- The "generalized" Delta rule: $\Delta w_{i j}=\varepsilon \delta_{i} a_{j}$
- For output nodes: $\delta_{i}=\sigma_{i}^{\prime} \cdot\left(t_{i}-a_{i}\right)$
- For hidden nodes: $\delta_{i}=\sigma_{i}^{\prime} \cdot \sum_{k} \delta_{k} w_{k i}$
- The first derivative of the logistic function: $\sigma_{i}^{\prime}=a_{i}\left(1-a_{i}\right)$

Forward pass: For each node except the input nodes, calculate net (netinput) and then a (activation), until you reach the output nodes.

$$
\begin{aligned}
\text { net }_{1} & =\sum_{j} w_{i j} a_{j} \\
& =w_{1,0} a_{0}+w_{1, i 1} a_{i 1}+w_{1, i 2} a_{i 2} \\
& =0.75 \times 1+\ldots \times 0+\ldots \times 0 \\
& =0.75 \\
a_{1}= & 0.7(\text { Lookup in table }) \\
\text { net }_{2} & =-0.60 \\
a_{2}= & 0.35 \\
\text { net }_{3} & =-0.65-0.25 \times 0.7+0.45 \times 0.35 \\
& =-0.65-0.175+0.16 \\
& =-0.665 \\
a_{3}= & 0.35
\end{aligned}
$$

Backward pass: First compute all δ 's layer by layer, then make weight changes (note that weight changes occur all at once at the end of the sweep).

$$
\begin{aligned}
& \sigma_{3}^{\prime}=a_{3}\left(1-a_{3}\right) \\
&=0.35(1-0.35) \\
&=0.2275 \\
& \delta_{3}=\sigma_{3}^{\prime} \cdot\left(t_{3}-a_{3}\right) \\
&=0.2275 \times(0-0.35) \\
&=-0.08 \\
& \\
& \sigma_{1}^{\prime}=0.7(1-0.7) \\
&=0.21 \\
& \delta_{1}=\sigma_{1}^{\prime} \cdot \delta_{3} \cdot w_{3,1} \\
&=0.21 \times-0.08 \times-0.25 \\
&=0.0042 \\
& \sigma_{2}^{\prime}=0.2275\left(=\sigma_{3}^{\prime}\right) \\
& \delta_{2}=\sigma_{2}^{\prime} \cdot \delta_{3} \cdot w_{3,2} \\
&=0.2275 \times-0.08 \times 0.45 \\
&=-0.008
\end{aligned}
$$

$$
\begin{aligned}
\Delta w_{3,0} & =\varepsilon \cdot \delta_{3} \cdot a_{0} \\
& =10 \times-0.08 \times 1 \\
& =-0.8 \\
\Delta w_{3,1} & =10 \times-0.08 \times 0.7 \\
& =-0.56 \\
\Delta w_{3,2} & =10 \times-0.08 \times 0.35 \\
& =-0.28 \\
\Delta w_{1,0} & =10 \times 0.0042 \times 1 \\
& =0.042 \\
\Delta w_{1, i 1} & =10 \times 0.0042 \times 0=0 \\
\Delta w_{1, i 2} & =0 \\
\Delta w_{2,0} & =10 \times-0.008 \times 1=-0.08 \\
\Delta w_{2, i 1} & =0 \\
\Delta w_{2, i 2} & =0
\end{aligned}
$$

