
Modelling the Progressive and
Coercion using the Event Calculus

Bachelor Thesis

Maria Staudte

Institute of Cognitive Science

University of Osnabrück

First examiner: Prof. Dr. Kai-Uwe Kühnberger

Second examiner: Dr. habil. Helmar Gust

Osnabrück, September 2004

Abstract

This bachelor thesis summarises Hamm and van Lambalgen’s book
”The proper treatment of events”. The main points are addressed to
provide an overview of the Event Calculus and its usage in natural
language semantics. The Event Calculus is a formal system derived
from the Situation Calculus that allows for the representation of over-
lapping events and partial changing objects. Its ontology comprises
three types: events, fluents and time points. Thus, natural language
expressions are decomposed into such elements construing a scenario
to represent what is claimed to be the sense of that expression. This
thesis exemplifies several principles and mechanisms involved in this
representation using mainly verb phrases. Further, a process called
’coercion’ is described which labels the phenomenon that one verb can
occur with different aspectual classes, here distinguished according to
Vendler. Coercion is represented by the Event Calculus by modifying a
’default’ scenario of that expression and thereby creating a related sce-
nario, thus a relation between the two aspectual classes is established.
The progressive is a tense that often induces change of aspectual class
and therefore is an excellent sample for investigations on coercion. Be-
cause this algorithmic approach is claimed to model sense and reference
and thus to replace the conventional possible worlds semantics, a dis-
cussion on this issue follows the detailed analysis of the single aspects.

Contents

1 Introduction 5

2 Meaning and Tense 7
2.1 Cognitive Time . 7
2.2 Tense and Grammar . 9
2.3 Meaning and context . 10

3 The Event Calculus 11
3.1 The Ontology . 11
3.2 The Axiomatic System . 12
3.3 Scenarios . 14
3.4 Minimal Models . 15

4 CLP and EC 17
4.1 Non-monotonicity . 17
4.2 The Event Calculus in Constraint Logic Programming 18
4.3 Continuous Change in the EC 19
4.4 Problems . 19

5 Coding Verb Phrases 20
5.1 Aktionsarten/Aspectual Classes 20
5.2 Eventualities . 21

5.2.1 Points . 22
5.2.2 States . 22
5.2.3 Activity . 23
5.2.4 Achievements . 23
5.2.5 Accomplishments . 23

5.3 Remarks . 24

6 Progressive and Coercion 24
6.1 The Imperfective Paradox . 25
6.2 The Progressive in EC . 28
6.3 Coercion . 31

6.3.1 Additive Coercion . 32
6.3.2 Subtractive Coercion 33
6.3.3 Cross-Coercion . 33

6.4 Discussion . 34

7 Coercion and Intensionality 36
7.1 Sense vs Intension . 36
7.2 Coercion and Intension . 39
7.3 Discussion . 40

3

8 Conclusion 40

References 42

Appendix 44

4

1 Introduction

Natural language semantics is traditionally based on the definition of mean-
ing via possible worlds, i.e. the proposition of an expression is modelled
by the set of worlds in which the expression is true (see 7.1). For many
linguists, and so for Hamm and van Lambalgen, this approach does not
provide a suitable model with cognitively adequate explanations. That is
why they suggest to return to the origins of the distinction between sense
and reference formed by Frege and Carnap and focus on the computational
aspect of sense motivated by the mathematician Yiannis Moschovakis. By
means of the Event Calculus they model natural language expressions and
use Constraint Logic Programming to implement this formalisation. The
resulting algorithms are considered to represent the senses of the respective
expressions while the result of their computation construes the references of
the expressions. The aim of this bachelor thesis is to present Hamm and
van Lambalgen’s approach and to discuss the idea that an algorithm shall
be the sense of an expression. To support this discussion, some programs
are presented in order to illustrate and evaluate their theory on examples.

In detail, this thesis is organised as follows: In the next subsection,
Moschovakis’ idea is outlined followed by an embedding of the respective
theory in Cognitive Science in section 2. Moreover, the motivations and ori-
gins of the framework that Hamm and van Lambalgen construct are briefly
explained and I outline the points that justify the interest for Cognitive
Science. In section 3, I introduce the formal system that is expected to
constitute an appropriate model for the meaning of expressions and their
references, the Event Calculus. The consecutive section provides a short
description of the programming environment. After the formal and abstract
presentation section 5 follows which is devoted to explaining and illustrating
how the Event Calculus is applied. It includes examples of verb phrases and
an elaborate description of their internal structure. This internal structure
motivated the distinction between the particular aspectual classes and these
are addressed individually and in detail to pave the way for the subsequent
section. In the latter a transformation mechanism is presented which is
known as ’coercion’ and which names the assumption that a verb is forced
from one aspectual class into the other by its context. The modelling of this
mechanism is illustrated in section 6 mainly using the progressive inducing
the change. In section 7 I juxtapose Frege’s ’Sinn’ with the concept of ’in-
tension’ which was formed by Carnap. This is to provide the reader with
some ground knowledge for the adjacent discussion of the claim that an al-
gorithm, in this case a prolog program realising an Event Calculus scenario,
is the sense of the expression from which the scenario is derived. Finally,
section 8 discusses the presented material.

5

Figure 1: Frege’s idea

Figure 2: Moschovakis’ analogue

Moschovakis’ Motivation

Hamm and van Lambalgen’s work has been motivated by Yiannis Moschovakis
who is a researcher in the field of mathematical logic. His original inten-
tions have been to find an appropriate definition for the term algorithm and
to relate the concept ’algorithm’ to the concept of synonymy. The criteria
for deciding whether synonymy between two terms exists go back to the
distinction of sense and reference of these terms. Thus, Moschovakis’ ap-
proach is relevant for philosophy and linguistics as well where a dominating
model for sense and reference is based on possible worlds (see section 7.1
for a detailed description). He defines synonymy to be a ’faithful transla-
tion’ between terms, this corresponds to the concept of identity disregarding
structural differences. In natural language, such structural differences can
occur as different expressions which have the same sense or intension and
where the extension or reference is identical. Moschovakis adapts Frege’s
distinction between sense and reference and maps the former to the concept
of an abstract algorithm which computes the latter. In other words, differ-
ent programs implement the same algorithm like different terms may have
the same sense and this algorithm determines the denotation of the program
corresponding to the sense that determines the reference of the terms.

This abstract algorithm can be implemented by several programs which
correspond to the different terms which share one sense (see figure 2). For-
mally this relation can be expressed as follows:

Assume that a first-order (sorted) structure A for the Formal
Language of Recursion (FLR) is given. A denotation denA(x̄, φ)
is defined recursively with respect to A, where φ be an FLR-
formula all of whose free variables are among x̄. An intension
intA(x̄, φ) is then defined to be the algorithm which computes
denA(x̄, φ). 1

1Adapted from (Hamm & van Lambalgen, 2003b) and reformulated. For further tech-

6

The term denA(x̄, φ) specifies the denotation of a formula φ which includes
variables from x̄. This denotation of φ is, of course, dependent on the frame
work and as such the structure A specifies the environment in which φ exists
and is evaluated. The intension of φ is given by intA(x̄, φ) which is defined
to be the algorithm that computes the denotation of φ.

2 Meaning and Tense

2.1 Cognitive Time

Hamm and van Lambalgen commence their work by pointing out several
aspects of natural language and its relations to other abstract cognitive
processes like planning. Here we find the important embedding in Cognitive
Science. However, apart from the broader Cognitive Science research interest
the link to planning is worth to be examined in depth since much research
has been done in this field which can and will contribute a great deal to the
investigations of (the semantics) of natural language. In the following, I will
briefly summarise the main arguments that support the planning aspect of
language. This is to provide the appropriate embedding and justification for
the theory to come.

The question is why humans and how humans experience time because if
it can be investigated what the human mental representation of time looks
like and what its functionality is, then this will roughly apply to the linguistic
representation as well.

Psychologists typically distinguish three different cases when investigat-
ing time:

1. time as duration,
2. temporal perspective,
3. time as succession.

Time as duration is at least in English or German not grammaticalised,
rather is the duration of e.g. five minutes represented by a corresponding
lexicalisation (”for five minutes”). Temporal perspective, however, is much
more interesting since it involves past and future and ordering of events.
Perspective exists only if someone perceives events and time and thus, takes
on a subjective point of view. From there, from the deictic now, the subject
perceives the past as events that have happened and that it can retrieve from
its memory and it can anticipate events that may occur in the subjective
future.2

nical details and an elaborate explication of the mathematical basis for this statement see
(Moschovakis, 2003).

2The deictic now is neurologically shown to be an instant of around 3 seconds. This
contributes to the hypothesis that the present is durative and merges with the past at one
end and with the future at the other. (Hamm & van Lambalgen, 2004)

7

The strongest argument that Hamm and van Lambalgen drive forward
here is the experiment by Trabasso and Stein mentioned in (Russel & Norvig,
2003) which supports and perspicuously illustrates the congruence of lan-
guage and planning. In this experiment, children of different ages as well as
adults narrate a story from presented pictures. It shows that the children
only learn to narrate using future and past when simultaneously developing
an understanding for the causality of the depicted events. But not only the
causal relation plays a role, moreover, the children had to learn to recognise
aims and intentions of the characters in the story first in order to success-
fully use tenses. This evidently indicates that the representation and the
use of tenses is dependent on the understanding of causality as well as the
capability to mind-read. (Note: Mind-reading is the term used for the typ-
ically human ability to put oneself mentally into the position of someone
else. Interestingly, only humans can also imagine themselves to be in an-
other time than the deictic now.) If one now recalls that planning is the
search for a sequence of actions that leads to the goal, one will agree that
planning consists of (a) realising what the goal state is, i.e. what is aimed
at, and (b) what causes this goal state (to then perform the appropriate
action sequence). Easily, one can now merge the concept of a goal with the
future tense, e.g. ”what is to be achieved lies in the future”, and merge
the concept of a plan structure with the past, because the past provides
a data base of experiences which may be relevant for what is yet to come.
Consequently what children learn when they grow older is a cognitive ability
called planning and it is not a mere coincidence that the usage of tenses in
their mother tongue happens to develop concurrently.

Time as succession seems to be included in the concept of temporal
perspective but in fact this notion is somewhat more objective and is con-
structed from the temporal perspective. This means that, once a sequence
of events could be constructed, it is independent from subjective perspective
and only due to truth. According to Hamm and van Lambalgen, a repre-
sentation of temporal succession is created by using temporal perspective in
the following way:

In the present or deictic now the event e happens and is stored in (work-
ing) memory. Simultaneously an associated event p is retrieved and thus
recalled while event f will be anticipated. The recall- and anticipate-relation
therefore determines the precedes relation: if p is recalled then p precedes
e and if f is anticipated then e precedes f. Hence, a sequential order of
events can be established (p precedes f). It should be emphasised that the
precedes relation treats events as a whole and does not allow for an exact
starting or end point or overlapping. To my mind, this representation of the
construction of time as succession is too crude and not suitable to support
the decomposition of events that the Event Calculus carries out in order
to represent an event. Nevertheless, the brief elaboration above ought to
have shown the close relation of planning to language and therefore why it

8

is cognitively plausible to use an approach based on planning when dealing
with natural language semantics.

2.2 Tense and Grammar

It was already mentioned that time as duration is not grammaticalised as
opposed to temporal perspective. The grammaticalisation of the latter is
at least in English mainly concerned with planning, i.e. with the relation
between goals, plans and actions, and less with the true temporal succession
of events. This becomes obvious when looking at a few examples of the
English future tense below. For instance, it can be distinguished between
future events (per se) that will happen regularly with or without human
intervention and events that may happen and/or can be achieved by exe-
cuting a sequence of actions like a goal can be achieved by executing a plan.
To express the former, present tense is used as in ”The sun rises tomorrow
at 5 am.” whereas future tense is used to express the latter: ”It will rain
tomorrow.” or ”I am going to go to Berlin tomorrow.”.

The future tense can be further differentiated by the prospect of an
intervening event that may prevent the execution of the plan (’to be going
to’ is used) and by explicitly excluding the possibility for obstacles (’will’ is
used). Consider the following examples:

1. It will rain tomorrow.
2. ?It is going to rain tomorrow.
3. *It rains tomorrow.

These sentences nicely illustrate the above principles. In 1 and 2 no inter-
vention is anticipated and that is why the use of ”be going to” is somewhat
awkward without any further remark on why it may not rain.

1. I am going to go to Berlin tomorrow. Hopefully I won’t miss the plane.
2. *I will go to Berlin tomorrow. Hopefully I won’t miss the plane.
3. I will fly to Berlin tomorrow unless the weather forbids it.

It is clear in 1 and 2 that the speaker is leaving the option for an event to
interrupt the plan. While 1. works fine with ”be going to”, ”will” causes
some problems. However, as can be seen in 3. ”will” can be used even
though the preconditions for the plan are yet uncertain.

Another interesting tense in English grammar is the present progressive
which is a composed tense like all progressive forms in contrast to simple
tenses. Here we find that events in the progressive form cannot be treated
holistically. Consider for instance:

a. John crosses the street.
b. John is crossing the street.

9

and in the past:

a. John crossed the street.
b. John was crossing the street (when a truck hit him).

In the present both forms yield approximately the same meaning whereas the
difference in the past is remarkable. The simple past tense treats the event
as a whole and entails the result state that John has crossed the street.
However, the past progressive differentiates between the action, the goal
event and the result state such that ”John has crossed the street” cannot
be inferred from b. This is known as the imperfective paradox and will be
investigated in detail in 6.1.

2.3 Meaning and context

Discourse involves a more global ordering of events, taking into account
several sentences instead of only one. Hamm and van Lambalgen address
this issue when arguing towards a semantics based on algorithms in the
Event Calculus which I will introduce in detail in the next section. They
criticise that conventional approaches only take the particular expression
itself into account. In natural language, however, it is often the case that
a subsequent sentence alters the meaning, i.e. the sense, of the expression
in question retroactively in quite a delicate way. Consider, for instance, the
utterance

1. John was crossing the street. At this moment, he saw Mary and walked
faster.

2. John was crossing the street. He then got hit by a truck.

In 1., the meaning of the first sentence is that of a person called John walking
across a street and probably reaching the other side. By adding the second
sentence, the crossing process is slightly accelerated. In 2. adding the second
sentence reduces the original meaning of crossing the street since the final
event of reaching the other side of the street will never happen.

Furthermore, causal relations between sentences are not dependent on
the order of the sentences but on their meaning as can be seen on those
examples here:

1. John went up the stairs. He closed the door.
2. John closed the door. He went up the stairs.

3. John walked up the stairs. He went to bed and slept.
4. *John went to bed and slept. He walked up the stairs.

5. John entered the room. He broke the vase.

10

6. John broke the vase. He let it fall.

In 1. and 2. one can reverse the order of the sentences and obtain an intuitive
reversion of the order of events. This may suggest that the temporal order
of events is dependent on the linear order in which the sentences are. But
as shown in 3. and 4. this is not always the case. The plausibility of the
expressed proposition here is essential and it determines that the sequence
in 4. cannot be semantically correct since a person cannot be sleeping and
walking up the stairs simultaneously (disregarding sleepwalking). Sentences
in 5. and 6. are even more confusing because here the order of the sentences
is oppositional to the temporal order. This happens merely because a causal
relation exists between the sentences but not necessarily a sequential one.
So the first sentence in 6. states what happened and the second provides
the cause for the event. The reverse in 5. yields again a sequential notion.

3 The Event Calculus

3.1 The Ontology

The Event Calculus developed by Kowalski and Sergot in 1986 is a formal
system that has evolved from the Situation Calculus (SC). Developed by
McCarthy in 1963 the SC was intended to provide an environment for acting
agents (Shanahan, 1990). However, instead of using time points for the
description of actions and change it only names their result state and thus
works merely on frozen states of this world. Each situation is therefore a
collection of states which are clearly comparable and separable from the set
of states that follow on the next action. In this way, change is modelled in a
discrete and strictly ordered manner and hence, partially changing objects
or overlapping actions are difficult to represent. Furthermore, the SC has
effect axioms to state what changes as a result from an action and it has
frame axioms to represent what stays the same. This is necessary to solve
the frame problem which was also first recognized by McCarthy and Hayes
in 1969.

In comparison to the SC, the Event Calculus (EC) is more flexible and
also applicable to problems involving partial change, continuous change and
actions that have duration and may overlap with each other. This is achieved
by introducing a new sort called event to the ontology which represents
actions with or without being initiated by an agent. A fluent, however, is a
familiar type known from the SC, it represents properties in the EC as well
as partial changing objects and is typically derived from first-order formulae
by a process called reification: the transformation of formulae into terms.
While events happen, fluents hold and can therefore be direct arguments
for the truth-predicate. In the EC, a property can also be an argument
for another predicate and thus be an object. This is due to the possibility

11

that the state of a partial changing object can, for instance, introduce the
existence of that object. For an example see section 5.2.5.

These types, events and fluents, construe the predicates of the language
of the Event Calculus. However, there is a third type intermingled with these
two and this are the real numbers. The language (<,0,1,+,*,<) consists of
the real numbers and the operations addition and multiplication on them
and is used in the EC to represent time points and stages of partial changing
objects. It is particularly important to incorporate this time component
to ensure that fluents and events can be located temporally and can be
extended in time and thus gain a great advantage over the SC. The reals
can be axiomatised in a first-order system and surely this is the reason for
this choice. Nevertheless it is not clear why real numbers are necessary,
in fact, it is hard to imagine a situation which cannot be modelled using
integers only. Section 4.3 on continuous change resumes this issue.

3.2 The Axiomatic System

The many-sorted first-order logic called Event Calculus can be sufficiently
characterised by few axioms using the following predicates:

1. HoldsAt(f, t)
2. Initially(f)
3. Happens(e, t)
4. Initiate(e, f, t)
5. Terminates(e, f, t)

1. is a truth-predicate stating that a fluent f holds true at a time point
t. Several conditions can evoke this, e.g. when it has been true initially
(stated by 2.) and has not been interrupted or terminated. An event type
e that happens at time point t is represented by 3. and by being assigned a
specific time the event type becomes instantiated and thus an event token.
An event may initiate a fluent (at the same time point that it happens at) or
terminate it, i.e. an event may cause a fluent to start holding (4.) or to cease
holding (5.). It is worth mentioning here that a fluent that is initiated only
starts to hold at the following time point (the same applies for terminating
it), hence a fluent is interpreted as a set of time intervals of the form (a,b]
(a is the time instant of the initiating event, so f does not hold yet), and
b is the time instant of the terminating event where f still holds). This
definition seems to be merely a matter of consistency and homogeneity and
it is intuitively clear that one obtains a consistent theory of time without
having to switch between types of intervals.

With the five predicates briefly mentioned above it is possible to model
instantaneous change, i.e. a notion of causality which describes a sudden
change that is induced by an event from one time point to the next. However,

12

there is another notion of causality which necessarily has to be included in a
system that claims to model natural language and hence real world proposi-
tions. This second notion is continuous change, it is induced by an ongoing
action or force that culminates in the result state. This type of change is
conceptually very closely related to the aspectual class accomplishment in-
vestigated in 5.2.5 ff. For being able to model continuous change as well two
more predicates are needed:

6. Trajectory(f1, t, f2, d)
7. Releases(e, f, t)

6. states that if a fluent f1 holds from time point t to time point t+d then
at time point t+d fluent f2 starts to hold. Thereby the force of a fluent,
say an activity, onto another fluent can be expressed. 7. is a predicate that
represents the onset of a fluent f by an event e at time point t. To explain
why this is necessary we will take a look at the law of inertia proposed by
McCarthy and Hayes.

Law of Inertia. Normally, given any action (or event type) and any fluent,
the action doesn’t affect the fluent. 3

The Releases-predicate discards the law of inertia, because an event has
’started’ a change and will thus take effect on the fluent continuously. With-
out the Releases-predicate the event in question would only take immediate
effect and the fluent would remain in that state. Unlike the Initiate-predicate
which models only sudden change induced by an event, Releases allows a
continuous force to have an impact on the fluent as well. The idea is that
a continuously exerted force may eventually take effect on a fluent without
the presence of an explicitly mentioned event.

The following two predicates are not ’atomic’, they just conveniently
sum up a couple of conditions that lead to the notion of minimal models
(see 3.4).

8. Clipped(t1,f,t2)
9. Declipped(t1,f,t2)

The first of these two predicates states that a fluent f does not hold at a
time instant t2 if it held at an earlier time instant t1 and there has been a
terminating (or releasing) event between t1 and t2. The second predicate
grasps the condition that if a fluent f has been initiated (or released) by an
event between time points t1 and t2, then f holds at t2. Hereby events that
are relevant for the fluent f have been captured and all other events are not
taken to have any effect on this fluent.

3From (Hamm & van Lambalgen, 2000)

13

3.3 Scenarios

Scenarios are the kind of system needed to model real world propositions.
They are build by introducing states which are defined as follows:

Definition 1. A state S(t) at time t is a first order formula built from

1. Literals of the form ¬HoldsAt(f, t) for t fixed and possibly different f,
2. Equalities between fluent terms and between event terms,
3. Formulas in the language of the structure (<,0,1,+,*,<).

A scenario is on this basis defined as follows.

Definition 2. A scenario is a conjunction of statements of the form

1. Initially(f)
2. S(t) → Initiates(e, f, t)
3. S(t) → Terminates(e, f, t)
4. S(t) → Releases(e, f, t)
5. S(t) → Happens(e, t)
6. S(f1, f2, t, d) → Trajectory(f1, t, f2, d)

where S(t) is a state in the sense of definition 1.

Such a scenario for drawing a circle may look like this:

1. Initially(nocircle)
2. Initially(circle(0))
3. HoldsAt(circle(360),t) ∧ HoldsAt(drawing,t) → Happens(complete,t)
4. Initiates(start,drawing,t)
5. Releases(start,circle(0),t)
6. Initiates(complete,existcircle,t)
7. Terminates(complete,drawing,t)
8. HoldsAt(circle(x),t) → Trajectory(drawing,t,circle(t+d),d)

Apart from the Initially-statements, the above statements are rules that
apply at any time, so they are universally quantified over time points. What
is still missing now are certain ’facts’ in addition to the Initially-predicate,
for instance, a Happens-predicate that will set off the process and release
the ”time”. This only means that the rules will be applied one after the
other and in the end one will hopefully obtain the existcircle-fluent which is
the goal of drawing a circle. Hence,

9. Happens(start,0)

14

Some remarks to creating such a scenario: The reader may have noticed that
according to Hamm and van Lambalgen’s definition for scenarios and due to
the specific notation, the above system already looks like a Prolog program
with its distinction between rules and facts where facts are events and fluents
with an assigned time point. Furthermore, it should be noted that this
is a vast simplification of drawing a circle in the real world. Time, for
instance, is suitably represented by real numbers, but for practical reasons
in logic programming which is used to ’execute’ the Event Calculus, I use
integers to represent time steps. Additionally, a function such as circle(0)
that is meant to represent the progress of drawing a circle in terms of its
already completed degrees is defined in the Trajectory-predicate to proceed
absolutely uniformly and in linear accordance with each time step.

3.4 Minimal Models

I want to present the idea behind minimal models only briefly to round off
the draught of Hamm and van Lambalgen’s elaborated System EC and to
forestall questions concerning the Frame Problem.

What is usually known in Artificial Intelligence as the Frame Problem is
the distinction between things that change from one moment or ”frame” to
the next and things that stay the same and, additionally, how this can be
modelled. Obviously it implies an overwhelming demand on the algorithm
to cover all things that stay the same in an environment. Thereby a further
distinction is made between the quantitative efficiency of the representation
and the computational complexity or in other terms between the Repre-
sentational Frame Problem and the Inferential Frame Problem respectively
(see Russel & Norvig, 2003). The Situation Calculus has aimed at solving
this problem by introducing frame axioms in addition to the effect axioms.
The former state what remains unchanged while the latter determines the
immediate consequences of an event or action performed. This may still be
reasonable as long as computations are carried out in an environment like
the blocks world which is very restricted and transparent. However, for the
modelling of a real world situation this approach would result in a hopeless
axiom proliferation while some relevant world knowledge still may not have
been considered.

For a sophisticated model of action, time and change which can be ap-
plied to more complex domains, one needs a formalisation of reasoning which
deals efficiently with the available information but which is flexible enough
to readjust its conclusions in case it obtains relevant possibly contradictory
information at a later stage. Because classical first-order logic has problems
with the formalisation of this type of non-monotonicity the Closed World
Assumption (CWA) was introduced. It defines that everything that changes
is stated so that whatever does not occur in the database as a fact is simply
assumed to be false.

15

In the EC, the notion of a minimal model relates to that of the CWA in
that it is

”characterised by the fact that the occurrences of events and their causal
influences are restricted to what is required by the scenario and the
axioms of the event calculus.” (Hamm & van Lambalgen, 2004)

In other words, all relevant facts and relations are stated and hence, what-
ever is not stated is assumed to at least have no relevance on the fluents and
events of the scenario. The necessity for minimal models lies in the demand
on computationability since the concern of the models is the semantics of
an expression such as ”John draws a circle” and not what could happen in
every possible situation such that he never finishes to draw the circle.

Although the intuition about minimal models is clear there are a cou-
ple of formal issues that appear problematic. The EC is a formal system
that depends on the HoldsAt-predicate as truth-predicate. Easily, one can
construct natural language expressions with self-reference and this can be
done in the EC as well. Self-reference concerning a truth-predicate results
in paradoxical situations. Consider the sentence ”I am false.” where I refers
to exactly that sentence. In the EC, this leads to iterated truth-predicates:

HoldsAt(F) ↔ ¬(HoldsAt(HoldsAt(F)))

which is contradictive. Those statements are neither true nor false and
mainly there are two ways of dealing with this phenomenon:

• One can use a three-valued logic which allows for the value ”neither
true nor false” (leads to minimal models) or the value ”both - true
and false” (leads to maximal models).

• The truth-predicate is a partial truth-predicate (T and T̄) which only
covers true and/or false statements.

Hamm and van Lambalgen use the latter option, just as the theoretic frame-
work given by Feferman in section 5.3 requires it. However, it is obviously
problematic to find a minimal model for a statement that can neither be
evaluated to true nor to false.

Another problem with minimal model arises when disjunctions are al-
lowed in the EC. If a predicate X is evaluated to true if either a predicate Y
holds or another predicate Z holds then there exist two minimal models to
this scenario in one of which X is proven by Y and in the other X is proven
by Z. Thus, they cannot be compared and are both ’minimal’ in parallel.
It is unclear which of those two minimal models would then be preferred to
represent the reference of the algorithm.

16

4 CLP and EC

4.1 Non-monotonicity

In 2.3, problems have been described that discourse may bring about when
computing the semantics of a sentence. In this sense, natural language
is non-monotonic as new information gained at a later stage may alter or
even reverse earlier drawn inferences. Obviously, using the Closed-World
Assumption does not make sense in this context, hence, an adequate frame-
work for reasoning with natural language needs to have a mechanism for
continuously updating the inferences drawn from the changing input. This
in turn is an argument for an algorithmic solution which can compute the
minimal model that is consistent with the data over and over again while,
for instance, the classical model theory is too static to account for this kind
of non-monotonicity. Non-monotonicity can result in inconsistencies in such
a model when contradicting data is obtained. Then this model can either
be modified such that it treats inconsistencies as local without impact on
the theory or one has to change the model such that is is rearrange each
time an (inconsistent) information is obtained. This is the way how the
EC works. The computed minimal model comprises only the given data
and assumes everything beyond that to be false or at least irrelevant. All
inferences drawn are based on these (minimal) premisses. Hamm and van
Lambalgen believe that an algorithm producing such minimal models for an
expression is equivalent with the sense or intension of that expression (see 7.1
for details) while the minimal model can be identified with its denotation.

The authors prefer to use Constraint Logic Programming as working
environment for the EC to using Prolog for the following reason: planning
and therefore interpretation of natural language is closely related to time,
as argued in 2, and the EC framework has been developed mainly to be
capable of dealing with various temporal reasoning problems. Therefore an
implementation of this framework demands a proper representation of time.
This is typically achieved by using the reals which were introduced to the
EC ontology in 3.1. Since CLP can handle reals and relations between them
this solution is consequentially preferred to Prolog which has trouble with
reals and cannot resolve constraints of the form t1 < t2. Moreover, the EC
enabled us to equip events and fluents with the potential to be extended
in time. Therefore an expression like ”John played a sonata” yields a time
interval for which ’John played’ is true and this interval contains as many
time points as the sonata lasts. When asking the program to compute when
John actually played a Prolog program will return each single time point as
a solution for which it holds that John plays. Intuitively this is not what is
wanted, a preferred solution would be the presentation of a set of intervals
for which the action of playing holds true.

After all, CLP also handles negation in a different way than Prolog does.

17

In Prolog, negation is achieved by failing to prove the positive counterpart
of the negated. Additionally to this, CLP uses constructive negation where
answer substitutions are computed. That means, answers to a negative goal
can also be computed whereas in Prolog it is impossible to ask e.g. for an X
such that ¬p(X) holds. Consider this example by David Chan 4 in Prolog:

p(X) : − ¬q(X).
q(X) : − ¬r(X).
r(1).
r(2).

The query p(1) succeeds but the query p(x) will fail and not yield the al-
ready known answer ”1”. Constructive negation can handle such queries by
establishing new bindings for query variables. If, for instance, A1....Ak are
answers to the query Q then Q ≡ A1∧ ...∧Ak. If there are no answers, how-
ever, the right hand side is empty (i.e. false) which means that ¬Q (negation
by failure). The constructive negation rule establishes: ¬Q ≡ ¬(A1∧...∧Ak).
The negation of the answers to Q is returned as answers to ¬Q.

4.2 The Event Calculus in Constraint Logic Programming

In this section, I want to briefly sketch what a CLP algorithm that computes
the sense of an expression that is modelled in the EC may look like. First
of all, the basic constraint logic program consists of clauses where each has
a body and a head. The body in CLP may contain predicates of the EC
language as well as numeric constraints while the head must be a primitive
predicate of the EC. The general mechanism is that if the body parts can
be proven then the head holds true and the overall aim of such a program is
to compute a predicate and express it merely as a set of constraints where
variables are assigned value as far as that is possible. Such a CLP-clause
has the following form

B1, B2, ..., Bn, c → A

where Bn and A are primitive EC predicates and c is a numeric constraint
typically representing succession of time points. To invoke a computation
and ask the program whether a certain goal state can be derived or simply
asking it what the denotation of an expression is, a query has to be posed
which consists of one or more primitive predicates as well as constraints
listed by commas. That is:

?c,B1, ...Bn

An example of a simple scenario in CLP can be found in the appendix in
section 1. It is taken from (Hamm & van Lambalgen, 2004) and works analo-
gous to the circle-drawing example given above. The program consists of the

4From (Henriksson, 2003)

18

EC axioms and the statements constructing the scenario. Unfortunately the
computation cannot be successfully executed on the program as it stands,
demonstrated also in section 1 of the appendix. The recursive nature of the
predicates leads to infinite loops. I will reconsider this issue in section 4.4.

4.3 Continuous Change in the EC

Although I have already mentioned the reals and their importance for a
sophisticated formalisation of reasoning, I still owe an elaboration of how
they eventually come into play and help modelling continuous change in
the Event Calculus. This is important for modelling a process called auto-
termination, i.e. an action represented by a fluent persists over a period of
time which eventually causes an event that terminates this action.

An example is the filling of a kitchen sink, where, once the tap-on event
has set off the water flow, the sink fills up with water continuously until either
the maximum water level has been reached and there happens an overflow or
someone turns the tap off and thus terminates the filling process at a lower
water level than the maximum. So Terminates- and Initiates-predicates
are crucial in this context. Furthermore, the whole process depends on the
filling function which integrates time and the quantitative water level and
which determines when and how fast the maximum water level is reached.
For a short model of the kitchen sink filling that incorporates continuous
change by using integers see the appendix, section 2. However, this example
adapted from Shanahan bears problems in the execution as well. The way
the program is presented in (Shanahan, 1990) it does not work; as Shanahan
admits, some transformations to the code have to be carried out to prevent
looping, however he did not suggest a solution. The modifications that I
conducted resulted in an executable program that enabled correct compu-
tation with a correct result. Nonetheless, the program does not incorporate
real numbers, as the title of this subsection suggests. It uses a simple func-
tion to increase time and (water)level stepwise. Although this is not truly
continuous it suffices to model the situation appropriately and, in fact, it is
probably sufficient to model all situations because the real world does not
need real numbers.

4.4 Problems

Theoretically the suggestions that Hamm and van Lambalgen make about
implementing the Event Calculus in CLP are reasonable and promising.
However, it turns out that writing a program in the way a scenario is pre-
sented in their book does not lead to a successful computation. After im-
plementing several example scenarios and modifying them in order to make
the programs run I conclude that either the EC scenarios have not been
tested empirically as CLP programs or their implementation in a logic pro-

19

gram is not as intuitive and easily inferrable from the (simplified) theoretic
presentations given in the book.

The main problem that I encountered when testing the examples were
the multiple recursive calls of the HoldsAt-predicate that usually led into
infinite loops. The axioms of the Event Calculus include four rules for this
predicate which in turn are recursive and thus, a failure of unification with an
initially holding fluent requires the program to find a different way to prove
the current HoldsAt-predicate and ultimatively leads the program into the
next (deeper) level of recursion (see 1. in the appendix and the attached
commentation on looping of the program).

However, it is possible to write programs which execute the desired com-
putations and yield the expected outcome. Although some familiarities are
preserved they do not look like the presented examples in (Hamm & van
Lambalgen, 2004) and I find the choice of predicates not quite as intuitive
as the authors probably had in mind when choosing CLP as their compu-
tational environment for the Event Calculus (see appendix sections 2 and
3).

The main issue here is that the axioms as presented by Hamm and van
Lambalgen do not support a CLP implementation. They are not entirely
inductive and lead a logic program into infinite loops. Therefore, either the
axioms have to be modified to be compatible with CLP or the programs
simply do not represent the full theoretic approach because only parts of
the axiomatised Event Calculus can be implemented in a running program.

5 Coding Verb Phrases

This section deals with how verb phrases can be represented and coded in
the EC. First, an introduction into aspectual classes is given and second, the
representation of verbs as eventualities according to their aspectual classes
is explained.

5.1 Aktionsarten/Aspectual Classes

According to Vendler 5, verbs can be categorised into four or five different
aspectual classes. The distinction is based on the temporal extension and
the internal structure and complexity of a verb (phrase). For example, a
verb which represents an action that can last over time and has no partic-
ular internal structure, i.e. is not implying an starting or ending event, is
classified as an activity. Here are the five most common and most general
aspectual classes (or Aktionsarten):

Points: flash
5(Vendler, 1967)

20

States: sleep, know
Activities: run, draw
Achievements: reach, arrive
Accomplishments: cross the street, fill a glass

Points had not been included in this list originally but Hamm and van
Lambalgen have decided to do so and as the examples above show, the cor-
responding verbs can somehow be separated from the rest of the classes.
However, I think that the distinction between activities and points can be
problematic in cases where the former are very short (compare ”to kick”).
When does an action become punctual and when is it only short in dura-
tion? And is an achievement not a point as well? In any case the claim is
not that every verb belongs to one of those categories in an absolute sense.
It is merely the case that a verb or verb phrase can occur with a different
aspectual class in a different context. This phenomenon is dealt with in
section 6.3.

5.2 Eventualities

An eventuality is a construction that has four parameters which are modi-
fied according to the features distinguishing the aspectual classes. In that
sense, it represents the internal structure of a verb phrase and consequently,
eventualities can be used to determine what has to be included in a corre-
sponding scenario.

Definition 3. An eventuality is a structure (f1, f2, e, f3) where

1. f1 is a fluent which represents an activity, something which exerts a
force

2. f2 is a parametrised fluent, representing a parametrised object (partial
changing object) or state

3. e is the culminating event, representing a canonical goal
4. f3 is a fluent which represents the state of having achieved the goal.

The sentence ”John has build a house.” serves as an example for an
eventuality structure: The force here is building, the partial changing object
(subject to the force) is represented by a parametrised fluent house(x) which
denotes the progress in building a house. The culminating event happens
when a constant c is reached that determines that the house has been fin-
ished, hence, the finish-event depends upon house(c) (e.g. Happens(finish-
house,t)), and finally, the goal state is a state that represents something
similar to exist-house.

An eventuality also expresses the internal structure that a verb can have.
For this reason, an eventuality also determines what has to be included in
a scenario to model the specific verb phrase or a proposition containing

21

this verb phrase (VP), as the case may be. Each parameter may occur
or not which is indicated by a + and/or a − respectively in each slot of
the eventuality structure (force, state, goal event, goal state). Using this
representation the aspectual classes look like this:

Point (-,-,+,-)
State (-,-,-,+)
Activity (+,+/-,-,-,)
Achievement (-,-,+,+)
Accomplishment (+,+,+,+)

Whether or not activities contain a state fluent depends on whether one al-
lows for the incremental theme (the change of what is object to the activity)
in the representation or not.

The example sentence above serves to illustrate this concept as well. As
demonstrated, all eventuality parameters are filled, i.e. they can be unified
with items of the sentence, which determines that this sentence expresses
an accomplishment.

5.2.1 Points

Points seem to be similar to achievements, they are events which mark
one time point and may take effect on fluents and activities by releasing,
terminating or initiating them. In contrast to achievements, points have no
typical result state as is recorded in its eventuality structure. This type is
in the EC represented by the Happens-predicate.

5.2.2 States

States and Activities can be very similar and are both represented by fluents
in the EC. A formal parameter as given in the eventuality structure is needed
to distinguish them in the model. This distinction is based on the notion
of causality. While a state is a property that may indeed involve change as
exemplified in:

She is even more beautiful today than she was in her younger years.

it is nevertheless defined to be causally inert. Thus, a state can be effect of
a cause but cannot actively cause a change in the sense that a force or an
event can release fluents. Hence, a state can occur as third but not as first
argument in a Trajectory-predicate (recall that this argument, if it holds
from t to t+d , causes the state fluent, the third argument, to hold true at
t+d as well). The kind of change illustrated in the example sentence can be
modelled by using a graded function representing the state.

22

5.2.3 Activity

Activities in the wide sense are defined by an activity fluent (in the narrow
sense) which is the force that changes an object or a property. The latter is
represented by the state of the partial changing object in second argument
position of the eventuality structure. The force can also be a graded func-
tion since it depends, for instance, on how much energy a runner puts into
running and thus, the grade of the force will influence the state fluent, also
being graded. Syntactically, an activity can for reasons of cause and volition
not be released whereas a state may well be done so. The difference between
the two classes seems to lie conceptually in the focus of activity and state.
While the change of a state concerns the outcome - what is changed - the
profile of an activity lies in the input since that determines the duration and
outcome of the activity. Both classes have in common that they are also
called durative or atelic because of their lack of a culmination event.

5.2.4 Achievements

Achievements are event types that result from an ongoing activity and ter-
minate it. Thus, an achievement is syntactically given by a goal event which
produces a goal state, represented by a Happens- and a HoldsAt-predicate.
Achievements and accomplishment can both be characterised as terminative
or telic because they contain a culmination event type.

5.2.5 Accomplishments

Accomplishments have the most complex internal structure and combine all
of the above types. They consist of an activity and the state of a partial
changing object as well as a terminating event which depends on the stage
of the partial changing object and a result state, thereby integrating an
activity in the wide sense with its canonical goal if such exists. Compare
the elaborated version of an example below to that in 3.3:

1. Initially(circle(a))
2. Initiates(start,draw,t)
3. Initiates(finish, circle(c),t)
4. Terminates(finish, draw, t)
5. HoldsAt(draw,t) ∧ HoldsAt(circle(c),t) → Happens(finish,t)
6. Releases(start, circle(x), t)
7. HoldsAt(circle(x),t) ∧ x=g(s) ∧ y=g(s+d) ∧ s≤t →

Trajectory(draw,t,circle(y),d)

The activity fluent here is draw and the partial changing object is rep-
resented by circle(x). The partial changing object circle is graded and x
marks the corresponding state of the object in degrees. a is the starting

23

stage which may be set to 0 and c is the stage where one considers a circle
to be complete, for instance 360 in degrees or 2π in radian. The existence
of a circle can be represented by declaring an object Circle which depends
on circle(c), e.g.: Circle(circle(360)).

The Release- and the Trajectory-rules in the scenario are called dynamics
for obvious reasons. They ensure that action takes place in this model while
the rest can be more or less considered a database. The complex rule in
7. is necessary to make the partial change dependent on the time interval
in that draw is true and not on time itself. If the person is interrupted in
drawing from t1 to t2 and then proceeds, the circle-fluent must be at t2 at
the same stage as it was at t1.

5.3 Remarks

Now, to represent a natural language expression as a scenario in the EC
one needs to construct the eventuality structure. Therefore, the natural
language expression has to be analysed and decomposed into fluents and
events. To explain this process Hamm and van Lambalgen give a short
account of the Feferman calculus which contains a formalisation for verbs as
event types and fluents. This calculus was originally developed for a different
purpose but suits the needs of this framework. Roughly summarised, an
intransitive verb that takes an entity into subject position and a time point
can be represented as an event type ∃t.run(x, t) which is an object and as
fluent run[x, t̂] which is a function that takes a time point and returns a
truth value, each depending on its grammatical use. So, for instance, is the
infinitive of run an object while an inflected form is a fluent and therefore
a function. These distinctions are essential in the formalisation process and
become interesting when looking at phenomena involving nominalisation
where verbs take on the form (and some of the grammatical behaviour) of a
noun. In this study, however, I will not go into detail of those phenomena but
rather concentrate on VPs with different aspect and tense. Nevertheless, it is
important to note here that the choice of representation of natural language
expressions essentially determines the outcome of computations. After all,
the mode of representation incorporates lexical and structural information
already and, thus, influences the outcome of the model.

6 Progressive and Coercion

Typically, only activities and accomplishments occur in the progressive and
achievements or states do not. An achievement is concerned with the result
of some activity while the latter is not explicitly mentioned. Although its
result fluent can be in a Trajectory-predicate, it is lacking the first argument
of the Trajectory-predicate, the activity. The progressive, however, is con-
cerned with the relation between those two fluents which is characterised by

24

the dynamics
S(f1, f2, t, d) → Trajectory(f1, t, f2, d)

expressing the state of the two fluents and their relation in the Trajectory-
predicate. Because an achievement or a state lack either one of those fluents
they cannot occur in a progressive form. However, they can be forced into
the progressive but then lose their classification as such and become an
activity or accomplishment (for details see 6.3).

6.1 The Imperfective Paradox

In linguistics, when concerned with the progressive, the main question typ-
ically posed is

how the meaning of a sentence using the progressive is related to
the meaning of the corresponding nonprogressive.

Several proposals have been made which I will briefly present in this section.
Most of them have led to what is known as the imperfective paradox and
by explaining the approaches and their problems, I hope to convey a better
understanding of this phenomenon.

One of the first proposals about progressive and its relation to the non-
progressive brought forward by Scott and Montague produced the following
definition:

Definition 4. A simple sentence in the progressive is true at a given time
if and only if the corresponding nonprogressive sentence is true at every
moment throughout some open interval about t. (Montague, 1974)

Consider the example sentences ”Mary is leaving.” and ”Mary leaves.”
and the corresponding past tense expression ”Mary has left.”. Scott and
Montague claimed that the latter sentence holds true at a time point t if
and only if the corresponding present tense sentence is true at some time
point s where s is before t. But because ”Mary is leaving.” entails that
”Mary leaves.” according to the above definition, it also entails that ”Mary
has left.” will be true at some later time point t. This leads to the wrong
entailment relation between a progressive sentence and the happening of the
culmination event.

The reason why this phenomenon received the name ”imperfective” para-
dox lies in the concept of imperfect and perfect nominalisation. An instance
for nominalisation is the gerund which is a nominal built from a verb. A
nominal is perfect if it shows the grammatical behaviour of a noun whereas
it is imperfective if it is still ”verb-like”, in fact being a gerund it is still very
”progressive-like”. Perfective nominalisations have the property of being
holistic and can therefore be placed temporally as a whole event, e.g. ”The
drawing of the circle took place before noon.” This is a perfect nominal and

25

the event cannot be further decomposed but located in time, i.e. one has
to infer that the process of drawing and the culmination event of finishing
the circle took place and that before noon. Opponent to this example, the
progressive verb form in ”Mary was leaving.” does not entail that the cul-
mination event will have taken place. It therefore describes an event that is
decomposable into preparatory process and culmination event and, thus, is
not ’perfect’.

A second approach suggested to use intervals instead of instants of time
and the concluding definition was:

Definition 5. A simple progressive sentence is true at an interval of time
I, if and only if I is a moment of time and there is an interval I’ which
contains I such that the nonprogressive form of the sentence is true at I’.

But even with this definition from (Bennett & Partee, 1978) we still get
a time point after the interval I’ where ”Mary leaves” was true and at this
time point we yield the proposition that ”Mary has left.” which leads us to
the same problem as just described.

David Dowty then introduced a completely different idea based on pos-
sible worlds. He suggested that a progressive sentence should be true only
if the corresponding nonprogressive was true in all inertia worlds. With
’inertia worlds’ he labels worlds that are perfectly similar to the actual one
up until the time point in question and that then proceed ”normally”, i.e.
most consistently with the given circumstances. (Note that this notion is
comparable to that of a minimal model described in 3.4.) More formally
this theory can be described by definition 6.

Definition 6. PROG(ψ) is true at a pair of an interval and a world <i,w>
iff for some interval i’ which includes i as a non-final subinterval and for all
inertia worlds w ε INR (<i,w>), ψ is true at <i’,w’>. (Dowty, 1979)

PROG refers to ψ in the progressive form and INR denotes the set of
inertia worlds for interval i and world w. But what happens if the actual
world is one of those inertia worlds what may well be the case if it develops
in the most compatible way without unforeseen interruptions? Then the
nonprogressive holds and we are once again confronted with the imperfective
paradox.

Paul Portner has developed this theory in (Portner, 1998) further and
combined it with an approach based on events. But essentially he merely
elaborates on the concept of inertia worlds by introducing a set of circum-
stances (Circ(e)) relevant to whether the ”event” (Hamm and van Lambal-
gen would use the term eventuality here) will be completed, i.e. whether
”Mary has left.”, and a set of propositions (NI(e)) which assert that the
event does not get interrupted. The set of inertia or ’most compatible’
worlds for interval i and world w are then Best(Circ, NI, e) and as such

26

this replaces INR in Dowty’s definition. ’Most compatible’ obviously is a
problematic term since it is not formally defined but describes the idea of
minimal change from one time point to the next and therefore, is compara-
ble to inertia worlds that proceed ”normally”. Thereby, it corresponds to
the notion of a minimal model which does not allow for unforeseen change.
To my mind, the sets Circ(e) and NI(e) are somewhat unreasonable since
they comprise the frame problem without allowing for a solution in the way
that minimal models do.

Others have argued that the process of leaving or of drawing a circle can
only be named so if the actors, i.e. the persons that leave or draw, indeed
have the intention to fulfill the task or to invoke the culmination event. But
as Hamm and Lambalgen put it, it is rather difficult to access the intentions
of a person which makes it very hard to know initially what kind of process
is going on, whether a person is drawing a circle or a square, for instance.

Terence Parsons has discussed those approaches and presented his own
idea which is also based on the distinction between events and properties.
He proposes the following rule to handle the progressive:

If ‘A’ is an event verb, then ‘be A-ing’ is to be treated semanti-
cally as a state verb; otherwise, ‘be A-ing’ is to be treated the
same as ‘A’. (Parsons, 1990)

Consequently, he uses in his model a predicate similar to the Happens-
predicate for event verbs in simple tenses and an equivalent of the HoldsAt-
predicate for state verbs where the progressive form of an event verb is such
a state verb. However, I am convinced that it is not sufficient to represent
the progressive using only the state form of the corresponding verb. After
all, there is a default culmination event that takes place unless something
unforeseen happens in the process of the activity.

In the Event Calculus activities are, like states, also represented by the
HoldsAt-predicate because they are fluents as well. But in contrast to Par-
sons’ approach, an activity is part of a scenario which presents a plan to
reach a goal and thus includes the inherent goal as well. This scenario
contains universal facts and rules and since it does not use existential quan-
tification it does not enforce the actual occurrence of the goal. In terms
of the EC this means that a scenario must only include the goal as event
type which is characteristically not instantiated by a time point whereas the
scenario does not necessarily have to include the corresponding event token.
In other words, the goal is known and lies somewhere in the future and the
plan is created to reach the goal but it may not succeed if, in a minimal
model, unforeseen events occur and the goal may not actually be reached.

27

Figure 3: Event time (E), Relevance time (R) and Speaking time (S) of ”I
have caught a flu.”

6.2 The Progressive in EC

In this section, I introduce a new concept called ”integrity constraints” that
helps the Event Calculus to deal with what Reichenbach called ”Reference
Time” 6. Contrary to imperfect nominals, perfect nominals can be consid-
ered as event types for they cannot be punctually located in time, unlike
event tokens. Accomplishments and activities can be classified as event
types. Imperfect events have an internal structure and each of its parts can
be located in time and, therefore, they are event tokens. The internal struc-
ture contains among other things a reference time which indicates where
the relevance of the utterance lies and which may well be different from the
event time. An imperfect event may, for instance, contain a starting point
for a state or an activity but the relevance of the event may lie somewhere
along the time line when the state or activity has been going on for a while.
A typical example for this is the English perfect since it usually expresses
something about the present using the past to indicate that this ’something’
has started some time ago (see figure 3). It is not trivial how to integrate
the reference time. In the case of the present perfect where there is an initial
fluent holding true we want to emphasise that it is still holding now and
thus want to infer HoldsAt(f, t′) where t’= now from the initial situation.
If this was just added to the database a simple scenario would therefore
include:

Initiates(e,f,t)
HoldsAt(f,now)

However, using axiom 3 to infer from HoldsAt(f,t’) that an event has hap-
pened that initiated f does not work since HoldsAt(f,t’) can also be proven
by unifying it with HoldsAt(f,now) from the database!

[Happens(e, t) ∧ Initiates(e, f, t) ∧ t < t’ ∧ ¬Clipped(t, f, t′)]

∨[now = t′] → HoldsAt(f, t′)

This does not yield the desired derivation of Happens(e,t). An integrity
constraint can be used to fix this problem. It is a concept borrowed from

6From (Hamm & van Lambalgen, 2004)

28

database theory and it expresses an obligation that the states must satisfy
in case they fulfill a condition which invokes the constraint. The syntax of
this relation is given by this example from (Hamm & van Lambalgen, 2004):

HoldsAt(rain, t) → HoldsAt(carry − umbrella, t + ε)

The arrow here is meant in an imperative sense that if it rains then you
should carry an umbrella. If this integrity constraint is posed to the logic pro-
gram and the fact added that HoldsAt(rain, now), where now is a real num-
ber from the constraint language, the program will try to prove HoldsAt(carry-
umbrella, now + ε) (recall that goal and query are equivalent terms in logic
programming). More formally an integrity constraint is defined by:

Definition 7. Let R, R’, R” ... be a finite set of constants each denoting
a reference time; these constants belong to the constraint language. An in-
tegrity constraint is a formula of the form
(†) IF φ THEN ψ (R, R’, R”...),
where φ and ψ are formulas of the event calculus.
The operational meaning of (†) is that if the scenario satisfies φ, the goal
?ψ(R, R’, R”...) must succeed or fail finitely. To determine whether the sce-
nario satisfies φ, one has to investigate whether the goal ?φ succeeds. Hence
if the integrity constraint expresses an obligation it may be represented by
the demand that ?φ, ψ(R, R’, R”...) succeeds.

Returning to the example with the flu, instead of adding the fact that
HoldsAt(having-flu,now), it is advisable to use the integrity constraint and
query

?HoldsAt(having − flu, now)

which only succeeds if there was a starting event (Happens(e,t),t <now) that
initiated the flu and the flu has not been healed (¬Clipped). This way, the
predicate gets extended in time, from the initiating event up to the present
and the accent is put on the present state to express the relevance of the
perfect such that the person in question is still having a flu at the deictic
now.

Furthermore, an integrity constraint may not have a condition (or a
condition φ being a tautology), it must then be achieved in any case and
the query solely contains the consequent ψ.

The progressive is only applicable to a dynamic eventuality where there
is an activity fluent f1 and a parametrised fluent f2 that f1 takes effect on
in the way determined by this equation:

HoldsAt(f2(x), t) → Trajectory(f1, t, f2(x′), d)

where the parameter x depends on the elapsed time. This change is captured
by x’ in the Trajectory-predicate. If the eventuality does not itself feature

29

such a dynamics the application of the progressive will coerce (force) the
verb phrase into such a structure and extend the scenario accordingly. The
phenomenon of coercion is investigated in detail in section 6.3. Assuming
then that the scenario exhibits this dynamics, and as such we are dealing
with an activity or an accomplishment, the temporal aspect of the present
progressive of a verb phrase can be defined by the integrity constraint

?HoldsAt(f,R), R = now (1)

This ensures that again the starting event has to be computed and the fluent
f must not be clipped such that f becomes extended in time which is exactly
what the progressive expresses. Otherwise, if one merely adds the fact that
f holds now, the event could be only punctual.

The effort of solving the imperfective paradox using the EC leads us
back to the notion of minimal models and event types. As has been argued
before the scenario representing a proposition is a minimal model in which
only events occur that result from the rules and facts of the scenario and
that nothing else will influence the course of events.

Theorem 1. Let P be the logic program consisting of EC and the scenario
given in 5.2.5. Suppose P is extended to P’ so that the query ?HoldsAt(draw,
now) succeeds in P’. Suppose limt→∞g(t) ≥ c. Then comp(P’) has a unique
(minimal) model, and in this model there is a time t ≥ now for which Hold-
sAt(circle(c), t). By virtue of the stipulation that Circle(circle(c)), there
will be circle at time t. 7

In other terms, the scenario in which ?HoldsAt(draw, now) succeeds and
that therefore represents a present progressive then a minimal model can
be computed where no unforeseen events happen (like in an inertia world)
and thus it has a predictable future with regard to a default culmination
event. Hence, an integrity constraint for this scenario exists that represents
the default culmination event as an event type

?HoldsAt(circle(360), R), R > now (2)

which will be true at R some time in the future if no further Happens-
predicates that may intervene are added. Adding the universal rule
Terminates(run-out-of-ink,draw,t) is an event type as well and will not influ-
ence the goal computation as long as Happens(run-out-of-ink,t1) ∧ (g(t1) <
360) has not been added. By adding this Happens-predicate, we experience
a non-monotonic change and the logic program will then compute that the
culmination event does not take place, i.e. (2) fails and hence, the expression
has a different meaning.

7Adapted from (Hamm & van Lambalgen, 2004), a proof for this theorem can be found
on p. 160 pp

30

 E

 R S

Figure 4: ”John was building a house.” : Relevance time (R) lies inside
Event (E), Speaking time (S) is ’now’

The past progressive is similar to the present progressive concerning the
temporal aspect. The difference is that the reference time, like the event
time, lies in the past although the activity may still last (to the deictic now)
as in ”John was building a house”. Here the focus is on the event in the past
but one does not know whether he finished it or whether he is still building
(figure 4). The past progressive can thus be represented by the integrity
constraint and query

?HoldsAt(f,R), R ≤ now (3)

which starts a computation similarly to that of (1).

6.3 Coercion

Verbs can be classified in terms of aspectual classes but the classes have
no explanatory power and the verbs do not belong to one class exclusively.
The verbs rather change depending on the object noun phrase they occur
with or an adverbial construction that may take influence. ”Writing” is an
activity, for instance, while ”writing ones bachelor’s thesis” is an accom-
plishment because the object inherently brings a culmination event with it
that is determined by the logical configuration of the thesis. Accordingly,
the aspectual class changes when a person ”plays the piano” or ”plays a
sonata”. Furthermore adverbial constructions such as ”for 2 hours” in com-
bination with another subject can induce a change. Coercion is one view
upon this shift of aspect which is considered to depend on a force (context)
that imposes a temporal structure upon a verb and overrides the ’default’
aspectual class. Consider the achievement verb arrive.

a. John arrived.
b.*John arrived all night.

Here ’arrived’ as an achievement cannot be extended with the durative ad-
verbial construction. However,

c. Guests arrived all night.

31

allows for a durative sense and it may look like it has become an activity at
first glance. But I object to this view adopted by Hamm and van Lambalgen
(Hamm & van Lambalgen, 2004, p. 213) because the difference to the first
sentence lies solely in the plural noun phrase in subject position that enables
a reading which quantifies the achievement such that it applies for each guest
individually. Nevertheless, syntactically it behaves like an activity because
of its characterisation via a durative fluent and as such it would have to
be represented by a HoldsAt-predicate. Another phenomenon which also
fits under the heading ’coercion’ is where presumingly stative verbs become
activity verbs under the influence of the progressive.

a. I love her.
b.*I am loving her.
c. I am loving her more and more each day, the more I get to know her.

Love in its simple form can clearly be classified as a stative verb because it
denotes a property, a feeling. The progressive can then, in the right context,
impose an internal structure on the verb such that it changes from being an
atom in a. to having stages and phases in c.

In the following sections, I outline the three types of coercion that Hamm
and van Lambalgen distinguish and sketch the formal EC treatment for the
individual phenomena.

6.3.1 Additive Coercion

Additive Coercion is a label for those phenomena where something is added
to the scenario to obtain the ’new’ aspectual class. Consider an activity like
’drink’ and the accomplishment ’drink a glass of beer’. The scenario for ’He
drinks.’, for instance, is given by HoldsAt(drink, t). It has to be extended
with a dynamics which enables reaching the culmination event and the direct
object which specifies the culmination event to yield the new scenario:

1. Initially(glass(full))
2. HoldsAt(drink, t) ∧ HoldsAt(glass(empty), t)
→ Happens(finish-glass, t)

3. Terminates(finish-glass, drinking, t)
4. HoldsAt(glass(x), s) ∧ x = g(s) ∧ y = g(s+d) ∧ s ≤ t
→ Trajectory(drink, t, glass(y), d)

Of course the appropriate Initiates- and Releases-predicates have to be
added to complete this scenario but I think the idea has been conveyed. Sim-
ilarly does the transformation from achievement to accomplishment work.
Opponent to the former case does an achievement provide the culmination
event but lack the preparatory phase, the activity, and the parametrised
fluent which leads to the culmination event. Hence the scenario must be
extended with a dynamics like above introducing the appropriate activity
fluents.

32

6.3.2 Subtractive Coercion

This type of coercion is contrastive to additive coercion and applies mainly to
accomplishments which have been turned into an activity by removing their
culmination event, e.g. when an interrupting event prevents culmination
such that it cannot take place the accomplishment remains in the activity
phase. In the same way that ’drink’ became an accomplishment by adding ’a
glass of beer’ these predicates can be then eliminated to once again obtain
the scenario for ’drink’. For an EC example see the crossing-scenario in
section 3 of the appendix.

6.3.3 Cross-Coercion

This seems to be the most interesting class of coercion phenomena that
Hamm and van Lambalgen scrutinise. Some elements are added while oth-
ers have to be deleted to derive the coerced meaning. They distinguish
and elaborate mainly on three subtypes of cross-coercion: state → activity,
structure vs phenomenal interpretation and point → activity of which I will
present the first and the last type only for reasons of relevance to this thesis.

State → activity

The second example of the introduction to this section on Coercion serves as
an example for the transformation from states to activities. ’I love her’ can
be represented by the integrity constraint ?HoldsAt(f, R), R = now with
f representing the stative verb ’love’. The progressive and the addition of
”more and more each day” coerce this verb into an activity such that love as
state is represented by a fluent f and a parametrised fluent f ’ is introduced to
capture the rise of intensity of loving. Furthermore the progressive imports
a dynamics which is familiar by now and abstractly looks like this:

1. Releases(e, f2, t)
2. HoldsAt(f2(x), t) → Trajectory(f1, t, f2(x′), d)

Hamm and van Lambalgen suggest that the variables f1 and f2 in the dy-
namics are unified with f and f ’ respectively while the starting event initiat-
ing f is computed by the integrity constraint. This account seems to produce
nice results but is this not due to the rather deliberate creation of two dis-
tinct fluents from one verb namely to love? I postpone this issue to section
6.4 and finish this part with another possibility of representing the ’love’-
coercion. One may object that not ’loving’ is the activity in this sentence
but ’getting to know her’ which does not change anything but it requires
that f1 and f2 are simultaneously substituted by g and g’(x) respectively
with g denoting the state fluent ’know’ and g’(x) denoting the parametrised

33

fluent ’know to a degree’. g’(x) is then related to the parametrised fluent
loving f ’(x) by the following rule:

HoldsAt(g′(x), t) → HoldsAt(f ′(x), t)

Point → activity

The coercion from a point event to an activity is marked by the difference in
the time span. Obviously, a point event is a punctual event which occurs at
one instant only. If a temporal phrase like ”for two hours” is added then it
becomes an activity and can only be interpreted to have an iterative reading.

a. The light flashed.
b. The light was flashing for two hours.

But how can such an activity be represented as a fluent? The suggested
solution is based on the definition of fluents as functions from time points
to truth values. So the fluent ’flash(for two hours)’ must be a function over
events that takes time points and returns a truth value. Happens[flash, t̂]
is such a fluent in the frame work of the Event Calculus. In the scenario
this fluent would be identified with the partial changing object because it
is limited by the adverbial construction ”for two hours” and it progresses
while time goes on. This identification with the appropriate variable in
the Trajectory-predicate is achieved via unification. Moreover, an activity
with a partial changing object needs a dynamics and a driving force, the
actual activity, and for this Hamm and van Lambalgen choose an unspecified
activity. Unfortunately, I cannot conceive of this idea as reasonable in a
formal system like the EC since it seems impossible for the EC to correctly
produce something like an unspecified activity. Even though if it was added
manually it would not make sense intuitively.

6.4 Discussion

It is without doubt a difficult venture to construct a theory that accounts
for the phenomenon of coercion. A number of people have been concerned
with change of aspect and its rules. Alessandro Zucchi is one of them, in
(Zucchi, 1998) he also investigates this phenomenon but under the more
general label of ’aspect shift’ for which lexical ambiguity and coercion pose
different approaches in explaining it. Zucchi points out that only some verbs
allow aspect shift while others do not and he expects to find many answers in
finding the rules that distinguish those verbs from each other. On the basis
of work done by Barbara Partee, he proposes that stative verbs like ’love’
must allow to be put into a pseudo-cleft construction (”What I did was...”)
as a precondition for occurring in the progressive. So ”I love her” can be
transformed to ”What I did was (to) love her.” and therefore the progressive

34

form ”I am loving her more and more each day” also exists. Unfortunately,
I have not found an answer to the question why ”What she did was resemble
her mother.” is ungrammatical but ”She is resembling her mother more and
more each day” works fine.

It turns out that all of the accounts that have been mentioned in this the-
sis exhibit some weaknesses that many open questions remain which leaves a
lot of space for ideas and suggestions. I find the event approach that Hamm
and Lambalgen follow very sensible and I hope to have shown that it can
handle many difficult cases convincingly. However, doubts remain whether
single phenomena have been assessed correctly. Consider again the example
of the introduction to this section, here conveniently repeated in a whole
sentence:

(1)
a. John plays the piano for two hours.
b. John plays a sonata for two hours.

The NP in a. does not contain a definite internal length so the verb denotes
an activity which can go on arbitrarily without any default culmination
event. On the other hand in b. we combine that same verb with an object
that determines the length of the play because it is itself defined to last only a
certain interval of time. It follows that we obtain an iterative interpretation
in all those cases where the individual temporal length of an object is smaller
than that of the adverbial phrase. This shows that subjects and objects
have a strong impact on aspect and therefore need a proper representation.
Now, the iterative reading consists in a repetition of accomplishments since
the sonata is played several times, in fact it is played (given time span
divided by interval for one sonata) times. But how can that be formalised
and automated, how can this activity have the internal structure of many
accomplishments? The second example from the introduction confronts the
EC with a similar problem.

(2)
a. John arrived.
b. Guests arrived all night.

Here in (2) b. we encounter something that looks like an activity because of
the time interval over which it stretches. But ’arrive’ is a punctual event, an
achievement, which does not hold all night, rather many such instants where
someone arrives occur induced by the plural subject. So what is modified
by the temporal specification is not the event of arriving but the time span
in which ’arrive’ happens, still punctually. So once again, as in (1) we gain
an iterative reading through the additional adverbial phrase. In my opinion,
the solution to (2) as presented in the section on point→activity does lead
into the right direction, although I find it problematic to add an unspecified

35

activity to such a scenario because these irregularities make the automation
of such processes very difficult.

Another difficulty pose examples of accomplishment verb phrases whose
activity stages are lexically so tightly bound to the culminating event that
they do not allow for a coercion to an activity, in other words their culmi-
nation event cannot be prevented. This is the case with verbs like ’to die’
or ’to persuade’ as in (3).

(3)
a. *John persuaded me to come but in the end he didn’t succeed.
b. ?He was dying but after one week treatment with the new medicine he

recovered.

Hamm and van Lambalgen do not hesitate to classify those examples as
accomplishments and agree with Comrie who asserts that here culmination
event and preceding activity cannot be separated. Their explanation on
why those verbs are different is that for b. there exists no plan to reach
the final event and as such the person in question cannot actively interfere
with what is going on. Hence, a solution would be to introduce different
sorts for events (natural, self-initiated and initiated by others) to constrain
the terminating event to the process with the condition that it may not
be self-initiated. Similarly, they suggest that a constraint stating that only
the default culminating event can terminate the process in b. be a solution
to that phenomenon. I agree with the analysis of these two examples and
I admit that the suggested solutions may work but once again they seem
extraordinarily arbitrary and I doubt that the information that is needed to
integrate such constraints into a scenario is lexically accessible.

7 Coercion and Intensionality

Hamm and van Lambalgen’s higher goal in modelling this algorithmic frame-
work lies in developing an explanatory theory that accounts for what Frege
called ’Sinn’ and ’Bedeutung’, in English meaning or sense and denotation
or reference. They aim at finding a more suitable representation of those
concepts that lead to many problems with so-called ’intensional’ construc-
tions. I explain and discuss this issue in the following subsections, starting
with a short introduction to Frege and Carnap in which I make heavy use
of the books (von Kutschera, 1989) and (Krauth, 1970).

7.1 Sense vs Intension

Gottlob Frege was one of the most important personalities, if not the founder,
of modern language philosophy. In his work on ’Sinn und Bedeutung’ he
reasoned about the designator (or ’Zeichen’) and the designated (das ’Beze-
ichnete’). Frege said that a name or designator means its corresponding

36

denotation in the real world, where meaning is the translation of Frege’s
”Bedeutung” and as such is a technical term which is equivalent to ’denota-
tion’, ’reference’ or ’extension’. However, he points out that the difference
in statements is not solely dependent on the difference between their mean-
ings otherwise ”a = a” were equivalent with ”a = b” given that a = b is
true. Rather the second statement bears some information that the first
does not, provided that the designator ’b’ differs in a relevant way from the
name ’a’. Thus, he suggests that the two identity statements have to be
distinguished if the difference in names corresponds to a difference in the
mode of the presentations (’Art des Gegebenseins’) of the designated. The
famous example of the morning star / evening star illustrates this principle.
Therefore, to a designator Frege relates a denotation in the real world as
well as a ’sense’ of this designator which expresses the mode of presenta-
tion. The sense can be a proper name or the description of a geometrical
phenomenon and the meaning is what is named or described. Further, he
reasons that a designator can be meaningless, i.e. have no extension, but
has a sense in the way that ”Odysseus” or ”the smallest real number greater
than one” have. Frege defines the sense as something that presents a cer-
tain feature of the designated, a relevant information that contributes to a
complete characterisation of the designated. One problem with this is that
it is not clear in what way proper names contribute such an information
and hence what their sense is. The sense of designators can be tested for
identity if the designators can be exchanged salve veritate that is without
changing the meaning of the expression.

Sentences and predicates need particular elaboration since they are more
complex and their meaning cannot be an object or a number. For sentences
Frege suggests that their meaning be computed from the meaning of its
parts and the sense be computed accordingly. These are the two functional
principles, in linguistics also known as ”principle of compositionality”, which
are the bases for modern computational semantics. But what is the meaning
of a sentence? Frege correctly reasons that the proposition (’Gedanke’) of the
sentence changes when parts with identical denotations but different senses
are substituted and therefore the proposition cannot be the meaning. What
remains the same even after such a substitution are the truth conditions of
the sentence, what has to be the case for the sentence to be true. Hence, he
identifies the meaning of a sentence with its truth value and the proposition
it expresses with its sense. This explains why statements of the form ”a =
b” and ”a = a” differ given that a = b is true: since the meaning of ”a”
and ”b” is identical we know by applying the functionality principles that
the meaning of the two statements (sentences) is the same. But because the
sense of ”a” may be different from that of ”b” the sense of ”a = b” may
also be different from that of ”a = b”. The sense is somewhere between
the designator and the designated, on a logical level, which allows for the
sentence to be evaluated logically disregarding whether it is true realistically.

37

Figure 5: The intension of blue determines its extension in all possible
worlds

One of the dominating theories in linguistics competing with Frege’s pro-
posal has been suggested by Carnap, who was one of Frege’s scholars. He
essentially adapts this distinction between designator and the two dimen-
sions of the designatum where one is the extension in the real world and
the other what Carnap calls the intension and which is roughly equiva-
lent to Frege’s sense. Further, Carnap introduces the possible world idea
which has been mentioned in a modified from in this thesis when presenting
Dowty’s account for the progressive in section 6.1. The extension is defined
by Carnap to mean not only the denotation in the real world but to subsume
the denotations in all possible worlds. A possible world for him is nothing
else than a possible set of circumstances which are could be the case in-
stead. The intension is, similarly to the sense, a property of the designated
that serves to identify the extension and it is also on a logical level between
the designator and the real world’s and possible worlds’ denotations. To
exemplify the three concepts consider figure 5.

Carnap agrees with Frege on the extension of a sentence to be its truth
value and the intension to be the proposition expressed. Similarly, he pro-
poses that expressions are extensionally identical if they are factually equiv-
alent and intensionally identical if they are logically equivalent and therefore
have the same extension in every possible world (e.g. ”7” and ”seven” ex-
press exactly the same property and have the same extension). The intension
can, in combination with all facts, determine the extension which is stated
again below by definition 8.

Definition 8. The intension of an expression A is the function that maps
to each possible world the extension of A in that world. 8

8Translated from (von Kutschera, 1976)

38

More formally this could be expressed by a formula I(A) =< wi, Ei(A) >
where w is a world and E the corresponding extension of A.

Although there have been different proposals about defining intension
and extension, Carnap’s approach is probably one the most significant the-
ories in the history of linguistics. For this reason, his conceptualisation has
been used for a comparison to the algorithmic approach to intension and
extension that is presented in this study. The comparison and discussion
are carried out in the subsequent sections.

7.2 Coercion and Intension

The claim that Hamm and van Lambalgen assert in their book states that
coercion is an intensional phenomenon which they support by pointing out
the analogy to the sense/meaning levels of names and predicates. Accord-
ingly, an event has no canonical referent or meaning, rather it is constructed
from a sense. Following Frege, the name of an object bears a sense that
characterises the object in a particular way. In the same way can an al-
gorithm be considered to be the sense that characterises an event and as
such the meaning of that event (expression) can be computed by the al-
gorithm just as the extension of a name/predicate can be determined by
means of its intension (and all facts). In the case of the algorithmic equiv-
alent the scenario specifies the ”Art des Gegebenseins” by incorporating
universally quantified rules corresponding to the sense and the facts of the
situation which makes it possible to compute the minimal model which in
turn is the reference of the expression. Coercion is supposed to exemplify
this theory since a subsequential natural language remark may transform
an accomplishment to an activity by eliminating the culminating event and
therefore the expression must be re-analysed to obtain the new denotation.
The analogue to this constant mental re-analysis is the re-computation by
the algorithm that permanently processes new incoming data which may
lead to a modification of the sense. The consequence that the authors draw
from these considerations is to state that the algorithmic approach is not
only an analogue but in fact a reasonable way to model how we conceive
and deal with sense and reference as an alternative way to possible worlds.
Therefore, they pose the controversial claim that:

The sense of an expression is the algorithm which computes its
reference.

If the sense is the algorithm then coercion is a process that maps one ”sense
of an expression to a different but related sense of [that] expression” via
unification as has been suggested in section 6.3. This statement follows
naturally from the above assumption and that becomes more obvious if
one reconsiders an often cited example of a progressive sentence ”John was
crossing the street.” which possesses a scenario representing its meaning.

39

When a subsequent clause introduces an intervening event which terminates
the crossing before the natural culmination event (truck hits John) then
that expression has a modified sense represented by the extended scenario
which in turn computes the denotation, i.e. the minimal model in which
John does not reach the other side of the road.

7.3 Discussion

Opponent to possible world semantics the idea outlined in this thesis has
the demand of being cognitively relevant. As shown in section 2 and in
the descriptions in 7.2, the authors justify their approach by pointing out
the similarity to human processing of language, supported by empirical ev-
idence. On the other hand, the main concern of possible world semantics is
in determining the content of the representation of the truth conditions for
an expression instead of claiming cognitive relevance at all (Wilson & Keil,
1999).

This algorithm-based approach seems sensible to me and it is a great
combination of mathematical approved methods with linguistic investiga-
tion techniques to find an appropriate model for language which is of impact
for many areas since sense and denotation are relevant not only for natural
languages but for formal languages as well. A weakness could be assigned
to the question whether this framework is realistically applicable at all to
natural languages since the world knowledge and the human intuition that
is required in so many situations to construe a scenario in the first place is
vast. In some way, the problem of vagueness in the possible world semantics
has been shifted to a problem of creating the appropriate scenario which is
explicit and therefore very sensitive to lexical and syntactic variations. Fur-
thermore, the transformation from language to the Event Calculus ontology
has not been comprehensibly presented. It may be the case that this is
being thought of as secondary but considering the amount of examples that
illustrate practical application details it must be of interest to the authors.
And finally, it is not quite clear whether the claim that sense is an abstract
algorithm that computes the reference is meant to have explanatory power
for mental processes or whether the model is but highly suitable to simulate
the latter functionally.

8 Conclusion

The approach presented by Hamm and van Lambalgen is a useful and rea-
sonable alternative to possible world semantics. It states that an abstract
algorithm represents the sense of a term or program respectively. What is
calculated by this algorithm corresponds to the reference of this term or
program. In the context of the Event Calculus this reference is the mini-
mal model. Whilst possible world semantics may equip one with a certain

40

ability to understand the notion of sense and develop an intuition about dis-
tinguishing sense and reference of an expression (or intension and extension)
respectively, it does not possess a cognitive justification. In Cognitive Sci-
ence the goal in all disciplines is, after all, to investigate cognitive phenomena
and discover and use cognitive processes. In that way the algorithmic ap-
proach has been a fine piece of scientific work which proceeded in adapting
a system, the Event Calculus, from Artificial Intelligence, substantiating it
with mathematical reasoning and projecting it to the domain of linguistics
while using logic programming to realise this construct.

However, several issues need further investigation. It is, for instance,
not clear how natural language expressions are correctly represented by the
Event Calculus. So far, this step has been a rather arbitrary process which
is largely based on intuition. Moreover, it has not been trivial, in fact,
to construe a CLP program from the scenarios given by Hamm and van
Lambalgen as can be seen in the appendix, section 1. Nevertheless working
versions can be found in the appendix and although they do not exactly
correspond to the theoretic instructions on how to construe a scenario, the
programs support the core idea. The sense of an expression can be mod-
elled by such an algorithm and, using the notion of minimal models, the
predicted outcome is indeed correct as in the example of the progressive
expression ”crossing the street” where the street will have been crossed at
some stage. If the following expression or sentence includes, however, an
event that interferes with this prediction then this simply has to be added
to the existing scenario. To this extend, the original idea of related senses
represented by related algorithms can be supported and nicely illustrated.
However, it is important to note, that the manual formulation of the pred-
icates is driven by what is expected to be the outcome. In that way, it is
not particularly surprising that the programs work in the desired manner.
Moreover, the axioms of the EC should be reconsidered in view of the prob-
lems arising with their implementation. After all, CLP is the computational
environment chosen by Hamm and van Lambalgen to implement the EC
and therefore, the theoretic framework should be somewhat more consistent
with its computational application.

Nevertheless, Hamm and van Lambalgen’s idea is sensible and I endorse
their very elaborated framework which may not be of practical relevance for
modelling natural language (yet) but it may certainly be used to model parts.
Furthermore, because of their limited lexical diversity and their restricted
domain, formal/programming languages could well be a realistic application.

41

References

Bennett, M., & Partee, B. (1978). Toward the Logic of Tense and Aspect in
English. Bloomington: Indiana University Linguistics Club, revised and
extended version of 1972 system development corporation (santa monica,
california) report edition.

Dowty, D. (1979). Word Meaning and Montague Grammar. Reidel, Dor-
drecht.

Hamm, F., & van Lambalgen, M. (2000). Event calculus, nominalisation
and the progressive. Linguistics and Philosophy, 76 pp.

Hamm, F., & van Lambalgen, M. (2003a). Intensionality and coercion.
Intensionality.

Hamm, F., & van Lambalgen, M. (2003b). Moschovakis’ notion of meaning
as applied to linguistics. Logic Colloqium ’01.

Hamm, F., & van Lambalgen, M. (2004). The Proper Treatment of Events.
Blackwell.

Henriksson, J. (2003). Briefly on constructive negation. Linköping Univer-
sity.

Krauth, L. (1970). Die Philosophie Carnaps. Library of Exact Philosophy.
Springer Verlag.

Mariott, M., & Stuckey, P. (1998). Programming with Constraints: An
Introduction. MIT Press, Cambridge, MA.

Montague, R. (1974). Formal Philosophy: Selected Papers of Richard Mon-
tague. Yale University Press, New Haven.

Moschovakis, Y. (2003). A logical calculus of meaning and synonymy. A
corrected and edited version of a set of notes for a course in NASSLLI
’03.

Parsons, T. (1990). Events in the Semantics of English. A Study in Sub-
atomic Semantics. MIT Press, Cambridge, MA.

Portner, P. (1998). The progressive in modal semantics. Language, 74 (4),
760–87.

Russel, S., & Norvig, P. (2003). Artificial Intelligence. A Modern Approach.
Prentice Hall.

Shanahan, M. (1990). Representing continuous change in the event calculus.
Proceedings ECAI (pp. 598–603).

Shanhan, M. (1997). Event calculus planning revisited. Proceedings 4th
European Conference on Plannning ’97 (pp. 390–402).

Tschorn, P. (2001). Prolog - Programming in Logic. University of Osnabrück,
ISIV.

42

Vendler, Z. (1967). In Linguistics in Philosophy. Cornell University Press,
Ithaca, New York.

von Kutschera, F. (1976). Einfuehrung in die Intensionale Semantik. Roland
Posner, De-Gruyter-Studienbuch.

von Kutschera, F. (1989). Gottlob Frege. Eine Einführung in sein Werk.
De-Gruyter-Studienbuch.

Wilson, R., & Keil, F. (Eds.). (1999). The MIT Encyclopedia of Cognitive
Sciences. MIT Press, Cambridge, MA.

Yeom, J. (2003). The semantics of the english progressive and the imperfec-
tive paradox. Language and Information, 7 , 139–161.

Zucchi, A. (1998). In S. Rothstein (Ed.), Events and grammar, Studies in
Linguistics and Philosophy (pp. 349–370). Kluwer Academic Publishers,
Dordrecht.

43

APPENDIX

1 - Example Scenario for ”crossing the street”

Statements

initially(one-side).
initially(distance(0)).

happens(reach,T) :-
holdsAt(distance(M),T),
holdsAt(crossing,T).

initiates(start,crossing,T).
initiates(reach,other-side,T).

releases(start,distance(0),T).

terminates(reach,crossing,T).

trajectory(crossing,T,distance(X+D),D) :-
holdsAt(distance(X),T).

Axioms

holdsAt(F,0) :-
initially(F).

holdsAt(F,T) :-
holdsAt(F,R),
R < T,
not(clipped(R,F,T)).

holdsAt(F,T2) :-
happens(E,T1),
initiates(E,F,T1),
T1 < T2,
not(clipped(T1,F,T2)).

holdsAt(F2,T2) :-
happens(E,T1),
initiates(E,F1,T1),
T1 < T2,
T2 is T1 + D,
trajectory(F1,T1,F2,D),
not(clipped(T1,F1,T2)).

44

clipped(T1,F,T2) :-
happens(E,S),
T1 < S,
S < T2,
(terminates(E,F,S);
releases(E,F,S)).

Failure due to recursion

?holdsAt(other-side,T)

(1) 1 CALL holdsAt(other - side, T)
(2) 2 CALL initially(other - side)
(2) 2 FAIL initially(...)
(1) 1 NEXT holdsAt(other - side, T)
(3) 2 CALL holdsAt(other - side, R)
(4) 3 CALL initially(other - side)
(4) 3 FAIL initially(...)
(3) 2 NEXT holdsAt(other - side, R)
(5) 3 CALL holdsAt(other - side, R)
(6) 4 CALL initially(other - side)
(6) 4 FAIL initially(...)
(5) 3 NEXT holdsAt(other - side, R)
(7) 4 CALL holdsAt(other - side, R)
(8) 5 CALL initially(other - side)
(8) 5 FAIL initially(...)
(7) 4 NEXT holdsAt(other - side, R)
.
.
.

This documents the execution of the program and illustrates the infinite
looping that it gets stuck in. It was reported by the tracer of the ECLiPSe
program that I chose for executing the CLP files. The program consists of
the EC axioms and the statements that Hamm and van Lambalgen provide
to model the specific scenario for ”crossing the street”. Obviously, this mode
of presentation is not suitable to enable the desired computation.

45

2 - Continuous change: the ”kitchen sink” example

outlet(8).
outlet(10).

releases(start,tap-on,0).
releases(endfilling,tap-off,T).

:- dynamic(holdsAt2/2).

holdsAt2(level(0),0).

holdsAt(level(L),T) :-
holdsAt2(level(L),T).

holdsAt(level(L),T) :-
happens(E,T1),
initiates(E,filling,T1),
holdsAt2(level(L1),T1),
count(L1,T1,L,T).

initiates(E,filling,T) :-
releases(E,tap-on,T).

terminates(E,filling,T) :-
happens(E,T),
releases(E,tap-off,T).

happens(start,0).
happens(endfilling,T) :-

holdsAt2(level(L),T),
outlet(L).

count(L1,T1,L,T) :-
holdsAt2(level(L),T).

count(L1,T1,L,T) :-
not(terminates(E,filling,T1)),
Lneu is (L1 + 2),
Tneu is (T1 + 1),
asserta(holdsAt2(level(Lneu),Tneu)),
count(Lneu,Tneu,L,T).

In my program, some modifications had to be made to the EC axioms
as presented by Hamm and van Lambalgen as well as to some predicates in

46

particular.
The holdsAt-predicate has been split into two predicates, one represent-

ing the (reduced) axioms and the other one providing the recursion base
for the induction. The count-predicate replaces the Clipped -predicate in
the Event Calculus. It counts down each time step from the goal back to
an initiating event for the fluent in question. Thereby it checks at each
time instant whether a terminating event has taken place that may have
clipped the corresponding fluent. Asserta adds to the database that the
parametrised fluent level(X) holds at the calculated time instant and thus,
this information can be used for further processing.

47

3 - Subtractive Coercion: ”crossing the street” revisited

releases(start,distance(0),0).
releases(reach,otherside,T).

initiates(E,crossing,T) :-
releases(E,distance(X),T).

:- dynamic(holdsAt2/2).

holdsAt2(distance(0),0).

holdsAt(distance(L),T) :-
holdsAt2(distance(L),T).

holdsAt(distance(L),T) :-
happens(E,T1),
initiates(E,crossing,T1),
holdsAt2(distance(L1),T1),
count(L1,T1,L,T).

holdsAt(crossing,T) :-
Tpre is (T-1),
happens(E,Tpre),
initiates(E,crossing,Tpre).

holdsAt(crossing,T):-
Tneu is (T-1),
not(terminates(E,crossing,Tneu)),
holdsAt(distance(L),T),
holdsAt(crossing,Tneu).

terminates(E,crossing,T) :-
happens(E,T),
releases(E,otherside,T).

terminates(E,crossing,T):-
happens(hitbytruck,T).

happens(start,0).
happens(reach,T) :-

holdsAt2(distance(L),T),
L is 10.

happens(hitbytruck,3).

count(L1,T1,L,T) :-

48

holdsAt2(distance(L),T).
count(L1,T1,L,T) :-

not(terminates(E,crossing,T1)),
Lneu is (L1 + 2),
Tneu is (T1 + 1),
asserta(holdsAt2(distance(Lneu),Tneu)),
count(Lneu,Tneu,L,T).

This piece of code models the expression ”crossing the street”, where the
distance from one side of the street to the other is 10 m and 2m are taken at
each time step. The street has been crossed if the distance of 10 m has been
covered. This terminates the fluent crossing and releases the distance. The
culmination event which is the natural terminating event is represented by
reaching the maximum distance. The query ?holdsAt(distance(10),5), hold-
sAt(crossing,5) is evaluated to true while ?holdsAt(distance(12),6), hold-
sAt(crossing,6) is evaluated to false since the culmination event occurs at
time instant 5 and thus, fluents that are terminated by this event cease
to hold true from the next time instant on. The addition of an expression
”when he/she was hit by truck” to ”crossing the street” leads to the addition
of the two predicates given above in italics. Adding those two predicates
leads to a termination of the crossing-fluent at time instant 3 already such
that the covered distance does not exceed 6 m.

49

Eidesstattliche Erklärung

Hiermit erkläre ich, Maria Staudte, die vorliegende Arbeit ”Modelling the
Progressive and Coercion using the Event Calculus” selbständig verfasst
zu haben und keine anderen Quellen oder Hilfsmittel als die angegebenen
verwendet zu haben.

Osnabrück, September 2004

Maria Staudte
Matrikel-Nr: 904908

50

