
Computational Psycholinguistics: Tlearn Tutorial 3 

Simple Recurrent Networks 

Date: 1 February 2012 
Due: 6 February 2012 
Studentʼs name: 
 
In this tutorial, the aim is to familiarize yourself with the processing of sequences over time, 
using simple recurrent networks. This tutorial is based on Chapter 8 of Plunkett & Elman, and 
takes you through the learning of letter sequences “ba dii guuu” as discussed in the lecture. 
 
To begin, the encoding scheme used in this simulation is slightly different from that in Elman’s 
original simulations (this is given in the codes file): 
 

b 1 1 0 0 
d 1 0 1 0 
g 1 0 0 1 
a 0 1 0 0 
i 0 0 1 0 
u 0 0 0 1 

 
As with the original encoding, the first bit represents the consonant feature, the other three, a 
localist representation of each consonant and vowel. 

Ex 1: The letters file contains a random sequence of 2993 letters. Open the file and convert it 
to a vector representation using the Translate option under Edit and selecting the pattern file 
codes (letters must be open and active). Save the resulting training file as srn.data. 

Ex 2: Also create the file the srn.teach by copying of srn.data and moving the first line to 
the end of the file. 

Ex 3: Open the project file srn. Examine the network architecture. Based on the network 
configuration srn.cf, draw the network as a conventional SRN, indicating which node numbers 
are the inputs, output, hidden, and context units (do not draw each node separately, but use slabs 
to represent unit groups). 



Ex 4: Why do you think the recurrent connections from the hidden to the context units are one to 
one with fixed weights? 

Ex 5: Train the network (sequentially!) with learning rate = 0.1 and momentum = 0.3 for 70000 
sweeps. How many epochs is this? 

Ex 6: Monitor the RMS error during training, and explain why it seems to stay so high. 

Ex 7: Examine the file test.data. What letter sequence is being tested by this file? 

Ex 8: Test the network using this file. Make sure the simulator is set to Calculate error 
under Testing Options, so you can easily examine the error behavior for each letter in the 
sequence. Sketch the error plot, annotated with letters at each point. 

Ex 9: How well has the network learned to predict the next element in the sequence? Does it 
correctly predict the vowel following a consonant? Does it correctly predict the number of 
vowels? 



Ex 10: Does the network correctly predict when a consonant will be the next item in the 
sequence? Explain why you think it does or doesn’t. 

Ex 11: Examine the network’s solution by examining the hidden node activations associated with 
each input pattern and performing a cluster analysis of the hidden units on the test patterns: 

• Clear the output display, then select Probe selected nodes under Network. 
• Output now contains the hidden unit activations for the patterns in test.data. 
• Remove the comment lines at the beginning of the file and save Output as test.hid. 
• Create a names file called test.lab which contains b a d i1 i2 g u1 u2 u3, one per 

line. 
• Then choose Special, Cluster Analysis. 

Ex 12: Sketch the resulting dendrogram, and comment on what it suggests about the network’s 
solution. 


