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2 Matthew W. Crocker

1 Introduction

Computational psycholinguistics is concerned with the development of compu-

tational models of the cognitive mechanisms and representations that underlie

language processing in the mind/brain. As a consequence, computational psy-

cholinguistics shares many of the goals of natural language processing research,

including the development of algorithms that can recover the intended mean-

ing of a sentence or utterance on the basis of its spoken or textual realization.

Additionally, however, computational psycholinguistics seeks to do this in a

manner that reflects how people process language.

Natural language is fundamentally a product of those cognitive processes

that are coordinated to support human linguistic communication and interac-

tion. The study of language therefore involves a range of disciplines, including

linguistics, philosophy, cognitive psychology, anthropology, and artificial intel-

ligence. Computational psycholinguistics, perhaps more than any other area,

epitomizes interdisciplinary linguistic inquiry: the ultimate goal of the en-

terprise is to implement models which reflect the means by which linguistic

information is stored in, and utilized by, the mind and brain. But beyond

modeling of the representations, architectures, and mechanisms that under-

lie linguistic communication, computational psycholinguistics is increasingly

concerned with developing explanatory accounts, which shed light on why the

human language faculty is the way it is. As such, models of human language

processing must ultimately seek to be connected with accounts of language

evolution and language acquisition.

This chapter presents some of the historically enduring findings from re-

search in computational psycholinguistics, as well as a state of the art over-

view of current models and their underlying differences and similarities. While
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computational models of human language processing have been developed to

account for various levels of language processing — from spoken word recog-

nition and lexical access through to sentence production and interpretation —

this chapter will place primary emphasis on models of syntactic processing.

It will not be surprising that many accounts of human syntactic processing

are heavily informed by computational linguistics, specifically natural lan-

guage parsing. A traditional approach has been to try to identify parsing

algorithms which exhibit the range of observed human language processing

behaviors, including incremental processing, local and global ambiguity resol-

ution, and parsing complexity (both time and space; see Chapters 2 and 4).

Such symbolic approaches have the advantage of being well-understood com-

putationally, transparent with respect to their linguistic basis, and scaleable.

An alternative approach has been to develop models using neurally inspired

connectionist networks (see Chapter 10), which are able to learn from suf-

ficient experience to language, are robust, and degrade gracefully (Elman,

1990; Plunkett & Marchman, 1996). Purely connectionist approaches often

use distributed, rather then symbolic representations, making it difficult to

understand precisely what kinds of representations such networks develop.

Furthermore, they are typically relatively small scale models, and it has proven

difficult to scale their coverage. Some cognitive models of language are in fact

best viewed as hybrids, exploiting a mixture of symbolic representations, and

connectionist-line computational mechanisms. Most recently, probabilistic ap-

proaches have dominated, providing a transparent linguistic basis on the one

hand, with an experience-based mechanism on the other.

Before considering the range of approaches, it is important to understand

precisely the goals of computational psycholinguistics, and the kinds of data
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that inform the develop of models. Furthermore, while many ideas and al-

gorithms have their roots in computational linguistics, we begin by identifying

where these two endeavors diverge, and why.

Page: 4 job: crocker macro: handbook.cls date/time: 24-Jun-2009/11:59



Computational Psycholinguistics 5

2 Computational models of human language processing

While psycholinguistic theories have traditionally been stated only inform-

ally, the development of computational models is increasingly recognized as

essential. Specifically, computational models entail the explicit formalization

of theories, and also enable prediction of behavior. Implemented models are es-

pecially important not only because human language processing is highly com-

plex, involving interaction of diverse linguistic and non-linguistic constraints,

but also because it is inherently a dynamic process: People are known to

understand, and produce, language incrementally as they read or hear a sen-

tence unfold. This entails that the recovery of meaning happens in real-time,

with the interpretation being influenced by a range of linguistic, non-linguistic

and contextual sources of information, on the one hand, and also shaping our

expectations of what will come next, on the other.

How is computational psycholinguistics different from computational lin-

guistics? In fact, early conceptions of natural language processing explicitly

approached language as a cognitive process (Winograd, 1983). Ultimately,

however, research is shaped by the specific goals of a particular research com-

munity. To understand this more clearly, it can be helpful to distinguish ac-

counts of linguistic competence and performance. Broadly speaking, a theory

of linguistic competence is concerned with characterizing what it means to

“know” language, including the kinds syntactic and semantic rules and rep-

resentations provided by a linguistic theory. A theory of performance, in con-

trast, characterizes the means by which such knowledge is used on-line to

recover the meaning for a given sentence, as exemplified by a psychological

plausible parsing algorithm.
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Consider, for example, one of the classic examples from psycholinguistics,

known as the main verb/reduced-relative clause ambiguity Bever (1970):

(1) “The horse raced past the barn fell”

For many readers, this sentence seems ungrammatical. The confusion arises

because the verb raced is initially interpreted as the main verb, leading the

parse “up the garden path” (Frazier, 1979). Only when the true main verb

fell is reached can the reader potentially determine that raced past the barn

should actually have been interpreted as a reduced-relative clause (as in The

horse which was raced past the barn fell). In this relatively extreme example of

a garden-path sentence, many readers are unable to recover the correct mean-

ing at all, despite the sentence being perfectly grammatical (cf. The patient

sent the flowers was pleased which is rather easier, but has the same struc-

ture). Thus our linguistic competence offers no explanation for this phenom-

ena, rather it seems necessary to appeal to how people recover the meaning,

resolving ambiguity as they encounter the sentence incrementally.

Computational linguistics and psycholinguistics have traditionally shared

assumptions regarding linguistic competence; both are concerned with devel-

oping algorithms which recover a linguistically adequate representation of a

sentence as defined by current syntactic and semantic theories. At the level

of performance, however, computational linguistics is rarely concerned with

issues such as incremental sentence processing and the resolution of local ambi-

guities which are resolved by the end of the sentence. There is rather a greater

interest in optimizing the computational properties of parsing algorithms, such

as their time and space complexity (see Chapters 2 and 4). Computational

psycholinguistics, in contrast, places particular emphasis on the incremental

processing behavior of the parser.

Page: 6 job: crocker macro: handbook.cls date/time: 24-Jun-2009/11:59



Computational Psycholinguistics 7

As computational linguistics has increasingly shifted its focus towards ap-

plication domains, the demands of these applications has further divided the

computational linguistics and computational psycholinguistics communities.

The acknowledged difficulty of computationally solving the natural language

understanding problem, which in turn relies on a solution of the artificial intel-

ligence problem1, has led to an increased focus in computational linguistics on

developing less linguistically ambitious technologies which are scaleable and

able to provide useful technologies for particular sub-problems. Robust meth-

ods for part-of-speech tagging, named-entity recognition, and shallow parsing

(see Chapter 16), for example can contribute to applications ranging from

spam-filtering and document classification to information extraction, ques-

tion answering, and machine translation (see Chapters 20, 24, and 21). For

the most part, however, the methods used to perform these tasks have no

cognitive basis.

While the research goals of computational linguistics and computational

psycholinguistics have diverged since the 1970s, there continues to exist a

significant overlap in some the methods that are exploited. An interesting

result of the shift towards wide-coverage and robust language processing has

been a tremendous emphasis on statistical language processing, and machine

learning. As we will see, many of the same underlying methods play a central

role in cognitive models as well, with particular overlap coming from research

on statistical language modeling (see Chapter 3).

1 The essence of this argument is that understand language ultimately requires full
intelligence — requiring both extensive world knowledge and reasoning abilities
— which remain out of reach in the general case (Shapiro, 1992).
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2.1 Theories and Models

In developing accounts of human language processing, as with any other cog-

nitive process, it is valuable to distinguish the expression of the theory from

a given model which implements the theory. Theories typically relate to a

particular aspect of language processing — such as lexical access, parsing, or

production — and as such provide incomplete characterizations of language

processing in general. Furthermore, theories often provide a relatively high-

level characterization of a process, leaving open details about what specific

algorithms might be used to realize the theory. Marr (1982), in fact, identi-

fies three levels at which cognitive processes may be described: (1) the com-

putational level, which defines what is computed, (2) the algorithmic level,

which specifies how computation takes place, and (3) the implementation

level, which states how the algorithms are actually realized in the neural as-

semblies and substrates of the brain. In the case of language processing, which

is a relatively high-level cognitive function, there have been very few accounts

at the third level: we simply have insufficient understanding about how lan-

guage is processed and represented at the neural level.

There are several reasons for why a distinction of these levels is important.

One reason for wishing to state theories at a relatively high level is to em-

phasize the general properties of the system being described, and ideally some

justification of why it is the way it is. Additionally, it is often the case that the

relevant empirical data available may not permit a more detailed character-

ization. That is to say, in building a specific model (at the algorithmic level)

of a given theory (stated at the computational level), we are often required

to specify details of processing which are underdetermined by the empirical

data. While resolving those details is essential to building computational mod-
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els that function, we may not wish to ascribe any psychological reality to all

aspects of the model. In the event that there is some new piece of empir-

ical evidence which the model incorrectly accounts for, such a distinction is

critical: it may be a consequence of the original theory, either falsifying it or

entailing some revision to it, or it may simply be a result of some (possibly

purely pragmatically-based) decision made in implementing the model, such

that only a change at the algorithmic or implementation level, and not the

computational level, is needed.

Theories of human language processing can be broadly characterized by the

extent to which they assume the mechanisms underlying language processing

are restricted or unrestricted (Pickering et al., 2000a). Restricted accounts

begin with the assumption that cognitive processes are resource bound, and

that observed processing difficulties in human language processing are a con-

sequence of utilizing or exceeding these resource bounds. In order to explain

a number of experimentally observed behaviors, a range of restrictions have

been identified which may play a role in characterizing the architecture and

mechanisms of the human language processor.

Working Memory: The language processor has limited capacity for stor-

ing linguistic representations, and these may be exceeded during the

processing of certain grammatical structures, such as center-embeddings:

“The mouse [that the cat [that the dog chased] bit] died.”, in which three

noun phrases must be maintained in memory before they can be integrated

with their respective verbs (Miller & Isard, 1964; Bever, 1970; Gibson,

1991).

Serial Processing: While there may be many structures that can be asso-

ciated with a sentence during incremental processing, the human parser
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only pursues one structure, rather than several or all of them, so as to

minimize space complexity. This predicts that if the sentence is disambig-

uated as having an alternative structure, some form of reanalysis will be

necessary and cause processing difficulty (Frazier, 1979).

Modularity: Cognitive processes underlying sentence processing are simpli-

fied by restricting their representational and informational domains. This

enables on-line syntactic processes to operate independently of more gen-

eral, complex, and time-consuming cognitive processes such as pragmatics,

world knowledge and inference (Fodor, 1983).

Unrestricted accounts, in contrast, typically assume that the processing

is not fundamentally constrained, and that people are able to bring diverse

informational constraints (i.e. interactive rather than modular) to bear on

deciding among possible structures and interpretations (i.e. parallel rather

than serial). Such accounts don’t deny that cognitive resources are ultimately

limited, but do tacitly assume that the architectures and mechanisms for lan-

guage processing aren’t fundamentally shaped by the goal of conserving such

resources. Most current models are best viewed as lying somewhere between

the two extremes.

2.2 Experimental Data

As noted above, models of human language processing seek not only to model

linguistic competence — the ability to relate a sentence or utterance with its

intended meaning — but also human linguistic performance. Language pro-

cessing is best viewed as a dynamic process, in which both the linguistic input

and associated processing mechanisms unfold over time. Evidence concerning

how people process language can be obtained using a variety of methods.
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An important aspect of all controlled psycholinguistic experiments, however,

is a clear experimental design. Experiments are designed to test a specific

hypothesis about language processing, usually as predicted by a particular

theoretical proposal or model. As an example, let’s consider the matter of

serial, incremental processing: the claim that each word is attached into a

single connected partial syntactic representation as the sentence is read. This

claim makes the prediction that any local ambiguity will be resolved immedi-

ately and if that decision later turns out to be wrong, then some processing

difficulty will ensue. Consider the following sentences:

(2) a. “The athlete [VP realized [NP her potential ]]”

b. “The athlete [VP realized [S [NP her potential ] [VP might make her famous ]]]”

c. “The athlete [VP realized [S [NP her exercises ] [VP might make her famous ]]]”

In sentence (2a&b), a local ambiguity occurs when we encounter the word

“her”, following the verb “realized”. While the word “her” certainly begins

a noun phrase (NP), that NP can either be the direct object of the verb,

as in the sentence (2a), or the subject of an embedded sentence, as in (2b).

To investigate whether or not people immediately consider the direct object

reading, Pickering et al. (2000b) compared processing of this ambiguity, ma-

nipulating only whether the NP following the verb was a plausible direct

object. They argued that if people favor building the direct object reading,

this will influence processing complexity in two ways. Firstly, in (2b) they

will attach the NP “her potential” as the direct object, and then be surprised

when they encounter the following VP, which forces them to reanalyzse the

object NP as the subject of the embedded clause. For (2c), they should also

attempt the direct object attachment, but be surprised because it is implaus-

ible, and then assume it begins an embedded clause. In an eye-tracking study,
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they found evidence supporting exactly this prediction. Namely, in (2c) people

spent longer reading the NP (“her exercises”) following the verb, than they

did reading the NP (“her potential”) in (2b), suggesting they built a direct ob-

ject structure only to realize it is implausible. In (2b), however people spent

longer reading the disambiguating region (the embedded VP) than in (2c),

suggesting they had committed to the (plausible) direct object reading, and

the needed to revise that analysis.

Since many different factors are known to influence reading times, most

psycholinguistic experiments use a design like the one just described above,

in which the difference in reading times for similar sentences (or regions of

the sentence) are compared, and where only the factor which is of interest

is varied between the sentences. One simple method which has been used ef-

fectively to investigate incremental reading processes is the self-paced reading

(SPR) paradigm. Using this method, the sentence is presented one word at a

time, and the participant must press a key to see the next word. The latency

between key presses can then be averaged across both participants and a range

of linguistic stimuli to obtain average reading times, which can then be ana-

lyzed to determined if there are statistically significant differences in reading

times resulting from the experimental manipulation. Another more sophistic-

ated method, eye-tracking, provides an especially rich, real-time window into

language processing, with the added advantage of not requiring any additional

(possibly unnatural) task. Current eye-tracking technology enables the precise

spatial and temporal recording of eye-movements (saccades) and fixations as

people read a sentence which is displayed in its entirety on a display. Since

people often look back to earlier points in the sentence while reading, several

reading-time measures can be computed, such as first-pass (the amount of
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time spent in a region before people move out of the region), or total-time (all

the time spent reading a region, including looking back at it, etc.) (Rayner,

1998).

When relating a theory or model of language processing to empirical data,

it is important to be clear about the exact nature of the relationship that

is being assumed, via a linking hypothesis. In the example describe above,

we implicitly assumed that it was the surprise — of either an implausible

interpretation, or a subsequent cue that reparsing would be required — that

would lead to increased reading time. But there are many characteristics of a

computational model that one might argue would be reflected in empirically

observable processing complexity. As we’ll see below, everything from the

frequency of the word which is being processed, to the memory load associated

with processing completely unambiguous sentence can be observed in reading

times. This is one reason why carefully controlled experiments are so essential,

as are clear linking hypothesis that can be used to relate a processing model

to some empirical measure.

Reading times offer a robust and well-understood behavioral method for es-

tablishing processing difficult during sentence comprehension. More recently,

however, neuroscientific methods have become increasingly important to in-

forming the development of psycholinguistic theories. This is particularly true

of event-related potentials (ERPs), which can be observed using electroen-

cephalography (EEG) methods. ERPs reflect brain activity, as measured by

electrodes positioned on the scalp, in response to a specific stimulus. Numerous

ERP studies have demonstrated the incrementality of language comprehension

as revealed by the on-line detection of semantic (e.g., Kutas & Hillyard, 1980,

1983; van Petten & Kutas, 1990) and syntactic (e.g., Osterhout & Holcomb,
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1992, 1993; Matzke et al., 2002) violations, indexed broadly by so-called N400

and P600 deflections in scalp activation, respectively. However, while there

are several theoretical processing accounts which are derived from such data

(Friederici, 2002; Bornkessel & Schlesewsky, 2006), relatively few have led to

the development of computational models (but see Crocker et al., in press).

For this reason, we will focus here primarily on models based on behavioral

findings.

Finally, the visual world paradigm, in which participants’ eye movements to

visually displayed objects are monitored as participants listen to an unfolding

utterance, has revealed that people automatically map the unfolding linguistic

input onto the objects in their visual environment in real-time (Tanenhaus

et al., 1995). Using this method, Allopenna et al. (1998) demonstrated not

only that increased inspections of visually present objects often occur within

200ms of their mention, but also that such utterance-mediated fixations even

reveal sub-lexical processing of the unfolding speech stream. Perhaps of even

greater theoretical interest are the findings of Tanenhaus et al. (1995), re-

vealing on-line interaction of visual and linguistic information for sentences

such as “Put the apple on the towel in the box”. Not only did listeners rap-

idly fixate the mentioned objects, but their gaze also suggested the influence

of the visual referential context in resolving the structural ambiguity in this

sentence (namely, whether towel is a modifier of, or the destination for, the

apple). In fact, this paradigm has also shown that comprehension is not just

incremental, but often highly predictive: Altmann & Kamide (1999) demon-

strated that listeners exploit the selectional restrictions of verbs like eat, as

revealed by anticipatory looks to edible objects in the scene (before those
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objects have been referred to) (see also (e.g. Federmeier, 2007), for related

findings from event-related potential studies).
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3 Symbolic Models

Evidence that people understand language incrementality is perhaps one of

the most ubiquitous findings in experimental research on human sentence pro-

cessing. The importance of this finding for computational models, is that it

places a strong constraint on candidate parsing mechanisms. Not all early

computational accounts adhered to the incrementality constraint, however.

The Parsifal model (Marcus, 1980), for example, proposed a deterministic

model of human parsing to account for the observation that people are gen-

erally able to understand language in real-time. Parsifal was essentially a

bottom-up LR parser, which exploited up to three look-ahead symbols (which

could be complex phrases, not just words) to decide upon the next parsing

action with certainty. This look-ahead mechanism enabled the parser to avoid

making incorrect decisions for most sentences, and Marcus argued that those

sentences where the parser failed, were precisely those cases where people also

had substantial difficulty.

There are, however several criticisms that can be leveled at Parsifal. Not

only is the parser highly non-incremental, with the capacity to leave large

amounts of the input on the stack, it also offers only a binary account of

processing difficult: easy versus impossible. Experimental research has shown,

however, that some kinds of erroneous parsing decisions are much easier to

recover from than others (see Sturt et al. (1999) for a direct comparison of two

such cases). The licensing-structure parser (Abney, 1989) responded to these

criticisms by adapting a shift-reduce parsing architecture of Pereira (1985) to

operate more incrementally. Since look-ahead must be excluded in order to

maintain incrementality, the parser often faces nondeterminism during pro-

cessing. For these cases, Abney proposes several preference strategies which
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are intended to reflect parsing principles motivated by human behaviour such

as Right Association (Kimball, 1973) (attach incoming material low on the

right frontier of the current parse) and Theta Attachment (Pritchett, 1992)

(attach constituents so as to maximize thematic role assignment, see Sec-

tion 3.1). Abney additionally addressed the issue of backtracking, in case pars-

ing fails and an alternative parse needs to be found. The licensing-structure

parser, however, is still not strictly incremental, with some parse operations

delaying the attachment of words and constituents. A further criticism, which

applies to the accounts proposed by Marcus, Abney and Pritchett, is their

strong reliance on verb information to determine the parsers actions. While

this approach works reasonably for languages like English, it is problematic for

explaining parsing of verb-final languages like Japanese, Turkish, and many

others.

Resnik (1992), reconsiders the role of space, or memory, utilization as

a criteria for selecting psychologically plausible parsing algorithms. As noted

above, embedding structures reveal an interesting property of human sentence

processing, illustrated by Resnik’s following examples (brackets indicate em-

dedded clauses):

(3) a. “[[[John’s ] brother’s ] cat ] despises rats” EASY

b. “This is [ the dog that chased [ the cat that bit [ the rat that ate the cheese ]]]” EASY

c. “[ The rat [ that the cat [ that the dog chased ] bit ] ate the cheese ]” HARD

While people typically find left embeddings (3a) and right-embeddings (3b)

relatively unproblematic, center-embeddings (3c) are often judged as difficult,

if not completely ungrammatical (though one can quite clearly demonstrate

that they violate no rules of grammar). Building on work previous by Abney &

Johnson (1991) and Johnson-Laird (1983), Resnik (1992) demonstrates that
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neither strictly top-down (LL) nor bottom-up (LR) parsers can explain this

observation. Top-down parsing predicts only right embeddings to be easy,

while bottom-up predicts only left embeddings to be easy. Further, Resnik

demonstrates that the standard version of a left-corner (LC) parser, which

combines top-down and bottom-up parsing is no different than the bottom-

up parser with regard to stack complexity. However, an arc-eager variant

of the LC parser — in which nodes that are predicted bottom-up can be

immediately composed with nodes that are predicted top-down — models

the human performance correctly: left and right embeddings have constant

complexity, while center embedding complexity increases linearly with the

number of embeddings. A further advantage of the arc-eager LC parser is

that it is incremental for all but a few sentence structures (see Crocker (1999)

for more detailed discussion of parsing mechanisms).

3.1 Ambiguity resolution

A central element of any model of sentence processing concerns how it deals

with lexical and syntactic ambiguity: namely how do we decide which rep-

resentation to assign to the current input. The assumption of incremental

processing further entails that decisions regarding which structure to pursue

must be made as each word is processed. Once simple solution to this issue

is to propose a parallel model of processing, in which all possible syntactic

analyses are pursued simultaneously during processing. Such a solution has

traditionally been discarded for two reasons: Firstly, for a large-scale gram-

mar and lexicon, hundreds of analyses may be possible at any point during

parsing — indeed, for grammars with left-recursion, there may in fact be an

unbounded number of parses possible — and would arguably exceed cognit-

ively plausible memory limitations. One solution to this is to assume bounded

Page: 18 job: crocker macro: handbook.cls date/time: 24-Jun-2009/11:59



Computational Psycholinguistics 19

parallelism, in which only a limited subset of parses is considered. Secondly,

even if one assumes parsing is (possibly bounded) parallel, there is strong

evidence that only one interpretation is consciously considered, otherwise we

would never expect to observe the kinds of garden-path sentence discussed

in Section 2. Thus regardless of whether incremental processing is serial or

parallel, any model requires an account of which parse is to be preferred.

There have been many proposals to explain such ambiguity preferences in

the psycholinguistic literature. Frazier (1979), building on previous work by

Kimball (1973), proposed the following two general principles:

Minimal Attachment (MA): Attach incoming material into the phrase

marker being constructed using the fewest nodes consistent with the well-

formedness rules of the language

Late Closure (LC): When possible, attach incoming material into the clause

or phrase currently being parsed.

Recall example (2), above. When the noun phrase “her potential” is en-

countered, it can either be attached directly as the object of “realized” (2a),

or as the subject of the embedded clause (2b). The latter structure, however,

requires an additional node in the parse tree, namely an S node intervening

between the verb and the noun phrase. Thus MA correctly predicts the human

preference to interpret the noun phrase as a direct object, until syntactic or

semantic information disambiguates to the contrary.

While these parsing principles dominated the sentence processing for some

time, they have been criticized on several grounds. Firstly, as noted by Ab-

ney (1989) and Pritchett (1992), MA is highly sensitive to the precise syn-

tactic analysis assigned by the grammar. The adoption of binary branching
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structures in many modern syntactic theories means that MA fails to dif-

ferentiate between a number of ambiguities (including the one in Figure 2,

discussed below). In response to this, several theories proposed a shift away

from MA towards what Pritchett (1992) dubbed Theta Attachment (see also

Abney (1989); Crocker (1996) for related proposals). Theta Attachment states

that the parser should attempt to maximally satisfy verb argument relations

whenever possible, and thus prioritize the parsing of phrases into such argu-

ment positions, where they will receive a semantic, or thematic, role from the

verb Fillmore (1968). Returning to sentence (2a), Theta Attachment asserts

that attaching the noun phrase “her potential . . . ” as a direct object is pre-

ferred because not only is the verb able to assign a thematic role (THEME)

to the noun phrase, but the noun phrase also receives a thematic role at that

point in processing. If the noun phrase were attached as the embedded sub-

ject, as in (2a), it would temporarily have no role assigned to it (until the

embedded predicate “might make . . . ” is processed. Thus the latter option is

dispreferred.

The above approaches are typically associated with modular processing

accounts (Fodor, 1983), since they emphasize the role of purely syntactic de-

cision strategies for parsing and disambiguation. Serial parsing is also as-

sumed, namely that the human language processor only constructs one parse

— backtracking or reanalyzing the sentence if that parse turns out to be in-

correct. For these reasons, such models of processing are typically viewed as

restricted accounts, since they fundamentally assume a processing architecture

which is limited by the kinds of information it has access to (i.e. syntactic),

and the memory resources available for parsing.
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While there is a considerable body of experimental evidence supporting

the importance of such syntactic strategies, there is also evidence suggesting

that people are nonetheless able to draw upon a large repertoire of relevant

constraints in resolving ambiguity, such as specific lexical biases, and semantic

plausibility (Gibson & Pearlmutter, 1998). The general claim of such inter-

active constraint-based approaches is that parsing is not a serial process in-

fluenced solely by syntactic strategies, but rather that “multiple alternatives

are at least partially available, and that ambiguity resolution is accomplished

by the use of correlated constraints from other domains” (Trueswell & Tanen-

haus, 1994). While one might envisage such a model in symbolic terms, they

typically rely on the use of probabilistic constraints, and are better viewed as

hybrid models, which will will discuss in Section 6.

3.2 Working memory

The above discussion of the left-corner parser above might lead one to be-

lieve that center-embeddings are the only unambiguous syntactic structures

which cause processing difficulty. Gibson (1991), however, argues that pro-

cessing complexity arising from working memory demands can also explain

ambiguity resolution preferences. Building on Pritchett (1992)’s Theta At-

tachment strategy, Gibson attributes a cost to the parser’s need to maintain

thematic role-assignments and role-fillers in memory. He argues that such a

working-memory metric can be used not only to explain increased processing

complexity for structures with locally high memory demands, but also that

his metric can be used to rank candidate parsers in the face of local ambigu-

ity. That is, the parser will generally prefer interpretations which have lower

cost with respect to unfulfilled role-relations, thus predicting disambiguation

behavior in a manner similar to (Pritchett, 1992). Gibson (1998)’s dependency
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locality theory refines this approach further, by taking into account the dis-

tance between role-assigners and role-recipients (see also (Gibson, 2003) for

an overview). Lewis et al. (2006) propose an account of parsing which draws

on a number of general observations concerning the dynamics of memory re-

trieval that have been established across cognitive domains. These principles

have also been implemented within general of cognitive architecture ACT-R

(Anderson et al., 2004), enabling Lewis and colleagues to provide an independ-

ently motivated proposal regarding the role of working memory in sentence

processing.
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4 Probabilistic Models

The symbolic accounts outlined above offer insight into both how hierarch-

ical sentence structure and meaning are recovered incrementally, and when

processing of such sentences may be difficult as a consequence of either work-

ing memory limitations or the need to reanalyze the sentence if the parser

has followed a garden-path. A variety of empirical results, however, suggest

that such symbolic, modular and serial processing mechanisms may not scale

sufficiently to account for human linguistic performance in general (Crocker,

2005). Firstly, serial backtracking parsers are known to be extremely ineffi-

cient as grammars are scaled up to provide realistic linguistic coverage. In

addition, such models accord no role to linguistic experience despite a wealth

of experimental findings indicating that frequency information plays a central

role in determine the preferred part of speech, meaning, and subcategoriza-

tion frame for a given word. Finally, while cognitive resources like working

memory undoubtedly constrain language processing, and provide an index of

certain kinds of processing complexity, it has been argued that people are in

general able to understand most language effectively and without conscious

effort. Indeed, one of the most challenging tasks facing computational psy-

cholinguistics, is to explain how people are able deal with the complexity and

pervasive ambiguity of natural language so accurately and in real-time: what

Crocker (2005) dubs the performance paradox.

Probabilistic approaches offer a natural means to address the above issues.

Not only do they provide a means to develop experience-based models, which

can exploit the kinds of frequency information that people have been shown

to use, but probabilistic methods have also proven extremely successful for

developing wide-coverage models of language processing (see Chapters 3, 4
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and 14). Perhaps more fundamentally, probabilistic methods invite us to view

language processing less in terms of the difficulties people exhibit on some

kinds of constructions, and instead emphasize the remarkable performance

that people exhibit in understanding language in general. Chater et al. (1998)

explicitly argue that human language processing may be fruitfully viewed

as a rational process, in Anderson (1990)’s sense of the term. If one views

language understanding as a rational cognitive process one can begin by first

identifying the goal of that process — e.g. to find the correct interpretation

of a sentence — and then reason about the function that best achieves that

goal and accounts for observed behavior. One obvious rational analysis of

parsing is to assume that the parser chooses operations so as to maximize

the likelihood of finding the intended global interpretation of the sentence,

taking into account known cognitive and environmental limitations. Given

the overwhelming evidence that people process language incrementally, we

can plausibly define the function that is implemented by the human language

processor as follows:

t̂i = argmax
ti

Pi(ti|w1...i,K),∀ti ∈ Ti (1)

This states that as each word wi is processed, the preferred analysis of

the sentence initial substring w1 . . . wi, t̂i, corresponds to the analysis ti —

in the set of possible analyses Ti that span the sentence up to and including

wi — that has the highest likelihood given the words of the sentence, and

our general knowledge K.2 Crucially, this equation provides only a high-level

characterization of how people process language, namely at Marr’s compu-

2 I deliberately use the term analyses to abstract away from what particular lin-
guistic representation — lexical, syntactic, semantic, etc. — we might be inter-
ested in.
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tational level, which we will refer to as the Likelihood Hypothesis. It leaves

aside many crucial issues concerning how the analyses are constructed and

their probabilities estimated. In principle, the likelihood of a particular ana-

lysis of a sentence might reflect not only our accumulated linguistic experience

as it relates to the current input, but also the current context and our gen-

eral knowledge K. But just as statistical language processing techniques have

vastly simplified the kind of information used to condition the probabilities,

it may be reasonable to assume that people similarly approximate probabil-

ities, at least during initial processing of the input. In the following sections

we review several proposals that can be viewed as instances of the Likelihood

Hypothesis.

4.1 Lexical Processing

Much of the ambiguity that occurs in syntactic processing in fact derives

from ambiguity at the lexical level (MacDonald et al., 1994). Furthermore, it

is precisely at the lexical level that frequency effects have been most robustly

observed: high frequency words are processed more quickly than low frequency

ones (Grosjean, 1980); words are preferentially understood as having their

most likely part of speech (Trueswell, 1996; Crocker & Corley, 2002); verbs

subcategorization preferences rapidly influence parsing decisions (Ford et al.,

1977; Garnsey et al., 1997; Trueswell et al., 1993); and semantically ambiguous

words are preferably associated with their more frequent sense (Duffy et al.,

1988). These findings all suggest that a likelihood based resolution of lexical

ambiguity will substantially reduce parsing ambiguity, and assist in guiding

the parser toward the most likely parse in a manner that reflects human

behavior.
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Based on this rationale, Corley & Crocker (2000) propose a broad cov-

erage model of lexical category disambiguation as a means for substantially

constraining the preferred syntactic analysis. Their approach uses a bi-gram

model to incrementally determine the most probable assignment of part of

speech tags, t̂0 . . . t̂i, for the (sub-)string of input words w0 . . . wi, as follows:

t̂0 . . . t̂i = argmax
t0...ti

P (t0 . . . ti, w0 . . . wi) ≈
i∏

j=1

P (wj |tj)P (tj |tj−1) (2)

The bi-gram model results in the use of both the unigram likelihood of

word wj given a possible part of speech tj , P (wj |tj), as well as the context

as captured by the immediately preceding part of speech tag P (tj |tj−1). The

likelihood for a particular sequence of parts-of-speech, spanning from w0 to

wi, is the product of this value as computed for each word in the string. In

order to efficiently determine the most likely part of speech sequence as the

sentence is processed, the Viterbi algorithm is used (Viterbi, 1967).

(4) a. “The warehouse prices are cheaper than the rest”

b. “The warehouse makes are cheaper than the rest”

This model capitalizes on the insight that many syntactic ambiguities have

a lexical basis, as in (4). These sentences are ambiguous between a reading

in which “prices” (4a) or “makes” (4b) serves as either the main verb

or part of a compound noun. Once trained on a large corpus, the model

predicts the most likely part of speech for “prices”, correctly accounting for

the fact that people preferentially interpret “prices” as a noun, but “makes”

as verb (Frazier & Rayner, 1987; MacDonald, 1993). In the latter case, a

difficultly in processing is observed once the sentence disambiguates “makes”

as a noun (Crocker & Corley, 2002). The model similarly accounts for the
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finding that categorially ambiguous word like “that” are resolved by their

preceding context: In sentence initial position, “that” is more likely to be

a determiner, while post-verbally, it is more likely to be a complementiser

(Juliano & Tanenhaus, 1993).

Interestingly, the use of the Viterbi algorithm to determine the most likely

sequence incrementally, predicts that reanalysis may occur when the most

probable part of speech sequence at a given point requires revising a pre-

ceding part of speech assigment. This behavior in the model finds support

from a study by (Macdonald, 1994) showing that reduced-relative clause con-

structions, like those illustrated in (5) were rendered easier to process when

the word following the ambiguous verb (simple past vs. participle) made the

participle reading more likely.

(5) a. “The sleek greyhound admired at the track won four trophies”

b. “The sleek greyhound raced at the track won four trophies”

Since “admired” (5a) is transitive, the fact that is it not followed by a

noun phrase is a clear cue that it’s part of speech should be past-participle,

and parse inside the relative clause. For “raced” (5b), however, which is pref-

erentially intransitive, the preposition “at” provides no such cue for rapid

reanalysis, resulting in a garden path when the main verb “won” is reached.

Importantly, however, the model not only accounts for a range of disam-

biguation preferences rooted in lexical category ambiguity, it also offers an

explanation for why, in general, people are highly accurate in resolving such

ambiguities. It’s also worthwhile to distinguish between various aspect of this

account in terms of Marr’s three levels. Equation (2) provides the computa-

tional theory, the likelihood function defining the goal of the process, and

it’s algorithmic instantiation in terms of the bi-gram model and the Viterbi
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algorithm. This highlights the point that one might change the algorithmic

level — e.g. by using a tri-gram model should there be empirical evidence to

support this — without in any way changing the computational theory. The

implementation level is not provided, since this would entail a characteriza-

tion of how the bi-gram model is processed in the brain and how probabilities

are estimated over the course of our linguistic experience (which we simply

approximate using corpus frequencies).

4.2 Syntactic Processing

While lexical disambiguation is an important part of sentence processing, and

goes a considerable way towards resolving many structural ambiguities, Corley

& Crocker (2000)’s model is clearly not a full model of syntactic processing.

Indeed, Mitchell et al. (1995) have taken the stronger view that the human

parser not only makes use of lexical frequencies, but also keeps track of struc-

tural frequencies. Evidence from relative clause attachment ambiguity (see

Figure 4.2) has been taken to support an experience-based treatment of struc-

tural disambiguation. Such constructions are interesting because they do not

hinge on lexical preferences. When reading sentences containing the ambiguity

in Figure 4.2, English comprehenders appear to follow Frazier’s Late Closure

strategy, demonstrating a preference for low-attachment (where “the actress”

is modified by the RC “who . . . ”). Spanish readers, in contrast, when presen-

ted with equivalent Spanish sentences, prefer high-attachment (where the RC

concerns “the servant”) (Cuetos & Mitchell, 1988). This finding provided evid-

ence against the universality of Frazier’s Late Closure strategy (Section 3.1),

leading Mitchell et al. (1995) to propose the Tuning Hypothesis, which asserts

that the human parser deals with ambiguity by initially selecting the syntactic

analysis that has worked most frequently in the past (Brysbaert & Mitchell,
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1996). Later experiments further tested the hypothesis, examining school chil-

dren’s preferences before and after a period of two weeks in which exposure

to high or low examples was increased. The findings confirmed that even this

brief period of variation in experience influenced the attachment preferences

as predicted (Cuetos et al., 1996).

S

NP

V

VP

NP

det N
PP

prep

Someone shot
the servant

NP

det N

the actress

of RC

relp S

who ...

English

Spanish

Figure 1. Relative clause attachment ambiguity

Models of human syntactic processing have increasingly exploited prob-

abilistic grammar formalisms, such as Probabilistic Context Free Grammars

(PCFGs) to provide a uniform probabilistic treatment of lexical and syntactic

processing and disambiguation (For PCFGs, see Manning & Schütze 1999, as

well as Chapters 3, 4 and 14). PCFGs augment standard context free gram-

mars by annotating grammar rules with rule probabilities. A rule probability

expresses the likelihood of the left-hand side of the rule expanding to its

righthand side. As an example, consider the rule VP→ V NP in Fig. 2a. This

rule says that a verb phrase expands to a verb followed by a noun phrase with
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a probability of 0.7. In a PCFG, the probabilities of all rules with the same

lefthand side must sum to one:

∀i
∑
j

P (N i → ζj) = 1 (3)

where P (N i → ζj) is the probability of a rule with the lefthand side N i and

the righthand side ζj . For example, in Fig. 2a the two rules VP → V NP and

VP → VP PP share the same lefthand side (VP), so their probabilities sum

to one. The probability of a parse tree generated by a PCFG is computed as

the product of its the rule probabilities:

P (t) =
∏

(N→ζ)∈R

P (N → ζ) (4)

where R is the set of all rules applied in generating the parse tree t. While rule

probabilities are in theory derived during the course of a persons linguistic

experience, most models rely on standard techniques for estimating probabilit-

ies such as maximum likelihood estimation — a supervised learning algorithm

which calculates the probability of a rule based on the number of times it oc-

curs in a parsed training corpus. An alternative, unsupervised method is the

expectation maximization (EM) algorithm, which uses an unparsed training

corpus to estimate a set of rule probabilities that makes the sentences in the

corpus maximally likely (Baum, 1972) (see also Chapter 9).

Just as lexical frequency may determine the ease with which words are

retrieved from the lexicon, and the preferred morphological, syntactic and

semantic interpretations we associate with them, Jurafsky (1996) argues that

the probability of a grammar rule corresponds to how easily that rule can be

accessed by the human sentence processor during parsing. The consequence of
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(a) S → NP VP 1.0
PP → P NP 1.0
VP → V NP 0.7
VP → VP PP 0.3

NP → Det NP 0.6
NP → NP PP 0.2
NP → John 0.2
P → with 1.0

V → hit 1.0
N → man 0.5
N → book 0.5
Det → the 1.0

(b) t1; (c) t2;

S 1.0

VP 0.7

PP 1.0

the

NP 0.6
Det 1.0

the

P 1.0

V 1.0

Det 1.0

NP 0.6

man
with

book

hit

NP 0.2

NP 0.2

N 0.5

 N 0.5

John

VP 0.3

S 1.0

P 1.0

PP 1.0VP 0.7

V 1.0

the the

NP 0.6 NP 0.6

Det 1.0 Det 1.0

NP 0.2

man

with

book

hit N 0.5 N 0.5

John

P (t1) = 1.0× 0.2× 0.7× 1.0× 0.2
×0.6× 1.0× 1.0× 0.5× 1.0
×0.6× 1.0× 0.5 = 0.00252

P (t2) = 1.0× 0.2× 0.3× 0.7× 1.0
×1.0× 0.6× 1.0× 0.6× 1.0
×0.5× 1.0× 0.5 = 0.00378

Figure 2. An example for the parse trees generated by a probabilistic context free
grammar (PCFG), (adapted from Crocker & Keller, 2006). (a) The rules of a simple
PCFG with associated rule application probabilities. The two parse trees, (b) and
(c), generated by the PCFG in (a) for the sentence “John hit the man with the book”,
with the respective parse probabilities, P (t1) and P (t2), calculated below.

this claim is that structures with greater overall probability should be easier

to construct, and therefore preferred in cases of ambiguity. The PCFG in

Fig. 2a generates two parses for the the sentence “John hit the man with the

book”. The first parse t1 attaches the prepositional phrase “with the book”

to the noun phrase (low attachment) with a total probability of 0.00252 (see

Fig. 2b). The alternative parse t2, with the prepositional phrase attached to

the verb phrase (high attachment) is assigned a probability of 0.00378 (see
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Fig. 2c). Under the assumption that the probability of a parse determines

processing ease, the grammar will predict that t2 (high attachment) will be

generally preferred to t1, as it has a higher probability.

In applying PCFGs to the problem of human sentence processing, Juraf-

sky (1996) makes two important observations. First he assumes that parsing,

and the computation of parse probabilities, takes place incrementally. The

consequence is that the parse faces a local ambiguity as soon as it hears the

fragment “John hit the man with ...” and must decide which of the two possible

structures is to be preferred. This entails that the parser is able to compute

prefix probabilities for sentence initial substrings, as the basis for compar-

ing alternative (partial) parses (Stolcke, 1995). For the example in Fig. 2, it

should be clear that the preference for t2 would be predicted even before the

final NP is processed, since the probability of that NP is the same for both

structures.

The second major contribution of Jurafsky (1996)’s approach is the pro-

posal to combine structural probabilities generated by a probabilistic context

free grammar with probabilistic preferences of individual lexical items, using

Bayes’ Rule. The model therefore integrates lexical and syntactic probabil-

ities within a single mathematically founded probabilistic framework. As an

example consider the sentences in (6), which have a similar syntactic ambi-

guity to that outlined in Fig. 2.

(6) a. “The women discuss the dogs on the beach”

b. “The women keep the dogs on the beach”

The intuition when one reads these sentences is that low-attachment of

the PP “on the beach” to the NP “the dogs” is preferred for (6a), while high-

attachment to the verb is preferred for (6b). A standard PCFG model, how-
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ever, will always prefer one of these (in our example PCFG, high-attachment).

Following Ford et al. (1977), Jurafsky argues that we must also take into

account the specific subcategorization preferences of the verb (Table 1), in

addition to the structural probabilities of the PCFG.

Table 1. Conditional probability of a verb frame given a particular verb, as estim-
ated using the Penn Treebank.

Verb Frame P (Frame|Verb)
discuss <NP PP> .24

<NP> .76
keep <NP PP> .81

<NP> .19

Jurafsky’s model computes the probabilities of these two readings based

on two sources of information: the overall structural probability of the high-

attachment reading and the low-attachment reading, and the lexical prob-

ability of the verb occurring with an <NP PP> or an <NP> frame. The

structural probability of a reading is independent of the particular verb in-

volved; the frame probability, however, varies with the verb. This predicts

that in some cases lexical probabilities can override the general structural

probabilities derived from the PCFG. If we combine the frame probabilit-

ies from Table 1 with the parse probabilities determined with the PCFG in

Fig. 2, we can see that high-attachment preference is maintained for “keep”,

but low-attachment becomes more likely for “discuss”.

Strictly speaking, Jurafsky’s model does not aim to recover the single

most likely parse during processing, as suggested in Equation 1. Rather he

argues for a bounded parallel model, which pursues the most probable parses

and prunes those parses whose probability is less than 1
5 the probability of
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the mostly likely parse. Strong garden paths are predicted if the ultimately

correct syntactic analysis is one which has been pruned during parsing.

4.3 Wide coverage models

Jurafsky (1996) outlines how his framework can be used to explain a variety

of ambiguity phenomena, including cases like (4) and (5) discussed above.

However, it might be criticized for its limited coverage, i.e., for the fact that

it uses only a small lexicon and grammar, manually designed to account for a

handful of example sentences. Given that broad coverage parsers are available

that compute a syntactic structure for arbitrary corpus sentences, it is im-

portant that we demand more substantial coverage from our psycholinguistic

models to insure they are not over fitting to a small number of garden path

phenomena.

Crocker & Brants (2000) present the first attempt to develop a truly wide-

coverage model, based on the incremental probabilistic parsing proposals of

Jurafsky (1996). Their approach combines on the wide-coverage psycholin-

guistic bi-gram model of Corley & Crocker (2000) with the efficient statistical

parsing methods of Brants (1999). The resulting incremental cascaded Markov

model has broad coverage, relatively good parse accuracy in general, while also

accounting for a range of experimental findings concerning lexical category and

syntactic ambiguities. For practical reasons, Crocker & Brants (2000) don’t

include detailed subcategorization preferences for verbs, but rather limit this

to transitivity, which is encoded as part of a each verbs part of speech. Adopt-

ing a parallel parsing approach not unlike that of Jurafsky, Crocker & Brants

(2000) also argue that re-ranking of parses, not just pruning of the correct

parse, is a predictor of human parsing complexity.
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This research demonstrates that when such models are trained on large

corpora, they are indeed able to account for human disambiguation behavior

such as that discussed by Jurafsky (1996). In related work, Brants & Crocker

(2000) also demonstrate that broad coverage probabilistic models maintain

high overall accuracy even under strict memory and incremental processing

restrictions. This is important to support the claim that rational models main-

tain their near optimality even when subject to such cognitively motivated

constraints.

4.4 Information Theoretic Models

The probabilistic parsing proposals of Jurafsky (1996) and Crocker & Brants

(2000) provide relatively coarse-grained predictions concerning human pro-

cessing difficulty, based on whether or not the ultimately correct parse was

assigned a relatively low probability (or pruned entirely), and must be re-

ranked (or even re-parsed). Drawing on concepts developed in the statistical

language modeling literature (see Chapter 3), Hale (2001) proposes a more

general linking hypothesis between incremental probabilistic processing and

processing complexity. Specifically, Hale suggests that the cognitive effort as-

sociated with processing the next word, wi, of a sentence will be propor-

tional to its surprisal. Surprisal is measured as the negative log probability

of a word, such that surprising (unlikely) words contribute greater informa-

tion than words that are likely, or expected, given the prefix of the sentence,

w1 . . . wi−1.

Effort ∝ − logP (wi|w1 . . . wi−1,Context) ≈ − log
P (Ti)
P (Ti−1)

(5)
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The notion of information, here, derives from information theory (Shan-

non, 1948), where highly likely or predictable words are viewed has providing

little information, while unexpected words provide more. While in principle,

all our knowledge about the words w1 . . . wi−1, linguistics constraints, and

non-linguistic Context will determine the probability of wi, Hale assumes the

probability can be reasonably approximated by a PCFG. Specifically, he pro-

poses that the probability of a given (sub-)string w1 . . . wi is Ti, which is the

sum of all possible parses ti for the prefix string (Equation 5). Thought of in

this way, surprisal at word wi will be proportional the summed probability of

all parses which are disconfirmed by the transition from word wi−1 to word

wi.

Hale (2001)’s theory thus assumes full parallelism, and can be thought of

as associating cognitive processing effort with the sum of all disambiguation

that is done during parsing. This contrasts with standard accounts in which

it is only disconfirmation of the preferred interpretation which is assumed

to cause processing difficulty. While the assumption of full parallelism raises

some concerns regarding cognitive plausibility, Hale’s model is able to account

for a range of garden-path phenomena as well as processing complexity in

unambiguous constructions, such as the dispreferred status of object versus

subject relative clauses. In recent work, Levy (2008) refines and extends Hale

(2001)’s approach in several respects, improving the mathematical properties

of the surprisal theory while also extending the empirical coverage of the

general approach. Hale (2003) proposes another variant on this approach, the

entropy reduction hypothesis, in which cognitive effort is linked to a slightly

different measure, namely the reduction in uncertainty about the rest of the

sentence.
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4.5 Probabilistic Semantics

One major limitation of cognitive models of sentence processing is their em-

phasis on syntactic aspects of processing. This was arguably justified to some

extent during the 1980s, when modular theories of language, and cognition

in general, prevailed. Since then, however, a wealth of empirical results have

shown that semantics and plausibility do not only influence our final inter-

pretation of a sentence, but that such information rapidly informs on-line

incremental comprehension. In the case of the probabilistic parsing models

discussed above, probabilities are conditioned purely on syntactic and limited

lexical frequencies. For primarily practical reasons, a range of independence

assumptions are made. Our PCFG above, for example, will assign exactly the

same probability to the sentences “John hit the man with the book” and “John

hit the book with the man”, since exactly the same rules of grammar are used

in deriving the possible parse trees. Yet clearly the latter is semantically im-

plausible, regardless of how it is parsed, and therefore should be assigned a

lower probability.

In experimental psycholinguistics, the on-line influence of semantic plaus-

ibility has been investigated by varying the argument of a particular verb-

argument-relation triple, often called thematic fit. McRae et al. (1998) in-

vestigated the influence of thematic fit information on the processing of the

main-clause/reduced-relative clause(MC/RR) ambiguity as illustrated in the

sentences below.

(7) a. “The pirate terrorized by his captors was freed quickly”

b. “The victim terrorized by his captors was freed quickly”

During incremental processing of sentences like (7a), the prefix “The pirate

terrorized . . . ” is ambiguous between the more frequent main-clause continu-
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ation (e.g., as in “The pirate terrorized the Seven Seas”) and a less frequent

reduced-relative continuation as shown in (7), where “terrorized” heads a rel-

ative clause that modifies “pirate”. The subsequent by-phrase provides strong

evidence for the reduced-relative reading, signaling the absence of a direct

object which would otherwise be required if “terrorized” were in simple past-

tense, and suggests it is more likely a past participle. Finally the main verb

region “was freed” completely disambiguates the sentence.

Evidence from reading-time experiments has shown that readers initially

have a strong preference for the main-clause interpretation over the reduced

relative, but that this preference can be modulated by other factors (e.g.

Rayner et al., 1983; Trueswell, 1996; Crain & Steedman, 1985). McRae et al.

(1998), in particular, showed that good thematic fit of the first NP as an

object of the verb in the case of victim in (7b) allowed readers to partially

overcome the main-clause preference and more easily adopt the dispreferred

reduced-relative interpretation, which makes the first NP the object of the

verb (as opposed to the main-clause reading, where it is a subject). Reading

time effects, both on the ambiguous verb and in the disambiguating region,

suggest that the thematic fit of the first NP and the verb rapidly influences

the human sentence processor’s preference for the two candidate structures.

Narayanan & Jurafsky (1998) outline how Bayesian belief networks can

be used to combine a variety of lexical, syntactic and semantic constraints.

The central idea is that we can construct a belief network which integrates

multiple probabilistic sources of evidence, including: structural probabilities

determined by the PCFG; subcategorization preferences as motivated by Jur-

afsky (1996); verb tense probabilities; thematic fit preferences; and so on. The

central problem with this framework is that while extremely powerful and

Page: 38 job: crocker macro: handbook.cls date/time: 24-Jun-2009/11:59



Computational Psycholinguistics 39

flexible, there is at present no general method for parsing and constructing

such Bayesian belief networks automatically. Rather, the networks must be

constructed by hand for each possible structured to be modelled. We therefore

leave aside a detailed discussion of this approach, while emphasizing that it

may provide a valuable framework for modeling specific kinds of probabilistic

constraints (see Jurafsky (2003) for detailed discussion).

In recent work, Pado et al. (2009) extend standard probabilistic grammar-

based accounts of syntactic processing with a model of human thematic plaus-

ibility. The model is able to account for syntactic and semantic effects in

human sentence processing, while retaining the main advantages of probab-

ilistic grammar based models, namely their ability naturally to account for

frequency effects and their wide coverage of syntactic phenomena and unseen

input.

The probabilistic formulation of the semantic model equates the plausib-

ility of a verb-argument-role triple with the probability of that thematic role

co-occurring with the verb-argument pair — e.g. terrorized -victim-Agent.

The semantic model (Equation 6) estimates the plausibility of a verb-role-

argument triple as the joint probability of five variables: These are, apart

from the identity of the verb v, argument a and thematic role r, the verb’s

sense s and the grammatical function gf of the argument. The verb’s sense

is relevant because it determines the set of applicable thematic roles, while

the grammatical function linking verb and argument (e.g., syntactic subject

or syntactic object) carries information about the thematic role intended by

the speaker.

Plausibilityv,r,a = P (v, s, gf , r, a) (6)
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This type of generative model can predict the most likely instantiation for

missing input or output values, allowing it to naturally solve its dual task of

identifying the correct role that links a given verb and argument, and making

a plausibility prediction for the triple. It predicts the preferred thematic role

for a verb-argument pair, r̂v,a, by generating the most probable instantiation

for the role, as shown in Equation (7).

r̂v ,a = argmax
r

P (v, s, gf , r, a) (7)

The semantic model is to a large extent derived automatically from train-

ing data: clusters of semantically similar noun and verbs are used to reduce

the number of unseen triples in the semantically annotated FrameNet corpus

(Fillmore et al., 2003). The advantage of this approach is that it eliminates the

needs to obtain plausibility estimates experimentally (McRae et al., 1998).

In addition to demonstrating that the semantic model reliably predicts a

range of plausibility judgement data, Pado et al. (2009) integrate the model

into a broad-coverage sentence processing architecture. The so-called SynSem-

Integration model, shown in Fig. 3, combines a probabilistic parser, in the

tradition of Jurafsky (1996) and Crocker & Brants (2000), with the semantic

model described above. The syntax model, based on Roark (2001)’s top-down

probabilistic parser, incrementally computes all possible analyses of the input

and their probabilities. The semantic model evaluates the resulting struc-

tures with respect to the plausibility of the verb-argument pairs they contain.

Both models simultaneously rank the candidate structures: The syntax model

ranks them by parse probability, and the semantic model by the plausibility

of the verb-argument relations contained in the structures. The two rankings

are interpolated into a global ranking to predict the structure preferred by
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people. Difficulty is predicted with respect to the global ranking and the two

local rankings, via two cost functions: Conflict cost quantifies the processing

difficulty incurred in situations where the input yields conflicting evidence

for which analysis to prefer, while revision cost accounts for the processing

difficulty caused by abandoning a preferred interpretation of the input and

replacing it with another.

Semantic 
Ranking

1. ...

Syntactic 
Ranking

1. ...

Semantics
Model

Syntax 
ModelAnalyses

Global 
Ranking

1. ...

Cost 
Prediction

Figure 3. The architecture of the SynSem-Integration model, from Pado et al.
(2009)

The integration of plausibility into a probabilistic sentence processing ar-

chitecture, enables Pado et al. (2009) to model the findings of eight reading-

time studies, covering four ambiguity phenomena, including the NP/S ambi-

guity (2), PP attachment (6), and reduce-relative clauses (7), discussed earlier.

Crucially, each of the modeled studies revealed the on-line influence of plaus-

ibility on disambiguation during human parsing. While previous models have

accounted for some of these findings with hand-crafted models for specific am-

biguities (McRae et al., 1998; Narayanan & Jurafsky, 1998; Tanenhaus et al.,
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2000), the SynSem-Integration model offers a wide-coverage model, trained

on syntactically and semantically annotated corpora, avoiding the need to

specify the set of relevant constraints and their probabilities by hand for each

new phenomenon to be modeled.
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5 Connectionist Models of Sentence Processing

Connectionist networks, also called artificial neural networks (see Chapter

10), offer an alternative computational paradigm with which to model cog-

nitive development and processing. While there is a tremendous variety of

network architectures, most derive their inspiration from an abstraction of

how the brain works: massively interconnected simple processing units (often

called neurons) that operate in parallel. These units are usually grouped into

layers, that themselves are an abstraction of the functional organization of

the brain. Connectionist models of human sentence processing are attractive

in that they inherit the experience-based behavior of probabilistic models,

as a direct consequence of their ability to learn. Connectionist systems are

typically trained through the adjustment of connection strengths in response

to repeated exposure to relevant examples, thereby providing an integrated

account of how both acquisition and subsequent processing are determined by

the linguistic environment.

Connectionist models have been successfully applied to various aspects of

human lexical processing, and crucially emphasize the importance of experi-

ence, specifically word frequency, for both learning and subsequent processing

(Plunkett & Marchman, 1996; Christiansen & Chater, 1999a, 2001). Recent

research, however, has also seen the emergence of sentence-level connectionist

models which place similar emphasis on distributional information.

5.1 Simple Recurrent Networks

Simple recurrent networks (SRNs) provide an elegant architecture for learning

distributional regularities that occur in sequential inputs (Elman, 1990). SRNs

process patterns (vectors) rather than symbolic representations. SRNs process
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Figure 4. A simple recurrent network.

sentences one word at a time, with each new input word represented in the

input layer and interpreted in the context of the sentence processed so far —

represented by the context layer, which is simply a copy of the hidden layer

from the previous time step (see Figure 4. The input layer and context layer

are integrated and compressed into the hidden layer, enabling the network to

incrementally develop a distributed representation of an unfolding sentence.

Layers, in turn, may be partitioned into assemblies that are dedicated to

specific functional tasks. The output layer contains patterns that the SRN has

been trained to compute by providing targets for each output assembly. The

target output may be some desired syntactic or semantic representation, but

often SRNs are simply trained to predict the next word of the input, much

like a probabilistic language model (Chapter 3). Each unit in the network

receives a weighted sum of the input units feeding into it, and outputs a

value according to an activation function that generally is nonlinear in order

to bound the output value in an interval such as [0,1], such as the logistic

function, σ(x) = (1 + e−x)−1.

SRNs are trained by providing an input sequence and a set of targets

into which the network should transform the input sequence. The standard

training algorithm is backpropagation, an optimization technique that uses
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error signals derived from the difference between the network’s output and

target to update the network weights to more closely approximate the targets

on the next round of updates (Rumelhart et al., 1986). The weights between

units could themselves grow without bound during training, but an input

vector x transformed by the matrix of weights W to produce an output vector

y that has been passed through the activation function σ ensures y remains

bounded. In sum, for each pair of layers connected by a weight matrix, the

output vector can be calculated simply as y = σ(Wx).

One of the strengths of SRNs is that they can be trained on unannotated

linguistic data, using the so-called prediction task : the network is presented

with sentences, one word at a time, and is trained to output the next word

in the sentence. To do this successfully, the network must learn those prob-

abilistic and structural properties of the input language that constrain what

the next word can be. The key insight of SRNs is the use of the context layer,

which provides an exact copy of the hidden unit layer from the previous time

step. This allows the network to combine information about its state at the

previous time step with the current input word when predicting what words

can follow. SRNs have been successfully trained on simplified, English-like

languages based on grammars which enforce a range of linguistic constraints

such as verb frame, agreement, and embedding (Elman, 1991). To learn these

languages, the network must not only learn simple adjacencies, like the fact

that “the” can be followed by “boy”, but not “ate”, but also long distance

dependencies. Consider the following sentence initial fragment:

(8) “The boy that the dog chased .”
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In predicting what word will follow chased, the network has to learn that,

although chased is a transitive verb, it cannot be followed by a noun phrase

in this context, because of the relative clause construction. Rather it must

be followed by the main verb of the sentence, which must further be singular

since the boy is a singular subject. Interestingly, however, SRNs do exhibit

limitations which appear to correspond well with those exhibited by people,

namely in the processing of center-embedding constructions, as discussed in

Section 3 (Christiansen & Chater, 1999b; MacDonald & Christiansen, 2002).

As noted, SRNs provide a model of incremental sentence processing, in

which the network is presented with a sentence, word-by-word, and at each

point attempts to predict which words will follow. Not only are SRNs able

to learn complex distributional constraints with considerable success, they do

so in a manner which reflects the relative frequencies of the training corpus.

When the SRN is presented with the initial words of some sentence, w1 . . .wi,

it activates outputs corresponding exactly to those words which could come

next. Furthermore, the degree of activation of the next word wi+1 corresponds

closely to the conditional probability, as would be computed by a statistical

language model as shown in Equation 8 (see Section 4 above, and Chapter 3).

P (wi+1|w1 . . . wi) =
f(w1 . . . wi+1)
f(w1 . . . wi)

(8)

Here, f(w1 . . . wi+1) and f(w1 . . . wi) are the training corpus frequencies

for the word sequences w1 . . . wi+1 and w1 . . . wi, respectively. The SRN thus

not only predicts which words can follow, but it also the likelihood of each

of those words, based on the conditional probabilities of those words in the

training corpus.
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One fundamental criticism of SRNs, however, is that there is only indir-

ect evidence that syntactic structure is truly being acquired, at least in the

conventional sense. Indeed, it has been argued that, although the language

used to train the SRN was generated by a context-free grammar, the net-

work may only be learning a weaker, probabilistic finite-state approximation

in (8), rather than the true hierarchical structure of the language (Steedman,

1999). The lack of any explicit symbolic syntactic representation in SRNs also

makes it difficult to model empirical evidence concerning the processing of

syntactic ambiguity, since such ambiguity is predicated on the notion that

two or more distinct hypotheses about the structure of the sentence must

be distinguished during processing. The Visitation Set Gravitation model of

Tabor et al. (1997), however, shows how reading times can be derived from a

post-hoc analysis of a trained SRN. This analysis yields a landscape of attract-

ors — points in multi-dimensional space that are derived from the hidden-unit

activations, and which correspond to particular sentence structures. By ob-

serving how long it takes a particular hidden unit state (representing a word

along with its left-context) to gravitate into an attractor (possibly represent-

ing a kind of semantic integration), Tabor et al. obtain a measure of the work

a comprehender does integrating a word into a developing analysis.

Recursive neural networks (RNNs) Costa et al. (2003) can be seen as ad-

dressing Steedman (1999)’s criticism by developing an explicit model of struc-

ture disambiguation processes. RNNs are trained on a complete hierarchical

representation of a syntactic tree, which is encoded in a multi-layer feed for-

ward network in which the inputs represent the daughters and the output is

the mother of a branch in the tree. The network is trained by exposing it

recursively, from the leave of the tree, to each branch of the tree until the root
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node is reached. The encoding of the root node thus represents an encoding of

the entire tree. This enables training of the network using a parsed corpus (the

Penn Treebank (Marcus et al., 1993)), in which the network learns to make

incremental parsing decisions, as in the relative clause attachment ambigu-

ity shown in Fig. 4.2. Just as the SRN estimates the conditional probability

of the next word given the words seen so far, the RNN estimates the condi-

tional probability of each possible attachment for the current word, given the

tree that has been built up to that point. The model therefore resembles a

probabilistic parser, with the exception that RNNs are crucially able to learn

global structural preferences (Sturt et al., 2003), which standard PCFG mod-

els are not. RNNs can be seen as an implementation of the Mitchell et al.

(1995)’s Tuning Hypothesis (Section 4.2), in that they are trained solely on

syntactic structure, and not specific lexical items. One clear limitation of this

approach, however, is that it does not account for lexical preferences or other

kinds of non-structural biases (but see Costa et al. (2005) for discussion of

some enhancements to this approach).

One recent SRN-based model has also sought to model aspects of visually-

situated language understanding, as revealed by the visual worlds experiments

(see end of Section 2.2). Mayberry et al. (2009) build on the theoretical pro-

posal of Knoeferle & Crocker (2007), claiming that utterance-mediated atten-

tion in the visual context is not only driven by incremental and anticipatory

linguistic processing, but crucially that it is this modulation of visual attention

that underpins the rapid influence of the relevant visual context on compre-

hension — which they dub the coordinated interplay account (CIA). Mayberry

et al. (2009)’s CIANet is based on a simple recurrent network (SRN; Elman,

1990) that produces a case-role interpretation of the input utterance. To al-
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WORD UTTERANCE REPRESENTATION

Event 1 Event 2

Gate(t)

Gate(t-1)

Interpretation 

Figure 5. CIANet: A network featuring scene-language interaction with a basic
attentional gating mechanism to select relevant events in a scene with respect to an
unfolding utterance.

low visual input, CIANet incorporates an additional input representation of a

scene as (optional) visual context for the input utterance. Scenes contain two

events, only one of which is relevant to the input utterance, where each of the

two scene events has three constituents (agent, action and patient) that are

propagated to the SRN’s hidden layer through shared weights (representing

a common post-visual-processing pathway).

In line with the language-mediated visual attention mechanisms of the

CIA, the unfolding linguistic input to CIANet modulates the activation of the

relevant scene event based on the unfolding interpretation that is represented

in the hidden layer. A gating vector implements the attentional mechanism

in CIANet, and is multiplied element-wise with the corresponding units in

each of the three lexical representations (agent, action, and patient) of one

event (see Figure 5). Each unit of the gate is subtracted from 1.0 to derive

a vector-complement that then modulates the second event. This means that

more attention to one event in the model entails less attention to another.

In this way, as the sentence is processed — possibly referring to the charac-

ters or actions in one of the scene events — the relevant is activating by the
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gating vector, causing it to have a greater influence on the unfolding inter-

pretation. The resulting network was shown to model the on-line influence of

scene events on comprehension (Knoeferle et al., 2005, Experiment 1), and the

relative priority of depicted events versus stereotypical knowledge (Knoeferle

& Crocker, 2006, Experiment 2), with the gating vector providing a qual-

itative model of experimentally observed visual attention behaviour. While

the linguistic coverage of this model is currently limited to simple sentence

structures, it is currently the only cognitive model of visually situated compre-

hension, and associated gaze behavior (but see Roy & Mukherjee (2005) for

a psycholinguistically inspired account of how visual processing can influence

speech understanding).
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6 Hybrid Models

Within computational psycholinguistics, hybrid models can broadly be seen

as identifying that class of architectures that combine explicit symbolic rep-

resentations of linguistic structure and constraints with the use of connec-

tionist inspired constraint-satisfaction and competitive activation techniques.

Typically the goal of such approaches is to combine the transparent use of

symbolic linguistic representations, which are absent in pure connectionist ar-

chitectures, with the kinds of distributed, competitive and graded processing

mechanisms that are absent in purely symbolic approaches. One early ex-

ample is Stevenson (1994)’s CAPERS model, in which each word projects its

phrasal structure as it is encountered, and initially all possible connections

with the left-context are considered. Each possible attachment is assigned an

activation, based on the extent to which is satisfies or violates lexical and

syntactic constraints. Each node in the structure also has a limited amount of

activation it can assign to it’s connections, such that as some connections gain

in strength, activation is taken away from others. The parser iterates until it

stabilizes on a single, well-formed syntactic parse as each word is input. Vosse

& Kempen (2000) propose a related model of parsing, based on a lexicalized

grammar, in which possible unification links between words are graded and

compete via lateral inhibition (see also Tabor & Hutchins (2004)’s SOPARSE

for a related model, and more general discussion of this approach). The res-

ulting model not only accounts for a range of standard parsing phenomena,

but also the behavior found in some aphasic speakers.

As mentioned at the end of Section 3.1, constraint-based models of sen-

tence disambiguation (MacDonald et al., 1994; Tanenhaus et al., 2000) deny

that syntactic processes have any distinct modular status with the human lan-
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Figure 6. The competitive integration model (Spivey-Knowlton & Sedivy, 1995)

guage processor, rather assuming that all relevant constraints are integrated

during processing. Such constraint-based accounts exploit the symbolic repres-

entations of linguistic constraints in combination with the use of competition-

based constraint-satisfaction techniques (MacDonald et al., 1994). The com-

petitive integration model (Spivey-Knowlton & Sedivy, 1995; Spivey & Tanen-

haus, 1998), for example, emphasizes the interaction of various heterogeneous

linguistic constraints in resolving syntactic ambiguity, each with its own bias,

(see Fig. 6) to be combined in deciding between several structural interpreta-

tions. For example, one might identify a general structural bias (as proposed

by the Tuning Hypothesis, Section 4.2), a lexical verb frame bias, and perhaps

a thematic-bias (e.g., the plausibility of either structure). McRae et al. (1998)

proposed that the bias be established using experience-based measures: either

corpus frequencies (e.g., for the structural and lexical constraint), or comple-

tions norms (e.g., for the thematic constraint). Once the relevant linguistic

constraints are stipulated, the model allows two kinds of parameters to be set

(Tanenhaus et al., 2000): (i) the weight of each constraint, e.g., structural,

lexical, and thematic, must be determined, and (ii) for each constraint, its

bias towards Structure A versus Structure B must be established.
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Once the parameters for the model have been determined, reading times

are modeled by observing the time it takes the model to settle on a pre-

ferred structure as the different constraints compete. Informally, activation

is propagated from each constraint to a particular structural candidate in

accordance with the constraints bias. The activation of a given structure is

then computed as the weighted sum of the activations from each constraint.

This activation is then propagated back to the constraints, and another it-

eration is performed. Once the activation for a particular structure exceeds

a specific threshold value, the system begins processing the next word. The

number of iterations required for processing each word is then directly linked

to the reading times observed during self-paced reading. McRae et al. (1998)

demonstrate how the model can be used successfully to predict reading times

for reduced-relative clauses, as a function of their semantic plausibility, as in

example (7), above.

One short-coming of this approach, however, is that the model separ-

ates the mechanism which builds interpretations from the mechanism which

chooses the interpretation. While independent modeling of the constraint re-

conciliation mechanisms might simply be viewed as abstracting away from

the underlying structure building processes, the approach implies that struc-

ture building itself does not contribute to processing complexity, since it is

the constraint integration mechanisms alone that determines reading times.

Furthermore !!! ... with each disambiguation phenomena being modeled by a

separate instance of the model (Tanenhaus et al., 2000). Additionally, it might

be argued that the number of degrees of freedom (both experience-based bias,

and the weights of the constraints) reduces the predictive power of such mod-

els. Further empirical challenges to such constraint satisfaction models have
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also been made (Frazier, 1995; Binder et al., 2001) (but see also (Green &

Mitchell, 2006)).
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7 Concluding Remarks

The challenges of natural language understanding are daunting. Language is

inherently complex — drawing on different levels of linguistic competence, as

well as world and contextual knowledge — while also being highly ambiguous.

That people are nonetheless able to comprehend language accurately and in

real-time is a remarkable feat that is unmatched by any artificial system. Com-

putational psycholinguistics is concerned with modeling how people achieve

such performance, and seeks to develop implemented models of the architec-

tures, mechanisms and representations involved. The approaches are diverse,

ranging from purely symbolic accounts, to neurally inspired connectionist ap-

proaches, with hybrid and probabilistic models occupying the landscape in

between. For reasons of space, we have focused our attention here on models

of sentence processing, leaving aside models of lexical access (McClelland &

Elman, 1986; Norris, 1999; Norris et al., 2000). Equally, we have not addressed

the topic of language acquisition, which is concerned with how our linguistic

knowledge emerges as a consequence of linguistic experience. While the goals

of acquisition and processing models differ with respect to the kinds of empir-

ical data they attempt to explain, ultimately it is essential that models of adult

sentence comprehension be the plausible end result of the acquisition process.

The increasing dominance of experience-based models of language processing,

whether connectionist and probabilistic, holds promise for a uniform and pos-

sibly even integrated account of language acquisition and adult performance

(Chater & Manning, 2006). Indeed, language learning drove the early develop-

ment of connectionist models of lexical and syntactic acquisition(Rumelhart

& McClelland, 1987; Elman, 1990) which now figure prominently in compu-

tational psycholinguistics (Tabor et al., 1997; Christiansen & Chater, 1999b,
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2001; Mayberry et al., 2009). Probabilistic, especially Bayesian, approaches

have also been applied to problems of learning argument structure (Alishahi

& Stevenson, 2008), syntax (Clark, 2001), and semantics (Niyogi, 2002). Not

surprisingly, however, many models of acquisition emphasize the role of visual

scene information(see also Siskind (1996)). Knoeferle & Crocker (2006) argue

that this may explain the priority of visual context in adult sentence pro-

cessing — as modeled by the CIANet architecture (Mayberry et al., 2009)

— further demonstrating the kind of synergy that may be possibly between

acquisition and processing theories in future.

Virtually all modern accounts of sentence understanding share the assump-

tion that language processing is highly incremental, with each encountered

word being immediately integrated into an interpretation of what has been

read or heard so far. Even this assumption, however, has been recently chal-

lenged by experimental findings suggesting that comprehension processes may

build interpretations which make sense locally, even when they are ungram-

matical with respect to the entire preceding-context (Tabor & Hutchins, 2004).

Nonetheless, incrementality is almost certainly the rule, even if there are oc-

casional exceptions. Indeed, there is an increasing emphasis on the role of pre-

dictive mechanisms in parsing, to explain the wealth of experimental findings

that people not only processing language incrementally, but in fact actively

generate hypothesis about the words they expect to follow. Much in the way

that statistical language models assign probabilities to the words that may

come next, both probabilistic (Hale, 2001, 2003; Levy, 2008) and connectionist

(Elman, 1990, 1991; Mayberry et al., 2009; Crocker et al., in press) psycho-

linguistic models potentially offer natural explanations of predictive behavior

in people.
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There remain some issues which truly distinguish competing theories. For

example whether or not people actively consider multiple interpretations in

the face of ambiguity, or adopt a single one, backtracking to some alternat-

ive when necessary. Similarly, the degree of modularity is often viewed as a

defining characteristic. While it has proven challenging to decide definitively

among these positions empirically, there is increasing consensus that language

comprehension mechanisms must support the rapid and adaptive integration

of virtually all relevant information — linguistic and world knowledge, as well

as discourse and visual context — as reflected by incremental and predict-

ive comprehension behavior (see Crocker et al. (in press), for an overview of

relevant empirical findings).

Finally, some models that appear quite different superficially may simply

be offering accounts of processing at different levels of abstraction. Con-

nectionist and probabilistic approaches most often share the idea that lan-

guage understanding is an optimized process which yields, for example, the

most likely interpretation for some input based on prior experience. Thus

SRNs make very similar behavioral predictions to probabilistic language mod-

els based on n-grams or PCFGs. Typically, however, connectionist mod-

els intend to provide and account at the algorithmic or even implementa-

tion level in Marr’s terms (recall Section 2.1), while probabilistic approaches

may be construed as theories at the higher, computational, level. That is,

while connectionist learning and distributed representations are postulated to

have some degree of biological plausibility, the parsing and training mechan-

isms of probabilistic models typically are not. Hybrid architectures occupy a

middle ground, combining explicitly stipulated symbolic representations with

connectionist-inspired processing mechanisms.
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The emergence of experience-based approaches represents a major mile-

stone for computational psycholinguistics, resulting in models that offer

broader coverage (Crocker & Brants, 2000) and rational behavior (Chater

et al., 1998; Crocker, 2005), while also explaining a wide-range of experiment-

ally observed frequency effects (Jurafsky, 2002). As can be seen from the

models discussed in this article, however, there is a tendency to isolate lan-

guage processing from other cognitive processes such as perception and action.

As such, computational models are lagging behind emerging theories of situ-

ated and embodied language processing, which emphasize the interplay and

overlap of language, perception and action (Barsalou, 1999; Fischer & Zwaan,

2008; Spivey & Richardson, 2009). The CIANet model (Mayberry et al., 2009)

is a one attempt to model visually situated comprehension, thereby also con-

necting with situated language learning models, but computational psycholin-

guistics still lags behind current experimental results and theoretical claims

concerning the integration of language with other cognitive systems. Future

developments in this direction will likely connect with models of language ac-

quisition, and ultimately contribute to a better understanding of the origins

of the human capacity for language.
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