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So-called Variational Methods play a fundamental role in today’s world of Image Pro-
cessing and Computer Vision. They are used in various areas to solve arising problems.
These Methods make use of a smoothness assumption on the solution they are trying
to find. Here often first-order assumptions are formulated. However, these assump-
tions may fail completely in some special cases. Moreover we will realise that fixing the
smoothness order to a specific value might not be the best idea as it limits the appli-
cation area of the used method. Furthermore we will discover that often higher order
information of the obtained solution like for example its derivatives may provide addi-
tional insight into the structure of the solution. Motivated by these observation we will
try to design a new flexible-order smoothness term that can be adapted to the problem
at hand by manipulating a single parameter. Additionally it is designed in such a way
that derivatives of the solution are also estimated.

We will proceed as follows: In the first chapter we will discuss Variational Methods
where we will focus on the modelling process. Here we will learn how to design a so-
called Image Restoration approach and an Optic Flow approach. In both cases we will
pay much attention on how a-priori knowledge about the expected solution influences
the design process. After we completed the modelling we will in both cases try to
solve a problem where the solution violates our a-priori knowledge that was true for
another solution on purpose. In both cases the designed approach will not provide us
with satisfactory results. We then continue in chapter 2 by designing a flexible-order
smoothness term where the order of the smoothness assumption can be manipulated by
a single parameter. We also try to model it in such a way that also estimates of the
derivatives of the solution are computed. In chapter 3 we then deal with the discrete
aspects before we perform experiments in chapter 4. In chapter 5 we will give a summary
and discuss some additional research topics.



1 Introduction

In today’s area of Visual Computing Variational Methods play a very important role.
These methods are relatively easy to design and have therefore been successfully applied
to various problems including

• Image Denoising (cf. [23])

• Motion Estimation (cf. [12], [8], [20])

• Analysis of Meteorological Data (cf. [5])

• Stereo Reconstruction (cf. [9])

Taking into account this widespread nature of such methods it is only natural to extend
existing models in order to improve the quality of their solutions or to enlarge their field
of application.

This is also the reason why we will aim at designing a new type of Smoothness Term
in this work. However, before proceeding, it is on the one hand necessary to explain why
such a new type is needed and how it may improve existing methods. On the other hand
we still do not know what role a Smoothness Term plays in the design of Variational
Methods.

To address these two questions we will give a short introduction to the design of such
methods in this chapter. We will start off by investigating how Variational Methods
that we consider are modelled in the general case. Here we will learn that the methods
considered by us find the solution to a given problem by minimising an Energy Functional
and that modelling this Functional in an appropriate way is the main part of the design
process. After we treated the general case we will turn to two specific cases:

• A relatively simple case: Image Regularisation

• and a more complex example: Optic Flow Estimation

In both cases we will focus on the modelling process and in particular which role a-priori
knowledge about the structure of the solution plays in this process. Furthermore we will
consider the shortcomings and limitations of standard choices for the Smoothness Term.
In addition to that we will also think of possible extensions to both methods.

1.1 General Case

When we encounter a problem that we want to solve we are usually provided with some
data f that is related to this problem. Furthermore this data f is only defined on some
domain. Let us call this domain Ω. In this work Ω has always the following properties:
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• Ω ⊂ R2

• Ω is open and connected

• Ω is bounded

• Ω is rectangular

Now let us turn to the co-domain I of f : In this work I ⊂ R is always bounded and
depends on the problem at hand. Furthermore the data may also change over time. So
we distinguish between the two cases:

• f : Ω→ I
In this case the data does not depend on the time. f(x, y) refers to the value at
the spatial coordinates (x, y) ∈ Ω.

• f : Ω× R+
0 → I

This time the data depends also on a temporal component. Then f(x, y, t) refers
to the value at the spatial coordinates (x, y) ∈ Ω and time t ∈ R+

0 .

As we only have access to the data f on our domain Ω we will only compute our
solution u there as well. The co-domain of u again strongly depends on the problem we
want to solve. For example u may be

• scalar-valued ( Image Restoration )

• vector-valued ( Optic Flow Estimation )

• matrix- or tensor-valued

• a set of tensor-valued functions ( This will be the case in chapter 2 )

We furthermore impose the following basic restrictions on the data f and the solution
u:

• u should be at least two times continuously differentiable on Ω and continuous on
the boundary of Ω

• f should be at least continuous on Ω

For the sake of brevity we will often omit the parameters of functions. Thus we will
write in the following f instead of f(x, y) and u instead of u(x, y) if the meaning is clear
from the context.

Now we can finally turn to question how we can obtain the solution u of our problem if
we are provided with the data f . Variational Methods obtain this solution by minimising
a given Energy Functional. This implies that the modelling process is now reduced to
finding an appropriate Energy Functional
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Ef (u) =

∫
Ω

(
F (u, f)

)
dx, x ∈ Ω

such that its minimiser represents the solution to the problem.
This modelling process is often split into two parts. In a first step a meaningful as-

sumption is formulated on how the ideal solution should interact with the provided data.
This assumption is also called the Data Term Df (u). Next we model an assumption
about the structure of the solution itself. This is called the Smoothness Term S(u).
Here often a so-called first-order smoothness assumption is used, that is, an assumption
on the first-order derivatives of u. The Smoothness Term is usually weighted with a
positive scalar α representing the importance of the term. A reason for a high weight
might be for example that the data is not very reliable. Thus our Energy Functional has
now the structure

Ef (u) =

∫
Ω

(
Df (u) + αS(u)

)
dx, x ∈ Ω

We, however, discover that the Data Term and the Smoothness Term may model
contradicting ideas. This means that the solution u represents the best compromise
between these assumptions.

Finally we give some information on the basic properties of the functionals Ef we will
model in the following:

• Ef must be bounded from below

• The Euler-Lagrange Equations of Ef must exist. These equations are necessary
conditions for a minimum. We will use them in the third chapter to find the
minima of our functionals.

• Ef must be equipped with the appropriate natural boundary conditions. We re-
member that we are only working on the domain Ω and are computing deriva-
tives. Roughly speaking these boundary conditions specify what happens to these
derivatives on the boundary of Ω. They are called natural because they arise in
the derivation of the Euler-Lagrange Equations ( cf. [10], [23] )

• Ef is continuous.

In the next two sections we will now deal with specific examples of such Energy
Functionals. In both cases we will focus mainly on the aspect how the type of the
problem and our a-priori knowledge about the solution influence the modelling process
of both the Data Term and the Smoothness Term. Moreover we will discover that
a-priori knowledge about one solution does not lead to a Smoothness Term that will
perform well in all cases. In particular we will see that the usual choice of first-order
smoothness assumptions might fail in special situations. We will also discuss possible
extensions to both methods that may allow the simultaneous estimation of the solution
and its derivatives.
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Figure 1.1: Original image on the left and noisy version on the right.

1.2 Specific Case: Image Restoration

In Image Processing we are often facing the problem that we are given an image f that is
degraded due to noise like in figure 1.1. Of course we now want to find a way to denoise
this image. That is we want to find an image u such that

• u is similar to f in some way

• u contains no noise

Before we are turning to the problem itself we first discuss the co-domains of f and
u. In the following we are dealing with gray-value images where the gray values lie in
the interval I = [0, 255]. Thus we have f : Ω → [0, 255]. As our solution u is an image
itself we have that u has the same co-domain like f and thus u : Ω→ [0, 255].

Now let us solve this problem by using a Variational Approach. We remember that
these methods obtain the solution by minimising a given energy. So we have to model
this Energy Functional in such a way that a minimiser fulfills our desired properties we
gave above.

1.2.1 Modelling the Data Term

First we want to model the similarity between u and f , that is the desired interaction
of the data and the solution. This similarity could be expressed as follows

u− f

We, however, realise that this expression is not bounded from below. So there is no way
of finding a reasonable minimiser. Taking now the absolute value of the expression gives
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|u− f |

This expression is now bounded from below but suffers from the problem that it is now
no longer differentiable with respect to u everywhere, which unfortunately leads to a
Euler-Lagrange Equation that is numerically hard to handle. Squaring the expression
finally leads to our final Data Term

DI
f := (u− f)2

which is now bounded from below and differentiable everywhere. This finishes the mod-
elling process of the Data Term of our functional. In this case the modelling of this term
was relatively easy, we will see later on in the second case that the design of the Data
Term can also pose quite a challenge.

1.2.2 Modelling the Smoothness Term

Now that we have our Data Term we still have to model our Smoothness Term, that
is, our assumption on the structure of our solution u. To this end we will consider the
second property we stated earlier, namely that u should contain no noise. If we take a
look at the noisy image in figure 1.1 we find that the noise creates first-order derivatives
that are non-zero. On the other hand we see that the original picture has large areas
where the gray values remain constant in space, so there we have that the first-order
derivatives vanish. This observation motivates the idea to assume that our solution has
this property as well:

‖∇u‖2 =

∥∥∥∥(uxuy
)∥∥∥∥2

= u2
x + u2

y ≈ 0

This represents our Smoothness Term. As it demands the same smoothness in every
connection, we will call it a homogeneous isotropic smoothness assumption.

In this case the contractive nature of Data Term and Smoothness Term becomes
apparent: The Data Term wants to preserve the noise whereas the Smoothness Term
tries to remove it.

Weighting now our Smoothness Term with a positive scalar α and combining it with
our previously derived Data Term DI

f yields our first Energy Functional:

Ef (u) =

∫
Ω

(
(u− f)2︸ ︷︷ ︸
Data Term

+α ‖∇u‖2︸ ︷︷ ︸
Smoothness Term

)
︸ ︷︷ ︸

=F

dx, x ∈ Ω

We see that the integrand F depends on u and ∇u, that is,

F (u, ux, uy) = (u− f)2 + α‖∇u‖2
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With this knowledge we can derive the Euler-Lagrange Equation of Ef and the asso-
ciated boundary conditions:1

0 = Fu −
∂

∂x
Fux −

∂

∂y
Fuy

with the Boundary Condition

n>
((

Fux

Fuy

))
= 0

where n is the outer surface normal on Ω.
In our case we have then the equation

0 = u− f − α div

(
D ∇u

)
where

D = I :=

(
1 0
0 1

)
is the so-called Diffusion Tensor (cf. [23] ). In a general setting it represents a symmetric
matrix that is at least positive-semidefinite. The Boundary Condition reads

n>
(
ux
uy

)
= 0

Formally these condition states that the derivatives of u should vanish across the
boundary. This makes sense because we can not compute them there because we have
no information what happens outside of our domain. Informally we learn that these con-
dition implies that the Smoothness Term is automatically fulfilled across the boundary.

1 Here we see why it is important that the Data Term should be differentiable everywhere with respect
to u.
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Figure 1.2: Our first model with α = 100 removes the noise but also important image
features like edge information.

Using this ansatz to denoise our given image leads to a result that is not quite satis-
factory: We see in figure 1.2 that on the one hand the noise is removed but on the other
hand also important image features like object edges are destroyed. Of course we are
now interested in extending our method to preserve these important information. This
means we have to alter our ideas about the solution:

• u is similar to f in some way

• u contains no noise but still object edges

Intuitively we realise that this implies that we have to modify the Smoothness Term
in such a way that it preserves these image edges, that is, it should assume that the
solution is piecewise constant.

Until now we used a quadratic penaliser for our smoothness assumption:

ΨWT(‖∇u‖2) := ‖∇u‖2

In literature this penaliser is often called the Whittaker-Tikhonov penaliser (cf. [23]).
It always penalises derivations of our assumption very severely, which leads to a huge
energy generation. Thus is becomes very attractive to fulfill the Smoothness Term as
then a lot energy can be “saved”. There are, however, other choices for the penaliser.
Each function Ψ(s2) with the following properties is a suitable candidate (cf. [23]):

• ΨS is differentiable and increasing: Ψ′S
(
s2
)
> 0,

• ΨS

(
s2
)

is convex in s and

• There exist constants c1, c2 > 0 such that c1s
2 ≤ ΨS

(
s2
)
≤ c2s

2 for all s2.

13



−6 −4 −2 0 2 4 6

0

5

10

15

20

25 ΨWT

ΨC with λ = 1
ΨC with λ = 0.5

Figure 1.3: Plots of ΨWT and of ΨC with different values for λ.

Our task is now to find one that can make it unattractive to fulfill the Smoothness
Term in some cases such that the edges are preserved. Let us to this end have a look at
the famous Charbonnier penaliser (cf. [23]):

ΨC(s2) := 2λ2

√
1 +

s2

λ2
− 2λ2

where λ > 0 is the so-called contrast parameter. Inspecting the energy generation for
different choices of λ in figure 1.3 reveals that this penaliser meets our requirements:
It produces less energy in the case of a violation of the smoothness constraint than the
Whittaker-Tikhonov penaliser. Moreover these observations imply that a fulfillment will
lead to a smaller “energy saving”, which in turn could make it more attractive to fulfill
the Data Term instead. As we know that edge information is stored in the data we
conclude that using ΨC will make it more attractive to preserve edges.

Using now ΨC as the penaliser yields our new Smoothness Term:

ΨC(‖∇u‖2)

As this term demands a piecewise smoothness in each direction, we call this term a
piecewise isotropic smoothness assumption. Our new energy is now given by:

Ef (u) =

∫
Ω

(
(u− f)2 + α ΨC(‖∇u‖2)

)
dx, x ∈ Ω

14



Employing ΨC also leads to a change in our Euler-Lagrange Equation that now becomes
nonlinear in u:

0 = u− f − α div

(
DΨC

(u) ∇u
)

where we have the new Diffusion Tensor

DΨC
(u) :=

(
Ψ′C(‖∇u|2) 0

0 Ψ′C(‖∇u‖2)

)
We remark that we can also provide a generic version of our two Smoothness Terms

and the associated Diffusion Tensors:

SI
Ψ(u) := Ψ(‖∇u‖2)

DI
Ψ(u) := Ψ′(‖∇u‖2) I

that now depend on the choice of Ψ:

• ΨWT leads to our homogeneous isotropic Smoothness Term:

SI
ΨWT

(u) = ‖∇u‖2

DI
ΨWT

(u) = Ψ′WT(‖∇u‖2) I = I

• ΨC leads to our piecewise isotropic Smoothness Term:

SI
ΨC

(u) = ΨC(‖∇u‖2)

DI
ΨC

(u) = Ψ′C(‖∇u‖2) I

By inspecting figure 1.4 we realise that this new method delivers satisfactory results:
The noise is removed while object edges are presered. We discover, however, that the
choice of λ is not trivial: On the one hand choosing a too small value will cause our
method to preserve noise as well because it misinterpretes it as edge information. On the
other hand a too large value will again lead to the destruction of vital edge information.
Thus it has to be chosen in such a way that in regions of noise it is attractive to fulfill
the Smoothness Term whereas at object edges the Data Term should be fulfilled instead.

15



(a) λ = 0.1 (b) λ = 10

(c) λ = 2

Figure 1.4: Results of our new model with α = 100 and different choices for λ.
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Figure 1.5: Original image on the left and noisy version on the right. (source: [6])

1.2.3 Limitations and possible extensions

In the previous section we modelled our Smoothness Terms by exploiting a-priori knowl-
edge about our original image, namely that it is constant or at least piecewise constant.
We now want to find out if our Smoothness Terms still perform well if the considered
image does not share this property. This actually means that the original image should
violate our smoothness assumption by construction. To this end we use the image de-
picted in figure 1.5. We see that this time the original image is no longer piecewise
constant: We have a large discontnuity in the centre that separates two regions where
the data is continuously changing in space.

In a first try we use our method with our homogeneous isotropic Smoothness Term
SI

ΨWT
in order to restore the original image from the noisy data. We see in figure 1.6 that

the non-constant behaviour of the data is preserved in the two regions. Unfortunately
we also discover that information about the discontinuity is lost in the process.

Next we apply our method that uses the Charbonnier penaliser SI
ΨC

to denoise the
data. We in see in figure 1.6 that this time we succeed in preserving the discontinuity
in the centre. But we fail, however, to preserve the non-constant behaviour in the two
regions. Instead we enforced the image to be piecewise constant in these regions.

We realise that these bad results can be explained by taking into account that our
smoothness assumption was incorrect from the start. Of course we now want to know
how we can adjust our model to cope with such images as well. One possibility would
be to replace the first-order smoothness constraint by a second-order one, that is, we
would assume that the second-order derivatives vanish, which would explicitly allow the
non-constant behaviour of the data. But this means we are again exploiting knowledge
about the ideal solution to design a new smoothness assumption. We learned, however,
that using such a fixed -order assumption that worked for one image may fail for another
one if they do not share the same properties. As a remedy we might think of design-
ing a flexible-order Smoothness Term. In this case it would be possible to adapt the
Smoothness Term to the problem at hand instead of relying on a fixed-order one.

17



Figure 1.6: Our attempts to denoise the data. Left: Result with ΨWT, Right: Result
with ΨC

In addition to this identified shortcoming of a fixed-order smoothness assumption we
find that sometimes derivatives of an image can also be of great importance in Image
Processing. For example it is possible to use the absolute value of the gradient ‖∇f‖ of
the image f to identify object edges (cf. [24]).

Taking into account these two observations motivates the idea to design a method
that is capable of simultaneously denoising given data with a flexible-order smoothness
assumption and estimating derivatives that are related to the denoised image. However,
before we begin working on this idea we will first investigate if such a method might be
also required in another field like Optic Flow Estimation, which we want to explore next.
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Figure 1.7: Frames 150 and 151 of the new marble sequence. (source: [1]).

1.3 Specific Case: Optic Flow Estimation

A different branch of Image Processing is concerned with motion estimation. More
precisely, we are given a pair of images of an image sequence f like in figure 1.7. The
given sequence describes a movement of some objects that we want to estimate. In the
following we are interested in finding the so-called Displacement Field u such that

• x + u is the new position of an object in the second image that was previously

located at x in the first image where x :=

(
x
y

)
• we have an estimate of u everywhere, even in regions where the data is unreliable

Like in the previous case we will first briefly discuss the properties of our data f and the
solution u before turning to the problem itself. Let f be a gray-value image sequence
with 256 gray values that starts at time 0. So we have f : Ω× R+

0 → [0, 255]. We write
f(x, y, t) for the gray-value at time t ∈ R+

0 and spatial coordinates (x, y) ∈ Ω. Unlike in
the previous case we now have more restrictive requirements on f : f must be two times
continuously differentiable in Ω × R+

0 .2 In the following we will refer to the first image
as f(x, y, t) and to the second one as f(x, y, t+ 1) where t is fixed. Let us now proceed
with the properties of u. As we require u(x, y) to be a two-dimensional displacement
vector at the coordinates (x, y) ∈ Ω its co-domain should lie in R2. So we have

u :=

(
u
v

)
: Ω→ I

where I ⊂ R2 is bounded. Again we require the solution u to be two times continuously
differentiable in Ω and to be continuous on the boundary of Ω.

As our solution is two-dimensional we first have to think of a way to visualise its
contained information in a meaningful way. Here we will employ two variants:

2As images might violate this constraint it is common to convolve the initial data with a Gaussian
Kernel to make them differentiable and to work with this smoothed data instead.
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Figure 1.8: Example plot of a two-dimensional vector field.

Figure 1.9: Visualisation of some scalar-valued function g.
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1. We will visualise the information in a single plot where the direction of the dis-
placement vector is represented by the color and its magnitude is shown by the
brightness of this color. Furthermore the plot is surrounded by a frame that roughly
shows the directions the colors represent. An example plot is provided in figure
1.8.

2. In the second variant we will visualise the information of u and v in two separate
plots where we will visualise the magnitude of their values. In addition to that we
will also provide a scale where the minimum and maximum value can be inspected.
Again we provide an example plot, this time in figure 1.9.

Again we are now facing the problem how to model the Energy Functional in such a way
that its minimiser has the desired properties we stated earlier. Once more we will focus
on how a-priori knowledge influences our design process of both the Data Term and the
Smoothness Term.

1.3.1 Modelling the Data Term

We start with our first requirement: x + u should be the new position of an object at
time t + 1 that was originally located at x at time t. Unfortunately we discover that
it is now no longer possible to formulate this desired property in an explicit way. By
inspecting our image pair in figure 1.7, however, we realise that spatial image features
like for example the gray value do not change over time. This means that the following
expression holds if u represents the correct displacement:

f(x, y, t) = f(x+ u, y + v, t+ 1)

We can exploit this observation to construct our first Data Term, the so-called Brightness
Constancy Assumption (cf. [9]):

(f(x+ u, y + v, t+ 1)− f(x, y, t))2

This term is obviously minimised by the correct u if the gray value of objects remains
constant over time. But we identify a problem with this term: Its dependence on the
data might result in a non-convex behaviour, which would also lead to a non-convex
Energy Functional. As this type of functional has the unpleasant property of having
multiple local minima finding a good minimum is a very demanding task (cf. [9]). We
will see later on that the so-called Warping Strategy (cf. [9], [15]) can be used to obtain at
least a good minimiser. For the time being, however, we want to construct a Data Term
that is at least convex. To this end we assume that the displacement u is sufficiently
small such that we can approximate our term by using a first order Taylor Expansion:(

f(x+ u, y + v, t+ 1)− f(x, y, t)

)2

≈
(
f(x, y, t) + ufx(x, y, t) + vfy(x, y, t) + ft − f(x, y, t)

)2

=

(
ufx + vfy + ft

)2
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Let us now inspect the Hessian Matrix of this term:

2

(
f2
x fxfy

fxfy f2
y

)
= 2∇2f∇2f

>

where the indexed ∇-Operator signals that only the derivatives with respect to the first
two (spatial) components should be contained in the result vector. Thus in our case we
have

∇2f =

(
fx
fy

)
.

We will call this vector the spatial gradient of f .
The matrix ∇2f∇2f

> is called the Structure Tensor 3 of f (cf. [23]). It has the
eigenvectors

v1 =
∇2f

‖∇2f‖2

v2 =
∇2f

⊥

‖∇2f⊥‖2

where ∇2f
⊥ is the vector orhogonal to ∇2f .

The associated eigenvalues are given by

µ1 = ‖∇f2‖2

µ2 = 0

Thus the matrix is positive-semidefinite, which in turn causes the Hessian matrix to
become positive-semdidefinite and thus means that our Data Term is now convex.

This kind of linearised data assumptions can also be conveniently rewritten in a
quadratic form, the so-called Motion Tensor Notation (cf. [9], [8]):

w>Jw

where

w :=

uv
1


and

J :=

J11 J12 J13

J12 J22 J23

J13 J23 J33


3We will later on discuss the meaning of the Structure Tensor in more detail.
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is a positive-semidefinite symmetric matrix, the so-called Motion Tensor associated to
the linearised constancy assumption.

In our case we will call the Motion Tensor associated to the linearised Brightness
Constancy Assumption JBCA. It is given by

JBCA :=

 f2
x fxfy fxft

fxfy f2
y fyft

fxft fyft f2
t


Unfortunately we identify some problems with our Data Term:
Basically we want to solve

ufx + vfy + ft = 0

That is, we have one equation for two unknowns, which has infinitely many solutions.
Let us now compare this equation to an ordinary line equation

n>(x− y) = n>x− n>y = 0

where n is the line normal and y is a given point on the line. If we perform the following
substitutions

n := ∇2f

x := u

−n>y := ft

we find that our Data Term is in fact a squared line equation:

(∇2f
>u + ft)

2 = 0

Informally this means that our solution consists of a line that is normal to the spatial
image gradient ∇2f . In addition to that we discover that we can compute nothing at all
if ∇2f vanishes. This problem is known in literature as the infamous Aperture Problem
(cf. [9]).

Moreover we also realise that if the gray-value changes, if the data is corrupted due
to noise or if objects move outside our visible domain the Data Term will represent no
reliable tool to estimate the motion. We say in these cases that our data is not reliable.

Let us now focus on the case of the violation of the Brightness Constancy Assumption.
If this violation appeared due to additive illumination changes we can cope with this
problem by employing the well-known Gradient Constancy Assumption (cf. [15]). This
assumption models the idea that the gradient of the image data does not change over
time. It is given by

‖∇2f(x+ u, y + v, t+ 1)−∇2f(x, y, t)‖2
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Again we perform a first-order Taylor Expansion to obtain the linearised version:

‖∇2f(x+ u, y + v, t+ 1)−∇2f(x, y, t)‖2 =(
fx(x+ u, y + v, t+ 1)− fx(x, y, t)

)2

+

(
fy(x+ u, y + v, t+ 1)− fy(x, y, t)

)2

≈
(
ufxx + vfxy + fxt

)2

+

(
ufxy + vfyy + fyt

)2

Here we finally see why we demanded that the data should be two times continuously
differentiable. Once again we deal with the question if this term is convex. Computing
the Hessian Matrix yields

2

(
f2
xx fxxfxy

fxxfxy f2
yy

)
+ 2

(
f2
xy fxyfyy

fxyfyy f2
yy

)
= 2

(
∇2fx∇2f

>
x +∇2fy∇2f

>
y

)
This is a sum of two Structure Tensors. As both matrices are positive-semidefinite the
sum will also be at least positive-semidefinite.4 Thus we can conclude that this term is
in fact at least convex.

The Motion Tensor associated to the linearised Gradient Constancy Assumption is
given by

JGCA :=

fxxfxx + fxyfxy fxyfxx + fyyfxy fxtfxx + fytfyx
fxyfxx + fyyfxy fxyfxy + fyyfyy fxtfxy + fytfyy
fxtfxx + fytfyx fxtfxy + fytfyy fxtfxt + fytfyt


We are now interested in the question if this term also suffers from the Aperture

Problem. By inspecting our new constraint

(ufxx + vfxy + fxt)
2︸ ︷︷ ︸

=0

+ (ufxy + vfyy + fyt)
2︸ ︷︷ ︸

=0

= 0

we see that it can be expressed in the form of two line equations:

∇2f
>
x u + fxt = 0

∇2f
>
y u + fyt = 0

Intuitively we now discover that if those lines are not parallel they will intersect and this
intersection point will be our unique solution. However, we also realise that we can not
rely on our data to always produce such lines. Furthermore a line equation may also not
exist if the derivatives are vanishing.

Finally we can exploit the Motion Tensor Notation to merge both the Brightness
Constancy Assumption and the Gradient Constancy Assumption into a single Motion
Tensor:

JBGA := w>
(
JBCA + γJGCA

)
w

4 It is also possible for the result to become positive-definite.
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This new Data Term models the idea that both the gray-value and the spatial image
gradient do not change over time. We furthermore weighted the Gradient Constancy
Assumption with a nonnegative scalar γ in order to adjust the importance of the term.
Ultimately this new constraint will provide three line equations. We can, however, again
not rely on these lines to be not parallel or even to exist.

The Gradient and Brightness Constancy Assumptions are actually only two of many
assumptions on spatial image features. The interested reader is encouraged to have a
look at [15] for an overview. For now we stop working on the Data Term and proceed
with the Smoothness Term in order to deal with the Aperture Problem.

1.3.2 Modelling the Smoothness Term

In the preceding section we discovered that our Data Term can not be used to fulfill our
second requirement we have on the solution, namely to estimate the motion everywhere.
We learned that our Data Term will provide us with three line equations that only the
correct displacement vector u will fulfill. But only in the case if two of those described
lines are not parallel we have access to a unique solution. In the other cases our solution
lies either on a line or we have no information at all. So we conclude that our local
information is not sufficient in these cases to determine the unique solution.

Thus we have to think about a strategy to transport information from the neighbor-
hood to our current position and merge it locally to estimate our solution.

Again we take a close look at our data in figure 1.7: We see that our observed motion
consists entirely of a translation. The key observation is now that a translational motion
is a motion that remains constant in space. That is we have

‖∇u‖ ≈ 0

‖∇v‖ ≈ 0

We now square these both terms 5 and compute their sum to obtain our first Smoothness
Term:

‖∇u‖2 + ‖∇v‖2

Clearly this term is minimised if u and v are constant, that is, describing at most
a translational motion. Again we are demanding a solution that is smooth in each
direction, thus we have a homogeneous isotropic smoothness assumption.

Let us now combine our Data Term and Smoothness Term to obtain our first Energy
Functional for this problem

E(u) =

∫
Ω

(
w>
(
JBCA + γJGCA

)
w + α

(
‖∇u‖2 + ‖∇v‖2

))
︸ ︷︷ ︸

=F

dx

where we again weighted the Smoothness Term by a positive scalar α.

5Again to ensure differentiability everywhere.
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We see that the usage of our Smoothness Term has the desired effect: It links the
local solution to its neighborhood. This means that if the local data can not provide
enough information to determine the unique solution the Smoothness Term will fill in
this missing information. In literature this is called the filling-in effect (cf. [9]). Note
that this is only a very rough description of the interaction between the Data Term and
Smoothness Term, for a more in-depth treatment see [22] or [9].

We see that this time our integrand F depends on u, v,∇u,∇v, that is, we have

F (u, v, ux, uy, vx, vy) = w>
(
JBCA + γJGCA

)
w + α

(
‖∇u‖2 + ‖∇v‖2

)
With this information we are again able to compute the general structure of the Euler-
Lagrange Equations:

0 = Fu −
∂

∂x
Fux −

∂

∂y
Fuy

0 = Fv −
∂

∂x
Fvx −

∂

∂y
Fvy

with the associated Boundary Conditions

n>
(
Fux

Fuy

)
= 0

n>
(
Fvx

Fvy

)
= 0

where n is again the outer surface normal on the boundary of Ω.
In our case we have the equations

0 = J11 u+ J12 v + J13 − α div(D ∇u)

0 = J12 u+ J22 v + J23 − α div(D ∇v)

where

D = I

is again the Diffusion Tensor originating from the Smoothness Term. The Boundary
Conditions are given by

n>∇u = 0

n>∇v = 0

Unfortunately we discover in figure 1.10 that our approach is suffering from a similar
problem as before: The motion seems to be estimated but motion discontinuities are not
preserved. Again we are interested in adjusting our model to allow these discontinuities
to be present.
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Figure 1.10: Result from our first approach. We see that motion discontinuities are not
preserved.

To this end we inspect our image pair: Here we discover that the motion is piecewise
translational and in addition to that may exhibit an anisotropic behaviour: Along the
object edges the motion remains constant whereas across the edges it shows disconti-
nuities. These observations imply that we have to model an anisotropic smoothness
assumption.

Let us now investigate how we can formulate these observations in a mathematical
way: First we consider the Structure Tensor of the displacement part u:

∇u∇u>

We remember that this matrix possesses the eigenvalues

µ1 = ‖∇u‖2

µ2 = 0

with the associated eigenvectors

v1 =
∇u
‖∇u‖2

v2 =
∇u⊥

‖∇u⊥‖2

We discover that this tensor describes the behaviour of u locally: The directions of
the changes are contained in the eigenvectors of the matrix whereas the magnitude of
the changes is located in the associated eigenvalues. Let us now combine the Structure
Tensors of u and v:

∇u∇u> +∇v∇v> =

(
u2
x + v2

x uxuy + vxvy
uxuy + vxvy u2

y + v2
y

)
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The result is the Structure Tensor of u that describes the behaviour of our Displacement
Field u locally. It is at least positive-semidefinite as it describes the sum of positive-
semidefinite matrices. By computing its trace

tr

(
u2
x + v2

x uxuy + vxvy
uxuy + vxvy u2

y + v2
y

)
= ‖∇u‖2 + ‖∇v‖2

we surprisingly obtain our previous Smoothness Term. Thus we modelled previously that
the sum of the eigenvalues6 of the combined Structure Tensors should vanish. As our
eigenvalues are nonnegative this means we assumed that both eigenvalues should vanish,
which actually would imply an isotropic behaviour of u: namely that it is translational
in every direction, which in turn was our modelling idea.

So in order to model an anisotropic behaviour we have to ensure that the sum of the
eigenvalues is allowed to be non-zero and that both eigenvalues may be different7 To this
end we use the Smoothness Term presented in [18]:

tr ΨC

(
∇u∇u> +∇v∇v>

)
Here the Charbonnier Penaliser ΨC is applied to the eigenvalues of the Structure Tensor
before the trace is computed. Like in the previous case we observe that if we choose λ
accordingly it may become unattractive to enforce the sum of the eigenvalues to become
0 in some situations. In these situations it may be better to fulfill the Data Term instead
as there again more energy can be “saved”. As information about motion discontinuities
is contained inside the data we conclude that this new term provides the property of
allowing these discontinuities in the solution. Furthermore we note that the solution may
also behave anisotropically because both eigenvalues are penalised separately: There may
be for example cases when it is attractive to enforce one of the eigenvalues to become 0
whereas it is unattractive to do the same for the other one.

As this Smoothness Term demands a smoothness that is piecewise and also may behave
differently in each directions we call it a piecewise aninsotropic smoothness assumption.

Using this new term in our Energy Functional yields

E(u) =

∫
Ω

(
w>
(
JBCA + γJGCA

)
w + α tr ΨC

(
∇u∇u> +∇v∇v>

))
dx

This functional leads to the following Euler-Lagrange Equations8:

0 = J11 u+ J12 v + J13 − α div

(
DΨC

(u) ∇u
)

0 = J12 u+ J22 v + J23 − α div

(
DΨC

(u) ∇v
)

6Reminder: The trace of a symmetric matrix is the sum of its eigenvalues.
7This also includes the case where both eigenvalues are non-zero. In this case the Structure Tensor of
u is even positive-definite.

8Deriving those is actually highly non-trivial. For more information see [18].
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Figure 1.11: Result from our second approach. This time motion discontinuities are not
destroyed.

where we have again a new Diffusion Tensor:

DΨC
(u) := Ψ′C

(
∇u∇u> +∇v∇v>

)
Note that Ψ′C is applied to the eigenvalues of the underlying matrix.

Like in the case of Variational Image Restoration we can provide a generic form of our
used Smoothness Terms and the associated Diffusion Tensors:

SF
Ψ(u) := tr Ψ

(
∇u∇u> +∇v∇v>

)
DF

Ψ(u) := Ψ′
(
∇u∇u> +∇v∇v>

)
that again depend on the choice of Ψ:

• The Whittaker-Tikhonov penaliser creates our homogeneous isotropic term:9

SF
ΨWT

(u) = ‖∇u‖2 + ‖∇v‖2

DF
ΨWT

(u) = Ψ′WT

(
∇u∇u> +∇v∇v>

)
= I

• The Charbonnier penaliser leads to the piecewise anisotropic assumption:

SF
ΨC

(u) = tr ΨC

(
∇u∇u> +∇v∇v>

)
DF

ΨC
(u) = Ψ′C

(
∇u∇u> +∇v∇v>

)
We see in figure 1.11 that this method using our new term SF

C(u) meets our requirements:
Motion discontinuities are preserved in the solution.

9Note that this is a special case of the Smoothness Term. (cf. [18])

29



−6 −4 −2 0 2 4 6

0

5

10

15

20

25 s2

|s|

Figure 1.12: Plots of the quadratic function s2 and the L1-norm |s|.

1.3.3 A Robust Data Term

We now return to the improvement of our Data Term. We remember that we identified
the following problems

• No unique estimation of the solution in regions possible where the Aperture Prob-
lem is present

• No estimation possible in the case of unreliable data

We dealt with the first issue by introducing the Smoothness Term that complemented
the Data Term.

Let us now focus on the second issue: We realise that in the case of

• degraded data due to noise

• vanishing objects

• violation of our data assumptions

it makes no sense to minimise the energy generated by the Data Term as the minimiser
will not be related to the correct solution by construction. This means we have to find
a way to attenuate the energy generation of the Data Term in such a way that the
fulfillment of the Smoothness Term becomes a viable option in these cases. In literature
the quadratic penaliser is often replaced by a linear one like for example the regularised
L1-norm ( cf. [9] ):

ΨD(s2) =
√
s2 + ε ≈ |s|

30



where ε > 0 ensures the differentiability in 0. We see in figure 1.12 that this penalisation
generates in fact much less energy than the quadratic one.

Like in [8] we will employ a separate penalisation of our two assumptions:

ΨD

(
w>JBCAw

)
+ γ ΨD

(
w>JGCAw

)
This is motivated by the fact the if one assumption is violated the energy generated by
the remaining one may still be useful for determining the solution.

Our Energy Functional is now given by

Ef (u) =

∫
Ω

(
ΨD

(
w>JBCAw

)
+ γ ΨD

(
w>JGCAw

)
︸ ︷︷ ︸

=:DF
f (u)

+ α SF
Ψ(u)

)
dx

We observe that this new Data Term leads to an unpleasant change in our Euler-
Lagrange Equations:

0 =
(

Ψ′D

(
w>JBCAw

)
JBCA11

+ γ Ψ′D

(
w>JGCAw

)
JGCA11

)
u

+
(

Ψ′D

(
w>JBCAw

)
JBCA12

+ γ Ψ′D

(
w>JGCAw

)
JGCA12

)
v

+
(

Ψ′D

(
w>JBCAw

)
JBCA13

+ γ Ψ′D

(
w>JGCAw

)
JGCA13

)
− α div

(
DF

Ψ(u) ∇u
)

0 =
(

Ψ′D

(
w>JBCAw

)
JBCA12

+ γ Ψ′D

(
w>JGCAw

)
JGCA12

)
u

+
(

Ψ′D

(
w>JBCAw

)
JBCA22

+ γ Ψ′D

(
w>JGCAw

)
JGCA22

)
v

+
(

Ψ′D

(
w>JBCAw

)
JBCA23

+ γ Ψ′D

(
w>JGCAw

)
JGCA23

)
− α div

(
DF

Ψ(u) ∇v
)

The Motion Tensor Entries now depend nonlinearly on u. In order to restore readability
we now introduce the following abbreviations for the new Motion Tensor entries:

Ĵ∗∗ :=
(

Ψ′D

(
w>JBCAw

)
JBCA∗∗ + γ Ψ′D

(
w>JGCAw

)
JGCA∗∗

)
with (∗∗) ∈ {(11), (12), (13), (22), (23)}

These abbreviations allow us to rewrite the Euler-Lagrange Equations in our usual way:

0 = Ĵ11 u+ Ĵ12 v + Ĵ13 − α div

(
DF

Ψ(u) ∇u
)

0 = Ĵ12 u+ Ĵ22 v + Ĵ23 − α div

(
DF

Ψ(u) ∇v
)

We can see in figure 1.13 that we were successful: The effect of vanishing objects is
in fact drastically reduced by replacing our quadratic penaliser in the Data Term by
this new one. This type of Data Term is also called a Robust Data Term as it provides
robustness against unreliable data (cf. [9]). We will refer to this Data Term in the
following as DF

f (u).
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Figure 1.13: Experiment inspired by [8]: Comparison between our old Data Term and
our new one. Top Row: Frames 8 and 9 of the Yosemite sequence without
clouds (source: [4], [3]), Bottom Row: Left: Old Data Term, Right: New
Data Term.
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1.3.4 Dealing with large displacements

Until now we only considered the case of small displacements that allowed us to perform
the linearisation of our data assumptions. In the case of large displacements this is,
however, in general no longer a viable option as a linearisation might not approximate
the true function properly.

Let us now have a look at the Energy Functional where our Robust Data Term was
not linearised:

Ef (u) =

∫
Ω

(
ΨD((f(x+ u, y + v, t+ 1)− f(x, y, t))2) + γΨD(‖∇2f(x+ u, y + v, t+ 1)−∇2f(x, y, t)‖2)︸ ︷︷ ︸

=:D̂F
f (u)

+ α SF
Ψ(u)

)
dx

In the following we will refer to this Data Term as D̂F
f (u).

We realise that this Functional may be non-convex and thus may have multiple min-
ima. In literature here often the so-called Warping Strategy (cf. [9], [15]) is used to find
at least a good minimiser.

The Warping Strategy considers the data f on different scales such that

• f1 is the original data

• fs+1 is the data on a smaller scale than f s

• fmax is the data on the smallest scale

• and the difference between two scales is not very big

The main idea of this strategy is motivated by the following observation: Let us assume
that we are given a part of the solution us on the scale s and that we only have to
compute the missing part dus. If this missing part is sufficiently small we may for
example linearise the Brightness Constancy Assumption with respect to dus as follows:(

fs(x+ us + dus, y + vs + dvs, t+ 1)− fs(x, y, t)
)2

≈(
fs(x+ us, y + vs, t+ 1)− f s(x, y, t)︸ ︷︷ ︸

≈ft

+ dusfsx(x+ uk, y + vs, t+ 1)+

dvsfsy (x+ uk, y + vs, t+ 1)

)2

≈ (
dusf sx + dvsfsy + fst

)2
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where we only performed the linearisation in x- and y-direction and held the time coor-
dinate fixed at t+ 1.

A similar approach is also possible for the Gradient Constancy Assumption ([9]), which
fortunately means that we can compute our Motion Tensor entries like before by using
now the images fs(x, y, t) and fs(x + us, y + vs, t + 1). Hence, we are now trying to
estimate the motion between these two images.

In addition to that we realise that motions will become smaller if we use an appropriate
downscaling of our image data. So the smallest scale should be chosen in such a way
that umax = 0, that is, only sufficiently small displacements remain there.

Then the Warping Strategy starts on the smallest scale s = max and repeats the
following steps until the original scale s = 1 of the data is reached:

1. Obtain our solution dus on the current scale by minimising the Energy Functional

Ef (dus) =

∫
Ωs

(
DF

fs(dus) + α SF
Ψ(us + dus)

)
dx

where

• Ωs represents the domain of the current scale

• DF
fs is our Robust Data Term that is this time linearised like above by using

the images fs(x, y, t) and fs(x+ us, y + vs, t+ 1).

• SF
Ψ now depends on dus and us.

Its Euler-Lagrange Equations are given by

0 = Ĵ s
11du

s + Ĵ s
12dv

s + Ĵ s
13 − α div

(
DF

Ψ(us + dus) (∇us +∇dus)
)

0 = Ĵ s
12du

s + Ĵ s
22dv

s + Ĵ s
23 − α div

(
DF

Ψ(us + dus) (∇vs +∇dvs)
)

where the notation Ĵ s
∗∗ indicates that the Motion Tensor entry is derived by using

the images fs(x+ us, y + us, t+ 1) and fs(x, y, t).

We also have the new Boundary Conditions

n>
(
Fux

Fuy

)
=n>∇ (us + dus) = 0

n>
(
Fvx

Fvy

)
=n>∇ (vs + dvs) = 0

2. Compute us−1 by taking the sum us + dus and by transfering the result to the
next finer scale.

3. Proceed with the next scale by setting s = s− 1.
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When we finally have reached the finest scale s = 1 we again perform the first step to
obtain dus. Then we compute our final solution by taking the sum u = u1 + du1.

Thus we split our original possibly non-convex problem into a series of problems with
linearised Data Terms. It can be shown that these problems are in our case even strictly
convex and have a unique solution if the data has some properties. Note, however, that
the proof of this statement is highly non-trivial and requires advanced knowledge in the
field of Functional Analysis and therefore is well beyond the scope of this work. The
interested reader is encouraged to consult [22] on this matter.

We will see later on in chapter 3 how this strategy is applied in the discrete setting.
This once again finishes our modelling process in the case of the Optic Flow Estima-

tion. We remark that this time it posed quite a challenge.
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1.3.5 Limitations and possible extensions

So far we tested our method only with one specific type of motion, namely a translational
one. Moreover we even used knowledge about the correct motion in our design process
to model the Data Term and in particular the Smoothness Term. Roughly speaking
we created the constraint that the first-order derivatives of our solution should vanish.
That is, we again modelled a first-order Smoothness Term. In terms of the motion
it represents the assumption that it should be translational or piecewise translational.
This translational motion belongs to the class of so-called Rigid Body Motions. These
are motions that do not change the distance between points that belong to the moving
object. (cf. [14])

Like in the previous case we now want to test our method with an image pair that
violates this assumption on purpose. This means we require a motion that is no longer
a Rigid Body Motion. Such motions occur for example in Uniaxial Tensile Experiments
that are conducted in Mechanical Engineering.

Figure 1.14 shows such an experiment. We see that the material sample is stretched
along the y-axis. By inspecting the image pair closer we find that in the centre nearly
no motion in y-direction is occuring. In the upper region, however, we see a motion
towards the top whereas in the lower region the sample moves downward. If we now
assume that the motion is continuously changing we conclude that we have vy 6= 0, that
is our displacement in y-direction is no longer constant in space, which clearly represents
a violation of our smoothness assumption.

Unfortunately this image pair was taken from an actual real world experiment and
thus no ground truth is available. As replacement we will use the result of the software
Vic-2D 2009 (cf. [2]) as a reference solution. This software is based on the Principle of
Digital Image Correlation ([19]).

We will now use our method equipped with the Robust Data Term that was not
linearised to compute the motion.

In a first experiment we use the Smoothness Term ΨF
WT . Unfortunately we observe

a devastating result in figure 1.15: On the one hand we see that we can not estimate
the correct direction in the upper half of the image. On the other hand we also discover
that we seem to estimate the wrong magnitude of the displacements.

Next we try out our Smoothness Term ΨF
C. We observe that this time we can better

estimate the magnitude of the displacements. Also the directional information looks a
lot better in this experiment. But we observe some strange behaviour in the structure of
the solution: Instead of showing a linearly changing motion we have a piecewise constant
one. However, in terms of our assumption this behaviour is correct: We expected the
solution to be piecewise constant.

Again these observations force us to admit that our assumptions on the correct motion
have been incorrect from the start. Once more we are tempted to design a second-order
smoothness term that allows the linearly changing motion in the result. But this would
also be a fixed-order assumption that is bound to data with this very property. Again
we are motivated to design a flexible-order model that can be adapted to the problem
at hand.
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Figure 1.14: Our test images of a non-rigid motion. Top Row: Two frames of an
Uniaxial Tensile Experiment where the area of interest is colored in purple.
Bottom Row: The respective enlarged areas of interest.
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Figure 1.15: Reference solution and attempts of our motion estimation. Top Row:
Reference solution from Vic2D. Centre Row: Our attempt with ΨWT.
Bottom Row: Our attempt with ΨC.
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In the case of Variational Image Restoration we briefly discussed the possible benefit of
higher order derivatives of the solution. Of course we are now interested if derivatives of
a motion also play an important role. Let us to this end have a look at the Displacement
Gradient :

∇u :=

(
ux uy
vx vy

)
In Mechanical Engineering this matrix is often used to compute the so-called Lagrangean
Strain Tensor :

E :=

(
e11 e12

e12 e22

)
=

1

2

(
(∇u + I)>(∇u + I)− I

)
This quantity describes how much a motion differs locally from a Rigid Body Motion
(cf. [14]). If E degenerates to the trivial matrix

E =

(
0 0
0 0

)
the motion represents a Rigid Body Motion. Otherwise it is said to be non-rigid.

Let us now shortly investigate its entries in order to understand their meaning if E
does not vanish10:

• e11: Strain in x-direction

This component measures how line elements parallel to the x-axis change their
length with respect to their initial length. If the value is positive we have a stretch-
ing of the material. If it is negative we have a so-called compression.

• e22: Strain in y-direction:

Like above but for line elements parallel to the y-axis.

• e12: Shear Strain

Roughly speaking this quantity is related to angle changes that occur during de-
formations.

Again we are motivated to design a new Smoothness Term type that allows the si-
multaneous estimation of the motion and its derivatives while using a flexible-order
smoothness assumption.

10Here we use the terminology presented in presented in [2]
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2 A new type of Smoothness Term

In the previous chapter we focused on the modelling process of Variational Methods.
We discovered that fixing the smoothness assumption to a specific type of data may
lead to dissatisfactory results in the special cases where we considered a different type
of data that violated this assumption. Moreover we realised that it may be beneficial to
estimate also higher order derivatives of the solution as well as these provide additional
insight into the structure of the solution.

These observations motivate the idea to design a new Smoothness Term type that
should allow

• to be adapted to the problem at hand with a single parameter

• the estimation of higher order derivatives of the solution

• and to be used in different Variational Methods

In this chapter we will first look briefly at some known methods. Unfortunately we will
discover that none of them meets our requirements. Thus we will proceed by designing
our own term that finally provides the desired functionality. After that we will combine
this term with an Image Restoration Method and an Optic Flow Estimation Method in
order to investigate the structure of the Euler-Lagrange Equations.

2.1 Related Work

We remark that higher order smoothness assumptions represent no new idea: [21] for
example proposed an Optic Flow method with a second-order smoothness assumption.
However, we remember that we wanted to avoid such fixed assumptions in order to avoid
the problem we encountered in the previous chapter.

Another approach by [5] formulates in each point of the domain an Energy Functional
in order to estimate the Displacement Field and its first-order derivatives locally. Ul-
timately it uses a second-order smoothness assumption and is moreover bound to an
Optic Flow problem.

[6] on the other hand proposed a flexible-order smoothness term where the order can be
adjusted by manipulating a single parameter in order to denoise images. Unfortunately
it provides no estimates of the derivatives of the solution.

Finally we discuss the method proposed by [13]: Here the Smoothness Term of an
Optic Flow approach was manipulated in such a way that the method simultaneously
estimates the Displacement Field and the associated Displacement Gradient. Moreover
it uses a second-order smoothness assumption.
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Thus we conclude that none of these methods provides a suitable candidate for our
needs.

2.2 A First Idea

Unfortunately none of the presented methods fully met our requirements. Therefore we
will now design our own Smoothness Term type. To this end we first consider the method
from [13] that allows a simultaneous estimation of the Optic Flow and the associated
Displacement Gradient:

Ef (u, A) =

∫
Ω

DF
f (u) + α

‖A−∇u‖22 + α tr ΨC

 2∑
i,j=1

∇aij∇a>ij

 dx

Let us first investigate the properties of the used data and the solution. Like in the case
of the Optic Flow Estimation we considered in the first chapter we are working with
a gray-valued image sequence with the same properties like before. That is we have
once again f : Ω × R+

0 → [0, 255], which is two-times continuously differentiable. By
turning now to the solution we discover a novelty: In addition to our Displacement Field

u = (u, v)> we have also a 2×2 matrix-valued function or matrix field A =

(
a11 a12

a21 a22

)
.

This means our solution actually consists of a set of a vector-valued function and a
matrix-valued one. For their co-domains we have

• u : Ω→ I1 ⊂ R2 and

• A : Ω→ I2 ⊂ R2×2

where I1 and I2 should be bounded. Unlike in the first chapter we are now not going
to model the functional but going to understand the model assumptions. We discover
that the functional is using our linearised Robust Data Term DF

f (u) that we derived in
the previous chapter. The other terms, however, do not reveal their model idea directly,
which forces us to investigate their meaning.

To this end we will first hold A fixed and only minimise with respect to u. This means
we are minimising the following functional1:

E1
f (u) =

∫
Ω

(
DF

f (u) + α ‖A−∇u‖22
)
dx

where

• ‖ · ‖2 is the Frobenius Norm, which can be interpreted as the generalisation of the
Euclidean Norm to matrices

• α is again a positive scalar

1Note that the other part does not depend on u and thus degenerates to an additive constant that can
be omitted.
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• and ∇u is the Displacement Gradient we encountered in the previous chapter.

Thus we see that a minimiser has the following properties

• u fulfills the given Data Term

• ∇u is similar to A in the squared Frobenius Norm

This functional actually reminds us of the Optic Flow Method we encountered in the
first chapter. But this time the functional does not explicitly model the idea that the
derivatives of u should vanish. Moreover we note that we are using a similarity constraint
on one part of the solution that interacts with the other. As this means that we want
the two parts to “agree” on a solution we may call this new type of term Agreement
Term. We see that this term is weighted by α expressing its importance.

In the next step we will now hold u fixed and minimise with respect to A. The
resulting Energy Functional is given by

E2(A) = α

∫
Ω

‖A−∇u‖22 + α tr ΨC

 2∑
i,j=1

∇aij∇a>ij

 dx

where

tr ΨC

 2∑
i,j

∇aij∇a>ij


seems to represent a first-order smoothness assumption on the matrix field A. It resem-
bles strongly the Smoothness Term

SF
ΨC

(u) = tr ΨC

(
∇u∇u> +∇v∇v>

)
we encountered in the Optic Flow Estimation modelling process. This time we are
again combining the Structure Tensors of the individual entries of A to compute the
Structure Tensor of A that describes the behaviour of A locally. Like in the last chapter
applying the Charbonnier penaliser to the eigenvalues of the resulting tensor and taking
the trace of the resulting matrix yields a piecewise anisotropic smoothness assumption.
By replacing ΨC by ΨWT we obtain a homogeneous isotropic term:

tr ΨWT

 2∑
i,j=1

∇aij∇a>ij

 =

2∑
i,j=1

‖∇aij‖2

Like before we can formulate a generic version for these two Smoothness Terms and their
associated Diffusion Tensors:

SM
Ψ (A) = tr Ψ

 2∑
i,j=1

∇aij∇a>ij


DM

Ψ (A) = Ψ′

 2∑
i,j=1

∇aij∇a>ij
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that depend on the choice of Ψ.
Let us now return to our energy: We remark that the outer α does only influence the

value of the minimum and not the minimiser itself, which enables us to replace it by the
value 1:

E2(A) =

∫
Ω

(
‖A−∇u‖22 + α SM

Ψ (A)

)
dx

Again we find the properties of the minimiser A:

• A and ∇u are similar in the squared Frobenius Norm

• A has a first-order smoothness where the type of the smoothness depends on the
choice of Ψ

We see that the Smoothness Term is weighted by α that mirrors the desired importance
of the assumption.

Let us now combine these findings to formulate the properties of the minimiser of the
whole Energy Functional

Ef (u, A) =

∫
Ω

(
DF

f (u) + α
(
‖A−∇u‖22 + α SM

Ψ (A)
))

dx

1. u fulfills a given Data Term

2. A and ∇u are similar

3. A has a first-order smoothness

Let us now interprete the consequences of these properties. If we combine the statements
2 and 3 we realise that A should be an estimate of the Displacement Gradient ∇u and
should have a first-order smoothness at the same time. By merging now the properties
2 and 3 we find that u should describe the motion between the two images and that its
Displacement Gradient should be similar to A. As A should have a first-order smoothness
we conclude that ∇u should have this smoothness as well, which causes u to have a
second-order smoothness. This means that the properties 2 and 3 represent a second-
order smoothness assumption for u that may also be piecewise and anisotropic.

Moreover we realise that we also gain access to an estimate of the Displacement
Gradient of u in the form of A.

By inspecting this construction to achieve a second-order smoothness assumption for
u we find that a similar approach could be used to model a second-order smoothness
assumption for A, which in turn would create a third-order smoothness assumption for
u. To this end let us now replace the third wanted property by two new ones:

1. u fulfills a given Data Term

2. A and ∇u are similar

3. ∇A and B are similar
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4. B has a first-order smoothness

By using the the same reasoning as before we conclude that properties 2 to 4 describe
a third-order smoothness assumption for u. Moreover we gain access to an estimate of
the second-order derivatives of u in the form of B.

We, however, have a problem that keeps us from modelling the Energy Functional right
away: We do not have a reasonable definition of ∇A if A is matrix-valued. Furthermore
we have no means of modelling the similarity between two quantities that are neither
scalar-valued nor vector-valued nor matrix-valued. So before proceeding we have to
formulate some definitions that allow us the modelling.

2.3 Preparations

Definition 1. Let A be a tensor. Then we define the following quantities:

• The set

Idx(A) := { p | Ap is entry of A }

is called the Index Set of A. Thus it represents the set of all indexes of A.

• The number ord(A) ∈ N0 with

Idx(A) ⊂ Nord(A)

is called the order of the tensor A.

Definition 2. Let A be a tensor-valued function defined on R2 that is continuously
differentiable. Then we define ∇A as the tensor A∗ containing the entries:

A∗p1 =
∂

∂x
Ap

A∗p2 =
∂

∂y
Ap

where

p ∈ Idx(A)

pi := (p, i) ∈ Idx(A∗) = Idx(A)× {1, 2}

with i ∈ {1, 2}.
We, however, have to consider the special case of A being scalar-valued as in this case

we have Idx(A) = ∅ and ord(A) = 0. Here we define ∇A as the ordinary gradient:

A∗1 =
∂

∂x
A

A∗2 =
∂

∂y
A

We notice that applying this operator to a tensor-valued function A increases the order
by 1 and doubles the entry amount.
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Definition 3. Let A and B be tensors with the same Index Set Idx(A). Then we define
the sum of both tensors as the tensor C containing the entries

Cp := Ap +Bp

with p ∈ Idx(A) and Idx(C) = Idx(A).
Again we have to consider the special case of A being a scalar. Then we define the

above sum to degenerate to the usual sum:

C = A+B

Definition 4. Let A be a tensor. Then we define the Generalised Frobenius Norm as

‖A‖2 :=

√ ∑
p∈Idx(A)

A2
p

Again we have a special case if A is a scalar. Here we define the sum to degenerate to a
single summand: ∑

p∈Idx(A)

A2
p = A2

and thus

‖A‖2 = |A|

Conventions

As a convention we assume that Ap degenerates always to A if the Index Set of A is
empty. In addition to that we will sometimes speak of tensors instead of tensor-valued
functions if the meaning is clear from the context.

2.4 Designing a flexible Smoothness Term

Now we are finally prepared to model our first idea. We wanted to modify the following
Energy Functional

Ef (u, A) =

∫
Ω

(
DF

f (u) + α
(
‖A−∇u‖22 + α SM

Ψ (A)
))

dx

where the minimiser has the properties

1. u fulfills a given Data Term

2. A and ∇u are similar

3. A has a first-order smoothness
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by replacing the third demanded property by two new ones:

1. u fulfills a given Data Term

2. A and ∇u are similar

3. ∇A and B are similar

4. B has a first-order smoothness

Let us start by modelling the fourth property. In the previous section we defined the
generalised ∇-operator for tensors of arbritrary order. Thus we are now able to compute
∇A: The result is a tensor A∗ containing all first-order derivatives of A with respect to
x and y:

A∗p1 =
∂

∂x
Ap

A∗p2 =
∂

∂y
Ap, p ∈ Idx(A)

As A is a second-order tensor containing 4 entries this means A∗ will be a third-order
tensor consisting of 8 entries. Taking into to account this knowledge we conclude that
B should have the same structure as A∗ and so should have the same Index Set. Thus
B : Ω → I3 ⊂ R2×2×2 where I3 should again be bounded. As usual we demand the
solution part B to be two-times continuously differentiable.

This enables us finally to model the similarity between ∇A and B by using our Gen-
eralised Frobenius Norm:

‖B −∇A‖22 =

√√√√ ∑
p∈Idx(A)

(
Bp1 −

∂

∂x
Ap

)2

+

(
Bp2 −

∂

∂y
Ap

)2
2

=

(
B111 −

∂

∂x
A11

)2

+

(
B112 −

∂

∂y
A11

)2

+

(
B121 −

∂

∂x
A12

)2

+

(
B122 −

∂

∂y
A12

)2

+(
B211 −

∂

∂x
A21

)2

+

(
B212 −

∂

∂y
A21

)2

+

(
B221 −

∂

∂x
A22

)2

+

(
B222 −

∂

∂y
A22

)2

Thus we realise that if we are given tensors C and D with the same order ord(C),
entry amount and Index Set Idx(C) we can always state a similarity constraint using
the Generalised Frobenius Norm:

‖C −D‖22 =

{∑
p∈Idx(C)(Cp −Dp)

2, if ord(C) > 0

(C −D)2, if ord(C) = 0

This finishes the modelling process for the fourth property. Let us now continue
with the last one: The first-order smoothness of B. To this end we first consider our
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Smoothness Term we were using for A:

SM
Ψ (A) = tr Ψ

 2∑
i,j=1

∇aij∇a>ij


If we rewrite SM by using the Index-Set notation we arrive at:

tr Ψ

 2∑
i,j=1

∇aij∇a>ij

 = tr Ψ

 ∑
p∈Idx(A)

∇Ap∇A>p


By using this new notation we discover that this Smoothness Term can now be used for
B as well:

tr Ψ

 ∑
p∈Idx(B)

∇Bp∇B>p


Here we discover that again the Structure Tensors of all entries of B are combined to
compute the Structure Tensor of B. By applying our previously acquired knowledge
about this tensor we realise that it describes the behaviour of B locally. And again the
chosen function Ψ determines the details of the smoothness assumption. Furthermore
this observation implies that it will also work for every tensor-valued function C.

So by using the Index Set notation we created a term that automatically adapts to
the tensor the term is applied to.

Thus we arrive at a Generalised First-Order Smoothness Term that works with tensors
of arbritrary order and entry amount:

SG
Ψ(C) := tr Ψ

 ∑
p∈Idx(C)

∇Cp∇C>p


with the associated Diffusion Tensor:

DG
Ψ(C) := Ψ′

( ∑
p∈Idx(C)

∇Cp∇C>p
)

Applying this term to our previous solution types produces our previous Smoothness
Terms:

• u is scalar-valued:

SG
Ψ(u) = Ψ

(
|∇u|2

)
= SI

Ψ(u)

• u is vector-valued:

SG
Ψ(u) = tr Ψ

 ∑
p∈Idx(u)

∇up∇u>p

 = tr Ψ
(
∇u∇u> +∇v∇v>

)
= SF

Ψ(u)
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• A is matrix-valued:

SG
Ψ(A) = tr Ψ

 ∑
p∈Idx(A)

∇Ap∇A>p

 = tr Ψ

 2∑
i,j

∇aij∇a>ij

 = SM
Ψ (A)

We remark that in the scalar-valued case, that is, ord(C) = 0 we encounter a special case:
Choosing Ψ = ΨC here creates a piecewise isotropic smoothness assumption instead of
an anisotropic one like in the other cases.

This concludes the modelling for the fifth demanded property.
Finally we hold u and A fixed and model the energy

E3(B) =

∫
Ω

(
‖B −∇A‖22 + α SG

Ψ(B)

)
dx

We see that a minimiser fulfills our wanted properties:

• ∇A and B are similar

• B has a first-order smoothness

Replacing now our previous second-order smoothness assumption by this new term
finally yields our sought Energy Functional

Ef (u, A,B) =

∫
Ω

(
DF

f (u) + α
(
‖A−∇u‖22 + α

(
‖B −∇A‖22 + α SG

Ψ(B)
)))

dx

Again we can verify that the minimiser (u, A,B) meets our requirements we stated
earlier:

1. u fulfills a given Data Term

2. A and ∇u are similar

3. ∇A and B are similar

4. B has a first-order smoothness

This modelling approach is now very motivating. We used the same approach that was
used to create a second-order assumption to model a third-order one for the solution u.
Of course now the question occurs if this process can be extended to create Smoothness
Terms of arbritrary order.

In order to investigate this question we first introduce a new notation for our displace-
ment field:

• A1 := u
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Then we consider our Energy Functional from the previous chapter that uses a first-order
Smoothness Term:

Ef (A1) =

∫
Ω

(
DF

f (A1) + α SG
Ψ(A1)

)
dx

Next we again change the notation:

• A2 := u

• A1 := A

in order to rewrite the Energy Functional from [13] that introduced a second-order
smoothness assumption:

Ef (A1, A2) =

∫
Ω

(
DF

f (A2) + α
(
‖A1 −∇A2‖22 + α SG

Ψ(A2)
))

dx

And finally we alter the notation for the last time:

• A3 := u

• A2 := A

• A1 := B

for rewritting our previous Energy Functional that we modelled to use a third-order
Smoothness Term for the Displacement Field:

Ef (A1, A2, A3) =

∫
Ω

(
DF

f (A3) + α
(
‖A2 −∇A3‖22 + α

(
‖A1 −∇A2‖22 + α SG

Ψ(A1)
)))

dx

By taking now a very close look at these functionals we recognise the following pattern:

Ef (Λ) =

∫
Ω

(
DF

f (An) + α Mn
Ψ(Λ)

)
dx

with

Mk
Ψ :=

S
G
Ψ(Ak) if k = 1(
‖Ak−1 −∇Ak‖22 + α Mk−1

Ψ (Λ)

)
else

where

• Λ =
⋃n

k=1A
k is a set of tensor-valued functions

• α > 0 as always

• and n represents the order of the smoothness assumption.
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Furthermore we observed that the structure of Ak for k < n was entirely determined by
Ak+1 where Ak had to share the following properties with ∇Ak+1:

• The Index Set Idx(∇Ak+1),

• the order ord(∇Ak+1)

• and the entry amount |Idx(∇Ak+1)|

For the Displacement Field An, however, the structure was explicitly given:

• ord(An) = 1

• Idx(An) = {1, 2}

• |Idx(An)| = 2 entries

Thus we see that the structure of all other tensors is implicitly determined by the Dis-
placement Field An. As applying the ∇-operator increases the order by 1 and doubles
the entries we have for k < n:

• ord(Ak) = ord(Ak+1) + 1 = ord(An) + n− k = n− k + 1

• Idx(Ak) = Idx(Ak+1)×{1, 2} = Idx(An)×
n−k times︷ ︸︸ ︷

{1, 2} × . . .× {1, 2} =

n−k+1 times︷ ︸︸ ︷
{1, 2} × . . .× {1, 2}

• |Idx(Ak)| = 2 · 2n−k entries

As usual we demand Ak to be defined on Ω, to have a bounded co-domain and to be
twice continuously differentiable.

All in all we see that this is an Energy Functional that uses a recursively defined
Smoothness Term Mn

Ψ(Λ) that allows to adjust the order of the smoothness by changing
the single parameter n. This implies that Mk

Ψ(Λ) is a k-th order smoothness assumption
for Ak.

Let us now verify this observation by using an inductive reasoning.

Base Case: m = 1
If we set k = 1 we arrive at

M1
Ψ(Λ) = SG

Ψ(A1)

which is by construction a first-order smoothness assumption for A1. Thus for
k = 1 the observation holds true.

Inductive Step: (m− 1)→ m
Here we assume that Mm−1

Ψ (Λ) represents a smoothness term with order m−1 for
Am−1 and that m− 1 < n. By setting now k = m− 1 we get the term

Mm
Ψ (Λ) =

(
‖Am−1 −∇Am‖22 + α Mm−1

Ψ (Λ)

)
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Let us now first construct the energy

Em−1(Am−1) =

∫
Ω

(
‖Am−1 −∇Am‖22 + α Mm−1

Ψ (Λ)

)
dx

that we want to minimise with respect to Am−1.2 Like before we can identify the
following properties of the minimiser:

• Am−1 is similar to ∇Am in the squared Generalised Frobenius Norm

• Am−1 has a m− 1-th-order smoothness

Now we minimise the same energy with respect to Am and discover the property
of the minimiser:

• ∇Am is similar to Am−1 in the squared Generalised Frobenius Norm

We remember that Am−1 has a m−1-th-order smoothness. This means that ∇Am

should also obtain this property because of the similarity contraint, which in turn
will cause Am to have a m-th order smoothness. This concludes the Inductive
Step.

Thus we see that our observation was correct: Mk
Ψ(Λ) is a k-th order smoothness as-

sumption for Ak. Moreover this smoothness may be

• homogeneous and isotropic if Ψ = ΨWT

• or piecewise and anisotropic if Ψ = ΨC

Furthermore we discovered in the run of the inductive reasoning an interesting feature
of this approach: We saw in the Inductive Step that Am−1 should be similar to ∇Am,
which means that the tensor Am−1 should contain estimates of the first-order derivatives
of Am. Let us now investigate the contents of Am: Here we distinguish between two
cases:

1. m = n, then we have that Am is the Displacement Field, that is, the part of
the solution that directly interacts with the given data. This implies that Am−1

contains an estimate of the first-order derivatives of the Displacement Field.

2. m < n, then we have that Am is an estimate of the first-order derivatives of Am+1.
But this means that Am−1 is a coarse estimate of the second-order derivatives of
Am+1.

By taking into account this observation we find the following connection between the
tensors Ak:

• An is the Displacement Field

• An−1 is an estimate of the first-order derivatives of the Displacement Field

2Thus we are again holding the other parts of the solution fixed.
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• An−2 is an estimate of the second-order derivatives of the Displacement Field

• ...

• A1 = An−(n−1) is an estimate of the n−1-th-order derivatives of the Displacement
Field

Thus we can conclude that we derived a Smoothness Term for an Optic Flow Estima-
tion that

• allows to set the smoothness order by a single parameter n > 0

• and estimates besides the Displacement Field also derivatives of up to n − 1-th
order of it if n > 1

We realise that we can also use it for Variational Image Restoration:

Ef (Λ) =

∫
Ω

(
DI

f (An) + α Mn
Ψ(Λ)

)
dx

with

Mn
Ψ :=

S
G
Ψ(Ak) if k = 1(
‖Ak−1 −∇Ak‖22 + α Mk−1

Ψ (Λ)

)
else

where

• An is now scalar-valued as it represents the wanted denoised image

• DI
f (An) is our Data Term for Variational Image Restoration we modelled in the

previous chapter:

DI
f (An) = (An − f)2

• and f is now a gray-value image that needs only to be continuous like in chapter 1

However, we discover that the structure of Ak with k ∈ [1, n] changes:

• For An we have

– An is scalar-valued and thus ord(An) = 0

– An does not use any indexes, so we have Idx(An) = ∅
– An has only one entry

• For Ak with k ∈ [1, n− 1] we get:

– ord(Ak) = ord(Ak+1) + 1 = ord(An) + n− k = n− k

– Idx(Ak) = Idx(Ak+1)×{1, 2} = Idx(An)×
n−k times︷ ︸︸ ︷

{1, 2} × . . .× {1, 2} =

n−k times︷ ︸︸ ︷
{1, 2} × . . .× {1, 2}
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– |Idx(Ak)| = 1 · 2n−k entries

Here we saw again how the structure of Ak with k 6= n is implicitly determined by the
solution part An that interacts directly with the Data Term.

Moreover we find that for n = 1 we have the special case of the Smoothness Term: It
is

• homogeneous and isotropic if Ψ = ΨWT

• piecewise and isotropic if Ψ = ΨC instead of anisotropic as in the remaining cases.

We conclude that we succeeded in modelling a new type of Smoothness Term that
on the one hand allows to set the order of the smoothness assumption in a flexible way
by changing a single parameter n. On the other hand it simultaneously estimates the
solution An and its derivatives of up to order n− 1 if n > 1. Moreover we see that the
new approaches degenerate to our basic functionals we derived in the first chapter if we
set n = 1. In the following we will refer to these new methods as the Generic Optic Flow
Estimation and the Generic Image Restoration.

However, we remember that we need to derive the Euler-Lagrange Equations in order
to obtain a minimiser. Therefore we will next explore how this equations and the arising
Boundary Conditions look like: We will first investigate the case of Generic Image
Restoration. Then we proceed with the case of Generic Optic Flow Estimation where we
will use like above the linearised version of our Robust Data Term. Finally we will have
a look at the Generic Optic Flow Estimation where we are using the Warping Strategy
to find a minimiser of the functional where the Data Term was not linearised.

2.5 Euler-Lagrange Equations for Generic Image Restoration

By looking at the functional for our Generic Image Restoration

Ef (Λ) =

∫
Ω

(
DI

f (An) + α Mn
Ψ(Λ)

)
︸ ︷︷ ︸

=F

dx

we see that the integrand F depends this time on each Ak ∈ Λ and the first-order deriva-
tives of its entries in x- and y-direction. This observation enables us to state a general
version of the Euler-Lagrange Equations and the associated Boundary Conditions:

For each Ak
p with p ∈ Idx(Ak) and k ∈ [1, n] we have the equation

0 = FAk
p
− ∂

∂x
FAk

px
− ∂

∂y
FAk

py

and the Boundary Condition

n>

(
FAk

px

FAk
py

)
= 0
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Now we will compute these equations and Boundary Conditions of the functional for
different values of n.

By setting n = 1 we receive our functional from the first chapter3:

Ef (A1) =

∫
Ω

(
DI

f (A1) + α SG
Ψ(A1)

)
dx

The Euler-Lagrange Equation is given by

• For A1: 4

0 = A1 − f + α div

(
DG

Ψ(A1) ∇A1

)
This is our first type of Euler-Lagrange Equation:

1. Equations that are generated by the participation of Ak in the Data Term
and the Smoothness Term

The Boundary Condition is given by

• For A1:

n>∇A1 = 0

We also found our first type of Boundary Condition:

1. Boundary Conditions originating from the Smoothness Term

We continue by setting n = 2 and arrive at the functional:

Ef (A1, A2) =

∫
Ω

(
DI

f (A2) + α
(
‖A1 −∇A2‖+ α SG

Ψ(A1)
))

dx

Again we compute first the Euler-Lagrange Equations:

• For A1:

0 = A1
1 −A2

x − α div

(
DG

Ψ(A1)∇A1
1

)
0 = A1

2 −A2
y − α div

(
DG

Ψ(A1)∇A1
2

)
We discovered a new type of Euler-Lagrange Equation:

2. Equations generated by the participation of Ak in the Agreement Term and
the Smoothness Term

Moreover we find that this type seems to replace the first one if n > 1 is used,
which means that the first type is a special case that only occurs for n = 1.

3Note that we are using a different notation this time.
4Remember that An is scalar-valued and has therefore an empty Index Set.
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• For A2 we get:

0 = A2 − f + α
(
A1

1x −A
2
xx +A1

2y −A
2
yy

)
Again we found a new type of Euler-Lagrange Equation:

3. Equations that are created by the participation of Ak in the Data Term and
the Agreement Term

Now we have a look at the Boundary Conditions:

• For A1:

n>∇A1
1 = 0

n>∇A1
2 = 0

• For A2:

n>
(
A1

1 −A2
x

A1
2 −A2

y

)
= 0

Also a new type of Boundary Condition is produced by this functional:

2. Boundary Conditions generated by the Agreement Term

Informally this Boundary Condition mirrors the assumption that the respective
parts of the Agreement Term are always fulfilled across the boundary. This actually
reminds us of the Boundary Conditions that are produced by the Smoothness Term,
which express the assumption that the smoothness is automatically fulfilled across
the boundary.

Again we increase n to n = 3 and obtain the functional:

Ef (A1, A2, A3) =

∫
Ω

(
DI

f (A3) + α

(
‖A2 −∇A3‖+ α

(
‖A1 −∇A2‖+ α SG

Ψ(A1)

)))
dx

Once again we focus first on the Euler-Lagrange Equations:

• For A1:

0 = A1
11 −A2

1x − α div

(
DG

Ψ(A1)∇A1
11

)
0 = A1

12 −A2
1y − α div

(
DG

Ψ(A1)∇A1
12

)
0 = A1

21 −A2
2x − α div

(
DG

Ψ(A1)∇A1
21

)
0 = A1

22 −A2
2y − α div

(
DG

Ψ(A1)∇A1
22

)
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• For A2:

0 = A2
1 −A3

x + α
(
A1

11x −A
2
1xx +A1

12y −A
2
1yy

)
0 = A2

2 −A3
y + α

(
A1

21x −A
2
2xx +A1

22y −A
2
2yy

)
So we discovered a fourth type of Euler-Lagrange Equation:

4. Equations arising from the participation of Ak in two different Agreement
Terms

We realise that this type of equation might occur very often if the amount of
Agreement Terms increases, which makes this equation type the most common
one for high values of n.

• For A3:

0 = A3 − f + α
(
A2

1x −A
3
xx +A2

2y −A
3
yy

)
For the Boundary Conditions we obtain:

• For A1:

n>∇A1
11 = 0

n>∇A1
12 = 0

n>∇A1
21 = 0

n>∇A1
22 = 0

• For A2:

n>
(
A1

11 −A2
1x

A1
12 −A2

1y

)
= 0

n>
(
A1

21 −A2
2x

A1
22 −A2

2y

)
= 0

• For A3:

n>
(
A2

1 −A3
x

A2
2 −A3

y

)
= 0

Thus we see that this time no new Boundary Conditions emerge.

Let us now consider the functional for n = 4:

Ef (A1, A2, A3, A4) =∫
Ω

(
DI

f (A4) + α
(
‖A3 −∇A4‖+ α

(
‖A2 −∇A3‖+ α

(
‖A1 −∇A2‖+ α SG

Ψ(A1)
))))

dx

Like usual we start by investigating the Euler-Lagrange Equations:
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• For A1:

0 = A1
111 −A2

11x − α div

(
DG

Ψ(A1)∇A1
111

)
0 = A1

112 −A2
11y − α div

(
DG

Ψ(A1)∇A1
112

)
0 = A1

121 −A2
12x − α div

(
DG

Ψ(A1)∇A1
121

)
0 = A1

122 −A2
12y − α div

(
DG

Ψ(A1)∇A1
122

)
0 = A1

211 −A2
21x − α div

(
DG

Ψ(A1)∇A1
211

)
0 = A1

212 −A2
21y − α div

(
DG

Ψ(A1)∇A1
212

)
0 = A1

221 −A2
22x − α div

(
DG

Ψ(A1)∇A1
221

)
0 = A1

222 −A2
22y − α div

(
DG

Ψ(A1)∇A1
222

)

• For A2:

0 = A2
11 −A3

1x + α
(
A1

111x −A
2
11xx +A1

112y −A
2
11yy

)
0 = A2

12 −A3
1y + α

(
A1

121x −A
2
12xx +A1

122y −A
2
12yy

)
0 = A2

21 −A3
2x + α

(
A1

211x −A
2
21xx +A1

212y −A
2
21yy

)
0 = A2

22 −A3
2y + α

(
A1

221x −A
2
22xx +A1

222y −A
2
22yy

)

• For A3:

0 = A3
1 −A4

x + α
(
A2

11x −A
3
1xx +A2

12y −A
3
1yy

)
0 = A3

2 −A4
y + α

(
A2

21x −A
3
2xx +A2

22y −A
3
2yy

)
• For A4:

0 = A4 − f + α
(
A3

1x −A
4
xx +A3

2y −A
4
yy

)
So this time we observed also no new type of Euler-Lagrange Equation. As we are
again only using Agreement Terms and the Smoothness Term we will not encounter new
Boundary Conditions.
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We observe that increasing n even further will not produce new types of Euler-
Lagrange Equations because no new term interactions are possible. Hence, we will
now briefly summerise our findings:

First we focus on the Euler-Lagrange Equation types where we identified four versions:

1. If Ak participates in both the Data Term and the Smoothness Term we obtain a
Euler-Lagrange Equation with the structure

0 = Ak − f + α div
(
DG

Ψ(Ak)∇Ak
)

We have determined that this equation only occurs in the special case of n = 1 for
A1.

2. Equations created by the participation of Ak in the Data Term and in the Agree-
ment Term:

0 = Ak − f + α
(
Ak−1

1x
−Ak

xx +Ak−1
2y
−Ak

yy

)
This type of equation only occurs in the case of An for n > 1.

3. Two equations that are created by the participation of Ak in the Agreement Term
and in the Smoothness Term:

0 = Ak
p1 −Ak+1

px − α div
(
DG

Ψ(Ak)∇Ak
p1

)
0 = Ak

p2 −Ak+1
py − α div

(
DG

Ψ(Ak)∇Ak
p2

)
where p ∈ Idx(Ak+1). We always encounter this type in the case of A1 for n > 1.

4. Two equations that are created by the participation of Ak in two different Agree-
ment Terms

0 = Ak
p1 −Ak+1

px + α
(
Ak−1

p11x
−Ak

p1xx +Ak−1
p12y
−Ak

p1yy

)
0 = Ak

p2 −Ak+1
py + α

(
Ak−1

p21x
−Ak

p2xx +Ak−1
p22y
−Ak

p2yy

)
where p ∈ Idx(Ak+1).

This type of equation occurs for Ak with 1 < k < n and n > 2, thus making it the
most common one for high values of n.

In the case of Boundary Conditions we encountered two types:

1. Boundary Conditions produced by the Smoothness Term:

n>∇Ak
p = 0

where p ∈ Idx(Ak). We have seen that these only occur for A1.
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2. Boundary Conditions originating from the Agreement Term:

n>

(
Ak−1

p1 −Ak
px

Ak−1
p2 −Ak

py

)
= 0

where p ∈ Idx(Ak). These occur for Ak for 1 < k ≤ n if n > 1.

Thus we are finished with classifying the Euler-Lagrange Equations and Boundary
Conditions belonging to our Generic Image Restoration. These will play a fundamental
role in the next chapter where we will discretise these equations in order to find a
minimiser in a discrete setting.

2.6 Euler-Lagrange Equations for Generic Optic Flow
Estimation without Warping

Now we turn to the Optic Flow Estimation that uses our new term. The Energy Func-
tional is given by:

Ef (Λ) =

∫
Ω

(
DF

f (An) + α Mn
Ψ(Λ)

)
︸ ︷︷ ︸

=F

dx

We notice that once again the integrand F depends on Ak ∈ Λ and the first-order
derivatives of its entries in x- and y-direction. This means we can use the same general
version of the Euler-Lagrange Equations and the associated Boundary Conditions we
encountered in the previous section:

For each Ak
p with p ∈ Idx(Ak) and k ∈ [1, n] we have the equation

0 = FAk
p
− ∂

∂x
FAk

px
− ∂

∂y
FAk

py

and the Boundary Condition

n>

(
FAk

px

FAk
py

)
= 0

Luckily this finding implies that we will encounter the same types of Euler-Lagrange
Equations and Boundary Conditions we already saw in the previous section.

Thus we have as Boundary Conditions again the two types:

1. Boundary Conditions produced by the Smoothness Term:

n>∇Ak
p = 0

where p ∈ Idx(Ak). We have seen that these only occur for A1.
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2. Boundary Conditions originating from the Agreement Term:

n>

(
Ak−1

p1 −Ak
px

Ak−1
p2 −Ak

py

)
= 0

where p ∈ Idx(Ak). These occur for Ak for 1 < k ≤ n if n > 1.

By inspecting the Euler-Lagrange Equation types

1. Equations created by the participation of An in both the Data Term and the
Smoothness Term

2. Equations created by the participation of An in the Data Term and in the Agree-
ment Term

3. Equations that are created by the participation of Ak in the Agreement Term and
in the Smoothness Term

4. Equations that are created by the participation of Ak in two different Agreement
Terms

we realise that the types 1 and 2 will have a different structure in this case because on
the one hand An is vector-valued and on the other hand we have a different Data Term
this time.

Thus in order to obtain the structure of these types we will inspect the functionals for
n = 1 and n = 2.

We start with n = 1 and obtain the energy that corresponds to our usual Optic Flow
Estimation approach we modelled in the first chapter:

Ef (A1) =

∫
Ω

(
DF

f (A1) + α SG
Ψ(A1)

)
dx

For the Euler-Lagrange Equations we get:

• For A1: 5

0 = Ĵ11 A
1
1 + Ĵ12 A

1
2 + Ĵ13 − α div

(
DG

Ψ(A1)∇A1
1

)
0 = Ĵ12 A

1
1 + Ĵ22 A

1
2 + Ĵ23 − α div

(
DG

Ψ(A1)∇A1
2

)
We see that this time we obtain two equations due to A1 being vector-valued.
Furthermore we see that the contribution from the Data Term is different from the
one in the Image Restoration case.

5Remember that unlike in the Image Restoration Case An is this time vector-valued.
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Let us now turn to the functional where n = 2, which is actually the approach by [13]:

Ef (A1, A2) =

∫
Ω

(
DF

f (A2) + α
(
‖A1 −∇A2‖22 + α SG

Ψ(A1)
))

dx

Again we derive the Euler-Lagrange Equations by using our general formula:

• For A2:

0 = Ĵ11 A
2
1 + Ĵ12 A

2
2 + Ĵ13 + α

(
A1

11x −A
2
1xx +A1

12y −A
2
1yy

)
0 = Ĵ12 A

2
1 + Ĵ22 A

2
2 + Ĵ23 + α

(
A1

21x −A
2
2xx +A1

22y −A
2
2yy

)
This is the new variant of the second equation type. Again we see that we obtain
two equations this time.

• For A1:

0 = A1
11 −A2

1x − α div

(
DG

Ψ(A1) ∇A1
11

)
0 = A1

12 −A2
1y − α div

(
DG

Ψ(A1) ∇A1
12

)
0 = A1

21 −A2
2x − α div

(
DG

Ψ(A1) ∇A1
21

)
0 = A1

22 −A2
2x − α div

(
DG

Ψ(A1) ∇A1
22

)
These are the equations that are created by the participation of Ak in the Agree-
ment Term and the Smoothness Term. As suspected in the beginning we see that
this type of equation does not change.

Thus we are finally ready to summarise our findings about the Euler-Lagrange Equa-
tions and the Boundary Conditions that arise in the Generic Optic Flow approach:

For the Euler-Lagrange Equations we have again 4 types where only the first two differ
from the ones we have in the Image Restoration case:

1. If Ak participates in both the Data Term and the Smoothness Term we obtain this
time two Euler-Lagrange Equations with the structure

0 = Ĵ11 A
k
1 + Ĵ12 A

k
2 + Ĵ13 − α div

(
DG

Ψ(Ak) ∇Ak
1

)
0 = Ĵ12 A

k
1 + Ĵ22 A

k
2 + Ĵ23 − α div

(
DG

Ψ(Ak) ∇Ak
2

)
Once again these equations only occur in the special case of n = 1 for A1.
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2. The two equations that are created by the participation of Ak in the Data Term
and in the Agreement Term:

0 = Ĵ11 A
k
1 + Ĵ12 A

k
2 + Ĵ13 + α

(
Ak−1

11x
−Ak

1xx +Ak−1
12y
−Ak

1yy

)
0 = Ĵ12 A

k
1 + Ĵ22 A

k
2 + Ĵ23 + α

(
Ak−1

21x
−Ak

2xx +Ak−1
22y
−Ak

2yy

)
These equations only occur in the case of An for n > 1.

3. Two equations that are created by the participation of Ak in the Agreement Term
and in the Smoothness Term:

0 = Ak
p1 −Ak+1

px − α div
(
DG

Ψ(Ak) ∇Ak
p1

)
0 = Ak

p2 −Ak+1
py − α div

(
DG

Ψ(Ak) ∇Ak
p2

)
where p ∈ Idx(Ak+1). We always encounter this type in the case of A1 for n > 1.

4. Two equations that are created by the participation of Ak in two different Agree-
ment Terms

0 = Ak
p1 −Ak+1

px + α
(
Ak−1

p11x
−Ak

p1xx +Ak−1
p12y
−Ak

p1yy

)
0 = Ak

p2 −Ak+1
py + α

(
Ak−1

p21x
−Ak

p2xx +Ak−1
p22y
−Ak

p2yy

)
where p ∈ Idx(Ak+1).

This type of equation occurs for Ak with 1 < k < n and n > 2, thus making it also
in the Optic Flow case the most common one for high values of n.

In the case of Boundary Conditions we have the same two types as in the Image
Restoration case:

1. Boundary Conditions produced by the Smoothness Term:

n>∇Ak
p = 0

where p ∈ Idx(Ak). We have seen that these only occur for A1.

2. Boundary Conditions originating from the Agreement Term:

n>

(
Ak−1

p1 −Ak
px

Ak−1
p2 −Ak

py

)
= 0

where p ∈ Idx(Ak). These occur for Ak for 1 < k ≤ n if n > 1.

Hence we now have also access to the Euler-Lagrange Equations and Boundary Con-
ditions that belong to the Generic Optic Flow approach. However, we remember that
we used the linearised version of our Robust Data Term for modelling the Energy Func-
tional. In the next chapter we will use the Robust Data Term that was not linearised
and explore how the Euler-Lagrange Equations and Boundary Conditions look like if we
are applying the Warping Strategy. These are actually the last ingredients we require
before we can get started with the discretisaion in chapter 3.
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2.7 Euler-Lagrange Equations for Optic Flow Estimation with
Warping

We now combine our new Optic Flow approach with our Robust Data Term that was
not linearised and obtain the functional:

Ef (Λ) =

∫
Ω

(
D̂F

f (An) +Mn
Ψ(Λ)

)
dx

Like in chapter 1 we now use the Warping Strategy and consider our image sequence
f on different scales:

• f1 is the original data

• fs+1 is the data on a smaller scale than f s

• fmax is the data on the smallest scale

In order to allow the linearisation of the Data Term we again split the Displacement
Field on the current scale s into a known part An,s and an unknown part dAn,s.6 For
Completeness we note that dAn,s and An,s use the same Index Set.

This implies that our solution on the current scale s will now have the structure
Λs :=

⋃n−1
i=1 A

i,s ∪ dAn,s where Ak,s represents the tensor Ak on the current scale s and
dAn,s is the unknown part of the Displacement Field.

Similar to our method in chapter 1 we will use the following approach to obtain a
minimiser Λ of our functional: We start at the scale s = max and repeat the following
steps until we reach the scale s = 1:

1. Obtain our solution Λs on the current scale by minimising the Energy Functional

Ef (Λs) =

∫
Ω

(
DF

fs(dAn,s) + α Mn,s
Ψ (Λs)

)
︸ ︷︷ ︸

=F

dx

with

Mk,s
Ψ (Λs) :=



SG
Ψ(Ak,s + dAk,s) , n = 1, k = 1

SG
Ψ(Ak,s) , n 6= 1, k = 1(
‖Ak−1,s −∇(Ak,s + dAk,s)‖22 + α Mk−1,s

Ψ (Λs)

)
, n 6= 1, k = n(

‖Ak−1,s −∇(Ak,s)‖22 + α Mk−1,s
Ψ (Λs)

)
, 1 < k < n

where

• Ωk again represents the domain of the current scale

6 Note that we do not have to split the remaining parts of our solution as these do not directly interact
with the Data Term.

63



• DF
fs is our Robust Data Term that is this time linearised like in chapter 1 by

using the images fs(x, y, t) and f s(x+An,s
1 , y +An,s

2 , t+ 1).

• and An,s is like stated above not part of the solution Λs as it is already known

Similar to our previous cases the integrand F depends on Ak,s for k ∈ [1, n−1], on
dAn,s and on the derivatives of their entries. Thus we can use our previous general
formulas for the Euler-Lagrange Equations and Boundary Conditions:

For each Cp with p ∈ Idx(C) and C ∈ Λs we have

0 = FCp −
∂

∂x
FCpx

− ∂

∂y
FCpy

and the Boundary Condition

n>
(
FCpx

FCpy

)
= 0

2. Compute An,s−1 by taking the sum An,s + dAn,s and by transferring the result to
the next finer scale. 7

3. Proceed with the next scale by setting s = s− 1

When we finally have reached the finest scale s = 1 we again perform the first step to
obtain Λ1. Then we compute our final solution as follows:

• For the Displacement Field we compute like in the first chapter the sum of An,1

and dAn,1:

A1 = An,1 + dAn,1

• For the remaining parts Ak with k 6= n we have

Ak = Ak,1

Let us now investigate the Euler-Lagrange Equations and Boundary Conditions gen-
erated by this functional. Like in the previous sections we use the general formulas to
obtain the types that occur.8

For the Euler-Lagrange Equations we have:

1. If dAk,s participates in both the Data Term and the Smoothness Term we obtain
again two Euler-Lagrange Equations with a different structure than before

0 = Ĵ s
11 dA

k,s
1 + Ĵ s

12 dA
k,s
2 + Ĵ s

13 − α div

(
DG

Ψ(Ak,s + dAk,s) ∇(Ak,s
1 + dAk,s

1 )

)
0 = Ĵ s

12 dA
k,s
1 + Ĵ s

22 dA
k,s
2 + Ĵ s

23 − α div

(
DG

Ψ(Ak,s + dAk,s) ∇(Ak,s
2 + dAk,s

2 )

)
where

7 In the discrete case we will also transfer the remaining solution parts to the next finer scale.
8 These derivations work analogously to the previous cases and are omitted this time for the sake of

brevity.
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• the notation Ĵ s
p with p ∈ Idx(Ĵs) again indicates that the Motion Tensor

entry is derived by using the images fs(x+Ak,s
1 , y+Ak,s

2 , t+1) and fs(x, y, t)
and performing only a linearisation in the x− and y-direction.

• and the Diffusion Tensor depends on both the known part Ak,s and the un-
known part dAk,s of the Displacement Field.

Once again these equations only occur in the special case of n = 1 for dA1,s.

2. The two equations that are created by the participation of dAk,s in the Data Term
and in the Agreement Term that also show a different structure than in the usual
Generic Optic Flow case:

0 = Ĵ s
11 dA

k,s
1 + Ĵ s

12 dA
k,s
2 + Ĵ s

13 + α
(
Ak−1,s

11x
−Ak,s

1xx
− dAk,s

1xx
+Ak−1,s

12y
−Ak,s

1yy
− dAk,s

1yy

)
0 = Ĵ s

12 dA
k,s
1 + Ĵ s

22 dA
k,s
2 + Ĵ s

23 + α
(
Ak−1,s

21x
−Ak,s

2xx
− dAk,s

2xx
+Ak−1,s

22y
−Ak,s

2yy
− dAk,s

2yy

)
These equations only occur in the case of dAn,s for n > 1.

3. Two equations that are created by the participation of Ak,s in the Agreement Term
and in the Smoothness Term. Here we have to distinguish between two cases:

• For n = 2 we have:

0 = Ak,s
p1 −A

k+1,s
px − dAk+1,s

px − α div
(
DG

Ψ(Ak,s) ∇Ak,s
p1

)
0 = Ak,s

p2 −A
k+1,s
py − dAk+1,s

py − α div
(
DG

Ψ(Ak,s) ∇Ak,s
p2

)
• Otherwise the equations have the usual structure:

0 = Ak,s
p1 −A

k+1,s
px − α div

(
DG

Ψ(Ak,s) ∇Ak,s
p1

)
0 = Ak,s

p2 −A
k+1,s
py − α div

(
DG

Ψ(Ak,s) ∇Ak,s
p2

)
where p ∈ Idx(Ak+1,s). We always encounter this type in the case of A1,s for n > 1.

4. Two equations that are created by the participation of Ak,s in two different Agree-
ment Terms. Again we have to pay attention to two different cases:

• For n > 2 we get in the case of k = n− 1:

0 = Ak,s
p1 −A

k+1,s
px − dAk+1,s

px + α
(
Ak−1,s

p11x
−Ak,s

p1xx
+Ak−1,s

p12y
−Ak,s

p1yy

)
0 = Ak,s

p2 −A
k+1,s
py − dAk+1,s

py + α
(
Ak−1,s

p21x
−Ak,s

p2xx
+Ak−1,s

p22y
−Ak,s

p2yy

)
• Otherwise we obtain our familiar equations:

0 = Ak,s
p1 −A

k+1,s
px + α

(
Ak−1,s

p11x
−Ak,s

p1xx
+Ak−1,s

p12y
−Ak,s

p1yy

)
0 = Ak,s

p2 −A
k+1,s
py + α

(
Ak−1,s

p21x
−Ak,s

p2xx
+Ak−1,s

p22y
−Ak,s

p2yy

)
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where p ∈ Idx(Ak+1,s).

This type of equation again occurs for Ak,s with 1 < k < n and n > 2.

And finally we have a look at the Boundary Conditions:

1. Boundary Conditions produced by the Smoothness Term: Once again we have to
consider two cases:

• For k = n = 1 we have:

n>
(
∇Ak,s

p +∇dAk,s
p

)
= 0

• Otherwise:

n>∇Ak,s
p = 0

where p ∈ Idx(Ak,s). These only occur for A1,s or if n = 1 for dA1,s.

2. Boundary Conditions originating from the Agreement Term:

• For k = n where n > 1:

n>

(
Ak−1,s

p1 −Ak,s
px − dA

k,s
px

Ak−1,s
p2 −Ak,s

py − dA
k,s
py

)
= 0

• Otherwise:

n>

(
Ak−1,s

p1 −Ak,s
px

Ak−1,s
p2 −Ak,s

py

)
= 0

where p ∈ Idx(Ak,s)9. These occur for Ak,s for 1 < k ≤ n and n > 1. They emerge
for dAn,s if n > 1.

This concludes our classification of the Euler-Lagrange Equations and Boundary Con-
ditions in this case as well.

9Note that dAn,s and An,s have the same Index Set.
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3 Discrete Aspects

Until now we only worked in a continuous setting, that is, we used functions that were
defined on a continuous domain Ω. Roughly speaking that means we were able to
evaluate these functions everywhere inside this domain. Real-World Data on the other
hand is unfortunately of discrete nature. This implies for example that we can only
access the gray values of a given image at prescribed locations, the so-called sample
locations. As we are planning to perform experiments with some discrete data in the
next chapter we have to derive discrete versions of our models we introduced in the
previous chapter.

We will start by discretising our domain itself and by introducing some basic notation.
After that we will aim at finding discrete versions of our Euler-Lagrange Equations. Here
will first deal with the ones in the Generic Image Restoration case. Then we proceed
with equations of the Generic Optic Flow approach without Warping before we finally
investigate the case of Optic Flow Estimation where we are using the Warping Strategy.
During this discretisaion process we will observe that the discretisation of the Euler-
Lagrange Equations will lead to large possibly nonlinear systems of equations that we
have to solve in order to obtain a minimiser. Here we will employ a fixed-point iteration.
Finally we will discuss some details of the Warping Strategy in the discrete setting.

3.1 Basic Discretisations and Notation

First we will consider our domains we used in the run of this work. In the Image
Restoration case we worked with a spatial domain Ω ⊂ R2 whereas in the Optic Flow
case we extended it with a temporal component: Ω×R+

0 . We first deal with the spatial
one.

As our domain Ω is rectangular and bounded we can state explicitly its boundary
coordinates:

• (a, c) is the coordinate of the lower left boundary point

• (b, d) is the coordinate of the upper right boundary point

Thus we have Ω =]a, b[ × ]c, d[ 1. We discretise now Ω on a regular grid, where we
take N samples in x-direction and M samples in y-direction. Thus we can compute the
distance between two sample locations:

• hx := b−a
N is the distance between two samples along the x-axis

1Note that we have to use open intervals as our domain is open.
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• hy := d−c
M is the distance between two samples along the y-axis

For simplicity we now assume that h = hx = hy.
Hence we can now define the coordinates of our sample locations:

xi,j := (a+ (i− 1

2
)h, c+ (j − 1

2
)h)

with i ∈ [1, N ] and j ∈ [1,M ]. We see that we are using a displacement of 1
2h in order

to avoid having sample locations on the boundaries2. In order to simplify things even
more we will additionally assume that a = c = 0 and we arrive at

xi,j = ((i− 1

2
)h, (j − 1

2
)h)

Now that we know the locations of our sample points we can also evaluate expressions
g at these positions:

• [g]i,j ≈ g((i− 1
2)h, (j− 1

2)h) is the approximation of the expression g at the sample
location xi,j .

If g is for example our gray-value image f then [f ]i,j will be an approximation of the
gray-value at the sample location xi,j .

Let us now focus on the spatio-temporal domain Ω × R+
0 . Here we will start by

replacing the unbounded temporal part of the domain by a bounded one: Ω×]0, e[. By
performing now the discretisation like before we arrive at the spatio-temporal sample
locations

xi,j,l := ((i− 1

2
)h, (j − 1

2
)h, (l − 1

2
)ht)

with i ∈ [1, N ], j ∈ [1,M ] and l ∈ [1, L] where L denotes our number of samples in the
t-direction. It is common to set ht = 1 ( cf. [9]) in this case and thus:

xi,j,l := ((i− 1

2
)h, (j − 1

2
)h, l − 1

2
)

Again we introduce a notation for the evaluation of expressions g at these locations:

[g]i,j,l ≈ g((i− 1

2
)h, (j − 1

2
)h, l − 1

2
)

So if g is our gray-value image sequence f then [f ]i,j,l will be an approximation of the
gray-value at the sample location xi,j,l. We observe that if we hold l fixed we will gain
access to the individual frames of our image sequence.

In the following we will assume that each frame of our sequence was presmoothed by
applying a Gaussian Convolution with standard deviation σ to the original frame.3

In the next section we will now discuss more advanced expressions that are evaluated
at the sample locations.

2Remember that Ω is open, thus the boundary does not belong to Ω.
3This improves the differentiability of our image frames in the discrete case.
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3.2 Advanced Discretisations

In the previous section we evaluated so far only relatively easy expressions on our dis-
cretised domains. Now we turn to more sophisticated expressions that on the one hand
involve derivatives of functions and on the other hand are subject to Boundary Condi-
tions.

Data Term Contribution

We will first focus on the contributions that are generated in the Euler-Lagrange Equa-
tions by the Data Term.

Let us to this end have a look at the first type of Euler-Lagrange Equations that arises
in the Generic Image Restoration setting:

0 = A1 − f︸ ︷︷ ︸
Data Term contribution

+α div

(
DG

Ψ(A1)∇A1

)

Here we can easily find a discrete version of the part originating from the Data Term by
applying our previous knowledge:[

A1 − f
]
i,j

=
[
A1
]
i,j
− [f ]i,j

Now we turn to the first type that emerges in the Generic Optic Flow case:

0 =

Data Term contribution︷ ︸︸ ︷
Ĵ11 A

1
1 + Ĵ12 A

1
2 + Ĵ13−α div

(
DG

Ψ(A1) ∇A1
1

)
0 = Ĵ12 A

1
1 + Ĵ22 A

1
2 + Ĵ23︸ ︷︷ ︸

Data Term contribution

−α div

(
DG

Ψ(A1) ∇A1
2

)

Thus we discover that we have to find discrete versions of the Motion Tensor entries in
this case. We remember that we are using a combination of the Brightness Constancy
Assumption and the Gradient Constancy Assumption to construct our Robust Data
Term. Their Motion Tensors are given by

JGCA =

fxxfxx + fxyfxy fxyfxx + fyyfxy fxtfxx + fytfyx
fxyfxx + fyyfxy fxyfxy + fyyfyy fxtfxy + fytfyy
fxtfxx + fytfyx fxtfxy + fytfyy fxtfxt + fytfyt


JBCA =

 f2
x fxfy fxft

fxfy f2
y fyft

fxft fyft f2
t


Hence, this time we are facing a more demanding task: We have to approximate deriva-
tives at given sample locations xi,j in our domain.

In the following we summarise the finite differences that we use to approximate the
arising derivatives.

69



For derivatives not including the temporal component we will use averaged central
differences from the two frames l and l + 1 that participate in the current motion esti-
mation:

[fx]i,j ≈
1

2

1

2h

1∑
i=0

(
[f ]i+1,j,l+i − [f ]i−1,j,l+i

)
[fy]i,j ≈

1

2

1

2h

1∑
i=0

(
[f ]i,j+1,l+i − [f ]i,j−1,l+i

)
[fxy]i,j ≈

1

2

1

4h2

1∑
i=0

((
[f ]i+1,j+1,l+i − [f ]i−1,j+1,l+i

)
−
(

[f ]i+1,j−1,l+i − [f ]i−1,j−1,l+i

))
[fxx]i,j ≈

1

2

1

h2

1∑
i=0

(
[f ]i+1,j,l+i − 2 [f ]i,j,l+i + [f ]i−1,j,l+i

)
[fyy]i,j ≈

1

2

1

h2

1∑
i=0

(
[f ]i,j+1,l+i − 2fi,j,l+i + fi,j−1,l+i

)
In order to approximate the derivatives including the temporal component we will

use central differences for the spatial components and simple forward differences for the
temporal component:

[ft]i,j ≈ [f ]i,j,l+1 − [f ]i,j,l

[fxt]i,j ≈
1

2h

((
[f ]i+1,j,l+1 − [f ]i−1,j,l+1

)
−
(

[f ]i+1,j,l − [f ]i−1,j,l

))
[fyt]i,j ≈

1

2h

((
[f ]i,j+1,l+1 − [f ]i,j−1,l+1

)
−
(

[f ]i,j+1,l − [f ]i,j−1,l

))
Thus we can now state our discrete versions of the Motion Tensors:

[JGCA]i,j =

[fxx]i,j [fxx]i,j [fxy]i,j [fxx]i,j [fxt]i,j [fxx]i,j
[fxy]i,j [fxx]i,j [fxy]i,j [fxy]i,j [fxt]i,j [fxy]i,j
[fxt]i,j [fxx]i,j [fxt]i,j [fxy]i,j [fxt]i,j [fxt]i,j


+

[fxy]i,j [fxy]i,j [fyy]i,j [fxy]i,j [fyt]i,j [fyx]i,j
[fyy]i,j [fxy]i,j [fyy]i,j [fyy]i,j [fyt]i,j [fyy]i,j
[fyt]i,j [fyx]i,j [fyt]i,j [fyy]i,j [fyt]i,j [fyt]i,j


[JBCA]i,j =


[
f2
x

]
i,j

[fx]i,j [fy]i,j [fx]i,j [ft]i,j
[fx]i,j [fy]i,j

[
f2
y

]
i,j

[fy]i,j [ft]i,j
[fx]i,j [ft]i,j [fy]i,j [ft]i,j

[
f2
t

]
i,j


Finally we obtain the discrete version of the Motion Tensor belonging to our Robust

Data Term by[
Ĵp

]
i,j
≈ Ψ′D

(
w>i,j [JBCA]i,j wi,j

) [
JBCAp

]
i,j

+ γ Ψ′D

(
w>i,j [JGCA]i,j wi,j

) [
JGCAp

]
i,j
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with p ∈ Idx(Ĵ).
We remember that in the Warping Strategy, however, we are using the frames fs(x, y, t)

and fs(x+ An,s
1 , y + An,s

2 , t+ 1 on the scale s where An,s is the known part of the Dis-
placement Field to compute the Motion Tensors. Here we will use the notation[

Ĵs
p

]
i,j

for the approximated Motion Tensor entries on the current scale.

Smoothness Term Contribution

By taking into account again the first type produced in the Optic Flow case

0 = Ĵ11 A
1
1 + Ĵ12 A

1
2 + Ĵ13 − α div

(
DG

Ψ(A1) ∇A1
1

)
0 = Ĵ12 A

1
1 + Ĵ22 A

1
2 + Ĵ23 − α div

(
DG

Ψ(A1) ∇A1
2

)
we see that the contribution of the Smoothness Term, however, poses again a problem:
We have to approximate derivatives on our discretised domain. Luckily expressions of
the form

div
(
DG

Ψ(A)∇Ap

)
where

• A is some tensor

• p ∈ Idx(A)

• DG
Ψ(A) is our well-known diffusion tensor with

DG
Ψ(A) = Ψ′

 ∑
p∈Idx(A)

∇Ap∇A>p


arise very often in the field of Image Processing ( cf. [9], [23], [18]) and thus discretisations
of such expressions are well researched.

A common strategy works as follows:

1. Find a suitable approximation of the Diffusion Tensor in the point xi,j :[
DG

ΨA
]
i,j

:=

(
ai,j bi,j
bi,j ci,j

)
2. Finally find an approximation of[

div
([
DG

Ψ(A)
]
i,j
∇Ap

)]
i,j
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We will first focus on the second case where we will restrict ourselves us to the usage
of so-called 9-point schemes: Here the above expression is approximated by using the
centre point xi,j and its surrounding 8 neighbors:[

div
([
DG

Ψ(A)
]
i,j
∇Ap

)]
i,j
≈

∑
(x̂,ŷ)∈N

[D]i,j (x̂, ŷ) [Ap]i+x̂,j+ŷ

where N := [−1, 1]× [−1, 1] denotes the set of the relative coordinates around the point
xi,j and [D]i,j : N → R is a so-called stencil containing the weights for [Ap]i,j and its 8
neighbors. It has the following structure:

[D]i,j (−1, 1) [D]i,j (0, 1) [D]i,j (1, 1)

[D]i,j (−1, 0) [D]i,j (0, 0) [D]i,j (1, 0)

[D]i,j (−1,−1) [D]i,j (0,−1) [D]i,j (1,−1)

But we discover one issue here: We remember that we have to respect the given Boundary
Conditions:

n>∇Ap = 0

Before we proceed we introduce the notation for the Characteristic Function χ in order
to integrate Boundary Conditions into our presented discretisations:

χ[X]×[Y ] := χ[X]×[Y ](i, j) =

{
1 if i ∈ X ∧ j ∈ Y
0 else

Let us now focus on two possible methods that we will use for performing the afore-
mentioned discretisation:

• The very common Standard Discretisation ( cf. [23], [9])

Like mentioned above we consider the approximation of the Diffusion Tensor
DG

Ψ(A) at the sample location xi,j . Then we can apply the the Standard Discreti-
sation stencil depicted in 3.1. We see that it has pleasant and simple structure.
But unfortunately it has some unpleasant drawbacks: It suffers from so-called
dissipative artifacts and has a very poor rotational invariance( cf. [26]).

• The Family of Non-Standard Discretisations as presented in [26].

In order to apply this novel approach we have to change our strategy a little bit:
Instead of using an approximation in the point xi,j of our Diffusion Tensor we have
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to perform this approximation in the location xi+ 1
2
,j+ 1

2
:

[
DG

ΨA
]
i+ 1

2
,j+ 1

2
=

(
[a]i+ 1

2
,j+ 1

2
[b]i+ 1

2
,j+ 1

2

[b]i+ 1
2
,j+ 1

2
[c]i+ 1

2
,j+ 1

2

)

Then we can use the discretisation stencil that is shown in 3.2. We realise that
this stencil provides a whole family of possible stencils that depend on the two
parameters αD and βD. [26], however, pointed out that the following constraint
has to be fulfilled to ensure the stability of numerical methods:

|βD| ≤ 1− 2αD

Let us now focus on the role of these two parameters:

– If αD is chosen very large the effect of dissipative artifacts of the disretisation
is reduced and thus increases the “sharpness” of the stencil. It is, however,
not avisable to choose the largest possible value 1

2 as this choice could lead
to systems of equations that are no longer irreducible, that is, the set of
unknowns is divided into subsets that are not interacting with each other.
This in turn leads to very undesirable checkerboard patterns in the results.
(cf. [26])

– A large |βD| can help to improve the nonnegativity of the stencil, that is, it
may reduce the number of negative weights outside the centre.

If we are using this type of discretisation we will always use αD = 0.45 and βD = 0.4

Fortunately we see in both stencil variants that the Boundary Conditions are automat-
ically fulfilled.

In the following we will use the Standard Discretisation only in cases where the Diffu-
sion Tensor degenerates to the identity matrix I, that is, in cases where the Whittaker-
Tikhonov penaliser ΨWT is used as Ψ. This implies that we do not need to find a suitable
disretisation of the DG

Ψ(A) in this case as it is already given by I.
If we are using the Charbonnier penaliser ΨC in the Smoothness Term, however, we

will make use of the Non-Standard Discretisation. But this time we then have to find a
suitable discretisation of the associated Diffusion Tensor DG

Ψ(A) at the sample location
xi+ 1

2
,j+ 1

2
. Here we will make use of the following strategy:

1. Apply the method presented in [26] to gain access to the Structure Tensors∇Ap∇A>p
with p ∈ Idx(A) at the position xi+ 1

2
,j+ 1

2
. Let now for simplicity u be an entry of

A. Then we can compute

[
∇u∇u>

]
i+ 1

2
,j+ 1

2

=

( [
u2
x

]
i+ 1

2
,j+ 1

2
[uxuy]i+ 1

2
,j+ 1

2

[uxuy]i+ 1
2
,j+ 1

2

[
u2
y

]
i+ 1

2
,j+ 1

2

)

4Thus we want some “sharpness” and pay no attention to the nonnegativity.
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as follows

[
u2
x

]
i+ 1

2
,j+ 1

2
≈

[
(1− αD)

2

(
+

)
+ αD

]
ui,j[

u2
y

]
i+ 1

2
,j+ 1

2

≈

[
(1− αD)

2

(
+

)
+ αD

]
ui,j

[uxuy]i+ 1
2
,j+ 1

2
≈

[
1− βD

4

(
+

)

+
1 + βD

4

(
+

)]
ui,j

The points inside [. . .]ui,j
represent the four points xi,j , xi+1,j , xi+1,j+1

and xi,j+1 with the point xi,j located in the lower left. The lines connecting two
points p and q indicate forward differences using the values up and uq.

5

We actually discover that the parameter αD describes the ratio between the arith-
metic and the geometric mean.6

2. Now we can evaluate DG
Ψ(A) at the sample location xi+ 1

2
,j+ 1

2
by using the obtained

approximations of the Structure Tensors:

[
DG

Ψ(A)
]
i+ 1

2
,j+ 1

2
≈ Ψ′

 ∑
p∈Idx(A)

([
∇Ap∇A>p

]
i+ 1

2
,j+ 1

2

)

5Here we used the notation presented in [26].
6This is also the case in the presented stencil.
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1

2
h

2

χ
[2
,N

]×
[1
,M
−

1
]( (β

D
−

1)
b i
−

1 2
,j

+
1 2

+
α
D

( a i−
1 2
,j

+
1 2

+
c i
−

1 2
,j

+
1 2

))
χ

[1
,N
−

1
]×

[1
,M
−

1
]( (1
−
α
D

)c
i+

1 2
,j

+
1 2

−
α
D
a
i+

1 2
,j

+
1 2
−
β
D
b i

+
1 2
,j

+
1 2

) +

χ
[2
,N

]×
[1
,M
−

1
]( (1
−
α
D

)c
i−

1 2
,j

+
1 2

−
α
D
a
i−

1 2
,j

+
1 2
−
β
D
b i
−

1 2
,j

+
1 2

)
χ

[1
,N
−

1
]×

[1
,M
−

1
]( (β

D
+

1)
b i

+
1 2
,j

+
1 2

+
α
D

( a i+
1 2
,j

+
1 2

+
c i

+
1 2
,j

+
1 2

))

χ
[2
,N

]×
[1
,M
−

1
]( (1
−
α
D

)a
i−

1 2
,j

+
1 2

−
α
D
c i
−

1 2
,j

+
1 2
−
β
D
b i
−

1 2
,j

+
1 2

) +

χ
[2
,N

]×
[2
,M

]( (1
−
α
D

)a
i−

1 2
,j
−

1 2

−
α
D
c i
−

1 2
,j
−

1 2
−
β
D
b i
−

1 2
,j
−

1 2

)

−
χ

[1
,N
−

1
]×

[1
,M
−

1
]( (1
−
β
D

)b
i+

1 2
,j

+
1 2

+
(1
−
α
D

)( a i+
1 2
,j

+
1 2

+
c i

+
1 2
,j

+
1 2

))
−
χ

[2
,N

]×
[1
,M
−

1
]( (−

1
−
β
D

)b
i−

1 2
,j

+
1 2

+
(1
−
α
D

)( a i−
1 2
,j

+
1 2

+
c i
−

1 2
,j

+
1 2

))
−
χ

[1
,N
−

1
]×

[2
,M

]( (−
1
−
β
D

)b
i+

1 2
,j
−

1 2

+
(1
−
α
D

)( a i+
1 2
,j
−

1 2
+
c i

+
1 2
,j
−

1 2

))
−
χ

[2
,N

]×
[2
,M

]( (1
−
β
D

)b
i−

1 2
,j
−

1 2

+
(1
−
α
D

)( a i−
1 2
,j
−

1 2
c i
−

1 2
,j
−

1 2

))

χ
[1
,N
−

1
]×

[1
,M
−

1
]( (1
−
α
D

)a
i+

1 2
,j

+
1 2

−
α
D
c i

+
1 2
,j

+
1 2
−
β
D
b i

+
1 2
,j

+
1 2

) +

χ
[1
,N
−

1
]×

[2
,M

]( (1
−
α
D

)a
i+

1 2
,j
−

1 2

−
α
D
c i

+
1 2
,j
−

1 2
−
β
D
b i

+
1 2
,j
−

1 2

)

χ
[2
,N

]×
[2
,M

]( (β
D

+
1)
b i
−

1 2
,j
−

1 2

+
α
D

( a i−
1 2
,j
−

1 2
+
c i
−

1 2
,j
−

1 2

))
χ

[1
,N
−

1
]×

[2
,M

]( (1
−
α
D

)c
i+

1 2
,j
−

1 2

−
α
D
a
i+

1 2
,j
−

1 2
−
β
b i

+
1 2
,j
−

1 2

) +

χ
[2
,N

]×
[2
,M

]( (1
−
α
D

)c
i−

1 2
,j
−

1 2

−
α
D
a
i−

1 2
,j
−

1 2
−
β
D
b i
−

1 2
,j
−

1 2

)
χ

[1
,N
−

1
]×

[2
,M

]( (β
D
−

1)
b i

+
1 2
,j
−

1 2

+
α
D

( a i+
1 2
,j
−

1 2
+
c i

+
1 2
,j
−

1 2

))
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Again we consider briefly the Euler-Lagrange Equations that arised for k = n = 1 in
the Warping Strategy:

0 = Ĵ s
11 dA

1,s
1 + Ĵ s

12 dA
1,s
2 + Ĵ s

13 − α div

(
DG

Ψ(A1,s + dA1,s) ∇(A1,s
1 + dA1,s

1 )

)
0 = Ĵ s

12 dA
1,s
1 + Ĵ s

22 dA
1,s
2 + Ĵ s

23 − α div

(
DG

Ψ(A1,s + dA1,s) ∇(A1,s
2 + dA1,s

2 )

)
We see that in this case our expression depends on the known part of the Displacement
Field A1,s and also on the unknown part dA1,s. Therefore we will use the following
discretisation here instead:[

div
([
DG

Ψ(A1,s + dA1,s)
]
i,j
∇(A1,s

p + dA1,s
p )
)]

i,j
≈∑

(x̂,ŷ)∈N

(
[Ds]i,j (x̂, ŷ)

[
A1,s

p

]
i+x̂,j+ŷ

+ [Ds]i,j (x̂, ŷ)
[
dA1,s

p

]
i+x̂,j+ŷ

)
with

• p ∈ Idx(A1,s)

• (i, j) ∈ [1, N s]× [1,M s} where N s and M s are the dimensions of the current scale
s

• Ds indicates that the stencil is computed by using the dimensions N s and M s.7

Furthermore this time the Diffusion Tensor DG
Ψ depends on A1,s and dA1,s, which

means that we have to apply the following discretisation if we are using the Charbonnier
penaliser:

[
DG

Ψ(A1,s + dA1,s)
]
i+ 1

2
,j+ 1

2
≈ Ψ′

 ∑
p∈Idx(A1,s)

([
∇(A1,s

p + dA1,s
p ) ∇(A1,s

p + dA1,s
p )>

]
i+ 1

2
,j+ 1

2

)
Agreement Term Contribution

Finally we will consider the contribution of the Agreement Term to the Euler-Lagrange
Equations. To this end we have a look at the fourth type of equation arising:

0 =

Contribution of Term 1︷ ︸︸ ︷
Ak

p1 −Ak+1
px +

Contribution of Term 2︷ ︸︸ ︷
α
(
Ak−1

p11x
−Ak

p1xx +Ak−1
p12y
−Ak

p1yy

)
0 = Ak

p2 −Ak+1
py︸ ︷︷ ︸

Contribution of Term 1

+α
(
Ak−1

p21x
−Ak

p2xx +Ak−1
p22y
−Ak

p2yy

)
︸ ︷︷ ︸

Contribution of Term 2

where
7Remember that these dimensions are used in the characteristic function.
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• p ∈ Idx(Ak+1) as usual

This contribution of two Agreement Terms to two equations poses the most brutal chal-
lenge we have faced so far: Like before we have to approximate derivatives and at the
same time we have to obey the following Boundary Conditions:

• Condition created by the first term:

n>
(
Ak

p1 −Ak+1
px

Ak
p2 −Ak+1

py

)
= 0

• Conditions created by the second term:

n>

(
Ak−1

p11 −Ak
p1x

Ak−1
p12 −Ak

p1y

)
= 0

n>

(
Ak−1

p21 −Ak
p2x

Ak−1
p22 −Ak

p2y

)
= 0

which we can rewrite as

n>

(
Ak−1

q1 −Ak
qx

Ak−1
q2 −Ak

qy

)
= 0

where q ∈ Idx(Ak).

In order to find suitable discretisations for

• the contribution of the first term:

Ak
p1 −Ak+1

px

Ak
p2 −Ak+1

py

• and the ones of the second term:

Ak−1
p11x
−Ak

p1xx +Ak−1
p12y
−Ak

p1yy

Ak−1
p21x
−Ak

p2xx +Ak−1
p22y
−Ak

p2yy

which we may again rewrite as

Ak−1
q1x
−Ak

qxx +Ak−1
q2y
−Ak

qyy

where q ∈ Idx(Ak).
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we will use the method presented in [13].
First we introduce the energy

E(Ac−1, Ac) :=
1

2

∫
Ω

(∥∥Ac−1 −∇Ac
∥∥2

2

)
︸ ︷︷ ︸

F

dx

By investigating this functional we discover that its integrand F depends on the entries
of Ac−1 and the derivatives of the entries of Ac.

Thus we have the Euler-Lagrange Equations:

• For Ac−1 we have

0 = FAc−1
p1

0 = FAc−1
p2

where p ∈ Idx(Ac) and thus

0 = Ac−1
p1 −A

c
px

0 = Ac−1
p2 −A

c
py

Here the right handside corresponds exactly to our contribution from the first term
if we set c = k + 1.

• For each Ac
p with p ∈ Idx(Ac) we have

0 = − ∂

∂x
FAc

px
− ∂

∂y
FAc

py

and thus

0 = Ac−1
p1x
−Ac

pxx +Ac−1
p2y
−Ac

pyy

This time the right handside corresponds to the contribution from the second term
if we set c = k.

As Boundary Conditions we have for each Ac
p:

n>
(
Ac−1

p1 −Ac
px

Ac−1
p2 −Ac

py

)
= 0

We notice that we get the Boundary Conditions from the first term by setting c = k and
the ones from the second term by setting c = k + 1.

In the second step a discrete version of this functional is introduced that obeys these
Boundary Conditions:

ED(·) : =
1

2

N−1∑
i=1

M∑
j=1

∑
p∈Idx(Ac)

([
Ac−1

p1

]
i,j
−

[
Ac

p

]
i+1,j

−
[
Ac

p

]
i,j

h

)2

+
1

2

N∑
i=1

M−1∑
j=1

∑
p∈Idx(Ac)

([
Ac−1

p2

]
i,j
−

[
Ac

p

]
i,j+1

−
[
Ac

p

]
i,j

h

)2
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where ED now depends on the vector consisting of the following entries:

•
[
Ac

p

]
i,j

with p ∈ Idx(Ac), (i, j) ∈ [1, N ]× [1,M ] and

•
[
Ac−1

q

]
i,j

with q ∈ Idx(Ac−1) = Idx(Ac)× {1, 2} , (i, j) ∈ [1, N ]× [1,M ]

By taking now the derivative with respect to
[
Ac

p

]
i,j

we receive our desired approxi-

mation of the contribution of the second term:

∂ED

∂
[
Ac

p

]
i,j

=

χ[1,N−1]×[1,M ]

( [
Ac−1

p1

]
i,j

h
−

[
Ac

p

]
i+1,j

−
[
Ac

p

]
i,j

h2

)
−

χ[2,N ]×[1,M ]

([Ac−1
p1

]
i−1,j

h
−

[
Ac

p

]
i,j
−
[
Ac

p

]
i−1,j

h2

)
+

χ[1,N ]×[1,M−1]

( [
Ac−1

p2

]
i,j

h
−

[
Ac

p

]
i,j+1

−
[
Ac

p

]
i,j

h2

)
−

χ[1,N ]×[2,M ]

([Ac−1
p2

]
i,j−1

h
−

[
Ac

p

]
i,j
−
[
Ac

p

]
i,j−1

h2

)
≈
[
Ac−1

p1x
−Ac

pxx +Ac−1
p2y
−Ac

pyy

]
i,j

Taking now the derivatives with respect to
[
Ac−1

p1

]
i,j

and
[
Ac−1

p2

]
i,j

leads to the ap-

proximations of the contribution of the second term:

∂ED

∂
[
Ac−1

p1

]
i,j

=

χ[1,N−1]×[1,M ]

([
Ac−1

p1

]
i,j
−

[
Ac

p

]
i+1,j

−
[
Ac

p

]
i,j

h

)
≈
[
Ac−1

p1 −A
c
px

]
i,j

∂ED

∂
[
Ac−1

p2

]
i,j

=

χ[1,N ]×[1,M−1]

([
Ac−1

p2

]
i,j
−

[
Ac

p

]
i,j+1

−
[
Ac

p

]
i,j

h

)
≈
[
Ac−1

p2 −A
c
py

]
i,j
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Thus we now have access to our wanted discretisations that also obey the given Boundary
Conditions.

Again we visit briefly the Warping case. Here we can use a similar approach to obtain
discretisations of equations where the unknown part of the Displacement Field dAn,s is
involved:[

An−1,s
p1x

−An,s
pxx − dA

n,s
pxx +An−1,s

p2y
−An,s

pyy − dA
n,s
pyy

]
i,j
≈

χ[1,Ns−1]×[1,Ms]

([An−1,s
p1

]
i,j

h
−

[An,s
p ]i+1,j − [An,s

p ]i,j
h2

−
[dAn,s

p ]i+1,j − [dAn,s
p ]i,j

h2

)

− χ[2,Ns]×[1,Ms]

([An−1,s
p1

]
i−1,j

h
−

[An,s
p ]i,j − [An,s

p ]i−1,j

h2
−

[dAn,s
p ]i,j − [dAn,s

p ]i−1,j

h2

)

+ χ[1,Ns]×[1,Ms−1]

( [
An−1,s

p2

]
i,j

h
−

[An,s
p ]i,j+1 − [An,s

p ]i,j
h2

−
[dAn,s

p ]i,j+1 − [dAn,s
p ]i,j

h2

)

− χ[1,Ns]×[2,Ms]

([An−1,s
p2

]
i,j−1

h
−

[An,s
p ]i,j − [An,s

p ]i,j−1

h2
−

[dAn,s
p ]i,j − [dAn,s

p ]i,j−1

h2

)

[
An−1,s

p1 −An,s
px − dA

n,s
px

]
i,j
≈

χ[1,Ns−1]×[1,Ms]

( [
An−1,s

p1

]
i,j
−

[An,s
p ]i+1,j − [An,s

p ]i,j
h

−
[dAn,s

p ]i+1,j − [dAn,s
p ]i,j

h

)

[
An−1,s

p2 −An,s
py − dA

n,s
py

]
i,j
≈

χ[1,Ns]×[1,Ms−1]

( [
An−1,s

p2

]
i,j
−

[An,s
p ]i,j+1 − [An,s

p ]i,j
h

−
[dAn,s

p ]i,j+1 − [dAn,s
p ]i,j

h

)

where p ∈ Idx(An,s).
Thus we have now finally collected all ingredients needed to discretise our Euler-

Lagrange Equations.

3.3 Preparations for the Fixed-Point Schemes

Before we poceed with the discretisation of the equations and the setup of our fixed-point
step schemes we have to make some preparations.

First of all we make the following obervations:
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• By discretising our Euler-Lagrange Equations in every point of our discrete domain
we will gain access to a very large system of equations. Furthermore we discover
that our unknowns can be arranged into sets where each set belongs to a specific
part of our solution Ak with k ∈ [1, n].

• The arising system of equations is possibly nonlinear if a Robust Data Term is
used or if the Charbonnier penaliser is involved

Our first observation implies that the structure of our system of equations depends on
the choice of n, the desired smoothness order. Moreover we realise that these sets of
unknowns will cause our system to consist of individual blocks. The structure of such a
block is then determined by the Euler-Lagrange Equation type that is generated by the
solution part Ak the corresponding set belongs to. These facts actually imply that we
have to setup a fixed-point iteration scheme for all arising block structures.

By considering the second observation we learn that we have to choose a appropriate
solving technique for nonlinear systems.

A common strategy for solving such nonlinear systems of equations is for example
Kačanov’s method (cf. [23]).

Roughly speaking it repeats the following steps until a solution is found:

1. Evaluate the nonlinear expressions for our current approximation of the solution
and hold these expressions fixed. This procedure turns the nonlinear system into
a linear system of equations.

2. Apply a standard solver like for example Gauss-Seidel to solve the arising linear
system, which provides us with a new estimate of the solution.

3. Return to step 1 if we have not found the solution yet.

This means that we have actually two two-fixed point iterations: An outer one for
evaluating the nonlinearities and an inner one for solving the linear systems.

We will use a more modern technique that has been successfully used for such prob-
lems, the so-called method of Frozen Coefficients (cf. [8], [7], [16]). It can be interpreted
as a modification of Kačanov’s method where the second step is replaced by

2. Perform only one iteration of the chosen solver on the linear system

So we are only using a very coarse estimate of the solution of the current linear system to
update the nonlinearities. We notice that we have this time only one fixed-point iteration
that always evaluates the nonlinearities at the previous iteration step. Moreover we
discover that if we have no nonlinearities this method will boil down to an usual fixed-
point iteration for linear systems, which means that we may use it for both types of
systems.

As base solver for those linear systems we will use extrapolating variants of different
Gauss-Seidel solvers. The extrapolation parameter ω should be chosen like in the case
of Successive Over-relaxation ( cf. [17] ):

ω ∈ [1, 2[
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Finally we give some conventions and notations we use for the fixed-point steps:

• At the beginning of our current iteration step we set k = n and repeat the following
two steps until k = 0:

1. Perform the fixed-point iteration step on the unknowns set belonging to Ak

2. Set k = k − 1

Hence we are always beginning with the unknowns set interacting directly with
the data.

• In an unknowns set belonging to Ak we process the entries Ak
p with p ∈ Idx(Ak

p)
in a lexicographical order. An exception is the Displacement Field: Here we will
process both entries simultaneously.

• The individual unknowns
[
Ak

p

]
i,j

are then also visited in a lexicographical order

• Thus we can split our set of relative neighborhood coordinates N 0 := N\{(0, 0)}
into

– the set of already visited neighbors N− and

– the set N+ containing the neighbors that have not been processed yet

• We use the notation [
Ak,m

p

]
i,j

to denote the value of the unknown
[
Ak

p

]
i,j

at the iteration step m. This notation

is extended in the Warping case to [
Ak,m,s

p

]
i,j

where s represents the current scale we are working on.

• For the first iteration step m = 1 we are using for each unknown an arbitrary
initialisation. In the case of Warping, however, we will alter this convention a
little bit as we will see later on.

• The same notation as above is also employed to signal that a quantity [G]i,j should
be evaluated with values from the specific iteration step m:

[Gm,s]i,j

In the following G is either our stencil D or a Motion Tensor Entry Ĵp with p ∈
Idx(Ĵ).

In the Warping case the extended notation is used:

[Gm,s]i,j

to signal that we are on the scale s.
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3.4 Fixed-Point Schemes for Image Restoration

Let us now state the fixed-point schemes for the different block types arising in the
Generic Image Restoration case.

We begin with the first type where k = n = 1. Here the Euler-Lagrange Equation is
given by:

0 = A1 − f + α div

(
DG

Ψ(A1)∇A1

)
Applying our discretisation yields:

0 =
[
A1
]
i,j
− [f ]i,j − α

∑
(x̂,ŷ)∈N

[D]i,j (x̂, ŷ)
[
A1
]
i+x̂,j+ŷ

And thus we are able to state the fixed-point step:

[
A1,m+1

]
i,j

= (1− ω)A1,m + ω

(
1− α [Dm]i,j (0, 0)

)−1

·(
[f ]i,j + α

( ∑
(x̂,ŷ)∈N−

[Dm]i,j (x̂, ŷ)
[
A1,m+1

]
i+x̂,j+ŷ

+

∑
(x̂,ŷ)∈N+

[Dm]i,j (x̂, ŷ)
[
A1,m

]
i+x̂,j+ŷ

))

Now we continue with the second type that arises for k = n if n > 1:

0 = An − f + α
(
An−1

1x
−An

xx +An−1
2y
−An

yy

)
Performing the discretisation yields:

0 = [An]i,j − [f ]i,j + α

(
χ[1,N−1]×[1,M ]

( [
An−1

1

]
i,j

h
−

[An]i+1,j − [An]i,j
h2

)
−

χ[2,N ]×[1,M ]

([An−1
1

]
i−1,j

h
−

[An]i,j − [An]i−1,j

h2

)
+

χ[1,N ]×[1,M−1]

( [
An−1

2

]
i,j

h
−

[An]i,j+1 − [An]i,j
h2

)
−

χ[1,N ]×[2,M ]

([An−1
2

]
i,j−1

h
−

[An]i,j − [An]i,j−1

h2

))
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and thus we have as fixed-point step[
An,m+1

]
i,j

= (1− ω) [An,m]i,j +

ω

(
1 +

α

h2
(χ[1,N−1]×[1,M ] + χ[2,N ]×[1,M ] + χ[1,N ]×[1,M−1] + χ[1,N ]×[2,M ])

)−1

·

(
[f ]i,j − α

(
χ[1,N−1]×[1,M ]

( [
An−1,m

1

]
i,j

h
−

[An,m]i+1,j

h2

)

− χ[2,N ]×[1,M ]

([An−1,m
1

]
i−1,j

h
+

[
An,m+1

]
i−1,j

h2

)

+ χ[1,N ]×[1,M−1]

( [
An−1,m

2

]
i,j

h
−

[An,m]i,j+1

h2

)

− χ[1,N ]×[2,M ]

([An−1,m
2

]
i,j−1

h
+

[
An,m+1

]
i,j−1

h2

)))

Now we consider the third type that emerges for A1 in the case of n > 1:

0 = A1
p1 −A2

px − α div

(
DG

Ψ(A1)∇A1
p1

)
0 = A1

p2 −A2
py − α div

(
DG

Ψ(A1)∇A1
p2

)
where p ∈ Idx(A2).

Performing the discretisation gives:

0 = χ[1,N−1]×[1,M ]

([
A1

p1

]
i,j
−

[
A2

p

]
i+1,j

−
[
A2

p

]
i,j

h

)
− α

∑
(x̂,ŷ)∈N

[D]i,j (x̂, ŷ)
[
A1

p1

]
i+x̂,j+ŷ

0 = χ[1,N ]×[1,M−1]

([
A1

p2

]
i,j
−

[
A2

p

]
i,j+1

−
[
A2

p

]
i,j

h

)
− α

∑
(x̂,ŷ)∈N

[D]i,j (x̂, ŷ)
[
A1

p2

]
i+x̂,j+ŷ
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As we have two equations we also get two fixed-point steps:

[
A1,m+1

p1

]
i,j

= (1− ω)
[
A1,m

p1

]
i,j

+ ω

(
χ[1,N−1]×[1,M ] − α [Dm]i,j (0, 0)

)−1

·

(
χ[1,N−1]×[1,M ]

( [
A2,m+1

p

]
i+1,j

−
[
A2,m+1

p

]
i,j

h

)
+

α

( ∑
(x̂,ŷ)∈N−

[Dm]i,j (x̂, ŷ)
[
A1,m+1

p1

]
i+x̂,j+ŷ

+

∑
(x̂,ŷ)∈N+

[Dm]i,j (x̂, ŷ)
[
A1,m

p1

]
i+x̂,j+ŷ

))

[
A1,m+1

p2

]
i,j

= (1− ω)
[
A1,m

p2

]
i,j

+ ω

(
χ[1,N ]×[1,M−1] − α [Dm]i,j (0, 0)

)−1

·

(
χ[1,N ]×[1,M−1]

( [
A2,m+1

p

]
i,j+1

−
[
A2,m+1

p

]
i,j

h

)
+

α

( ∑
(x̂,ŷ)∈N−

[Dm]i,j (x̂, ŷ)
[
A1,m+1

p2

]
i+x̂,j+ŷ

+

∑
(x̂,ŷ)∈N+

[Dm]i,j (x̂, ŷ)
[
A1,m

p2

]
i+x̂,j+ŷ

))

Finally we turn to the fourth type that is present for 1 < k < n for n > 2:

0 = Ak
p1 −Ak+1

px + α
(
Ak−1

p11x
−Ak

p1xx +Ak−1
p12y
−Ak

p1yy

)
0 = Ak

p2 −Ak+1
py + α

(
Ak−1

p21x
−Ak

p2xx +Ak−1
p22y
−Ak

p2yy

)
where p ∈ Idx(Ak+1).

86



The discretisation is given by:

0 = χ[1,N−1]×[1,M ]

( [
Ak

p1

]
i,j
−

[
Ak+1

p

]
i+1,j

−
[
Ak+1

p

]
i,j

h

)
+

α

(
χ[1,N−1]×[1,M ]

( [
Ak−1

p11

]
i,j

h
−

[
Ak

p1

]
i+1,j

−
[
Ak

p1

]
i,j

h2

)
−

χ[2,N ]×[1,M ]

([Ak−1
p11

]
i−1,j

h
−

[
Ak

p1

]
i,j
−
[
Ak

p1

]
i−1,j

h2

)
+

χ[1,N ]×[1,M−1]

( [
Ak−1

p12

]
i,j

h
−

[
Ak

p1

]
i,j+1

−
[
Ak

p1

]
i,j

h2

)
−

χ[1,N ]×[2,M ]

([Ak−1
p12

]
i,j−1

h
−

[
Ak

p1

]
i,j
−
[
Ak

p1

]
i,j−1

h2

))

0 = χ[1,N ]×[1,M−1]

( [
Ak

p2

]
i,j
−

[
Ak+1

p

]
i,j+1

−
[
Ak+1

p

]
i,j

h

)
+

α

(
χ[1,N−1]×[1,M ]

( [
Ak−1

p21

]
i,j

h
−

[
Ak

p2

]
i+1,j

−
[
Ak

p2

]
i,j

h2

)
−

χ[2,N ]×[1,M ]

([Ak−1
p21

]
i−1,j

h
−

[
Ak

p2

]
i,j
−
[
Ak

p2

]
i−1,j

h2

)
+

χ[1,N ]×[1,M−1]

( [
Ak−1

p22

]
i,j

h
−

[
Ak

p2

]
i,j+1

−
[
Ak

p2

]
i,j

h2

)
−

χ[1,N ]×[2,M ]

([Ak−1
p22

]
i,j−1

h
−

[
Ak

p2

]
i,j
−
[
Ak

p2

]
i,j−1

h2

))
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These equations lead to the fixed-point steps:[
Ak,m+1

p1

]
i,j

= (1− ω)
[
Ak,m

p1

]
i,j

+

ω

(
χ[1,N−1]×[1,M ] +

α

h2

(
χ[1,N−1]×[1,M ] +χ[2,N ]×[1,M ] +χ[1,N ]×[1,M−1] +χ[1,N ]×[2,M ]

))−1

·

(
χ[1,N−1]×[1,M ]

([Ak+1,m+1
p

]
i+1,j

−
[
Ak+1,m+1

p

]
i,j

h

)
−

α

(
χ[1,N−1]×[1,M ]

( [
Ak−1,m

p11

]
i,j

h
−

[
Ak,m

p1

]
i+1,j

h2

)
−

χ[2,N ]×[1,M ]

([Ak−1,m
p11

]
i−1,j

h
+

[
Ak,m+1

p1

]
i−1,j

h2

)
+

χ[1,N ]×[1,M−1]

( [
Ak−1,m

p12

]
i,j

h
−

[
Ak,m

p1

]
i,j+1

h2

)
−

χ[1,N ]×[2,M ]

([Ak−1,m
p12

]
i,j−1

h
+

[
Ak,m+1

p1

]
i,j−1

h2

)))

[
Ak,m+1

p2

]
i,j

= (1− ω)
[
Ak,m

p2

]
i,j

+

ω

(
χ[1,N ]×[1,M−1] +

α

h2

(
χ[1,N−1]×[1,M ] +χ[2,N ]×[1,M ] +χ[1,N ]×[1,M−1] +χ[1,N ]×[2,M ]

))−1

·

(
χ[1,N ]×[1,M−1]

( [
Ak+1,m+1

p

]
i,j+1

−
[
Ak+1,m+1

p

]
i,j

h

)
−

α

(
χ[1,N−1]×[1,M ]

( [
Ak−1,m

p21

]
i,j

h
−

[
Ak,m

p2

]
i+1,j

h2

)
−

χ[2,N ]×[1,M ]

([Ak−1,m
p21

]
i−1,j

h
+

[
Ak,m+1

p2

]
i−1,j

h2

)
+

χ[1,N ]×[1,M−1]

( [
Ak−1,m

p22

]
i,j

h
−

[
Ak,m

p2

]
i,j+1

h2

)
−

χ[1,N ]×[2,M ]

([Ak−1,m
p22

]
i,j−1

h
+

[
Ak,m+1

p2

]
i,j−1

h2

)))
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Thus we are finished with the fixed-point schemes that are needed for the Generic
Image Restoration.

3.5 Fixed-Point Schemes for Optic Flow without Warping

Now we address the fixed-point schemes for the Generic Optic Flow setting where we are
using a linearised Data Term. We remember from the previous chapter that the third
and fourth equation types have the same structure as the ones in the Image Restoration
case. Thus we may reuse the fixed-point schemes we already derived for those types.
The first and second equation types, however, have a different structure this time.

The first type arises for k = n = 1 and is given by:

0 = Ĵ11 A
1
1 + Ĵ12 A

1
2 + Ĵ13 − α div

(
DG

Ψ(A1)∇A1
1

)
0 = Ĵ12 A

1
1 + Ĵ22 A

1
2 + Ĵ23 − α div

(
DG

Ψ(A1)∇A1
2

)
The discrete versions are given by:

0 =
[
Ĵ11

]
i,j

[
A1

1

]
i,j

+
[
Ĵ12

]
i,j

[
A1

2

]
i,j

+
[
Ĵ13

]
i,j
− α

∑
(x̂,ŷ)∈N

[D]i,j (x̂, ŷ)
[
A1

1

]
i+x̂,j+ŷ

0 =
[
Ĵ12

]
i,j

[
A1

1

]
i,j

+
[
Ĵ22

]
i,j

[
A1

2

]
i,j

+
[
Ĵ23

]
i,j
− α

∑
(x̂,ŷ)∈N

[D]i,j (x̂, ŷ)
[
A1

2

]
i+x̂,j+ŷ

We may use the following fixed-point iteration step to obtain A1,m+1
1 and A1,m+1

2 simul-
taneously:


[
A1,m+1

1

]
i,j[

A1,m+1
2

]
i,j

 = (1− ω)


[
A1,m

1

]
i,j[

A1,m
2

]
i,j

+ ω

(
m11 m12

m12 m22

)−1(
b1
b2

)
where

m11 =
[
Ĵ m

11

]
i,j
− α [Dm]i,j (0, 0)

m12 =
[
Ĵ m

12

]
i,j

m22 =
[
Ĵ m

22

]
i,j
− α [Dm]i,j (0, 0)

and

b1 = −
[
Ĵ m

13

]
i,j

+

α

( ∑
(x̂,ŷ)∈N−

[Dm]i,j (x̂, ŷ)
[
A1,m+1

1

]
i+x̂,j+ŷ

+
∑

(x̂,ŷ)∈N+

[Dm]i,j (x̂, ŷ)
[
A1,m

1

]
i+x̂,j+ŷ

)
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b2 = −
[
Ĵ m

23

]
i,j

+

α

( ∑
(x̂,ŷ)∈N−

[Dm]i,j (x̂, ŷ)
[
A1,m+1

2

]
i+x̂,j+ŷ

+
∑

(x̂,ŷ)∈N+

[Dm]i,j (x̂, ŷ)
[
A1,m

2

]
i+x̂,j+ŷ

)

This is the extrapolating variant of the so-called Point-Coupled Gauss-Seidel Relax-
ation Step with Frozen Coefficients ( [8] ). We see that the possibly nonlinear expressions
like the stencil D and the Motion Tensor are evaluated at the old iteration step m.

For the second type that arises for k = n if n > 1 we have:

0 = Ĵ11 A
n
1 + Ĵ12 A

n
2 + Ĵ13 + α

(
An−1

11x
−An

1xx +An−1
12y
−An

1yy

)
0 = Ĵ12 A

n
1 + Ĵ22 A

n
2 + Ĵ23 + α

(
An−1

21x
−An

2xx +An−1
22y
−An

2yy

)
Their discretisation is given by:

0 =
[
Ĵ11

]
i,j

[An
1 ]i,j +

[
Ĵ12

]
i,j

[An
2 ]i,j +

[
Ĵ13

]
i,j

+

α

(
χ[1,N−1]×[1,M ]

([An−1
11

]
i,j

h
−

[An
1 ]i+1,j − [An

1 ]i,j
h2

)
−

χ[2,N ]×[1,M ]

([An−1
11

]
i−1,j

h
−

[An
1 ]i,j − [An

1 ]i−1,j

h2

)
+

χ[1,N ]×[1,M−1]

([An−1
12

]
i,j

h
−

[An
1 ]i,j+1 − [An

1 ]i,j
h2

)
−

χ[1,N ]×[2,M ]

([An−1
12

]
i,j−1

h
−

[An
1 ]i,j − [An

1 ]i,j−1

h2

))

0 =
[
Ĵ12

]
i,j

[An
1 ]i,j +

[
Ĵ22

]
i,j

[An
2 ]i,j +

[
Ĵ23

]
i,j

+

α

(
χ[1,N−1]×[1,M ]

([An−1
21

]
i,j

h
−

[An
2 ]i+1,j − [An

2 ]i,j
h2

)
−

χ[2,N ]×[1,M ]

([An−1
21

]
i−1,j

h
−

[An
2 ]i,j − [An

2 ]i−1,j

h2

)
+

χ[1,N ]×[1,M−1]

([An−1
22

]
i,j

h
−

[An
2 ]i,j+1 − [An

2 ]i,j
h2

)
−

χ[1,N ]×[2,M ]

([An−1
22

]
i,j−1

h
−

[An
2 ]i,j − [An

2 ]i,j−1

h2

))
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Again we use a point-coupled iteration step:


[
A1,m+1

1

]
i,j[

A1,m+1
2

]
i,j

 = (1− ω)


[
A1,m

1

]
i,j[

A1,m
2

]
i,j

+ ω

(
m11 m12

m12 m22

)−1(
b1
b2

)

where this time

m11 =
[
Ĵ m

11

]
i,j

+
α

h2

(
χ[1,N−1]×[1,M ] + χ[2,N ]×[1,M ] + χ[1,N ]×[1,M−1] + χ[1,N ]×[2,M ]

)
m12 =

[
Ĵ m

12

]
i,j

m22 =
[
Ĵ m

22

]
i,j

+
α

h2

(
χ[1,N−1]×[1,M ] + χ[2,N ]×[1,M ] + χ[1,N ]×[1,M−1] + χ[1,N ]×[2,M ]

)
and

b1 = −
[
Ĵ m

13

]
i,j
−

α

(
χ[1,N−1]×[1,M ]

([An−1,m
11

]
i,j

h
−

[An,m
1 ]i+1,j

h2

)
−

χ[2,N ]×[1,M ]

([An−1,m
11

]
i−1,j

h
+

[
An,m+1

1

]
i−1,j

h2

)
+

χ[1,N ]×[1,M−1]

([An−1,m
12

]
i,j

h
−

[An,m
1 ]i,j+1

h2

)
−

χ[1,N ]×[2,M ]

([An−1,m
12

]
i,j−1

h
+

[
An,m+1

1

]
i,j−1

h2

))
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b2 = −
[
Ĵ m

23

]
i,j
−

α

(
χ[1,N−1]×[1,M ]

([An−1,m
21

]
i,j

h
−

[An,m
2 ]i+1,j

h2

)
−

χ[2,N ]×[1,M ]

([An−1,m
21

]
i−1,j

h
+

[
An,m+1

2

]
i−1,j

h2

)
+

χ[1,N ]×[1,M−1]

([An−1,m
22

]
i,j

h
−

[An,m
2 ]i,j+1

h2

)
−

χ[1,N ]×[2,M ]

([An−1,m
22

]
i,j−1

h
+

[
An,m+1

2

]
i,j−1

h2

))

This concludes the fixed-point schemes for the Optic Flow case with a linearised Data
Term.

3.6 Fixed-Point Schemes for Optic Flow with Warping

Finally we consider the case of our true Generic Optic Flow approach, that is, the Data
Term has not been linearised and we are using a Warping Strategy to find a minimiser.

Hence we are working on different discrete domains whose dimensions N s and M s

depend on the current scale s. Furthermore we are using a splitting of our Displacement
Field in an unknown part dAn,s and a known part An,s. We learnt that this splitting
leads to a change in the Euler-Lagrange Equations, which requires us to update our
fixed-point schemes. For the sake of brevity, however, we will now only state the final
fixed-point steps.

For the first type we have:
[
dA1,m+1,s

1

]
i,j[

dA1,m+1,s
2

]
i,j

 = (1− ω)


[
dA1,m,s

1

]
i,j[

dA1,m,s
2

]
i,j

+ ω

(
m11 m12

m12 m22

)−1(
b1
b2

)

where

m11 =
[
Ĵ m,s

11

]
i,j
− α [Dm,s]i,j (0, 0)

m12 =
[
Ĵ m,s

12

]
i,j

m22 =
[
Ĵ m,s

22

]
i,j
− α [Dm,s]i,j (0, 0)

92



and

b1 = −
[
Ĵ m,s

13

]
i,j

+

α

( ∑
(x̂,ŷ)∈N−

[Dm,s]i,j (x̂, ŷ)
[
dA1,m+1,s

1

]
i+x̂,j+ŷ

+
∑

(x̂,ŷ)∈N+

[Dm,s]i,j (x̂, ŷ)
[
dA1,m,s

1

]
i+x̂,j+ŷ

+

∑
(x̂,ŷ)∈N

[Dm,s]i,j (x̂, ŷ)
[
A1,s

1

]
i+x̂,j+ŷ

)

b2 = −
[
Ĵ m,s

23

]
i,j

+

α

( ∑
(x̂,ŷ)∈N−

[Dm,s]i,j (x̂, ŷ)
[
dA1,m+1,s

2

]
i+x̂,j+ŷ

+
∑

(x̂,ŷ)∈N+

[Dm,s]i,j (x̂, ŷ)
[
dA1,m,s

2

]
i+x̂,j+ŷ

+

∑
(x̂,ŷ)∈N

[Dm,s]i,j (x̂, ŷ)
[
A1,s

2

]
i+x̂,j+ŷ

)

As the fixed-point step for the second type we use:
[
dA1,m+1,s

1

]
i,j[

dA1,m+1,s
2

]
i,j

 = (1− ω)


[
dA1,m,s

1

]
i,j[

dA1,m,s
2

]
i,j

+ ω

(
m11 m12

m12 m22

)−1(
b1
b2

)

where

m11 =
[
Ĵ m,s

11

]
i,j

+

α

h2

(
χ[1,Ns−1]×[1,Ms] + χ[2,Ns]×[1,Ms] + χ[1,Ns]×[1,Ms−1] + χ[1,Ns]×[2,Ms]

)

m12 =
[
Ĵ m,s

12

]
i,j

m22 =
[
Ĵ m,s

22

]
i,j

+

α

h2

(
χ[1,Ns−1]×[1,Ms] + χ[2,Ns]×[1,Ms] + χ[1,Ns]×[1,Ms−1] + χ[1,Ns]×[2,Ms]

)
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and

b1 = −
[
Ĵ m,s

13

]
i,j
−

α

(
χ[1,Ns−1]×[1,Ms]

([An−1,m,s
11

]
i,j

h
−

[An,s
1 ]i+1,j + [dAn,m,s

1 ]i+1,j

h2

)
−

χ[2,Ns]×[1,Ms]

([An−1,m,s
11

]
i−1,j

h
+

[An,s
1 ]i−1,j +

[
dAn,m+1,s

1

]
i−1,j

h2

)
+

χ[1,Ns]×[1,Ms−1]

([An−1,m,s
12

]
i,j

h
−

[An,s
1 ]i,j+1 + [dAn,m,s

1 ]i,j+1

h2

)
−

χ[1,Ns]×[2,Ms]

([An−1,m,s
12

]
i,j−1

h
+

[An,s
1 ]i,j−1 +

[
dAn,m+1,s

1

]
i,j−1

h2

))

b2 = −
[
Ĵ m,s

23

]
i,j
−

α

(
χ[1,Ns−1]×[1,Ms]

([An−1,m,s
21

]
i,j

h
−

[An,s
2 ]i+1,j + [dAn,m,s

2 ]i+1,j

h2

)
−

χ[2,Ns]×[1,Ms]

([An−1,m,s
21

]
i−1,j

h
+

[An,s
2 ]i−1,j +

[
dAn,m+1,s

2

]
i−1,j

h2

)
+

χ[1,Ns]×[1,Ms−1]

([An−1,m,s
22

]
i,j

h
−

[An,s
2 ]i,j+1 + [dAn,m,s

2 ]i,j+1

h2

)
−

χ[1,Ns]×[2,Ms]

([An−1,m,s
22

]
i,j−1

h
+

[An,s
2 ]i,j−1 +

[
dAn,m+1,s

2

]
i,j−1

h2

))

We focus now on the third and fourth equation type. We recall from the previous
chapter that they have the same structure like in the ususal Optic Flow case but only if
the Displacement Field is not participating. Thus in these cases we can reuse our known
fixed-point schemes. In the other cases these schemes change a little bit.
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For the third type where n = 2 we have then:

[
A1,m+1,s

p1

]
i,j

= (1− ω)
[
A1,m,s

p1

]
i,j

+ ω

(
χ[1,Ns−1]×[1,Ms] − α [Dm,s]i,j (0, 0)

)−1

·

(
χ[1,Ns−1]×[1,Ms]

( [
A2,s

p

]
i+1,j

−
[
A2,s

p

]
i,j

h
+

[
dA2,m+1,s

p

]
i+1,j

−
[
dA2,m+1,s

p

]
i,j

h

)
+

α

( ∑
(x̂,ŷ)∈N−

[Dm,s]i,j (x̂, ŷ)
[
A1,m+1,s

p1

]
i+x̂,j+ŷ

+

∑
(x̂,ŷ)∈N+

[Dm,s]i,j (x̂, ŷ)
[
A1,m,s

p1

]
i+x̂,j+ŷ

))

[
A1,m+1,s

p2

]
i,j

= (1− ω)
[
A1,m,s

p2

]
i,j

+ ω

(
χ[1,Ns]×[1,Ms−1] − α [Dm,s]i,j (0, 0)

)−1

·

(
χ[1,Ns]×[1,Ms−1]

( [
A2,s

p

]
i,j+1

−
[
A2,s

p

]
i,j

h
+

[
dA2,m+1,s

p

]
i,j+1

−
[
dA2,m+1,s

p

]
i,j

h

)
+

α

( ∑
(x̂,ŷ)∈N−

[Dm,s]i,j (x̂, ŷ)
[
A1,m+1,s

p2

]
i+x̂,j+ŷ

+

∑
(x̂,ŷ)∈N+

[Dm,s]i,j (x̂, ŷ)
[
A1,m,s

p2

]
i+x̂,j+ŷ

))

And finally for the fourth type with k = n− 1 we have the fixed-point step:
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[
An−1,m+1,s

p1

]
i,j

= (1− ω)
[
Ak,m,s

p1

]
i,j

+

ω

(
χ[1,Ns−1]×[1,Ms]+

α

h2

(
χ[1,Ns−1]×[1,Ms]+χ[2,Ns]×[1,Ms]+χ[1,Ns]×[1,Ms−1]+χ[1,Ns]×[2,Ms]

))−1

·

(
χ[1,Ns−1]×[1,Ms]

(
[An,s

p ]i+1,j − [An,s
p ]i,j

h
+

[
dAn,m+1,s

p

]
i+1,j

−
[
dAn,m+1,s

p

]
i,j

h

)
−

α

(
χ[1,Ns−1]×[1,Ms]

( [
An−2,m,s

p11

]
i,j

h
−

[
An−1,m,s

p1

]
i+1,j

h2

)
−

χ[2,Ns]×[1,Ms]

([An−2,m,s
p11

]
i−1,j

h
+

[
An−1,m+1,s

p1

]
i−1,j

h2

)
+

χ[1,Ns]×[1,Ms−1]

( [
An−2,m,s

p12

]
i,j

h
−

[
An−1,m,s

p1

]
i,j+1

h2

)
−

χ[1,Ns]×[2,Ms]

([An−2,m,s
p12

]
i,j−1

h
+

[
An−1,m+1,s

p1

]
i,j−1

h2

)))

[
An−1,m+1,s

p2

]
i,j

= (1− ω)
[
Ak,m,s

p2

]
i,j

+

ω

(
χ[1,Ns]×[1,Ms−1]+

α

h2

(
χ[1,Ns−1]×[1,Ms]+χ[2,Ns]×[1,Ms]+χ[1,Ns]×[1,Ms−1]+χ[1,Ns]×[2,Ms]

))−1

·

(
χ[1,Ns]×[1,Ms−1]

(
[An,s

p ]i,j+1 − [An,s
p ]i,j

h
+

[
dAn,m+1,s

p

]
i,j+1

−
[
dAn,m+1,s

p

]
i,j

h

)
−

α

(
χ[1,Ns−1]×[1,Ms]

( [
An−2,m,s

p21

]
i,j

h
−

[
An−1,m,s

p2

]
i+1,j

h2

)
−

χ[2,Ns]×[1,Ms]

([An−2,m,s
p21

]
i−1,j

h
+

[
An−1,m+1,s

p2

]
i−1,j

h2

)
+

χ[1,Ns]×[1,Ms−1]

( [
An−2,m,s

p22

]
i,j

h
−

[
An−1,m,s

p2

]
i,j+1

h2

)
−

χ[1,Ns]×[2,Ms]

([An−2,m,s
p22

]
i,j−1

h
+

[
An−1,m+1,s

p2

]
i,j−1

h2

)))
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After a lot of work we are now almost ready to proceed with the experiments.

3.7 Details on the Warping Strategy

Finally we discuss the details of the Warping Strategy in the discrete case. We recollect
that we want to consider our data f on different scales s such that:

• f1 is the original data

• fs+1 is the data on a smaller scale than f s

• fmax is the data on the smallest scale

• and the difference between two scales is not very big

Our original data f1 := f is already given. It has the dimensions N1 ×M1 := N ×
M . In order to obtain fs we are reducing the sample amount taken in x-direction
and y-direction by multiplying the original sample amounts with a power of a so-called
reduction factor η ∈ [0.5, 1[:

N s = bηs−1Nc
M s = bηs−1Mc

where bxc indicates that we are rounding x down to the first integer y with y ≤ x.
We realise that if η is chosen very large the differences between two different scales

might become very small.
Let us now turn to the data on the smallest scale s = max. Here we will prescribe a

smallest allowed sample amount µ such that the following hold

• Either we have

Nmax = µ and Mmax ≥ µ

• or

Nmax ≥ µ and Mmax = µ

Thus our number of scales is implicitly determined by η and µ.
As we are reducing our samples we have to resample our data on the current scale. For

this downsampling process we will use a simple linear interpolation after we prepared
the data with a suitable presmoothing8. Actually we will use the same procedure to
transfer quantities from the lower scale s to the next higher one. As we are this time
performing an upsampling we do not need to presmooth the respective quantity before
the process.

8This presmoothing is this time necessary to avoid aliasing effects.
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Furthermore we need the frame fs(x+ An,s
1 , y + An,s

2 , t+ 1) on the current scale s to
compute our Motion Tensor. This implies that we have to evaluate our image data at
sample locations that are not given, which means that we are again facing a resampling
process. Here also the linear interpolation is used.

Finally we discuss the intialisations we will use on each scale s:

• The unknown part of the Displacement Field dAn,s is always initialised to an
arbitrary guess.

• For the remaining parts Ak,s with k ∈ [1, n] we distinguish between two cases:

– If we are on the smallest scale s = max we will set the known part of the
Displacement Field An,max to 0. The remaining parts of the solution Ak,max

are initialised to arbitrary values.

– Otherwise we will transfer the sum An,s+1 +dAn,s+1 from the lower scale s+1
to the current one s in order to use its value as the current known part of
the Displacement Field An,s. For all other solution parts Ak,s we will use the
interpolated values from their counterparts on the smaller scale s+ 1, which
serves the purpose of providing the fixed-point iteration with a suitable first
guess.

Fortunately this concludes the discrete aspects of our generic methods.
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4 Experiments

Until now we worked really hard to design new methods and to perform the discretisation
of them. But we still need to verify how these methods perform in practice. To this end
we will conduct some experiments in this chapter.

First we will consider some synthetically generated data we will test our Generic Image
Restoration with. These experiments can be seen as a proof of concept as we will try to
adapt our generic method to the current structure of the data.

Next we will proceed by analysing how our Image Restoration approach performs
if we consider the image from chapter 1 where an ordinary approach did not produce
satisfactory results.

After that we will have a look at our Generic Optic Flow method. Here we will first
investigate if it performs better than a ususal Optic Flow method by considering the
Uniaxial Tensile Experiment from chapter 1.

Finally we will push our Optic Flow method to the limit by considering a so-called
Biaxial Tensile Experiment, which motivates the usage of a smoothness assumption of
order 4.

4.1 Overview on the Parameters

Before we start with the experiments we give a short summary of the parameters that
are used for the different methods.

For the Generic Image Restoration approach we have the parameters

Parameter Description

n The desired smoothness order the generic approach should use,
also estimates of all derivatives of the solution up to
order n− 1 are computed

α Weight of the Smoothness Term / Agreement Terms

Ψ The Penaliser to use in the Smoothness Term

λ The contrast parameter for the Charbonnier penaliser,
only used if Ψ = ΨC

αD First parameter for Non-Standard Discretisation,
always set to 0.45 and only used if Ψ = ΨC

βD Second parameter for Non-Standard Discretisation,
always set to 0 and only used if Ψ = ΨC

mmax The iteration amount to use for solving the systems of equations

ω The extrapolation parameter, always set to 1.97
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In the case of Optic Flow we have to consider the following additional parameters:

Parameter Description

σ Standard deviation of the Gaussian Kernel that is used
to presmooth the data, always set to 1

η Reduction factor of the Warping Strategy, always set to 0.9

µ Smallest allowed sample amount in the Warping Strategy,
always set to 16

γ Weight of the Gradient Constancy Assumption in the Data Term,
always set to 1

ε Parameter of the regularised L1-norm that is used as
penaliser in the Robust Data Term, always set to 0.1

4.2 Synthetic Experiments

In this series of experiments we evaluate some functions on a given discrete grid and
examine if our Image Restoration approach can reconstruct this data without destroying
too much information. Thus we are trying to find out if our approach can really be
adapted in a flexible way to the structure of the current data.

Experiment 1

In the first experiment we evaluate the function g1(x, y) = x on a 229× 229 grid where
the origin is placed at the centre (115, 115) of the grid. A plot of the function is given in
figure 4.1 . We see that it produces data that shows a constant behavior along the y-axis
and a linear behavior in x-direction. Therefore we can conclude that is has a first-order
smoothness in y-direction and a second-order one in x-direction.

In the first part of the experiment we use the following set of parameters:

n α Ψ mmax

1 200 ΨWT 2000

Thus we are modelling a first-order homogeneous isotropic smoothness assumption. We
see in figure 4.1 that information of the original structure is lost in the progress: We
observe for example that the minimum and maximum are not preserved.

In the second part we utilise now the parameters:

n α Ψ mmax

2 200 ΨWT 2000

Hence, we are using now a homogeneous isotropic second-order assumption. Thus we
are now adapting our smoothness assumption to the data by manipulating the single
parameter n. The result in figure 4.1 is very motivating: The structure of our original
function g1 is well preserved. We observe also that our estimated derivatives of the
solution actually correspond to the ones of the original function.
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(a) Our function g1. (b) Solution u for n = 1.

(c) Solution u for n = 2. (d) Estimate of ux for n = 2.

(e) Estimate of uy for n = 2.

Figure 4.1: Synthetic Experiment 1: The function g1 and results for different values
of n.
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Experiment 2

In the next experiment we will now consider a more complicated function: the absolute
value of the x-value: g2(x, y) = |x|. Again we evaluate it on a 229× 229 grid where the
origin is placed at the centre (115, 115). The plot can be inspected in figure 4.2: We
learn that the function has a piecewise second-order smoothness where the discontinuity
is located in the centre.

For the first part we now use the parameters

n α Ψ mmax

2 200 ΨWT 2000

That is, we are again using the second-order homogeneous isotropic Smoothness Term
that performed very well in the previous experiment. This time, however, the result is
less satisfying. We see in figure 4.2 that our method has some problems in the centre: It
tries to remove the discontinuity. We can also see this effect in the estimated derivative
in x-direction: The discontinuity is smoothed out.

In the second part we change the parameters a little bit:

n α Ψ mmax λ

2 200 ΨC 2000 0.01

So we changed our assumption from a homogeneous isotropic one to a piecewise anisotropic
one. We realise that this makes sense as our data g2 has a piecewise second-order
smoothness as stated above. By inspecting the results in figure 4.2 we notice that now
the method tries to preserve the discontinuity in the centre. The result is, however, not
perfect but still better than in the homogeneous case.
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(a) Plot of our function g2. (b) Solution u for Ψ = ΨWT.

(c) Solution u for Ψ = ΨC. (d) Estimate of ux for Ψ = ΨWT.

(e) Estimate of ux for Ψ = ΨC.

Figure 4.2: Synthetic Experiment 2: Original function g2 and results for n = 2 and
different choices for Ψ.
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Experiment 3

In the previous experiments we considered functions that showed only a non-constant
behaviour in the x-direction. Now we finally turn to a function that shows such a
behaviour in both directions: g3(x, y) = x y. It is evaluated on the same grid like the
other functions. The plot can be inspected in figure 4.3.

By studying this function a little bit we realise that it has a third-order smoothness
as its third-order derivatives are the first ones that vanish all.

This observation motivates the usage of a homogeneous third-order smoothness as-
sumption:

n α Ψ mmax

3 200 ΨWT 2000

By inspecting the results in figure 4.3 we discover that this was the right choice: We
see in our solution that no information of the structure of our original data was lost.
Moreover we realise that we have this time also access to estimates of the second-order
derivatives of our solution because we used n = 3.

104



(a) Plot of our function g3. (b) Our solution u for n = 3.

(c) Estimate of ux. (d) Estimate of uy.

(e) Estimate of uxx. (f) Estimate of uxy.

Figure 4.3: Synthetic Experiment 3: Original function g3 and our solution u and
estimates of its derivatives for n = 3.
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4.3 Image Restoration Experiments

Finally we return to our noisy image we encoutered in chapter 1. We remember that we
used in our first attempt a homogeneous first-order smoothness assumption. The used
parameters are:

n α Ψ mmax

1 20 ΨWT 2000

We see in figure 4.4 again the dissatisfactory result: On the one hand the non-constant
behaviour is preserved but on the other hand the discontinuity in the centre is lost.

We recollect that we also used a isotropic piecewise first-order assumption to denoise
the image:

n α Ψ mmax λ

1 20 ΨC 2000 1

Again the result did not satisfy us: This time the discontinuity was preserved but the
non-constant behaviour was turned into a piecewise constant one.

Now we use the parameters

n α Ψ mmax

2 20 ΨWT 2500

Hence we are using a second-order homogeneous smoothness assumption. Unfortunately
we see in figure 4.4 that we again are losing information about the discontinuity.

By replacing now our homogeneous assumption by a piecewise anisotropic one we can
solve the problem:

n α Ψ mmax λ

2 20 ΨC 2500 0.02

This time we see in figure 4.4 that both the discontinuity in the centre and the non-
constant behaviour in the two regions is preserved, which represents our best result.

We remember that we discussed in chapter 1 the usefulness of first-order derivatives
of a given image. In particular we learned that the magnitude of the image gradient
‖∇f‖ can be used to detect edges in the image. For visualising the detected edges we
might create an image g such that

g(x, y) =

{
255 if ‖∇f(x, y)‖ > t

0 else

where t is a given threshold. Thus we are coloring each candidate for an edge white
and everything else black. We will now use this ansatz to detect the edges in our best
solution. Here we are using t = 45 and the estimated gradient of our solution. We see in
figure 4.5 a very satisfying result: The preserved discontinuity in the centre is detected
as an edge. Thus we conclude that our estimated derivatives of the solution are in fact
quite useful.
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(a) Original image we already en-
countered in chapter 1.

(b) Noisy version of the image.

(c) The result of our denoising at-
tempt from chapter 1, where we used
n = 1 and Ψ = ΨWT.

(d) Our second attempt from chap-
ter 1, here the Charbonnier penaliser
was used instead.

(e) Result from our generic ap-
proach with n = 2 and Ψ = ΨWT.

(f) Our best result that we obtained
for n = 2 and Ψ = ΨC.

Figure 4.4: Denoising Experiment: Results of our generic approach for different
choices for n and Ψ.
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(a) Our noisy image. (b) Detected edges by using t = 45 and
the magnitude of the estimated gradient
of our best solution.

Figure 4.5: Edge Detection: We see that we can use the estimates of the derivatives
of our solution to perform an edge detection.

4.4 Optic Flow Experiments

Experiment 1

Now we return to our Uniaxial Tensile Experiment we considered in chapter 1 that
is shown in figure 4.6. There we tried to estimate the motion by using a first-order
piecewise anisotropic smoothness assumption:

n α Ψ mmax λ

1 2000 ΨC 10000 0.01

We observe in figure 4.7 that this choice leads to a piecewise constant motion.
Now we use the parameters

n α Ψ mmax

2 2000 ΨWT 40000

So we are using now a homogeneous second-order assumption. By inspecting the result
in figure 4.7 we learn that this time the estimated motion is linearly changing in space
and also that its magnitude is more similar to the reference solution. Thus we conclude
that our Generic Optic Flow approach seems to work, too.

Again we think about the potential usage of the derivatives of the motion we discussed
in chapter 1. We remember that we can compute the Strain Tensor E by means of the
Displacement Gradient ∇u. We will now compute this tensor by means of our estimated
derivatives of our solution. In figure 4.8 we discover that the obtained strain is very
homogeneous and looks similar to the one provided by Vic-2D. Moreover we see that the
strain in y-direction is positive indicating that a stretching is occurring, which we can
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Figure 4.6: Optic Flow Experiment 1: Top Row: Two frames of an Uniaxial Tensile
Experiment where the area of interest is colored in purple. Bottom Row:
The respective enlarged areas of interest.
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actually observe in the original images. However, we note that in the case of the shear
component we see a large difference between our obtained minimum and maximum and
the ones provided by Vic-2D.
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Figure 4.7: Optic Flow Experiment 1: Top Row: Reference Motion, Centre Row:
Motion for n = 2 and Ψ = ΨWT, Bottom Row: Motion for n = 1 and ΨC.
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Figure 4.8: Optic Flow Experiment 1: Left Column: Reference strain, Right Col-
umn: Strain obtained for n = 2.
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Experiment 2

In our final Optic Flow experiment we consider another experiment that is depicted in
4.9: A so-called Biaxial Tensile Experiment where we are using data with the new sample
shape proposed by [11]. We see that in such an experiment the sample is stretched in
two directions. Here we will again use the solution provided by Vic-2D as our reference
solution.

In a first step we will apply our homoegeneous second-order assumption to estimate
the motion and its first-order derivatives:

n α Ψ mmax

2 2000 ΨWT 40000

The result in figure 4.10 looks very promising: Both the directional information and the
magnitude of the motion are very similar to our reference solution.

Let us now have a look at the estimate of vy: In figure 4.12 we discover that it is not
constant as it should be1. It actually resembles a quadratic function. But this implies
that v itself should be a cubic function.

This observation motivates the usage of a fourth-order smoothness assumption:

n α Ψ mmax

4 2000 ΨWT 70000

We see now in figure 4.11 that the estimated motion is still similar to our reference
solution. But in figure 4.12 we observe that vy now shows a real quadratic structure,
which actually indicates that our previous experiment with n = 2 had destroyed this
information.

Finally we compute the Strain Tensor by using the estimate of the Displacement
Gradient we obtained for n = 4 and compare the result to Vic-2D2. We see in figure 4.13
that the results are again very similar with one exception: the shear strain component.

In addition to that we discover that this time the strain is no longer homogeneous,
that is, the strain is no longer constant in space.

4.5 Summary

We have seen in this chapter that our new method delivers acceptable results if we
adapted the smoothness assumption via the parameter n. Furthermore we discovered
that the estimates of the derivatives of the solution that we obtained can be used to gain
access to additional information about the solution.

1Remember that we used a second-order assumption.
2Note that the white dots in the plot signal that Vic-2D possibly had problems to estimate the strain

there.
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Figure 4.9: Optic Flow Experiment 2: Top Row: Two frames of an Biaxial Tensile
Experiment where the area of interest is colored in purple. Bottom Row:
The respective enlarged areas of interest.
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Figure 4.10: Optic Flow Experiment 2: Left Column: Reference motion, Right
Column: Motion of our result for n = 2.
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Figure 4.11: Optic Flow Experiment 2: Left Column: Reference Motion, Right
Column: Motion of our result for n = 4.
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Figure 4.12: Optic Flow Experiment 2: Left: Estimate of vy for n = 2, Right:
Estimate of vy for n = 4.
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Figure 4.13: Optic Flow Experiment 2: Left Column: Reference strain, Right
Column: Strain obtained for n = 4.
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5 Conclusion

5.1 Summary

In this work we were concerned with Variational Methods where we focused in particular
on the modelling process.

In chapter 1 we learned that a Smoothness Term that worked for one set of data might
fail in cases where the data did have some special properties. We then argued that fixing
the smoothness assumption to a specific idea might be not an optimal choice. Further-
more we discovered that we could extract higher order information form a solution by
inspecting its derivatives.

These two findings motivated us in chapter 2 to design a Generic Smoothness Term
that can be adapted to different data by manipulating a single parameter. In addition
to that we designed it in such a way that higher order derivatives of the solution are also
obtained in the process. After that we researched the so-called Euler-Lagrange Equations
associated to our new approaches, that is, the necessary conditions our solutions must
fulfill.

As we wanted to perform experiments on discrete data we were forced to think about
the discretisation process in chapter 3. Here we discussed how the different types of
Euler-Lagrange Equations could be discretised and which iterative solver we could use
for each type.

In chapter 4 we were then finally able to investigate how our new approaches are
performing. We saw in the Image Restoration case that we now could denoise an image
where we failed in chapter 1. Furthermore we were also able to extract edge information
from this noisy picture by applying our new method. In the Optic Flow experiments
we also observed that our new approach seems to work as expected: We could adjust
the order of the smoothness assumption by manipulating a single parameter in order to
adapt our approach to the current structure of the data. We also succeeded in computing
the Strain Tensor by using our estimated derivatives of the solution.

5.2 Outlook

However, we observe that there are some topics left that might be worth investigating.
In this whole work we focused almost entirely on the modelling process and the evalu-

ation of the designed methods. Thus we did not investigate any theoretical properties of
our new approaches. For example we do not know if our new Energy Functionals have
a unique minimiser1.

1Here we are excluding the Optic Flow case where the Data Term was not linearised
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Moreover we only combined our new framework with two Variational Methods: Image
Restoration and Optic Flow Estimation. It would be very interesting to know if other
methods could also benefit from this new framework.

In terms of numerics we only used a relatively simple method. Again we find it
worth investigating if the computing time can be improved by employing another solving
technique.
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