
From Rule Extraction to Active Learning Symbol Grounding

Henrik Jacobsson, Geert-Jan Kruijff & Maria Staudte
{henrik.jacobsson,gj,maria.staudte}@dfki.de

Abstract— The paper focuses on a fundamental learning
problem in adaptive, embodied cognitive systems: Namely, how
to learn discrete models of situated, embodied experience which
can act as a mediation between sensori-motoric experience and
high-level cognitive processes. The paper suggests to address
the problem using a combination of bottom up active learning
of embodied concepts solely on the basis of the actions and
perceptions of the robot, and top-down information obtained
through interaction with other agents. The embodied concepts
are constructed to be informative for the robot in terms of its
sensorimotor prediction capability. From that point the effort of
constructing humanlike concepts is shifted towards producing
a translation between the sensorimotor based bottom-up on-
tology and more conventional top-down constructed ontologies.
The suggested framework is based on a parameter free rule
extraction algorithm that successfully has been applied to the
problem of creating finite state descriptions of large, complex
and even chaotic simulated dynamic systems. We will briefly
describe how this algorithm can be ported to an autonomous
robot domain.

I. INTRODUCTION

A fundamental problem in the development of cognitive
systems for embodied agents is that of “symbol ground-
ing”, i.e. the question how to connect high-level cognitive
processes and the representations they create to an embod-
ied, situated understanding of the environment. Empirical
studies in developmental psychology and psycholinguistics
suggest that this connection is at least in part mediated
by a distributed collection of category systems that model
concepts [1], [2], [3]. In this position paper, we outline an
approach to learning such category systems in an active
fashion, on the basis of a combination between embodied
exploration of an environment and interaction with other
agents. The resulting category models do not only categorize
available sensory input, but also predict how this input may
change under the influence of actions, or environmental
dynamics; (cf. the notion of simulation in [2]). This approach
is still under development, but promises to provide means for
acquiring a genuinely embodied understanding of a situation
into which we can base higher-level, deliberative situated
cognitive processing.

The idea behind the approach is to start from conceiving of
sensorimotoric input (“experience”) about the environment
as a continuous dynamic system. This system we need
to abstract to a more discrete description. This abstracted
description takes the form of a discrete computational model
that, when given the same input, approximates behaviour of

the dynamic system it describes1.
To implement such an approach, we employ techniques

developed for rule extraction from neural networks. The goal
there is to translate large and complex trained models into
something more comprehensible [7], [8]. The Crystallizing
Substochastic Sequential Machine Extractor, or CrySSMEx
[9], presents one algorithmic approach that has successfully
beeen applied to various types of dynamic systems, including
Recurrent Neural Networks (RNNs). We suggest that, with
some modifications, it could in also be successfully applied
to the environment of a robot. Moreover, CrySSMEx is
suitable for the purpose of concept creation because, at its
core, it relies on the generation of a hierachical description
of physical characteristics of the state space of the RNN.
In robotics terminology, CrySSMEx builds up something
that resembles a sensorimotor ontology. CrySSMEx also
constructs a sequence of gradually refined stochastic finite
state machines, which are essentially capable of predicting
the ontological class.

Our conjecture is that these, bottom-up constructed, repre-
sentations lead to a grounded set of truly embodied concepts.
Embodied, since the only way the concepts can be inferred
and validated is to actively collect data from the environment
through actions.

The assumption underlying the extracting finite state
descriptions from RNNs is that a finite state description
will suffice to describe the possibly nonlinear and complex
holistic mappings of the RNN. Naturally, this is a crude
assumption and even proven to potentially give rise to
conflicting results [10]. The advantages of this assumption
could, however, be transferred to the sensorimotor interaction
domain of a robot:

• Having discrete states makes it possible to use fairly
simple probability theory and estimation of probabilities
using frequency estimates.

• The model can split the sensor space into more and

1There is also a related approach which also investigate the development
of language and sensorimotor skills [4], [5], [6]. This came to our attention
during the last stages of preparing the camera ready version of this paper.
Our initial analys reveals that there are strong similarities in that work with
what we are proposing here. There are some important subtle differences,
however. The central “meta learner” we suggest here is more explicitly
reductionistic and the training mechanisms we suggest are distributed and
localized closer to the sensory modalities (and we will never have to
explicitly deal with the actual perceptions in the central active learner
module). The construction of a finite state machine also make it possible
to reason about the consequence of sequences of actions (and planning
for disambiguation of sensors). We do also assume a preexisting natural
language module and therefore communication skills is not something that
needs to be learned from scratch [4].



more special situations, which are increasingly man-
agable for learning algorithms.

• Erroneous predictions can be attributed to identifiable
and labelled situations (which is the basis for collecting
new data sets).

• Planning and prediction in a discrete model is compa-
rably straightforward to implement.

• A discrete finite state model of the world is more likely
to be possible to translate into conceptual representa-
tions that underly e.g. human language (which, after all
also consist of a discrete set of words and categories).

II. BACKGROUND

We will now briefly sketch some of the features of
CrySSMEx. For details about CrySSMEx, we refer to the
original paper [9]. CrySSMEx is parameter free, determinis-
tic, can handle missing data, and produces any-time results. It
is also considerably more efficient than earlier algorithms be-
cause of the active learning characteristics [11]. CrySSMEx
is a semi-active learner in that it selects subsets of the data
set thate are maximally informative for situations/states that
are identified as problematic in terms of prediction capability.

The systems susceptible to CrySSMEx analysis belong
to a broad set of dynamic systems (further defined in [9])
that have three vector spaces; input, state and output. The
dynamics of the systems is such that future states and
outputs are determined given the current state and input to
the system. How these vectors are determined is, however,
concealed from CrySSMEx. Some other assumptions are
identified in Table I.

The models generated by CrySSMEx are sequences of
Crystalline Vector Quantizers (CVQs) and Substochastic
Sequential Machines (SSMs) [9]. The CVQ describes a
hierarchical division of the state space of the RNN. The
SSM describes how these discretized states relate to each
other temporally by describing how different inputs cause
transtions among the states. The goal of CrySSMEx is to find
states that are as informative as possible for predicting future
outputs (and states) of the RNN (cf. Crutchfield’s “causal
states” [12]).

The CVQ is generated by training if on data selected on
basis of what the SSM cannot predict. And the SSM is
generated on basis of how the CVQ divides the state space.
CrySSMEx can be seen as a meta learner that admin-

istrates data sets, learning algorithms and trained models.
The underlying training algorithm has been deliberately
selected to be poor2 to give room for improvements. Despite
this, CrySSMEx has surpassed its predecessors by being
successfully applied to RNNs with up to 1000-dimensional
state spaces and has also managed to generated finite state
models that approximately predict chaotic systems.

III. PORTING CRYSSMEX TO A ROBOT

The idea is to let the input, state and output spaces of the
RNN be replaced by actions and perceptions of the robot.

2Vector quantization with only initiation and no optimization of model
vectors.

RNN Robot

Full observability of state Partial and noisy obervability
through sensors

Homogenous representation of
state as vectors

Representation dependent on un-
derlying sensor modality (vision,
laser range finder, touch etc.)

Deterministic and mathemati-
cally defined behaviour

Indeterministic environment
where external event may occur
cause changes

Complex and possibly even
chaotic dynamics

Fairly “simple” dynamics

N-dimensional 3-dimensonal (or 2.5D)

TABLE I

SOME OF THE DIFFERENT ASSUMPTIONS BETWEEN RNN AND A ROBOT

SENSORIMOTOR ANALYSIS.

The SSM transitions between states are triggered by a finite
set of actions (i.e. “input” to the environment). The CVQ is
“equipped” with models that are trained on collected sensory
data. The data should be collected for situations (i.e. SSM
states) in which the SSM predictive capability is low. This
was suggested in [9] as a curiosity driven approach for
analysis of simulated systems (“Empirical Machine” [9]).
The output of an RNN is discrete and it is essentially a
function of the RNN state. It can simply be conceived as a
discrete projection of the state. In the robotic scenario, we
suggest that the output is initially represented as a simple
discrete sensor, e.g. a touch sensor. The goal for CrySSMEx
is to predict how the perceptions of this seed sensor are
affected by the actions of the robot. It should do so by
utilizing its other sensors by introducing trained models
into the CVQ which analyses the sensor “space”. Since the
other sensors are used to predict the seed sensor, the correct
prediction of these sensors will emerge as a requirement too.

There are of course a number of obstacles to be sur-
mounted before this will be possible. The environment of a
robot has several obvious differences from a neat simulated
entity such as an RNN. Some of these differences are sum-
marized in Table I. The strength and weakness of CrySSMEx
is that it exploits the advantageous properties of RNNs. For
example, since the RNN is deterministic it means that the
successful extraction of a deterministic finite state machine
is used as a termination criterion. Obviously, this cannot be
strived for when modelling an indeterministic environment
perceived through noisy sensors.

Many of these differences mean essentially that in the
robot domain one has to be content with less accurate models
being constructed. It also means that the main focus must lie
on the validation of any attempt to improve the CVQ. The
increase of predictive capability of the SSM as a result of a
CVQ modification must be assessed prior to the execution
of that modification.

In other words, we want CrySSMEx to perform what is
typically done by the machine learning researcher: gener-
ation and labelling of training, verification and validation
data sets, evaluation of trained models, an employment of
successful models to do predict future data.

Initially, the SSM does not predict anything, so all rep-



resentation stems from the interaction through the robot’s
actions. This does, however, not mean that we insist on a
purely bottom up learning approach; since the suggested
architecture is essentially a meta learner which focuses on
evaluating sensory data analysers, there is nothing that stops
the actual learning phase to be overridden by providing some
hardcoded sensory analysers as well. For example, the seed
sensor may have good predictive power for predicting itself.

The corner stone for constructing a trained model is to
maximize its ability to generalize. The expected generaliza-
tion capability increases if more data is used for training.
But in our approach, we suggest instead to autonomously
specialize the data sets by focusing on specific situation (i.e.
subproblems) so that the likelihood of a good generalization
increases as a consequence of a simpler problem. CrySSMEx
when applied to RNNs clearly shows the fruitfullness of this
approach because it was successful even with very small
subsets of data and with a mediocre training algorithm.

IV. PRACTICAL IMPLEMENTATION

The approach is being implemented under the
EU FP6 IST Cognitive Systems Integrated project:
“Cognitive Systems for Cognitive Assistants - CoSy”
(www.cognitivesystems.org). Within the CoSy
project a cognitive architecture is being constructed that
facilitates integration of various subarchitectures (in C++,
Java, Python). The architecture is already integrated with
subarchitectures such as speech recognition and synthesis,
natural language processing, a handcrafted category
association system, planning, computer vision, vision
learning of features, kinematic control etc.

There is, in other words, no lack of sensors and actuators
for an active learner to be integrated with in this framework.
Of course, initially very simplified settings must be selected
to test the feasibility of the approach.

The sensor modalities available are for example vision,
laser ranger, touch sensors and the kinematic model etc. The
range of sensors that can be used is not limited to typical
sensors, but it can also be possible to use “sensors” that
are the result of ad hoc processing of a sensor to filter out
useful information, e.g. rather than using vision data directly,
it can be preprocessed by a feature detector. Depending on
the underlying modality, different learning algorithms must
be empoyed on the collected data sets.

V. GOAL

The goal scenario is to let CrySSMEx control the robot in
a simple setting in which the robot can start from “scratch”
to build up a grounded embodied world model. After a while
it can hopefully sufficiently predict the consequences of its
actions and has established a hierarchical model of world
states. At this point, it should be possible to tag states and
sets of states with labels through user interaction, e.g. by the
user explaining to the robot that “your current action is called
bumping” the robot could infer that the current state is part
of a family of states that are involved in something which
can be labelled ‘bumping’. The ontology can then be used

to assume that also closely related states may be labelled
’bumping’ (something which may be verified through an
interactive clarification dialogue [13], [14]). At this point
there will essentially be a connection between a concept of
the robot’s world view, which consists of an enumeration
of the space of all possible sensory inputs, and a human
concept. To learn this concept is a trivial translation once the
robot has the capability of predicting ‘bumping’. And once
the association is made, the user should be able to give high-
level commands that can be translated to planning goals, e.g.
“avoid bumping”. The user may also actively help the robot
to explore aspects of its sensorimotor abilities by commands
such as “explore grasping” in which case the robot should
generate the appropriate behaviour in order to assess and
eliminate weaknesses in the predictive ability of states that
are labelled ‘grasping’.
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