Making and Correcting Errors during Sentence Comprehension: Eye Movements in the Analysis of Structurally Ambiguous Sentences

PART 1

Reading through the Decades: Influential Papers in Psycholinguistics – Seminar

MSc Language Science and Technology
Dept. of Computational Linguistics and Phonetics
Saarland University, Saarbrücken (DE)

Frazier & Rayner (1982)

12/01/2016

Luigi Palumbo
2561037
About Frazier & Rayner (1982) – Introduction and Background
Question

- **How** does human language **processing** lead to comprehension?
How do humans understand sentences?
Question

- How do humans deal with ambiguities?
How do humans recover from mistakes?
How did Frazier & Rayner (1982) seek to answer?
Possible Answer

- Garden-Path Theory of Sentence Comprehension
A Garden-Path Sentence

The horse raced past the barn fell
Garden-Path Theory

- Initial, single analysis/interpretation

- then, more than one possibility
Why ‘garden-path’?

- “to lead someone down the garden-path”

- to mislead, deceive...
How do humans understand sentences?
G-P Theory: analyses on a one-by-one basis

- **Garden-Path:** Main Feature

- **1st attempt**
- **2nd attempt**

- **Serial processing**

- **2nd attempt**
Garden-Path: One Contrasting View

- Parallel Processing Hp.: multiple, simultaneous analyses (Fodor et al., 1974)

- Parallel processing

- Concurrent, competing attempts
Garden-Path: Processing Difficulty [1]

- Depending on \textit{in-/compatibility} between (initial) interpretation and disambiguating material:
Garden-Path: Processing Difficulty [2]

- Depending on in-/compatibility between (initial) interpretation and disambiguating material:

Harder
Which one is harder/easier?

a) Since Jay always jogs a mile **this** seems like a short distance to him

b) Since Jay always jogs a mile **seems** like a short distance to him

Easier

Harder
How do humans deal with ambiguities?
Global vs. Local Ambiguities

Which one is globally/locally ambiguous?

a) Someone shot the servant of the actress who was on the balcony

- **Globally ambiguous**

b) Wherever Alice walks her sheep dog will follow

- **Locally ambiguous**
Late Closure: attachment of incoming lexical material into the last analysed item

1st Choice = Late Closure

2nd Choice

Since Jay always jogs a mile seems like a short distance to him
Minimal Attachment: attachment of incoming lexical material using the fewest phrasal nodes.

The city council argued the mayor’s position was incorrect.
How do humans recover from mistakes?
1. **Forward Reanalysis Hp.**: back to the very beginning of the sentence

Since Jay always jogs a mile seems like a short distance to him

- **Re-reading**
Since Jay always jogs a mile seems like a short distance to him

2. Backward Reanalysis Hp.: backward from the point of breakdown
3. Selective Reanalysis Hp.: focus only on the misleading portion
- How do humans understand sentences?

- How do humans deal with ambiguities?

- How do humans recover from mistakes?

- How to test this?
The Experiment – Method
Subjects

- # 16 Undergrads (Within-Sbj.)
16 Closure sentences; 4 versions:

- Late vs. Early
- Long vs. Short

LC-Long: Since Jay always jogs a mile and a half this seems like a short distance to him.

EC-Long: Since Jay always jogs a mile and a half seems like a short distance to him.

LC-Short: Since Jay always jogs a mile this seems like a short distance to him.

EC-Short: Since Jay always jogs a mile seems like a short distance to him.
16 Attachment sentences; 4 versions:
- Minimal vs. Non-Minimal
- Long vs. Short

MA-Long: I wonder if Tom heard the latest gossip about the new neighbours.

NM-Long: Tom heard the latest gossip about the new neighbours wasn’t true.

MA-Short: I wonder if Tom heard the gossip.

NM-Short: Tom heard the gossip wasn’t true.
Eye-tracking experiment:
- Self-paced reading of whole sentences
- Periodical comprehension questions
- 2-hr sessions per subj. (too much?)
The Experiment
– Results and Discussion
Data Analysis
Data Analysis [1]

- **Measured** variables (Dep. Var.):
 1. Total **Reading Time per Letter**

```plaintext
S_i_n_c_e__J_a_y__a_l_w_a_y_s__j_o_g_s__
...
```
Data Analysis [2]

- **Measured** variables (Dep. Var.):
 2. Reading Time per Letter for **Different Regions**

- **Manipulated** variables (Indep. Var.):
 - ambiguous region;
 - prior to the ambiguous region;
 - disambiguating region.

Since Jay always jogs a mile seems like a short distance to him
Measured variables (Dep. Var.):
1. Total Reading Time per Letter
2. Reading Time per Letter for Different Regions

Other Manipulated variables (Indep. Var.):
- First pass (red arrows);
- Second pass (blue arrows).

Since Jay always jogs a mile seems like a short distance to him
Measured variables (Dep. Var.):
3. Average Fixation Durations

Manipulated variables (Indep. Var.):
- Last 3 fix. prior to disambig. reg. (d-1, d-2, d-3);
- First 3 fix. in disambig. reg. (d, d+1, d+2).

Since Jay always jogs a mile seems like a short distance to him.
Data Analysis [6]

- **Measured** variables (Dep. Var.):
 4. Pattern of Eye-movements (regression frequency)

- **Manipulated** variables (Indep. Var.):
 - Region initiated from;
 - Region ended to.

Since Jay always jogs a mile seems like a short distance to him
Plus! Other **Manipulated** variables (Indep. Var.):

- **Sentence**
 - **Type**
 - **Closure**
 - **Late**
 - **Early**
 - **Attachment**
 - **Minimal**
 - **Non-Minimal**
 - **Length**
 - **Long**
 - **Short**
Predictions
Predictions

- G-P Th. + related proc. strat. (LC, MA) **apply**:
 - **Evidence**: RTs for **EC** and **NM** > RTs for **LC** and **MA**

- EC and NM are **harder** to process:
 - **Evidence**: Longer RTs in or around disambig. reg.

- Ambiguity is **detected** if:
 - **Evidence**: Longer RTs in ambig. reg.

- **Selective Reanalysis** Hp. applies:
 - **Evidence**: direct regr. from disamb. to ambig. reg.
Results:
Closure Sentences
Results: Closure Sentences [1]

- 2 (EC vs. LC) × 2 (Long vs. Short) ANOVA on Total Reading Time per Letter

<table>
<thead>
<tr>
<th></th>
<th>Early closure</th>
<th>Late closure</th>
<th>(\bar{X})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long</td>
<td>68 (176)</td>
<td>50 (240)</td>
<td>59</td>
</tr>
<tr>
<td>Short</td>
<td>57 (211)</td>
<td>55 (218)</td>
<td>56</td>
</tr>
<tr>
<td>(\bar{X})</td>
<td>62.5</td>
<td>52.5</td>
<td></td>
</tr>
</tbody>
</table>

Note. Values in parentheses represent the estimated reading rate in words per minute based on an average word length of 5 characters.
Results: Closure Sentences [2]

- $2 \text{ (Closure Type)} \times 2 \text{ (Length)} \times 3 \text{ (Region)} \times 2 \text{ (Pass)}$ ANOVA on Reading Time per Letter for Regions

<table>
<thead>
<tr>
<th>Sentence type</th>
<th>Region of the sentence</th>
<th>Before ambiguity</th>
<th>Ambiguity</th>
<th>Disambiguation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early closure</td>
<td>long</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st pass</td>
<td></td>
<td>44</td>
<td>40</td>
<td>54</td>
</tr>
<tr>
<td>2nd pass</td>
<td></td>
<td>21</td>
<td>32</td>
<td>48</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>65</td>
<td>72</td>
<td>102</td>
</tr>
<tr>
<td>Early closure</td>
<td>short</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st pass</td>
<td></td>
<td>43</td>
<td>37</td>
<td>41</td>
</tr>
<tr>
<td>2nd pass</td>
<td></td>
<td>18</td>
<td>37</td>
<td>41</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>61</td>
<td>74</td>
<td>82</td>
</tr>
<tr>
<td>Late closure</td>
<td>long</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st pass</td>
<td></td>
<td>43</td>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>2nd pass</td>
<td></td>
<td>12</td>
<td>15</td>
<td>23</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>55</td>
<td>50</td>
<td>63</td>
</tr>
<tr>
<td>Late closure</td>
<td>short</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st pass</td>
<td></td>
<td>40</td>
<td>42</td>
<td>47</td>
</tr>
<tr>
<td>2nd pass</td>
<td></td>
<td>16</td>
<td>27</td>
<td>22</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>56</td>
<td>69</td>
<td>69</td>
</tr>
</tbody>
</table>
Results: Closure Sentences [3]

- $2 \times (\text{Closure}) \times 2 \times (\text{Length}) \times 6 \times (\text{Serial Order Fix.})$ ANOVA on Average Fixation Durations

Average Fixation Duration on the Three Fixations Prior to Reaching the Disambiguating Region (d) and the First Three Fixations in the Sentence Following the Initial Encounter with the Disambiguating Word

<table>
<thead>
<tr>
<th>Serial order of fixation</th>
<th>1 (d−3)</th>
<th>2 (d−2)</th>
<th>3 (d−1)</th>
<th>4 (d)</th>
<th>5 (d+1)</th>
<th>6 (d+2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentence type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early closure—long</td>
<td>252</td>
<td>259</td>
<td>236</td>
<td>301</td>
<td>285</td>
<td>313</td>
</tr>
<tr>
<td>Early closure—short</td>
<td>245</td>
<td>227</td>
<td>245</td>
<td>283</td>
<td>267</td>
<td>277</td>
</tr>
<tr>
<td>Late closure—long</td>
<td>248</td>
<td>239</td>
<td>243</td>
<td>260</td>
<td>247</td>
<td>242</td>
</tr>
<tr>
<td>Late closure—short</td>
<td>228</td>
<td>239</td>
<td>243</td>
<td>268</td>
<td>248</td>
<td>242</td>
</tr>
</tbody>
</table>

Note. These data were computed independent of the particular region of the sentence and consist only of the serial order that the fixations occurred in.
Results: Attachment Sentences
Results: Attachment Sentences [1]

- 2 (MA vs. NM) × 2 (Long vs. Short) ANOVA on Total Reading Time per Letter

Reading Time per Letter (msec) for Each of the Four Attachment Sentence Versions

<table>
<thead>
<tr>
<th></th>
<th>Nonminimal attachment</th>
<th>Minimal attachment</th>
<th>(\bar{X})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long</td>
<td>61 (197)</td>
<td>45 (270)</td>
<td>53</td>
</tr>
<tr>
<td>Short</td>
<td>51 (235)</td>
<td>49 (246)</td>
<td>50</td>
</tr>
<tr>
<td>(\bar{X})</td>
<td>56</td>
<td>47</td>
<td></td>
</tr>
</tbody>
</table>

Note. Values in parentheses represent the estimated reading rate in words per minute based on an average word length of 5 characters.
Results:
Attachment Sentences [2]

- 2 (Att. Type) × 2 (Length) × 2 (Region) × 2 (Pass) ANOVA on Reading Time per Letter for Regions

<table>
<thead>
<tr>
<th>Sentence type</th>
<th>Before ambiguity</th>
<th>Ambiguity</th>
<th>Disambiguation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonminimal attachment - lone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st pass</td>
<td>43</td>
<td>37</td>
<td>51</td>
</tr>
<tr>
<td>2nd pass</td>
<td>17</td>
<td>22</td>
<td>30</td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
<td>59</td>
<td>81</td>
</tr>
<tr>
<td>Nonminimal attachment - short</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st pass</td>
<td>43</td>
<td>36</td>
<td>47</td>
</tr>
<tr>
<td>2nd pass</td>
<td>10</td>
<td>15</td>
<td>23</td>
</tr>
<tr>
<td>Total</td>
<td>53</td>
<td>51</td>
<td>70</td>
</tr>
<tr>
<td>Minimal attachment - long</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st pass</td>
<td>41</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>2nd pass</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>48</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Minimal attachment - short</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st pass</td>
<td>42</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>2nd pass</td>
<td>8</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>48</td>
<td></td>
</tr>
</tbody>
</table>
Results:
Attachment Sentences [3]

- 2 (Length) × 6 (Serial Order Fix.) ANOVA on Average Fixation Durations

<table>
<thead>
<tr>
<th>Serial order of fixation</th>
<th>Sentence type</th>
<th>1 (d - 3)</th>
<th>2 (d - 2)</th>
<th>3 (d - 1)</th>
<th>4 (d)</th>
<th>5 (d + 1)</th>
<th>6 (d + 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nonminimal attachment – long</td>
<td>248</td>
<td>259</td>
<td>258</td>
<td>291</td>
<td>284</td>
<td>301</td>
</tr>
<tr>
<td></td>
<td>Nonminimal attachment – short</td>
<td>247</td>
<td>235</td>
<td>226</td>
<td>292</td>
<td>280</td>
<td>267</td>
</tr>
</tbody>
</table>

Note. These data were computed independent of the particular region of the sentence and consist only of the serial order that the fixations occurred in.
Conclusions: Closure & Attachment Sentences
Conclusions: Closure & Attachment Sentences

- **Closure Sent.**: Longer RTs for *Disambig.* and *Ambig.* reg.

- **Attach. Sent.**: Longer RTs for *Ambig.* reg. on **second** pass

- **Both**: Longer average fixation durations for *Disambig.* reg. on **first** pass

 - Awareness of Ambiguity at that point.
Results: Pattern of Eye-movements
Results: Pattern of Eye-movements

- Cases of longer average fixations and regressions:

<table>
<thead>
<tr>
<th>Regression Initiated from</th>
<th>Before ambiguity</th>
<th>In ambiguity</th>
<th>In disambiguation</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disambiguating region³</td>
<td>.03 (.01)</td>
<td>.33 (.36)</td>
<td>.12 (.11)</td>
<td>.52 (.51)</td>
</tr>
<tr>
<td>After disambiguating region</td>
<td>.01 (.02)</td>
<td>.06 (.05)</td>
<td>.04 (.05)</td>
<td>.15 (.15)</td>
</tr>
<tr>
<td>End of sentence</td>
<td>.18 (.17)</td>
<td>.10 (.12)</td>
<td>.02 (.02)</td>
<td>.33 (.34)</td>
</tr>
<tr>
<td>Total</td>
<td>.22 (.20)</td>
<td>.49 (.53)</td>
<td>.18 (.18)</td>
<td></td>
</tr>
</tbody>
</table>

Note. The values are proportions and are based on 222 regressions made by the subjects. The range of regressions was 5–29 per subject.

³ The values in parentheses are for the early closure and nonminimal attachment sentences.

⁴ In the minimal attachment sentences, the end of the sentence was considered to be the disambiguating region.

- Conclusions: no evidence for backward reanalysis.
Frazier & Rayner (1982) – Overall Findings
Overall Findings

- **G-P Th. + related proc. strat. (LC, MA) apply:**
 - **Evidence:** RTs for EC and NM > RTs for LC and MA
 - **Consequence:** immediate assignment of structure.

- **Selective Reanalysis Hp. applies:**
 - **Evidence:** direct regr. from disamb. to ambig. reg.
 - **Consequence:** only revision of incompatible parts having been previously assigned a (wrong) structure.
Reanalysis in Sentence Processing: Evidence against Current Constraint-Based and Two-Stage Models

PART 2

Reading through the Decades: Influential Papers in Psycholinguistics – Seminar

MSc Language Science and Technology
Dept. of Computational Linguistics and Phonetics
Saarland University, Saarbrücken (DE)
About van Gompel et al. (2001) – Introduction and Background
- How do humans understand sentences?

- How do humans deal with ambiguities?

- How do humans recover from mistakes?
Three Orders of (Contrasting) Models
of Interpretation/Analyses at once:
- **one** by one: *Serial/Two-stage* models;
- **more** than one: *Parallel* models.

Type of Information Resources:
- first *syntax*, then *thematic* info;
- *syntactic* and *thematic* info together.

Mechanism for Ambiguity resolution:
- **same** analysis: *Fixed-choice* two-stage models;
- **different** analyses: *Variable-choice* two-stage models.
How do humans understand sentences?
1. Two-Stage Models (e.g., Frazier & Rayner, 1982)

- **Serial** processing, 2 stages, **fixed-choice:**

 - **1st stage**
 - 1st: based on **syntax** alone
 - 2nd: use of **thematic** info, too

 - **2nd stage**
2. Constraint-Based Lexicalist Models (e.g., McRae et al., 1998)

- **Parallel processing, 1 stage:**

- Use both **syntactic** and **thematic** info together
3. Unrestricted Race Model (e.g., Traxler et al., 1998)

- ‘Unrestricted’: use of any sources of info
- ‘Race’: parallel structures engage in a race (fastest >> adopted)

Reanalysis: 2 stages

Variable-choice: strategies affected by individual differences and source of info
How do humans deal with ambiguities?
1. Two-Stage Models: Ambiguity Resolution

- Deployed strategies:
 - Late Closure
 - Minimal Attachment

- Higher Processing Difficulty:
 - Early Closure
 - Non-minimal Attachment
2. Constraint-based Models: Ambiguity Resolution

- Deployed strategies:
 - Multiple analyses according to constraints

- Higher Processing Difficulty:
 - initial constr. favour analysis A, later constr. favour analysis B
 - initial constr. favour an. A + B, later constr. do not favour either
3. Unrestricted Race Model: Ambiguity Resolution

- Deployed strategies:
 - Multiple analyses

- Higher Processing Difficulty:
 - initial analysis X, but sentence is disambiguated towards analysis Y
 - initial analysis Y, but sentence is disambiguated towards analysis X
How did van Gompel et al. (2001) test Ambiguity?
van Gompel et al. (2001)
– Experimental Design
Two Experiments: Rationale

Experiment 1
- VP-NP attachment Ambiguities:
 - bias towards VP-att.

Experiment 2
- VP-NP attachment Ambiguities:
 - no initial bias
Experiments 1 & 2
– Method
Subjects

- Exp. 1
 - # 36 Uni-Studs

- Exp. 2
 - # 27 Uni-Studs
Materials (Exp. 1)

30 VP-NP attach. like:

- **Ambig.**: The hunter **killed** the dangerous poacher **with the rifle** not long after sunset.

- **VP-Att.**: The hunter **killed** the dangerous leopard **with the rifle** not long after sunset.

- **NP-Att.**: The hunter **killed** the dangerous leopard **with the scars** not long after sunset.
Materials (Exp. 2)

30 VP-NP attach. like:

- **Ambig.**: The hunter killed only the poacher with the rifle not long after sunset.
- **VP-Att.**: The hunter killed only the leopard with the rifle not long after sunset.
- **NP-Att.**: The hunter killed only the leopard with the scars not long after sunset.
Pretests (Exp. 1 & 2)

- **Plausibility pretest:**
 - rating of *how realistic* were different interpretations for each sentence;
 - **VP** plaus. for **VP-att.**; **NP** plaus. for **NP-att.**; **VP-** and **NP-att.** both plaus. for Ambig.

- **Off-line preference task:**
 - tested *items’ bias* (preference for attach. **PP** to **VP** or **NP**)
 - Exp. 1: bias towards **VP**; Exp. 2: **no** bias.

- **Completion task:**
 - testing bias by **completing PP** with meaningful continuation;
 - Exp. 1: bias towards **VP**; Exp. 2: **no** bias.
Procedure (Exp. 1 & 2)

- **Eye-tracking** experiment:
 - *Self-paced reading* of whole sentences
 - Periodical *comprehension questions*
 - *30-min* sessions per subj. (much better)
Experiments 1 & 2
– Results and Discussion
Data Analysis
Measured variables (Dep. Var.):
1. Fixation Times for Different Regions (7 in total)

Manipulated variables (Indep. Var.):
- Reg. 1, Sbj NP;
- Reg. 2, V;
- Reg. 3, Obj NP;
- Reg. 4, “with the”;
- Reg. 5, critical noun region (PP’s N);
- Reg. 6, postcritical region (AdvP).
Data Analysis (Exp. 1 & 2)

- **Measured** variables (Dep. Var.):

 1. Fixation Times for Different Regions

- **Manipulated** variables (Indep. Var.):

 - First-pass time: all fixations on a region for 1st time;

 - Firs-pass regression: all repeated leftward fixations for 2nd time;

 - Regression-path time: all (first) fixation times within the same region.

 - Total time: sum of all (first and second) fixations within the same region.
Results: Experiment 1
Results (Exp. 1)

Mean Reading Times and Percentage of Regressions

<table>
<thead>
<tr>
<th></th>
<th>1 The hunter</th>
<th>2 killed</th>
<th>3 the dangerous poacher</th>
<th>4 with the</th>
<th>5 rifle</th>
<th>6 not long after</th>
<th>7 sunset</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-pass reading times</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambiguous</td>
<td>502</td>
<td>378</td>
<td>672</td>
<td>300</td>
<td>374</td>
<td>500</td>
<td>565</td>
</tr>
<tr>
<td>VP attachment</td>
<td>491</td>
<td>357</td>
<td>683</td>
<td>305</td>
<td>376</td>
<td>509</td>
<td>553</td>
</tr>
<tr>
<td>NP attachment</td>
<td>490</td>
<td>370</td>
<td>656</td>
<td>302</td>
<td>373</td>
<td>543</td>
<td>539</td>
</tr>
<tr>
<td>First-pass regressions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambiguous</td>
<td>5.0</td>
<td>14.0</td>
<td>6.0</td>
<td>8.8</td>
<td>11.3</td>
<td>42.7</td>
<td></td>
</tr>
<tr>
<td>VP attachment</td>
<td>6.5</td>
<td>6.6</td>
<td>3.9</td>
<td>11.4</td>
<td>11.4</td>
<td>52.1</td>
<td></td>
</tr>
<tr>
<td>NP attachment</td>
<td>7.8</td>
<td>10.0</td>
<td>3.6</td>
<td>12.2</td>
<td>25.8</td>
<td>51.2</td>
<td></td>
</tr>
<tr>
<td>Regression-path times</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambiguous</td>
<td>502</td>
<td>417</td>
<td>818</td>
<td>354</td>
<td>420</td>
<td>684</td>
<td>1198</td>
</tr>
<tr>
<td>VP attachment</td>
<td>491</td>
<td>401</td>
<td>748</td>
<td>330</td>
<td>444</td>
<td>663</td>
<td>1252</td>
</tr>
<tr>
<td>NP attachment</td>
<td>490</td>
<td>408</td>
<td>750</td>
<td>328</td>
<td>431</td>
<td>841</td>
<td>1491</td>
</tr>
<tr>
<td>Total times</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambiguous</td>
<td>622</td>
<td>532</td>
<td>947</td>
<td>379</td>
<td>451</td>
<td>699</td>
<td>698</td>
</tr>
<tr>
<td>VP attachment</td>
<td>593</td>
<td>476</td>
<td>890</td>
<td>394</td>
<td>468</td>
<td>721</td>
<td>663</td>
</tr>
<tr>
<td>NP attachment</td>
<td>619</td>
<td>529</td>
<td>922</td>
<td>459</td>
<td>567</td>
<td>829</td>
<td>685</td>
</tr>
</tbody>
</table>

Note. First pass, regression path, and total times are reported in milliseconds and first-pass regressions as the percentage of saccades leaving the region to the left after a first-pass fixation.
Results:
Experiment 2
Results (Exp. 2)

Mean Reading Times and Percentage of Regressions

<table>
<thead>
<tr>
<th>Region</th>
<th>1 The hunter</th>
<th>2 killed</th>
<th>3 only the poacher</th>
<th>4 with the</th>
<th>5 rifle</th>
<th>6 not long after</th>
<th>7 sunset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambiguous</td>
<td>371</td>
<td>331</td>
<td>520</td>
<td>265</td>
<td>310</td>
<td>448</td>
<td>464</td>
</tr>
<tr>
<td>VP attachment</td>
<td>398</td>
<td>315</td>
<td>555</td>
<td>272</td>
<td>317</td>
<td>463</td>
<td>479</td>
</tr>
<tr>
<td>NP attachment</td>
<td>405</td>
<td>312</td>
<td>560</td>
<td>286</td>
<td>314</td>
<td>442</td>
<td>491</td>
</tr>
</tbody>
</table>

First-pass regressions

<table>
<thead>
<tr>
<th>Region</th>
<th>Ambiguous</th>
<th>VP attachment</th>
<th>NP attachment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambiguous</td>
<td>6.2</td>
<td>9.0</td>
<td>6.0</td>
</tr>
<tr>
<td>VP attachment</td>
<td>9.8</td>
<td>9.0</td>
<td>7.4</td>
</tr>
<tr>
<td>NP attachment</td>
<td>6.5</td>
<td>9.5</td>
<td>9.1</td>
</tr>
</tbody>
</table>

Regression-path times

<table>
<thead>
<tr>
<th>Region</th>
<th>Ambiguous</th>
<th>VP attachment</th>
<th>NP attachment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambiguous</td>
<td>371</td>
<td>363</td>
<td>620</td>
</tr>
<tr>
<td>VP attachment</td>
<td>398</td>
<td>374</td>
<td>626</td>
</tr>
<tr>
<td>NP attachment</td>
<td>405</td>
<td>342</td>
<td>645</td>
</tr>
</tbody>
</table>

Total times

<table>
<thead>
<tr>
<th>Region</th>
<th>Ambiguous</th>
<th>VP attachment</th>
<th>NP attachment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambiguous</td>
<td>421</td>
<td>425</td>
<td>706</td>
</tr>
<tr>
<td>VP attachment</td>
<td>469</td>
<td>435</td>
<td>795</td>
</tr>
<tr>
<td>NP attachment</td>
<td>456</td>
<td>412</td>
<td>764</td>
</tr>
</tbody>
</table>

Note. First pass, regression path, and total times are reported in milliseconds and first-pass regressions as the percentage of saccades leaving the region to the left after a first pass fixation.
Van Gompel et al. (2001)
– Overall Findings
Overall Findings

- **Exp. 1:**
 - **Predictions:** preference for VP-att.
 - **Evidence:** RTs (on regressions) for NP-att. > RTs for VP-att. and Ambig.
 - **Consequence:** consistent with G-P Th. and URM.

- **Exp. 2:**
 - **Predictions:** no preference for either NP- or VP-att. (more strategies as in variable-choice models)
 - **Evidence:**
 1) RTs for NP- & VP-att. > RTs for Ambig.
 2) No pref. for either NP- or VP-att.
 - **Consequence:** consistent with URM.
Frazier & Rayner (1982)
Van Gompel et al. (2001)
– The Three Models Compared
<table>
<thead>
<tr>
<th>Garden-Path Model</th>
<th>Constraint-Based Model</th>
<th>Unrestricted Race Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial/Two-Stage (no compet., but rean.)</td>
<td>Parallel (competition)</td>
<td>Parallel (competition)</td>
</tr>
<tr>
<td>Fixed-choice</td>
<td></td>
<td>Variable-choice</td>
</tr>
<tr>
<td>Resources: First syntax, then thematic</td>
<td>Resources: Syntactic + thematic</td>
<td>Resources: Various</td>
</tr>
<tr>
<td>Strategies: LC & MA</td>
<td>Strategies: Multiple</td>
<td>Strategies: Multiple</td>
</tr>
</tbody>
</table>

Who wins??
Who wins??

Thanks for your kind attention!