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The concept of Fisher Information with respect to a Translation parameter (referred to as FIT) is 
investigated and refined in order to obtain independence of choice of coordinates. Novel results are 
presented relating the expected gain in FIT (prior to post experiment) to the Bayesian classical Fisher 
Information, equivalent to the average sensitivity of the experiment.

Introduction

The Fisher Information has been used extensively throughout the development of 
the theory of optimal experimental design, for linear normal models. The theory 
has also been extended to nonlinear models (Bayesian Experimental Design) 
through local linearization of the model-data parameter relationship.

There are however problems with using the Fisher information in this way. First, 
the Fisher Information is (unlike e.g. the Kullback-Leibler distance) dependent on 
choice of coordinates, as well as the choice of measure with respect to which the 
probability densities are defined, so experiment optimality is not universal but 
dependent on parameterization. Secondly, Bayesian Experiment Design theory is 
based on the (often unstated) assumption that all posterior distributions are 
unimodal or approximately normal. This is generally not the case for nonlinear 
models and it is all but trivial to know if this assumption is fulfilled.

The following analysis present a coordinate-independent measure for experiment 
quality that do not assume anything but differentiability about posterior 
distributions
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The Fisher Information with respect to Translation parameters (FIT) 
Given a space Θ  with elements θ ∈Θ , equipped with a measure dΘ  and a 
probability density ( )p θ  so that ( ) 1p d

θ

θ
∈Θ

Θ =∫ , Cover et al. defined the Fisher 

Information with respect to a Translation parameter  
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since it is equal to the classical Fisher Information of a conditional probability 
density ( | )p yθ  
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when the conditional parameter y θ= , corresponding to a translation of the 
probability density ( | )p yθ .  

[ ]TJ Θ  as defined in equation (1) is however dependent on the choice of 
coordinates θ  of Θ . In order to get around that problem, one can introduce a 
coordinate independent metric ( )θg  on Θ , represented by a metric tensor with 
components ( )ijg θ , with an inverse 1( )θ−g  with components ( )ijg θ . This permits a 
coordinate-independent, scalar definition of FIT 
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where summation convention is used over coordinate indices i and j. 

Interpretation of the FIT 
The FIT as defined in equation (3) may be thought of as a squared surface-to-
volume ratio of the probability distribution represented by ( )p θ .  A probability 
distribution that is confined to a small volume will have a smaller value of the FIT 
than one which is spread over a larger volume. However, a probability density 
which is stretched out into a thin “sheet” or divided into numerous small “dots” will 
also have a high FIT (see figure 1 below). 

Figure 1

Examples of two parameter probability distributions. 
(a), (c) and (d) have a higher FIT compared to (b)
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Equality of expected gain in FIT and average sensitivity 
The gain in FIT of an experiment after an observation y  is [ ] [ ]|J y JΘ − Θ . When designing an experiment, one may be 
interested in maximizing the expected gain in FIT. The expected FIT of a conditional probability distribution ( | )p yθ  and 
a marginal probability density ( )p y  can be defined 

 [ ] [ ]| ( ) |
y

J p y J y d
∈Ω

Θ Ω = Θ Ω∫    . (4) 

This allows for defining the expected gain in FIT as [ ] [ ]|J JΘ Ω − Θ . In order to easily compute this expected gain, it is 
necessary to first define a coordinate independent version of the classical Fisher information defined in equation (2) 
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[ ]|Jθ θΩ  can be interpreted as a measure of the sensitivity of the observed parameters y∈Ω  to changes in the model 
parameters θ . The average (or, expected) [ ]|Jθ Ω Θ   is defined as in equation (4).  

 [ ] [ ] [ ]| |J J JθΘ Ω − Θ = Ω Θ    . (6) 

Application to nonlinear experiment design 
In a typical experiment design situation, one wishes to determine the value of some model parameter θ ∈Θ  by observing 
some data variables y∈Ω  where the probability of making a particular observation ( | , )p y θ ξ  given θ  and experiment 
design ξ  is known, along with a prior probability distribution ( )p θ . Having made an observation y , the posterior 
probability distribution can be calculated using Bayes’ formula ( | , ) ( | , ) ( ) / ( | )p y p y p p yθ ξ θ ξ θ ξ= . 

To estimate the expected information gain [ ] [ ]|J JΘ Ω − Θ , one normally needs to calculate [ ]|J yΘ  for all possible 
posteriors given all observations y∈Ω . This is generally computationally challenging, even using efficient MCMC 
algorithms.  
The implication of equation (6) is that it is not necessary to compute any posterior distributions, one can simply compute 

[ ]|Jθ θΩ  for all (or a MC sample of) points in model space θ ∈Θ . This is largely feasible for a wide range of problems, 
even in rather high dimension.  
Worth noting is that equation (6) is applicable to all differentiable models, without making any assumptions or 
approximations on the shape of the posterior distributions. The computed expected information gains are also independent 
on choice of coordinates θ  and y  on Θ  and Ω . 

Example 
A single model parameter  [0..π]θ ∈Θ =  with a homogeneous prior probability 
density ( ) 1/ πp θ =  is to be estimated by observations of y  whose relation to θ  is 
described by the conditional probability density 
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which describe a sine curve with Gaussian measurement noise (see figures 2 and 3). 
The experiment design parameter ξ  is a positive integer determining the frequency 
of the curve. 
Figures 4 and 5 shows the dependence of expected gains in Shannon Information 
and FIT, respectively. 

Figure 2
Joint probability density of experiment in example, for design parameter ξ =1. Posterior 
probability density shown for an observation y=0.5. 

Figure 3
Joint probability density of experiment in example, for design parameter ξ =2. Posterior 
probability density shown for an observation y=0.5. 
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Comparison to the Shannon Information 
The Shannon Information is the most commonly used quality criterion in 
experiment design. It is usually defined 

 [ ] ( )( ) log ( )I p p d
θ

θ θ
∈Θ

Θ = Θ∫   . (7) 

Defining the expected Shannon Information of a conditional probability 
density [ ]|I Θ Ω  as in equation (4), one can derive a theorem similar to 
equation (6) for calculating the expected gain in Shannon Information (see 
Lindley, 1956) 
 [ ] [ ] [ ] [ ]| |I I I IΘ Ω − Θ = Ω Θ − Ω   . (8) 

This also allows for the calculation of expected information gains without 
the need of computing all possible posterior distributions, but the term 

[ ]I− Ω  (equal to the entropy of the Shannon Entropy of the marginal 
distribution in data space Ω ) is not trivial to estimate. Numerical MC 
methods have been used (see Ryan, 2003 or van den Berg, 2003), but it 
remains much more challenging than computing expected gains in FIT 
using equation (6). 

The exponential of the Shannon Entropy [ ]( )exp I− Θ  may be interpreted 
as a measure of the volume covered by a probability distribution. This 
implies that stretching out a probability distribution or dividing it up in 
several peaks as in figures 1 (a, c and d) will not affect the value of 
Shannon Information, as long as the volume covered is the same. An 
example of this can be seen in the example to the right. 

Figure 4

Expected gain in FIT as function of design 
parameter 

Figure 5

Expected gain in Shannon Information as 
function of design parameter 


