The contents of predictions in sentence comprehension: Activation of the shape of objects before they are referred to
J. Rommers, A.S. Meyer, P. Praamstra, F. Huettig

Hannah Seitz
Saarland University
hseitz@coli.uni-saarland.de

June 11, 2015
Upcoming words are predicted by readers/listeners (Kamide et al., 1999)

- Reported in
 - Eyetracking
 - EEG
Upcoming words are predicted by readers/listeners (Kamide et al., 1999)

Reported in
- Eyetracking
- EEG

What kind of information is predicted?
- Semantic features, e.g. eatability (Altmann & Kamide, 1999)
- Semantic categories, e.g. palms/pines/tulips (Kutas & Federmeier, 2000)
• Upcoming words are predicted by readers/listeners (Kamide et al., 1999)

• Reported in
 • Eyetracking
 • EEG

• What kind of information is predicted?
 • Semantic features, e.g. eatablity (Altmann & Kamide, 1999)
 • Semantic categories, e.g. palms/pines/tulips (Kutas & Federmeier, 2000)

• Shape similarity is used when a word is read/heard, e.g. rope/snake (Dahan & Tanenhaus, 2005)
Upcoming words are predicted by readers/listeners (Kamide et al., 1999)

Reported in
- Eyetracking
- EEG

What kind of information is predicted?
- Semantic features, e.g. eatablity (Altmann & Kamide, 1999)
- Semantic categories, e.g. palms/pines/tulips (Kutas & Federmeier, 2000)

Shape similarity is used when a word is read/heard, e.g. rope/snake (Dahan & Tanenhaus, 2005)

Question:
Is shape information also predicted?
Is Shape Predicted?

Contra:
Mostly not relevant for understanding the meaning

Pro:
All associated information could get activated

May also depend on the task
Experiment 1 - Visual World Paradigm

- Hear:
 - Predictive sentence
 - avg. probability .72 (determined in cloze task)
Experiment 1 - Visual World Paradigm

- **Hear:**
 - Predictive sentence
 - avg. probability .72 (determined in cloze task)

- **See:**
 - 500 ms before word
 - Picture of 4 objects
 - 3 distractors, target/shape competitor/unrelated
 - Control for familiarity, complexity, name agreement
Experiment 1 - Visual World Paradigm

- **Hear:**
 - Predictive sentence
 - avg. probability .72 (determined in cloze task)

- **See:**
 - 500 ms before word
 - Picture of 4 objects
 - 3 distractors, target/shape competitor/unrelated
 - Control for familiarity, complexity, name agreement

- **Instruction:**
 - Look and listen
Experiment 1 - Visual World Paradigm

- **Hear:**
 - Predictive sentence
 - avg. probability .72 (determined in cloze task)

- **See:**
 - 500 ms before word
 - Picture of 4 objects
 - 3 distractors, target/shape competitor/unrelated
 - Control for familiarity, complexity, name agreement

- **Instruction:**
 - Look and listen

- **Evaluated:**
 - Eye movements before hearing critical word
Experiment 1 - Visual World Paradigm

- **Hear:**
 - Predictive sentence
 - avg. probability .72 (determined in cloze task)

- **See:**
 - 500 ms before word
 - Picture of 4 objects
 - 3 distractors, target/shape competitor/unrelated
 - Control for familiarity, complexity, name agreement

- **Instruction:**
 - Look and listen

- **Evaluated:**
 - Eye movements before hearing critical word

Question:
Anticipatory eye movements to target/shape competitor/control object?
Experiment 1

- Experiment
 - 96 trials, 32 fillers
 - Sentence/critical object once per participant
 - Critical objects appear in all three conditions
 - Sentences have the same distractors in all conditions

Participants
- 45 participants (34 female), mean age 21
- Dutch native speakers
- Normal hearing, normal/corrected seeing

Hannah Seitz (Saarland University)
Experiment 1

Experiment
- 96 trials, 32 fillers
- Sentence/critical object once per participant
- Critical objects appear in all three conditions
- Sentences have the same distractors in all conditions

Participants
- 45 participants (34 female), mean age 21
- Dutch native speakers
- Normal hearing, normal/corrected seeing
In 1969 Neil Armstrong was the first man to set foot on the moon.
In 1969 Neil Armstrong was the first man to set foot on the moon.
Control

In 1969 Neil Armstrong was the first man to set foot on the moon.
Results

- General:
 - Less fixation of distractors when target present
Results

- **General:**
 - Less fixation of distractors when target present

- **Anticipation:**
 - -250 - 200ms
 - target > competitor > control
 - control = distractor
Results

- Eye movements to predicted item
- More eye movements to shape competitor than to control object
- Conclusion: Shape is predicted (weak effect)

but...
Results

- Eye movements to predicted item
- More eye movements to shape competitor than to control object
- Conclusion: Shape is predicted (weak effect)

but...

- Visual presentation may trigger physical properties
Results

- Eye movements to predicted item
- More eye movements to shape competitor than to control object
- Conclusion: Shape is predicted (weak effect)

but...

- Visual presentation may trigger physical properties

Question:
What happens if visual stimuli are absent?
Experiment 2 - EEG

- Hear:
 - Predictive sentence
 - Final word: target/shape competitor/unrelated
 - control for shape-similarity, plausibility
 - avg. similarity (1-7):
 - Competitor: Mean = 4.2, SD = .9
 - Control: Mean = 1.9, SD = .7
Experiment 2 - EEG

- **Hear:**
 - Predictive sentence
 - Final word: target/shape competitor/unrelated
 - control for shape-similarity, plausibility
 - avg. similarity (1-7):
 - Competitor: Mean = 4.2, SD = .9
 - Control: Mean = 1.9, SD = .7

- **Instruction:**
 - Listen for comprehension
Experiment 2 - EEG

- **Hear:**
 - Predictive sentence
 - Final word: target/shape competitor/unrelated
 - control for shape-similarity, plausibility
 - avg. similarity (1-7):
 - Competitor: Mean = 4.2, SD = .9
 - Control: Mean = 1.9, SD = .7

- **Instruction:**
 - Listen for comprehension

- **Evaluated:**
 - EEG response to final word
Experiment 2 - EEG

- **Hear:**
 - Predictive sentence
 - Final word: target/shape competitor/unrelated
 - Control for shape-similarity, plausibility
 - Avg. similarity (1-7):
 - Competitor: Mean = 4.2, SD = .9
 - Control: Mean = 1.9, SD = .7

- **Instruction:**
 - Listen for comprehension

- **Evaluated:**
 - EEG response to final word

Question:

N400 effect on target/shape competitor/control words?
N400 (Kutas and Hilyard, 1980)
Experiment 2

- Experiment
 - 32 trials, 64 fillers, 3 lists
 - 50% semantic violation
 - Critical word once per participant
Experiment 2

- **Experiment**
 - 32 trials, 64 fillers, 3 lists
 - 50% semantic violation
 - Critical word once per participant

- **Participants**
 - 24 participants (20 female), mean age 20
 - Dutch native speakers
 - Normal hearing, normal/corrected seeing
 - Right handed
Items

Correct
In 1969 Neil Armstrong was the first man to set foot on the moon.

Shape Competitor
In 1969 Neil Armstrong was the first man to set foot on the tomato.

Unrelated
In 1969 Neil Armstrong was the first man to set foot on the rice.
Experiment 2: EEG

Results

General:
- Difference starts at ~ 150 ms

Distribution: more frontal

N400 effect:
1. Semantic violation
 - control $>$ target
 - competitor \approx control
 - competitor $<$ control
Results

- **General:**
 - Difference starts at ~ 150ms
 - Distribution: more frontal
 - N400 effect: Semantic violation

- **N400 effect:**
 - control $>\,$ target
 - competitor $>\,$ target
 - 1. competitor \approx control
 - 2. competitor $<$ control
Results

- Smaller amplitude for competitor
Results

- Smaller amplitude for competitor
- Difference control/competitor at 500 - 700 ms (still N400?)
 - + Design: Auditory experiment, word length
 - + Acoustic vs semantic difference
 - - Lower priority for shape information
 - - Shape only activated after mismatch
 - → effect more important than N400

Summary

- Shape effect in both experiments
- Smaller effect than for semantic features
- Shape can be activated without visual context (but not necessarily is)
- Further research: When and why does shape prediction occur?
Results

- Smaller amplitude for competitor
- Difference control/competitor at 500 - 700 ms (still N400?)
 - + Design: Auditory experiment, word length
 - + Acoustic vs semantic difference
 - - Lower priority for shape information
 - - Shape only activated after mismatch
 - \(\rightarrow \) effect more important than N400

Summary

- Shape effect in both experiments
- Smaller effect than for semantic features
- Shape can be activated without visual context (but not necessarily is)
- Further research: When and why does shape prediction occur?
Problems

- No comprehension-questions
 - Attention guaranteed?
Problems

- No comprehension-questions
 - Attention guaranteed?
- No clear results
 - Small effect in experiment 1
 - No real N400-effect in experiment 2

Hard to control

Influence of shape
→ what else may influence results? e.g. color...

Which kind of prediction?
Word-to-word association (Neil Armstrong → moon) instead of real anticipation?
Problems

- No comprehension-questions
 - Attention guaranteed?
- No clear results
 - Small effect in experiment 1
 - No real N400-effect in experiment 2
- Hard to control
 - Influence of shape \rightarrow what else may influence results? e.g. color...
Problems

- No comprehension-questions
 - Attention guaranteed?
- No clear results
 - Small effect in experiment 1
 - No real N400-effect in experiment 2
- Hard to control
 - Influence of shape → what else may influence results? e.g. color...
- Which kind of prediction?
 - Word-to-word association (Neil Armstrong → moon) instead of real anticipation?
Individual differences in language processing e.g. literacy (Huettig, 2011)
Individual Differences

- Individual differences in language processing e.g. literacy (Huettig, 2011)
- Shape prediction may correlate with:
 - Anticipatory attention
 - Vocabulary size
 - Verbal fluency
 - Fluid intelligence (problem solving, pattern recognition)
Individual differences in language processing e.g. literacy (Huettig, 2011)

- Shape prediction may correlate with:
 - Anticipatory attention
 - Vocabulary size
 - Verbal fluency
 - Fluid intelligence (problem solving, pattern recognition)

- Visual-World-Experiment as before

- Additional tests for individual differences
Tests

- **Category fluency**
 - Produce as many items of a category as possible within 1 min
Tests

- Category fluency
 - Produce as many items of a category as possible within 1 min

- Peabody Picture Vocabulary Test
 - Chose 1 out of 4 pictures to a heard word
Tests

- Category fluency
 - Produce as many items of a category as possible within 1 min
- Peabody Picture Vocabulary Test
 - Chose 1 out of 4 pictures to a heard word
- Posner spatial cueing task
 - Location-cue:
 - 50% neutral
 - 50% < or >, 80% validity
 - Press button left/right, where X appears on a screen
 - Measured: ∆reaction time: neutral vs valid
Tests

- **Category fluency**
 - Produce as many items of a category as possible within 1 min

- **Peabody Picture Vocabulary Test**
 - Chose 1 out of 4 pictures to a heard word

- **Posner spatial cueing task**
 - Location-cue:
 - 50% neutral
 - 50% < or >, 80% validity
 - Press button left/right, where X appears on a screen
 - Measured: Δreaction time: neutral vs valid

- **Raven’s Advanced Progressive Matrices**
 - Chose 1 of 8 possible geometric patterns to complete a matrix
Results

- Results of Eyetracking:
 - Comparable to experiment 1
Results

- Results of Eyetracking:
 - Comparable to experiment 1
- Results of Cueing-Task:
 - Cueing-effect found
Correlations

- More fixations of target object:
 - High vocabulary scores
 - High category fluency
Correlations

- More fixations of target object:
 - High vocabulary scores
 - High category fluency

- More fixations of shape competitor:
 - High sensitivity to cues
 - Maybe timing instead of effect size?
 - Low fluid intelligence
 - May also be related to working memory capacity, ability to suppress distractors
Correlations

- More fixations of target object:
 - High vocabulary scores
 - High category fluency

- More fixations of shape competitor:
 - High sensitivity to cues
 - Maybe timing instead of effect size?
 - Low fluid intelligence
 - May also be related to working memory capacity, ability to suppress distractors

Summary

- Lexical knowledge improves anticipation of target words
- Anticipatory attention influences verbal and non-verbal tasks.
References

Marta Kutas, Steven A. Hillyard (1980)
Reading senseless sentences: Brain potentials reflect semantic incongruity
Science Volume 207, January 1980, Pages 203-208

The contents of predictions in sentence comprehension: Activation of the shape of objects before they are referred to
Neuropsychologia Volume 51(3), February 2013, Pages 437-447

Verbal and nonverbal predictors of language-mediated anticipatory eye movements
Atten Percept Psychophysics Volume 77(3), April 2015, Pages 720-73
Thank you for your attention!
Correlations

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>target</td>
<td>-0.11</td>
<td>shape</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.09</td>
<td>-0.15</td>
<td>control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>-0.27</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.04</td>
<td>0.25</td>
<td>0.07</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.24</td>
<td>0.04</td>
<td>0.08</td>
<td>0.41</td>
<td>-0.09</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.23</td>
<td>-0.01</td>
<td>0.13</td>
<td>0.06</td>
<td>-0.02</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Significant correlations marked with stars: *

Significant correlations marked with double stars: **

***Significant correlations marked with triple stars:** ***