The ERP response to the amount of information conveyed by words in sentences.
• **Information Theory**

 • Each word conveys a certain amount of information
 • should be predictive of the amount of effort required to process the word

 • The amount of information
 • Computed from probabilistic models of the language

 • The amount of cognitive effort
 • Observed by measuring word reading times
 • More informative words \(\leftrightarrow \) longer reading time

• The effect of word information on the ERP response?
Introduction – Quantifying word information

• Surprisal

\[
\text{surprisal } (w_{t+1}) = - \log P(w_{t+1}|w_1...t)
\]

• A measure of the extent to which its occurrence was unexpected
 • w: actual \textit{words} or \textit{PoSs}

• Entropy Reduction

\[
H(W_{t+1...k}) = - \sum_{w_{t+1...k}} P(w_{t+1...k}|w_1...t) \log P(w_{t+1...k}|w_1...t)
\]

• Decrease when the next word or PoS is encountered
 • Quantify how much ambiguity is resolved by the current \textit{word} or \textit{PoS}

• Use 4 definitions of word information
Introduction – The present study

• Objectives (twofold)
 • Investigate whether a relation between word information and ERP amplitude exists
 • Look at 6 ERP components
 • N400
 • Post-N400 Positivity
 • Early Post-N400 Positivity
 • P600
 • Left Anterior Negativity
 • Early Left Anterior Negativity
 • Compare the surprisal and entropy reduction measures
 • Expect the effect of word surprisal on the size of N400
• Objectives (twofold)
 • Compare the explanatory value of different probabilistic language models assumptions closer to cognitive reality more predictive
 • Compare 3 model types:
 • n-gram models
 • do not embody any cognitive or linguistic theory
 • recurrent neural networks (RNN)
 • domain-general temporal learning and processing systems
 • phrase-structure grammars (PSG)
 • capture hierarchical syntactic structure
Methods – EEG data collection

• Participants
 • 24 right-handed native English speaker (10 female, mean age 28.0 years)

• Materials
 • 205 sentences from the UCL corpus of reading times
 • 54% with yes/no comprehension questions

• Procedure
 • Word by word presentation
 • Duration: 190+20m ms (m: number of characters in the word)
 • Interval between words: 390 ms
Methods – Estimating word information

• Training Corpus
 • 1.06 million sentences from the British National Corpus (BNC)

• Language Models
 • N-gram models
 • taking the previous n-1 words into account
 • 3 models (n = 2,3,4) & 3 additional models training on full BNC obtained
 • Recurrent neural networks (RNN)
 • 9 training corpora to obtain a range of increasingly accurate models
 • 10 RNN models trained on words and 10 on PoS yielded
 • Phrase-structure grammars (PSG)
 • 9 PSGs defined over words/PoS-strings obtained
Methods – Estimating word information

• Linguistic accuracy
 • Average log-transformed word probability over the experimental sentences

 ![Model](image1)
 Fit to ERP amplitudes

 higher linguistic accuracy better

• Entropy Reduction
 • Only RNN used to estimate entropy

 ![Model](image2)
 Fit to ERP amplitudes

 higher linguistic accuracy better

 \[H(W_{t+1...k}) = - \sum_{w_{t+1...k}} P(w_{t+1...k}|w_{1...t}) \log P(w_{t+1...k}|w_{1...t}) \]

 • Chain rule:

 \[P(w_{t+1...k}|w_{1...t}) = \prod_{i=1}^{k} P(w_{t+i}|w_{1...t+i-1}) \]

 • Only RNN computes \(P(w_{t+1}|w_{1...t}) \) over all word types in parallel
Methods – Data analysis

• Linear mixed-effects regression models
 • Variance among subjects and among items is taken into account
 • Include a factor of word surprisal

• Exploratory and confirmatory analyses
 • The current study is mostly exploratory

• Divide the full data set into two subsets
 • Exploratory Data
 • comprising the 12 odd-numbered subjects
 • Confirmatory Data
 • comprising the 12 even-numbered subjects

Generate hypotheses Test hypotheses
Results

• Exploratory analysis
 • Identified 4 potential effects:
 • Word surprisal – amplitude of N400
 • Word surprisal – amplitude of LAN
 • Word entropy reduction – EPNP
 • Word entropy reduction – PNP

• PoS information measures
 • No potential effects
Results

• Confirmatory analysis
 • Only one survives ...

 • Word surprisal – amplitude of N400
 • Reliable evidence for an effect of word surprisal on the N400

 • Not any other relation between word (or PoS) information and any ERP component.
Results

• Exploratory and confirmatory analyses
 • Investigate whether this effect can indeed be considered an N400
 • Take the full set of data
 • Showed the strongest overall effect on the N400

• The high-surprisal words result in more negative deflection
 • Word surprisal indeed affects N400 amplitude
Results

- Comparing word classes
 - Content words (open-class) vs. function words (closed-class)
 - Function words: no reliable N400 effect
 - Content words: weaker effect
 - Most likely because ...
 - Function words – lower surprisal & elicit a smaller N400
 - In other words ...
 - part of the effect over all words is due to the word class difference
Results

- **Model Comparison**
 - Effects on all words ...
 - The n-gram model
 - explains variance over and above the others
 - The RNN
 - explains variance that the PSG does not account for (not reverse)

<table>
<thead>
<tr>
<th>Words</th>
<th>Model</th>
<th>n-gram</th>
<th>RNN</th>
<th>PSG</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>n-gram</td>
<td>$\chi^2 = 3.25, \ p < .08$</td>
<td>$\chi^2 = 2.44, \ p > .1$</td>
<td>$\chi^2 = 8.65, \ p < .01$</td>
</tr>
<tr>
<td></td>
<td>RNN</td>
<td>$\chi^2 = 1.80, \ p > .15$</td>
<td>$\chi^2 = 2.44, \ p > .1$</td>
<td>$\chi^2 = 4.44, \ p < .04$</td>
</tr>
<tr>
<td>Content</td>
<td>n-gram</td>
<td>$\chi^2 = 6.98, \ p < .01$</td>
<td>$\chi^2 = 2.34, \ p > .1$</td>
<td>$\chi^2 = 3.68, \ p < .06$</td>
</tr>
<tr>
<td></td>
<td>RNN</td>
<td>$\chi^2 = 2.55, \ p > .1$</td>
<td>$\chi^2 = 0.52, \ p > .4$</td>
<td>$\chi^2 = 6.29, \ p < .02$</td>
</tr>
<tr>
<td>Function</td>
<td>n-gram</td>
<td>$\chi^2 = 0.45, \ p > .5$</td>
<td>$\chi^2 = 1.97, \ p > .15$</td>
<td>$\chi^2 = 0.80, \ p > .3$</td>
</tr>
<tr>
<td></td>
<td>RNN</td>
<td>$\chi^2 = 1.65, \ p > .15$</td>
<td>$\chi^2 = 2.59, \ p > .1$</td>
<td>$\chi^2 = 0.22, \ p > .6$</td>
</tr>
</tbody>
</table>
Results

• Model Comparison
 • Effects on content words ...
 • Similar, except that the RNN now outperforms the n-gram model.
 • Effects on function words ...
 • Very weak in general
 • No one model type accounts for variance over and above any other

<table>
<thead>
<tr>
<th>Words</th>
<th>Model</th>
<th>n-gram</th>
<th>RNN</th>
<th>PSG</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>n-gram</td>
<td></td>
<td>$\chi^2 = 6.01, \ p < .02$</td>
<td>$\chi^2 = 8.65, \ p < .01$</td>
</tr>
<tr>
<td></td>
<td>RNN</td>
<td>$\chi^2 = 3.25, \ p < .08$</td>
<td></td>
<td>$\chi^2 = 4.44, \ p < .04$</td>
</tr>
<tr>
<td></td>
<td>PSG</td>
<td>$\chi^2 = 1.80, \ p > .15$</td>
<td>$\chi^2 = 2.44, \ p > .1$</td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>n-gram</td>
<td></td>
<td>$\chi^2 = 2.34, \ p > .1$</td>
<td>$\chi^2 = 3.68, \ p < .06$</td>
</tr>
<tr>
<td></td>
<td>RNN</td>
<td>$\chi^2 = 6.98, \ p < .01$</td>
<td></td>
<td>$\chi^2 = 6.29, \ p < .02$</td>
</tr>
<tr>
<td></td>
<td>PSG</td>
<td>$\chi^2 = 2.55, \ p > .1$</td>
<td>$\chi^2 = 0.52, \ p > .4$</td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td>n-gram</td>
<td></td>
<td>$\chi^2 = 1.97, \ p > .15$</td>
<td>$\chi^2 = 0.80, \ p > .3$</td>
</tr>
<tr>
<td></td>
<td>RNN</td>
<td>$\chi^2 = 0.45, \ p > .5$</td>
<td></td>
<td>$\chi^2 = 0.22, \ p > .6$</td>
</tr>
<tr>
<td></td>
<td>PSG</td>
<td>$\chi^2 = 1.65, \ p > .15$</td>
<td>$\chi^2 = 2.59, \ p > .1$</td>
<td></td>
</tr>
</tbody>
</table>
Discussion

• Objectives (twofold)
 • Investigate whether ERP amplitudes depend on word & PoS information
 • Expectation: N400 related to word surprisal
 • Proved
 • Identify the model type whose information measures best predict the ERP data
 • The n-gram and RNN models outperformed the PSG in general
Discussion

• The N400 effect of word surprisal
 • Reading a word with higher surprisal value \rightarrow increased N400 amplitude
 • ERP component sensitive to word predictability confirmed

• Across the full range of surprisal values, average N400 amplitudes differed by about 1 μV
 • Also found with cloze probability
 • Greater when only sentence-final words are varied
 • Most likely because ...
 • Effects are more pronounced on sentence-final words
 • Cloze differences tend to be larger in handcrafted experimental sentences than in naturalistic materials
Discussion

• The N400 effect of word surprisal
 • The strength of the surprisal effect grows nearly monotonically with linguistic accuracy
 • Confounding variable: very unlikely
 • Need to explain not only the effect of surprisal but also the effect of linguistic accuracy

• Previous studies: less predictable function words \rightarrow increased N400 size
 • Not in this study
 • Natural language does not display much variance in function word surprisal
Discussion

• The N400 effect of word surprisal
 • Why surprisal would be predictive of N400 size?
 • Previous studies: two functional interpretations of the N400
 • Semantic integration
 • Increased integration -> larger N400
 • Retrieval of lexical information from memory
 • Retrieval difficulty -> larger N400
 • Memory-retrieval account supported
 • Surprisal estimated by language models
 • minimally sensitive to semantics
Discussion

• Other ERP components and information measures
 • No reliable ERP effects of entropy reduction found, nor for PoS measures
 • Previous studies:
 • Surprisal and ER may not correspond to cognitively distinct processes
 • Alternative quantifications of the same cognitive factor
 • Present study:
 • Only word surprisal showed an effect
 • Two information measures quantify neutrally different processes
• Left anterior negativities
 • ELAN effect
 • Previous studies: elicited by the mismatch between the structural prediction
 • based on the syntactic category of the word currently being processed

• Reasons why an ELAN effect was unlikely to rise
 • An ELAN only appears in cases of outright syntactic violations
 • All the experimental sentences are grammatically correct
 • An ELAN is more often absent than present in experiments that use visually presented sentences
Discussion

• Left anterior negativities
 • LAN effect
 • Previous studies: elicited by a range of syntactic violations beyond the local phrase structure
 • Number / case error
 • Not restricted to syntactic violations
 • LAN effect could have been observed in the data
 • to the extent that syntactic difficulty is captured by word information
Discussion

• Late Positivities
 • (E)PNP effect
 • Previous studies
 • Anterior post-N400 positivity in response to *syntactic disambiguation*
 • much like (E)PNP
 • Entropy reduction – the amount of *ambiguity* resolved by a word or PoS
 • Entropy reduction might predict the (E)PNP
 • Present study
 • Exploratory Analysis
 • A potential (E)PNP effect of word entropy reduction
 • Confirmatory analysis
 • No such effect remained
Discussion

• Late Positivities
 • P600 effect
 • Occurred by a syntactic garden path
 • Triggered by the appearance of a word with unexpected syntactic category
 • Reflect syntactic reanalysis
 • Also found in cases without increased syntactic processing difficulty
 • Alternative interpretations of the P600 effect
 • Syntactic processing plays no central role
 • No reason to expect any effect of information quantities
Discussion

• Implications for models of sentence comprehensions
 • The n-gram and RNN model accounted for variance in N400 size over and above the PSG
 • The more parsimonious models ...
 • do not rely on assumptions specific to language
 • ... outperform the hierarchical grammar based system
 • The assumptions underlying the PSG model ...
 • not efficacious for generating expectations about the upcoming word
Conclusion

• A strong relation between ...
 • the surprisal of a word
 • the amplitude of the N400 component in response to reading that word

• Probabilistic language model can be used to estimate word information values
 • Allowing for a very flexible approach to model evaluation and comparison
 • instrumental in uncovering the representations and processes that underlie human sentence processing