
Spaghetti and HMMeatballs
Cooking a low-fat statistical tagger in Prolog

Torbjörn Lager
Department of Linguistics

University of Göteborg
Torbjorn.Lager@ling.gu.se

Abstract
Typically, a statistical part of speech tagger uses the Vit-
erbi algorithm to find the most probable path through a
Hidden Markov Model (HMM). In this short paper, a
very small and simple such tagger is developed in the
Prolog programming language. The major motivation
behind the implementation is pedagogical, but the result
is also remarkably easy to use for practical purposes.

1 Introduction
Typically, a statistics-based method for automatic part-of-speech tagging represents
the required knowledge as a probabilistic model. Most popular among such models is
the Hidden Markov Model (HMM). In a HMM there are states, transitions between
states, and symbols emitted by the states. There are two kinds of probabilities associ-
ated with a HMM: transition probabilities; i.e. the probability of a transition from one
state to another, and output probabilities, i.e. the probability of a certain state emitting
a certain symbol. The model is called hidden since from watching the string of sym-
bols that it outputs, we cannot in general determine which states it passes through.
I will illustrate here with a simple HMM in which the states represent parts-of-speech,
and the symbols emitted by the states are words. The assumption is that a word
depends probabilistically on just its own part-of-speech (i.e. its tag) which in turn
depends on the part-of-speech of the preceding word (or on the start state in case there
is no preceding word).1
Our sample HMM can be displayed as in Figure 1.

1. This is the assumption of a so called biclass model. It is more common in fact to
use a triclass model, i.e. to assume that the part-of-speech of a word depends on the
parts-of-speech of the preceding two words.

2 Spaghetti and HMMeatballs

FIGURE 1. A Hidden Markov Model

Needless to say, in a realistic application, the HMM will have to be very much bigger.
Still, this particular HMM is capable of generating, among other strings, the sentence
“he can can a can”. It passes from the start state to the state pron, from there to aux,
then to v, and from v to det and finally to n, and outputs the words as it moves from
state to state. The probability of this happening is easy to compute: we simply multi-
ply all the transition probabilities and output probabilities along the path. This partic-
ular HMM could generate the same string of words by going through other states (e.g.
start-pron-aux-aux-det-aux) but that would be less probable.
The above, however, is a good description of string generation, but not of part-of-
speech tagging. In part-of-speech tagging, the string of symbols is given and the task
is to find the sequence of state transitions most likely to have generated this string.

0.01

0.18

0.01

0.01

0.45

0.36

0.01

0.20

0.01

0.50

0.26

0.77

0.01

0.01

0.10

0.01

0.01

State: aux

Out Prob.
“can” 0.010
“do” 0.110

State: det

Out Prob.
“a” 0.300
“the” 0.250

Start

State: n

Out Prob.
“pie” 0.002
“can” 0.001

0.30

0.30

0.34

0.01

0.39

0.36

0.21

0.10

0.10

0.20

0.52

0.01

0.25

State: pron

Out Prob.
“she” 0.070
“he” 0.070

State: v

Out Prob.
“saw” 0.009
“can” 0.005

A Naive Algorithm 3

2 A Naive Algorithm
To tag a given text, we need a program that computes the sequence of state transitions
that has the highest probability of being the one that generated the text. Let us assume
that the output probabilities are represented as clauses of the form outprob(Word, Tag,
Probability), e.g. as:
(1) outprob(a,det,0.300).

outprob(can,aux,0.010).
outprob(can,v,0.005).
outprob(can,n,0.001).
outprob(he,pron,0.070).

Furthermore, let us assume that the transitional probabilities are represented as
clauses of the form transprob(Tag1,Tag2, Probability), e.g. as:

In principle, the simple Prolog program in (3) would do just fine.
(3) most_probable_sequence(Words,Ss) :-

findall(PS,sequence(Words,1-[start],PS),PSs),
max_key(PSs,P-Ss1),
reverse(Ss1,[start|Ss]).

sequence([],PSs,PSs).
sequence([Word|Words],P1-[S1|Ss],PSs) :-

outprob(Word,S2,Po),
transprob(S1,S2,Pt),
P2 is Po*Pt*P1,
sequence(Words,P2-[S2,S1|Ss],PSs).

Here are some implementation details: The set of probability-sequence pairs are rep-
resented as lists of terms of the form P-Sequence, where Sequence is a list of terms
representing tags, and P is a number representing the probability for that sequence.
During processing, it is convenient to keep the sequences in reverse order (thus Pi-
<T1,..,Ti-1,Ti> is represented by the term Pi-[Ti,Ti-1,..,T1]) so that adding a tag to a
sequence becomes a matter of putting it first in the list. Note also the use of a dummy
‘start’ element. This is so that we do not need to complicate pattern matching further

(2) transprob(start,det,0.30).
transprob(start,aux,0.20).
transprob(start,v,0.10).
transprob(start,n,0.10).
transprob(start,pron,0.30).
transprob(det,det,0.20).
transprob(det,aux,0.01).
transprob(det,v,0.01).
transprob(det,n,0.77).
transprob(det,pron,0.01).
transprob(aux,det,0.18).
transprob(aux,aux,0.10).
transprob(aux,v,0.50).
transprob(aux,n,0.01).
transprob(aux,pron,0.21)

transprob(v,det,0.36).
transprob(v,aux,0.01).
transprob(v,v,0.01).
transprob(v,n,0.26).
transprob(v,pron,0.36).
transprob(n,det,0.01).
transprob(n,aux,0.25).
transprob(n,v,0.39).
transprob(n,n,0.34).
transprob(n,pron,0.01).
transprob(pron,det,0.01).
transprob(pron,aux,0.45).
transprob(pron,v,0.52).
transprob(pron,n,0.01).
transprob(pron,pron,0.01).

4 Spaghetti and HMMeatballs

down in the program. The predicate max_key/2 is a simple utility predicate that finds
the element with the largest key (i.e. the maximum probability sequence in our case)
in a list of key-value pairs. The last thing this program does is to reverse the most
probable sequence and remove the dummy.
Given our sample HMM, the most probable sequence of tags corresponding to “he
can can a can” is computed as follows:
(4) ?- most_probable_sequence([he,can,can,a,can],Sequence).

Sequence = [pron,aux,v,det,n]
This program is horrendously inefficient, however, since it examines every sequence
of states that could possibly generate the text, which indeed can be very many. In our
HMM example there are ‘only’ 27 different sequences of states that generate “he can
can a can” but that sentence is very short and with longer sentences and bigger HMMs
we are looking at thousands or even hundreds of thousands of possible sequences.
Hence, a naive algorithm will not do.

3 The Viterbi Algorithm
Fortunately, there are algorithms that will find the most probable sequences very fast,
without having to calculate the probabilities for all sequences. Here a Prolog imple-
mentation of one such algorithm – the Viterbi algorithm (Viterbi 1967) – will be
given.
As before, the goal is to map a sequence of words <W1,..,Wn> into the most probable
sequence of tags <T1,..,Tn>. The basic idea is to maintain a set PSs of possible
sequences and to discard the impossible ones as early as possible. Suppose we read a
word Wi from the input list of words. Then for each state Ti in the HMM such that Ti
outputs Wi, and for each sequence Pi-1-<T1,..,Ti-1> in PSsi-1, PSsi is formed by all
probability-sequence pairs Pi-<T1,..,Ti-1,Ti> such that Pi = max p(Wi|Ti)p(Ti|Ti-1). The
most probable sequence in PSsn is the one we are looking for.
The processing of a word is taken care of by nesting two calls to findall/3.
(5) most_probable_sequence(Words,Sequence) :-

sequences(Words,[1-[start]],PSs),
max_key(PSs,P-Sequence1),
reverse(Sequence1,[start|Sequence]).

sequences([],PSs,PSs).
sequences([Word|Words],PSs0,PSs) :-

findall(PS2,
(outprob(Word,T2,PL),
findall(P2-[T2,T1|Ts],

(member(P1-[T1|Ts],PSs0),
transprob(T1,T2,PT),
P2 is PL*PT*P1),

PSs),
max_key(PSs,PS2)),

PSs1),
sequences(Words,PSs1,PSs).

Training 5

4 Training
In our sample HMM, the probabilities have been invented. There are two well-known
methods for training the model, i.e. for acquiring the required probabilities automati-
cally. The first method involves collecting statistics from a hand coded training cor-
pus. For example, for each state t and each word form w, the output probabilities can
be estimated by taking the number of occurrences of w tagged as t in a training corpus
and divide it by the number of occurrences of t. And for each pair of states t1 and t2
the transitional probabilities can be estimated by taking the number of occurrences of
t1 being followed by t2, and divide it by the number of occurrences of t1. The second
method for training a HMM is to estimate these probabilities without a hand coded
corpus by means of the forward-backward algorithm (see e.g. Charniak 1993).

5 Evaluation
As for the evaluation of methods for statistics-based tagging, researchers are reporting
success rates of 90-95% (Charniak 1993). For such a simple approach, this is surpris-
ingly good. Tagging by means of this method is rather efficient as well, provided a
good algorithm is used. Learning can be very fast, at least with the first method
described above, since it merely involves counting. On the other hand, to work well,
both learning methods require a lot of training material.
By adding a tokenizer, procedures for opening and closing files, and procedures for
writing to a file, a small but useful standalone automatic part-of-speech tagger system
(less than sixty lines of Prolog all together) has been built. Initial testing shows that it
is able to tag 10,000 words in 15 seconds (i.e. around 670 words per second) on a
SPARCstation 10, running SICStus Prolog 3.0 (compiled code).

6 References
Charniak, E. (1993) Statistical Language Learning. Cambridge: MIT Press.
Viterbi, A. J. (1967) Error Bounds for Convolutional Codes and an Asymptotically

Optimum Decoding Algorithm. IEEE Transactions on Programming. University
of Bristol: MIT Press.

