The "generalized" Delta rule: Δw_{ij} = ε δ_i a_j
For output nodes: δ_i = σ'_i · (t_i - a_i)
For hidden nodes: δ_i = σ'_i · Σ_k δ_k w_{ki}
The first derivative of the logistic function: σ'_i = a_i (1 - a_i)

Forward pass: For each node except the input nodes, calculate net (netinput) and then a (activation), until you reach the output nodes.

$$net_{1} = \sum_{j} w_{ij}a_{j}$$

$$= w_{1,0}a_{0} + w_{1,i1}a_{i1} + w_{1,i2}a_{i2}$$

$$= 0.75 \times 1 + \dots \times 0 + \dots \times 0$$

$$= 0.75$$

$$a_{1} = 0.7 \ (Lookup \ in \ table)$$

$$net_{2} = -0.60$$

$$a_{2} = 0.35$$

$$net_{3} = -0.65 - 0.25 \times 0.7 + 0.45 \times 0.35$$

$$= -0.65 - 0.175 + 0.16$$

$$= -0.665$$

$$a_{3} = 0.35$$

Backward pass: First compute all δ 's layer by layer, then make weight changes (note that weight changes occur all at once at the end of the sweep).

σ'_3	$= a_3 (1 - a_3)$	$\Delta w_{3,0} = \epsilon \cdot \delta_3 \cdot a_0$
	= 0.35 (1 - 0.35)	$= 10 \times -0.08 \times 1$
	= 0.2275	= -0.8
δ_3	$= \sigma'_3 \cdot (t_3 - a_3)$	$\Delta w_{3,1} = 10 \times -0.08 \times 0.7$
	$= 0.2275 \times (0 - 0.35)$	= -0.56
	= -0.08	$\Delta w_{3,2} = 10 \times -0.08 \times 0.35$
		= -0.28
σ'_1	= 0.7 (1 - 0.7)	$\Delta w_{1.0} = 10 \times 0.0042 \times 1$
	= 0.21	= 0.042
δ_1	$= \sigma'_1 \cdot \delta_3 \cdot w_{31}$	$\Delta w_{1,i1} = 10 \times 0.0042 \times 0 = 0$
	$= 0.21 \times -0.08 \times -0.25$	$\Delta w_{1,i2} = 0$
	= 0.0042	
σ'.	$= 0.2275 (= \sigma')$	$\Delta w_{2,0} = 10 \times -0.008 \times 1 = -0.08$
υ ₂ δ	$= 0.2273 (= 0_3)$	$\Delta w_{2,0} = 10 \times 0.000 \times 1 = 0.000$
<i>v</i> ₂	$-0.2275 \times 0.08 \times 0.45$	$\Delta w_{2,i1} = 0$
	$= 0.2273 \times -0.08 \times 0.43$	$\Delta w_{2,i2} = 0$
	= -0.008	