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Chapter 1

Introduction

A person’s voice can change due to many reasons, including aging, or being in different
emotional and pathological conditions. Physiologically, when a person ages, their vocal
tract lengthens, pulmonary functions reduce, the laryngeal cartilages ossify, stiffness in the
vocal fold increases, and closures are reduced [Leeu 04].

On the acoustical side, the fundamental frequency F0 is known to increase in males and
decrease in females, with variability increasing with age [Linv 02]. People tend to speak
slower, and aged people have more noise in their voices [Ferr 02]. Formant frequencies are
generally known to lower with aging, though these results are not always consistent. These
findings show that there are features in speech that correspond with age.

It was the purpose of this workshop to look into the speech signal and features calculated
from it and identify changes that can be attributed to aging. We decided to not only
look at standard features for automated speech processing (e.g. Mel Frequency Cepstrum
Coefficients, MFCCs), but also prosodic features and implement models, that invert the
articulatory process. Thus we can deduce parameters for the excitation signal and the vocal
tract. The degree of change in the standard, the prosodic and these phonetically motivated
features is evaluated with respect to the question how good these features can predict the
age of the speaker.

For our research we used both longitudinal data (one speaker over a long age period) and
cross-sectional data (many speaker of different age groups). When trying to look at the aging
process it would be best to keep all other factors (speaker, communication situation, emotion
of the speaker, recording devices, ...) constant. Of course it is very difficult to get recordings
of one speaker over a long period and impossible to keep the recording devices constant over
this period. The longitudinal data that were available to us were from the same communi-
cation situation, albeit certain factors like routine and experience in public speech change
over time and to a much higher degree the microphones and the other recording devices. It
was our expectation that articulatory features would encode the channel information to a
much lesser degree than standard MFCC features. We decided to verify findings from the
longitudinal data with cross-sectional data, where many speakers from different age groups
spoke the same text under identical recording conditions. To our knowledge this was the
first research where changes in the aging voice were examined for these two different kinds
of data.
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For longitudinal data ([Harr 06]) we chose

• The Queen of England Christmas Speeches:
The radio broadcast Christmas speeches of the Queen of England from 1952 - 2002
(some years missing, a total of 30 speeches) were digitized by BBC with different sam-
pling rates and # of bits/sample. We converted the files to 16 kHz & 16 bits/sample.
The speeches were about 5 minutes in length, totaling about 2.5 hours of speech. There
was a strong channel effect in these recordings, because of the difference of recording
quality and microphone over the years. This effect was also detected during human
evaluation of the data.

• Alistair Cooke’s Letter from America Broadcast Data:
This data consists of 30 recordings of Alistair Cooke’s Letter from America broadcasts,
each under 25 minutes of speech, with a total of 10.6 hours in length. Recordings
ranged from 1947 to 2003. These recordings also suffered from a change in channel
over the years. There was also a language effect in the recordings; although Alistair
Cooke initially had a strong British accent, he gradually received more influence from
American English over the years.

For cross-sectional data ([Harn 08]) we chose the

• University of Florida - Vocal Aging Database (UF-VAD):
The UF-VAD database consists of a Rainbow Passage, Grandfather Passage, sustained
vowels, and 16 SPIN-sentences from 75 male and 75 female American English speakers.
The speakers from each sex group were evenly divided into 25 young, 25 middle-aged
and 25 old with groups ranging from 18-29, 40-55 and 62-92 years of age, respectively.
The recordings were made between 2003 and 2007, and were recorded with the same
microphone with the same text, minimizing channel and language effects. Each speaker
spoke each of the passages, vowels and sentences once, which amounted to about two
minutes of speech, totaling the entire database to about 5 hours in length. Figure 1.1
shows the characteristics of this database.

The rest of this report is organized as follows: In chapter 2 we describe the implementation
of the glottal excitation model that we used in order to extract excitation parameters from
the speech signal. For the parameters derived from the vocal tract inversion (described in
chapter 4) the first three formants have to be extracted from the speech signal. To do this we
used two well known and freely available formant trackers. To exclude possible changes in
formant values based on changing recording conditions rather in aging changes we analyzed
the errors of the algorithm for some of the queens data at different ages. These analyzes are
described in chapter 3. The MFCCs and the prosodic parameters are described in chapter 5.
Experiments to predict the age of the speaker based on different feature groups are treated
in chapter 6. The report finishes with a summary.
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Figure 1.1: Characteristics of the UF-VAD database
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Chapter 2

Glottal Excitation Optimization

2.1 Introduction

2.1.1 Motivation
The goal of this work is to investigate the influence of age-related changes of the larynx
on speech. Harnsberger et al. [Harn 08] gave a recent literature overview on these changes,
including (i) an increased stiffening of the vocal folds, (ii) laryngeal cartilage ossification, and
(iii) a reduction in vocal fold closure. Unfortunately, the relationship of the physiological
changes with the speech signal produced by the aging speaker is still unclear. Linville
[Linv 96] has described a number of voice features that listeners often considered to be
characteristic for aged speakers. Many of them, like lower vocal pitch, increased harshness
or hoarseness, increased strain, higher incidence of voice breaks, vocal tremor and increased
breathiness, may be related to physiological changes of the larynx. Only very few researchers,
however, have been able to successfully map perceptual features of voice quality to objective
quantities measurable from recorded speech. An exception is the lowered pitch, as several
sources in the literature observed a relationship between the fundamental frequency and age
[Harn 08]. For male speakers there is an increase of the mean fundamental frequency with
age; for older female speakers there is either no change at all or a decrease.

This work is intended to be a first step in establishing a relationship between the observed
voice quality and changes of the larynx. The goal is to be able to describe the age-related
changes of the voice quality by the parameters of a physical model of the glottis. The features
derived from this physical model should represent a speaker’s age better than conventional
methods. Ultimately, these features could lead to age normalization methods.

As the relationship between the pitch and age is already known and can be extracted
from the speech signal without an elaborate model, we exclude the influence of the pitch as
much as possible. Instead, we concentrate on all other aspects of the speech signal, such as
increased strain, harshness, hoarseness, or creakyness.

2.1.2 Approach
Our approach is based on the source-filter model of the speech generation process. Air flows
from the lungs through the vocal tract, consisting of laryngeal cavity, pharynx, oral and
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nasal cavity. Voiced speech sounds are generated by a glottal source signal, also called an
excitation signal, that is filtered by the vocal tract. In order to be able to separate the
influence of glottis and vocal tract, it is assumed that the vocal tract can be represented by
a linear filter. As shown in Fig. 2.1, linear prediction is applied to obtain the vocal tract
configuration for each time frame. An approximation of the excitation signal is the LPC

LPC coefficients

linear
prediction

original speech signal

optimization
loop

parameters of excitation model

extraction
pitch

LPC residue

inverse
filtering

Figure 2.1: Optimization procedure for a single time frame of voiced speech.

(Linear Predictive Coding) residue, which is computed by inverse filtering the speech signal
with the LPC filter. We use a parametric physical model of the vocal folds to represent the
excitation signal. As it is impossible to derive the true model parameters analytically, a data-
driven optimization procedure aims at fitting the synthetic excitation signal generated by
the model as close as possible to the LPC residue and the estimated pitch. This optimization
procedure is denoted as the optimization loop in Fig. 2.1. We assume that the parameters
corresponding to the closest fit represent the true excitation signal adequately. The final
parameters of the excitation model are then analyzed with regard to age correlation.

2.1.3 Overview

The next section introduces the employed excitation model, which is a two-mass vocal fold
model introduced by Stevens in [Stev 98]. In Sec. 2.3 the parameter optimization loop using
the simplex and simulated annealing algorithms is described, followed by the experiments
and results in Sec. 2.4. We conclude in Sec. 2.5 with a short summary and an outlook on
future work.
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2.2 Excitation Model

2.2.1 Two Mass Model
Our approach estimates the parameters of a physical glottis model from speech data that
has been recorded at different ages of a speaker. The goal is to find age-related changes
in the model parameters. Therefore the glottis model used should ideally have physically
meaningful parameters, in contrast to just describing the shape of the excitation signal. In
order to be able to optimize the parameters using a limited amount of data, their number
should be as small as possible. As the same time the model should be flexible enough to
adequately represent age-related changes of the voice quality.

Considering the above mentioned requirements we employed the two-mass vocal fold
model introduced by Stevens [Stev 98] and illustrated in Fig. 2.2.

air

M1

M2

C1

C2

Cc

Figure 2.2: Two-mass vocal fold model by Stevens [Stev 98].

The symmetrical model consists of two pairs of masses, larger ones representing the lower
part of the vocal folds, and small ones representing the upper part of the vocal folds. The
mass parameters are M1 and M2 as shown in Fig. 2.2. The masses each move on springs
and are connected together by an additional spring. The compliances of the springs are
determined by the parameters C1, C2 and Cc (for the spring that connects M1 with M2).
Note that parameters for the masses and compliances are given as mass per unit length and
compliance per unit length, i.e. they may change when the vocal folds are stretched. Air flows
from bottom to top through the glottis when both M1 and M2 have a positive displacement,
as shown in Fig. 2.2.

The excitation function for the two-mass vocal fold model by Stevens is obtained in
three steps. First, the displacements x1(t) and x2(t) of the lower and upper part of the
vocal folds over time t are computed. The width of the glottal opening d(t) is defined to
be min(x1(t), x2(t)). Second, from the width of the opening, the airflow Ug(t) through the
glottis is determined. In the third step, taking the derivative of Ug(t) results in the excitation
function.
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The whole process of the excitation function computation is described in Chapter 2 of
[Stev 98]. However, since many details are omitted in [Stev 98], we re-derived the equations
on our own and also had to consider simplifications. Consequently the next paragraphs
describe the excitation function computation as it was implemented for the experiments
reported in Sec. 2.4. The initial values for all parameters are taken from [Stev 98] as well,
however, some parameters cannot be found in the book. Therefore Tab. 2.1 lists all the
default parameter settings that we used for the vocal fold model.

Table 2.1: Default Parameter Settings for the Vocal Fold Model

male female
M1 [gm/cm] 0.1 0.04
M2 [gm/cm] 0.02 0.008
C1 [cm2 / dyne] 3e−5 1.9e−5

Cc [cm2 / dyne] 5e−5 3.1e−5

d1 [cm] 0.2 0.133
x0 [cm] 0.01 0.005
l [cm] 1.0 0.7
Ps [dyne / cm2] 8000
∆Pg [cm H2O] 8.0
12µh 0.00001
φ 0.0
ρ [gm/ cm3] 1.14e−3

κ 1.0
ζ 0.7

Glottal Displacement

The first step is to compute the displacements x1(t) and x2(t) of the lower and upper part of
the vocal folds over time t . There are several critical points which mark the different stages
of the movement of the masses. The models dynamics are described in a piecewise fashion
for each time segment. The first segment ranges from t0 = 0, when mass M1 starts to move,
to t1, when mass M2 starts to move as well.

Displacement of the lower part of the vocal folds from t0 to t1. According to Stevens
[Stev 98] the displacement x1(t) for the segment from t0 to t1 is described by the differential
equation:

M1x
′′
1 + 1

C1
(x1 − x0) = Psd1 (2.1)

where x0 is a constant that stands for the resting position of M1 in the absence of any force,
Ps is the subglottal pressure, and d1 is the average vertical length of the lower portion of the
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vocal fold. Rearranging leads to
C1M1x

′′
1 + x1 = (C1Psd1 + x0) (2.2)

The general solution to this differential equation is:
x1(t) = sin(ω1t)k2 + cos(ω1t)k1 + (C1Psd1 + x0) (2.3)
x ′1(t) = cos(ω1t)k2 − sin(ω1t)k1 (2.4)

where the natural frequency ω1 of mass M1 is ω1 = 1/
√

C1M1 and k1, k2 are constants
determined by boundary conditions. Applying the initial conditions x1(t0) = 0, and x ′1(t0) =
0, we solve for the constants k1, k2:

x1(0) = 0 = sin(0)k2 + cos(0)k1 + (C1Psd1 + x0) (2.5)
0 = 0 + k1 + (C1Psd1 + x0) (2.6)

k1 = −(C1Psd1 + x0) (2.7)
x ′1(0) = 0 = cos(0)k2 − sin(0)k1 (2.8)

0 = k2 − 0 (2.9)
k2 = 0 (2.10)

Submitting back into equations 2.3 and 2.4 results in:
x1(t) = [cos(ω1t)][−(C1Psd1 + x0)] + (C1Psd1 + x0) (2.11)

= (C1Psd1 + x0)[1− cos(ω1t)] (2.12)
x ′1(t) = − sin(ω1t)[−(C1Psd1 + x0)] (2.13)

= (C1Psd1 + x0) sin(ω1t) (2.14)

Displacement of the lower part of the vocal folds for t > t1. At point t1, the upper
mass M2 starts to move and both parts of the vocal folds are separated. The model does not
specify t1, therefore we select it to be at the point in time when x1(t) has reached half of the
maximum displacement. That is, t1 is the quarter period point of x1(t). The displacement
of M1 at t1, i.e. x1(t1) is referred to as x10:

t1 = 1
2π ·

1
w0

=
√

M1 · C1 ·
1
2π (2.15)

x10 = Ps · d1 · C1 + x0 (2.16)
The opening of the vocal folds at t1 results in a drop of the subglottal pressure Ps to 0,
leading to an altered movement of M1. In order to compute x1(t) for t > t1, we have to
take into account Ps = 0 when determining k1 and k2. We select the following boundary
conditions to ensure a smooth transition between the two segments of x1(t) at t1: x (t1) = xt1
and x ′(t1) = dxt1, where xt1 and dxt1 are the displacement and velocity at t1, found using
Eq. 2.12 and Eq. 2.14.

x1(t1) = xt1 = sin(ω1t1)k2 + cos(ω1t1)k1 + (C1Psd1 + x0) (2.17)
x ′1(t1) = dxt1 = cos(ω1t1)k2 − sin(ω1t1)k1 (2.18)

sin(ω1t1)k1 = cos(ω1t1)k2 − dxt1 (2.19)

k1 = cos(ω1t1)k2 − dxt1

sin(ω1t1)
(2.20)
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Inserting Ps = 0 and solving for k2:

xt1 = sin(ω1t1)k2 + cos(ω1t1)k1 + (0 + x0) (2.21)

= sin(ω1t1)k2 + cos(ω1t1)
(

cos(ω1t1)k2 − dxt1

sin(ω1t1)

)
+ x0 (2.22)

= sin(ω1t1)k2 + cos2(ω1t1)k2

sin(ω1t1
− dxt1 cos(ω1t1)

sin(ω1t1)
+ x0 (2.23)

sin(ω1t1)xt1 = sin2(ω1t1)k2 + cos2(ω1t1)k2 − dxt1 cos(ω1t1) + sin(ω1t1)x0 (2.24)
xt1 sin(ω1t1) = [sin2(ω1t1) + cos2(ω1t1)]k2 − dxt1 cos(ω1t1) + x0 sin(ω1t1) (2.25)
xt1 sin(ω1t1) = k2 − dxt1 cos(ω1t1) + x0 sin(ω1t1) (2.26)

k2 = xt1 sin(ω1t1) + dxt1 cos(ω1t1)− x0 sin(ω1t1) (2.27)
k2 = (xt1 − x0) sin(ω1t1) + dxt1 cos(ω1t1) (2.28)

Substituting back in to find k1:

k1 = cos(ω1t1)k2

sin(ω1t1)
− dxt1

sin(ω1t1)
(2.29)

= cos(ω1t1)[(xt1 − x0) sin(ω1t1) + dxt1 cos(ω1t1)]
sin(ω1t1)

− dxt1

sin(ω1t1)
(2.30)

= (xt1 − x0) cos(ω1t1) + dxt1 cos2(ω1t1)
sin(ω1t1)

− dxt1

sin(ω1t1)
(2.31)

= (xt1 − x0) cos(ω1t1) + dxt1[cos2(ω1t1)− 1]
sin(ω1t1)

(2.32)

Fig. 2.3 shows x1(t) drawn in blue.

Displacement of the upper part of the vocal folds. The displacement x2(t) of M2 is
given in [Stev 98] as

x2(t) = x20(1− cos(ω2(t − t1))) (2.33)

where ω2 is the natural frequency of mass M2: ω2 = 1/
√

CcM2. The amplitude x20 of x2(t)
is determined by the difference between the peak displacement of M1 and x10 [Stev 98]. The
point tmax for which x1(t) reaches its maximum is

tmax =
[
arctan

(
k2

k1

)
+ π

]
· 1
ω1

(2.34)

resulting in:
x20 = k2 sin(ω1tmax) + k1 cos(ω1tmax) + x0 + C1Psd1 − x10 (2.35)

where the term containing Ps can be ignored as Ps = 0 for t > t1. The parameters k1, k2 are
given by Eq. 2.32 and Eq. 2.28. Fig. 2.3 shows x2(t).
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Figure 2.3: Displacement of the two masses over time.

Glottal opening. As the air has to pass both the lower and the upper part of the vocal
folds, the glottal distance d(t) is proportional to the minimum opening of both parts. It can
easily be seen from Fig. 2.3 that the glottis is opened only from t1 to t2, the point where
x1(t) becomes zero again. As the vocal fold model is symmetric, we have to multiply the
displacements by two in order to get the glottal width d(t):

d(t) = 2 ·min(x1(t), x2(t)) (2.36)

The minimum of x1(t) and x2(t), i.e. the part of the glottal cycle where the glottis is open,
is shown in red in Fig. 2.3.

The acoustic mass of the air in the glottis, in the trachea and in the vocal tract below and
above the glottis results in a skewing of the airflow waveform. The higher the constriction
of the vocal tract, the larger the acoustic mass and the larger the skewness of the waveform.
The acoustic mass is not taken into account by the glottal airflow computation described in
the next section. In order to provide more possible variability to the shape of the excitation
pulse, we added a heuristic skewness transform to the displacement signal. The skewness
transform is applied prior to the calculation of the airflow waveform Ug .

d(t) = d(t) · φ · t + d(t) (2.37)

The greater the parameter φ, the higher the skewness of the transformed displacement func-
tion. Thus, one may think of it as an approximate representation of the constriction of the
vocal tract.

The area of the glottal opening Ag(t) can be easily approximated from the glottal width
d(t) and the length of the glottis l assuming a rectangular shape:

Ag(t) = l · d(t) (2.38)

Length of the closed phase. Once x1(t) has reached zero at t2, the glottis remains closed
until the whole glottal opening-closing cycle restarts at t0. Thus, the glottis is closed not
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only at the beginning of the cycle from t0 to t1, but also at its end in the interval from t2 to
t3, where t3 denotes the end of the cycle. This is illustrated in Fig. 2.3. In order to be able to
compute the overall length of the cycle we need to approximate t3, the point when the upper
part of the vocal folds closes. The definition of x2(t) in Eq. 2.33 does not take into account
the influence of the inward movement of the lower part of the vocal folds which gets more
rapid towards the end. The larger slope of x1(t) is most prominent after the intersection of
x1(t) and x2(t) at tc. This means, x2(t) should have a much steeper decent after tc and x2(t)
as defined in Eq. 2.33 cannot be used to compute t3. Therefore we approximate x2(t) for
t > tc by a function x3(t) which has a steeper slope than x2(t). In order to ensure a smooth
transition from x2(t) to x3(t) at tc we define x3(t) by the following equations:

j2 = (x2(tc)− ζ · x20) · sin(ω2(tc − t1)) + x ′2(tc) · cos(ω2(tc − t1)) (2.39)

j1 = cos(ω2(tc − t1)) · ((x2(tc)− ζ · x20) · sin(ω2(tc − t1)) + x ′2(tc) · cos(ω2(tc − t1)))− x ′2(tc)
sin(ω2(tc − t1))

(2.40)

x3(t) = j2 · sin(ω2(t − t1)) + j1 · cos(ω2(t − t1)) + ζ · x20 (2.41)

The parameter ζ controls the steepness of x3(t). As x3(t) replaces x2(t) after the crossing at
tc, it has no influence on d(t); it is solely used for the computation of t3 which is the point
at which x3(t) is zero.

2.2.2 Glottal Airflow
The next step is to compute the volume velocity Ug(t) of the glottal airflow from the glottal
opening. The relationship between the volume velocity Ug(t) and the transglottal pressure
drop ∆Pg can be found in [Stev 98]:

∆Pg = 12µh
ld3(t)Ug(t) + κ

ρ

2(ld(t))2U
2
g (t) (2.42)

The parameter µ represents viscosity, h the thickness of the glottal slit, κ depends on the
shape of the glottal slit, and ρ is the density of air. The glottal width d(t) is given by
Eq. 2.36 and Eq. 2.37 in the previous section. Here we assume that ∆Pg is approximately
constant over time. Solving for Ug(t) using the quadratic equation leads to

Ug(t) =
− 12µh

ld3(t) ±
√

( 12µh
ld3(t))2 − 4κ ρ

2(ld(t))2 ∆Pg

2κ ρ
2(ld(t))2

(2.43)

The derivative of Ug(t) yields the excitation pulse. In our experiments we employed a discrete
time approximation of the derivative. Fig. 2.4 illustrates the three steps of the computation
of the excitation function: the area of the glottal opening Ag(t) (shown on the left) is
computed, then the volume velocity Ug(t) (middle) is derived from the glottal opening, and
third, applying the time derivative leads to the excitation pulse shown on the right. The
above analysis results in an excitation pulse for a single pitch. Of course, speech contains
varying pitch frequencies. The model parameters must be adapted to account for various
pitch values. Variation of the parameters can produce different shapes of the excitation signal
as well. For instance, Fig. 2.5 shows three excitation pulses for three different parameter
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Figure 2.4: Computation of the excitation function in three steps. Ag(t) (left) Ug(t)(center)
excitation pulse (right)
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Figure 2.5: Excitation function for three different parameter settings.

settings. It is obvious that not only the pitch frequency changes but also the shape of the
excitation signal. In the next section we investigate fitting the model parameters to match
the specific characteristics of a speaker’s voice at a certain age.

2.3 Model Optimization
Our hypothesis is that glottis model parameters contain information about speaker age. To
test this hypothesis, we find the optimal model parameters that fit the speech data and
observe how they change with age. Importantly, we are interested in model parameters that
are independent of pitch. However, the generated pitch is determined by the glottis model
parameters. Therefore, in our analysis we observe the model parameters across age only for
a single pitch. (In practice, we use a small pitch range of 10 Hz around the pitch of interest.)
In order to accomplish this, we optimize the model parameters for every 25 ms speech frame.
Then we are able to sort and analyze the model parameters according to the pitch for each
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25 ms frame.
Figure 2.6 depicts a block diagram of the optimization loop. To begin, a set of initial
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Figure 2.6: Optimization Loop

parameters (M1, M2, C1, Cc, x0, d1, φ, l) is input into the glottis excitation model. Given
the parameters, the model generates an excitation signal for a 25 ms speech frame. At the
same time, we calculate the LPC residue of the original speech signal. Then we apply a
log spectrum transform to both of these excitation signals. The similarity of the generated
excitation signal is compared to the original signal using two Euclidean distances. First,
we compare the distance between the log spectrum of the two signals. Second, we compare
the distance between the generated and the original pitch for the frame. The combined
distance measure is passed to the optimization algorithm, which modifies the parameter
set, passing the new parameter set to the excitation model. Thus, an optimization loop
is formed, modifying the parameters, generating a new candidate excitation signal, and
testing it against the original signal. We used two different optimization algorithms (simplex
algorithm and simulated annealing) in order to find the set of parameters that minimized
the distance between the generated and original signals for every 25 ms speech frame.

The optimization is formulated as:

θ̂ = argmin
θ

[D(sm(θ), sorg)] (2.44)

θ = {M1,M2,C1,Cc, x0, d1, φ, l}

where D(sm(θ), sorg) is the combined distance between the model excitation signal sm and the
original excitation signal sorg. The combined distance measure combines distances between
both the respective log spectra and the respective pitches pm , porg, and is defined as:

D(sm(θ), sorg) = D(logspec(sm(θ)), logspec(sorg)) + λ · D(pm , porg) (2.45)

where D(·, ·) is the Euclidean distance between two vectors and the constant λ scales the
influence of the pitch distance.

An example of optimizing the excitation signal for a 25 ms frame is shown in Figure
2.7. The left figure shows the log spectrum of the original signal (blue) and the modeled
excitation signal (red) using the default start parameters. Following optimization, the log
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Figure 2.7: Excitation signal optimization – log spectrum

spectra are shown in the right figure. The first peak is the pitch, and it matches almost
exactly. Not all of the higher order harmonics match closely, however, the overall shape of
the two log spectra are well matched. (Note that the log spectrum transform contains a
pre-emphasis filter, giving the spectrum its generally uniform magnitude across frequencies.)

Our approach is to analyze the excitation model parameters for a single pitch, as they
vary across age. We found the most frequent pitch for the speaker over all ages, and used that
pitch for all subsequent analyzes. Figure 2.8 shows histograms of pitch values for the Queen
and Cooke over all ages. The histogram maximum is 205-215 Hz for the Queen and 85-95 Hz
for Cooke. Note that the optimization is only performed on voiced speech segments.
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Figure 2.8: Pitch Histograms

2.3.1 Simplex Algorithm
We used two different parametric search algorithms in the optimization loop to find the
optimal model parameters. The first parametric search algorithm is the Nelder-Mead simplex
algorithm [Neld 65, Olss 75]. The method is based on a simplex (or flexible polyhedron) that
traverses the multidimensional design space. For each iteration, a new trial point is generated
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outside of the simplex. The trial point is determined taking a step in the opposite direction
of the largest valued point on the simplex (reflection computation). Based on the value
(objective function distance) of the trial point in comparison to the current simplex values,
the simplex either extends, contracts, or shrinks. In this manner, the simplex descends the
gradient of the loss function, expanding, contracting, and shrinking until it converges on a
minima. One caveat is that, since the algorithm descends the gradient, it is only capable of
finding local minima.

2.3.2 Simulated Annealing Algorithm

The second parametric search algorithm used in the optimization loop is the simulated
annealing algorithm [Kirk 83]. This stochastic search algorithm randomly selects a trial point
and calculates the objective function distance at that point. If the distance is smaller than
the current distance, the point is accepted and a new iteration cycle begins. If the distance
is larger, however, the trial point is accepted with some probability P ∝ exp(−dtrial/kBT ),
where kB is a constant and T is the “temperature” of the system. In this manner, it is
possible for the algorithm to climb as well as descend the objective function gradient. This
leads to a higher likelihood that the search will find the global optimum, however this is not
guaranteed. The temperature of the system refers to the analogy with physical annealing,
where an amorphous solid is heated until it melts and then is slowly cooled. After cooling
is finished the material solidifies with a crystalline structure. In the case of the simulated
annealing algorithm, at high temperatures the algorithm is more likely to climb the gradient,
while at low temperatures it will not. Hence, the algorithm proceeds according to a cooling
schedule (exponentially decreasing temperature in our implementation.) In addition, we
also modify the step size based on the temperature of the system. At high temperatures,
the random trial points are selected from a wide range. As the temperature cools, the
range is reduced so that the algorithm searches its local neighborhood. In this way, the
algorithm begins by making coarse steps over the search space and ends by making small
steps, converging to a higher resolution final result.

2.4 Results
We performed three experiments on three different corpora, the Queen of England, Alistair
Cooke, and the University of Florida Vocal Aging Database (UF-VAD). The Queen corpus is
from 30 Christmas speeches addressed to the people of England over the years 1952 to 2002.
The Queen’s age ranges from 26 to 76 in the recordings. The total length of the corpus is
approximately 2.5 hours of speech. The Cooke corpus consists of 30 “Letter from America”
radio broadcasts by Alistair Cooke. Recorded over the years 1947 to 2003, the broadcasts
cover Cooke from age 38 to 95. The total length of the corpus is approximately 10.6 hours of
speech. The Queen and Cooke corpora are longitudinal data, covering a single speaker over
many years. The UF-VAD corpus contains cross-sectional data, covering many speakers of
many ages, all recorded in the same time period with the same recording equipment. There
are 150 speakers ranging from ages 18 to 92, all recorded from 2003-2007.

16



2.4.1 Queen
We analyzed the excitation model parameters for the Queen across all ages in the pitch
range 215-235 Hz. The correlation between each parameter and the age of the Queen is
summarized in Table 2.2. The highest correlations are for the parameters M2, x0, and

Table 2.2: Queen Results

M1 M2 C1 Cc d1 x0 φ l

simplex 0.29 0.54 0.36 0.49 -0.33 0.64 0.55 -0.59
simulated annealing 0.53 0.49 0.47 0.00 -0.20 0.10 0.36 0.34

φ, optimized by the simplex algorithm, and M1, M2, and C1 for the simulated annealing
algorithm. The optimal M2 parameter is plotted versus age for both algorithms in Figure
2.9. The red line is the least squares regression fit line to the data. From observing the
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Figure 2.9: Queen Results: Parameter M2 vs. Age. Simplex Algorithm (left) Simulated
Annealing Algorithm (right)

plots, there is a generally increasing trend in M2 as age increases. However, there is a large
variance in the M2 parameter, resulting in the moderate correlation value.

2.4.2 Cooke
The same analysis was performed on the Cooke dataset using a pitch range of 75-95 Hz.
Table 2.3 summarizes the correlation between the excitation model parameters and age.
In this case, we split the correlation analysis into two regions, one when Cooke was younger
than 80 years old and the other region when he was 80 years or older. This resulted in very
strong correlations for the optimal M1, M2, and C1 parameters for both age regions and both
optimizing algorithms. The optimal M1 parameter versus age is plotted in Figure 2.10 for
both optimizing algorithms. The least squares regression lines are shown in red. In this case,
the parameter variance is low and the correlation of the parameter with age is very clearly
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Table 2.3: Cooke results

age M1 M2 C1 Cc d1 x0 φ l

simplex < 80 0.90 0.44 0.92 0.62 -0.01 0.25 0.38 -0.73
≥ 80 -0.79 -0.77 -0.88 -0.57 -0.61 -0.48 -0.33 0.47

simulated annealing <80 0.92 0.81 0.75 0.82 -0.33 -0.03 0.24 0.06
≥80 -0.89 -0.88 -0.90 -0.83 0.03 -0.58 -0.65 0.33
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Figure 2.10: Cooke Results. Simplex Algorithm (left) Simulated Annealing Algorithm (right)

seen in both regions. One important difference between the Queen and Cooke experiments
is the amount of data. The Cooke corpus is approximately four times as long as the Queen
corpus. This probably plays a significant role in the larger amount of noise variance in the
Queen optimal parameter analysis. This hypothesis could be tested by reducing the length
of the Cooke corpus and observing the effect on variance.

2.4.3 UF-VAD
The goal of the third experiment was to determine if there is speaker independent age in-
formation contained in the glottis model parameters (in addition to pitch and formants).
The approach was to create an age predictor using support vector regression (SVR) with a
linear kernel. The age predictor was trained and tested on the multiple speaker UF-VAD
corpus. To form features for the SVR, we synthesized the glottis excitation signal from the
optimal (simplex) model parameters for each speaker. Then we transformed the synthesized
excitation signal into MFCCs and used the MFCCs as features to train and test the SVR.

The results are summarized in Table 2.2. As a baseline, SVR was performed on f0 and
the first three formants of the speech signals. This had a low correlation for male speakers,
but relatively high correlation for female speakers. Using 36 MFCCs from the re-synthesized
glottis excitation signal had much better correlation with age than the baseline system for
males, and comparable correlation for females. For both males and females, combining the
f0, formant, and glottis model features, resulted in the highest correlation with age.
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Table 2.4: SVR results

f0 + glottis glottis glottis + f0
3 formants (MFCCs) (MFCCs) + 3 formants

Dimension 4 24 36 24
Male: Correlation 0.32 0.36 0.58 0.66
Male: Mean Abs Err 18.95 21.77 14.4 17.05
Female: Correlation 0.77 0.70 0.74 0.80
Female: Mean Abs Err 13.08 15.65 12.34 14.25

2.5 Conclusion
In summary, we have implemented the Stevens model of the glottis to synthesize glottal
excitation signals based on eight parameters. Using short time frames (25ms), we minimized
the distance between the synthesized excitation signal and the LPC residue to find optimal
model parameters. These per frame parameters were averaged for a single pitch range
and a single age. Then we analyzed the correlation of the model parameters with age.
Two experiments on longitudinal data show correlation between the model parameters and
age. A third experiment applied support vector regression to predict speaker age, using
the re-synthesized glottal excitation signal as features. All three of these experiments
provide evidence that (1) age information is contained in the glottal excitation signal and
(2) that information may be extracted from a reduced physical model of the glottis with few
parameters.

Future research will focus on: refining the models, parameters and experiments, (for
example, include a breathiness parameter) and second, applying the approach to more data.
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Chapter 3

Error Analysis of Formant Tracking
Algorithms

3.1 Motivation and Goal
Several subgroups (inversion, feature extraction for age classification, indirectly also speech
recognition) used formant frequency values as input to their analyzes. Most of all, the
acoustic-to-articulatory inversion relied heavily on the formant frequencies in order to de-
termine possible vocal tract shapes for re-synthesis. We wanted to find robust methods for
vocal aging related issues so automatically extracted formant values using formant tracking
algorithms were considered as a prerequisite for fast and robust data processing.

We conducted an error analysis of the formant tracking algorithms of several softwares
(WinSnoori, Wavesurfer) to find out whether the automatically extracted formant frequencies
were influenced by age. Automatic tracking algorithms always make systematic errors since
formant extraction is not a trivial task. The question was whether these systematic errors
changed due to the age of the voice that was being analyzed. Using the Queen Christmas
Speeches corpus, we manually annotated a subset of it and compared it to the automatically
extracted formant frequencies of two softwares. This section first describes the procedure to
build the reference corpus within the manual annotation task, and the settings of how the
automatically tracked formants were obtained. After that, the error analysis itself is being
described.

3.2 Manual Annotation

3.2.1 Selection of Material for the Reference Corpus
We chose a subset of wave file "chunks" of the Queen corpus. With a real-time factor of
1:120 (30 secs annotation take about 60 mins), we limited ourselves to a subset of the
original corpus (approx. 11 mins or 13 %) that was distributed over the decades. We also
took not only audio chunks from the beginning of a given speech but also from the third
minute of speech to account for possible changes in speaking style within a speech. The
speech material selected for the manual annotation corpus can be seen in table 3.1.
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Year 1952 1957 1966 1972 1983 1994 2002 All years
Chunk 1st, 3rd 1st, 3rd 3rd 1st, 3rd 1st, 3rd 3rd 1st, 3rd
Mins 1.55 2.28 0.85 1.75 2.35 1.02 1.85 11.65

Table 3.1: Manually annotated speech material

3.2.2 Annotation Procedure
Our baseline for annotation was Wavesurfer (http://www.speech.kth.se/wavesurfer, version
1.85), calculating the first 4 formant frequencies by using the standard settings. Two trained
annotators manually corrected the proposed formant trajectories of the software by visual
inspection of the spectrogram.

This meant a bias in the error analysis – but we were not so much interested in absolute
error but rather in relative errors over age, see below.

The annotators repeatedly discussed their decisions to reach an agreement on the correc-
tions and to increase the quality of the annotation.

The visual inspection task of the spectrogram was based on the following guidelines and
phonetic background knowledge:

• Vowel formant charts for general overview of absolute positions of formants in the
frequency domain

• Listening (for vowel reductions etc.)

• Time alignment of the segments for faster orientation in the speech signal

• Consonant-vowel transition charts to determine formant transitions, where hard to see

• Pitch contour display using Wavesurfer’s default settings alongside with the spectro-
gram to identify speech parts classified as "voiced" by Wavesurfer

The decision procedure of what to correct and how can be summarized as follows:

• Only look at voiced segments that are non-nasalized and no consonants (i.e. vowels),
since only for vowels the values make sense

• Ignore fine errors due to f0/F1 interaction (due to lower bound of the resolution of the
computer screen and the mouse pointer)

• Focus on correcting coarse errors (when formant tracker picked the "wrong" formant)
(see Figure 3.1)

The task then was to re-draw and smooth the formant contour correctly as derived from
the visual inspection of the spectrogram (dark bars indicating the high energy bands of the
resonance frequencies, i.e. formants).

Problems mainly occurred with weak signals especially in older recordings which made it
hard to decide on the actual formant contour; in this case the lines were not corrected since
it would not necessarily have meant any "improvement".
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Figure 3.1: The same vowel was tracked correctly (left) and incorrectly (right). F2 should
be rather low for /u:/. In the right example, a typical coarse error occurred: The tracking
algorithm chose the F3 energy band as being "F2". Manual correction would redraw the
green line in a lower position.

3.2.3 Automatic Extraction
For the error analysis we used the same subset of the Queen corpus as prepared in the manual
annotation task. The softwares used for automatic extraction were

• Wavesurfer (http://www.speech.kth.se/wavesurfer)

• WinSnoori (http://www.loria.fr/∼laprie/WinSnoori/index.html)

Frame interval was set to 10 ms in each analysis software to keep the values comparable (i.e.
at the same time stamps in the signal). Although we only considered the first 3 formants
in this analysis, the number of formants automatically tracked was set to 4. Setting it to 3
would have substantially deteriorated the quality of the formant tracking results.

3.3 Error Analysis of Formant Values
We compared the manually annotated formant frequencies against automatically extracted
values. The data that was taken into account only came from the "voiced" segments as
determined by the pitch tracker of Wavesurfer.

For each frame of the speech signal, we calculated the absolute difference in Hertz between
the manually annotated and automatically extracted formant frequencies. We calculated
Root Mean Square (RMS) error, standard deviation, and median. We also calculated the
percentage of the speech material where the formant values matched or were very close to
each other (in the range of ± 32Hz). This tells us how well the automatic formant extraction
algorithms are doing. As can be seen in Table 3.2, the correct or closely matching values for
Wavesurfer are a lot higher than for WinSnoori. This is due to the fact that the tracking
output of WaveSurfer was used as starting point for the manual annotation.

We then plotted histograms for the difference values. We tried different bin sizes and
different ranges of the lower and upper limit of the histograms. We observed no systematic
error in automatically tracked formant values over age in any case. An example can be seen
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Table 3.2: Percentages of exactly and closely (i.e. ± 32 Hz) matching formant frequencies
after manual correction (averages and standard deviations over 17 files each)

. . . vs. WaveSurfer . . . vs. WinSnoori
F1 F2 F3 F1 F2 F3

Manually corrected . . . 88,14 86,24 86,76 24,14 14,94 16,67 (Ave)
4,03 6,51 7,84 6,2 1,32 4,19 (SD)

Figure 3.2: Difference value histograms of F1 (left) to F3 (right) of WinSnoori. Bin size =
80; range = ±1000 Hz.

in Figure 3.2. We do not plot the (very high) peak values around the matching values (cf.
Table 3.2) but instead enable a focus on the mismatches to either side.

3.3.1 Description
On the x-axis, we see the difference of the manually corrected minus the automatically
extracted formant frequencies. E.g. when the manual value suggests 600 Hz for F1, and an
automatically extracted value shows 400 Hz, the difference is +200 Hz, being shown on the
right side of the peak. This means that the automatic tracking algorithm underestimated
the formant frequency for this example. The underestimation can be a systematic error but
since it is the same over all years, it is not seen as an influence of age.

3.3.2 Interpretation
For F1 and F2, the differences in the formant frequencies are quite homogeneous over the
years. We see a slight increase in "noise" in the case of F3: The recordings of the young Queen
show the largest differences compared to the manually corrected values but the decrease of
the differences was not strictly associated with age. Thus, the overall conclusion and working
assumption for our project was that we could indeed regard the automatic formant extraction
as a robust method to provide input values to our further analysis.

3.4 Correlation Results
We know that the manually annotated data covered only 13 % of the whole Queen corpus
as the annotation is a time consuming task. However, we believe that 11 minutes of data
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Table 3.3: Pearson and Spearman correlations with age
Pearson Spearman

F1 F2 F3 F1 F2 F3
Manual -0.95 -0.82 -0.12 -0.96 -0.85 -0.11
Wavesurfer -0.92 -0.70 0.40 -0.89 -0.60 0.42
WinSnoori -0.96 -0.63 0.32 -0.96 -0.57 0.39

is not too little for the analysis. Moreover, we chose well distributed data over age. Thus,
although the amount of manually annotated data was comparatively small, we calculated the
correlation of hand corrected formant frequencies with age. Table 3.3 shows the correlation
values for comparison. In the manual case, F1 shows a strong negative correlation with age,
as does F2. F3 seems to be uncorrelated in our data set. In the automatically tracked cases,
we observe that the strong correlation for F1 with age is confirmed. F2 is not as strongly
correlated. The correlation result of F3 in the manual case is not confirmed in the automatic
case where we observe a slightly positive correlation.

3.5 Limitations
Since formants are normally used to describe vowels, the manual correction only made sense
for vowels; nevertheless, voiced consonants were also part of the error analysis. This was
due to the fact that the pitch tracking algorithm detected pitch in voiced consonants as
well and we therefore included all voiced segments into the error analysis. The annotation
took the values of Wavesurfer as a starting point and therefore increased the bias towards
Wavesurfer: Not correcting "formant" values of voiced consonantal segments means that, in
the error analysis, they count as perfectly tracked formants in the case of Wavesurfer, but
not in the case of WinSnoori. However, we did not evaluate the tracking algorithms against
each other but were only interested in relative changes over the years.
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Chapter 4

Vocal Tract Inversion

4.1 Maeda’s Articulatory Model
One of the most important aspects in acoustic-to-articulatory inversion is using an articula-
tory model that is capable of describing all useful vocal tract configurations, and hopefully
only useful configurations.

Many articulatory models have been proposed in the literature, from the most simple
(Fant’s articulatory model [Fant 60], is described by only 3 control parameters), to the most
complex (Wilhelms-Tricarico’s model is a 3D-biodynamical model of the tongue using finite
elements, which is controlled by hundreds of parameters).

One of the most famous is Maeda’s articulatory model [Maed 79, Maed 90]. He describes
a full vocal tract using three independent models for the lips, the tongue and the larynx.
These three articulators indeed may be considered to have independent influences, although
all three are influenced by the position of the lower jaw. The factorial analysis used by
Maeda to derive the model had to be powerful enough to take this particularity into account
and subtract the influence of the lower jaw to study the other articulators.

The position of the lower jaw can easily be derived on the X-rays images by measuring
the distance between the lower and upper incisive. Principal Component Analysis is not
adequate in this case; Maeda [Maed 79] thus used a different method, known as arbitrary
orthogonal component analysis [Over 62], to subtract the influence of the jaw position. Each
region of the vocal tract (lips, tongue, larynx) can then be studied independently.

For each region, control parameters are derived by applying a principal component anal-
ysis on the data decorrelated of the influence of the jaw, and keeping enough components
to explain the majority of the variance. The number of necessary parameters vary in each
region of the vocal tract; for the larynx, one parameter is enough; for the lips region, three
variables are analyzed: vertical opening of the lips, horizontal opening of the lips (or stretch-
ing), and protrusion. Two intrinsic parameters were kept to describe these variables: vertical
opening and protrusion; the horizontal opening is deduced from these two parameters. For
the tongue, three additional parameters are necessary to explain 96% of the variance on the
X-ray images; in total, the model is controlled by 7 parameters (cf. fig. 4.1).

Furthermore, the model can be adapted to different speakers: two scaling parameters
for the oral and pharyngeal tracts allows the adaptation of the shape of the tract to a new
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speaker. These two scaling parameters have homogeneous influence on the dimensions of
the two tracts but with an adequate procedure, it is possible to have a model capable of
mimicking the acoustic production of an arbitrary speaker. Galvan-Rodrigez established a
semi-automatic method to adapt the model from the formants frequencies of specific vowels
for a given speaker [Galv 97a]. This method however make the hypothesis that a specific
vowel is produced by a unique articulatory configuration independently of the speaker.

P7

P1P6

P5

P2

P3

P4

Figure 4.1: The seven parameters of Maeda’s articulatory model: the jaw (or jw) P1, the
vertical opening of the lips (lh) P5, the lip protrusion (lp) P6, the tongue body position (tb)
P2, the tongue shape (ts) P3, a parameter controlling the tongue tip (tt) P4, and finally the
larynx height (lx) P7.

4.2 Inversion by Variational Calculus
For this workshop a novel method of inversion based on variational calculus is presented to
solve the dynamic acoustic-to-articulatory mapping without the need for an initial solution.
It finds its root in a work proposed by Laprie and Mathieu [Lapr 98], but extends so it does
not require an initial solution.

Laprie and Mathieu, similarly to e.g. Schoentgen and Sorokin, minimize a cost function
which is a combination of pseudo-potential and pseudo-kinetic energy terms. A first term of

the cost function is
7∑

i=1
miα

′2
i (t), which expresses the changing rate of articulatory parameters,

and in order to penalize large articulatory efforts and prevent the vocal tract from reaching
positions too far from equilibrium, a potential energy term ∑7

i=1 kiα
2
i (t) is added.

The cost function to be minimized has the following form:

I =
tf∫

ti

3∑
j=1

(fj (t)− Fj (α(t))2 + λ
7∑

i=1
miα

′2
i (t) + β

7∑
i=1

kiα
2
i (t) dt (4.1)
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The main difference of the method we used in the workshop is the way the acous-
tic criterion is handled. In the work of Mathieu, the acoustic criterion was of the form
: ∑

j (fj (t) − Fj (α(t)))2. Unfortunately, this criterion is subject to numerical instability.
Sorokin [Soro 00] proposes to use a slightly different criterion: maxj |1−Fj (α(t))/fj (t)| which
is not very practical because this function has singular derivatives. A compromise form is
the following: ∑j (1 − Fj (α(t))/fj (t))2 (which is the same as Sorokin, replacing the infinite
norm by the Euclidean norm). This form is much more numerically stable, but it is still
only valid in a small vicinity of a correct solution, so it can only be used in conjunction with
an initial solution. An acoustic criterion which always converge towards a correct solution
is thus needed.

The acoustic criterion has thus been replaced by a more efficient one. An explicit cor-
rection vector is computed, based on the use of the pseudo-inverse computed similarly to
Schoentgen [Scho 97] through the use of Singular value Decomposition, allows to explicitly
compute a correction vector that is more likely to converge towards a local minimum of the
acoustic error.

4.3 Discussion

This method has proven its effectiveness for acoustic-to-articulatory inversion using the first
formants frequencies has input. It is fairly simple, and is real-time when combined with a
high quality codebook synthesizer such as the one presented in [Pota 07].

It however lacks robustness in the case of “mistakes” in the input acoustic vector: “im-
possible” acoustic vectors can sometime produce a large error in the articulatory trajectory,
and should preferably be eliminated; this problem is even more frequent when using more
complex input acoustic vectors, such as LPC coefficients.

4.4 Experiments and Results

Inversion experiments were conducted on several speech corpus: without any specific adap-
tation of the model, articulatory parameters were obtained to describe the most likely vocal
tract shapes that produced the original speech signal. The inability to conduct a model
adaptation to the speakers was due to the large number of speakers to process, the time
constraints, and the fact that the current method is adapted to the French language. This
implies that some of our assumptions are wrong, and that the absolute values found for the
parameters are probably meaningless. We however expect their evolution over time to be
fairly meaningful.

After obtaining the trajectories of the articulatory parameters P1...P7 over time, some
basic statistics were performed, and the evolution of the average value and the standard
deviation for all seven parameters were observed. Some of the parameters demonstrated some
interesting trends, but others (e.g. P7, the larynx height parameter) showed unexpectedly
no evolution.
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4.4.1 Queen
The main subject of our study was H.M. the Queen Elizabeth II. The corpus was the Christ-
mas broadcast speech that she pronounces every year, over a time period of 50 years. This
is a good corpus to study the evolution of the articulatory parameters with age, since all the
recordings are from the same speaker. The recording conditions were however quite different
from one year to another.

Fig. 4.2 displays the evolution of parameter P1 (the jaw parameter) over age. Lower
values mean a lowering of the lower jaw, i.e. a wider opening. We observe that over age,
the average of this parameter is increasing, which means that on average, the mouth is less
open. A more careful observation of the trajectories shows that the maximum values for this
parameter is stable with age, but the smallest value is increasing with age. Fig. 4.2 show
that the standard deviation for this parameter is also decreasing quite a lot with age, which
indicate that the amplitudes of the movements are lower, which seem to be an indication of
a change due to aging.

4.4.2 Adaptation of the articulatory model by Galvan’s method
This method, proposed by Galvan and Naito, use two scale parameters to adapt the articula-
tory model to any speaker. The two scale parameters - normalization factors for the lengths
of respectively the oral and pharyngeal tubes - are derived using the method described in
[Galv 97b]. A simplified version of this method is described in [Nait 99].

The idea of this method is fairly simple, although the theoretical background it relies on
is debatable. To simplify, it is assumed that each phoneme is pronounced with the same
articulatory configuration by any speaker; what changes the acoustic is merely the dimensions
of the vocal tract, and not a specific strategy of the speaker. This method has been reported
to be quite successful in predicting accurate scale factors for several speaker – and therefore
allowing speaker normalization – using manual extractions of formants. Here, the conditions
are different; we would like to adapt the model independently on each age of our reference
speaker. We expect to observe an increase in the overall length of the vocal tract, especially
for the length of the pharyngeal tube.

Due to limited time, the acoustic features were obtained fully automatically, using the
informations of the forced phonemic alignment. Better results would be obtained if we
extracted each phoneme manually on each year, instead of computing an average on an
imperfect automatic alignment. The adaptation method usually uses vowels /aeiou/, which
span over the whole F1-F2 space. We had to remove the /a/ from the analysis however, due
to inconsistent results for this phoneme. Table 4.1 gives some statistics about the vowels
used for the adaptation. /a/ has a very large variability. This method is able to normalize
the speaker with very limited data – only a few speech samples are used – but it is very
sensitive to errors.

The resulting curves obtained for the two scale parameters are surprisingly good. First,
despite the adverse conditions, we find consistent results over the years. We should point
out that informal listening tests have indicated that the automatic alignment was far from
perfect, and therefore many samples used are erroneous. Since we use only averaged values,
the errors might cancel each others over the years. Second, the curves show what we were
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Figure 4.2: Average value for articulatory parameter P1 (Jaw) over age for the Queen.
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Figure 4.3: Average value and standard deviation for articulatory parameter P1 (Jaw) over
age for the Queen.
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Vowel F0 F1 F2 F3
a 237.1 53.6 643.8 138.6 1285.3 174.7 2564.7 303.1
e 237.7 52.4 510.3 79.5 1929.6 393.6 2773.5 279.4
i 239.6 54.9 430.4 54.0 2004.4 396.0 2852.3 241.9
o 246.9 50.8 497.6 62.5 1497.1 507.8 2700.3 269.9
u 240.6 49.9 419.1 38.8 1548.8 304.8 2723.1 219.8

Table 4.1: Characteristics of the vowels (mean and standard deviation of F0...F3) used for
the adaptation.
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Figure 4.4: Variations of the scale parameters over age.

expecting: the length of the oral tube do not change much over the year -it even appears to
be slightly decreasing-, and the length of the pharyngeal tube increases, which is consistent
with the lowering of the larynx observed for aging women. The scale factors found still seem
very noisy; for more consistent results, we should certainly extract manually the formants of
the phonemes.

4.5 Discussion
One of the most striking observation on the trend of articulatory parameters was the in-
creasing value of the average of P1, which indicates the position of the jaw. The jaw is
well known to be the heaviest articulator: it is the most energy consuming, and also the
slowest. Probably the muscles of the jaw become less flexible with age, or less dynamic, and
therefore the articulation might be done through articulators that are easier to move, like
the tongue. It was observed that in normal speech, the tongue movements use less that 20%
of their maximum capacity; there is therefore a large place for compensation through this
articulator. The tongue shape and the tongue tip parameters (P3 - P4) were with P7 the
only parameters that did not see their standard deviation decrease with age.

The model adaptation performed on the Queen indicates an increase of the length of the
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pharyngeal cavity with age, which is consistent with what we expected from the literature.
This lengthening of the pharynx was however quite slow, and since this study was only
performed on was speaker, these results need to be taken with caution.
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Figure 5.1: Steps to compute the Mel frequency cepstral coefficients

Chapter 5

Description of Used Features

In this chapter we describe the features we used for our age classification system (Chapter
6). First we start with spectral features, with the well known MFCCs and the formants.
After that the features from the Erlangen Prosody Module are described. Then speaking
rate, duration features and voice quality features are examined by preliminary experiments.
The chapter is based on [Stei 08].

5.1 Spectral Features
The features of this group are based on the spectral short-term analysis. The Mel frequency
cepstral coefficients (MFCC) are the standard features in speech recognition. They have
been designed to discriminate phones and to represent what is spoken in a very compact
way. Other information like the information how something is spoken should be removed.
The computation of the MFCC features consists of several steps, which are illustrated in
Figure 5.1. In each steps, the dimension of the feature vector is reduced: the 256 samples
of the speech signal, a frame typically consists of, are finally reduced to only 12 MFCC
coefficients. Formants describing the resonance frequencies of the vocal tract are another
type of spectral features, which are described at the end of this section.

5.1.1 MFCC - Mel Frequency Cepstral Coefficients
The Mel Frequency Cepstral Coefficients (MFCC) have been proposed by Davis and Mer-
melstein [Davi 80]. In the following, the individual steps in the computation of the MFCC
features are described.
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DFT

Speech signals are non-stationary signals whose spectral properties change at least from one
phone to another. Hence, the spectral analysis is performed on small periods of the discrete
speech signal fn , which are about 5-30ms long. Within these so-called windows or frames,
the signal can be assumed to be approximately stationary. In automatic speech recognition,
a frame is typically 16ms long corresponding to Ns = 256 samples at a sampling rate of
16 kHz. For computational reasons, it is beneficial if Ns is a power of 2. Every 10ms, a
new frame is analyzed so that consecutive frames overlap. Figure 5.2 shows a speech signal
of 300ms duration where the word “Aibo” is spoken. A single frame of 16ms duration is
highlighted.

For each frame, the power spectrum is computed using the Discrete Fourier Transfor-
mation (DFT). The DFT assumes that the discrete and time limited signal is periodically
continued. To avoid discontinuities at the beginning and the end of the frame, the amplitude
of the signal is extenuated towards the borders of the window by applying a window function
wn . Let f τn denote the samples of a frame that starts at sample τ after the application of the
window function wn :

f τn :=
{

fτ+n · wn 0 ≤ n < Ns
0 otherwise (5.1)

The window function wn is centered around τ + Ns−1
2 . Various window functions such as

the Hamming window, the Hann window, the Gauss window, or the Blackman window are
common. For this work, the Hamming window is used which is defined as follows:

wHamming
n :=

{
0.54− 0.46 cos

(
2πn
Ns

)
0 ≤ n < Ns

0 otherwise
(5.2)

Figure 5.3 shows the samples of the frame highlighted in Figure 5.2 and the window function
of the Hamming window. The samples of the frame after the application of the Hamming
window are shown in the left part of Figure 5.4.

Hence, the dimension of the feature vector is reduced from 256 sample to only Ns
2 +1 = 129

features. The right plot in Figure 5.4 shows the spectrum of the windowed speech signal that
is depicted in the left part of the figure. The first local maximum represents the fundamental
frequency, which is about 275Hz in this case. The other local maxima are the harmonics,
which are multiples of the fundamental frequency. Certain frequency bands are emphasized
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Figure 5.4: Amplitudes of the speech frame after application of the Hamming window (left)
and power spectrum of the speech frame (right)

due to resonance frequencies of the vocal tract. These frequencies are known as formants and
described in more detail in Chapter 5.1.2. Especially, the frequencies around the second and
the third harmonic and around the sixth and the seventh harmonic are significantly higher
than the surrounding harmonics due to the first and the second formant, respectively.

Mel Features

The Mel scale reflects the non-linear relationship between the frequency of a tone and the
perceived pitch. In experiments by Stevens et al. , tones scattered throughout the audible
range were presented at a constant loudness level of 60 dB to observers who had to adjust
the frequency of a second tone until it sounded just half as high in pitch as the standard tone
[Stev 37]. At a frequency of 1000Hz, the unit of the frequency and the unit of the perceived
pitch are equal: 1000Hz =̂ 1000Mel. Several quite similar equations describe this non-linear
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relationship between Hz and Mel found in the experiments by Stevens, e. g. the equation by
Beranek [Bera 49]

fBeranek = 1127.01048 · ln
(

1 + fHz

700

)
(5.3)

or the one proposed by Fant [Fant 68]

fFant = 1000
ln(2) · ln

(
1 + fHz

1000

)
. (5.4)

Both curves are plotted in Figure 5.5. The transformation of the frequency is approximated
by applying a bank of Nfilter filters [Riec 95]:

cMel
i ,τ =

Ns/2∑
j=1

w4i ,j · |cDFT
j ,τ |2 i = 1, 2, . . . ,Nfilter (5.5)

The filters are designed for a higher resolution at lower frequencies. For higher frequencies,
the number of filters decreases and the filters cover a wider range of frequency bands. This
models the decreasing frequency resolution for higher frequencies of the human auditory
system. The weighted summation of adjacent frequency coefficients removes the harmonic
structure of the spectrum as it can be seen from the Mel spectrum shown in the left figure
of Figure 5.7. Furthermore, the number of coefficients is reduced from Ns/2 + 1 = 129 to
Nfilter. For this work, Nfilter = 22 triangular filters are used. They are depicted in Figure 5.6.

Approximately, the Mel spectrum coefficients cMel
i ,τ are distributed log-normally. For a

classification with Gaussian mixture models, this is not favorable if the number of mixtures
is low. Hence, the Mel spectrum coefficients are compressed by taking the logarithm. In
order to prevent numerical problems if the logarithm is taken of values that are close to zero,
the Mel spectrum coefficients are clipped to the interval [ε; 1] prior to the compression:

cnormMel
i ,τ =


cMel
i,τ

max
j

cMel
j ,τ

cMel
i ,τ > εmax

j
cMel
j ,τ

ε otherwise
i = 1, 2, . . . ,Nfilter (5.6)
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In the experiments, ε is set to 0.000001. Finally, the compressed Mel spectrum coefficients
clogMel
i ,τ are obtained by:

clogMel
i ,τ = log10

(
cnormMel
i ,τ

)
i = 1, 2, . . . ,Nfilter (5.7)

The compressed Mel spectrum is shown in the right part of Figure 5.7.

MFCC Features

In the last step to extract the MFCC features the Discrete Cosine Transformation (DCT) is
applied to the log-Mel spectrum of the signal:

cMFCC
i ,τ :=

√
2

Nfilter

Nfilter∑
j=1

clogMel
j ,τ · cos

(
i(j − 1

2)π
Nfilter

)
i = 0, 1, . . . ,Nfilter − 1 (5.8)

The DCT is a Fourier related transformation that can be applied to real data with even
symmetry. The output of the DFT of the speech signal meets these requirements. Hence,
the spectrum of the log-Mel spectrum is computed. The domain is called cepstrum, a term
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made up by reversing the letters of the first syllable of ‘spectrum’. Only the first 12 MFCC
coefficients are taken discarding the coefficients that represent higher frequencies. The MFCC
coefficients are depicted in Figure 5.8.

The Discrete Cosine Transformation decorrelates the log-Mel coefficients similar to the
principal component analysis (PCA) [Ahme 74] but with the advantage of a constant trans-
formation matrix and without the need to compute the eigenvectors of the data.

The first MFCC coefficient cMFCC
0,τ is substituted by the logarithm of the short-time energy

cen
τ defined as the sum of all Mel spectrum coefficients:

cen
τ = log10

 Nfilter∑
i=1

cMel
i ,τ

 (5.9)

In order to reduce the impact that changes of the environmental conditions such as noise,
room, microphone, or speaker characteristics have on the MFCC features, techniques like
the cepstral mean subtraction (CMS) are applied where a pre-computed mean of the MFCC
feature vector is subtracted. An extension, which is used in our implementation, is the
dynamic adaptive cepstral subtraction (DACS) where the pre-computed mean is updated
while new frames are processed. Only frames that actually contain speech are used for the
adaptation of the mean.

The MFCC coefficients cMFCC
i ,τ are called static features as they describe the spectral

properties within one frame where the signal is approximately stationary. The feature vector
is extended by dynamic features, which describe the behavior of the static features over time.
For this purpose, the first and sometimes also the second derivative of the static features
are calculated. These features are often called ∆ and ∆∆ features, respectively. For this
work, only ∆ features are investigated. The first derivative is approximated by the slope of
the regression line [Furu 86] that is fitted to the MFCC feature vectors of five consecutive
frames:

c∆MFCC
i ,τ =

∑2
j=−2 j · cMFCC

i ,τ+j∑2
j=−2 j 2 (5.10)
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Figure 5.9: Fant’s Source-filter model after [Schu 95]

5.1.2 Formant Based Features
Fant’s source-filter model [Fant 60] illustrated in Figure 5.9 models the process of speech
production as a series of linear, time invariant systems. The discrete speech signal can be
obtained by the convolution fn = un?vn?rn . The following equation holds for the z -transform
of the speech signal:

F (z ) = U (z ) · V (z ) · R(z ) (5.11)
The complete transmission function for voiced sounds is H (z ) = σvoiced ·G(z ) · V (z ) · R(z ).
G(z ) is the z -transform of the glottis model, V (z ) the one of the vocal tract and R(z ) models
the radiation at the lips.

In order to model the resonance characteristics of the vocal tract, the vocal tract is
modeled in a simplified way by an acoustic tube of the length L consisting of M cylindrical
segments as illustrated in Figure 5.10. The nasal tract and losses at the wall of the vocal
tract are not modeled. All segments have the same length l = L/M but different cross
sectional areas Ai , 1 ≤ i ≤ M . The typical length of the vocal tract is about L = 170mm
for adults. In the direction of the tube, a planar propagation of the signal can be assumed
since the length of the cylindrical segments is far below the wave length of speech signals
[Schu 95]. The acoustic flow in the forward and the backward direction can be computed
iteratively from the reflection coefficients

ki = Ai − Ai+1

Ai + Ai+1
, 0 ≤ i ≤ M (5.12)

The area A0 of the “outside world” cylinder in front of the lips is set to infinity; then k0 is 1.
The area of the terminator at the glottis does not affect the resonance characteristics and can
be chosen arbitrarily. The propagation of the signal is disturbed only at equidistant points
of time due to the change of the diameter of the tube at the transition from one cylinder to
another. Hence, a simple term results for the z -transform of the vocal tract:

V (z ) =
∏

i=0(1 + ki)
1−∑M

i=1 aiz−i
(5.13)
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Figure 5.10: Vocal tract model: acoustic tube without loss consisting of cylindrical segments
of equal length after [Schu 95]

The polynomial coefficients ai = a
(M )
i in the denominator can be computed iteratively:

a
(m)
i =


1 i = 0
a

(m−1)
i + km a

(m−1)
m−i i < 1 < m

km i = m

(5.14)

The function V (z ) has M /2 pairs of complex conjugate poles where the polynomial in the
denominator is equal to zero:

1−
M∑
i=1

aiz
−i =

M/2∏
i=1

(
1− 2e−ciT cos(biT )z−1 + e−2ciT z−2

)
(5.15)

These poles are the resonances of the vocal tract well-known as formants. They are char-
acterized by their center frequencies Fi = bi/(2π) and their bandwidths Bi = ci/(2π). The
formants characterize the current shape of the vocal tract while a phone is being produced.
They are independent of the perceived pitch. Yet, they do depend on the length of the
vocal tract and hence, depend on the age and the gender of the speaker. Significant differ-
ences in the position of the first two formants between adults and children have been found
[Stem05]. Nevertheless, the first two formants are sufficient to identify vowels. Algorithms
that determine the formants by finding the poles of V (z ) are called root extraction methods.

Other algorithms, called spectral peak picking methods, extract the local maxima of a
smoothed spectrum such as the one obtained by linear prediction coding (LPC). The LP
spectrum is shown in Figure 5.11. LPC assumes that the samples of a stationary period of
the signal can be predicted by a linear combination of the preceding NLP samples:

f̂ τn = −
NLP∑
j=1

αj · f τn−j (5.16)

NLP is called the prediction order; αj , 1 ≤ j ≤ NLP, denote the LP coefficients. There will
be a deviation between the predicted value f̂ τn and the actual value f τn :

eτn = f τn − f̂ τn =
NLP∑
j=0

αj · f τn−j , with α0 = 1 (5.17)
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Figure 5.11: Log-Fourier and log-LP spectrum (NLP = 20) of the speech frame

The LP coefficients α1, . . . , αNLP are determined such that the accumulated squared error

εLP =
Ns−1∑
j=NLP

(eτn)2 =
Ns−1∑
j=NLP

 NLP∑
j=0

αj · f τn−j

2

(5.18)

is minimized. Again, Ns is the number of samples in the speech frame. The error εLP can be
rewritten in a more compact form as a linear combination of quadratic functions:

εLP =
NLP∑
j=0

NLP∑
k=0

αjφ
τ
jkαk with φτjk =

Ns−1∑
n=0

f τn−j f τn−k (5.19)

Hence, εLP has a unique minimum which can be found by setting the partial derivatives
∂εLP/∂αk = ∑NLP

j=0 αjφ
τ
jk to zero. This results in a system of NLP linear equations:

NLP∑
j=1

αjφ
τ
jk = −φτjk , 1 ≤ k ≤ NLP (5.20)

Instead of solving this system, the LP coefficients can be determined in a faster way using
the covariance method or the autocorrelation method. The first one in based on a Cholesky
decomposition of the symmetric matrix φτ , the latter one uses the autocorrelation function
r to compute the components of φτ :

φτjk = r τ|j−k | (5.21)

and benefits from the form of φτ , which is a Toeplitz matrix (constant elements on each
descending diagonal from left to right). In this case, the system of equations can be solved
with the Levinson-Durbin recursion [Levi 47, Durb 60]. In order to compute the LP spectrum,
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the LP coefficients are zero padded before applying the Discrete Fourier Transformation.
Finally, the local maxima of the spectrum are determined. The number of local maxima
strongly depends on the prediction order NLP. If the order is too low, one local maximum
models more than one formant. If NLP is too high, the local maxima model the harmonic
structure. Generally, good results are obtained if NLP is set to fs + 4; fs is the sampling
frequency given in kHz.

In the experiments, the first three formants without their bandwidths are used. They
are extracted using the formant extractor of ESPS, which is incorporated in the software
WaveSurfer. The algorithm is based on the root extraction method.

5.2 Features of the Erlangen Prosody Module
The Erlangen Prosody Module has been originally designed to detect prosodic events such
as phrase boundaries, phrase accents, and sentence mood in order to improve the automatic
processing of speech [Warn 03, Gall 02, Noth 02, Komp97, Kies 97, Noth 91, Noth 88]. The
Erlangen Prosody Module has been an integral component of the German Verbmobil project
[Batl 00b, Batl 00a, Noth 00] and the SmartKom project [Zeis 06].

The features of the Erlangen Prosody Module model the contour of the fundamental
frequency and the short-term energy, aspects of temporal lengthening of words, and the
duration of pauses. In total, the Erlangen Prosody Module computes 100 prosodic features
for each word: 26 F0 based features, 33 energy based features, 33 duration based features,
and 8 features based on pauses.

Besides its main purpose to calculate prosodic features, the Erlangen Prosody Module
can also be used to calculate some non-prosodic features such as jitter and shimmer features,
which are described in the section on voice quality features (s. Chapter 5.2.4). In the following
subsections, a detailed description of the prosodic features is given.

5.2.1 F0 Based Features
The F0 based features model the contour of the (logarithmic) fundamental frequency as it is
illustrated in Figure 5.12. In detail, the contour is described by the slope of the regression
line, the error that occurs if the contour is approximated by this line, the maximum and
the minimum of the fundamental frequency, and the F0 onset and the F0 offset, i. e. the F0
values at the first voiced frame and the last voiced frame, respectively. Furthermore, the
average of the F0 values within one word is included. The position of both extrema and
the positions of the on- and the offset are temporal measures specifying the distance from
a given reference point that is defined as the end of the current word. In the experiments,
these temporal features are treated separately or in combination with the duration based
features described in Chapter 5.2.3.

The feature vector for the word under consideration is extended by the features of the
words constituting the left and the right context. A context of at most two words to the left
and two words to the right is considered since former experiments have shown that larger
context sizes do not improve the classification performance [Batl 00a]. Reasons that are
pointed out are either the fact that a larger context does not contain relevant information
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Figure 5.12: Features of the Erlangen Prosody Module after [Buck 99]

feature context
−2 −1 0 +1 +2

maximum • • •
minimum • • •
mean • • •

whole turn
onset • •
offset • •
regression coefficient • • •

•
• •

regression error • • •
•

• •

Figure 5.13: 26 local F0 based features and their context of computation

to model the local events, or the rather limited size of the training data that has been used
in the Verbmobil project. Table 5.13 shows which features are calculated for which context
[Hube 02, Kies 97]. The slope of the regression line and the corresponding approximation
error is also calculated for speech segments covering two words. Furthermore, the mean F0
value for the whole turn is included. In total, 26 F0 based features are extracted for each
word.

45



Figure 5.14: Averaged F0 of the recordings of Queen Elizabeth II.

For a first look on the F0 we calculated the per-year-averaged F0 on the Queen record-
ings. The results are plotted in Figure 5.14. The age-correlation is -0.83/-0.93 (Pear-
son/Spearman).

5.2.2 Energy Based Features
Similar to the F0 based features, the energy based features model the contour of the short-
term energy of each frame (frames of 16ms duration, time shift of 10ms). Certain statistics
like the minimum, which is always zero or close to zero, and the on- and the offset do not
make any sense and are excluded [Kies 97]. In contrast, the position of the minimum may
make sense very well. Again, the positions of the extrema are treated as duration features.
In addition, the energy of the whole word is included: once as its absolute value and once
in a normalized form.

The normalized energy of a word is based on the work of Wightman [Wigh 92]. The
energy factor τen specifies how much louder or softer the speaker produces the words in an
interval I compared to an average speaker.

τen(I ) := 1
#I

∑
w∈I

en(w)
µen(w) (5.22)

en(w) denotes the energy of the word w . The statistics µen(w) and σen(w) are the average
energy of the word w produced by an average speaker and the corresponding standard
deviation, respectively. If the frequency of the given word is too small to obtain robust
estimates of the statistics, they can be approximated based on the energy statistics of the
syllables or phonemes that the word consists of. The energy factor τen is added to the feature
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feature context
−2 −1 0 +1 +2

maximum • • •
mean • • •

• •
• •

regression coefficient • • •
•

• •
regression error • • •

•
• •

absolute energy of a word • • •
• •

normalized energy ζen • • •
• •

τen whole turn

Figure 5.15: 33 local energy based features and their context of computation

vector and is constant for all words within one turn. Furthermore, the factor τen is used to
scale the expected energy µen(w) of the word w in order to adapt the expected energy to
the energy level of the whole turn. The difference en(w)− τen(I )µen(w) in the numerator of
Equation 5.23 is the deviation of the energy of the current word from its expected energy. In
order to get rid of the speech sound dependent variation, this deviation is normalized with
the standard deviation σen(w) which is also scaled by the factor τen. The resulting feature
ζen(J , I ) for single words – in this case the interval J consists of only the current word – or
for larger contexts is defined as follows:

ζen(J , I ) := 1
#J

∑
w∈J

en(w)− τen(I )µen(w)
τen(I )σen(w) (5.23)

As for F0 based features, features describing the context of the word are included resulting
in 33 energy based features. Table 5.15 illustrates which features are calculated for which
context.

5.2.3 Duration Based Features
Duration based features model aspects of temporal lengthening of words or segments. Besides
the absolute duration of a word, two normalized forms are added to the feature vector. The
first normalization is rather simple and normalizes the duration of a word by the number of
syllables the word consists of. The second normalization is along the same lines as for the
energy normalization. The factor τdur is the speaking rate. For its computation, only ‘en’
has to be substituted by ‘dur’ in Equation 5.22. dur(w) denotes the duration of the word
w . The statistics µdur(w) and σdur(w) are the average duration of word w produced by an
average speaker and the corresponding standard deviation, respectively.
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feature context
−2 −1 0 +1 +2

absolute duration of a word • • •
• •

duration of a word normalized • • •
with the number of syllables • •
normalized duration ζdur • • •

•
• •

speaking rate τdur whole turn
position of the F0 maximum • • •
position of the F0 minimum • • •
position of the F0 onset • •
position of the F0 offset • •
position of the energy maximum • • •
position of the energy minimum • • •

Figure 5.16: 33 local duration based features and their context of computation

Table 5.16 shows which features are computed for which contexts resulting in a 17-
dimensional feature vector. In addition, there are 16 features describing the positions of the
F0 and energy extrema as it has been mentioned in the previous two sections. All in all,
there are 33 duration based features.

The F0 and energy based features extracted by the Erlangen Prosody Module are com-
bined in a feature vector of dimension 187, with one feature vector per voiced segment.

5.2.4 Voice Quality Features
Voice quality features characterize the source signal which emerges from the oscillation of
the vocal cords. The source signal can be estimated by inverse filtering of the speech signal
canceling the effects of the vocal tract.

Jitter and Shimmer

The term jitter denotes cycle-to-cycle variations of the fundamental frequency. Here, an
approximation of the first derivative of the fundamental frequency is used:

jitter(i) = |F0(i + 1)− F0(i)|
F0(i)

(5.24)

These variations are not perceived as changes of the pitch but as changes of the voice quality.
Along the same lines, the term shimmer denotes variations of the energy from one cycle to
another:

shimmer(i) = |en(i + 1)− en(i)|
en(i) (5.25)
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Cycle-to-cycle variations require that the fundamental frequency is calculated for consecutive
periods and not as the average F0 for a whole frame of constant length. The PDDP (period
detection by means of dynamic programming) algorithm described in [Kies 97] is applied. In
a first step, segments of voiced speech are located and estimates of the average fundamental
frequency in these segments are computed. Then, the possible candidates for the period
boundaries are located at positive zero crossings of the signal. Characteristics like the integral
or the extrema in the segments from one positive zero crossing to the next one are computed
and can be used to reduce the number of candidates by eliminating irrelevant candidates like
those with negative integral. Within a voiced segment, hypotheses of periods are generated:
Each positive zero crossing can be the starting point of several periods. The period length is
limited to an interval that is defined by the average fundamental frequency estimated for the
whole voiced segment and the maximal relative deviation from this value that is permitted.
Dynamic programming (DP) is used to find the optimal path in the graph of hypotheses.
Two types of cost functions are defined: cost functions that characterize the period itself
and cost functions that characterize the similarity of consecutive periods. Several heuristic
cost functions are defined in [Kies 97]. They are combined to a single cost function by an
artificial neutral network classifier which has been trained on manually labeled positions of
periods. For a more detailed description of the algorithm, please see [Kies 97].

Features for words are obtained by averaging the jitter and shimmer values over all
detected periods within the given word. Additionally, the feature vector is extended by the
standard deviation of the jitter and shimmer values.

Age Correlation

Our preliminary experiments on the longitudinal data of Alistair Cooke’s speech show for the
per year averaged jitter an 0.66 age correlation (Figure 5.17). In contrast the the shimmer
feature does not show a trend (0.06 correlation).

5.3 Speaking Rate and Plosive Vowel Transition Du-
ration

In this section we present our analysis of speaking rate and plosive vowel transition duration
we tried to explore. We use forced time alignment provided by Speech Recognition team
and did analysis on acoustic features such as speaking rate, silence percentage and duration
features. In a previous chapter 3, we saw that there is no systematic error over age in
automatically extracted formant values. So we can use automatically extracted formant
values reliably for further analysis. Using formant values along with additional information,
we tried to find good features for age classification.

5.3.1 Speaking Rate
As a person gets older, it is more effort for him to articulate different phones which results
in low speaking rate. We define speaking rate as number of phones uttered per second. We
do not consider silences and short pauses while counting the number of phones. We carried
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Figure 5.17: Averaged Jitter of the recordings of Alistair Cooke.
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speaking rate experiments for UF-VAD males and females data and for the queen data. For
lateral data, we confirmed that speaking rate is a good feature for age classification with a
correlation of -0.74. We can see from Figure 1, a clear trend young > middle > old .

However, interestingly, for the queen data, as shown in Figure 2, we observed that the
speaking rate increases till she was 50 years old and then it decreases. We speculate that
this might be the effect of professionalism. Being young, she might be somewhat uncertain
or nervous, which makes her speak slowly. We also observed that there is high variation in
the speaking rate from 26-50. However, after 50, there is less variation showing that she is
stable with her speaking rate.

5.3.2 Plosive Vowel Transition Duration
The formal definition of plosive-vowel transition duration is the time interval between the
release of the oral constriction for production of a plosive and the initiation of glottal pulsing
for the vowel that follows is called the plosive-vowel transition. As a person gets older the
duration should increase as it is some effort for him to make such transitions. For example,
consider plosive ‘g’ followed by vowel ‘a’. Figure 3 explains how the formant frequencies
change from ‘g’ to ‘a’. The time taken for this transition is called the transition duration.

To find out the exact transition point is a hard problem. The transition point is determined
for each of F1, F2 and F3 and then the decision is made about which transition point should
be considered for the combination of plosive-vowel. We observed that individual plosive-vowel
combinations do not reveal much information about age. So we made classes of these com-
binations. for certain phonetic contexts we saw a slight duration increase with age. Figure
4 demonstrates plosive-vowel duration for UF-VAD -males data and eh class. We observed
that the duration slightly increases over age. The general trend is Young < Middle < Old
and the variability also very slightly increases over age Young < Middle < Old .

But for the Queen, as shown in Figure 5, we can see that the duration slightly increases
over age. The general trend is Young < Middle < Old and the variability decreases over age
Young > Middle > Old . This again be might be because of the professionalism.
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Figure 5.18: Speaking Rate (UF-VAD - male’s data)
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Figure 5.19: Speaking Rate (The Queen)
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Figure 5.20: Plosive-Vowel Transition duration

5.3.3 Pause Percentage
Pause percentage is the percentage of pauses in the whole utterance. For example, if the
whole utterance is 10 second long and the the total time taken by pauses is 2 seconds then
the pause percentage will be 20%. Pause percentage feature seems to be slightly increasing
with age with a weak correlation of 0.55. Figure 6 shows the trend Young < Middle < Old
for UF-VAD males data.

5.3.4 Conclusion
Here is the table that summarizes the results.1

Variation of features with increasing age
UF-VAD The Queen

Male Female
Speaking Rate decrease decrease U shaped curve
Plosive-vowel Duration slight increase no trend very slight increase
Pause Percentage increase slight increase U shaped curve

1We know while doing the analysis we used forced time alignment and formants which might be erroneous
resulting in wrong conclusions.
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Figure 5.21: Plosive-vowel transition duration - UF-VAD males data ‘eh’ class
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Figure 5.22: Plosive-vowel transition duration - The Queen ‘uw’ class
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Chapter 6

Age Prediction

We created a system that would estimate the age of a speaker from speech. Using our
features, we created a training model using Gaussian Mixture Models (GMM) and evaluated
using our testing set with Support Vector Regression (SVR). Since we did not have a large
amount of speech data, for training we first created a Universal Background Model (UBM)
on the entire dataset, and then adapted individual age/speaker models using Maximum A
Posteriori (MAP) estimation. This process is explained in the following sections.

6.1 System
For each age and speaker combination, we automatically extracted features from the speech
signal, and combined them to create an unlabeled feature vector (UFV). Since we wanted
to create a general age/speaker model, we did not consider the individual feature values or
variations between frames of speech.

6.1.1 Gaussian Mixture Model
We used unsupervised clustering to first create a Universal Background Model. Starting off
with our unlabeled feature vectors and 128 random points in the feature space represented as
Gaussian functions, we conducted twenty iterations of the Expectation Maximization (EM)
algorithm to create a Universal Background Model (UBM). We decided 128 points would
be sufficient enough for our model because this number would be able to model the 60 or
so phonemes that would describe all of the world’s languages, and would also have enough
tolerance to model many of the common bigrams and trigrams. Using the UBM as our
starting point, we conducted Maximum A Posteriori (MAP) adaptation with one iteration
of the EM algorithm to create an age/speaker adapted model for each age and speaker.

6.1.2 Support Vector Regression (SVR)
We tested using by using Support Vector Regression from Weka (Witten and Frank, 2005).
Similar to our training set, we created a testing set by extracting the features from speech
of a target age/speaker to create an unlabeled feature vector. With our testing set feature
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Figure 6.1: Age/speaker model creation process of our system using UBM/GMM

vectors and our UBM from training, we adapted our features using MAP estimation create
a model of the test speaker.

Using our age/speaker models from both testing and training, we conducted SVR on
the test data to predict the age of the target speaker. We used four different kernels for
evaluation, namely linear, third degree polynomial, radial basis function with delta 0.1 and
0.01.

6.2 Results
For longitudinal data (Queen and Cooke broadcast data), we evaluated using a 30-fold leave
one age out cross validation on the training set. In other words, we trained on 29 of the 30
recordings given at different ages, and tested on the recording for the one remaining age. We
repeated this process 30 times for each age. For the UF-VAD data, we split the data into
three sections, trained on two sections, and tested on the remaining section. We repeated
this process three times each for a different testing set, and averaged the output to get the
final result.

6.2.1 Regression Results
The following tables show the Pearson correlation and mean absolute error of evaluation
results. Each table shows the correlation and error for the MFCC, formant frequency, and
Maeda parameter features using the linear (Linear), third-degree polynomial (Poly3), radial
basis function with delta 0.1 (RBF0) and 0.01 (RBF1). Best performance for each dataset is
in bold. All regression results showed best performance with MFCC features using a linear
kernel for regression. The high correlation rate in UF-VAD for males and females show that
our features show a high correlation with age regardless of channel conditions. Also, even
though formant frequencies have only three dimensions compared with the 12 dimensions
for the MFCCs, we were able to get considerably high correlation rates. This shows that a
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Figure 6.2: Age prediction process of our system using support vector regression (SVR)

lot of age information is also included in formant frequencies.

6.2.2 Speech Lengths for Accurate Age Classification

We also looked at the length of speech recordings needed to create an accurate model of the
age and speaker by comparing regression results with different lengths of recordings from the
UF-VAD. We were able to see that performance reaches its maximum at around 60 seconds
as shown in the figure below, and were able to conclude that speech lengths at around one
minute contains enough information to conduct accurate age classification.

6.2.3 Age Prediction: Human vs. System

We compared our classification results of the UF-VAD with classification results of an average
of 40 humans, and were able to show that our system did not perform much differently from
that of humans.

Human Performance

Forty people were asked to classify the age of the speaker for each of the 150 speakers in the
database (Harnsberger, 2008). The average estimated age of the forty people were used for
the following evaluation. The confusion matrix comparing the actual age and the predicted
age is shown in the table 6.5. The performance of an average of forty people had an accuracy
of 87% with a mean absolute error of 9 years.
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Pearson Correlation Mean Absolute Error

MFCC

Linear 0.95 4.2
Poly3 0.77 11.4
RBF0 -0.43 16.0
RBF1 0.87 11.4

Formants

Linear 0.92 5.3
Poly3 0.84 8.4
RBF0 0.84 8.5
RBF1 0.93 5.3

Maeda

Linear 0.87 6.7
Poly3 0.87 6.6
RBF0 -0.31 16.0
RBF1 0.90 6.6

Table 6.1: Age regression results: Queen of England

Pearson Correlation Mean Absolute Error

MFCC

Linear 0.94 4.3
Poly3 0.67 14.1
RBF0 -0.57 14.5
RBF1 0.84 9.3

Formants

Linear 0.90 5.9
Poly3 0.91 5.4
RBF0 0.77 11.3
RBF1 0.87 6.7

Table 6.2: Age regression results: Alistair Cooke

Pearson Correlation Mean Absolute Error

MFCC

Linear 0.80 12.1
Poly3 0.77 19.1
RBF0 N/A 20.9
RBF1 0.67 18.7

Formants

Linear 0.31 22.1
Poly3 0.52 17.2
RBF0 0.50 18.7
RBF1 0.66 15.3

Maeda

Linear 0.66 14.3
Poly3 0.65 14.8
RBF0 N/A 20.9
RBF1 0.67 16.0

Table 6.3: Age regression results: UF-VAD Males
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Pearson Correlation Mean Absolute Error

MFCC

Linear 0.92 8.9
Poly3 0.89 18.8
RBF0 N/A 20.6
RBF1 0.83 16.5

Formants

Linear 0.72 13.7
Poly3 0.78 11.6
RBF0 0.77 16.8
RBF1 0.78 12.0

Maeda

Linear 0.83 11.3
Poly3 0.83 11.2
RBF0 0.62 20.3
RBF1 0.82 12.1

Table 6.4: Age regression results: UF-VAD Females

Figure 6.3: Age prediction process of our system using support vector regression (SVR)
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Actual

Pr
ed
ic
te
d Age 35 35-59 59

35 48 4 0
35-59 2 46 14
59 0 0 36

Table 6.5: Confusion matrix of human age classification

Actual

Pr
ed
ic
te
d Age 35 35-59 59

35 29 1 0
35-59 20 43 8
59 1 6 42

Table 6.6: Confusion matrix of system age classification

System Performance

We conducted the same evaluation on our regression system. The confusion matrix is shown
in table 6.6. Our system had an accuracy of 76% with a mean absolute error of 11 years,
which is not much different from human results.

6.3 Conclusion
We examined various features that correlated with age, and created a system that would esti-
mate a person’s age using speech. Using this system we evaluated MFCC, formant frequency
and Maeda features and were able to show that these features had a high correlation with
age. We also compared the performance of our system with age prediction evaluations of 40
humans and were able to show that there was not much difference between the performance
of our system and humans.
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Chapter 7

Summary

We report on investigations, conducted at the 2008 JHU Summer Workshop, of trying to
predict the age of speaker based on the acoustic signal. Besides standard features used
in automatic speech processing (MFCCs) we looked at a large vector of prosodic features
and implemented a glottal excitation model and an articulatory inversion model to derive
articulatory and excitation parameters. All these parameters (or there changes over time)
were examined as indicators for changes in the acoustic signal due to aging processes. To
do this we looked at dataset which were collected over more than 50 year from two different
speakers (The Queen of England and Alistair Cooke) in relatively constant communication
settings. In order to verify our findings and to exclude systematic changes based on changing
recording conditions rather than aging voices or aging processes we also looked at many
speakers of differen age groupes who were recorded under identical conditions (UF-VAD).

Our implementation of the glottal excitation model is based on eight parameters. Using
short time frames (25ms), we minimized the distance between the synthesized excitation
signal and the LPC residue to find optimal model parameters. We analyzed the correlation
of the model parameters with age on longitudinal and cross-sectional data. The experiments
provided evidence that

1. age information is contained in the glottal excitation signal,

2. this information may be extracted from a reduced physical model of the glottis with
few parameters.

The implementation of Maeda’s articulatory model has proven its effectiveness for acoustic-
to-articulatory inversion. Correlating the articulatory parameters to age, one of the most
striking observation on the trend was the increasing value of the average of P1, which indi-
cates the position of the jaw. The tongue shape and the tongue tip parameters (P3 - P4)
were with P7 the only parameters that did not see their standard deviation decrease with
age. The model adaptation performed on the Queen indicates an increase of the length of
the pharyngeal cavity with age, which is consistent with what we expected from the litera-
ture. This lengthening of the pharynx was however quite slow, and since this study was only
performed on one speaker, these results need to be taken with caution.

Predicting the age of the speakers we examined various features that correlated with age,
and created a system that would estimate a person’s age using speech. Using this system we
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evaluated MFCC, formant frequency and Maeda features and were able to show that these
features had a high correlation with age. We also compared the performance of our system
with age prediction evaluations of 40 humans and were able to show that there was not much
difference between the performance of our system and humans.
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