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Figure 1:   A simple case with one single parameter of interest and with a nonlin-
ear relation to two obsereved variables is depicted to the right, with one probe-
matic observation at the self-intersection of the curve corresponding to two dif-
ferent points in the range of the parameter of interest. 
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Figure 1: Example of the most simple case of an ambiguous data point due
to self-intersection of the forward function. A linear 1-dimensional model
spaceis mapped by Φ onto a 2-dimensional observation space. Dashed lines
show linear approximations of Φ around the points θ̇ and θ̈.
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Figure 2:   A 2D-space spanned by two model parameters is observed by three 
variables, where a self-intersection gives a line of ambiguous observations cor-
responding to a manifold of distant point pairs (of which tree are depicted), 
yielding the same observation. 
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Figure 3: Evolution of intersection points with ξ
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Figure 3:   Evolution of intersection point pairs under perturbations of a design 
parameter, affecting the shape of the relation between model parameter (af in-
terest) and observed variables.

We propose a novel measure of the quality of any investigation technique that accounts for effects on parameter es-
timation due to nonlinear model-data relationships. Computational algorithms are derived that enable its effi cient 
numerical estimation, as well as the optimisation of an experimental design by maximising the quality measure. 
Thus, this work makes designing robust geophysical remote sensing surveys and experiments feasible. The effi cacy 
of the approach is illustrated by designing a seismic location experiment.

Why?
Enormous sums of money are invested annually on academic and industrial geophysical remote sensing surveys. Yet, methods 
used to design such surveys are rudimentary, usually based on heuristics (rules of thumb) and linearised physics due to the com-
plexity of nonlinear design problems. Introducing methods to improve the basic information content of recorded geophysical 
data should lead to greater effi ciency and value for money (Curtis and Maurer, 2000).

The fi eld of Statistical Experimental Design deals with the problem of fi nding the experimental (equivalently, survey) design 
(e.g. detector types and locations) that gives the best estimate of the model parameters in terms of accuracy, robustness, or any 
other desirable design criterion. It is a well-established branch of statistics (Atkinson and Donev, 1992; Pukelsheim, 1993) and 
has been applied to a number of different scientifi c investigation techniques, including geophysics (Rabinowitz and Steinberg, 
1990; Steinberg et al., 1995, Curtis, 1999).

Design theory based on a linearised approximation of the relation between model parameters and measured data does not take 
into account changes in the design criterion due to nonlinear effects which are common in geophysics, making resulting designs 
non-robust. This work provides a systematic approach for detecting and quantifying such effects, as well as a design optimisa-
tion algorithm for their reduction and -- if possible -- elimination.

Survey goals are usually to estimate material properties, or to locate sources (or receivers) of wave-based energy using detectors 
at a few locations. We focus here on geophysical location problems, examples of which include monitoring seismic or nuclear 
test activity, surface geodetic or subsurface active source or receiver positioning, and localising secondary sources of wave scat-
tering. 

The Problem
When there is a nonlinear relation between 
the parameters of intrest and the observed 
data, it is possible to have observations that 
correspond to several different parameter 
combinations. These ambiguous abserva-
tions will corresond to self-intersectinos of 
the function predicting observations.

Two schematic examples are shown to the 
right (fi gures 1 and 2).

Finding Ambiguous 
Observations

It is possible to search for intersection point 
pairs using a modifi ed version of Newton’s 
method for fi nding roots of an equation. 
Starting with an initial guess of an inter-
section point pair, a linear approximation 
around each of the points can be used to 
fi nd an approximate intersection (see fi gure 
1). Updating the initial guess with the ap-
proximation and repeating the procedure, 
an iterative algorithm has been constucted 
that will converge to the a point pair on the 
real intersection, provided the initial guess 
is close enough.

By repeating the intersection search algo-
rithm many times using different random 
starting points, a sample of the intersection 
maifolds can be created (in fi gure 2 these is 
a 3-point pair sample of an intersection line 
manifold).

Improving the Design
By studying how the intersection point pairs 
move when changing the design of the in-
vestigation technique, it is possible to con-
stuct an algorithm for reducing the distance 
(on average) between the two points of each 
pair. The goal is to get them as close as pos-
sible, or to completely coincide - equiva-
lent to the ambiguity of the corresponding 
observation to disappear.

Application: Seismic location
In a seismic location experiment, the waves from a seismic event propagate through some 
inhomogeneous medium for which the structure is assumed to be known. The waves are 
recorded by detectors at the surface or in boreholes. The seismic event will generate both 
pressure and shear waves that will travel at different speeds through the medium. It is 
therefore possible to deduce the distance from the detector to the source by recording the 
difference in arrival times for the two wave types. 

In isolation, the data from each detector will thus yield a manifold of pos-
sible source locations, with size dependent on the difference between ar-
rival times for pressure and shear waves. Combining the data from several 
detectors rules out all locations but those on the intersection between the 
manifolds.

With an inhomogeneous velocity distribution in the medium, the manifolds are 
less regular and might intersect at several different locations. In that case there 
will be several candidate locations for the source. It is of great interest to be 
able to analyse the geometry of the problem to detect such combinations of 
arrival times that give rise to ambiguous locations, as well as to quantify how 
distant the multiple possible locations might be from each other. The detector 
locations might then be chosen to minimise the expectation of this distance, 
post-experiment.

The intersection search algorithm was applied repeatedly with different starting 
points to fi nd pairs of locations that would yield the same observed time differ-
ences between pressure and shear wave arrival time at the detectors.

The velocity profi le that was used was a background linear increase in velocity 
difference between pressure and shear wave velocity with respect to depth with 
a  signifi cant perturbing random variation of on the order of order 1500 m/s. The 
profi le only varies with depth and has no variation in the lateral directions.

For a distance of 2048 m between the two simulated detectors, a sample of the 
resulting ambiguous locations are shown in fi gure 4a.

If a third detector is added in between the two existing, almost all ambiguity  in 
possible detected locations is eliminated (fi gure 3b).

Finally an iterative optimisation algorithm was applied to minimise the sum of 
the squared distances between the two points of each intersection point pair. It 
converged to an optimal distance of 1280 m between the detectors, which gave 
the distribution of ambiguous location pairs shown in fi gure 4c. The lines are 
shorter than in fi gure 4a, meaning that although ambiguity still exists, the alter-
native possible location will always be relatively proximal no matter where the 
true event occurred. The short lines at that have appeared at the deeper range 
correspond to lateral uncertainty due to the angles to the two detectors becom-
ing more and more similar for events at increasing depth.

Application: Travel Time Tomography
In travel time (cross well) tomography, seismic waves will travel trough inhomogeneous medium just as in the location problem, 
with the main difference being that the source position is known but velocity profi le unknown. We used a 3x3 point velocity 
grid (in two dimensions) with linear interpolation of the velocity in between the defi ned points. Travel times were calculated for 
at six detector locations for waves originating at two different sources, making up a total of 12 arrival times. One could believe 
that 12 observed variables should be enough to determinate the 9 velocity parameters of interest (which is also what is assumed 
in standard seismic inversion methods), but our algorithm for fi nding ambiguous observations shows this is not necessarily the 
case.

The intersection search al-
gorithm was applied on pairs 
of random velocity profi les, 
in search of pairs of profi les 
that give rise to the same 
observed combination of 
arrival times. Three exam-
ples of such pairs that were 
found is shown below. Even 
though the velocity profi les 
and travel paths are radical-
ly different, the travel times 
are identical.

If standardised tomograph-
ic inversion methods based 
on local linearization was 
applied to calculate the ve-
locity profi le for one of the 
ambiguous observed travel 
times below, it would either 
one or the other of the two 
possible velocity profi les, 
depending on what profi le 
was used as starting point.

In high dimensional non-
linear problems — such as 
travel time tomography — 
there will in fact almost al-
ways be an infi nite number 
of intersection point pairs. 
This is a consequence of the 
multitude of possible ways 
for a function to “curl up on 
itself” in high dimension. 

Our method provides an ef-
fi cient way of detecting the 
extent of such problems.

In many cases, the ambigu-
ity of certain observations 
can be resolved just by in-
creasing the amount of ob-
served data (as in fi gure 
4b), but it may sometimes 
not be the best option due to 
cost or other constraints. Is 
such cases, an optimisation 
approach as described may 
provide a design with satis-
factory precision.
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Figure 2: Points on intersection manifold
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Figure 4a:   Initial two-detector confi guration at distance of 2048m

Figure 4c:   After optimisation, surface detector distance = 1280m

Figure 4b:   3-detector version

Figures 4a-c:    Surface detectors for source location, each with travel 
time contours in red. Solid lines connect pairs of ambiguously resolved 
seismic source locations, sampled randomly using the intersection search 
algorithm. Figure 5:   Pairs of velocity profi les that give rise to the same obsered travel times:  Two simu-

lated sources to the left and six simulated recievers to the right, along with observed travel 
times (two for each reciever) in seconds. Colour-velocity scale (in m/s) is in between each pair. 
Shortest travel paths are shown in blue and travel time contours in white.


