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Abstract
We present a novel approach to analyze uniqueness in nonlinear inverse
problems, using a novel bifocal Newtonian algorithm for identifying pairs of
non-unique solutions for any potential data set, prior to any data collection.
For the case when the shape of the forward function depends on control
parameters that can be tuned to reduce non-uniqueness, we present a second
algorithm which minimizes the sum of squared distances between each pair
of non-unique solutions. Both algorithms are also relevant in the presence of
uncertainty, which we demonstrate by applying them to a simple nonlinear
location problem.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Efficient algorithms and inexpensive computing power have allowed even more complex
inverse problems to be solved, often with forward functions that can only be approximated
numerically. One problem that remains generally unsolved is, however, that there is no
guarantee that the solution found is unique. Analytical results guaranteeing uniqueness
exist for some particular classes of problems, for which (Ramm 2005) provides numerous
examples, but these are rarely applicable to general nonlinear problems, particularly those in
which the forward function has to be approximated numerically. This has led us to look at
the problem from a different viewpoint: instead of demonstrating uniqueness we provide a
numerical method to demonstrate non-uniqueness of potential solutions to inverse problems,
only requiring the forward function to be continuous and differentiable.

The most important applications of inverse problems are in parameter estimation
for investigation techniques—e.g. in measurement techniques, imaging, remote location,
spectroscopy and many other techniques where parameters of a physical system are determined
by observing quantities having a known relation to the parameters of interest (Tarantola and
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Valette 1982a). Such applications are, therefore, the main focus of our work and have motivated
most of the nomenclature used, even though the problem of non-uniqueness and the method
we present are highly relevant to other applications of inverse problems as well.

In any investigation technique, there is always some uncertainty present in the directly
observed variables (even though it is not always accounted for). This will imply some degree
of non-uniqueness of all solutions of such an inverse problem. Our method applies also to
such situations, by providing a way to identify possible non-unique solutions between which
the difference is greater than some predefined ‘acceptable’ uncertainty.

Bayesian Monte Carlo methods to solve the inverse problem (Mosegaard and Tarantola
1995) can address some of the problems of having distant non-unique solutions, but—as
discussed in section 5—the standard use of Markov chains to create the necessary random
samples involved can give erroneous results in some cases that our methods aim to detect. In
addition, in many applications, even if all potential solutions can be found, it is often difficult
to use then in subsequent analysis if they are not all in some sense clustered together.

Often, the shape of the forward function is dependent on the values of parameters that
can be chosen and controlled. Examples of such control parameters might be type and
location of sensors used in acquiring data or characteristics of radiation sources (e.g. acoustic
or electromagnetic) used to probe the object of study. Modifying control parameters will
generally change the distribution and prevalence of non-uniqueness in solutions to the inverse
problem. We, therefore, present a systematic approach in the form of an optimization algorithm
to minimize a measure of non-uniqueness with respect to the control parameters.

This latter problem has been considered in many forms in the field of statistical
experimental design. It is an established branch of statistics (Atkinson and Donev 1992,
Pázman 1986), but has not yet been widely applied to any large range of scientific investigation
techniques. There are a few exceptions, mainly in pharmacology (Mentré et al 1997) and
geophysics (Rabinowitz and Steinberg 1990, Steinberg et al 1995, Curtis 1999b, Curtis 1999a,
Curtis et al 2004). One reason for this is that existing theory almost exclusively considers
linearized forward functions, thereby failing to account for non-uniqueness due to nonlinear
effects. Our approach is different in that it fully accounts for nonlinearity in the forward
function and aims to minimize the difference between multiple possible solutions.

The first part of this paper treats the problem of detecting non-uniqueness and can be
applied independently of the second part. We begin by presenting the central concept of
intersection point pairs (section 2.1), followed by computational strategies for detecting such
intersections (section 2.2). We finally extend the concept to account for uncertainty (section
2.4).

In the second part, we present a strategy for reducing inverse problem non-uniqueness. In
section 3.1 we use the previous methods to create a quantitative measure of the prevalence of
intersection point pairs. Section 3.2 presents a numerical algorithm for the reduction of that
quantity.

Section 4 illustrates the new method, applying it to a schematic seismic location problem,
whereafter we discuss the results and compare our new method to other, previously described
approaches (section 5).

2. Detecting non-uniqueness

2.1. Definitions and formalism

We consider a continuous and differentiable forward function �ξ mapping some open space
� ⊆ R

m of parameters to be estimated onto a space � ⊆ R
n of variables that can be directly

observed or whose values can be known in some other way:
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Figure 1. An example of a forward function defined by y1 = θ2 and y2 = sin(θ) in the real interval
� = [−2.5, 2.5] self-intersecting at yint

1 = �(θ̇
int
1 ) = �(θ̈

int
1 ) and yint

2 = �(θ̇
int
2 ) = �(θ̈

int
2 ).

Table 1. Notation.

θ parameters to be determined
� parameter space, an open subset of R

m containing all possible values of θ

(θ̇, θ̈) pair of points in model space (dots used for indexing only)
y directly observed variables, or data
� observation space, � ⊆ R

n, contains all possible values of y

�ξ forward function, predicting an observation y = �ξ(θ)

ξ control parameters that modify the shape of �ξ and which can
be controlled; particular values of ξ are also referred to as a designs

d distance measure, e.g. d(θ̇, θ̈) = distance between θ̇ and θ̈

ε� error bound on estimates of θ

ε� error bound on observations y

Ay set of possible values of parameters θ given an observation y

Bθ set of possible observations y given θ

y = Φξ(θ), (1)

where θ ∈ � and y ∈ �. �ξ might also depend on some control parameters ξ whose values
can be controlled and set arbitrarily. Typically, �ξ is a mathematical model of the investigation
technique predicting what data y would be observed for any given θ. These and other central
definitions made further on are summarized in table 1.

Particularly when �ξ is nonlinear, there might be several points θ in � that will map
onto the same observation y. If we denote the range of �ξ on � as �ξ[�] = {y ∈ � :
y = �ξ(θ),∀θ ∈ �}, these points will correspond to self-intersections of �ξ[�] in �.
We will, therefore, refer to pairs of points θ̇ �= θ̈ (dots used for indexing only) for which
�ξ(θ̇) = �ξ(θ̈) as intersection point pairs (θ̇int, θ̈int). An example with a model space
� ⊂ R and an observation space � ⊂ R

2 can be found in figure 1.

2.2. Finding intersection point pairs

Detecting and locating intersections is trivial in low-dimensional cases where �ξ can be
plotted, but is much more difficult in higher dimension. Assuming that �ξ is continuous and
(at least numerically) differentiable, it is however possible to search for intersection point pairs
(θ̇int, θ̈int) using a modified version of Newton’s method for finding roots of equations. Let θ̇

and θ̈ be an initial guess of an intersection point pair. In order to find a self-intersection of the
forward function �ξ in the vicinity of this estimate, two linear approximations of �ξ can be
made, one around each of the points θ̇ and θ̈:

�ξ(θ̇ + �θ̇) ≈ �ξ(θ̇) + J̇�θ̇, J̇ = ∂�ξ

∂θ̇
(θ̇) (2)

�ξ(θ̈ + �θ̈) ≈ �ξ(θ̈) + J̈�θ̈, J̈ = ∂�ξ

∂θ̈
(θ̈). (3)
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Figure 2. Example of linear approximations (dashed lines) of �ξ around the points θ̇ and θ̈, the
intersection of which provides an estimate for the real intersection.

The following system can then solved for a pair of increments �θ̇ and �θ̈ to find the
intersection between the two local linear approximations of �ξ :

�ξ(θ̇) + J̇�θ̇ = �ξ(θ̈) + J̈�θ̈. (4)

This can be visualized as calculating the intersection point of the dashed lines in figure 2,
an approximation to the true intersection point. If �ξ(θ) and θ are represented by column
vectors, equation (4) may be rewritten,

[
J̇ |−J̈

] [
�θ̇

�θ̈

]
= �ξ(θ̈) − �ξ(θ̇). (5)

The matrix
[
J̇ |−J̈

]
may be non-square and/or singular, so in the general case equation (5)

has to be solved using a pseudo-inverse which may be defined by performing a singular value
decomposition,

[
J̇ |−J̈

] =
k∑

i=1

uiσiv
T
i (6)

where {ui} and {vi} are k orthonormal column vectors, in R
n ⊇ � and R

2m ⊇ � × �

respectively, associated with k nonzero singular values {σi}. Denoting by {vnull
i } a set of

orthonormal vectors spanning the null space of
[
J̇ |−J̈

]
, a complete orthonormal basis

spanning � × � is formed by {vi} ∪ {vnull
i }.

A generalized solution to equation (5) can then be defined,[
�θ̇

�θ̈

]
=

k∑
i=1

viσ
−1
i uT

i (�ξ(θ̈) − �ξ(θ̇)). (7)

If equation (5) has no solution, equation (7) will give an approximate least-squares solution
that minimizes |(�ξ(θ̇) + J̇�θ̇) − (�ξ(θ̈) + J̈�θ̈)|2. In the case of (5) having an infinite
number of solutions, equation (7) will give the solution closest to the initial guess (θ̇, θ̈).

According to equation (4), the approximate intersection point pair will be (θ̇int, θ̈int) ≈
(θ̇ + �θ̇, θ̈ + �θ̈). An iterative algorithm is easily created by taking this new point pair
as the new initial guess and repeating the procedure from equation (5), repeating until an
intersection is found (d(ẏ, ÿ) < ε�), or some failure criterion is met (if d(θ̇, θ̈) < ε�, if not
θ̇, θ̈ ∈ � or if some threshold number of iterations has been exceeded). See algorithm 1 for
details.

Since the algorithm considers two points in model space simultaneously, we refer to it as
a Bifocal Newtonian algorithm . It belongs to the class of Newtonian optimization algorithms
and has the same well-studied conversion properties (Dennis and Schnabel 1983) as the rest
of the class. Newtonian algorithms are widely used in inverse problems to find a particular
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solution θ given an observation y, since they are efficient and simple to implement (Tarantola
and Valette 1982b). Our algorithm does something completely different: it updates two
points θ̇ and θ̈ simultaneously in order to find non-unique solutions �ξ(θ̇) = �ξ(θ̈), not in
relation to one particular observation y, but also to any possible observation. It is a tool for
investigating the properties of the whole forward function �ξ with respect to non-uniqueness,
not just in relation to one particular observation, but even before any observation has been
made.

The partial derivatives of ∂�ξ/∂θ will typically be evaluated using some numerical
differentiation scheme, the choice of which can influence the behavior of the algorithm. The
choice of differentiation scheme can also influence whether or not non-smooth functions will
be differentiable at all points.

Algorithm 1 : Bifocal Newtonian algorithm for finding intersections point pairs

Input :

θ̇, θ̈ starting guess for model parameters
ξ control parameters
ε�, ε� precision limits in � and �, respectively.

Output :

θ̇, θ̈ point in � × � so that
(a) d(θ̇, θ̈) < ε� (failure) or
(b) d(�ξ(θ̇),�ξ(θ̈)) < ε� (success){

vnull
i

}
orthonormal vectors in � × � spanning intersection space

J̇, J̈ Jacobians at points θ̇ and θ̈

while d(�ξ(θ̇),�ξ(θ̈)) > ε� do⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẏ ← �ξ(θ̇)

ÿ ← �ξ(θ̈)

J̇ ← ∂�ξ

∂θ̇
(θ̇)

J̈ ← ∂�ξ

∂θ̈
(θ̈)

// Perform Singular Value Decomposition of
[
J̇ |−J̈

]
({ui}, {σi}, {vi},

{
vnull

i

}) ← svd
([

J̇ |−J̈
])

[
θ̇

θ̈

]
←

[
θ̇

θ̈

]
+

∑
i

viσ
−1
i uT

i (ÿ − ẏ)

// End loop if d(θ̇, θ̈) → 0 or if d(ẏ, ÿ) diverges

if (θ̇, θ̈) /∈ � × � or d(θ̇, θ̈) < ε�

� θ̇ ← θ̈
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Figure 3. Example of different types of non-uniqueness. (a) A scalar forward function � with a
plateau region where the Jabobian is singular. (b) The space � × � of all point pairs (θ̇, θ̈) along
with compressed versions of (a) aligned with the two axes. The tinted area consists of intersection
point pairs (θ̇int, θ̈int). The square G corresponds to the ‘plateau’ and the line H intersection point
pairs with one point on each of the two ‘slopes’ of �.

2.3. Relations to locally singular Jacobians

If applied to a linear forward function �, algorithm 1 in a single iteration will give an
intersection point pair separated by a vector in the null space of �, or fail finding an intersection
point pair if no null space is present.

Local singularities of the Jacobian J is a one possible cause for the presence of intersection
point pairs—but not the only one, as we have seen above. Figure 3 shows how different causes
may contribute to non-uniqueness in a simple one-dimensional example.

Taking the analysis of figure 3 a bit further, one can note that the intersection points pairs
outside the square here form a straight unidimensional manifold in the two-dimensional space
� × � (and not simply discrete points as in figure 1). Such manifolds will generally not be
straight, but their local tangent plane in � × � will be spanned by the null space

{
vnull

i

}
of the

matrix
[
J̇ |−J̈

]
at any point (θ̇int, θ̈int) on the manifold, a fact that can be used to improve

the efficiency of sampling such manifolds in higher dimension. A different way of visualizing
an intersection manifold in a 2-dimensional model space � can be found in figure 6.

2.4. Uncertainty in observations and parameters

If there is uncertainty present in the observation s, it can be taken into account by adding an
additional term ε to the right-hand side of equation (1):

y = �ξ(θ) + ε, (8)

where ε is a random error that lies within some nonnegative error bound ε�/2 so that
‖ε‖ < ε�/2. This implies that the actual observation y will lie within some neighborhood
Bθ of �ξ(θ) within the error bound ε�/2:

Bθ =
{
y ∈ � : d(y,�ξ(θ)) <

ε�

2

}
, (9)

where d(y,�ξ(θ)) is the distance between measured and predicted observations in �.
Having made an observation y, there will be a set Ay ⊂ � of possible values of the

parameters θ that could have given rise to the observation:

Ay = {θ ∈ � : y ∈ Bθ} (10)

6
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Figure 4. An example of an intersection point pair (θ̇int, θ̈int) with sets of possible observations
B

θ̇
int and B

θ̈
int , both with an error bound ε�. For one ambiguous observation y ∈ B

θ̇
int ∩ B

θ̈
int ,

the set Ay of possible values of the parameters is depicted along with its error bound ε[Ay ].

The error bound ε[Ay] on estimates of parameter θ given such an observation will then be
the maximum distance between any two points in Ay:

ε[Ay] = diam[Ay] = sup
θ̇,θ̈∈Ay

d(θ̇, θ̈). (11)

It is convenient to set an acceptable error bound ε� > 0 for parameter estimates, so that only
observations y for which ε[Ay] > ε� have to be considered.

For every pair of points θ̇, θ̈ ∈ Ay their respective sets of possible observations Bθ̇ and
Bθ̈ will intersect so that

Bθ̇ ∩ Bθ̈ �= ∅. (12)

We will therefore refer to pairs of points (θ̇, θ̈) for which d(θ̇, θ̈) > ε� and Bθ̇ ∩ Bθ̈ �= ∅
as {intersection point pairs} (θ̇int, θ̈int), by analogy with the deterministic case described in
section 2.1. As a consequence of equation (9), d(�ξ(θ̇

int
),�ξ(θ̈

int
)) < ε�. An illustration

can be found in figure 4.
The ‘precision limits’ in algorithm 1 are equivalent to error bounds when accounting for

uncertainty. The algorithm will return any examples it can find of intersection point pairs with
d(θ̇int, θ̈int) that exceeds the acceptable error bound ε�. If, for a particular design ξ, no two
points θ̇ and θ̈ further apart than ε� give observations ẏ and ÿ closer than ε�, the algorithm
will not find any intersection points.

3. Quantifying and reducing non-uniqueness

3.1. Quantifying non-unique solutions

Every intersection point pair will be separated by a distance d(θ̇int, θ̈int). The collection of
all intersection point pairs (θ̇int, θ̈int) will form a subset � of � × �. One way of measuring
the total amount of ambiguity and how different, on average, the ambiguous solutions are is
to take the integral of some positive, strictly increasing function f of d over the whole subset
� of intersection point pairs:

V [�] =
∫

θ̇∈�

∫
θ̈∈�

f (d(θ̇, θ̈))i(θ̇, θ̈) dp� dp� (13)

where i(θ̇, θ̈) = 1 when (θ̇, θ̈) is an intersection point pair, 0 otherwise, and dp� is some
probability measure representing prior knowledge on � so that if P(X) denotes the probability
of event X, then P(θ ∈ �) = 1 and P(θ ∈ A) = ∫

θ∈A
dp� for any measurable subset A ⊂ �.

The integral in equation (13) can be estimated using Monte Carlo methods by,

V [�] ≈ 1

N

N∑
l=1

f (d(θ̇l , θ̈l))i(θ̇l , θ̈l) (14)

7
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Figure 5. Analysis if convergence of the Bifocal Newtonian algorithm as a function of starting
point pair, applied to the forward function in figure 1. The graph shows the set �×� of all possible
point pairs. The sizes of the respective convergence regions give a 99.9% chance of finding both
intersections in figure 1 by repeating the algorithm 50 times, each time using a different uniformly
random starting point pair.

where {θ̇l} and {θ̈l} are sampled according to the prior probability measure dp�. This may,
however, be inefficient since � usually covers a tiny fraction of � × � so that i(θ̇l , θ̈l ) = 0
for almost all pairs (θ̇l , θ̈l ) selected according to the prior probability distribution p�.

On the other hand, a similar quality measure that can be evaluated with great efficiency is

T [�] =
∫

θ̇∈�

∫
θ̈∈�

f (d(θ̇int, θ̈int))j (θ̇, θ̈) dp� dp�, (15)

where j (θ̇, θ̈) = 1 when the Bifocal Newtonian algorithm, starting at (θ̇, θ̈), converges to an
intersection point pair (θ̇int, θ̈int) and j (θ̇, θ̈) = 0 otherwise.

Compared to equation (13), each intersection point pair (θ̇int, θ̈int) in equation (15) will
be ‘over sampled’ by a factor proportional to the size of the subset of �×� where the Bifocal
Newtonian algorithm converges to (θ̇int, θ̈int). This is illustrated in figure 5.

The integral in equation (15) can also be estimated by Monte Carlo methods

T [�] ≈ 1

N

M∑
l=1

f
(
d
(
θ̇int

l , θ̈int
l

))
, (16)

where
{(

θ̇int
l , θ̈int

l

)}
is the set of M intersection point pairs that were found from N � M

initial starting point pairs {(θ̇l , θ̈l)}, the latter again sampled according to the prior probability
measure dp�.

Minimizing T [�] in equation (15) is equivalent to minimizing the sum of f applied to
each of the distances between the intersection point pairs

{(
θ̇

int
l , θ̈

int
l

)}
that have been found.

This goal is similar to the strategy of (Curtis and Spencer 1999) , but our new algorithm for
finding the self-intersection points make this method more computationally tractable.

3.2. Optimizing control parameters to reduce non-uniqueness

We now show how to minimize the uncertainty measure defined in equation (16) with respect
to the design ξ for the case of f (d(θ̇, θ̈)) = |θ̈ − θ̇|2, that is f (x) = x2. Say,

{(
θ̇int

l , θ̈int
l

)}
8
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Figure 6. Left: points on intersection manifold; dotted lines connect points that map on to the
same point in observation space. Right: evolution direction of intersection points with a small
perturbation of ξ.

is a set of M detected intersection point pairs on N attempts, we want to find a design ξ that
minimizes equation (16), in this case,

T [�] ≈ 1

N

M∑
i=1

∣∣θ̇int
i − θ̈

int
i

∣∣2
. (17)

Making a linear extrapolation according to ∂θint/∂ξ (how the intersection point pairs
move under perturbations of ξ), equation (17) may be rewritten

T [�] ≈ 1

N

M∑
i=1

∣∣Hi�ξ + �θint
i

∣∣2
, (18)

where �ξ represents a change in control parameters ξ,�θint = θ̇
int − θ̈

int
, and Hi = ∂

∂ξ
�θint

i .
Equating the derivative of equation (18) with respect to �ξ to zero (corresponding to

finding an extremum of T [�] with respect to design ξ), one obtains,
M∑
i=1

HT
i Hi�ξ = −

M∑
i=1

HT
i �θint

i (19)

from which �ξ that minimizes (18) can be calculated:

�ξ = −
[

M∑
i=1

HT
i Hi

]−1 M∑
i=1

HT
i �θint

i . (20)

The matrix inverse −1 can be a pseudo-inverse in the case that the matrix is singular; it is,
however, unlikely to be so as long as the number of control parameters does not approach the
number of sampled intersection point pairs.

After a new design has been calculated by ξnew = ξold + �ξ, the set of intersection points{(
θ̇int

l , θ̈int
l

)}
have to be updated using the Bifocal Newtonian algorithm. If they have not

all been eliminated, a new iteration of equation (20) can be performed. Algorithm 2 is an
unconstrained iterative optimization algorithm to find a locally optimal design based on this
approach.

4. Application: seismic location

In a seismic location experiment, the waves from a seismic event propagate through some
inhomogeneous medium for which the structure is assumed to be known. The waves are
recorded by detectors at the surface or in boreholes. The seismic event will generate both

9
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pressure (P) and shear (S) waves that travel at different speeds through the medium. It is,
therefore, possible to deduce the distance from the detector to the source by recording the
difference in arrival times for the two wave types (Tarantola and Valette 1982b). In isolation,
the data from each detector will thus yield a manifold of possible source locations, with size
dependent on the difference between arrival times for pressure and shear waves (the travel
time difference contours in figure 7). Combining the data from several detectors rules out all
locations but those on the intersection between the manifolds.

Algorithm 2 : Find locally optimal design ξ

Input :

ξ initial guess for design ξ

jinit number of intersection searches to perform initially
jincr. number of new intersection searches after each change in ξ

dξ vector of smallest finite differentiation steps in 	

dξmax vector of largest finite differentiation steps in 	

ε�, ε� precision limits in � and � respectively

Output : ξ locally optimal design

ϒ ← {jinit random point pairs (θ̇, θ̈) ∼ p�}
repeat

M ← 0 · ξξT

v ← 0 · ξ

foreach (θ̇, θ̈) ∈ ϒ do⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϒ ← ϒ − {(θ̇, θ̈)}
(θ̇, θ̈) ← Bifocal Newtonian algorithm(θ̇, θ̈, ξ, ε�, ε�) // (algo. 1)

if θ̇ �= θ̈ then ϒ ← ϒ + {(θ̇, θ̈)}
for i ← 1 to k do // Differentiate with respect to ξ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dξ′ ← 0 · ξ

dξ′
i ← dξi/2

repeat // Assure dξ′ is big enough to change (θ̇, θ̈)

dξ′ ← 2dξ′ (algo. 1):

(θ̇′, θ̈′) ← Bifocal Newtonian algorithm (θ̇, θ̈, ξ + dξ′, ε�, ε�)

until d(θ̇, θ̇
′
)2 + d(θ̈, θ̈

′
)2 > 2ε2

� or dξ′
i > dξmax

i

gi ← 1
dξ′

i
(θ̇

′ − θ̈
′ − θ̇ + θ̈)

for i ← 1 to k do⌊
for j ← 1 to k do Mij ← Mij + gT

i gj

vi ← vi + gT
i (θ̇ − θ̈)

ξ ← ξ − M−1v

ϒ ← ϒ ∪ {jincr. random point pairs (θ̇, θ̈) ∼ p�}
until convergence or divergence of ξ is assured

10
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With an inhomogeneous velocity distribution in the medium, the manifolds are irregular
and might intersect at several different locations. In that case there will be several different
candidate locations for the true source. It is of great interest to be able to analyze the geometry
of the problem to detect such combinations of arrival times that give rise to ambiguous
locations, as well as to quantify how distant the multiple possible locations might be from
each other. The detector locations might then be chosen to minimize the expectation of this
distance, post-experiment. Similar location problems are found in medical imaging and source
tracking, general imaging and source location problems in exploration seismology (e.g. for
scatterer location or to locate subsurface well trajectories), GPS, emergency beacons, etc.

To illustrate our method clearly, we applied the methods above to design a schematic 2D
location problem. The Bifocal Newtonian algorithm was applied repeatedly with different
starting points to find pairs of locations (θ̇int, θ̈int) that would yield the same detected time
differences y between pressure and shear wave arrival time at the detectors. The design
algorithm was then applied to find the optimal location of the detectors on the ground
surface.

The velocity model of the medium used was a background linear increase in velocity
difference �v = vP − vS between P and S wave velocity with respect to depth z, plus a
significant perturbing random variation ε of up to ±1500 ms−1 (figure 7(d)),

�v = 2500 [ms−1] + 1.1z + ε. (21)

The S–P travel time difference was calculated using a 2D numerical solution of the Eikonal
equation in an elastic medium.

Figure 7(a) shows an example of a typical result of algorithm 1 (repeated many times with
different random starting point pairs) for a setup using two receivers separated by 2048 m.
Contours of travel time difference for each receiver are shown by curved lines. Straight lines
are drawn between each pair of locations that were found to give rise to the same P–S arrival
time differences (i.e., if an event occurred at one end of any line, the travel time difference
would be indistinguishable from the case where an event occurred at the other end). The
precision limits were set to ε� = 80 m so that point pairs closer than 80 m are considered
to represent ‘acceptable’ ambiguity and ε� = 5 ms corresponding to about one per cent
uncertainty in arrival time detection. The result is a large number of point pairs in a fan shape
between the two detectors, forming an ordered structure of the direction of the maximum
uncertainty created by this experimental design.

If a third detector is added in the middle of the existing ones, the ambiguous points
are almost completely eliminated, with only a few relatively close point pairs remaining
(figure 7(b)).

In order to find the optimal design of an experiment using only two detectors, the design
algorithm described above was applied to search for the value of the distance ξ between two
detectors that minimizes the sum of the squared distances between all intersection point pairs
(θ̇int, θ̈int) found.

The algorithm converged to a value of ξ = 1280 m, which gave the distribution of
ambiguous location pairs shown in figure 7(c). The straight lines are shorter than those in
figure 7(a), showing that if any one location is found post-experiment, although ambiguity
still exists the alternative possible location will always be relatively proximal no matter where
the true event occurs in the section of the earth considered.

It is important to note that the optimal distance ξ is dependent on the velocity profile
of the medium. The optimal design must, therefore, be computed for each velocity profile
individually.
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Figure 7. Surface detectors (squares) for a source location problem, each with P–S travel time
difference contours (light lines). Bold straight lines connect pairs of ambiguously resolved seismic
source locations, sampled randomly using the Bifocal Newtonian algorithm. (a) Initial two-
detector configuration. (b) Three-detector configuration, eliminating almost all location ambiguity.
(c) Optimized two-detector configuration, eliminating most of the location ambiguity. (d) Velocity
profile of the medium.

5. Discussion and conclusions

We have presented two novel algorithms: the first one can be used to sample the set of non-
unique solutions to an inverse problem prior to any data being acquired, and the second to
reduce the prevalence of these non-unique solutions. These algorithms are applicable not only
to location problems, but to a wide range of investigation techniques in physics, chemistry and
biology.

The algorithms are designed to optimize methods of parameter estimation, where the result
will be represented as a best fit value of the parameters θ with error bound ε�. The rather crude
error bound representation of uncertainty is a necessity for the intersection approach to work.
If one wishes to account for full probability distributions when designing an investigation
technique, more traditional Monte Carlo methods are necessary but their numerical efficiency
is orders of magnitude lower than the methods we present.

In the field of statistical experimental design, approaches for minimizing the same squared
distance between the most distant ambiguous solutions to an inverse problem have been
developed for the case when the forward function �ξ is linear. This is generally referred to as
E-optimality criterion (Pázman 1986, p 90).

There is some literature on what is generally referred to as Bayesian experimental design
considering nonlinear models (Chaloner and Verdinelli 1995), which one might be tempted to
believe addresses the problem of parameter estimation for nonlinear models in general. This
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is unfortunately not the case, since it is exclusively based on the assumption that there are no
self-intersections of �ξ, and thus no increase in uncertainty due to nonlinearity (Curtis and
Spencer 1999, van den Berg et al 2003).

A limited amount of work has been done that is applicable to the full nonlinear case,
optimizing designs with respect to the expected gain in Shannon information—an approach
introduced by (Lindley 1956). Such a measure of non-uniqueness does not take into account
the distance between multiple solutions, but rather relates only to how many there are (or
how large total volume they occupy in model space). Algorithms for the numerical evaluation
of expected gains in Shannon information in the fully nonlinear case have been studied by
(Müller 1999, van den Berg et al 2003), as well as (Ryan 2003). If applied to the location
problem of section 4, such a measure would lead to reduction of uncertainty in the location of
each point of the point pairs in figure 7(a), rather than reducing the inter-pair distance as our
method achieves in figure 7(c).

For probabilistic inverse problems, Markov Chain Monte Carlo (MCMC) methods
for sampling the posterior probability distribution are nowadays widely used beside more
traditional methods. If the samples created by these methods truly follows the posterior
distribution, they will pick up any distant and separate probability peaks—corresponding to
non-uniqueness in the situations discussed above. The way most MCMC sample generators
work will, however, not generate a ‘true’ sample in these cases, since each sample generated
in the sequence is usually in some sense close to the previous sample. Thus, if there is a large
gap between different probability peaks, there is relatively little chance that the sampler will
‘jump’ from one peak to the other within a reasonable sampling time. So, even if MCMC
methods are to be used to solve particular instances of an inverse problem, it might be useful
to try to detect and reduce the occurrence of distant ambiguous parameter values in order
to make the MCMC algorithm both efficient and more accurate within a finite computing
effort.

Optimal designs using our new method naturally tradeoff estimated uncertainty due to
self-intersections of �ξ and uncertainty due to the local Jacobian of �ξ becoming poorly
conditioned. Figure 7(c) provides an example of this: while the intersection-related ambiguous
pairs close to the surface get closer when moving the detectors closer together, new point pairs
appear deeper down due to the travel time contours becoming more and more parallel.

In conclusion, the numerical efficiency of the algorithm allows for its application to far
more complex problems than the 2D-location example presented here. We believe it has
a great potential to help in designing experiments using other investigation techniques of
higher dimension, especially since more self-intersections are likely to appear the higher the
dimensionality of the problem, thus requiring a design method that takes their effects into
account.
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