Opportunities and Challenges for a Bayesian Approach to Language Processing

Andrew Kehler
UC San Diego
Past, Present, Future

• Pre-90s: Handcrafted systems, world knowledge, rules, inference, etc

• 90s-present: Machine learning, annotated data, etc

• Future: Reverse engineering raw language data to extract knowledge with which to perform (statistical) inference

• A challenge problem: Detecting invited inferences (‘elicitures’)

 The boss fired the employee who was hired in 2002.

 The boss fired the employee who was embezzling money.
Bayesian Pronoun Interpretation (Kehler et al. 2008)

- Bayesian formulation:

\[
P(\text{referent} \mid \text{pronoun}) = \frac{P(\text{pronoun} \mid \text{referent}) P(\text{referent})}{\sum_{\text{referent} \in \text{referents}} P(\text{pronoun} \mid \text{referent}) P(\text{referent})}
\]

- Data is consistent with a scenario in which semantics/coherence-driven biases primary affect probability of next-mention, whereas grammatical biases affect choice of referential form.

- Results in the counterintuitive prediction that production biases are insensitive to a set of factors that affect the ultimate interpretation bias.
Testing the Theory: Inferred Causes

* Passage completion study:

 The boss fired the employee who was hired in 2002. He ____________ [Control]

 The boss fired the employee who was embezzling money. He __________ [ExplRC]

 The boss fired the employee who was hired in 2002. _________________ [Control]

 The boss fired the employee who was embezzling money. ____________ [ExplRC]

* Analyze:

 * Coherence relations (Explanation or Other)

 * Next-mentioned referent (Subject or Object)

 * Form of Reference (free-prompt condition; Pronoun or Other)
Predictions

RC Type

[ExplRC] The boss fired the employee who was embezzling money.
[Control] The boss fired the employee who was hired in 2002.

Coherence Relations

ExplRC: fewer Explanations

Production Bias

$P(pronoun \mid referent)$

Subjects: more pronouns
ExplRC: no effect

Interpretation Bias

$P(referent \mid pronoun)$

ExplRC: fewer object refs (= more subjects)

Next-Mention Biases

$P(referent)$

ExplRC: fewer object next-mentions (i.e., more subject references)

Results: All predictions confirmed
Two Lessons for Computational Approaches

• In supervised approaches, the lack of annotated training data is an impediment to using anything beyond the most general features

• But the Bayesian model suggests that we don’t need it:
 • The likelihood (production model) can be trained on (limited amounts of) annotated data
 • The prior (next-mention model) can be trained on cases of unambiguous reference in large, raw corpora
 • The situation is entirely analogous to Bayesian approaches to other tasks (speech recognition, machine translation) that use a task-independent language model trained on raw data to estimate the prior
Two Lessons for Computational Approaches

Language interpretation is not a collection of separable comprehension/disambiguation problems.

It is a complex, interconnected dynamical system.

Theoretically-grounded, linguistically-rich, graphical models may provide the path to capturing the multidirectional flow of information required to make progress on certain problems.

The uphill battles are nonetheless substantial (e.g., the problem of identifying when a relative clause conveys a cause).
Thanks!