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Language as Information
• We can think of language as a communication 

system, in which information is transmitted from 
speaker to hearer 

• Rationality suggests that language, and language 
use, will be optimized to transmit information 
efficiently and accurately 

• Information Theory is a rational mathematical 
theory for the efficient transmission of information 
across an imperfect “noisy” channel.

1948

Claude Shannon



Reprinted with corrections from The Bell System Technical Journal,
Vol. 27, pp. 379–423, 623–656, July, October, 1948.

A Mathematical Theory of Communication

By C. E. SHANNON

INTRODUCTION

HE recent development of various methods of modulation such as PCM and PPM which exchange
bandwidth for signal-to-noise ratio has intensified the interest in a general theory of communication. A

basis for such a theory is contained in the important papers of Nyquist1 and Hartley2 on this subject. In the
present paper we will extend the theory to include a number of new factors, in particular the effect of noise
in the channel, and the savings possible due to the statistical structure of the original message and due to the
nature of the final destination of the information.

The fundamental problem of communication is that of reproducing at one point either exactly or ap-
proximately a message selected at another point. Frequently the messages havemeaning; that is they refer
to or are correlated according to some system with certain physical or conceptual entities. These semantic
aspects of communication are irrelevant to the engineering problem. The significant aspect is that the actual
message is one selected from a set of possible messages. The system must be designed to operate for each
possible selection, not just the one which will actually be chosen since this is unknown at the time of design.

If the number of messages in the set is finite then this number or any monotonic function of this number
can be regarded as a measure of the information produced when one message is chosen from the set, all
choices being equally likely. As was pointed out by Hartley the most natural choice is the logarithmic
function. Although this definition must be generalized considerably when we consider the influence of the
statistics of the message and when we have a continuous range of messages, we will in all cases use an
essentially logarithmic measure.

The logarithmic measure is more convenient for various reasons:

1. It is practically more useful. Parameters of engineering importance such as time, bandwidth, number
of relays, etc., tend to vary linearly with the logarithm of the number of possibilities. For example,
adding one relay to a group doubles the number of possible states of the relays. It adds 1 to the base 2
logarithm of this number. Doubling the time roughly squares the number of possible messages, or
doubles the logarithm, etc.

2. It is nearer to our intuitive feeling as to the proper measure. This is closely related to (1) since we in-
tuitively measures entities by linear comparison with common standards. One feels, for example, that
two punched cards should have twice the capacity of one for information storage, and two identical
channels twice the capacity of one for transmitting information.

3. It is mathematically more suitable. Many of the limiting operations are simple in terms of the loga-
rithm but would require clumsy restatement in terms of the number of possibilities.

The choice of a logarithmic base corresponds to the choice of a unit for measuring information. If the
base 2 is used the resulting units may be called binary digits, or more briefly bits, a word suggested by
J. W. Tukey. A device with two stable positions, such as a relay or a flip-flop circuit, can store one bit of
information. N such devices can storeN bits, since the total number of possible states is 2N and log2 2N N.
If the base 10 is used the units may be called decimal digits. Since

log2M log10M log10 2
3 32log10M

1Nyquist, H., “Certain Factors Affecting Telegraph Speed,” Bell System Technical Journal, April 1924, p. 324; “Certain Topics in
Telegraph Transmission Theory,” A.I.E.E. Trans., v. 47, April 1928, p. 617.

2Hartley, R. V. L., “Transmission of Information,” Bell System Technical Journal, July 1928, p. 535.
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This Course
• What is Information Theory? 

• What does it tell us about rational communication? 

• Can and should these ideas inform theories of 
human communication and language? 

• What do information theoretic models of language 
look like? 

• How can we empirically investigate these ideas?

Assessment
• Students will form groups to prepare a research proposal of what linguistic 

phenomenon could be investigated using surprisal or the UID hypothesis: 

• propose what kind of research method to use for tackling the question 

• what results they would expect,  

• and what it would mean to find different results than the expected ones. 

• Proposals will presented as posters, which will be present to the rest of the 
course at a time slot roughly two weeks after the end of the course 

• Form groups by tomorrow, and come up with a rough topic or two by 
Thurs. We’ll discuss the proposal during the tutorial slot.



What is Information

How much information is conveyed by a particular 
message, event, outcome? 

The minimal unit of information we can convey is the 
outcome of a binomial event: yes/no, 1/0 … 

• So it’s useful to consider this unit, bits, as the 
the basic unit of measure

Information
• A measure of the disorder or 

predictability in a system: 

• What if there are two coins? 

• The (average) number of yes/no questions 
needed to completely specify the state of a 
system



Number of Questions in 
General?

Number of States Number of Questions

2 states 1 question

4 states 2 questions

8 states 3 questions

16 states 4 questions

log2(# of states) =  number of yes-no questions

Binary Coding Trees
• Suppose we have 5 messages 

• log25=2.32 bits 

• but we can’t devise a code 
that achieves this 

What’s the average # of bits required to send a letter?



Consider Dice

For each Die

H = log2(6) 
= 2.585 bits

H = log2(4) 
= 2.000 bits

H = log2(20) 
= 4.322 bits



What about all three dice?

H is Entropy = …
• The number of yes-no questions required to specify 

the state of the system 

• If n is the number of equally  
likely states of the system:

€ 

H = log2 n[ ]



Rewrite the equations

€ 

H = log2 n[ ]
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Non-Uniform Distributions
• When the probability of events isn’t uniform, then 

more likely events convey less information 

• Optimal code:                       for an event having 
probability  

• The average number of bits needed to transmit a 
message 

• Entropy:
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Example 1: 8-sided die
• Let x represent the result of rolling a (fair) 8-sided die. 

• Entropy: 

• The average length of the message required to transmit 
one of 8 equiprobable outcomes is 3 bits. 

•  “1”   “2”   “3”   “4”   “5”   “6”    “7”   “8”  
001  010  011  100  101  110  111  000 

H(X) = p(x) log2
1
p(x)x∈X

∑

H(X) =
1
8
log2

1
1
8x∈X

∑ = log2 8 = 3

Entropy of a Weighted Coin

• The more uncertain the result, 
 the higher the entropy.    

• Fair coin:  H(X) = 1.0 

• The more certain the result, the lower the entropy. 

• Completely biased coin:  H(X) = 0.0

H(X) = p(x) log2
1
p(x)x∈X

∑



Example 2:  
Simplified Polynesian

€ 

H(X) = − p(x)log2 p(x)
x∈X
∑

= −[4 × 1
8
log 1
8

+ 2 × 1
4
log 1

4
]

= 2 1
2
bits

P T K A I U

0,125 0,25 0,125 0,25 0,125 0,125
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∑

= −[4 × 1
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log 1
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2
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Recall: H = log2(6) 
= 2.585 bits

P T K A I U

0,125 0,25 0,125 0,25 0,125 0,125



1. 2.

3. 4.

Joint Entropy
• In language, the likelihood of events depends on 

the preceding outcomes (e.g. prior words). 

• Joint entropy: the amount of information necessary 
to specify the value of two discrete random 
variables: 

H(p(x, y)) = H(X,Y ) = − p(x, y)log2 p(x, y)
y∈Y
∑

x∈X
∑



Polynesian revisited
• Assume the following (slightly different) per-letter frequencies:  

      p        t        k        a        i        u  
    1/16   3/8    1/16    1/4    1/8    1/8 

• H(X)= 2x1/16 log2 16 + 2x1/8 log2 8 + 1/4 log2 4 + 3/8 log2 8/3  
       = 1/2+3/4+1/2+3/8 log2 8/3 = 2.28 per letter 

• Suppose we discover that, in Simplified Polynesian  
words consist of CV sequences. (margin  
probs are per syllable, not per letter) 

• We can calculate H(C,V) from the table,  
i.e. treat each possible syllable as an event: 

• H(C,V) =1/4 log2 16 + 6/16 log2 16/3 + 3/8 log2 8/3  
           = 2.436 per syllable (1.218 per letter)

p t k
a 1/16 3/8 1/16 1/2
i 1/16 3/16 0 1/4
u 0 3/16 1/16 1/4

1/8 3/4 1/8
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Conditional Entropy
• Conditional entropy: the amount of information 

needed to transmit Y, given that message X has 
been transmitted:

€ 

H(Y | X) = p(x)H(Y | X = x)
x∈X
∑

= p(x) − p(y | x)log2(y | x)
y∈Y
∑

% 

& 
' 
' 

( 

) 
* 
* x∈X

∑

= − p(x,y)log2 p(y | x)
y∈Y
∑

x∈X
∑

Chain rule for joint entropy
• Chain rule for entropy: 

• In general: 

€ 

H(X,Y ) = − p(x,y)log2 p(x,y)
y∈Y
∑

x∈X
∑

= −Ep(x,y )(log2 p(x,y))
= −Ep(x,y )(log2 p(x)p(y | x))
= −Ep(x,y )(log2 p(x) + log2(p(y | x))
= −Ep(x )(log2 p(x)) − Ep(x,y )(log2 p(y | x))
= H(X) + H(Y | X)

€ 

H(X1,...,Xn ) = H(X1) + H(X2 | X1) + ...+ H(Xn | X1,...,Xn−1)



H(C,V)=H(C)+H(V|C)
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1/8 3/4 1/8
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H(C,V ) = H(C) + H(V | C)
= 1.061 +1.375 = 2.436

Information …
• measures the uncertainty of a random variable 

• indicates the number of bits of information 
encoded by that outcome 

• is determined by the probability of the outcome, 

• which may be determined by context 

• the more structure in the system, the lower the 
entropy, i.e. the average # of bits per event


