Hybrid Multilingual Parsing
with HPSG
for Semantic Role Labeling

Rui Wang
rwang@coli.uni-sb.de
Saarland University
Germany

Yi Zhang
yzhang@coli.uni-sb.de
DFKI GmbH, Germany

Stephan Oepen
oe@ifi.uio.no
University of Oslo
Norway
Motivations

• The extension of Zhang et al. (2008)
 • From English to multiple languages
 • Both syntactic and semantic features

• Road-test the hand-written DELPH-IN HPSG grammars being developed in the past two decades
Architecture

Syntactic Dependency Parsing
 MST Parser
 Syn.Dep.

Argument Identification
 Argument Classification
 Predicate Classification

Semantic Role Labeling

HPSG Syn.

PET
 [incr tsdb[]]
 ERG
 GG
 JaCY
 SRG

HPSG Parsing

MRS
Deep Linguistic Grammars

- ERG (en)
 - Dan Flickinger
 - Coverage: 80.4%

- GG (de)
 - Berthold Crysmann, Peter Adolphs
 - Coverage: 28.6%

- JaCY (ja)
 - Francis Bond
 - Coverage: 42.7%

- SRG (es)
 - Montserrat Marimon
 - Coverage: 7.5%

http://www.delph-in.net/
Dependency Backbone Extraction
HPSG Parsing

- **PET: Efficient HPSG Parser**
 - Chart-mapping-based re-tokenization
 - Unknown word handling with POS mapping rules
 - Efficient best-first parsing with ambiguity packing

- **Retraining Parse Disambiguation Models**
 - Original models trained with manually disambiguated HPSG treebanks
 - Retrained to maximize the agreement between HPSG dependency backbone and CoNLL unlabeled syntactic dependencies
MRS Features

- P MRS ep-name: lose_v_1_rel
- P MRS-args labels: ARG1 ARG2
- P MRS-args POSes: PRP PRP
- A MRS ep-name: pron_rel
- A MRS-preds labels: ARG1
- A MRS-preds POSes: VBZ
Experiment Settings

- **Syntactic Parsing**
 - MST Parser

- **Semantic Role Labeling**
 - MaxEnt-based pipeline of classifiers, with parameters estimated with the open source TADM system; open systems include extra MRS and HPSG DB features

- **Parameter tuning**

<table>
<thead>
<tr>
<th></th>
<th>ca</th>
<th>zh</th>
<th>cs</th>
<th>en</th>
<th>de</th>
<th>ja</th>
<th>es</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syn</td>
<td>proj</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>morph</td>
<td>-</td>
<td>N/A</td>
<td>+</td>
<td>N/A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SRL</td>
<td>closed</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>open</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th></th>
<th>ca</th>
<th>zh</th>
<th>cs</th>
<th>en</th>
<th>de</th>
<th>ja</th>
<th>es</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYN</td>
<td>Closed</td>
<td>82.67</td>
<td>73.63</td>
<td>75.58</td>
<td>87.90</td>
<td>84.57</td>
<td>91.47</td>
</tr>
<tr>
<td></td>
<td>ood</td>
<td>-</td>
<td>-</td>
<td>71.29</td>
<td>81.50</td>
<td>75.06</td>
<td>-</td>
</tr>
<tr>
<td>SRL</td>
<td>Closed</td>
<td>67.34</td>
<td>73.20</td>
<td>78.28</td>
<td>77.85</td>
<td>62.95</td>
<td>64.71</td>
</tr>
<tr>
<td></td>
<td>ood</td>
<td>-</td>
<td>-</td>
<td>77.78</td>
<td>67.07</td>
<td>54.87</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Open</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>78.13 (↑0.28)</td>
<td>64.31 (↑1.36)</td>
<td>65.95 (↑1.24)</td>
</tr>
<tr>
<td></td>
<td>ood</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>68.11 (↑1.04)</td>
<td>58.42 (↑3.55)</td>
<td>-</td>
</tr>
</tbody>
</table>

![Graph](image.png)
Conclusion and Future Work

- The results clearly show that the integration of HPSG parsing results in the semantic role labeling task brings substantial performance improvement, even where grammar coverage is low.

- The gain is more significant on out-of-domain tests, indicating that the hybrid system is more robust to cross-domain variation.

- The closed SRL system needs to be improved in the future.
Thank You!

Welcome to our poster!