# Embodiment (1)

SS16 - (Embodied) Language Comprehension

Ross Macdonald 13.05.16

# Overview

### This week

- Traditional cognition
- Cognition for action
  - Theoretical basis
  - Supporting evidence
  - Problems with this concept
- Body-based cognition
  - Symbol grounding problem
  - Perceptual symbol systems

Behaviouralists said...



**Cognitive accounts** 

In Cognitive Science/Psychology



These involve internal processes/computations

### Amodal, traditional Cognitive accounts



### How does one process language? Amodal, traditional Cognitive accounts (Fodor, 1983)



Amodal, traditional Cognitive accounts (Fodor, 1983)



- · Innate
- Automatic
- Localised
- Encapsulated

**Universal Grammar (Chomsky, 1965)** 

**Commonalities across language** 

**Universal development across cultures** 

Amodal, traditional Cognitive accounts (Fodor, 1983)



- Innate
- · Automatic
- Localised
- Encapsulated

Look at this, without reading it:

# **Romantic Badger**



### Amodal, traditional Cognitive accounts (Fodor, 1983)



- Innate
- Automatic
- Localised
- Encapsulated



Lots of evidence for language areas in brain:



Broca's area traditionally thought to be for production

Wernicke's area traditionally thought to be for comprehension

### Amodal, traditional Cognitive accounts (Fodor, 1983)



- Innate
- Automatic
- Localised
- Encapsulated

### Encapsulated

- •This is not the same as localised
- •This refers to informational encapsulation
- Processes rather than location
- •Is language processing, modular and encapsulated?











### Sensorimotor system

### Sensorimotor and cognition link - example



### "The woman saw the egg in the *carton*" "The woman saw the egg in the *pan*"

Zwann, Stansfield & Yaxley, 2002

### Sensorimotor and cognition link - example



#### Was the object mentioned in the sentence?

Participants were faster to respond to the image congruent with the sentence they heard

Zwann, Stansfield & Yaxley, 2002

Embodied cognition covers a range of theories and types of theory:

- Cognition (language processing too) is *for action*
- Cognition is necessarily *body-based* and requires sensorimotor input

Wilson, 2002

- Our bodies have adapted to environment
- Hands, arms legs, eyes are there for us to manipulate environment, allowing us to survive



Glenberg, (1997)





- Brain is no different, and brain houses cognition (and language processing)
- Thus cognition has evolved to allow us to manipulate environment

Glenberg, (1997)



### Affordances

The motor opportunities an object affords.

If cognition is for action, affordances should affect cognition

### **Behavioural evidence**



- Is this image inverted?
- Answered with left or right hand
- images either had handle to left or right

Tucker & Ellis, (1997)



Figure 2. Mean reaction times (RTs) and error rates for Experiment 1 as a function of left-right object orientation and response (left or right hand).

Tucker & Ellis, (1997)



Although no manipulation of object in the task, it seems motor system is nevertheless activated

Sensory information seems to activate motor, which influences cognition

# **Cognition for Action**

### **Brain imaging evidence**



- Positron emission tomography (PET)
- Observing tools activated dorsal pre-frontal cortex
- Silent naming led to Broca's area activation
- But silent tool use naming also led to increase in prefrontal cortex

Grafton et al, (1997)

# **Mirror Neurons**



...In his brain

In primates, evidence that the same neurones in the brain that are activated when **doing** an action are activated when **seeing** an action

Overlap between modalities here - doesn't look amodal





#### What about humans?



#### Methods

Surgical preparation and recording procedure

The experiments were carried out on three macaque monkeys (Macaca nemestrina) selected for their docility. A few days before the first recording session a craniotomy over the posterior part of the frontal lobe was performed under general anesthesia (ketamine hydrocloride, 15 mg/kg i. m. repeated every 30 min) and the coordinates of the arcuate sulcus and central sulcus were assessed. A chamber was positioned over the hole and cemented to the skull. A support for the microelectrode advancer and a device which allowed a rigid fixation of the head during the experiments were also implanted. The surgery was made in aseptical conditions.

Pellegrino et al. (1992) [Gentilucci et al. (1988)]

#### What about humans?

Scientists have been nicer to humans, so evidence is indirect.

But fMRI data have suggested mirror neurons pattern





### Put a pencil in your mouth!

1/2 Lips

1/2 Teeth



Is this funny?

### **Sensorimotor and cognition link**



### **Sensorimotor and cognition link**



### Frown muscles

Smile muscles

# Table 1Ratings of Funniness and Difficulty: Study 1

| Cartoon         | Position of pen |      |       |
|-----------------|-----------------|------|-------|
|                 | Lip             | Hand | Teeth |
| First           | 3.90            | 5.13 | 5.09  |
| Second          | 4.00            | 4.10 | 4.19  |
| Third           | 4.47            | 4.67 | 5.78  |
| Fourth          | 4.90            | 5.17 | 5.50  |
| Mean funniness  | 4.32            | 4.77 | 5.14  |
| Mean difficulty | 4.47            | 2.72 | 4.91  |

*Note.* All ratings were made on a scale from 0 to 9, where a lower value stands for lower funniness and difficulty, a higher value for higher funniness and difficulty.

### Sensorimotor and cognition link

### Table 1Ratings of Funniness and Difficulty: Study 1

| Cartoon         | Position of pen |      |       |
|-----------------|-----------------|------|-------|
|                 | Lip             | Hand | Teeth |
| First           | 3.90            | 5.13 | 5.09  |
| Second          | 4.00            | 4.10 | 4.19  |
| Third           | 4.47            | 4.67 | 5.78  |
| Fourth          | 4.90            | 5.17 | 5.50  |
| Mean funniness  | 4.32            | 4.77 | 5.14  |
| Mean difficulty | 4.47            | 2.72 | 4.91  |

*Note.* All ratings were made on a scale from 0 to 9, where a lower value stands for lower funniness and difficulty, a higher value for higher funniness and difficulty.

Changing muscle position altered emotion judgments

Sensorimotor experience therefore affecting cognition

Stepper & Strack (1988)

• What do "push" and "hammer" make you think of?

• What about "contemplate" and "sophisticated"?

• Thought without any action?

• Or simply perception for perceptions sake

• Are there separate pathways for perception?

### **Clinical population evidence**

- Patient D.F had severe agnosia
- Couldn't recognise objects
- However could navigate around the world perfectly

Goodale et al. (1991)



- Two streams of visual information
- A "conscious" (purple) stream for *what* and a "subconscious" (green) for *how*

Goodale et al (1991)

• Does this make sense for language?

Embodied cognition covers a range of theories and types of theory:

- Cognition (language processing too) is *for action*
- Cognition is necessarily *body-based* and requires sensorimotor input

Wilson, 2002

- A more extreme anti-amodal position
- All cognition (including language processing) requires sensorimotor input/integration
- Why would this be the case?

### Symbol grounding problem

Big philosophical questions:

Are cognition and consciousness compatible?

Subjective experience and computational accounts?

### Symbol grounding problem

For us:

Imagine we have an encapsulated language system

A symbol maps on to a symbol maps on to a symbol

Where does **meaning** come into this?







Searle's (1980) Chinese Room



Searle's Chinese Room (1980)



jolyon.co.uk

You need experiences to make sense of symbols

Meaning therefore **MUST** be grounded in terms of experiences - sensorimotor.

### **Perceptual Symbol Systems**

- The perceptual and conceptual overlap
- accessing concepts requires activation of sensorimotor experiences

Barsalou, 1999

#### **Amodal Symbol Systems**



#### How does transduction work?

### Symbol grounding problem

#### Perceptual Symbol Systems



#### No need here for transduction

### Symbol grounded in perception

Barsalou, 1999

#### **Perceptual Symbol Systems**



#### **Multimodal system**

Barsalou, 1999



## Is Simulation required?

Must we simulate things to understand them?

Is there evidence to support this view?

# Overview

### This week

- Traditional cognition
- Cognition for action
  - Theoretical basis
  - Supporting evidence
  - Problems with this concept
- Body-based cognition
  - Symbol grounding problem
  - Perceptual symbol systems

• Next week:

- Body-based cognition
  - Behavioural evidence
  - Brain imaging evidence
  - Evidence from clinical populations
- Problems with embodiment
- Middle ground approaches

## References

Barsalou, L. W. (1999). Perceptual symbol systems, *Behavioural and Brain Sciences*, **22**, 577-660

di Pellegrino, G., Fadiga, L., Fognassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: a neurophysiological study, *Experimental Brain Research*, **91**, 176-180.

Fodor, J. A. (1983). *Modularity of Mind: An Essay on Faculty Psychology*. Cambridge, MA: MIT Press.

Gentilucci, M., Fogassi, G., Luppino, M., Matelli, R., Camarda, R. & Rizzolatti, G. (1988). Functional organisation of the inferior area 6 in the macaque monkey. 1. Somatotopy and the control of proximal movements. Experimental Brain Research, **71**, 475-490.

Glenberg (1997). What memory is for. *Behavioural and Brain Sciences*, **20** (1), 1-19.

Goodale, M.A., Milner, A.D., Jakobson, L.S., Carey, D.P. (1991). A neurological dissociation between perceiving objects and grasping them. *Nature*, **349**, 154–156.

## References

Grafton, S. T., Fadiga, L., Arbib, M. A., & Rizzolatti, G. (1997). Premotor Cortex activation during observation and naming of familiar tools. *Neuroimage*, **6**, 231-236.

Searle, J. (1980). Minds, Brains and Programs, *Behavioural and Brain Sciences*, **3** (3): 417–457

Strack, F. Martin, L. L., & Stepper, S. (1988). Inhibiting and facilitation conditions of the human smile: A nonobstrusive test of Facial Feedback Hypothesis, *Journal of Personality and Social Psychology*, **54** (5), 768-77.

Tucker, M., & Ellis, R. (1998). On the relations between seen objects and components of potential actions. *Journal of Experimental Psychology: Human Perception and Performance*, **24** (3), 830-846.

Wilson, M. (2002). Six views of embodied cognition. *Psychonomic Bulletin & Review.* **9** (4), 625-636.

Zwann, R. A., Stansfield, R. A., & Yaxley, R. H. (2002). Language comprehenders mentally represent the shape of objects, *Psychological Science*, **13** (2), 168-171.