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Language as Information

« We can think of language as a communication

system, in which information is transmitted from
speaker to hearer

* Rationality suggests that language, and language
use, will be optimized to transmit information
efficiently and accurately

e Information Theory is a rational mathematical
theory for the efficient transmission of information
across an imperfect “noisy” channel.

\

Claude Shannon



A Mathematical Theory of Communication

By C. E. SHANNON

INTRODUCTION

HE recent development of various methods of modulation such as PCM and PPM which exchange

bandwidth for signal-to-noise ratio has intensified the interest in a general theory of communication. A
basis for such a theory is contained in the important papers of Nyquist! and Hartley? on this subject. In the
present paper we will extend the theory to include a number of new factors, in particular the effect of noise
in the channel, and the savings possible due to the statistical structure of the original message and due to the
nature of the final destination of the information.

The fundamental problem of communication is that of reproducing at one point either exactly or ap-
proximately a message selected at another point. Frequently the messages have meaning; that is they refer
to or are correlated according to some system with certain physical or conceptual entities. These semantic
aspects of communication are irrelevant to the engineering problem. The significant aspect is that the actual
message is one selected from a set of possible messages. The system must be designed to operate for each
possible selection, not just the one which will actually be chosen since this is unknown at the time of design.
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his Course

 What is Information Theory?
 \What does it tell us about rational communication?

e Can and should these ideas inform theories of
human communication and language?

« What do information theoretic models of language
look like?

* How can we empirically investigate these ideas?

Assessment

» Students will form groups to prepare a research proposal of what linguistic
phenomenon could be investigated using surprisal or the UID hypothesis:

* propose what kind of research method to use for tackling the question
* what results they would expect,
* and what it would mean to find different results than the expected ones.

* Proposals will presented as posters, which will be present to the rest of the
course at a time slot roughly two weeks after the end of the course

e Form groups by tomorrow, and come up with a rough topic or two by
Thurs. We'll discuss the proposal during the tutorial slot.



What is Information

How much information is conveyed by a particular
message, event, outcome?

The minimal unit of information we can convey is the
outcome of a binomial event: yes/no, 1/0 ...

e So it's useful to consider this unit, bits, as the
the basic unit of measure

Information

A measure of the disorder or
predictability in a system:

 \What if there are two coins?

* The (average) number of yes/no questions
needed to completely specify the state of a
system




Number of Questions in

General?
Number of States Number of Questions
2 states 1 question
4 states 2 questions
8 states 3 questions
16 states 4 questions

logo(# of states) = number of yes-no questions

Binary Coding Trees

* Suppose we have 5 messages
* l0g25=2.32 bits

e pbut we can’t devise a code
that achieves this

What's the average # of bits required to send a letter?

(3%2)+(2%3) 12
S =

=2.4bits

Avg=



Consider

For each

- o @

H = logz(6) H = logz(4)
= 2.585 bits = 2.000 bits

Die

H = log(20)
= 4.322 bits



What about all three dice?
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log,(4x6x20)
= log,(4) +10g,(6) + log,(20)
8.9

H Is Entropy = ...

* The number of yes-no questions required to specify
the state of the system

* If nis the number of equally |
likely states of the system:
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Rewrite the equations

H =log,|n] H =-log,|—

Entropy
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H = _logz[p]

=
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Non-Uniform Distributions

* When the probability of events isn’t uniform, then
more likely events convey less information

for an event having
p(x)

* QOptimal code:
probability

* The average number of bits needed to transmit a
message

1

« Entropy: H(X)= log,
(X) = 2p<x> oL



—xample 1: 8-sided die

* Let x represent the result of rolling a (fair) 8-sided die.
1

* Entropy: H(X) = log,
(X) = 3, p()log, — =

1 1
H(X) = Eglogzz = log,8=3

xeX 8
* The average length of the message required to transmit

one of 8 equiprobable outcomes is 3 bits.

e U7 727 "3" 47 K" e 77 "8”
001 010 011 100 101 110 111 00O

Entropy of a Weighted Coin

1

H(X) = log,
(X) ;Xpm L

Entropy
$ 5§83 88§ -

 The more uncertain the result,
the higher the entropy.
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e Fair coin: H(X)=1.0

* The more certain the result, the lower the entropy

o Completely biased coin: H(X) = 0.0



Example 2:
Simplified Polynesian

P T K A | U

0,125 0,25 0,125 0,25 0,125 0,125

H(X) ==}, p(x)log, p(x)

xeX

1. 1 1. 1
=-[4 x—log—+2x—log—
[8g8 4g4]

=21bﬁs
2

Recall: H = logz(6)
Example 2: = 2.585 bits

Simplified Polynesian

P T K A | U

@2s 0,25 0,125 @26 0,125 0,125

H(X) =~ p(x)log, p(x)

xeX

I e I
=—-[4 x—log—+2x—log—
B> 2losg e

=21bms
2
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Joint Entropy

* Inlanguage, the likelihood of events depends on
the preceding outcomes (e.g. prior words).

« Joint entropy: the amount of information necessary
to specity the value of two discrete random
variables:

H(p(x,y) = H(X,Y) = =¥ ¥ p(x,y)log, p(x,y)

xeEXy&eYy



Polynesian revisited

* Assume the following (slightly different) per-letter frequencies:
P t K a i u

1/16 3/8 1/16 1/4 1/8 1/8

o H(X)=2x1/16 log, 16 + 2x1/8 log> 8 + 1/4 l0g» 4 + 3/8 log, 8/3
= 1/2+3/4+1/2+3/8 log2 8/3 = 2.28 per letter

» Suppose we discover that, in Simplified Polynesian

words consist of CV sequences. (margin p t k
probs are per syllable, not per letter) a /16 3/8  1/16 | 1/2
i 1/16 3/16 O 1/4
» We can calculate H(C,V) from the table, " 0 Jie /e A
l.e. treat each possible syllable as an event: Y Y RV

« H(C,V) =1/4 log2 16 + 6/16 log2 16/3 + 3/8 log2 8/3
= 2.436 per syllable (1.218 per letter)

Polynesian revisited

» Assume the following (slightly different) per-letter frequencies:
P t Kk a i u
1/16 3/8 1/16 1/4 1/8 1/8

o H(X)=2x1/16 log, 16 + 2x1/8 log, 8 + 1/4 10g» 4 + 3/8 log, 8/3
= 1/2+3/4+1/2+3/8 log2 8/3 = 2.28 per letter

» Suppose we discover that, in Simplified Polynesian

words consist of CV sequences. (margin p t k

probs are per syllable, not per letter) a 1716 3/8  1/16 | 1/2

i 1/16 3/16 O 1/4

* We can calculate H(C,V) from the table, " o G e |
l.e. treat each possible syllable as an event: TR RN

« H(C,V) £1/4 log2 16 * 6/16 log2 16/3 + 3/8 log2 8/3
= 2.436per syllable (1.218 per letter)



Conditional Entropy

e (Conditional entropy: the amount of information
needed to transmit Y, given that message X has
been transmitted:

HY1X)= Y p(x)H(Y | X = x)

xeX

- Ep(x) —Ep(y | x)log,(y | x)

xeX yeY
== E Ep(x,y)logz p(y 1 x)
xeXyeyY

Chain rule for joint entropy

» Chain rule for entropy:

H(X,Y) ==Y ¥ p(x,y)log, p(x,y)

xEXYEY

=-E ., (log, p(x,y))

=-E, ., (log, p(x)p(y | x))

=-FE ., (og, p(x)+log,(p(y|x))
=-E,,(log, p(x)) - E,, (log, p(y | x))
=HX)+H{Y1X)

* Ingeneral: H(X,,...X,)=HX)+HX, | X)+ ..+ HX, 1X,...X,_)



H(C,V)=R(C)+H(V|C)

3 4
HC)=2x— lo 8+ —lo
(€)= 3 258 1 g23

3 3 9 3
4 4( g,3) 17 g

H(V1C)= ¥ p(C=c)H(VIC=c)

c=p.tk

1 3
—gH(VIp)+8H(VIk)+4H(VIt)

—H( 0, )+3H(lll
8 4244
= xlx1+3(lx1+lx2+lx2)

8 4 4

= —H(

1
P 0) + )
2

L
272’

=l+§+§+E L ~1.375
4 8 8 8 8

1/16 3/8 1/16 1/2
1/16 3/16 0 174
0 3/16 1/16 1/4
1/8 3/4 1/8

H(C,V)= H(C) + HVIC)
= 1.061 +1.375=2.436

Information

* measures the uncertainty of a random variable

e indicates the number of bits of information

encoded by that outcome

* is determined by the probability of the outcome,

* which may be determined by context

» the more structure in the system, the lower the
entropy, i.e. the average # of bits per event



