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Overview

• probabilistic parsing
• definition of a PCFG
• properties and assumptions
• computing the probability of a parse
• computing the probability of a sentence

We will follow Manning and Schuetze, 1999.
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Parsing versus Classification

So far, we’ve applied machine learning to solving very specialized, and fi-
nite, classification tasks.

Parsing: recovering the syntactic structure of a sentence, usually the basis
for determining the meaning.

Learning: can we use data about how to assign structures to sentences to
automatically build parsers, as we did with classifiers?

Key differences:

• Infinite: most grammars generate an infinite number of syntactic struc-
tures, so there is no finite target class to be learned

• Data Sparseness: many sentence structures, and sentences, are
never seen in training

• Ambiguity: sentences may be generated by more than one possible
structure
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Probabilistic Parsing

Basic problem in computational linguistics: ambiguity

• Lexical: words have different meanings and parts-of-speech
• Structural: different POS lead to different structure
• Structural: some structural ambiguity is independent of POS

Solution: use statistics to help

• Compute the best POS for each word (using n-grams, HMMs)
• Select the best parse tree for the sentence
• Also can help efficiency, and for language modelling

We want to compute to t̂, the most probable parse for a string w1m:

t̂ = argmax
t

P(t|w1m,G)(1)
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Probabilistic Context-free Grammars

A PCFG G consists of:

{w1, . . . ,wV} Terminal vocabulary
{N1, . . . ,Nn} Nonterminal vocabulary
N1 Start symbol
{Ni → ζ j} Grammar rules,

where ζ j is a sequence of terminals and nonterminals
{P(Ni → ζ j)} Rule probabilities

Other notational conventions:
L Language (generated or accepted by the grammar)
t Parse tree
N j

pq Nonterminal N j spans positions p through q in string
wab Sequence of words wa · · ·wb
α j(p,q) Outside probabilities
β j(p,q) Inside probabilities
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Properties of PCFGs

Intuitively, the main properties are:

• A PCFG is a standard CFG where the grammar rules are annotated
with probabilities;

• the probabilities of all rules with the same lefthand side have to sum to
one;

• the probability of a parse is the product of the probabilities of all rules
applied in the parse;

• the probability of a sentence is the sum of the probabilities of all parse
trees.

More formally, a PCFG has the property:

∀i ∑
j

P(Ni → ζ j) = 1(2)
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Given a grammar G, a sentence w1m has the probability:

P(w1m) = ∑
t

P(w1m, t) where t is a parse tree of the sentence(3)

= ∑
{t:yield(t)=w1n}

P(t)
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Properties of PCFGs

N j dominates the words wa · · ·wb:

w w b a

Nj

. . . . . . . . . . . .

This is written as N j ⇒∗ wa · · ·wb, or, alternatively as yield(N j) =
wa · · ·wb = wab.
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Example for a PCFG

S → NP VP 1.0 NP → NP PP 0.4
PP → P NP 1.0 NP → astronomers 0.1
VP → V NP 0.7 NP → ears 0.18
VP → VP PP 0.3 NP → saw 0.04
P → with 1.0 NP → stars 0.18
V → saw 1.0 NP → telescopes 0.1

Computing the parse probability is:

P(t,s) = ∏
n∈t

P(r(n))(4)

Product of all rules r used to expand each node n in the parse tree t of
sentence s.
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Example Parse Tree

t1:

S1.0

NP0.1

astronomers

VP0.7

V1.0

saw

NP0.4

NP0.18

stars

PP1.0

P1.0

with

NP0.18

ears

P(t1) = 1.0 ·0.1 ·0.7 ·1.0 ·0.4 ·0.18 ·1.0 ·1.0 ·0.18 = 0.0009072
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Example Parse Tree

t2:

S1.0

NP0.1

astronomers

VP0.3

VP0.7

V1.0

saw

NP0.18

stars

PP1.0

P1.0

with

NP0.18

ears

P(t2) = 1.0 ·0.1 ·0.3 ·0.7 ·1.0 ·0.18 ·1.0 ·1.0 ·0.18 = 0.0006804

Overall probability of the sentence:
P(w15) = P(t1)+P(t2) = 0.0015876
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Parse & Sentence Probabilities

The parsing model :

P(t|s,G) where, ∑t P(t|s,G) = 1(5)

The language model :

P(s|G) = ∑
t

P(s, t) = ∑
t:yield(t)=s

P(t)(6)

Now, to turn the language model into a parsing model, divide P(t,s) by P(s).
Then the most probably parse t̂, for a string w1m:

t̂ = argmax
t

P(t|w1m,G) = argmax
t

P(t,w1m)
P(w1m)

= argmax
t

P(t,w1m)(7)
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Assumptions Underlying PCFGs

Place invariance: the probability of a subtree does not depend on where in
the string the words it dominates are (cf. time invariance in HMMs):

∀k P(N j
k(k+c) → ζ) is the same(8)

Context-free: the probability of a subtree does not depend on words not
dominated by the subtree:

P(N j
kl → ζ| anything outside k through l) = P(N j

kl → ζ)(9)

Ancestor-free: the probability of a subtree does not depend on the nodes in
the derivation outside the subtree:

P(N j
kl → ζ| any ancestor nodes outside N j

kl) = P(N j
kl → ζ)(10)
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Three Fundamental Questions

There are three fundamental question that we have to solve about PCFGs
to be able to use them:

1. What is the probability of a sentence w1m according to a grammar G:
P(w1m|G)?

2. What is the most probable parse for a sentence: argmaxt P(t|w1m,G)?
3. How can we choose rule probabilities for the grammar G that maximize

the probability of a sentence, argmaxG P(w1m|G)?

There are efficient algorithms for this:

1. inside or outside probabilities
2. Viterbi Algorithm
3. Inside-Outside Algorithm

These algorithms are analogous to the ones used for HMMs; forward and
backward probabilities in HMMs correspond to inside and outside probabil-
ities in PCFGs.
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Chomsky Normal Form

We will only consider Grammars in Chomsky Normal Form, i.e., grammars
that have only unary and binary rules of the form:

Ni → N j Nk

Ni → w j

The parameters of a grammar in Chomsky Normal Form are:

P(N j → Nr Ns|G) if n nonterminals, an n3 matrix of parameters
P(N j → wk|G) if V terminals, n ·V parameters

For j = 1, . . . ,n:

∑
r,s

P(N j → Nr Ns|G)+∑
k

P(N j → wk|G) = 1(11)

Any CFG can be represented as a weakly equivalent CFG in Chomsky Nor-
mal Form.
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Learning grammars and probabilities

There are two ways to determine the parameters, or probabilities, of
PCFGs:

1. Try to learning them automatically: find the parameters which are most
likely to generate some training corpus.

2. Find the probabilities somewhere else: e.g. determine the relative fre-
quency of use for each rule (branch) type in a treebank

Automatic learning rarely works well. Need either a good grammar in ad-
vance, otherwise too many grammars are considered. Many local maxima.

Reading grammars and probabilities from treebanks limits the corpora and
languages we can train on. Sparse data.
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Problems with PCFGs

1. Not affected by syntactic context: e.g. Pronouns are more likely in sub-
ject position than object position

2. No influence of lexical items: subcategorisation, selectional restric-
tions, etc.

3. No sensitivity to global structural preferences: e.g. high versus low at-
tachment of modifiers (PPs, relative clauses, adverbs, etc.)

Some solutions:

1. Lexicalization: each NT is associated with it’s head
2. Parentization: Each NT production is condition on parent and grand-

parent
3. Other trick: subcategorization, traces, punctuation, clustering ...
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Lexicalizing a PCFG

S → NP VP 1.0 NP → NP PP 0.4
PP → P NP 1.0 NP → astronomers 0.1
VP → V NP 0.7 NP → ears 0.18
VP → VP PP 0.3 NP → saw 0.04
P → with 1.0 NP → stars 0.18
V → saw 1.0 NP → telescopes 0.1

Naive lexicalization of only the VP rules:

VP(saw) → V(saw) NP(astronomers) 0.1 V(saw) → saw 1.0
VP(saw) → V(saw) NP(ears) 0.15 NP → astronomers 0.1
VP(saw) → V(saw) NP(saw) 0.05 NP → ears 0.18
VP(saw) → V(saw) NP(stars) 0.3 NP → saw 0.04
VP(saw) → V(saw) NP(telescopes) 0.1 NP → stars 0.18
VP(saw) → VP(saw) PP(with) 0.3 NP → telescopes 0.1

Now, suppose we had 10 verbs ... we would have 60 VP rules.
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Lexicalizing a PCFG

A fully lexicalized grammar requires that for all rules:

N j → Nr Ns

we must estimate:

P(N j → Nr Ns| j,h(N j),h(Nr),h(Ns))

However, this requires us to estimate an impossible number of parameters,
for which there will be insufficient training data. Thus, typically, we condition
on just the lexical head:

P(N j → Nr Ns| j,h(N j))

In other words, our grammar now has only two VP rules again:

VP(saw) → V(saw) NP 0.7
VP(saw) → VP(saw) PP 0.3

Now, suppose we had 10 verbs ... we would have 20 VP rules.
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Evaluation of PCFGs

PARSEVAL

Compare the output of the parser to some “Gold Standard”, usually a Tree-
bank. A constituent is labelled correctly if there is a constituent in the tree-
bank with the same start-point, end-point, and same non-terminal symbol.

1. labeled recall: # correct constituents in candidate parse of s
# correct constituents in treebank parse of s

2. labeled precision: # correct constituents in candidate parse of s
# total constituents in candidate parse of s

3. crossed-brackets: how many constituents have crossing brackets, e.g.
((A B) C) instead of (A (B C))

Performance:

1. Standard PCFG: LR=71.7, LP=75.8
2. Lexicalized PCFG: LR=83.4, LP=84.1
3. Charniak (2000): LR=91.1, LP=90.1
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Discussion of PCFGs

1. Help deal with increasing ambiguity as we grow the coverage of our
grammars

2. This enables us to use more robust grammars, that allows some un-
grammaticalities

3. PCFGs can be learned ”in the limit”, from positive examples, while
CFGs cannot

4. PCFGs provide a language model, but typically worse than n-gram
models

5. PCFGs are biased: probabilities of smaller trees are greater than larger
trees (independent of corpus frequency), also favours non-terminals
with few expansions

6. No direct notion of plausibility, but lexicalized PCFGs may implicitly
have this information


