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Abstract.

We presensAMMIE, a laboratory demonstrator of an in-car show-

case of a multimodal dialogue system developed irrthe projecP
in cooperation between DFKI/USAAR/BOSCH/BMW, to show nat-
ural, intuitive mixed-initiative interaction, with pactilar emphasis
on multimodal turn-planning and natural language genamasiam-
MIE currently supports speech-centered multimodal accesthéor
driver to a MP3-player application including search andwsiag,
as well as composition and modification of playlists. Ourrapph
to dialogue modeling is based on collaborative problemisglinte-
grated with an extended Information State Update paradigfor-
mal usability evaluation of a first baseline systemsafvmIE by
naive users in a simulated environment yielded positivaltgsand
the improved final version will be integrated in a BMW reséecar.

1 Introduction

The TALK project investigates issues in multimodal dialogue sys-

tems: multilinguality, adaptivity and learning, dialogmedeling and
multimodal turn planning. Our approach is based on an egihat
formation State Update paradigm. Some of these issues arerde

strated inSAMMIE, an in-car showcase developed in cooperation

between DFKI/USAAR/BOSCH/BMW. The design of tisamMMIE
system is based on a series of user studies performed imeditfe
Wizard-of-Oz settings as well as a usability evaluation bhaeline
version of the laboratory demonstratsamMmIE will be integrated
into a test car at BMW later this year.

The saAMMIE system provides a multimodal interface to an in-car

MP3 player through speech and haptic input with a BMW iDrive i
put device, a button which can be turned, pushed dwn and aidew
in four directions. System output is provided by speech agichph-
ical display integrated into the car's dashboard. An exangblthe
system display is shown on the right in figure 1.

and Jan Schehlt

edit playlists.

SAMMIE supports natural, intuitive mixed-initiative interactio
with particular emphasis on multimodal turn-planning arsdunal
language generation. The system puts the user in controéadfter-
action. Input can be given through any modality and is ndticted
to answers to system queries. On the contrary, the user carder
new tasks as well as any information relevant to the curiask at
any time. This is achieved through modeling the interactis®a col-
laborative problem solving process, modeling the taskslagid pro-

gression asecipesand a multimodal interpretation that fits any user

input into the context of the current task. Note that the is@iso
free in the use of multimodal input, such as deictic refeesrazcom-
panied by pointing gestures (“Play this title” while pusihthe BMW

iDrive button), and even cross-modal references withouritpm as
in “Play the third song (on the list)". To support these aspef di-

alogue flexibility, we model dialogue context, collaboratproblem
solving and the driver’s attention state by an enrichedrinfdion

state. Table 1 shows a typical interaction with #rvmIE system,
figure 3 shows the current setup for the user environment.

Show me the Beatles albums.

| have these four Beatles albums. [shows a list of albumesam
Which songs are on this one? [selects the Red Album]

The Red Album contains these songs [shows a list of thesfong
Play the third one.

[song “From Me To You” plays]

nCnCnc

Table 1. A typical interaction withSAMMIE.

The following section describes our system architectueetiSn 3
presents our approach to extended multimodal interactiotheting,
ontology based modeling and its impact on natural and iméudi-
alogues. Section 4 briefly describes our Wizard-of-Oz drpenmts,
the evaluation process and the results. Finally, sectiamfsarizes

The MP3 player application offers a wide range of tasks: Thesome important lessons learned in development and evaiuaitour

user can control the currently playing song, search and sedve
database by looking for any of the fields in the MP3 databassy(s
artist, album, etc.), search and select playlists and evestict and
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system.

2 System Architecture

Our system architecture follows the classical approachofsh
pipelined architecture with multimodal fusion and fissioondules
encapsulating the dialogue manager. Figure 1 shows thelesodod
their interaction: Modality-specific recognizers and gsats pro-
vide semantically interpreted input to the multimodal éumsimodule
(interpretation manager in fig. 1) that interprets them & ¢bntext
of the other modalities and the current dialog context. Tialbdue
manager decides on the next system move, based on its matel of



tasks as collaborative problem solving, on the currentedrand
also on the results from calls to the MP3 database. The tuam- pl
ning module then generates an appropriate message to théyuse
planning the actual content, distributing it over the adalié output
modalities and finally co-ordinating and synchronizing theput.
Modality-specific output modules generate spoken outpdiaanup-
date of the graphical display. All modules interact with &xtended
information state in which all context information is stdre

:
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Figure 1. SAMMIE system architecture.

Many tasks in thesamMMIE system are modeled by a plan-based
approach. Discourse modeling, interpretation managerdatbgue
management and linguistic planning, and turn planning insys-
tem are all based on the production rule system PABE originally
developed for the integration of multimodal input. Duritg imple-
mentation of the baseline system, we found that PATE is ales a
guate for modeling other dialogue system components asviges
an efficient and elegant way of realizing complex processihes.
Section 3.5 elaborates more on PATE and the ontology-baged-r
sentations it uses. In the following sections we will coricate on
our main areas of research.

3 Modeling Multimodal Interaction

Many dialogue systems that are employed today follow a-$tased
approach that explicitly models the full (finite) set of diglie states
and all possible transitions between them. The VoiceXMiandard
is a prominent example of this approach. This has two drakebac
on the one hand, this approach is not very flexible and tylyiedd
lows only so-called system controlled dialogues where ther is
restricted to choosing their input from provided menu-lils¢s and
answering specific questions. The user never is in contritietlia-
logue® For restricted tasks with a clear structure, such an apprisac
often sufficient and has been applied successfully. On tier dtand,
building such applications requires a fully specified madelll pos-
sible states and transitions, making larger applicatiope®sive to
build and difficult to test.

6 PATE is short for (P)roduction rule system based on (A)titiva and
(T)yped feature structure (E)lements.
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8 |t is possible to build state-based systems without presgatfixed menu
hierarchy to the user. The user might even get the impresisarthey can
interact quite flexible. But of course this creates consibier application
complexity and implementation effort for all possible s&and transitions.

In saMMmIE, we are following an approach that models the inter-
action on an abstract level as collaborative problem sglaimd adds
application specific knowledge on the possikdsks availablere-
sourcesand knowrrecipesfor achieving the goals. A planner, based
on the PATE rule-interpreter [9] dynamically derives thetnaove
of the system and then plans the details of the system output.

In addition, all relevant context information is adminise in a
central Extended Information State (EIS) module. This ixen-
sion of the Information State Update approach [13] to thetimoldal
setting.

3.1 Extended Information State

The information state of a multimodal system needs to corgaep-
resentation of contextual information about discourséalso a rep-
resentation of modality-specific information and usereffpeinfor-
mation which can be used to plan system output suited to axgive
context. The overall information state (IS) of themMMIE system is
shown in Figure 2.

contextual-info:
last-user-utterance:

interp
[ modality-requested
discourse-history:

modalities-used
list(discourse-objects)

modality

set(grounding-acts)
set(mslnput) ]

modality-info:
speech speechlinfo
graphic graphicinfo

user-info:
cognitive-load
user-expertise

cogLoadinfo
expertiselnfo

)

task-info:
cps-state c-situation (see below for details
pending-sys-utt list(grounding-acts)

Figure 2. Structure of thesAMMIE Information State

The contextual information partition of the IS represehtesrhulti-
modal discourse context, i.e., the information commueidatrough
the different modalities. It contains a record of the latesgr utter-
ance and preceding discourse history representing in aramifvay
the salient discourse entities introduced in the differandalities
(we follow the approach adopted in the SmartKom system [the];
discourse model employs the three-tiered context reptatsem pro-
posed in [7] where the linguistic layer is generalized to alality
layer). The contents of the task partition are explainechia iext
section.

3.2 Collaborative Problem Solving

We see a dialogue system asomversational agert-an autonomous
agent which can communicate with humans through naturglizge
dialogue. In order to support natural and flexible convérsatwve
need to model dialogue about the range of activities an agest
engage in, including goal selection, planning, executioonitoring,
replanning, and so forth. To achieve this our dialogue man&
based on an agent-based model which views dialogue as @ollab
rative problem-solving (CPS) [4]. CPS follows a processilsimnto



single-agent problem solving, but the agents negotiateitdly de-
termine objectives, find and instantiate recipes to accistmphem
and execute the recipes and monitoring for success.

The basic building blocks of the formal CPS model are problem

solving (PS) objects, which we represent as typed featunetstes.
PS object types form a single-inheritance hierarchy, wichiigren

inherit or specialize features from parents. Instancefesd types
are then used in problem solving.

In our CPS model, we define types for the upper level of an on-

tology of PS objects, which we terabstract PS objectsThere are
six abstract PS objects in our model from which all other doma
specific PS objects inherit: objective, recipe, constraaaluation,
situation, and resource. These abstract PS objects ardaseatiel
problem-solving at a domain-independent level and arentakear-
guments by all update operators of the dialogue managervitmic
plement conversation acts [4, 12]. The model is then speethto
a domain by inheriting and instantiating domain-specifjpety and
instances from the PS objects. For example, the domairifiepeio-
jective play-songin the MP3 domain inherits all attributes froof-
jectiveand adds a has-song slot, whichsiagle-slotof type song
The operators, however, do not change with domain, whichatp
reasoning done at a domain-independent level.

3.3 Adaptive Turn Planning

In a multimodal dialogue system, tfissioncomponent is responsi-
ble for realising the planned system response as deternhiyneide
dialogue manager through multimodal output in an apprégdam-
bination of the available output channels. This task cosgsride-
tailed content planning, media allocation and coordimatad syn-
chronization.

(b)

(2) the user’s current cognitive load when system inteoache-
comes a secondary task (e.g., system interaction whilandjiv
This information is modeled as a state variable with the iposs
ble statesow, mid, high or extreme

(3) the user’s expertise, which is represented as a stasblawith
the possible statgmwer-useror beginner

Pastis also contains information about factors that infieethe
preparation of output rendering for a modality, like thereutly
used language (German or English) or the display capa&siliti
(e.g., maximum number of displayable objects within a table

a set of production rules that determine which kind obinia-
tion should be presented through which modality. The rutésse
divided in two subsets, domain-specific and domain-indegen
rules which together form the system’s multimodal plandityr

These rules are used to create the presentation plan fona tur

while dynamically taking the information listed in (a) intx-

count.
Beside determining the best possible distribution of imfation, the
turn planner also transforms domain-specific informatiat tvill be
presented by speech to a representation weRmdluced Knowledge
Representatio(RKR) that can be interpreted by the Linguistic Plan-
ner. Such an RKR structure differs from its source structireugh
its more general, abstract surface structure which can dre @& an
intermediate form between a pure ontological represamtati a do-
main specific object and the logical form representation ttelin-
guistic planner needs for deep generation with OpenCCGheEir
more, an RKR structure specifies exactly the information flaa to
be presented to the user. Beside deriving the approprigtg for
NLG, the turn planner is also responsible for computing aaxkpg-
ing the appropriate information to be presented by the aisplddi-
tionally, if there are alternatives on how to graphicallglize content

In sAmMMIE, the fission task is realised by two modules - the jn different ways the turn planner needs to decide which ortake.

Turn Plannerand theOutput Managerwhereas user- and modality-

specific information which might be necessary for presématlan-
ning can be obtained from another module calRadtis Pastis is
designed to provide and store user-, modality- and alsamdise-
specific information and forms, together with the dialogwenager’s
embedded information state as thetended Information Statsd the
system.

3.4 Spoken Natural Language Output Generation

Our goal is to produce output that varies in the surface zaali
tion form and is adapted to the context. We opted for usingp laot
template-based and a deep grammar-based module in paGiiel

When the dialogue manager has finished processing the user ifhe one hand, deep generation provides linguistically moveerful

put, the turn planner (TP) receives a bundle of CPS-spedific ¢
versational acts, representing the planned system responan ab-
stract level. TP then starts planning how to distribute givdorma-
tion over the available modalities, namely speech and geaphut
also determines on which level of detail information is gpto be

presented. As soon as TP has finished processing, it sendted so

bundle of output messages, including both speech and grapds-
sages, to the output manager. The output manager therbdtssithe
messages to the graphics renderer and/or the generatiagsrand
synchronizes their output rendering.

The Turn Planner within theAMMIE system is responsible for
content selection and media allocation. It takes a set of-§pS8ific

conversational acts generated by the dialogue manager apd m

them to modality-specific communicative acts. Therefoeteuant
information on how content should be distributed over thailable
modalities (speech or graphics) can be obtained by
(a) the EIS/discourse module Pastis, which provides inédion
about

(1) the modality on which the user is currently focused,\detiby
the current discourse context.

modeling, in particular it allows for more fine-grained amhtrolled
choices between linguistic expressions in order to achientextu-
ally appropriate output. On the other hand, the templagsedanod-
ule can be developed faster and thus facilitates increrhéevalop-
ment. It is also sufficient for classes of system output tbatat need
fine-tuned context-driven variation, such as simple caftesdback.
Our template-based generator can also deliver alternatigliza-
tions, e.g., alternative syntactic constructidrieere are 3 songs by
Nenavs.| found 3 songs by Nenaeferring expressiondenavs.the
artist Nena or lexical items, e.gsongvs.track; however, the choice
among alternative templates is made at random. The terApdesed
generator is implemented by a set of straightforward seet@tan-
ning rules in the PATE system to build the templates, and afet
XSLT transformations to yield the output strings. OutpuGearman
and English is produced by accessing different dictiosariea uni-
form way.

The grammar-based generator uses OpenCCG, an open-source

natural language processing environment[3]. We have dped! a

9 Note, that for points (2) and (3) we haven't yet fully elattechthe rule
based processing of these factors as this part of our ongarig



German OpenCCG grammar with basic coverage of German phesnough time for the wizard to properly design the screenududp

nomena, and gradually extend it with respect to the phenareen
countered in theAMMIE-1 andSAMMIE-2 corpora (see section 4).

3.5 Modeling with an Ontology

We use a full model of the application in OWAformat as the knowl-
edge representation format in the dialogue manager, tarmpl and
sentence planner. This model includes the entities, ptiegeand
relations of the MP3 domain—including the player, data baseé
playlists. Also, all possible tasks that the user may petfare mod-
eled explicitly. Note that this is a model thatiser centere@dnd not
simply a model of the application’s API. Actually, there isgparate
module, the MP3-shield, that maps user tasks into posséstyptex
interactions with the connected applications, i.e., thiafse and
the MP3 player itself.

The OWL-based model is transformed automatically to therint
nal format used in the PATE rule-interpreter. PATE employped
Feature Structures (TFSs) as basic internal data repeggenand
XML for encoding all incoming and outgoing data as well aswho
edge bases (production rules, type definitions). PATE igdam
some concepts of the ACT-R 4.0 system [2]. Its main concegteh
PATE makes use of, are the goal-oriented application of yrtidn
rules, the activation of working memory elements, and theghte
ing of production rules. In processing TFSs, PATE provides op-
erations that both integrate data and also are suitableofudition
matching in production rule systems, namely a slightly ectésl ver-
sion of the generalnification but also the discourse-oriented oper-
ationoverlay[1].

Another important feature is the concept of multiple intarce
provided by the type system, as it allows to define differeatve
on ontological concepts. Consider the concgphgand the differ-
ent views our system ontology provides.Songcan be seen as a
Browsable-objectvhich allows generalization within the turn plan-
ning library over objects a user can browse. It can also be ase
a Media-objector a Problem-solving-objeatvhich are abstract con-
cepts dialogue management can use for planning and execQtidt
can be seen asMp3-resourcewvhich denotes the domain affiliation
of the concept. Thereby PATE provides an efficient and elegan
to create more abstract/generic presentation plannieg.rul

4 Experiments and Evaluation

the fly. Therefore, we implemented modules supporting theardi
by providing several automatically generated screen awiptions
the wizard could select from and inform the user about thelsete
search results using the visual modality.

The following aspects of the setup were designed to elitérin
actions more realistically resembling dialogue with anuattys-
tem [6]: The wizard and the user did not directly hear eackemth
instead, their utterances were immediately transcrideintizard’s
utterances were then presented to the user via a speeclesiyeth
and parts of the user’s utterances were sometimes delesadttate
acoustic understanding problems and elicit clarifications

Figure 3. The current setup of the user environment.

To explore the user acceptance, usability, and performahee
first baseline implementation of tteamMIE multimodal dialogue
system we have completed a usability evaluation. The etiatua
tested the multimodal interaction of first-time users withsAMMIE
system in a laboratory experiment with a simulated drivaekt(fig-
ure 3 shows the setup). A sample of 20 subjects performeds&2 ta
in total out of three scenarios with variation of the diffier&inds of
dialogue modalities (spoken vs. multimodal). The usersvesked
to perform tasks which tested the system functionality, elgroon-
trolling player functions like stop/play/pause, nextipoeis track,
playing a particular/random song/album/playlist, quegythe music
database (e.g., available songs/albums/artists/pislysd adminis-
tration of playlists (create/delete playlists, add/remeongs).

The evaluation analyzed the user’s interaction with theelizes
system and combined objective measurements like task etiompl
and speech recognition accuracy observed in the expesneert
subjective ratings from the test subjects by means of irddiate in-
terviews during the session and by post-experimental ounestires.

To guide system development we have so far conducted two WOZhe analysis of the experiments yielded an overall task ¢etiop

data collectionexperiments and onevaluationexperiment with a
baseline version of our system. TlsaMMIE-1 WOZ experiment
involved only spoken interactiosAMMIE-2 was multimodal, with
speech and haptic input, and the subjects had to perfornmaapri
driving task using a Lane Change simulator [8] in a half ofékper-
iment session. The wizard was simulating an MP3 player egfitin
with access to a large database of information (but not hotua
sic) of more than 150,000 music albums (almost 1 million sdng
The user had to carry out several tasks of two types: seardbim
a title either in the database or in an existing playlist, boidding

a playlist satisfying a number of constraints. In order tibexd data
with a variety of interaction strategies, we used multiplzards and
gave them freedom to decide about their response and itzataih.
In the multimodal setup isSAMMIE-2, the wizards could also freely
decide between mono-modal and multimodal output. Therenis n

10 http://ww. w3. org/ TR/ ow - f eat ur es

rate (TCR) of about 90% for both spoken and multimodal irtera
tion. Note that we allow up to four repeats for a user inputiaRe
tively small differences in TCR between the dialogue madudibut
considerable decrease of TCR for the more complex taskstieare
observed. This was partly due to a relatively high out-efrgmar
rate and consequently word error rate which showed the rekenl-t
ther increase the ASR grammar coverage.

Spoken dialogue was observed as the preferred interactidalm
ity in the experiments. About 70% of the subjects chose dpeden
they had the free choice and less than 10% changed the nyodalit
during the task. Nevertheless, 40% of all subjects wouldepraul-
timodal interaction in the long run when having more praztidth
the system. The general impression of $re1MIE system was rated
positively by most of the test subjects and changing theacten
modality was simple or very simple for 95% of the users. Atbe,
content and extent of the system'’s spoken and graphicalibotps-
sages were rated mostly positively. But a detailed anabyfdise ob-



jective measurements and subjective ratings also reveale@ im-  (Extended Information State Update) to achieve naturalmatodive
portant issues for significant improvement towards the fieasion =~ multimodal interaction.
of the SAMMIE system.

_The folloyving section reflects some of the lessons learneunh fr 6 Conclusion
this evaluation.
We presented an in-car multimodal dialogue system for an &iR3
plication developed in theaLK project in cooperation between sev-
eral academic and industrial partners. The system emplaydnt
To summarize the current state of our research and devetdpthes formation State Update paradigm, extended to model caitaive
section attempts to present the most important lessonsléao date  problem solving and multimodal context. It supports nafuirgu-
and the biggest challenges for Al in the domain of naturalifive itive mixed-initiative interaction, with particular emakis on mul-
multimodal interaction. timodal turn-planning and natural language generationrtalyce
output adapted to the context, including the driver’'s ditenstate
with respect to the primary driving task. We performed egien
user studies in a WOZ setup to guide the system design. A forma
usability evaluation of the system'’s baseline version imnsutated
environment has been carried out with overall positiveltesA fur-
ther enhanced version of the system will be integrated aaliated
in a test car, demonstrating the successful transfer of gerah Al
echniques towards a real world application.

5 Lessons Learned

e Reliable and robust ASR: When the system does not recodreze t
user’s utterance, the biggest challenge for the user anslytem
is to know what went wrong. We are addressing this on two front
SAMMIE tries to give feedback about partially understood utter-
ances with appropriate clarification requests. Also, weuairg
the data collection to expand the language covered by tlog+ec
nition grammars.

e Natural and understandable speech synthesis: We have hesed tt
multilingual capabilities of the Mary TTS [11] to pronounEma-
glish song titles correctly, even when embedded in a Germran u REFERENCES
terance. Also, markup of the speech output should allowesant Ll] J. Alexandersson and T. Becker, ‘Overlay as the basicatioa for
dependent prosodic cues such as pauses around elements to be discourse processing in a multimodal dialogue systenPrateedings
clarified. To address users’ demands, we need to increasathe of the 2nd 1JCAI Workshop on Knowledge and Reasoning in Redct
uralness and acoustic quality of the TTS. Dialogue SystemsSeattle, Washington, (August 2001).

. . . [2] J. R. Anderson and C. Lebier&he Atomic Components of Thought
e System responsiveness: For command and control type datera Lea, June 1998.

tion, e.g., stopping the MP3 player, time delays should b#én 3] 3. M. Baldridge and G.J. M. Kruijff, ‘Multi-Modal Combiatory Cate-
millisecond range. Thus we have added shortcuts direabiy fr gorial Grammar’, inProc. of the 10th Annual Meeting of the European
Speech recognition to the p|ayer app"cation, such thatuthdi- Chapter of the Association for Computational LinguistidSACL'03),

; ; ey Budapest, Hungary, (April 2003).
alogue system is updated only in parallel or later. How ' [4] N. Blaylock and J. Allen, ‘A collaborative problem-sahg model of

CQ”teXt model must be _kept. synchronized With_the courseef th dialogue’, inProc. of the 6th SIGdial Workshop on Discourse and Dia-
dialogue. Overall, reaction times (for complex input) havebe logue eds., L. Dybkjeer and W. Minker, pp. 200-211, Lisbon, (Septe
improved to satisfy the requirements of in-car systems. ber 2-3 2005).

e Close to real time system feedback: early on, we have added 45] H.Bunt, M. Kipp, M. Maybury, and W. Wahister, ‘Fusion andordina-

. . . - tion for multimodal interactive information presentatidRoadmap, ar-
multimodal microphone state, signaling to the user whether chitecture, tools, semantics’, Multimodal Intelligent Information Pre-

system is ready and listening or currently processing inpbe sentation eds., O. Stock and M. Zancanaro, volume 27@ft, Speech
microphone shown on the GUI (see figure 1) toggles betweenred  and Language Technolog$25-340, Kluwer Academic, (2005).
and green, accompanied by characteristic acoustic signals (6] I Kruifff-Korbayova, T. Becker, N. Blaylock, C. Germnberger,

e Speech-centered multimodality: The evaluation confirmeat t M. Kailer, P. Poller, J. Schehl, and V. Rieser, ‘An experitrasup for

. . . collecting data for adaptive output planning in a multimiodialogue

speech is the most important modality for our system, howeve system’, inProc. of ENLG (2005).
the graphical and haptic modalities were used and valuedéngu  [7] S. LuperFoy,Discourse Pegs: A Computational Analyses of Context
Since driving as the primary task leaves fewer and sometiitaes Dependent Referring ExpressionBh.D. dissertation, University of
tle attention (in particular, visual attention) for intetimg with the Texas at Austin, December 1991.

. . . [8] S.Mattes, ‘The Lane-Change-Task as a tool for drivetrdtion eval-
SAMMIE system, turn planning must assure that core information uation’, in Proceedings of IGfA2003).

is conveyed in speech and only additional information isented [9] N. Pfleger, ‘Context based multimodal fusion’, IBMI '04: Proc. of

on the display. Such additional information must also bessie the 6th international conference on Multimodal interfacpp. 265—
ble through Spoken interaction. 272, New York, NY, USA, (2004). ACM Press. . ]
e Adaptive, context-sensitive presentation: Natural,itive, multi- (101 N- Pfleger, J. Alexandersson, and T. Becker, ‘A robust generic
dal i . b hieved th h ixedaitivi discourse model for multimodal dialogue’, Proceedings of the 3rd
moda Intgraqtlon Can e achieved throug '.[rue mlxg ave, Workshop on Knowledge and Reasoning in Practical Dialogiste®ns
collaborative interaction. Our system dynamically adéaigtaiext Acapulco, (2003).
move to give “intelligent” replies that (i) make the systerahder-  [11] M. Schroder and J. Trouvain, ‘The german text-to-shesynthesis
standing transparent and (ii) ask for clarification whenessary system MARY: A tool for research, development and teachiiy’

- . . The Proceedings of the 4th ISCA Workshop on Speech Syntlesis
and (iii) that query for more information by dynamically det Atholl, Scotland. (2001).

mining the most informative type of information, e.g. albneme  [12] p. R. Traum and E. A. Hinkelman, ‘Conversation acts isktariented

rather than artist nane spoken dialogue’Computational Intelligences(3), 575-599, (1992).
) ) o Also available as University of Rochester Department of @otar Sci-
The last point represents the ultimate goal of our work:roe ence Technical Report 425.

all the above issues in the context of a flexible dialoguegigna  [13] D.R. Traumand S. Larsson, ‘The information state apphcto dialog
management’, i€urrent and New Directions in Discourse and DiaJog
11 We are currently experimenting with clustering algorithtnsadequately Kluwer, (2003).

summarize large sets of answers for a database query.




