
Computational Psycholinguistics—Tutorials 2 November 2011

Tutorial 1
Introduction to COGENT

1 What COGENT is about
In the first part of the tutorials, we are going to use COGENT, a visual programming

environment designed specifically for implementing symbolic models of human cogni-
tive skills, such as for example parsing. Models consist of a combination of buffers and
processes, linked by arrows indicating the flow of information. Buffers contain factual in-
formation and represent memory, while processes manipulate and transform information
according to rules the modeller defines.

2 COGENT Setup and References
See tutorial web page and the slides at:

http://www.coli.uni-saarland.de/~gparis/Cours/CP_Tutorials/

3 A Model of Self-Paced Reading
In these tutorials, we are going to focus on parsing written sentences. Our models will

correspond to what we think happens inside a reader’s mind as they read and analyze
individual sentences.

In order to explore the COGENT environment, learn about some of its features and
about the syntax it uses, today we are going to build a simple model of a self-paced
reading experiment. Imagine you are running a self-paced reading experiment to inves-
tigate human parsing: You have a list of stimuli which is presented word-by-word on
a computer display. The participants read the sentences, and press the space
bar each time they want the next word to appear. Each time they do so, the time they
take from one word to the next is recorded to a file, so that it can later be used for
analysis.

3.1 Creating the Model and Adding Components

1. Let us start building our first model. Create a new research program in COGENT,
e.g. “CP_Tutorials” (File → New → Project). This will contain all the models we
will develop over the course of term.

Garance Paris 1



Computational Psycholinguistics—Tutorials 2 November 2011

2. In the right window panel, in the Diagrammatic History tab of your research pro-
gram, create your first model (Right-click on the canvas, File → New Model). Give
the model a name, e.g. “Self-Paced Reading”.

3. If your model isn’t highlighted in red, click on it once to select it.

4. Then open it by double-clicking on the head symbol, and switch to the Diagram
tab. This is where the components of a COGENT model are specified, using
drag & drop. The main four types of components we will use are:

• Propositional buffers (rectangles with rounded ends and a “P” in the upper
right corner): To store any kind of factual information.

• Processes (stretched hexagons): To manipulate and transform information
according to rules.

• Text sinks (rectangles with a pointed top and horizontal lines on the sides):
To save data to files.

• Compound boxes (plain rectangles): Boxes that contain other components,
grouping them into functional units.

5. According to the above description of a self-paced reading experiment, the com-
ponents we need are:

• A propositional buffer to store the list of stimuli,
• Another to represent the display,
• A process in-between them to present the stimuli one-by-one on the display,
• Another process to represent the participant reading the input from the

display,
• A process to represent key pressing, which will trigger clearing of the display,
• And an output sink to store the reading times.

6. Create the components in your model:
a) Use the scroll bar at the bottom to find each type of component,
b) Click on the component,
c) Then click on the canvas where you want the box to appear, positioning the

elements as in the screenshot below.

Garance Paris 2



Computational Psycholinguistics—Tutorials 2 November 2011

7. Open each component with a double-click and rename them List of Stimuli, Present
Stimulus, Display, Read, Press Key, and Output.

8. Then add the arrows. There are two kinds of arrows in COGENT, which determine
what information can flow from one component to another:

• Blunt arrows with a triangle at the end are “read” arrows and indicate that
a process can read from a given component,

• Whereas “write” arrows with an arrowhead at the end indicate what com-
ponents a process can modify (add to or delete from).

Here is how to draw arrows in COGENT:
a) Click on the arrow in the components palette,
b) Then click on the source box,
c) Drag to the destination box,
d) And release.

Note that you can delete arrows as well change their direction and type by right-
clicking on them and choosing from the context menu that opens.

3.2 Entering the Stimuli
You are now going to add a few sentences to use as stimuli. The syntax used in

COGENT is inspired from the programming language Prolog:

• Sentences are represented by Prolog lists: They are enclosed between square brack-
ets and the words (the elements of the list) are separated by commas.

• Capital letters denote variables, so in “John loves Mary” the words “john” and
“mary” should not be capitalized.

1. Add the sentence [john, loves, mary] to List of Stimuli.
a) Open the buffer,
b) Click on the Initial Contents tab,
c) Add an empty element by clicking on the Element component, then on the

canvas,
d) Open it with a double-click and modify it.

2. Then add a few more simple sentences of your own.

Garance Paris 3



Computational Psycholinguistics—Tutorials 2 November 2011

3.3 Setting up the Process Present Stimulus

We are now going to set up the necessary rules in Present Stimulus to diplay the stimuli
one-by-one. In our first version of the model, the sentences are going to be presented
as a whole to the participant. For this, a single rule is sufficient, which will state that
whenever the display is empty, a sentence should be chosen from the list of stimuli and
shown on the display.

3.3.1 Specifying Rules

1. Rules are added to processes the same way components are added to buffers. Add
an empty rule to the process by clicking on the “If… then…” tab and then on the
canvas.

2. Double-click on it to open the rule editor. You can see that COGENT rules are
made up of a Condition part and an Action part (you can ignore for now the the
check boxes at the top of the window). Basically, conditions specify when the rule
should fire, and actions how the state of the system is changed by the rule.

3. If you now close the rule editor, you will see that on the canvas, the conditions
are preceded by the key word IF: and the actions by THEN: (the meaning of
“refracted” will be explained later).

Garance Paris 4



Computational Psycholinguistics—Tutorials 2 November 2011

Conditions Since sentences are going to be presented whole to the participant,
the only condition for the current rule is that the display should be empty.

a) Open the rule editor and try to enter the condition: Click on Add Condition,
select match from the drop-down menu, and try to select Display from the
drop-down menu on the right of the empty box that appears.

b) You will notice that the Display buffer is not available. This is because Present
Stimulus cannot read from the display.

c) Go to top level of your model and add the necessary read arrow between
Present Stimulus and Display by clicking first on the process and then on the
buffer, so that the blunt triangle points towards Display. Both arrows will be
displayed on top of each other.

d) Then come back to the rule editor: Display is now available from the list of
buffers the rule can read from.

e) Now for the left side of the match: What does it mean for the display to be
empty? In COGENT, you specify that a buffer should be empty by stating
that it should not contain anything, or rather “any thing”.

• “Any thing” can be represented by the Prolog anonymous variable, the
underscore. It will be entered automatically by COGENT in the box if
you leave it empty (see screenshots on page 4).

• This needs to be negated: Click on the triangle in front of the empty box
to open the drop-down menu, and select Add qualifier → not.

Actions Now for the rule’s Actions. Rules in COGENT can do two main types of
things, namely add or delete buffer elements.

a) First we need to select a sentence from the List of Stimuli. This is achieved by
adding an extra match in the Conditions.

b) Enter a variable name for the sentence to be selected, e. g. Sentence (note
the capital).

c) In order to add the sentence to the Display buffer, click on Add action → add
and then choose which buffer to add the sentence to in the drop-down list.

d) Then enter the variable you chose under b) in the empty box on the right.
e) It is also important to remember to delete the variable from the list of stim-

uli, otherwise the sentence will be shown indefinitely over and over when we
simulate an experiment. Repeat the two previous steps, but this time click
on Add action → delete.

f) You will notice that you cannot choose List of Stimuli from the list of buffers.
g) This is because deleting from a buffer in COGENT requires write access to

that buffer. Add the necessary arrow to the model, then choose List of Stimuli
from the list of buffers and specify the variable in the field on the left.

You are now done specifying the rule. Before you close the editor though, add
a comment at the top describing what the rule does, e. g. “Select and show

Garance Paris 5



Computational Psycholinguistics—Tutorials 2 November 2011

a sentence”. Documenting your code this way will make it much easier to
understand once our models get more complex.

3.4 Setting up Press Key

In the present model, no real “processing” will be done—we will leave that until next
week. Therefore, the process Read will remain empty. However, you need to define a
rule in Press Key which will represent the participant pressing the space bar when they
are done reading a stimulus, thereby clearing the display and subsequently causing the
next stimulus to appear. Write this rule and add a comment to it to explain what it
does (e. g. “Clear the display”).

3.5 Running the Model
We are now going to observe the model in action.

1. Open the following windows next to each other on your desktop:
• The Current Contents tab of the List of Stimuli buffer,
• The Messages tab in Present Stimulus,
• The Current Contents tab in Display,
• and the Messages tab in Press Key.

Your other COGENT windows can be hidden underneath or reduced.

2. Click on the red round button at the top right of any window to initialize the
model. All your sentences should be displayed in the Current Contents tab of the
List of Stimuli buffer. The 0 at the begining of each line indicates that they were
added to the buffer the last time it was re-initialized.

3. At same time, notice the newly initialized counter that appears below the tab bar
in every COGENT window: This indicates the time in COGENT since the model

Garance Paris 6



Computational Psycholinguistics—Tutorials 2 November 2011

was last run. E stands for “Experiment”, S for “Subject” (same as Participant), B
for “Block”, T for “Trial”, and C for “Cycle”. Model cycles are the smallest time
unit in COGENT, during which all rules whose conditions were fulfilled at the
previous step are executed in parallel.

4. Now click once on the single red arrow to step through one cycle. The counter will
go up to “…T1; C1”, meaning that you are on trial 1, cycle 1. Notice that the red
buttons are shortcuts for what is the menu Run.

5. Have a look at what is printed in Present Stimulus, in the Display and in Press
Key: These messages inform you what actions just took place.

• In Present Stimulus, you can see that on cycle 1 (the number on the far left),
R1 (Rule 1) in Present Stimulus fired, carrying out several actions: All your
sentences were deleted from the list of stimuli, and added to the display.

The result of this can be seen in the Current Contents tab of Display.

This, of course, was not the intended behavior. The reason is the inherently
parallel nature of processing in COGENT: Since there were more than one
possible bindings for Sentence in Rule 1, the rule was applied once for each
set of bindings.

• Moreover, notice what is printed in Press Key: Rule 1 has fired, deleting…
“something” from the display. You can see that COGENT uses a Prolog un-
bound variable to represent what it deleted—or rather “attempted” to delete,
because there was nothing in the display to be deleted.

Such unbound variables should in general be avoided because of the unpre-
dicted effects they can have.

Garance Paris 7



Computational Psycholinguistics—Tutorials 2 November 2011

3.6 Correcting the Model
In the previous section, we observed two problems with our model. We are now going

to correct this, starting with the unbound variables.

3.6.1 Unbound Variables

The simplest possible approach to clearing the display in section 3.4 is to create a rule
with a single action in Press Key as shown below:

Rule 1 (refracted): Clear the display
IF: True
THEN: delete Sentence from Display

However, this leads to an unbound variable because in COGENT, all variables in a rule’s
actions must first be instantiated in the conditions.

Actually, had you wanted to add an element to a buffer instead of deleting one,
COGENT would have complained, and you would have got an error at run time about
trying to ``add an ungrounded element to a grounded buffer''. “Ungrounded elements” is
COGENT’s way of calling unbound variables.

The solution to this problem is simple: Using match, add “Sentence is in Display”
to the rule’s conditions. Sentence will be properly bound before being used in the
actions, and therefore no unbound variable will be shown in the messages when you run
the model.

3.6.2 Experimental Flow

Now let us turn to the experimental flow.

1. In a self-paced reading experiment, stimuli are presented one-by-one on the display,
not all at the same time. This can be achieved by adding an additional constraint
to the rule in Present Stimulus. Open the rule editor and check the box at the top
of the window that says “Rule fires once per cycle”.

2. Re-initialize the model. The counter is reset to “E1; S1; B1; T1; C0”.

3. Now run the model again, slowly, step by step. You should observe that on odd-
numbered cycles (1,3,5…) a sentence is added to the display (check the Current
Contents tab in Display and the Messages tab in Present Stimulus), and then that
it is deleted on even-numbered cycles (check the Current Contents tab in Display
and the Messages tab in Press Key).

4. However, if you check the counter, you will notice that it is not incremented cor-
rectly: COGENT has not understood that the first trial was over after the sentence
was deleted from the display. The problem is that COGENT waits for the model
to be quiescent (i. e. no rules are applicable, therefore all processing within the
model is complete) before assuming a trial is over.

Garance Paris 8



Computational Psycholinguistics—Tutorials 2 November 2011

5. In order to correct this, we need to resort to COGENT’s “special triggers”, and
the solution in this case is not an obvious one. In Present Stimulus, open the rule
and check the box at the top for Rule is triggered, then add system_end(trial)
as a Triggering pattern (do not worry about the automatic change from “refracted”
to “unrefracted”—this will be explained later).

6. Try to run the model again. What happens when the trial counter is incremented?
You should see that the List of Stimuli buffer is re-initialized: All items you entered
in the Initial Contents are re-added to the buffer. This, of course, should not happen:
The buffer should be initialized once for every participant, not for every trial.

7. This can be changed by opening the Properties tab of the List of Stimuli buffer
and choosing Each Subject instead of Each Trial in the drop-down menu next to
Initialise. You may also want to do the same for all other components of the model.
In this case, log messages will not be erased at the end of a trial any more. In
some cases, this setting affects the experiment flow, in others, it is just a matter of
whether you prefer all messages to be kept throughout the experiment or whether
you would like the list shortened to the output of a single trial, especially when
our models get more complex and more messages occur.

8. Now go through the model slowly again. Both item flow and counter should now
be correct. Make sure you understand what is printed in the various buffers and
processes.

9. As a final touch to List of Stimuli, we are going to make one more change so that
sentences are always presented in the same order. In the Properties of List of Stimuli,
change “Access: Random” to “Access: FIFO” so that buffer elements are accessed
“first-in-first-out”, i. e. from the top of the list to its bottom.

4 Word-by-Word Presentation of the Stimuli

In self-paced reading experiments, sentences are not often presented as a whole to the
participant. Usually, they are shown word-by-word, and the reading times from one word
to the next are measured. We are now going to refine our previous model by building a
second one on top of it.

4.1 Creating a Second Model on Top of the First

1. Close all the windows of your model.

2. In the main COGENT window, create a copy of your model in the Diagrammatic
History tab, and rename it something like “Word-by-Word Presentation”.

3. Note the link COGENT draws between both models, indicating steps in model
development.

Garance Paris 9



Computational Psycholinguistics—Tutorials 2 November 2011

4.2 Taking Lists Apart
In order to display words one-by-one on the screen, we are going to have to “take apart”

the Prolog list representing each sentence. Remember the explanations about lists:

• In many programming languages, lists are actually made up of a first element, the
“head” of the list, and the rest, its “tail”, containing all other elements.

• The head of the list is a single element, whereas the tail of a list is itself a list
which contains all elements but the first one.

• In Prolog, there is a special in-built operator to separate the head of a list from its
tail, written as a vertical bar, “|” (the vertical line or pipe symbol). This is the
notation which COGENT uses to take lists apart.

• At the end of a list, there is a special element, the empty list, in Prolog “[]”. The
empty list cannot be split apart.

• For example, the sentence “[john, loves, mary]” could also be written as
“[john | [loves, mary]]” and could be taken apart in three steps as follows:

[john, loves, mary]

john [loves, mary]

loves [mary]

mary []

1. In order to present the sentences word-by-word, we need to add an additional
buffer to the model to keep track of the next word in the current sentence. Add
Current Stimulus.

2. Instead of writing the sentence directly to the display, we are now first going to
store the complete sentence in Current Stimulus, and then add a new rule to Present
Stimulus to show one word at a time. Modify the first rule in Present Stimulus so
that when a stimulus is chosen, it is added to Current Stimulus instead of Display.
You will need to add the necessary arrows to the model before you can do so, too.

3. Below, you can see the second rule in Present Stimulus, which you should add to
the process.

Rule 2 (refracted): Present stimulus word-by-word
IF: not _ is in Display

[FirstWord|Rest] is in Current Stimulus
THEN: add FirstWord to Display

delete [FirstWord|Rest] from Current Stimulus
add Rest to Current Stimulus

Garance Paris 10



Computational Psycholinguistics—Tutorials 2 November 2011

4. It is important you understand well what happens here, since this con-
stitutes the basis of list processing in COGENT.

a) The second condition says that if there is currently a sentence in Current
Stimulus, it should be split apart. The variable FirstWord is bound to the
head of the list (john), and the variable Rest to its tail ([loves, mary]).

b) In the actions, the first element of the list (FirstWord) is added to the
display,

c) And deleted from Current Stimulus in two steps:
I. First, the whole list, complete from head to tail, is deleted,

II. And then the tail is re-added.
This is an important way of proceeding in Prolog and thus in COGENT,
which we are going to be making heavy use of.

d) Note in particular how Rest is bound with [loves, mary] and therefore
implicitly has outer brackets around it, although you do not spell them out,
but FirstWord does not, since it is a single element.

5. Cycle through the model and observe how the variables are bound. Make sure
you understand what is going on in all buffers and processes (Current Contents or
Messages tab).

4.3 Applying Finish to the Model
Now for some finishing touches:

1. First, check your rules in the processes: Which occurences of Sentence should be
replaced by Word? This does not matter to the computer, but making sure your
variable names make sense will make your program much easier to understand—for
you and anyone else trying to understand it.

2. Then, have a look at the contents of Current Stimulus after the last word of a
sentence is deleted. You will notice it contains the last element of the original list,
the empty list.

• Do you understand what prevents its being moved to the display?
• What problem does the presence of the empty list cause?
• Can you think of a way to fix it? (Hint: Add a rule to “clean up” at the end

of trial)

4.4 Refraction
Add the sentence “The cat chases the dog” to your model and make it the first stimuli

in the experiment by right-clicking on it and selecting Move in the context menu, or by
commenting other sentences using Ignore.

If you now cycle once again through the model, you will notice a problem after the
second “the” is added to the display: Instead of deleting the word from the display as
expected, the model will all of a sudden jump to trial 3 instead of processing the end

Garance Paris 11



Computational Psycholinguistics—Tutorials 2 November 2011

of the sentence, indicating that it could not find any more rules to apply at the end of
trial 2. The problem has to do with refraction, a tricky concept from artificial intelligence
used in COGENT.

Refraction comes from from production systems, the type of system from which CO-
GENT is inspired (this is also where the parallel firing of rules comes from). Refraction
means that a given rule should normally NOT fire twice with the same variable
bindings. What happens here is that the first time “the” is encountered, it is bound
with Word in Rule 1 in Press Key, and thus deleted from the display, but the second
time, refraction prevents this.

The solution, of course, is now obvious: Make the rule “unrefracted” by unchecking the
corresponding box at the top the rule editor. The model should now work as expected.
In the case of linguistic stimuli, most processing rules in the models we will build
will need to be unrefracted for the model to work correctly. By default, new rules in
COGENT are refracted, but if you choose to use a trigger, they automatically become
unrefracted, although you can change this if you need to.

5 Gathering and Analyzing Reading Times
5.1 Outputing Information to a File

Until now, we have not been keeping track of what the model did. However, if we
want data we can analyze later, we need to output something to a file so we have a
basis for our analyses. This will also make our model of self-paced reading a little more
“interesting”.

1. Instead of the usual add and delete operations, writing to an output sink is done
with “send”. Add the two following operations to the appropriate rules in your
model (they do not belong all in the same rule, and you may need additional
arrows):

send show(Word) to Output
send clear(Word) to Output
Notice the use of complex Prolog terms to encode information. You are always
free to define complex terms in your code if you need them, with whatever arity
and as much nesting as you want.

2. Observe what is written to the data sink under the tab Results. You can scroll up
and down by using the arrows next to Page in COGENT components.

3. In order to save the output to a file, change the value of the location field in the
sink’s Properties tab to “Input/Output Directory” instead of “local”.

4. At the same time, change when the text sink is initialized to keep the results of
the whole experiment, not just one trial.

5. You can use the red double arrow to run complete trials in one go. If you want to
run a whole experiment, you can do so by opening the OOS window in the View
menu, going to the tab Current Script and making modifications there. However,
it is best not to overwrite COGENT’s default scripts but to save your own scripts

Garance Paris 12



Computational Psycholinguistics—Tutorials 2 November 2011

under other names by using the File menu. Notice how scripts can call each other:
In the script loaded by default in COGENT, another script is called, namely Trial,
which you can open to have a look at, too. This is the most basic script in
COGENT. If you want to run whole experiments, you could thus create your own
scripts calling the Trial script with different parameters. More information about
scripts can be found in the documentation under “Running Models”.

6. Open the output file to have a look at it. You will find it in your COGENT
directory, in the subfolder “Output”.

5.2 Making Reading Times Dependent on Word-Length
The run times in our current model cannot be said to be very interesting, because

every word takes exactly two cycles to process. You are now going to extend the model
so that reading times are dependent on word-length.

1. Create a new model based on the previous one and give it a new name.

2. Add a buffer Letters to which you can add the letters contained in a word in the
form of a list. You could consider this buffer as a participant’s “temporal memory”
while reading words.

3. In Read, add the following rule, possibly adapting the variables to your needs (note
the difference between Letters, the variable, and Letters, the buffer!):

Rule 1 (unrefracted): Explode word
IF: not _ is in Letters

Word is in Display
call atom_chars(Word, Letters)

THEN: add Letters to Letters

atom_chars/2 is a call to an built-in Prolog operator which converts a string to a
list of characters. For example, if Word is bound with “john”, the variable Let-
ters, which in Prolog approximately corresponds to a “return variable” in other
programming languages, would be bound to [j,o,h,n]. You can then use the
list of letters in whatever way you want within the rule. Built-in Prolog operators
can be called the conditions of a COGENT rule by clicking on miscellaneous, call
Prolog in the Add Condition drop-down menu (but they an advanced feature of
COGENT you do not need to remember).

4. Add another rule to Read that does naïve “letter recognition”, in which letters
are deleted one at a time from the list (see the rule that presents sentences word-
by-word for help with the syntax; note that you can cut and paste rules between
buffers via the context menu using Delete and Paste).

5. Modify the rule in Press Key:
• You will need to make sure it fires only after all letters have been read, when

the end of the list is reached (that is, when only the empty list, [], remains
in Letters).

Garance Paris 13



Computational Psycholinguistics—Tutorials 2 November 2011

• It should also ensure the state of the system is reset to allow the next word
to be read. For example, if anything is left in Letters, such as the empty list,
it may need to be deleted.

6. Check the Output sink: The numbers in front of key_press now correspond to
the moment when the participant pressed the space bar, which is whenever they
are done processing the current word. Here is an example of the kind of output
you should get:

experiment(1) , (subject(1) , (block(1) , (trial(1) , date('21:55:40 08 Nov 2011'))))
2 : show(john)
8 : clear(john)
9 : show(loves)
16 : clear(loves)
17 : show(mary)
23 : clear(mary)
experiment(1) , (subject(1) , (block(1) , (trial(2) , date('21:56:06 08 Nov 2011'))))
25 : show(the)
30 : clear(the)
31 : show(cat)
36 : clear(cat)
37 : show(chases)
45 : clear(chases)
46 : show(the)
51 : clear(the)
52 : show(dog)
57 : clear(dog)
experiment(1) , (subject(1) , (block(1) , (trial(3) , date('21:56:12 08 Nov 2011'))))

7. Using a spreadsheet or a script in any programming language of your choice, it is
then easy to demonstrate that there is a linear relationship between word length
and reading times:

show clear length time (cycles) difference
trial(1) 2 8 john 4 6 2

9 16 loves 5 7 2
17 23 mary 4 6 2

trial(2) 25 30 the 3 5 2
31 36 cat 3 5 2
37 45 chases 6 8 2
46 51 the 3 5 2
52 57 dog 3 5 2

The reading time for a word is thus its length in letters plus 2 cycles for additional
processing.

Garance Paris 14


