1951),
Kiefer and Wolfowitz (1952), Spall (2003), and Chen (2002) in
a general optimization setting, as well as by Merlé and Mentré
(1997), Müller and Parmigiani (1995), and Müller, Sanso, and

De Iorio (2004) for applications in nonlinear experimental de-
sign optimization.

The main problem arises from the difficulty in obtaining gra-
dients of the objective function. If discrete differentiation is
used, the uncertainty in the gradient estimate will be inversely
proportional to the length of the discrete differentiation inter-
val. It will thus approach infinity as the differentiation interval
length approaches zero.

One way of reducing uncertainty in the gradient estimates is
to avoid resampling in � × � for the differentiation in each of
the components of ξ (Gaivoronski 1998):

∂

∂ξ
Ŵ (ξ ) ≈ 2

N2D̂�

N∑
i=1

i−1∑
j=1

p(θ̇i)

s(θ̇i)

p(θ̈j )

s(θ̈j )
(d2(θ̇i , θ̈j ) − Ŵ (ξ ))

× ∂

∂ξ
Q(η̇i , η̈j ), (31)

Ŵ (ξ ) and D̂� defined in (27) and (28). A commonly used similar
approach is to keep the same sample {θ1, θ2, . . . , θN } of points
in parameter space throughout the whole optimization with re-
spect to ξ , not doing resampling {θ1, θ2, . . . , θN } for each new
evaluation of Ŵ (ξ ). This allows for the use of standard deter-
ministic optimization algorithms, but renders error due to MC
sampling difficult to detect.

In the examples that follow, we adopt the latter approach and
acknowledge the possible existence of MC-related errors. To
mitigate against the effects of these errors, as well as for the ex-
istence of multiple local minima, we perform each optimization
several times with different random sampling methods to check
that similar optimal solutions are found.

4. EXAMPLES

4.1 Frequency and Amplitude Estimation

A common problem arising in numerous domains of exper-
imental research is to estimate the frequency and amplitude of
some oscillation present in a signal. One may parameterize the
signal as

y = θ1 sin(θ2t + θ3) + ε, (32)

where θ1 and θ2 are amplitude and frequency, respectively. The
phase θ3 will be considered a nuisance parameter whose value
is of no interest. ε is a random, zero-mean normally distributed
observational error.

The design problem in this case is to determine at what val-
ues of t to observe y to minimize uncertainty in estimates of
θ1 and θ2. The most well-known result on the subject is the
Nyquist–Shannon sampling theorem (Nyquist 1928), stating
that for θ2 to be uniquely determined, the sampling frequency
ξ must be at least two times the highest possible frequency of
the signal:

ξ ≥ 2 max(θ2), (33)

where 2 max(θ2) is usually referred to as the Nyquist fre-
quency/limit. However, this result does not account for un-
certainty in observations y. It is also in direct conflict with
derivative-based design theory, which rather suggests that sam-
pling frequency should be as high as possible since that will
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A BIFOCAL MEASURE OF EXPECTED AMBIGUITY 185

Figure 3. Example of the oscillating signal of (32) whose amplitude
θ1 and frequency θ2 are to be determined by four regularly spaced noisy
samples y = [y1, y2, y3, y4]T taken at a sampling frequency ξ . This is
different from the example in the Introduction (Figure 1) in that the
signal frequency θ2 here is a sought parameter rather than a controllable
design parameter.

maximize the sensitivity of the sampled values y to changes in
the signal frequency θ2.

Considering the case where the phase θ3 of the signal is
unknown and one wishes to determine the optimal sampling
frequency ξ of only four samples y = [y1, y2, y3, y4]T regularly
spaced by the time interval 1/ξ , as shown in Figure 3. The
expected observational ambiguity W (ξ ) was evaluated over a
range of sampling frequencies 0 Hz < ξ < 6 Hz, along with
measures of expected posterior variance as well as expected
gain in Shannon information evaluated using full MC sampling
of posterior distributions over the two parameters of interest
θ1 and θ2 (see the Appendix for numerical details). A uniform
prior distribution p(θ ) with bounds 2 ≤ θ1 ≤ 6, 0 ≤ θ2 ≤ 1,
and 0 ≤ θ3 ≤ 2π was used, along with a normal observational
uncertainty ε of variance σ = 1/16. The starting time of the
sample sequence could also have been considered as a design
parameter, but it is, in this case, of no significance due to the
averaging over all phases 0 ≤ θ3 ≤ 2π of the signal (since the
phase of the signal is unknown).

For comparison, Bayesian DS and AS criteria were also evalu-
ated, approximating expected gain in Shannon information and
expected posterior variance, respectively, using local lineariza-
tion of the forward function. The “S” subscript indicates that
only a part of the covariance matrix was used, corresponding
to the subset of parameters of interest (i.e., the row and column
corresponding to the nuisance parameter θ3 were removed from
the covariance matrix prior to evaluating trace or determinant).

Plots of the different design criteria as a function of sam-
pling frequency are shown in Figure 4. Of the two criterion
types, subplot (a) contains information measures that should
be maximized, while subplot (b) contains uncertainty measures
that should be minimized. When the sampling frequency is be-
low the Nyquist criterion of 2 Hz, posterior distributions are
multimodal. This shows up clearly in the posterior variance cri-
terion, where the squared distances between the multiple peaks
make the expected posterior variance very high for low sam-
pling frequencies. The same effect can be seen in the expected
observational ambiguity criterion W (ξ ).

The expected gain in Shannon information, however, remains
nearly constant for all sampling frequencies, with a slight de-
creasing trend as sampling frequencies get high. This constancy
is due to the fact that even though low sampling frequencies
give multimodal posteriors, the area over which the probabil-
ity is concentrated remains constant. Shannon information does
not account for the shape or spread of a probability distribution,
only the area over which the high probability is concentrated.

The Bayesian DS and AS approximations to expected Shan-
non information gain and expected posterior variance based
on local linearization of the parameter-observation relationship
deviate considerably from the true values, especially for low
sampling frequencies. Both Bayesian DS and AS criteria indi-
cate that the design is better, the lower the sampling frequency
is, when in reality the design is getting worse. For low sam-
pling frequencies, posterior distributions will be multimodal, as
shown in Figure 4(c). Bayesian D- or A- criteria, however, mea-
sure only the properties of one local peak at a time, which may
be orders of magnitude different from that of the full distribution
(van den Berg, Curtis, and Trampert 2003). Any criterion based
on information matrices (local linearization) should therefore
not be used on nonlinear problems with multimodal posteriors.

4.2 Location of Wave Sources in a Medium of
Inhomogeneous Velocity

The problem of locating sources of wave energy by measur-
ing relative arrival times of the waves at a set of distant locations
is common in earth science, as well as other disciplines. If the
wave velocity is constant throughout the medium, the deter-
mination of the location of a source is fairly straightforward
using simple geometrical considerations. When the wave veloc-
ity varies throughout the medium, the wave propagation must
be simulated (using numerical methods) by solving the wave
equation, which for an elastic isotropic medium, can be written

ρ
∂

∂t2
u = µ∇2u + (µ + λ)∇(∇ · u) + F, (34)

where u and F are displacement and body force vectors, respec-
tively, ρ is the density, µ the shear modulus, and λ Lamé’s first
parameter of the medium. From simulated wave arrival times,
one can then deduce potential source locations that give wave
arrival times matching those observed.

In the case considered next, one seeks to locate microseis-
mic events (small earthquakes or rock fractures) occurring in
a subsurface medium with a velocity profile that has already
been determined in a two-dimensional (2D) plane between two
vertical boreholes. Any seismic event will generate both pres-
sure and shear waves, the former traveling faster than the latter,
depicted in Figure 5(a). The difference in arrival time between
pressure wave and shear wave is then recorded at the seismic re-
ceivers, represented by squares in Figures 5 and 6, which can be
located either on the earth surface (top) or in the two boreholes
on the sides. A probability distribution for the location of the
source can then be calculated using Bayes’ rule, such as the one
depicted in Figure 5(b). Due to the strong nonlinearity of the
physics involved, the posterior distribution might have several
local maxima, as in the case shown in Figure 5.
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186 EMANUEL WINTERFORS AND ANDREW CURTIS

Figure 4. Subfigures (a) and (b) compare different design criteria as a function of sampling frequency: (a) represents two measures of expected
gain in Shannon information, and (b) represents three measures related to posterior variance. Solid lines show criteria evaluated using full Monte
Carlo sampling of all posterior distributions, dotted lines show Bayesian DS and AS criteria. The bold line in subfigure (b) shows the expected
observational ambiguity W (ξ ), as defined in the text. Subfigures (c), (d), and (e) show example posterior distributions for random observations
y at sampling frequencies 1 Hz, 2.2 Hz, and 5 Hz, respectively. The online version of this figure is in color.

Figure 5. Subfigure (a) shows fast pressure (P) and slower shear (S) wavefronts emanating from a microseismic event (marked x), traveling
toward two seismic receivers (squares). The shading of (a) represents the difference in inverse velocity between the two wavefronts throughout
the subsurface medium. The shading of (b) represents the probability distribution for the source location given the (noisy) P- and S-wave arrival
times recorded at the receivers. The online version of this figure is in color.
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A BIFOCAL MEASURE OF EXPECTED AMBIGUITY 187

Here, the parameter space � will be spanned by both the
source location θloc and velocity profile θvel (known approxi-
mately), that is, θT = [θT

loc, θ
T
vel]. However, since we are only

interested in determining the source location θloc, the natural
metric d(θ̇ , θ̈ ) to use is the distance between two locations
d(θ̇ , θ̈ ) = d(θ̇loc, θ̈loc), ignoring any difference in velocity pro-
files (which thus constitute nuisance parameters).

The wave velocity profile θvel was parameterized by a
5 × 5 regular grid, with the difference in slowness (inverse ve-
locity) between pressure wave and shear wave specified at each
grid point. Slowness difference in between the grid points was
calculated using interpolation, by taking the discrete 2D Fourier
transform of the 5 × 5 velocities and extending the Fourier
spectrum with zero-amplitude higher spatial frequencies before
inverting the Fourier transform. The size of the modeled subsur-
face cross-section was 1 km × 1 km. The uncertainty in slow-
ness p(θvel) was represented by letting the slowness in each grid
point vary independently according to a normal distribution with
a standard deviation of 0.1 sec/km around an individual mean
slowness, the latter represented by shading in Figures 5 and 6.
For prior distribution of the wave field source locations p(θloc),
a uniform distribution over the 1 km × 1 km cross-section was
used, making the total prior distribution over parameter space
p(θ ) = p(θloc)p(θvel).

The observational uncertainty in the detected arrival time
difference p(y|θ, ξ ) was assumed to be normally distributed,
with a standard deviation of 6 msec for each receiver
independently.

The expected observational ambiguity was approximated us-
ing (27) and (28) with an MC sample {θi} of 10,000 points in
parameter space and a sampling distribution s(θ ) = p(θ ). Ex-
pected arrival time differences η(θ, ξ ), given source location
θloc, velocity profile θvel, and receiver locations ξ , were approx-
imated using a numerical solver, approximating (34) with an
eikonal equation (Vidale 1988). Having normal observational
uncertainties p(y|θ, ξ ), Q(η̇i , η̈j ) was calculated using Table 1.

Figure 6 shows three designs considered for the receiver loca-
tions. In the left column of the subfigures, lines have been drawn
in between all location point pairs (θ̇ , θ̈ ) that can be formed out
of the sample {θi} so that the amount of black ink of each line is
proportional to R(θ̇ , θ̈ , ξ ). This makes the total amount of black
in each subfigure proportional to W (ξ ). When interpreting the
plots, high density of lines in a particular area indicates that there
will be high uncertainty in estimates of wave source locations in
that area. Furthermore, the source location uncertainty will be
oriented in the direction of the lines. This way of representing
uncertainty in 2D location problems is a refinement of that the
one used in Winterfors and Curtis (2008). The subfigures in the
right column each contain six superimposed posterior distribu-
tions for typical source locations. To be able to separate the
distributions, each one is encircled by a contour line.

Subfigures (a) and (b) represent a two-receiver design with
both receivers on the surface, which is the minimal number of
receivers required to position a wave source in the medium.
Subfigures (c) and (d) represent a four-receivers design, with all
receivers located in the deeper half of the two boreholes. This
represents a commonly used design for surveying hydrocarbon
reservoirs. Subfigures (e) and (f) show the design that minimizes
the expected observational ambiguity W (ξ ) for the approximate

velocity profile shown, with two receivers on the surface and
one in each borehole.

Comparing the three designs, it is clear that (a) possesses
considerable ambiguity (W (ξa) = 14.5 m2) compared with (c)
and (e), which is not surprising, considering it uses only half the
number of receivers of the other two. Most ambiguity in loca-
tions is present near the surface, with near-vertical uncertainty
directions in a fan-shape, but some uncertainty is also present
deeper to the left in lateral directions. Subfigure (c), with an ex-
pected observational ambiguity of W (ξc) = 2.45 m2, has some
vertically oriented uncertainty in the high-velocity area in be-
tween the four receivers, as well as some more horizontally
oriented uncertainty closer to the surface.

The optimal design in subfigure (e) has W (ξe) = 1.98 m2,
and uncertainty that is more evenly distributed throughout the
cross-section, albeit slightly higher in high-velocity areas than
in low-velocity ones. The optimal receiver locations were deter-
mined using a simplex optimization algorithm accounting for
the constraints imposed by the finite length of the boreholes.
Since the expected observational ambiguity may have many lo-
cal minima, the optimization was repeated 500 times using dif-
ferent starting points (receiver configurations) so that a global
minimum could be found with reasonable confidence. Each op-
timization procedure required about 30 sec of computation time
on a 1.4-GHz Pentium IV CPU.

5. DISCUSSION AND CONCLUSIONS

Increasing computational efficiency of fully nonlinear
Bayesian design methods has been the primary objective of this
work. Expected posterior variance can be estimated by brute
force numerical integration methods, but these are too ineffi-
cient to tackle even fairly low-dimensional problems. The main
issue is computing the expectation over all possible observa-
tions, since observation space is usually of considerably higher
dimension than the parameter space (lower dimension would
make the parameter estimation problem underdetermined). By
enabling all integration over observation space to be carried out
analytically, W (ξ ) offers huge gains in computation efficiency
compared with brute force methods.

The expected observational ambiguity W (ξ ) measures
to what extent different sets of parameters can give rise to
the same observations, that is, how much their respective
conditional probability distributions in observation space
overlap. This is the central property that makes it useful
in design of investigation techniques, since it measures a
fundamental undesirable property that should be minimized.
The expected posterior variance measures a very similar
property, but using a slightly different way of measuring the
overlap of two probability distributions: W (ξ ) uses R(θ̇ , θ̈ , ξ )
= d2(θ̇ , θ̈ )

∫
p(y|θ̇ , ξ )p(y|θ̈ , ξ )dy/

∫
p2(y|ξ )dy, whereas

the calculating expected posterior variance corresponds
to using an overlap measure R(θ̇ , θ̈ , ξ ) = d2(θ̇ , θ̈ )∫

p(y|θ̇ , ξ )p(y|θ̈ , ξ )/(2p(y|ξ ))dy. The former can often be
evaluated analytically, whereas the latter cannot.

Theorem 1 shows another, equivalent way of interpreting
W (ξ ), as a measure of expected posterior variance weighted by
the marginal probability density p(y|ξ ) over observation space.
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188 EMANUEL WINTERFORS AND ANDREW CURTIS

Figure 6. Subfigures (a), (c), and (e) represent areas of large uncertainty in source location, as well as the direction of uncertainty, using black
lines connecting pairs of locations that cannot be discriminated by travel time data recorded by the receivers (squares). The upper edge is the
earth’s surface on each vertical subsurface intersection. Subfigures (b), (d), and (f) each show six typical posterior distributions for the source
location, each of which is encircled by a contour line. The online version of this figure is in color.

It is also possible to use W (ξ ) as a design criterion when one
is to use frequentist inference to interpret observations y. In a
similar manner to when Bayesian D- and A-optimality criteria
are used, one can integrate over some prior p(θ ) over parameter
space that will then not be used for inference. Just as in the fully
Bayesian case, W (ξ ) will then measure prevalence of multiple,
radically different parameter sets fitting the observations—and
minimizing W (ξ ) will reduce or eliminate such problems.

The introductory example, as well as Example 4.1, demon-
strates that Bayesian D- and A-optimality may fail when some
of the posterior distributions are multimodal. It also shows that

the expected observational ambiguity measure is a useful al-
ternative to more computationally expensive MC measures of
expected posterior variance.

Example 4.2 demonstrates the feasibility of using expected
observational ambiguity as a design criterion for designing in-
vestigation techniques based on complex physical phenomena
where evaluation of expected posterior variance is numerically
intractable.

For future work on expected observational ambiguity, obvi-
ous areas of potential improvement are (a) refined strategies
for sampling the parameter space where R(θ̇ , θ̈ , ξ ) is relatively
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A BIFOCAL MEASURE OF EXPECTED AMBIGUITY 189

high, and (b) constructing better algorithms for the optimization
of uncertain estimates of W (ξ ) with respect to the design ξ .

APPENDIX

Proof of Theorem 1

Easily verified by inserting d2(θ̇ , θ̈ ) = [θ̇ − θ̈ ]2 (where θ2 =
θT θ ) into (9) and expanding the squared expressions, yielding

V [�|y, ξ ] =
∫

θ∈�

θ2p(θ |y, ξ )d� −
⎛
⎝ ∫

θ∈�

θp(θ |y, ξ )d�

⎞
⎠

2

(A.1)

which is just an alternative expression for the variance.

Proof of Theorem 2

Taking the expectation of both sides of inequality (17) with
respect to the marginal density p(y), one obtains (A.2).

Jensen’s inequality states that f (E [X]) ≤ E [f (X)] for
all strictly convex functions f , with equality if and only if
p(x) equals the Dirac delta function δ(x − µX). Application to
the right-hand side of (A.2) gives (A.3), since the exponential is
strictly convex, proving inequality (18).

V [�|�, ξ ] ≥ n

2πe

∫
y∈�

p(y) exp

(
2

n
H [�|y, ξ ]

)
dy (A.2)

≥ n

2πe
exp

(
2

n
H [�|�, ξ ]

)
. (A.3)

Since inequality (17) has equality if and only if p(θ ) is
a spherical normal distribution, so will inequality (A.2). Ap-
plying Jensen’s theorem guarantees equality if and only if
p (H [�|y, ξ ]) is a Dirac function with respect to y; in other
words, all possible posteriors must have identical entropy. These
two conditions prove the equality condition of Theorem 2.

Proof of Theorem 3

The proof is along the same lines as that of Theorem 2.
Multiplying both sides of inequality (17) with p(y), one obtains

p(y)V [�|y] ≥ n

2πe
exp

(
ln (p(y)) + 2

n
H [�|y]

)
. (A.4)

Taking the expectation of both sides with respect to
p(y|ξ ) and using Lemma 1 gives (A.5). Since the exponen-
tial is strictly convex, we can apply Jensen’s inequality to the
right-hand side, obtaining (A.6), which is equivalent to (A.7) :

W (ξ )

L
≥
∫

y∈�

p(y|ξ ) exp

(
2

n
H [�|y, ξ ] + ln (p(y|ξ ))

)
d�

(A.5)

≥ exp

⎛
⎜⎝ ∫

y∈�

p(y|ξ )

(
2

n
H [�|y, ξ ] + ln(p(y|ξ ))

)
d�

⎞
⎟⎠

(A.6)

= exp

(
2

n
H [�|�, ξ ] − H [�|ξ ]

)
(A.7)

where L = n/(πeD�).
Inequality (17) has equality if and only if p(θ ) is a spherical

normal distribution, and so will inequality (A.4).
Applying Jensen’s theorem guarantees equality if and only

if ln (p(y|ξ )) + 2H [�|y, ξ ] /n is constant with respect to
y when p(y|ξ ) > 0. Combining these two conditions implies
that (A.5)–(A.7) all have equality if and only if all possible pos-
terior densities are spherical normal distributions with identical
entropy, and p(y|ξ ) is constant for all y : p(y|ξ ) > 0, which
proves the equality condition of Theorem 3.

Proofs of Results in Table 1

Multivariate Normal. Given that p (y|θ, ξ ) is Gaus-
sian p (y|η(θ, ξ )) = exp(−[y − η(θ, ξ )]2/2)/K , where K =√

(2π )n |�|, the square operator (2) is defined as y2 =
yT �−1y and � an n × n covariance matrix, the fol-
lowing simplifications of the expression for Q(η̇, η̈) =∫
y∈�

p (y|η̇) p (y|η̈) dy, where η̇ = η(θ̇ , ξ ) and η̈ = η(θ̈ , ξ ), can
be made:

Q(η̇, η̈) = 1

K2

∫
y∈Rn

exp

(
−1

2
[y − η̇]2 − 1

2
[y − η̈]2

)
dy (A.8)

= 1

K2

∫
y ′∈Rn

exp

(
−1

2

([
y ′ + 1

2
�η

]2

+
[
y ′ − 1

2
�η

]2
))

dy ′

(A.9)

= 1

K2

∫
y ′∈Rn

exp

(
−y ′2 − 1

4
�η2

)
dy ′ (A.10)

=
√

2n

K
exp

(
−1

4
�η2

)
(A.11)

Equation (A.9) is formed by a change of variable y =
y′ + (η̇ + η̈)/2 in the integrand and by defining that �η =
η̈ − η̇. Expanding the squares gives (A.10), and using
that

∫
y

exp(−y†σ−1y)dM = √
(2π )n |2σ | = 2n

√
πn |σ | yields

(A.11).
Gamma and Exponential. When p (y|θ, ξ ) is a Gamma

distribution p(y|η) = kkyk−1 exp(−ky/η)/(ηk�(k)), where
y, η, k ≥ 0, we obtain (A.12). The integrand has a well-known
solution (A.13), whose insertion into (A.12) gives (A.14). The
exponential distribution is the special case of a Gamma distri-
bution with k = 1:

Q(η̇, η̈) = k2k

η̇kη̈k�2(k)

∞∫
y=0

y2k−2 exp

(
− η̇ + η̈

η̇η̈
ky

)
dy. (A.12)
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190 EMANUEL WINTERFORS AND ANDREW CURTIS

∞∫
y=0

y2k−2 exp

(
− η̇ + η̈

η̇η̈
ky

)
dy = �(k)√

π4k
�

(
k − 1

2

)(
η̇ + η̈

4η̇η̈
k

)1−2k

(A.13)

Q(η̇, η̈) = k� (k − 1/2)√
π�(k)

(4η̇η̈)k−1

(η̇ + η̈)2k−1 . (A.14)

Poisson. When p(y|η) = ηye−η/y! over the set of positive
integers, Q(η̇, η̈) is defined through the discrete sum

Q(η̇, η̈) =
∞∑

k=0

η̇y

y!
e−η̇ η̈y

y!
e−η̈ = e−η̇−η̈

∞∑
k=0

η̇kη̈k

y!2
= e−η̇−η̈I0(2

√
η̇η̈), (A.15)

where the last equality is obtained by inserting the definition of
the modified Bessel function of the first kind, I0.

Numerical Evaluation of Design Criteria in Example 4.1

A random sample of N (in the example equal to 800, the
smallest number that gave the same plotted curves over several
runs) points {θ1, θ2, . . . , θN } in parameter space was generated
according to the prior distribution p(θ ). From each point θi ,
one point yi in observation space was generated according to
p(y|θi, ξ ), forming a set of N points {y1, y2, . . . , yN } ∼ p(y|ξ ).

It is possible to estimate p(y|ξ ) at the points
{y1, y2, . . . , yN } by

p̂(yk|ξ ) = 1

N − 1

⎛
⎝∑

i �=k

p(yk|θi, ξ )

⎞
⎠ , (A.16)

where i �= k implies summation over i = 1 up to N , but exclud-
ing i = k (it has to be excluded since yk is not independent of
θk).

The expected posterior variance was then estimated

Var [�|�, ξ ] ≈ 1

N

∑
k

⎛
⎜⎝θk −

∑
m�=k

θmp(yk|θm, ξ )

(N − 1)p̂(yk|ξ )

⎞
⎟⎠

2

(A.17)

The squaring of the bracketed terms on the right represents
self-multiplication by an inner product θ2 = θT Mθ , where M is
a diagonal matrix with the first two diagonal entries equal to 1
and the third equal to zero (to remove influence of the nuisance
parameter).

The expected gain in Shannon information over the space
spanned by the first two components of the parameter vector
θ was estimated as

I [�|�] − I [�] ≈ 1

N (N − 1)

∑
j

∑
i �=j

Gij ln(Gij ) (A.18)

where Gij = p̂(yj |[θ1
i , θ2

i ]T , ξ )/p̂(yj |ξ ) and p̂(yj |[θ1
i , θ2

i ]T ,

ξ ) =∑
k �=j p(yj |[θ1

i , θ2
i , θ3

k ]T , ξ )/(N − 1).

p̂
(
yj |
[
θ1
i , θ2

i

]T
, ξ
)

= 1

N − 1

∑
k �=j

p
(
yj |
[
θ1
i , θ2

i , θ3
k

]T
, ξ
)
.

The Bayesian DS and AS criteria were evaluated on the same
random sample {θ1, θ2, . . . , θN } using (13) to approximate pos-
terior covariance matrices.

The expected observational ambiguity W (ξ ) was estimated
using (27) on the sample {θ1, θ2, . . . , θN }. Computation time to
generate Figure 4 was about 180 sec on a 1.4-GHz Pentium IV
processor.
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