
Computational Psycholinguistics—Tutorials 9 December 2011

Tutorial 5b
Implementing Left-Corner

1. Review the algorithm as given in the first part of this tutorial, then draw the search
tree for the left-corner arc-standard parser for “John loves Mary”.

• Use “simplified” slash notation, in which atoms are used to represent complete
elements (e. g. writing NP instead of NP/[]),

• Consider the grammar to be binary (John and Mary: NPs), and
• Expand only the “shift” operations needed to reach the correct parse.

2. Make a copy of your last Parser Architecture, rename it Left-Corner, and implement
a basic version of the left-corner arc-standard parsing rules.

• Since a Prolog list is used to represent the stack, the newest element will
always be on top and the second-newest element second in the list. Therefore
merging will turn [n, np/n] into [np] (note the ordering).

• Whenever possible, use variable names that indicate relative node positions
in the tree (e. g. Mother, Daughter,…), as this will make your code easier
to understand and expand.

3. Check that your model behaves as expected by following the steps in your search
tree. For now, take no heed that there is more than one element on the stack at
the end of the sentence.

4. In your tree, modify complete constituents to use full slash notation, including the
empty lists which explicitly denote that nothing is missing. Then modify the parse
rules in your model accordingly. Note that all changes should be made in the parse
rules; it is not necessary to modify either lexicon or grammar.

5. Add the arc-eager derivation for “John loves Mary” to your tree, then duplicate
the arc-standard “merge” rule, comment out the first and modify the second to
obtain the arc-eager variant.

6. Test your parser, and make sure both arc-standard and arc-eager can parse the
sentence. You can switch between the two versions by commenting one rule out
and uncommenting the other.

7. Draw the search tree for “John chases the black cat”.
• Include both arc-standard and the arc-eager derivations.
• Use the n-ary grammar from previous tutorials.

Garance Paris 1



Computational Psycholinguistics—Tutorials 9 December 2011

• As in the other parsers, the trick here is to group the right-hand side elements
of a grammar rule as a list. Therefore, on the stack, missing elements will
also become lists: If the grammar contains NP → Det Adj N and we find a
determiner, it will be replaced by NP/[Adj N].

• Make sure to use correct bracketing for all the lists, especially the singletons.
You may however use “simplified” notation for complete elements.

8. Extend your parser so it can deal with n-ary rules. As before, modify arc-standard
first, test the parser, and then go on with arc-eager. In arc-eager, you will need to
use “append” to combine all missing elements to one list, as shown in the figure
below, in which the two postulated NextDaughter nodes are merged, leaving
GrandDaughters and RemainingDaughters to be found, in that order.

9. Now serialize the parser to prevent it from adding several elements to the stack:
Add a Possible Operations buffer, the definition for possible_operations/2
as well as the rule that selects an operation at random, then split each parse rule
into two parts as in the previous tutorials. Check your previous models if needed
to remind yourself how to obtain a clean “propose-execute” cycle.

10. Load the stimuli, lexicon and grammar provided on the tutorial page, and test the
model by parsing each sentence in turn, commenting out unnecessary grammar
rules as needed. Both versions of the parser should principally be able to parse all
sentences, although it will often make wrong choices and not be able to backtrack.

11. Add backtracking to the model. Load the rules from the tutorial page, change the
success condition, fill in the question marks as in previous tutorials, and make the
necessary modifications to the input/output rules and to the stimuli. Then try
to run an “experiment” with five participants with either parser variant (this may
take a while!)

12. You will notice that some sentences still constitute a problem when the parser
backtracks. Add “_ is in Current Word” to all parse rules (both to the propose and
execute parts) to solve this problem and run the “experiment” again.

13. As you can see, the parser needs to backtrack a lot before finding the correct parse.
This was already true under point 11, and the fix we added in the previous step has
made the problem only worse, because now “shift” is possible at every choice point,
including those where it was not before because no input was available in Current
Word. Temporarily make John and Mary NPs again in the lexicon and comment

Garance Paris 2



Computational Psycholinguistics—Tutorials 9 December 2011

out all unnecessary rules in the grammar, then use your parser to expand the
missing “shift” branches of the first search tree you drew in this tutorial.

14. If you give the content of the stack along the new branches of your search tree a
closer look, you will notice that those paths had no chance in succeeding in the
first place. For example, if, after cycle 5 (step 2 in the search tree), we do not use
“predict” to make an s/[vp] out of the np/[], but instead immediately shift the
verb onto the stack to obtain [np/[], tv/[]], there is no way the parser will
ever be able to integrate the NP and the VP using “merge”.
One way to reduce the extensive backtracking in our parser is to have it explore
the most promising paths first. In order to do this, we are going to incorporate a
new mechanism which will introduce precedence between the parse rules, instead
of letting chance decide. This will make sure that anytime “predict” is possible,
it will be prefered to “shift”, and anytime “merge” is possible, it will be prefered
over both other operations.

a) Make a copy of your model.
b) Add scores to the “propose” part of the three parse rules. Change the actions

of the rule that proposes shifting to read:
add score(1, shift(Word,Category)) to Possible Operations

Then modify the other rules in similar fashion, “predict” having a value of 2
and “merge” a value of 3.

c) Replace possible_operations/2 and the choice rule with the rules from the
tutorial page, and make the necessary changes to the execute rules.

d) Run a new “experiment” with five participants, and compare the total number
of cycles needed to parse all sentences with the one under point 12.

15. Unfortunately, the previous mechanism does not reduce useless backtracking as
much as might have be hoped. Luckily, we have at least one more trick in our bag:
We are going to add an “oracle” to the parser.

a) Add a buffer called Oracle to your model, and make it ungrounded by uncheck-
ing the corresponding box in its properties.

b) Compile the list of possible left corners according to the grammar, add them
to the buffer, and add lc(Cat,Cat) as the last element of the list.

c) Initialize the stack with s/[s] to ensure the parser always has a goal.
d) Request new stack elements to be potential left-corners of the top-most cat-

egory by adding “lc(Variable,Goal) is in Oracle” to the conditions of the
“shift” and “predict” rules.

e) Adapt the value of <Variable> and make sure the variable <Goal> is
bound: It is always the left corner of the stack element preceding the one to
be added or modified.

f) Run a final experiment like the previous ones, and report the numbers for all
experiments. Can you tell why the number of cycles in the last model still is
not exactly the same every time?

Garance Paris 3


