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Abstract

Experiments were carried out comparing the Swedish Teleman and the English Susanne
corpora using an HMM-based and a novel reductionistic statistical part-of-speech tag-
ger. They indicate that tagging the Teleman corpus is the more difficult task, and that
the performance of the two different taggers is comparable.

1 Introduction

The experiments reported in the current article continue a line of research in the field of part-of-
speech tagging using self-organizing models that was presented at the previous (9th) Scandinavian
Conference on Computational Linguistics. Then, the well-established HMM-based Xerox tagger,
see [Cutting 1994], was compared with some less known taggers, namely a neural-network tagger
described in [Eineborg & Gambick 1994], and a Bayesian tagger presented in [Samuelsson 1994].
The Xerox tagger performs lexical generalizations by clustering words based on their distribu-
tional patterns, while the latter two utilize the morphological information present in Swedish by
generalizing over word suffixes.

This time, another HMM-based approach is compared with a novel reductionistic statistical
tagger inspired by the successful Constraint Grammar system, [Karlsson et al 1995].

The performed experiments do not only serve to evaluate the two taggers, but also shed some
new light on the Teleman corpus as an evaluation domain for part-of-speech taggers compared to
other, English, corpora.

The paper is organized as follows: Section 2 discusses the Teleman corpus and the tagsets
used. Section 3 describes the HMM-based tagger and Section 4 the reductionistic statistical one.
The vital issue of handling sparse data is addressed in Section 5 and the experimental results are
presented in Section 6.

2 The Teleman Corpus

The Teleman corpus [Teleman 1974] is a corpus of contemporary Swedish, representing a mixture
of different text genres like information brochures on military service and medical care, novels, etc.
It comprises 85,408 words (tokens; here, words is a collective denotation of proper words, numbers,
and punctuation). There are 14,191 different words (types); the most frequent one is “.”, which
occurs 4,662 times; the most frequent proper word is “och” (and), which occurs 2,217 times. 8,458
of the words occur exactly once, which is 60% of the types but only 10% of the tokens.

For the experiments, we used two different tagsets. First, we used the original tagset, consisting
of 258 tags. Each of the 14,191 word types can have between one and 15 of the 258 tags (the
highly ambiguous word “fér” (for, stern, lead, too, ...) has the maximum number of tags). We
then used a reduced tagset, consisting of 19 tags, which represent common syntactic categories



Table 1: Comparison of Teleman and Susanne corpora

Teleman Susanne
size 85,408 words 156,644 words
word types 14,191 words 14,732 words
most freq. word 4662 x “.” 9641 x “the”
one occurrence 8,458 words 6,820 words
unknown words | 10% expected 4% expected
tagset 258 tags 424 tags'
max. tags/word | 15 (for “for”) 14 (for “as”)
reduced tagset 19 tags 62 tags
max. tags/word | 7 (“for”, “i”) 6 (“a”, “no”

1Ta.gs in the Susanne corpus with indices are counted as separate tags.

and punctuation. This tagset is identical to that used in the publications mentioned above. Each
of the word types then has between one and 7 tags (“for” and “/” have the maximum number of

tags).

2.1 Comparison with an English Corpus

Since 10% of the words in the Teleman corpus occur only once, we expect from the Good-Turing
formula [Good 1953] that 10% of the words in new text be unknown, which is a very high percen-
tage. Other publications typically report 5%. Since most of the work in this area is on English
corpora, we compared the Teleman corpus with an English corpus, namely the Susanne corpus
[Sampson 1995], which is a re-annotated part of the Brown Corpus [Francis & Kucera 1982], com-
prising different text genres. The relevant facts are summarized and compared in Table 1. The
major difference (apart from corpus size and tagsets used) is the percentage of words that occur
exactly once: 10% for Teleman vs. 4% for Susanne. According to the Good-Turing formula, this
percentage is identical to the expected percentage of unknown words. Actual counts by dividing
the corpora into training and test parts yield around 14% and 7%, respective. This indicates that
unseen Swedish text will have substantially more unknown words than unseen English, which is
most likely due to the higher degree of morphological variation in Swedish.

A further difficulty with the Swedish corpus is the higher degree of ambiguity. In the Teleman
corpus, each word in the running text has in average 2.38 tags for the small tagset, and 3.69 for
the large tagset. These numbers are 2.07 and 2.61 for the Susanne corpus, despite the fact that
the tagsets for the Susanne corpus are larger than those for the Teleman corpus. Thus, there is
much more work for the tagger to do in the Teleman corpus. Some more numbers: in the running
text, 54.5%/64.2% of the words in the Teleman corpus are ambiguous, and only 44.3%/48.9% in
the Susanne corpus (small/large tagset, resp.; see Table 2 for further details).

3 The HMM Approach

A Hidden Markov Model (HMM) consists of a set of states, a set of output symbols and a set
of transitions. For each state and each symbol, the probability that this symbol is emitted by
that state is given. Also, a probability is associated with each transition between states (see
[Rabiner 1989] for a good introduction). The transition probability, and thus the probability of
the following state, depends only on the previous state for first order HMMs, or on k previous
states for HMMs of kth order. HMM approaches to part-of-speech tagging make the well-known
assumption that the current category or part-of-speech of a word depends only on the previous
(n — 1) categories (Markov assumption), thus they assume that natural language is a Markov
process of order (n — 1), which of course is not true, but a successful approximation. n = 3 is
chosen in most of the cases, resulting in a trigram model (i.e., always working with a window of
size 3), since it yields the best compromise between size of corpora needed for training and tagging
accuracy. Furthermore, the current word (symbol) depends only on the current category (state).
Thus, instead of calculating and maximizing P(7y ... Ty | Wi ... Wy), with T; tags and W; words,
which is impossible in all practical cases, one calculates and maximizes

[IPT | Ticng - Tim) P(Wi | T3) (1)

i=1



Table 2: Distribution of number of categories per word in running text for the Teleman and Susanne
corpus, small and large tagsets.

Teleman Susanne
small large | small large
1 45.5% 35.8% | 55.7% 51.1%
2 16.2% 12.2% | 17.4%  19.2%
3 17.7% 14.1% 4.8% 4.2%
4 6.4% 10.0% | 11.1% 4.5%
5 9.0% 5.3% 8.4% 9.2%
6 1.7% 6.2% 2.6% 2.2%
7 3.5% 4.3% - 2.2%
8 - 1.1% - 4.8%
9 - 2.9% - -
10 - 2.7% - 2.0%
11 - 1.6% - -
12 - 2.9% - -
13 - - - -
14 - - - 0.6%
15 - 0.9% - -
>1 | 54.5% 64.2% | 44.3% 48.9%
Table 3: Teleman corpus parts
total words unknown words?
part A 67,402 —
part B 9,262 1,421 (15.3%)
part C 8,774 1,198 (13.7%)
by 85,408

2Unknown words are words that occur only in the test set, but not in the training set.

Table 4: Susanne corpus parts

total words unknown words
part A 127,385 —
part B 9,752 714 (7.4%)
part C 9,684 563 (5.8%)
¥ 146,8213

5The remaining 9,823 words of the Susanne corpus were not used in the experiments.



to find the best sequence of tags for a given sequence of words.

The parameters of an HMM can be estimated directly from a pretagged corpus via maximum-
likelihood estimation (MLE). But MLE sets a lot of the transition probabilities to zero, and if
one of the multiplied probabilities in (1) is zero, the product becomes zero, leaving no means
to distinguish between different products that contain a zero probability. This results in poor
estimates for the probabilities of new sequences of words. This problem is addressed in Section 5.

Another way of estimating the parameters of an HMM is to use an untagged corpus, a lexicon
with parts-of-speech lists for the words and the Baum-Welch algorithm [Baum 1972]. This approach
has the advantage of avoiding the tedious work of manually annotating a corpus, but it requires
a sophisticated choice of initial biases, and generally, the performance is worse than that achieved
with annotated corpora.

When using an HMM for tagging, the system gets a string of words and has to find the most
probable sequence of tags that could have produced the string of words. This is done with a
dynamic programming method, the Viterbi algorithm [Viterbi 1967]. The algorithm finds the
most probable sequence of states in time linear in the length of the input string.

4 The Reductionistic Statistical Approach

Although not yet fully realized, the basic philosophy behind the reductionistic statistical approach
is to give it the same expressive power as the Constraint Grammar system.

4.1 Constraint Grammar

The Constraint Grammar system performs remarkably well; [Voutilainen & Heikkila 1994] report
99.7% recall, or 0.3% error rate, which is ten times smaller than that of the best statistical taggers.
These impressive results are achieved by:

1. Utilizing a number of different information sources, and not only the stereotyped lexical
statistics and n-gram tag statistics that have become the de facto standard in statistical
part-of-speech tagging.

2. Not fully resolving all ambiguities when this would jeopardize the recall.

Property 2 means that the system trades precision for recall, which makes it ideal as a preprocessor
for natural language systems performing deeper analysis.

The Constraint Grammar system works as follows: First, the input string is assigned all pos-
sible tags from the lexicon, or rather, from the morphological analyzer. Then, tags are removed
iteratively by repeatedly applying a set of rules, or constraints, to the tagged string. When no
more tags are removed by the last iteration, the process terminates, and morphological disambi-
guation is concluded. Then a set of syntactic tags are assigned to the tagged input string and
a similar process is performed for syntactic disambiguation. This method is often referred to as
reductionistic tagging.

The rules are sort-of formulated as finite state automata [Tapanainen, personal communication],
which allows very fast processing.

Each rule applies to a current word with a set of candidate tags. The structure of a rule is
typically:

“In the following context, discard the following tags.”
or
“In the following context, commit to the following tag.”
We will call discarding or committing to tags the rule action. A typical rule context is:

“There is a word to the left that is unambiguously tagged with the following tag, and
there are no intervening words tagged with such and such tags.”



4.2 The New Approach

The structure of the Constraint Grammar rules readily allows their contexts to be viewed as the
conditionings of conditional probabilities, and the actions have an obvious interpretation as the
corresponding probabilities.

Each context type can be seen as a separate information source, and we will combine information
sources S, ...,S, by multiplying the scaled probabilities:

P(T'|S,..,8) _ 1 P@]S)
(1) - 1_[1

|
P(T)
This formula can be established by Bayesian inversion, then performing the independence assump-
tions, and renewed Bayesian inversion:
P(T|S1,...,5,) =
P(T)-P(S1,...,5 | T)

(51, 1 Sn) =
P(Si|T)
~ P(T)- H =
i=1 P(S )
7 P(D) - P(S:i | T)
= P || —=—%——-—+—
Z-I;[l P(T) - P(Si)
B 5 P(T | Sh)
= PO H P(T)
i=1
In standard statistical part-of-speech tagging there are only two information sources — the

lexical probabilities and the tags assigned to neighbouring words. We thus have:

P(Tag | Lexicon and n-grams) =
P(Tag | Lexicon) - P(Tag | N-grams)
P(Tag)

The context will in general not be fully disambiguated. Rather than employing dynamic pro-
gramming over the lattice of remaining candidate tags, the new approach uses the weighted average
over the remaining candidate tags to estimate the probabilities:

P | UL, G =

zn:p(T | Ci) - P(Ci | U7, Cy)

It is assumed that {C; : i =1,...,n} constitutes a partition of the context C, i.e., that C' = U, C;
and that C; N C; = 0 for ¢ # j. In particular, trigram probabilities are combined as follows:

P(T|C) =
= Y PCITT)PUTT)|C)

(T, T, )eC

Here T denotes a candidate tag of the current word, 7; denotes a candidate tag of the immediate left
neighbour, and 7, denotes a candidate tag of the immediate right neighbour. C' is the set of ordered
pairs (71, 7;) drawn from the set of candidate tags of the immediate neighbours. P(T' | T, T) is
the symmetric trigram probability.

The tagger is reductionistic since it repeatedly removes low-probability candidate tags. The
probabilities are then recalculated, and the process terminates when the probabilities have stabi-
lized and no more tags can be removed without jeopardizing the recall; candidate tags are only
removed if their probabilities are below some threshold value.

5 Sparse Data

Handling sparse data consists of two different tasks:



1. Estimating the probabilities of events that do not occur in the training data.

2. Improving the estimates of conditional probabilities where the number of observations under
this conditioning is small.

Coping with unknown words, i.e., words not encountered in the training set, is an archetypical
example of the former task. Estimating probability distributions conditional on small contexts is
an example of the latter task. We will examine several approaches to these tasks.

For the HMM, it is necessary to avoid zero probabilities. The most straight-forward strategy is
employing the expected-likelihood estimate (ELE), which simply adds 0.5 to each frequency count
and then constructs a maximume-likelihood estimate (MLE), (see e.g. [Gale & Church 1990]). The
MLE of the probability is the relative frequency r. Another possibility is the Good-Turing method
[Good 1953], where each frequency f is replaced by f* = (f + 1)Ny41/Ny, where N; denotes
the frequency of frequency f. Alternatively, one can use linear interpolation of the probabilities
obtained by MLE, P(c | a,b) = Air(c) + Aar(c | b) + Asr(c | a,b). [Brown et al 1992] let the
A values dependent on the context, which improves the tagging accuracy. This is related to the
idea of successive abstraction presented in Section 5.1. To achieve improved estimates of lexical
probabilities, words can be clustered together, see [Cutting et al 1992].

There are several ways to handle unknown words. These include:

1. Making every tag a possible tag for that word with equal probability and finding the most
probable tag solely based on context probabilities. The results can be slightly improved by
trying only open-class tags for unknown words.

2. As an extension to case 1, choosing different but again constant probabilities for each possible
tag. This constitutes an a priori distribution for unknown words, reflecting for example that
most of the unknown words are nouns. The probabilities could be obtained from a separate
training part, or from the distribution of words that occur only once in the training corpus.
These words reflect the distribution of unknown words according to the formula presented in

[Good 1953].

3. Exploiting word-form information as proposed in [Samuelsson 1994]. Here, the probability
distributions are determined from the last n characters of the word, and the remaining
number of syllables. This method has been proven successful for Swedish text.

4. Utilizing orthographical cues such as capitalization.

5.1 Successive Abstraction

Assume that we want to estimate the probability P(E | C) of the event E given a context C' from
the number of times Ng it occurs in N = |C] trials, but that this data is sparse. Assume further
that there is abundant data in a more general context C’ D C' that we want to use to get a better
estimate of P(E | C).

If there is an obvious linear order C' = Cy, C Cpy_1 C -++ C C; = C’ of the various genera-
lizations C}, of C, we can build the estimates of P(E | Cy) on the relative frequency r(E | Cy)
of event E in context Cj and the previous estimates of P(E | Cy—1). We call this method linear
successive abstraction. A simple example is estimating the probability P(T' | l,,...,l,—;) of a tag
T given l,_;,...,1,, the last j + 1 letters of the word. In this case, the estimate will be based on
the relative frequencies 7(T" | ln, ..., ln_;), 7(T | bn, ... lajyr), .., 7(T ] 1), 7(T).

Previous experiments [Samuelsson 1994] indicate that the following is a suitable formula:

VN r(E|C)+P(E|C)
VN +1

This formula simply up-weights the relative frequency r by a factor V/N, the square root of the
size of context C, which is the active ingredient of the standard deviation of r.

If there is only a partial order of the various generalizations, the scheme is still viable. For
example, consider generalizing symmetric trigram statistics, i.e., statistics of the form P(T" | T3, T}).
Here, both 77 and 7, are one-step generalizations of the context 77,7, and both have in turn the
common generalization 2. We modify Equation 2 accordingly:

P(T|TT,) =

VI T r(T|T, 1) + P(TT) + P(T]T5)
Te, Tr[ 42

P(E|C)= (2)




Table 5: Results of the HMM experiments with the Teleman corpus

Training Testing | total correct known correct unknown correct

S Lexical Tagging

By A, B,C A B C| 9513% 95.13% —

1 1 A,B C 89.27% 94.18% 58.35%
L9 A ¢ B 90.42% 94.20% 69.60%
Z E Trigram Tagging

g g A B C ABC| 96.22% 96.22% —
e ° A/B C 92.88% 94.51% 82.55%
t A C B 92.81% 94.62% 82.83%
L Lexical Tagging

a , AB,C A B C| 90.65% 90.65% _—
& 5 AB C 78.84% 89.07% 14.44%
T 8 A, C B 78.05% 88.20% 22.03%
a E Trigram Tagging

& g AB,C ABC| 9835% 98.35% _—
e % AB C 83.78% 89.99% 44.66%
t A, C B 81.01% 89.40% 34.69%

and

VI (T | Th) + P(T)

PT|T) =
ITi|+1
PT|T) VI (T | 1) + P(T)
T +1

We call this partial successive abstraction.

6 Experiments

For the experiments, both corpora were divided into three sets, one large set and two small sets.
We used three different divisions into training and testing sets. First, all three sets were used for
both training and testing. In the second and third case, training and test sets were disjoint, the
large set and one of the small sets were used for training, the remaining small set was used for
testing. As a baseline to indicate what is gained by taking the context into account, we performed
an additional set of experiments that used lexical probabilities only, and ignored the context.

6.1 HMM Approach

The experiments of this section were performed with a trigram tagger as described in Section 3.
Zero frequencies were avoided by using expected-likelihood estimation. Unknown words were hand-
led by a mixture of methods 2 and 3 listed in Section 5: If the suffix of 4 characters (3 characters
for the Susanne corpus) of the unknown words was found in the lexicon, the tag distribution for
that suffix was used. Otherwise we used the distribution of tags for words that occurred only once
in the training corpus.

As opposed to trigram tagging, lexical tagging ignores context probabilities and is based solely
on lexical probabilities. Each word is assigned its most frequent tag from the training corpus.
Unknown words were assigned the most frequent tag of words that occurred exactly once in the
training corpus. The most frequent tags for single occurrence words are for the Teleman corpus
NNSS (indefinite noun-noun compound) and noun (large and small tagset, resp.), for the Susanne
corpus NN2 (plural common noun) and NN (common noun; again large and small tagset resp.).

Tagging speed was generally between 1000 and 2000 words per second on a SparcServer 1000;
most of this variation was due to variations in the number of unknown words.

The results for the Teleman corpus are shown in Table 5 and the results for the Susanne corpus

in Table 6.



Table 6: Results of the HMM experiments with the Susanne corpus

Training Testing | total correct known correct unknown correct

S Lexical Tagging

By A, B, C A B C| 9528% 95.28% —

1 6 A,B C 91.48% 94.80% 49.72%
L2 4 ¢ B 91.20% 94.44% 38.37%
Z E Trigram Tagging

g g A B C ABC| 986% 98.65% _—
e ° A/B C 95.76% 96.95% 80.81%
t A C B 95.18% 96.58% 72.29%
L Lexical Tagging

a 4 AB,C A B C| 9398% 93.98% _—
& 2 AB C 86.98% 93.04% 10.78%
T 4 A C B 88.16% 92.59% 15.81%
a E Trigram Tagging

& g AB,C ABC| 9980% 99.80% _—
e % AB C 92.61% 95.66% 54.20%
t A, C B 93.07% 95.46% 53.83%

What immediately attracts attention is the remarkably low performance of the trigram approach
for the Teleman corpus. Already the baseline obtained by lexical tagging is below 80% for new text,
usual results are around 90%. Normal results can be obtained only for known words or when using
the small tagset, the latter being in fact a very simple task, since the algorithm has to choose from
only 19 tags. For the large tagset, trigram tagging achieves only 83% accuracy. This low figure is
due to the unusually high number of unknown words and the larger degree of ambiguity compared
to English corpora, as is discussed in Section 2. Using a large Swedish lexicon or morphological
analyzer should improve the results significantly.

Another interesting result is that accuracy increases when the size of the tagset increases for
the cases where known text is tagged and context probabilities are taken into account. This
means that the additional information about the context in the larger tagset is very helpful for
disambiguation, but only when disambiguating known text. This could arise from the fact that a
large number (> 50%) of the trigrams that occur in the training text occur exactly once. And most
of the possible trigrams do not occur at all (generally more than 90%, depending on the size of the
tagset). Now, the trigram approach has a distinct bias to those trigrams that occurred once over
those that never occurred. These happen to be the right ones for known text but not necessarily
for new text, thus the positive effect of a larger tagset vanishes for fresh text.

The results for the Susanne corpus are similar to those reported in other publications for (other)
English corpora.

6.2 Reductionistic Approach

The reductionistic statistical tagger described in Section 4 was tested on the same data as the
HMM tagger. The information sources employed in the experiments were lexical statistics and
contextual information, which consisted of symmetric trigram statistics. Unknown words were
handled by creating a decision tree of the four last letters from words with three or less occurrences.
Each node in the tree was associated with a probability distribution (over the tagset) extracted
from these words, and the probabilities were smoothened through linear successive abstraction, see
Section 5.1.

There were two cut-off values for contexts: Firstly, any context with less than 10 observations
was discarded. Secondly, any context where the probability distributions did not differ substan-
tially from the unconditional one was also discarded. Only the remaining ones were used for
disambiguation. Due to the computational model employed, omitted contexts are equivalent to
backing off to whatever the current probability distribution is. The distributions conditional on
contexts are however susceptible to the problem of sparse data. This was handled using partial
successive abstraction as described in Section 5.1.

The results are shown in Tables 7 and 8. They clearly indicate that:



e The employed treatment of unknown words is quite effective.
e Using contextual information, i.e., trigrams, improves tagging accuracy.

e The performance is on pair with the HMM tagger and comparable to state-of-the-art stati-
stical part-of-speech taggers.

e Teleman is a considerably tougher nut to crack than Susanne.

The results using the Susanne corpus are similar to those reported for the Lancaster-Oslo-Bergen
(LOB) corpus in [de Marcken 1990], where a statistical n-best-path approach was employed to
trade precision for recall.

The tagging speed was typically a couple of hundred words per second on a SparcServer 1000,
but varied with the size of the tagset and the amount of remaining ambiguity.

7 Conclusions

The experiments with the HMM approach show that it is much harder to process the Swedish than
the English corpus. Although the two corpora are not fully comparable because of the differences
in size and tagsets used, they reveal a strong tendency. The difficulty in processing is mostly
due to the rather large number of unknown words in the Swedish corpus and the higher degree of
ambiguity despite having smaller tagsets. These effects mainly arise from the higher morphological
variation of Swedish which calls for additional strategies to be applied. These could be the use of
a large corpus-independent lexicon and a separate morphological analysis.

It is reassuring to see that the reductionistic tagger performs as well as the HMM tagger,
indicating that the new framework is as powerful as the conventional one when using strictly con-
ventional information sources. The new framework also enables using the same sort of information
as the highly successful Constraint Grammar approach, and the hope is that the addition of further
information sources can advance state-of-the-art performance of statistical taggers.

Viewed as an extension of the Constraint Grammar approach, the new scheme allows making
decisions on the basis of not fully disambiguated portions of the input string. The absolute value
of the probability of each tag can be used as a quantitative measure of when to remove a particular
candidate tag and when to leave in the ambiguity. This provides a tool to control the tradeoff
between recall (accuracy) and precision (remaining ambiguity).
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Table 7: Results of the reductionistic experiments with the Teleman corpus

Training Testing | Threshold:  0.00 0.05 0.075 0.10 0.15 0.20 0.30 0.50
Small Tagset
Trigram and lexical statistics
Recall (%) 100.00 99.02 98.66 98.35 97.78 97.37 96.65 95.55
Tags/word 238 1.15 1.12 1.10 1.07 1.05 1.03 1.00
AB,C ABC Lexical statistics only
Recall (%) 100.00 98.96 98.53 98.29 97.69 97.28 96.36 95.10
Tags/word 238 1.25 1.17 1.14 1.09 1.07 1.03 1.00
Trigram and lexical statistics
Recall (%) 98.98 97.72 97.25 96.81 96.20 95.53 94.67 93.34
Tags/word 254 1.21 1.17 1.14 1.10 1.07 1.04 1.00
AB C Lexical statistics only
Recall (%) 98.98 97.61 97.14 96.87 96.15 95.63 94.26 92.55
Tags/word 254 1.34 125 121 1.14 1.11 1.04 1.00
Trigram and lexical statistics
Recall (%) 98.99 97.80 97.44 96.94 96.34 95.84 98.81 93.50
Tags/word 251 1.23 1.18 1.15 1.11 1.08 1.04 1.00
AC B Lexical statistics only
Recall (%) 98.99 97.67 97.33 97.07 96.45 95.84 94.34 92.52
Tags/word 251 1.34 126 121 1.14 1.10 1.04 1.00
Large Tagset
Trigram and lexical statistics
Recall (%) 100.00 98.36 97.92 97.54 97.03 96.41 95.31 93.75
Tags/word 3.69 1.23 1.18 1.15 1.11 1.08 1.04 1.00
ABC ABC Lexical statistics only
Recall (%) 100.00 98.30 97.63 97.20 96.67 95.57 93.65 90.59
Tags/word 3.69 143 131 126 122 1.16 1.08 1.00
Trigram and lexical statistics
Recall (%) 97.46 94.93 93.94 93.35 92.35 91.15 88.53 85.56
Tags/word 4.16 1.47 137 131 124 1.18 1.08 1.00
AB C Lexical statistics only
Recall (%) 97.46 95.23 94.24 93.69 92.93 91.51 87.92 83.62
Tags/word 4.16 1.69 153 144 134 126 1.11 1.00
Trigram and lexical statistics
Recall (%) 96.64 94.04 93.00 92.09 90.92 89.46 86.94 83.58
Tags/word 4.18 148 1.38 132 124 1.18 1.08 1.00
AC B Lexical statistics only
Recall (%) 96.64 94.51 93.27 92.50 91.02 89.68 85.86 81.69
Tags/word 4.18 1.71 154 144 134 124 1.10 1.00
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Table 8: Results of the reductionistic experiments with the Susanne corpus

Training Testing | Threshold:  0.00 0.05 0.075 0.10 0.15 0.20 0.30 0.50
Small Tagset
Trigram and lexical statistics
Recall (%) 100.00 99.46 99.35 99.23 99.03 98.82 98.43 97.75
Tags/word 2.07 1.08 1.07 1.06 1.04 1.03 1.02 1.00
AB,C ABC Lexical statistics only
Recall (%) 100.00 99.33 99.20 98.94 98.67 98.10 97.43 95.28
Tags/word 2.07 1.18 1.16 1.14 1.11 1.08 1.05 1.00
Trigram and lexical statistics
Recall (%) 99.22 98.43 98.28 98.11 97.78 97.43 96.91 95.99
Tags/word 223 1.14 1.11 1.09 107 1.05 1.02 1.00
AB C Lexical statistics only
Recall (%) 99.22 98.27 98.03 97.78 97.45 96.80 96.15 93.42
Tags/word 223 1.25 1.23 119 1.15 1.11 1.08 1.00
Trigram and lexical statistics
Recall (%) 99.22 98.46 98.22 97.99 97.58 97.15 96.49 95.54
Tags/word 2.17 1.13 1.10 1.09 1.06 1.05 1.02 1.00
AC B Lexical statistics only
Recall (%) 99.22 98.21 97.88 97.61 97.35 96.47 95.46 92.87
Tags/word 2.17 1.24 1.21 117 115 1.10 1.06 1.00
Large Tagset
Trigram and lexical statistics
Recall (%) 100.00 99.25 99.12 98.96 98.74 98.44 98.04 96.87
Tags/word 261 1.10 1.08 1.07 1.06 1.04 1.03 1.00
ABC ABC Lexical statistics only
Recall (%) 100.00 99.05 98.88 98.59 98.20 97.58 96.72 93.98
Tags/word 261 1.23 1.20 1.17 1.14 1.10 1.07 1.00
Trigram and lexical statistics
Recall (%) 98.31 96.94 96.52 96.19 95.68 95.02 94.21 92.70
Tags/word 3.01 1.22 1.18 1.15 1.11 1.08 1.04 1.00
AB C Lexical statistics only
Recall (%) 98.31 96.91 96.49 95.94 95.50 94.40 93.42 90.26
Tags/word 3.01 141 135 128 120 1.14 1.08 1.00
Trigram and lexical statistics
Recall (%) 98.49 97.03 96.72 96.41 95.88 95.16 94.29 92.71
Tags/word 283 1.21 1.18 1.15 1.11 1.08 1.04 1.00
AC B Lexical statistics only
Recall (%) 98.49 96.95 96.55 96.05 95.57 94.44 93.26 90.31
Tags/word 283 1.36 1.31 125 1.19 1.13 1.08 1.00
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