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Language …
• Let random variables span over linguistic events: 

• Phonemes, letters, syllables, words … 

• Such events are not uniformly distributed, and are 
conditioned by the linguistic context 

• We know this from linguistic theories at all levels 

• To determine the entropy of language we need 
probabilistic models of linguistic events in context



Language Modeling
• Problem:  determine the probability of next word, 

given the previous words 

• Find Wn which maximises P(Wn|W1 ... Wn-1) 

• The better the model encodes the (probabilistic) 
structure of language, the more accurate it will be 

• But building language models is difficult!



Language Modeling
• Find Wn which maximises P(Wn|W1 ... Wn-1) 

• Not practical, because of sparse data 

• Group contexts into equivalence classes, or “bins” 

• Markov assumption:  Wn depends on immediately preceding 
words: 

• N-grams:  use N-1 preceding words 

• Problem:  If Vocabulary is 20 000 then 
 
 

N-Gram Parameters
0th Order 20K
1st Order 400M
2nd Order 8T
3rd Order 1.6x1017

Maximal likelihood 
estimation (MLE)

• Conditional Probabilities: 

• Estimate P, using relative frequency: 

• Counts are obtained from a training corpus
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PMLE (wn |w1...wn−1) =
C(w1...wn )
C(w1...wn−1)
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P(wn |w1...wn−1) =
P(w1...wn )
P(w1...wn−1)

PMLE (w1...wn ) =
C(w1...wn )
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Entropy rate
Since information in a message depends on message length, we often normalize 
to the per-letter/per-word entropy rate: 

• “Language” is a stochastic process generating a sequence of tokens,  
L=(Xi) e.g., all the words you hear, utter, appear in Die Zeit, etc... 

• We define the entropy of the language as the entropy rate for that process: 

• Recall:  

• Or, “the entropy rate of language is the limit of the entropy rate of a sample of 
the language, as the sample gets longer and longer” (Manning &Schütze)

€ 

Hrate =
1
n
H(X1,...,Xn ) =

1
n
H(X1n ) = −

1
n

p(x1n )log2 p(x1n )
X1n

∑

Hrate(L) = limn→∞

1
n
H (X1, ..., Xn )

H(X1,..., Xn ) = H(X1) +H(X2 | X1 ) + ... +H (Xn | X1,..., Xn −1)

Mutual Information
• Recall: chain rule for entropy:  

                 H(X,Y) = H(X) + H(Y|X) = H(Y) + H(X|Y) 

• Therefore: H(X) - H(X|Y) = H(Y) - H(Y|X)   =   I(X;Y) 

• Mutual Information:  
The reduction in uncertainty  
for one variable due to  
knowing about another. 
 
 
 

H(X,Y)

H(Y|X)H(X|Y) I(X;Y)

H(X) H(Y)
! "



Mutual Information

• Symmetric, non-negative measure of common information 

• Measures the distance of a joint distribution from independence 

• I(X;Y) = 0 when X,Y are independent 

• MI grows as a function of both dependence and entropy

€ 

I(X;Y ) = H(X) −H(X |Y )
= H(X) + H(Y ) −H(X,Y )

= p(x)log2
1
p(x)x

∑ + p(y)log2
1
p(y)

+ p(x,y)log2 p(x,y)
x,y
∑

y
∑

= p(x,y)log2
p(x,y)
p(x)p(y)x,y

∑

Simplified Polynesian

� Recall the following per-syllable distribution: 
� Calculate I(V;C):

p t k
a 1/16 3/8 1/16 1/2
i 1/16 3/16 0 1/4
u 0 3/16 1/16 1/4

1/8 3/4 1/8
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I(V ;C) = H(V ) −H(V |C)
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Mutual Information
• (Average) Mutual Information: a measure of the reduction in 

uncertainty for one random variable due to knowing about another: 

• Pointwise Mutual Information of two individual elements as a 
measure of association:  
 
 
 
 
 

€ 

I(X;Y ) = H(X) −H(X |Y )

= p(x,y)log2
p(x,y)
p(x)p(y)x,y

∑

I(x!, y!) = log2
p(x!, y!)
p(x!)p(y!)

= log2
p(x! | y!)
p(x!)

       = log2
p(y! | x!)
p(y!)

Computing PMI
• Compute the probabilities using ML estimation: 

• Simple example:

I(x!, y!) = log2
p(x!, y!)
p(x!)p(y!)

= log2

c(w1w2 )
N

c (w1 )
N × c (w2 )

N

       = log2
N × c(w1w2 )
c(w1)c(w2 )

€ 

I(new,companies) = log2
14307676 × 8
15828 × 4675

≈ .63



More on Mutual Information
• MI can provide a ranking of possible collocations:

I(w1,w2) C(w1) C(w2) C(w1 w2) Word 1 Word 2 

18.38 42 20 20 Ayatollah  Ruhollah 

17.98 41 27 20 Bette Midler 

16.31 30 117 20 Agatha Christie 

15.94 77 59 20 videocassette recorder 

15.19 24 320 20 unsalted butter 

1.09 14907 9017 20 first made 

1.01 13484 10570 20 over many 

0.53 14734 13478 20 into them 

0.46 14093 14776 20 like people 

0.29 15019 1569 20 time last 
€ 

I(Bette,Midler)

= log2
14307688 × 20

27 × 41
≈17.98



Communication Systems 
(Shannon, 1948)

• Entropy tells us about the most efficient encoding of a message 

• What about the transmission of messages? 

• Transmission can be modeled using a noisy channel: 

• A message W is encoded as a string X 

• X is transmitted through a channel according to a distribution p(y|x) 

• The resulting string Y is decoded, yielding an estimate of the message W’ 
 
 
 
 
 

Encoder Channel 
p(y|x) Decoder

W X Y W’

Message Estimate of 
message

Channel 
output

Channel 
input

Channel Capacity
• The capacity of the channel is the number of bits on average that 

is can transmit, as determined by noise in the channel 

• Discrete Channel: A discrete channel consists of an input 
alphabet X, an output alphabet Y, and a probability distribution 
p(y|x) the expresses the probability of observing symbol y given 
that x was sent. 

• The channel capacity of a discrete channel is: 

• The capacity of a channel is the maximum of the mutual 
information of X and Y over all input distributions of the input p(x)

€ 

C =max
p(X )

I(X;Y )



Noiseless Binary Channel

• Assume a channel whose input is  
reproduced exactly at the output 

• Channel capacity of a noiseless binary channel: 

• This maximum is achieved when p(0) = 0.5 and p(1) = 0.5 

• Since the uniform distribution maximizes entropy€ 

C = max
p(X )

I(X;Y ) =1 bit

Encoder Channel 
p(y|x) Decoder

W X Y W’

Message Reconstructed 
message

Channel 
output

Channel 
input

0 0
1 1

Noisy Channel Model 
• A binary symmetric channel whose  

input is flipped (e.g. 0 sent as 1) with  
a probability p  

• Channel capacity:

€ 

I(X;Y ) = H(Y ) −H(Y | X) = H(Y ) − p(x)H(Y | X = x)
x

∑
= H(Y ) − p(x)H(p) = H(Y ) −H(p)

x∑ ≤1−H(p)

Therefore,
C = max

p(X )
I(X;Y ) =1−H(p) bits

1-p

1-p

p

0 0

1 1

• Recall:  MI increases with entropy 
• Entropy is maximised when I/O distribution is uniform: 

• So H(Y) = 1bit 
• Confirm H(Y|X) = H(p): 

• Under what circumstances does this hold 
• If p=.5, H(p)=1, C = I(X;Y) = 1-1 = 0  useless 
• If p=0, H(p)=0, C = I(X;Y) = 1-0 = 1 perfect



Applications of the Noisy 
Channel Model

• The noisy channel can be applied to decoding processes involving 
linguistic information. 

• A typical way of formulating such a problem is: 

• Assume some linguistic input I; 

• I is transmitted through a noisy channel with the probability  
distribution p(o|i); 

• The resulting output O is decoded, yielding an estimate of the Input I’  
 
 
 

Channel 
p(o|i) Decoder

I O I’

Reconstructed 
message

Channel 
output

Channel 
input

Applying the Noisy Channel 
Model

• In most situations in linguistics, we cannot control the encoding: 
 
 

• We want to find the most likely input for an observed output: 

• But, p(i|o) is often difficult to estimate directly and reliably, so 
recall: 

• Therefore:  

Channel 
p(o|i) Decoder

I O I’

Reconstructed 
message

Channel 
output

Channel 
input

ˆ I = argmax
i

p(i | o)

p(i | o) = p(o | i) p(i)
p(o)

ˆ I = argmax
i

p(i) p(o | i)
p(o)

=arg max
i

p(i)p(o | i)



Widely used applications:
ˆ I =arg max

i
p(o | i)p(i)

Application Input Output P(i) P(o|i)

Speech recognition Word sequences Speech signal Language model Acoustic model

POS Tagging POS sequences Word sequences Probability of POS 
sequences

P(word|tag)

OCR Actual text Text with mistakes Langauge model Model of OCR 
errors

Machine translation Target language text Source language text Target language model Translation model

Entropy and Language 
Models

• So far, we have used entropy to find the most efficient 
code for transmitting messages. 

• Recall Simplified  
Polynesian: 
 
  

• The more structure and regularities a model captures, the 
lower our uncertainty, or entropy, will be. 

• We can use entropy as a measure of the quality of our 
models

6 Letters bits assumes
Naive 3 uniform distribution

Unigram 2.5 letter frequencies
Syllable 1.22 syllable bigram probabilities

TRUE ? full conditional likelihood



Relative Entropy
• For two PMFs, p(x) and q(x), for an event space X, we can 

compute relative entropy as follows: 

• Also known as:  Kullback-Leibler(KL) divergence 

• KL-divergence compares the entropy of the two distributions 

• KL-divergence between p and q is the average number of bits 
that are wasted by encoding events from a distribution p with a 
code based on distribution q. 

• Non-symmetric. Can you think why?

€ 

D(p ||q) = p(x)log2
p(x)
q(x)x∈X

∑

€ 

= Ep log2
p(x)
q(x)
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Example of KL-divergence

s



Relative Entropy

• Recall Mutual Information measures the distance of a joint distribution from 
independence, thus Mutual Information and Relative Entropy are related in 
the following way:  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I(X;Y ) = D(p(x,y) || p(x)p(y))

= p(x,y)log2
p(x,y)
p(x)p(y)x,y∈X ,Y

∑

Evaluating language models
• Often, we want to construct a probabilistic model of some 

linguistic phenomena. 

• Represent events (e.g. letters, words, or sentences that 
‘occur’) by X 

• Assume some true probability distribution for X:  p(x) 

• In building a model, m, of p, we want to  
minimise D(p||m) 

• Cross entropy: H(X,m) = H(X) + D(p||m) 



Cross Entropy

€ 

H(X,q) = H(X) + D(p ||m)

= − p(x)
x
∑ log2 p(x) + p(x)log2

p(x)
m(x)x

∑

= p(x)log2
p(x)
m(x)

− p(x)log2 p(x)
x
∑

= p(x)log2 p(x) + p(x)log2
1

m(x)
− p(x)log2 p(x)

x
∑

= p(x)log2
1

m(x)x
∑

Cross-Entropy
• It’s critical to evaluate cross-entropy on a corpus 

that is different from the training corpus. Why? 

• The lower the cross-entropy, the better the model is 
a predicting (unseen) events in the language 

• This implies that the model better encodes the 
probabilistic structure of the language 

• But sparse data often means simple models 
outperform richer ones, in practice.



Road Map
• Next Wed: Tutorial on language models. Watch course web page 

for details!! 

• Next: Do natural lexica represent a good code? 

• What is the role of ambiguity in the lexicon? 

• How might channel capacity and the noisy channel be applied 
to language? 

• Then: How does the notion of information relate to on-line 
comprehension 

• And … do speakers take comprehenders into account in the 
choices about linguistic encoding


