
Mathematische Grundlagen III: Statistische Methoden
July 3, 2008

Probabilistic Context-free Grammars:
Inside and Outside Probabilities, and Viterbi Parsing

Matthew Crocker

Computerlinguistik
Universität des Saarlandes

crocker@coli.uni-sb.de

PCFGs – Inside Probabilities & Viterbi 2

Overview

• lexicalization of PCFGs
• computing the probability of a string
• inside and outside probabilities
• computing the best parse
• the viterbi algorithm

Again, we will follow Manning and Schuetze (1999), Chapter 11.

PCFGs – Inside Probabilities & Viterbi 3

Lexicalizing a PCFG

S → NP VP 1.0 NP → NP PP 0.4
PP → P NP 1.0 NP → astronomers 0.1
VP → V NP 0.7 NP → ears 0.18
VP → VP PP 0.3 NP → saw 0.04
P → with 1.0 NP → stars 0.18
V → saw 1.0 NP → telescopes 0.1

Naive lexicalization of only the VP rules:

VP(saw) → V(saw) NP(astronomers) 0.1 V(saw) → saw 1.0
VP(saw) → V(saw) NP(ears) 0.15 NP → astronomers 0.1
VP(saw) → V(saw) NP(saw) 0.05 NP → ears 0.18
VP(saw) → V(saw) NP(stars) 0.3 NP → saw 0.04
VP(saw) → V(saw) NP(telescopes) 0.1 NP → stars 0.18
VP(saw) → VP(saw) PP(with) 0.3 NP → telescopes 0.1

Now, suppose we had 10 verbs ... we would have 60 VP rules.

PCFGs – Inside Probabilities & Viterbi 4

Lexicalizing a PCFG

A fully lexicalized grammar requires that for all rules:

N j → Nr Ns

we must estimate:

P(N j → Nr Ns| j,h(N j),h(Nr),h(Ns))

However, this requires us to estimate an impossible number of parameters,
for which there will be insufficient training data. Thus, typically, we condition
on just the lexical head:

P(N j → Nr Ns| j,h(N j))

In other words, our grammar now has only two VP rules again:

VP(saw) → V(saw) NP 0.7
VP(saw) → VP(saw) PP 0.3

Now, suppose we had 10 verbs ... we would have 20 VP rules.

PCFGs – Inside Probabilities & Viterbi 5

Inside Probability

We can calculate P(w1m|G), the overall probability of a string, by computing
all possible parses and summing up their probabilities. However, this naive
algorithm is exponential (same problem as with HMMs).

Solution: store partial results (probabilities of substrings), instead of dupli-
cating them.

The overall probability of a string w1m is:

P(w1m|G) = P(N1 ⇒∗ w1m|G)(1)
= P(w1m|N1

1m,G)
= β1(1,m)

This can be generalized to β j(p,q), the probability of the nonterminal N j

spanning the string from word p to q.

Inside probabilities can be calculated efficiently using the inside procedure.

PCFGs – Inside Probabilities & Viterbi 6

The Inside Procedure

1. Base Case

We compute β j(k,k), the probability of the subtree spanning the word k and
headed by the nonterminal N j (i.e., the probability of the rule N j → wk):

β j(k,k) = P(wk|N
j

kk,G)(2)
= P(N j → wk|G)

2. Induction: bottom up

We compute β j(p,q), p < q, the probability of the nonterminal N j spanning
the string from word p to q. The grammar is in Chomsky Normal Form, so
we know that N j expands to Nr and Ns: N j

Nr

wp · · ·wd

Ns

wd+1 · · ·wq

PCFGs – Inside Probabilities & Viterbi 7

The Inside Procedure
∀ j,1 ≤ p < q ≤ m

β j(p,q) = P(wpq|N j
pq,G)(3)

= ∑
r,s

q−1

∑
d=p

P(wpd,Nr
pd,w(d+1)q,N

s
(d+1)q|N

j
pq,G)

chain rule = ∑
r,s

q−1

∑
d=p

P(Nr
pd,Ns

(d+1)q|N
j
pq,G)P(wpd|N

j
pq,Nr

pd,Ns
(d+1)q,G)

· P(w(d+1)q|N
j
pq,Nr

pd,Ns
(d+1)q,wpd,G)

context-freeness = ∑
r,s

q−1

∑
d=p

P(Nr
pd,Ns

(d+1)q|N
j
pq,G)P(wpd|Nr

pd,G)

· P(w(d+1)q|N
s
(d+1)q,G)

definition of β = ∑
r,s

q−1

∑
d=p

P(N j → Nr Ns)βr(p,d)βs(d +1,q)

PCFGs – Inside Probabilities & Viterbi 8

Example

Compute the β-table for the following PCFG:

S → NP VP 1.0 NP → NP PP 0.4
PP → P NP 1.0 NP → astronomers 0.1
VP → V NP 0.7 NP → ears 0.18
VP → VP PP 0.3 NP → saw 0.04
P → with 1.0 NP → stars 0.18
V → saw 1.0 NP → telescopes 0.1

And the input string:

(astronomers1,saw2,stars3,with4,ears5)

PCFGs – Inside Probabilities & Viterbi 9

Example

1. Base Case

βNP(1,1) = P(NP → astronomers) = 0.1

βV(2,2) = P(V → saw) = 1.0

βNP(2,2) = P(NP → saw) = 0.04

βNP(3,3) = P(NP → stars) = 0.18

βP(4,4) = P(P → with) = 1.0

βNP(5,5) = P(NP → ears) = 0.18

PCFGs – Inside Probabilities & Viterbi 10

2. Induction

βVP(2,3) = P(VP → V NP)βV(2,2)βNP(3,3)

= 0.7×1.0×0.18 = 0.126

βS(1,3) = P(S → NP VP)βNP(1,1)βVP(2,3) = 0.0126

βPP(4,5) = P(PP → P NP)βP(4,4)βNP(5,5) = 0.18

βNP(3,5) = P(NP → NP PP)βNP(3,3)βPP(4,5)

= 0.4×0.18×0.18 = 0.01296

βVP(2,5) = P(VP → V NP)βV(2,2)βNP(3,5)

+ P(VP → VP PP)βVP(2,3)βPP(4,5) = 0.015876

βS(1,5) = P(S → NP VP)βNP(1,1)βVP(2,5) = 0.0015876

PCFGs – Inside Probabilities & Viterbi 11

Example Parse Tree

t1:

S1.0

NP0.1

astronomers

VP0.7

V1.0

saw

NP0.4

NP0.18

stars

PP1.0

P1.0

with

NP0.18

ears

P(t1) = 1.0 ·0.1 ·0.7 ·1.0 ·0.4 ·0.18 ·1.0 ·1.0 ·0.18 = 0.0009072

PCFGs – Inside Probabilities & Viterbi 12

Example Parse Tree

t2:

S1.0

NP0.1

astronomers

VP0.3

VP0.7

V1.0

saw

NP0.18

stars

PP1.0

P1.0

with

NP0.18

ears

P(t1) = 1.0 ·0.1 ·0.3 ·0.7 ·1.0 ·0.18 ·1.0 ·1.0 ·0.18 = 0.0006804

Overall probability of the sentence:
P(w15) = P(t1)+P(t2) = 0.0015876

PCFGs – Inside Probabilities & Viterbi 13

Computing the Most Probable Parse

We want to compute t̂, the most probable parse for a string w1m:

t̂ = argmax
t

P(t|w1m,G)(4)

An efficient way of doing this is the Viterbi Algorithm. In analogy with HMMs,
it uses a substring table to store subparses:

δi(p,q) = the highest inside probability parse of a subtree Ni
pq(5)

The backtrace ψi(p,q) stores the rule whose application leads to the high-
est inside probability for the parse Ni

pq.

ψi(p,q) = (j,k,r) stores an application of rule Ni → N j Nk, spanning the
string wpq and splitting it at point r.

PCFGs – Inside Probabilities & Viterbi 14

Viterbi Algorithm

1. Initialization

δi(p, p) = P(Ni → wp)(6)

2. Induction

δi(p,q) = max
1≤ j,k≤n
p≤r<q

P(Ni → N j Nk)δ j(p,r)δk(r +1,q)(7)

Store Backtrace

ψi(p,q) = arg max
(j,k,r)

P(Ni → N j Nk)δ j(p,r)δk(r +1,q)(8)

3. Termination and Path Readout

The probability of the most probable parse rooted in the start symbol is:

P(t̂) = δ1(1,m)(9)

PCFGs – Inside Probabilities & Viterbi 15

Viterbi Algorithm

The most probable tree t̂ can be reconstructed as follows:

1. The root node of the most probable parse is N1
1m.

2. Let Ni
pq be the most probable parse and ψi(p,q) = (j,k,r) the corre-

sponding backtrace. Then the left and right daughters of Ni
pq are:

left(Ni
pq) = N j

pr(10)

right(Ni
pq) = Nk

(r+1)q(11)

If there is no unique maximum in the computation of δ and ψ, then we simply
chose one maximum at random

PCFGs – Inside Probabilities & Viterbi 16

Example

Compute the δ- and ψ-table for the following PCFG:

S → NP VP 1.0 NP → NP PP 0.4
PP → P NP 1.0 NP → astronomers 0.1
VP → V NP 0.7 NP → ears 0.18
VP → VP PP 0.3 NP → saw 0.04
P → with 1.0 NP → stars 0.18
V → saw 1.0 NP → telescopes 0.1

And the input string:

(astronomers1,saw2,stars3,with4,ears5)

PCFGs – Inside Probabilities & Viterbi 17

Example

1. Initialization

δNP(1,1) = P(NP → astronomers) = 0.1
δV(2,2) = P(V → saw) = 1.0
δNP(2,2) = P(NP → saw) = 0.04
δNP(3,3) = P(NP → stars) = 0.18
δP(4,4) = P(P → with) = 1.0
δNP(5,5) = P(NP → ears) = 0.18

2. Induction

δVP(2,3) = max
1≤ j,k≤n
2≤r<3

P(VP → N j Nk)δ j(2,r)δk(r +1,3)

= P(VP → V NP)δV(2,2)δNP(3,3) = 0.126
ψVP(2,3) = arg max

(j,k,r)
P(VP → V NP)δV(2,2)δNP(3,3) = (V,NP,2)

PCFGs – Inside Probabilities & Viterbi 18

Example continued

δS(1,3) = max
1≤ j,k≤n
1≤r<3

P(S → N j Nk)δ j(1,r)δk(r +1,3)

= P(S → NP VP)δNP(1,1)δVP(2,3) = 0.0126
ψS(1,3) = arg max

(j,k,r)
P(S → NP VP)δNP(1,1)δVP(2,3) = (NP,VP,1)

δPP(4,5) = max
1≤ j,k≤n
4≤r<5

P(PP → N j Nk)δ j(4,r)δk(r +1,5)

= P(PP → P NP)δP(4,5)δNP(5,5) = 0.18
ψPP(4,5) = arg max

(j,k,r)
P(PP → P NP)δP(4,4)δNP(5,5) = (P,NP,4)

δNP(3,5) = max
1≤ j,k≤n
3≤r<5

P(NP → N j Nk)δ j(3,r)δk(r +1,5)

= P(NP → NP PP)δNP(3,3)δPP(4,5) = 0.01296
ψNP(3,5) = arg max

(j,k,r)
P(NP → NP PP)δNP(3,3)δPP(4,5) = (NP,PP,3)

PCFGs – Inside Probabilities & Viterbi 19

Example continued
δVP(2,5) = max

1≤ j,k≤n
2≤r<5

P(VP → N j Nk)δ j(2,r)δk(r +1,5)

= P(VP → V NP)δV(2,2)δNP(3,5) = 0.009072
(= P(VP → VP PP)δVP(2,3)δPP(4,5) = 0.006804)

ψVP(2,5) = arg max
(j,k,r)

P(VP → V NP)δV(2,2)δNP(3,5) = (V,NP,2)

δS(1,5) = max
1≤ j,k≤n
1≤r<5

P(S → N j Nk)δ j(1,r)δk(r +1,5)

= P(S → NP VP)δNP(1,1)δVP(2,5) = 0.0009072
ψS(1,5) = arg max

(j,k,r)
P(S → NP VP)δNP(1,1)δVP(2,5) = (NP,VP,1)

PCFGs – Inside Probabilities & Viterbi 20

Example

3. Termination and Path Readout - the root node is N1
1m = S15:

ψS(1,5) = (j,k,r) = (NP,VP,1)
left(S) = N j

1r = NP11
right(S) = Nk

(r+1)5 = VP25

ψVP(2,5) = (j,k,r) = (V,NP,5)
left(VP) = N j

2r = V22
right(VP) = Nk

(r+1)5 = NP35

ψNP(3,5) = (j,k,r) = (NP,PP,3)
left(NP) = N j

3r = NP33
right(NP) = Nk

(r+1)5 = PP45

ψPP(4,5) = (j,k,r) = (P,NP,4)
left(PP) = N j

4r = P44
right(PP) = Nk

(r+1)5 = NP55

PCFGs – Inside Probabilities & Viterbi 21

The Highest Probability Tree

t1:

S1.0

NP0.1

astronomers1

VP0.7

V1.0

saw2

NP0.4

NP0.18

stars3

PP1.0

P1.0

with4

NP0.18

ears5

P(t1) = 1.0 ·0.1 ·0.7 ·1.0 ·0.4 ·0.18 ·1.0 ·1.0 ·0.18 = 0.0009072

PCFGs – Inside Probabilities & Viterbi 22

Training PCFGs

Training a PCFG is grammar induction in a limited sense:

• the structure of the grammar is given (i.e., a set of terminals and non-
terminals);

• we can also assume that a set of grammar rules is given; then we train
probabilities for these rules;

• alternatively, we can assume all possible grammar rules for a given set
of terminals and non-terminals (e.g., all binary rules);

• during training, some rules will turn out to have zero probability: we
learn which grammar rules are possible.

Formally, training amounts to choosing the grammar G that maximizes the
probability of the training sentence, argmaxG P(w1m|G). (In the general
case, we maximize the probability of a training corpus.)

PCFGs – Inside Probabilities & Viterbi 23

Training PCFGs

The Inside-Outside Algorithm is an efficient way of maximizing the probabil-
ity of the training corpus. It is an instance of the Expectation Maximization
Algorithm.

1. Start with an arbitrary set of rule probabilities. Compute P(w1m|G) for
these rule probabilities.

2. Figure out which rules were used most in calculating P(w1m|G).
3. Increase their probabilities, which will yield a new set of rule probabili-

ties with a higher P(w1m|G).
4. Iterate until a (local) maximum is reached.

Note that this is an unsupervised learning algorithm; it doesn’t required any
annotated training data.

PCFGs – Inside Probabilities & Viterbi 24

Summary of PCFGs

A straightforward way to use probabilistic information to improve ambiguity
resolution for wide-coverage parsers.

1. Simple augmentation of standard CFG formalism
2. Estimation of parameters using Inside-Outside Algorithm, or from a

Treebank
3. Can be used as both a language model (probability of a sequence of

words) and a parsing model (probability of a specific parse tree)
4. Efficient algorithms for computing string probabilities (using Inside or

Outside probabilities), and finding the best parse (Viterbi)
5. Limited performance due to context and lexical “freeness”. Can be im-

proved through lexicaliztion, parentization, etc.

