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A fundamental learning problem in adaptive, embodied
cognitive systems is how to learn discrete models of situated
experience which can mediate between sensorimotoric expe-
rience and high-level cognitive processes (such as language
and planning) [1]. Recent approaches include learning of
discrete Hidden Markov Models for behaviour description [2]
and active (curiosity driven) learning of perception prediction
[3]. Through curiosity driven learning, also communication
itself can be “discovered” among other actions as a source
of rich information [4]. It can also be argued that in order to
learn a situated form of language that takes into account the
embodiment of the robot, there needs to be a close correspon-
dence between the sensorimotor and linguistic capabilities.
The robot should communicate about what it knows, and
through active learning it could know how its actions will
affect the environment.

In relation to situated language acquisition, the field of
rule extraction from recurrent neural networks (RNN-RE)
may seem to be a completely unrelated [5], [6]. There are,
however, important connections between these fields that
we suggest to exploit. RNN-RE is a form of automated
discretization of dynamic systems, which is precisely what
may be essential in mediating between sensorimotor control
systems and higher-level cognition. Most earlier algorithms
have, despite much progress, not been applied to very large
complex RNNs trained on deep linguistic problems [7].

In recent work, however, many of the previous limita-
tions have been surmounted through integrating previously
separated components of RNN-RE algorithms [8]. Through
the novel algorithm, CrySSMEx, extraction from RNNs
is now possible for deep context-free grammars, for large
RNNs (10

3 state nodes), chaotic systems and, for example,
from echo state networks [9] predicting natural language
sequences [10], [11]. A trained RNN in combination with
CrySSMEx is a form of language acquisition. But there is
no reason for only considering RNNs among the potentially
broad set of dynamic systems that are susceptible to analysis
of the kind that RNN-RE represents. We suggest that the
dynamic system comprised of the sensorimotor-environment
feedback loop of a situated robot is such a system.

We essentially want to view the learning of perceivable
consequences of actions, in different situations (states), as
a language acquisition problem. The goal is to find the
“grammar” underlying the dynamics in the “dialogue” be-
tween the robot and its environment. CrySSMEx supports
this by extracting a stochastic finite state machine description
of the system. Moreover, accompanying the machine is a
hierarchical description of how the continuous state space of

the dynamic system is mapped to the extracted discrete states
(i.e. grounding the grammar in the system). This hierarchical
description can be considered CrySSMEx’s ontology of the
state space.

The desired next step is to guide the active learning
through social interaction [12]. This can involve guiding of
exploratory curiosity driven behaviour (“dynamic scaffold-
ing”) as well as explicit labelling of the concepts acquired by
CrySSMEx. This way we hope that a natural and transparent
human robot interaction can be established as well as a
means for establishing a common linguistic ground between
the robot and its tutor.

We are implementing this under the EU FP6 IST Cognitive
Systems Integrated project: “Cognitive Systems for Cognitive
Assistants - CoSy” (www.cognitivesystems.org).
Within the CoSy project a cognitive architecture is being
constructed that facilitates integration of various subarchi-
tectures (in C++, Java, Python). The architecture is already
integrated with subarchitectures such as speech recognition
and synthesis, natural language processing, planning, com-
puter vision, visiual feature learnin, kinematics, etc.
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