Mathematische Grundlagen III: Statistische Methoden July 3, 2008

Probabilistic Context-free Grammars:

Inside and Outside Probabilities, and Viterbi Parsing

Matthew Crocker

Computerlinguistik Universität des Saarlandes

crocker@coli.uni-sb.de

Overview

- lexicalization of PCFGs
- computing the probability of a string
- inside and outside probabilities
- computing the best parse
- the viterbi algorithm

Again, we will follow Manning and Schuetze (1999), Chapter 11.

Lexicalizing a PCFG

$S \to NP \; VP$	1.0	$NP \to NP \; PP$	0.4
$PP \to P \: NP$	1.0	$\text{NP} \rightarrow \text{astronomers}$	0.1
$VP \to V \; NP$	0.7	$NP \to ears$	0.18
$VP \to VP \; PP$	0.3	$NP \to saw$	0.04
$P \rightarrow with$	1.0	$NP \rightarrow stars$	0.18
$V \rightarrow saw$	1.0	$NP \to telescopes$	0.1

Naive lexicalization of only the VP rules:

$VP(saw) \rightarrow V(saw) NP(astronomers)$	0.1	$V(saw) \rightarrow saw$	1.0
$VP(saw) \rightarrow V(saw) NP(ears)$	0.15	$\text{NP} \rightarrow \text{astronomers}$	0.1
$VP(saw) \rightarrow V(saw) NP(saw)$	0.05	$NP \rightarrow ears$	0.18
$VP(saw) \rightarrow V(saw) NP(stars)$	0.3	$NP \to saw$	0.04
$VP(saw) \rightarrow V(saw) NP(telescopes)$	0.1	$NP \rightarrow stars$	0.18
$VP(saw) \rightarrow VP(saw) PP(with)$	0.3	$NP \to telescopes$	0.1

Now, suppose we had 10 verbs ... we would have 60 VP rules.

Lexicalizing a PCFG

A fully lexicalized grammar requires that for all rules:

 $N^j \rightarrow N^r N^s$

we must estimate:

 $P(N^j \to N^r N^s | j, h(N^j), h(N^r), h(N^s))$

However, this requires us to estimate an impossible number of parameters, for which there will be insufficient training data. Thus, typically, we condition on just the lexical head:

 $P(N^j \to N^r N^s | j, h(N^j))$

In other words, our grammar now has only two VP rules again:

```
\begin{array}{ll} VP(saw) \rightarrow V(saw) \ NP & 0.7 \\ VP(saw) \rightarrow VP(saw) \ PP & 0.3 \end{array}
```

Now, suppose we had 10 verbs ... we would have 20 VP rules.

Inside Probability

We can calculate $P(w_{1m}|G)$, the overall probability of a string, by computing all possible parses and summing up their probabilities. However, this naive algorithm is exponential (same problem as with HMMs).

Solution: store partial results (probabilities of substrings), instead of duplicating them.

The overall probability of a string w_{1m} is:

(1)
$$P(w_{1m}|G) = P(N^1 \Rightarrow^* w_{1m}|G)$$
$$= P(w_{1m}|N_{1m}^1, G)$$
$$= \beta_1(1, m)$$

This can be generalized to $\beta_j(p,q)$, the probability of the nonterminal N^j spanning the string from word p to q.

Inside probabilities can be calculated efficiently using the inside procedure.

The Inside Procedure

1. Base Case

We compute $\beta_j(k,k)$, the probability of the subtree spanning the word k and headed by the nonterminal N^j (i.e., the probability of the rule $N^j \rightarrow w_k$):

(2)
$$\beta_j(k,k) = P(w_k | N_{kk}^j, G)$$

= $P(N^j \to w_k | G)$

2. Induction: bottom up

We compute $\beta_j(p,q), p < q$, the probability of the nonterminal N^j spanning the string from word p to q. The grammar is in Chomsky Normal Form, so we know that N^j expands to N^r and N^s : N^j

The Inside Procedure

$$\begin{aligned} \forall j, 1 \leq p < q \leq m \\ (\mathfrak{B})(p,q) &= P(w_{pq}|N_{pq}^{j},G) \\ &= \sum_{r,s} \sum_{d=p}^{q-1} P(w_{pd},N_{pd}^{r},w_{(d+1)q},N_{(d+1)q}^{s}|N_{pq}^{j},G) \\ \text{chain rule} &= \sum_{r,s} \sum_{d=p}^{q-1} P(N_{pd}^{r},N_{(d+1)q}^{s}|N_{pq}^{j},G)P(w_{pd}|N_{pq}^{j},N_{pd}^{r},N_{(d+1)q}^{s},G) \\ &\cdot P(w_{(d+1)q}|N_{pq}^{j},N_{pd}^{r},N_{(d+1)q}^{s},w_{pd},G) \\ \text{context-freeness} &= \sum_{r,s} \sum_{d=p}^{q-1} P(N_{pd}^{r},N_{(d+1)q}^{s}|N_{pq}^{j},G)P(w_{pd}|N_{pd}^{r},G) \\ &\cdot P(w_{(d+1)q}|N_{(d+1)q}^{s},G) \\ \text{definition of } \beta &= \sum_{r,s} \sum_{d=p}^{q-1} P(N^{j} \to N^{r}N^{s})\beta_{r}(p,d)\beta_{s}(d+1,q) \end{aligned}$$

Compute the β -table for the following PCFG:

$S \to NP \; VP$	1.0	$NP \to NP \; PP$	0.4
$PP \to P \: NP$	1.0	$\text{NP} \rightarrow \text{astronomers}$	0.1
$VP \to V \; NP$	0.7	$NP \to ears$	0.18
$VP \to VP \; PP$	0.3	$NP \to saw$	0.04
$P \rightarrow with$	1.0	$NP \to stars$	0.18
$V \rightarrow saw$	1.0	$NP \to telescopes$	0.1

And the input string:

 $(astronomers_1, saw_2, stars_3, with_4, ears_5)$

1. Base Case $\beta_{NP}(1,1) = P(NP \rightarrow astronomers) = 0.1$ $\beta_{V}(2,2) = P(V \rightarrow saw) = 1.0$ $\beta_{NP}(2,2) = P(NP \rightarrow saw) = 0.04$ $\beta_{NP}(3,3) = P(NP \rightarrow stars) = 0.18$ $\beta_{P}(4,4) = P(P \rightarrow with) = 1.0$ $\beta_{NP}(5,5) = P(NP \rightarrow ears) = 0.18$ 2. Induction $\beta_{\rm VP}(2,3) = P(\rm VP \rightarrow \rm V NP)\beta_{\rm V}(2,2)\beta_{\rm NP}(3,3)$ $= 0.7 \times 1.0 \times 0.18 = 0.126$ $\beta_{\rm S}(1,3) = P({\rm S} \to {\rm NP} \,{\rm VP})\beta_{\rm NP}(1,1)\beta_{\rm VP}(2,3) = 0.0126$ $\beta_{PP}(4,5) = P(PP \rightarrow P NP)\beta_{P}(4,4)\beta_{NP}(5,5) = 0.18$ $\beta_{\rm NP}(3,5) = P({\rm NP} \rightarrow {\rm NP} {\rm PP})\beta_{\rm NP}(3,3)\beta_{\rm PP}(4,5)$ $= 0.4 \times 0.18 \times 0.18 = 0.01296$ $\beta_{\rm VP}(2,5) = P(\rm VP \rightarrow \rm V NP)\beta_{\rm V}(2,2)\beta_{\rm NP}(3,5)$ + $P(VP \rightarrow VP PP)\beta_{VP}(2,3)\beta_{PP}(4,5) = 0.015876$ $\beta_{\rm S}(1,5) = P({\rm S} \to {\rm NP} \,{\rm VP})\beta_{\rm NP}(1,1)\beta_{\rm VP}(2,5) = 0.0015876$

Example Parse Tree

*t*₁:

 $P(t_1) = 1.0 \cdot 0.1 \cdot 0.7 \cdot 1.0 \cdot 0.4 \cdot 0.18 \cdot 1.0 \cdot 1.0 \cdot 0.18 = 0.0009072$

Example Parse Tree

*t*₂:

 $P(t_1) = 1.0 \cdot 0.1 \cdot 0.3 \cdot 0.7 \cdot 1.0 \cdot 0.18 \cdot 1.0 \cdot 1.0 \cdot 0.18 = 0.0006804$

Overall probability of the sentence:

 $P(w_{15}) = P(t_1) + P(t_2) = 0.0015876$

Computing the Most Probable Parse

We want to compute \hat{t} , the most probable parse for a string w_{1m} :

(4)
$$\hat{t} = \arg\max_{t} P(t|w_{1m}, G)$$

An efficient way of doing this is the Viterbi Algorithm. In analogy with HMMs, it uses a substring table to store subparses:

(5) $\delta_i(p,q)$ = the highest inside probability parse of a subtree N_{pq}^i

The backtrace $\psi_i(p,q)$ stores the rule whose application leads to the highest inside probability for the parse N_{pq}^i .

 $\Psi_i(p,q) = (j,k,r)$ stores an application of rule $N^i \to N^j N^k$, spanning the string w_{pq} and splitting it at point *r*.

Viterbi Algorithm

1. Initialization

(6)
$$\delta_i(p,p) = P(N^i \to w_p)$$

2. Induction

(7)
$$\delta_i(p,q) = \max_{\substack{1 \le j,k \le n \\ p \le r < q}} P(N^i \to N^j N^k) \delta_j(p,r) \delta_k(r+1,q)$$

Store Backtrace

(8)
$$\Psi_i(p,q) = \arg \max_{(j,k,r)} P(N^i \to N^j N^k) \delta_j(p,r) \delta_k(r+1,q)$$

3. Termination and Path Readout

The probability of the most probable parse rooted in the start symbol is:

(9)
$$P(\hat{t}) = \delta_1(1,m)$$

Viterbi Algorithm

The most probable tree \hat{t} can be reconstructed as follows:

- 1. The root node of the most probable parse is N_{1m}^1 .
- 2. Let N_{pq}^{i} be the most probable parse and $\psi_{i}(p,q) = (j,k,r)$ the corresponding backtrace. Then the left and right daughters of N_{pq}^{i} are:

(10) left
$$(N_{pq}^i) = N_{pr}^j$$

(11) right
$$(N_{pq}^i) = N_{(r+1)q}^k$$

If there is no unique maximum in the computation of δ and $\psi,$ then we simply chose one maximum at random

Compute the δ - and ψ -table for the following PCFG:

$S \to NP \; VP$	1.0	$NP \to NP \; PP$	0.4
$PP \to P \: NP$	1.0	$\text{NP} \rightarrow \text{astronomers}$	0.1
$VP \to V \; NP$	0.7	$NP \to ears$	0.18
$VP \to VP \; PP$	0.3	$NP \to saw$	0.04
$P \rightarrow with$	1.0	$NP \to stars$	0.18
$V \rightarrow saw$	1.0	$NP \to telescopes$	0.1

And the input string:

 $(astronomers_1, saw_2, stars_3, with_4, ears_5)$

1. Initialization

$\delta_{NP}(1,1)$	=	$P(\text{NP} \rightarrow \text{astronomers}) = 0.1$
$\delta_V(2,2)$	=	$P(V \rightarrow saw) = 1.0$
$\delta_{NP}(2,2)$	=	$P(\text{NP} \rightarrow \text{saw}) = 0.04$
$\delta_{NP}(3,3)$	=	$P(\text{NP} \rightarrow \text{stars}) = 0.18$
$\delta_P(4,4)$	=	$P(\mathbf{P} \rightarrow \text{with}) = 1.0$
$\delta_{NP}(5,5)$	=	$P(\text{NP} \rightarrow \text{ears}) = 0.18$

2. Induction

$$\begin{split} \delta_{\mathrm{VP}}(2,3) &= \max_{\substack{1 \leq j,k \leq n \\ 2 \leq r < 3}} P(\mathrm{VP} \to N^{j} N^{k}) \delta_{j}(2,r) \delta_{k}(r+1,3) \\ &= P(\mathrm{VP} \to \mathrm{V} \mathrm{NP}) \delta_{\mathrm{V}}(2,2) \delta_{\mathrm{NP}}(3,3) = 0.126 \\ \psi_{\mathrm{VP}}(2,3) &= \arg\max_{(j,k,r)} P(\mathrm{VP} \to \mathrm{V} \mathrm{NP}) \delta_{\mathrm{V}}(2,2) \delta_{\mathrm{NP}}(3,3) = (\mathrm{V},\mathrm{NP},2) \end{split}$$

Example continued

$$\begin{split} \delta_{\rm S}(1,3) &= \max_{\substack{1 \le j,k \le n \\ 1 \le r < 3}} P({\rm S} \to N^j \, N^k) \delta_j(1,r) \delta_k(r+1,3) \\ &= P({\rm S} \to {\rm NP} \, {\rm VP}) \delta_{{\rm NP}}(1,1) \delta_{{\rm VP}}(2,3) = 0.0126 \\ \psi_{\rm S}(1,3) &= \arg \max_{\substack{(j,k,r) \\ 4 \le r < 5}} P({\rm S} \to {\rm NP} \, {\rm VP}) \delta_{{\rm NP}}(1,1) \delta_{{\rm VP}}(2,3) = ({\rm NP},{\rm VP},1) \\ \delta_{{\rm PP}}(4,5) &= \max_{\substack{1 \le j,k \le n \\ 4 \le r < 5}} P({\rm PP} \to {\rm NP}) \delta_{{\rm P}}(4,5) \delta_{{\rm NP}}(5,5) = 0.18 \\ \psi_{{\rm PP}}(4,5) &= \arg \max_{\substack{(j,k,r) \\ (j,k,r) }} P({\rm PP} \to {\rm P} \, {\rm NP}) \delta_{{\rm P}}(4,4) \delta_{{\rm NP}}(5,5) = ({\rm P},{\rm NP},4) \end{split}$$

$$\begin{split} \delta_{\mathrm{NP}}(3,5) &= \max_{\substack{1 \leq j,k \leq n \\ 3 \leq r < 5}} P(\mathrm{NP} \to N^{j} N^{k}) \delta_{j}(3,r) \delta_{k}(r+1,5) \\ &= P(\mathrm{NP} \to \mathrm{NP} \operatorname{PP}) \delta_{\mathrm{NP}}(3,3) \delta_{\mathrm{PP}}(4,5) = 0.01296 \\ \psi_{\mathrm{NP}}(3,5) &= \arg\max_{(j,k,r)} P(\mathrm{NP} \to \mathrm{NP} \operatorname{PP}) \delta_{\mathrm{NP}}(3,3) \delta_{\mathrm{PP}}(4,5) = (\mathrm{NP},\mathrm{PP},3) \end{split}$$

Example continued

$$\begin{split} \delta_{\rm VP}(2,5) &= \max_{\substack{1 \le j,k \le n \\ 2 \le r < 5}} P({\rm VP} \to N^j N^k) \delta_j(2,r) \delta_k(r+1,5) \\ &= P({\rm VP} \to {\rm V} \ {\rm NP}) \delta_{\rm V}(2,2) \delta_{\rm NP}(3,5) = 0.009072 \\ &(= P({\rm VP} \to {\rm VP} \ {\rm PP}) \delta_{\rm VP}(2,3) \delta_{\rm PP}(4,5) = 0.006804) \\ \psi_{\rm VP}(2,5) &= \arg \max_{(j,k,r)} P({\rm VP} \to {\rm V} \ {\rm NP}) \delta_{\rm V}(2,2) \delta_{\rm NP}(3,5) = ({\rm V},{\rm NP},2) \end{split}$$

$$\begin{split} \delta_{\mathbf{S}}(1,5) &= \max_{\substack{1 \leq j,k \leq n \\ 1 \leq r < 5}} P(\mathbf{S} \to N^{j} N^{k}) \delta_{j}(1,r) \delta_{k}(r+1,5) \\ &= P(\mathbf{S} \to \mathrm{NP} \operatorname{VP}) \delta_{\mathrm{NP}}(1,1) \delta_{\mathrm{VP}}(2,5) = 0.0009072 \\ \psi_{\mathbf{S}}(1,5) &= \arg\max_{(j,k,r)} P(\mathbf{S} \to \mathrm{NP} \operatorname{VP}) \delta_{\mathrm{NP}}(1,1) \delta_{\mathrm{VP}}(2,5) = (\mathrm{NP}, \mathrm{VP},1) \end{split}$$

3. Termination and Path Readout - the root node is $N_{1m}^1 = S_{15}$:

$\psi_{\mathbf{S}}(1,5)$	=	(j,k,r) = (NP, VP, 1)
left(S)	=	$N_{1r}^{j} = NP_{11}$
right(S)	=	$N_{(r+1)5}^{k} = VP_{25}$
$\psi_{VP}(2,5)$	=	$(j,k,r) = (\mathbf{V},\mathbf{NP},5)$
left(VP)	=	$N_{2r}^{j} = V_{22}$
right(VP)	=	$N_{(r+1)5}^{k} = \text{NP}_{35}$
$\psi_{\rm NP}(3,5)$	=	(j,k,r) = (NP,PP,3)
left(NP)	=	$N_{3r}^{j} = NP_{33}$
right(NP)	=	$N_{(r+1)5}^{k} = PP_{45}$
$\psi_{\text{PP}}(4,5)$	=	$(j,k,r) = (\mathbf{P},\mathbf{NP},4)$
left(PP)	=	$N_{4r}^{j} = P_{44}$
right(PP)	=	$N_{(r+1)5}^{\dot{k}} = \mathrm{NP}_{55}$

The Highest Probability Tree

*t*₁:

 $P(t_1) = 1.0 \cdot 0.1 \cdot 0.7 \cdot 1.0 \cdot 0.4 \cdot 0.18 \cdot 1.0 \cdot 1.0 \cdot 0.18 = 0.0009072$

Training PCFGs

Training a PCFG is grammar induction in a limited sense:

- the structure of the grammar is given (i.e., a set of terminals and nonterminals);
- we can also assume that a set of grammar rules is given; then we train probabilities for these rules;
- alternatively, we can assume all possible grammar rules for a given set of terminals and non-terminals (e.g., all binary rules);
- during training, some rules will turn out to have zero probability: we learn which grammar rules are possible.

Formally, training amounts to choosing the grammar *G* that maximizes the probability of the training sentence, $\arg \max_G P(w_{1m}|G)$. (In the general case, we maximize the probability of a training corpus.)

Training PCFGs

The Inside-Outside Algorithm is an efficient way of maximizing the probability of the training corpus. It is an instance of the Expectation Maximization Algorithm.

- 1. Start with an arbitrary set of rule probabilities. Compute $P(w_{1m}|G)$ for these rule probabilities.
- 2. Figure out which rules were used most in calculating $P(w_{1m}|G)$.
- 3. Increase their probabilities, which will yield a new set of rule probabilities with a higher $P(w_{1m}|G)$.
- 4. Iterate until a (local) maximum is reached.

Note that this is an unsupervised learning algorithm; it doesn't required any annotated training data.

Summary of PCFGs

A straightforward way to use probabilistic information to improve ambiguity resolution for wide-coverage parsers.

- 1. Simple augmentation of standard CFG formalism
- Estimation of parameters using Inside-Outside Algorithm, or from a Treebank
- 3. Can be used as both a *language model* (probability of a sequence of words) and a *parsing model* (probability of a specific parse tree)
- 4. Efficient algorithms for computing string probabilities (using Inside or Outside probabilities), and finding the best parse (Viterbi)
- 5. Limited performance due to context and lexical "freeness". Can be improved through lexicalization, parentization, etc.