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Abstract

There are several ways of estimating parameters for HMMs when used for natural
language models. One can use word-n-grams and n-grams of automatically derived
categories for speech recognition. Or one can use part-of-speech n-grams for part-of-
speech tagging, either by using a manually tagged corpus or by using the Baum-Welch
algorithm. This paper shows how to use another method for parameter estimation:
Model Merging. It exploits the advantages of the other methods, is applicable both
for speech recognition and part-of-speech tagging and, unlike other techniques, it not
only induces transition and output probabilities but also the model topology, i.e. the
number of states and their respective possible outputs. Thus it automatically generates
categories, but in addition to other categorization algorithms is capable of recognizing
if a word belongs to more than one category. By adding optimizations the algorithm
is used to generate language models that are used for part-of-speech tagging. Their
accuracy in a tagging tasks is better than the accuracy of HMMs derived by standard
techniques.

1 Introduction

Hidden Markov Models are commonly used for statistical language models, e.g. in part-of-speech
tagging and speech recognition [Rabiner, 1989]. The models need a large set of parameters which
are induced from a (text-) corpus. The parameters should be optimal in the sense that the resul-
ting models assign high probabilities to seen training data as well as new data that arises in an
application.

There are several methods to estimate model parameters. The first one is to use each word
(type) as a state and estimate the transition probabilities between two or three words by using the
relative frequencies of a corpus. This method is commonly used in speech recognition and known
as word-bigram or word-trigram model. The relative frequencies have to be smoothed to handle
the sparse data problem and to avoid zero probabilities.

The second method is a variation of the first method. Now, words are automatically grouped,
e.g. by similarity of distribution in the corpus [Pereira et al., 1993]. The relative frequencies of pairs
or triples of groups (categories, clusters) are used as model parameters, each group is represented
by a state in the model. The second method has the advantage of drastically reducing the number
of model parameters and thereby reducing the sparse data problem; there is more data per group
than per word, thus estimates are preciser.

The third method uses manually defined categories. They are linguistically motivated and
usually called parts-of-speech. An important difference to the second method with automatically
derived categories is that with the manual definition a word can belong to more than one category.
A corpus is (manually) tagged with the categories and transition probabilities between two or



three categories are estimated from their relative frequencies. This method is commonly used for
part-of-speech tagging [Church, 1988].

The fourth method is a variation of the third method and is also used for part-of-speech tagging.
This method does not need a pre-annotated corpus for parameter estimation. Instead it uses a
lexicon stating the possible parts-of-speech for each word, a raw text corpus, and an initial bias for
the transition and output probabilities. The parameters are estimated by using the Baum-Welch
algorithm [Baum et al., 1970]. The accuracy of the derived model depends heavily on the initial
bias, but with a good choice results are comparable to those of method three [Cutting et al., 1992].

This paper proposes a fifth method for estimating natural language models, combining the
advantages of the methods mentioned above. It is suitable for both speech recognition and part-
of-speech tagging, has the advantage of automatically deriving word categories from a corpus and
is capable of recognizing the fact that a word belongs to more than one category. Unlike other
techniques it not only induces transition and output probabilities, but also the model topology,
i.e., the number of states, and for each state the outputs that have a non-zero probability. A
further advantage is that the method adapts to the amount of data available. If there is only little
data, the level of abstraction is low, and the use of the induced HMM is similar to Lazy Learning
approaches. When more data is collected, the level of abstraction becomes higher. The method
is called Model Merging and was introduced by [Omohundro, 1992] to derive HMMs for regular
languages from a few samples.

This rest of the paper is structured as follows. Section 2 gives the definitions of Hidden Markov
Models, part-of-speech tagging and Model Merging. Section 3 motivates the use of model merging
for natural language models and shows how to use it for a first application: part-of-speech tagging.
Section 4 reports about experiments performed with models derived by Model Merging, and finally
Section 5 shows further directions.

2 Definitions

2.1 Hidden Markov Models
A discrete output, first order Hidden Markov Model (HMM) consists of

o a finite set of states Q U {qs,qc}, ¢s,9e & Q, with ¢, the start state, and g. the end state;

a finite output alphabet 3I;

a set of state transitions (¢ — ¢'), ¢ € QU {¢s}, ¢’ € QU {q¢.}; for each transition (¢ — ¢')
a probability p(¢ — ¢') is specified; for each state ¢, the sum of the outgoing transition
probabilities is 1, > p(¢ — ¢') = 1;

7'eQ

e a set of state-output pairs (¢ 1 o), ¢ € Q, o € X; for each pair (¢ T o) a probability p(¢ T o)
is specified; for each state ¢, the sum of the output probabilitiesis 1, > p(¢ 1 o) = 1.
cEX
Figure 1 shows an example for a HMM. The HMM starts running in the start state ¢;, makes
a transition at each time step, and stops when reaching the end state q.. The transition from one
state to another is done according to the probabilities specified with the transitions. Each time
a state is entered (except the start and end state) one of the outputs is chosen (again according
to their probabilities) and emitted. The HMM in Figure 1 generates the language L = (a(b|c))™T.
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Figure 1: Example HMM. It generates the language L = (a(b|c))*. The figure shows the states,
outputs, transitions and probabilities for each output and transition.




The probability associated with each output string w € ¥* is
P(w) = { 0.579%h(w) if 4 is of the form (a(b|c))t

0 otherwise

If the state transitions depend on the previous state only, the HMM is of first order. If the
state transitions depend on n previous states, the HMM is of n-th order. Higher order HMMs can
be reduced to first order HMMs by appropriately increasing the number of states.

The reason for calling HMMs hidden is that generally one cannot observe the sequence of
states traversed by the HMM, but only the emitted outputs, thus the states are hidden. In the
domain of language models this generally means one can observe the sequences of words but not
the underlying linguistic structure.

When using HMMs for recognition, one is interested in the following questions:

1. Given a string w € X*, which sequence of states ¢ € Q* can have generated this string, and
which is the most probable one?

2. Given a string w € ¥*, what is the probability for the HMM having generated the string?

Both questions can be answered very efficiently, i.e. in time linear to the length of the string

w, O(length(w)). This is done by using the Viterbi algorithm [Viterbi, 1967].

2.2 Part-of-Speech Tagging

The task of part-of-speech (PoS) tagging is the unique annotation of a word with a syntactic
category, called part-of-speech or tag. This paper is concerned with statistical PoS tagging. For
rule based approaches, see e.g. [Brill, 1993] and [Voutilainen, 1994].

Let 7 be defined as the set of all tags, and X the set of all words. In a statistical tagging
task, one is given a sequence of words W = w; ... w; € ¥*, and is looking for a sequence of tags
T =ty ...t € T* that maximizes the conditional probability p(T | W), hence one is looking for

p(T) p(W|T)
(W)

p(W) is independent of the chosen tag sequence, so it is sufficient to find

argmax p(T|W) = argmax
T T

argmax p(7T) p(W|T).
T

In an n-gram model for each pair (w,t) € ¥ x 7, the lexical probabilities

p(w | 1),

and for each n-tuple (¢;...t,) € 7 x ... x T the transition probabilities

p(tn | tl .. ~tn—1)

are defined. These approximate the lexical and conditional probabilities with

p(WIT) m p(wiftr) p(wsltz) - p(wl|tr)
and
(1) =

p(t1) p(talts) p(tslts, ta) - p(tglts .. . tx_1)
k

~ [lp
i=1

(ti | ticngr - tic1)

Note that the beginning of the string requires some extra handling. Additional tags t_,42...%0
are introduced, marking the “start of string” position, or, when using HMM terms, initial states
are introduced.

Now the joint probability of a string of words W = w; ... wy, having a string of tags T' =1 .. .t}
is the product of their lexical and transition probabilities

p(W,T) = p(T)p(W|T) ~ Hp(ti | ticngr .- ti)p(wi | ;).



(making the Markov assumption) and finding the best string of tags T for a given string of words
W is done by finding

k
afgniaXHp(ti | ticngr .- tic)p(w; | ;).
vtk iy

Statistical PoS tagging is efficiently done with n-gram models. They are equivalent to Markov
models of order n — 1. The best compromise between size of corpus that is needed for parameter
estimation and quality of output has empirically proven to be the trigram models, having n = 3.

n-gram taggers have been applied successfully for several years and reach a level of accuracy
of 95-96% for English texts. For implementations see for example [Church, 1988], [DeRose, 1988],
and [Cutting et al., 1992].

2.3 Model Merging

Model Merging is a technique for inducing model parameters for Hidden Markov Models from
the text corpus [Omohundro, 1992]. Unlike other techniques it not only induces transition and
output probabilities from the corpus, but also the model topology, i.e. the number of states and
for each state the outputs that have non-zero probability. In n-gram approaches the topology
is fixed. The states are mostly linguistically motivated, e.g. in a PoS-n-gram model, each state
represents a syntactic category and only words belonging to the same category have a non-zero
output probability in a particular state. However the n-gram-models make the implicit assumption
that all words belonging to the same category have a similar distribution in a corpus. This is not
true in most of the cases.

The first advantage of Model Merging ist that it groups words together by their statistical
distributions and estimates transition and output probabilities for a HMM at the same time. The
second advantage is that Model Merging adapts to the amount of data available. If there is only
little data the level of abstraction is low and the use of the induced HMM is similar to Lazy
Learning approaches. When more data is collected the level of abstraction becomes higher. The
limiting factor for Model Merging is that the process of merging is very time consuming (in general
O(1*), I length of corpus).

Model Merging induces HMMs in the following way: Merging starts with an initial model. For
this we choose the trivial HMM, i.e. a model that exactly matches the corpus. There is exactly
one path for each utterance in the corpus and each path is used by one utterance only. Each path
gets the same probability 1/u, with u the number of utterances in the corpus. Figure 2.a shows
the trivial HMM for a corpus with words a, b, ¢ and utterances ab, ac, abac.

Now states are merged successively, except for the start and end state. Two states are selected
and removed and a new merged state is added. The transitions from and to the old states are
redirected to the new state, the transition probabilities are adjusted to maximize the likelihood
of the corpus; the outputs are joined and their probabilities are also adjusted to maximize the
likelihood.

The criterion for selecting states to merge is the probability of the HMM generating the corpus.
We want this probability to stay as high as possible. Of all possible merges (generally, there are
(n —2)(n — 3)/2 possible merges, with n the number of states, incl. start and end state which are
not allowed to merge) we take the merge that results in the minimal change of the probability.
For the trivial HMM and u pairwise different utterances the probability is p(S|HM Miriy) = 1/u*.
The probability either stays constant, as in Figure 2.b and ¢, or decreases, as in 2.d and e. The
probability never increases because the trivial model is the maximum likelihood model, i.e. it
maximizes the probability of the corpus given the HMM.

Model Merging stops when a predefined threshold for the corpus probability is reached. Some
statistically motivated criteria for termination are discussed in [Stolcke and Omohundro, 1994].

3 Model Merging and Natural Language Models
3.1 Classification of Words

Three important features of Model Merging are that it can classify words into categories, can
recognize that a word belongs to more than one categorie and is able to recognize static sequences
of words or parts-of-speech. No other estimation technique offers this combination. These features
are described in details in the next section. Table 1 shows a summary.
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Figure 2: Model Merging for a corpus S = {ab, ac, abac}, starting with the trivial model in a) and
ending with the generalization (a(b|c))* in e). Several steps of merging between model b) and c)
are not shown. Unmarked transitions and outputs have probability 1.




Table 1: Features of Categorizations for Language Models: a) n-grams with manually specified
parts-of-speech, b) n-grams with automatically derived categories and ¢) HMMs derived with
Model Merging

several words | one word in sequences of
in one class | several classes | arbitr. length
a) n-grams, manual + + -
b) n-grams, automatic + - -
¢) HMMs, model merging + + +

Several Words Have the Same Category

It is an essential feature of each classification algorithm to group several words into a category.
The grouping is used in manual specifications of categories (as in pos-n-gram models) stating, e.g.,
that aim and house both are nouns. It is used also for conventional automatic clustering where
exactly this is the intended action, grouping words by their statistical distribution. Model Merging
handles grouping of words by merging states which have the appropriate outputs. An example of
this behavior is shown in Figure 2. There, words b and ¢ are combined into a category while a is
treated as belonging to another category.

One Word Has Several Categories

Recognizing the fact that one and the same word belongs to different categories is a more difficult
task. It is of course exploited in manual specifications of categories which, for example, state
that aim can be both a noun and a verb. But standard automatic grouping algorithms assume
that each word belongs to exactly one category. This is an oversimplification, since a lot of words
belong to more than one category and knowing the category of a word facilitates the classification
of surrounding words, and transition probabilities heavily depend on the category of a word. We
argue that the final performance of a language model could be improved if we add the possibility
to assign one word to several categories to an automatic classification algorithm. Model Merging
exhibits this behavior simply by deciding not to merge two states that have the same output. An
example is shown in Figure 3. Word a belongs to four categories in model 3.d (a’s before baac,
first a after b, second a after b, and a’s after baac). Applying two more steps of merging yields
model 3.e. Now, the word a belongs to two categories (a’s outside baac, and a’s inside baac).

Recognizing Sequences

A big problem with using n-grams is the fixed context length. When, e.g., working with tri-
grams, one uses a window of three words, and only transition probabilities within this window
are considered. This holds for both manually specified categories and those derived with previous
categorization algorithms.

Model Merging has the ability to create window sizes that are adapted to particular contexts.
Figure 3.d shows a derived HMM with a window size larger than three. In state 4 of that model it
is known that the previous four words are baac. This feature of Model Merging is extremely useful
in recognizing static sequences of words or categories and for limited recognition of long distance
phenomena. The HMM in Figure 3.e “remembers” the b and regardless how much material there
is in between it “waits” for a ¢. This is restricted to regular phenomena, but it is nonetheless more
adequate than static context sizes.

3.2 Introducing Constraints

The Model Merging algorithm needs several optimizations to be applicable to large NL corpora,
the enormous time needed for deriving models (generally O(I*), where [ is the length of the corpus)
has to be reduced.

Computational optimizatons are mentioned in [Stolcke and Omohundro, 1994]. We will here
discuss data-dependent optimizations.

When applying Model Merging one can observe that first mainly states with the same output
are merged. After several steps of merging, it is no longer the same output but still mainly states
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Figure 3: Model Merging for a corpus S = {baacaaa, abaacaa,aabaaca,aaabaac}, starting with
the trivial model in a) and yielding the generalizations a*baaca* in d) and (a*ba*ca*)* Uat in
e). Model b) generates the same language as model a), but identical initial and final states are
merged. Model ¢) is an intermediate model, having already merged two of the sequences baac.
Several steps of merging between the models are not shown. Unmarked transitions and outputs
have probability 1.



that output words of the same syntactic category are merged. This behavior can be exploited by
introducing constraints on the merging process. In the beginning we consider only states with the
same output. After a while this constraint is relaxed and states that output words of the same
syntactic category are allowed to merge. Again, after a while this constraint is relaxed and all
states are allowed to merge. Imposing these constraints on the merging speeds up the process
drastically.

A further constraint that proved to be very useful involves bigrams. States are allowed to merge
only if their emitted parts-of-speech are identical and if the parts-of-speech of their predecessors are
identical, too. If applied between the two previously mentioned constraints the process of merging
is sped up significantly but there is little difference in the derived HMMs.

3.3 Model Merging and Part-of-Speech Tagging

To use Markov models derived by Model Merging for part-of-speech tagging, we extend the model in
such a way that the output no longer consists of a single word but of a word with its annotated part-
of-speech. This is different from other HMM approaches where each state represents a particular
category, and only words of this particular category are emitted by the state. We need this
extension to allow all states to merge but at the same time to be able to identify the part-of-speech
of an emitted word.

The task for part-of-speech tagging no longer is to find a particular sequence of states. Instead,
we have to determine the sequence of tags T = t; ...ty with the highest probability from all
sequences of states () = ¢q; ...qy that can output a given sequence of words W = w; ... wy. Thus,
for a given sequence of words W we have to find

argmaxz P(Q) - P(W,T|Q).
T q

Since most of the time there will be one main path through the model making the main contribution
to the sum, it suffices to find the Viterbi approximation

argmaxmax P(Q) - P(W,T|Q).
T Q

What follows immediately from the last formula is that it is useless to merge two states that
output the same words but with two different categories when using that formula. Performing
such a merge, the resulting model will always decide in favor of the part-of-speech with the higher
probability and will never choose the other one. This means that merges of this kind should be
excluded.

Two problems arise when actually using the derived models for part-of-speech tagging. First, a
lot of sequences cannot be recognized, because there are unknown words in the sequence. Second,
a lot of sequences cannot be recognized because even if all words are known there is no matching
path in the HMM.

The problem of unknown words can be solved by introducing a mapping from the unknown
words to known words and using the states emitting the known words for the unknown words.
We use word suffixes for the mapping as introduced by [Samuelsson, 1993]. An unknown word is
supposed to be emitted by a state that can output a word with the same suffix.

The problem of non-existent paths can be solved by “smoothing” the transition probabilities
between states. This can be done essentially in the same way than for HMMs derived with other
methods (like e.g. expected likelihood estimation, Good-Turing-Estimation, or deleted interpola-
tion). We have chosen to add transitions between all states that do not have a transition between
each other and assigning very small probabilities to the new transitions.

4 Experiments

The experiments reported in this section were performed on three parts of the Susanne Corpus
[Sampson, 1995] using a tagset of 62 tags. We have chosen one training part (part A) and two test
(parts B and C) parts, they are mutually disjunct, and each part consists of approximately 10,000
words.

The results are compared with those of a standard trigram tagging procedure which serves as a
baseline. The trigram tagger was trained on the same part as the HMM derived by Model Merging.

Since the component for handling unknown words is not finished yet, we compare the results
for known words only.



Table 2: Tagging with a trivial HMM

training | testing accuracy for known words
part ‘ part ‘ trivial HMM | standard trigram
A B 95.17% 94.69%
A ‘ C ‘ 95.53% ‘ 95.17%

Table 3: Tagging with merged HMMs

training | testing accuracy for known words, using HMMs after
part ‘ part ‘ 1500 merges | 3000 merges | 4000 merges
A B 95.28% 95.42% 95.35%
A ‘ C ‘ 95.59% 95.72% 95.69%

4.1 Tagging with a trivial HMM

A trivial model (maximum likelihood model) built from a corpus can be immediately used for
tagging by adding transition with a very small probability between all previously unconnected
states. Of course, this yields very large HMMs and the application of the model is extremely slow
even when narrowing the search space with a beam search, but surprisingly the tagging accuracy
is higher than the accuracy of the standard trigram method (see table 2). The trivial HMM used
in the experiment consists of 8900 states, identical initial and final states are already merged (this
does neither influence the language generated by the HMM nor does it change the associated
probabilities, as an example see Figure 3.a and b). The results for the trivial HMM are about 0.5%
better than for the standard trigram tagger.

4.2 Tagging with merged HMMs

For the next experiments, Model Merging was applied to the trivial model used for the previous
experiment. Merging was restricted to states that output the same word for the first 1500 merges.
Then, for the next 1500 merges, it was restricted to states that output words in the same part-
of-speech bigram. The parts-of-speech of the merged state had to be identical as well as those of
their predecessors. Then, for the last 1000 merges, merging was constrained to states that output
words having the same part-of-speech. Deriving the HMM with 4000 merges took about 4 days on
a SparcServer 1000. Table 3 shows the tagging results.

The tagging accuracy slightliy increased within the first 3000 merges, then dropped a little bit
after the last 1000 merges. The HMM after 4000 merges has 4900 states and is comparable in size
with the trigram model used as the baseline, which uses about 4000 uni-, bi-, and trigrams.

5 Conclusions

The first experiments with part-of-speech tagging using models derived by Model Merging are
promising. The tagging results are all better than for a standard approach.

The advantage of Model Merging is that it offers both automatic generation of states (and thus
categories) and reflecting the fact that a word can belong to more than one category. None of the
other estimation techniques offers this combination. Model Merging is capable of estimating the
model topology without restrictions.

The major difficulty with Model Merging is the enormous time needed for the process. We
introduced three constraints that restricted the allowed merges to speed up the merging process.
The constraints were applied one after each other, each was given up after a number of steps, and
in the end all states were allowed to merge. This allowed the processing of a rather small training
corpus of 10,000 words.

The constraints serve as a “guesser” which are the most promising pairs of states to merge.
This guesser needs further investigation. Using distributional information about the words and a
similarity measure to compare them is currently under investigation.



Also in preparation is the implementation of an incremental version of the algorithm (as descri-
bed in [Stolcke and Omohundro, 1994]), merging a corpus piecewise. This will further speed up the
merging and facilitates the processing of large corpora. With the incremental version the processing
time mainly depends on the size of the increments and is linear in the number of increments.
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