Language Acquisition from Neural and Sensorimotor Systems

Henrik Jacobsson, Geert-Jan M. Kruifff
DFKI, German Research Center for Artificial Intelligence, Saarbrücken (Germany)

Key Ideas:
- Discrete models of situated embodied experience can be acquired through active learning
- Acquired models will be strongly robo-centric
- Mediation between sensorimotor experience and high-level cognitive processes (such as language and planning) can be established through situated dialogue
- Negotiation of the mapping between robo-centric and human terminology

Approach:
- Bottom up active learning of embodied concepts solely on the basis of actions and perceptions of the robot forms the robo-centric ontology
- Method: Rule extraction from recurrent neural networks (RNN-RE) discretization of dynamic systems
- Top-down categorization by the human user
- Method: Situated dialogue
- Integration: the CoSy Architecture Schema Toolkit (CAST)

System Implementation

I, Robot

Method

Through the novel algorithm, crysplex [1], extraction of rules from Recurrent Neural Networks (RNNs) [2] is possible for deep context-free grammars, for large RNNs (10^7 state nodes), chaotic systems, and, for example, from echo state networks predicting natural language sequences [3]. A trained RNN in combination with crysplex is a form of language acquisition. Crysplex analyses the state space of the RNN by learning how inputs affect the state and output of the RNN.

- Anytime generation of finite state description (from simple, stochastic machines to more detailed descriptions).
- Hierarchical decomposition of state space.
- Active selection of disambiguating state data
- Parameter free and deterministic.

Crysplex Example

References


Goal Scenario

The goal scenario is to let crysplex control the robot in a simple setting in which the robot can start from “scratch” to build up a grounded embodied world model. After a while it can hopefully sufficiently predict the consequences of its actions and has established a hierarchical model of world states. At this point, it should be possible to tag states and sets of states with labels through user interaction, e.g. by the user explaining to the robot that “your current action is called bumping” the robot could infer that the current state is part of a family of states that are involved in something which can be labelled “bumping”, assuming that also closely related states may be labeled “bumping” (something which may be verified through an interactive clarification dialogue). At this point there will essentially be a connection between a concept of the robot’s world view, i.e. an instance of an enumeration of perception, and a human concept. Our conjecture is that to learn this concept is a trivial translation once the robot has the capability of predicting “bumping”. Once the association is made, the user should be able to give high-level commands that can be translated to planning goals, e.g. “avoid bumping”.

The mapping of the extracted ontology to the user’s ontology can be viewed as a socially guided machine learning task.