
Mathematische Grundlagen III: Statistische Methoden
July 1, 2008

Probabilistic Context-free Grammars: Overview

Matthew Crocker

Computerlinguistik
Universität des Saarlandes

crocker@coli.uni-sb.de

PCFGs – Overview 2

Overview

• probabilistic parsing
• definition of a PCFG
• properties and assumptions
• computing the probability of a parse
• computing the probability of a sentence

We will follow Manning and Schuetze, 1999.

PCFGs – Overview 3

Parsing versus Classification

So far, we’ve applied machine learning to solving very specialized, and fi-
nite, classification tasks.

Parsing: recovering the syntactic structure of a sentence, usually the basis
for determining the meaning.

Learning: can we use data about how to assign structures to sentences to
automatically build parsers, as we did with classifiers?

Key differences:

• Infinite: most grammars generate an infinite number of syntactic struc-
tures, so there is no finite target class to be learned

• Data Sparseness: many sentence structures, and sentences, are
never seen in training

• Ambiguity: sentences may be generated by more than one possible
structure

PCFGs – Overview 4

Probabilistic Parsing

Basic problem in computational linguistics: ambiguity

• Lexical: words have different meanings and parts-of-speech
• Structural: different POS lead to different structure
• Structural: some structural ambiguity is independent of POS

Solution: use statistics to help

• Compute the best POS for each word (using n-grams, HMMs)
• Select the best parse tree for the sentence
• Also can help efficiency, and for language modelling

We want to compute to t̂, the most probable parse for a string w1m:

t̂ = argmax
t

P(t|w1m,G)(1)

PCFGs – Overview 5

Probabilistic Context-free Grammars

A PCFG G consists of:

{w1, . . . ,wV} Terminal vocabulary
{N1, . . . ,Nn} Nonterminal vocabulary
N1 Start symbol
{Ni → ζ j} Grammar rules,

where ζ j is a sequence of terminals and nonterminals
{P(Ni → ζ j)} Rule probabilities

Other notational conventions:
L Language (generated or accepted by the grammar)
t Parse tree
N j

pq Nonterminal N j spans positions p through q in string
wab Sequence of words wa · · ·wb
α j(p,q) Outside probabilities
β j(p,q) Inside probabilities

PCFGs – Overview 6

Properties of PCFGs

Intuitively, the main properties are:

• A PCFG is a standard CFG where the grammar rules are annotated
with probabilities;

• the probabilities of all rules with the same lefthand side have to sum to
one;

• the probability of a parse is the product of the probabilities of all rules
applied in the parse;

• the probability of a sentence is the sum of the probabilities of all parse
trees.

More formally, a PCFG has the property:

∀i ∑
j

P(Ni → ζ j) = 1(2)

PCFGs – Overview 7

Given a grammar G, a sentence w1m has the probability:

P(w1m) = ∑
t

P(w1m, t) where t is a parse tree of the sentence(3)

= ∑
{t:yield(t)=w1n}

P(t)

PCFGs – Overview 8

Properties of PCFGs

N j dominates the words wa · · ·wb:

w w b a

Nj

.

This is written as N j ⇒∗ wa · · ·wb, or, alternatively as yield(N j) =
wa · · ·wb = wab.

PCFGs – Overview 9

Example for a PCFG

S → NP VP 1.0 NP → NP PP 0.4
PP → P NP 1.0 NP → astronomers 0.1
VP → V NP 0.7 NP → ears 0.18
VP → VP PP 0.3 NP → saw 0.04
P → with 1.0 NP → stars 0.18
V → saw 1.0 NP → telescopes 0.1

Computing the parse probability is:

P(t,s) = ∏
n∈t

P(r(n))(4)

Product of all rules r used to expand each node n in the parse tree t of
sentence s.

PCFGs – Overview 10

Example Parse Tree

t1:

S1.0

NP0.1

astronomers

VP0.7

V1.0

saw

NP0.4

NP0.18

stars

PP1.0

P1.0

with

NP0.18

ears

P(t1) = 1.0 ·0.1 ·0.7 ·1.0 ·0.4 ·0.18 ·1.0 ·1.0 ·0.18 = 0.0009072

PCFGs – Overview 11

Example Parse Tree

t2:

S1.0

NP0.1

astronomers

VP0.3

VP0.7

V1.0

saw

NP0.18

stars

PP1.0

P1.0

with

NP0.18

ears

P(t2) = 1.0 ·0.1 ·0.3 ·0.7 ·1.0 ·0.18 ·1.0 ·1.0 ·0.18 = 0.0006804

Overall probability of the sentence:
P(w15) = P(t1)+P(t2) = 0.0015876

PCFGs – Overview 12

Parse & Sentence Probabilities

The parsing model :

P(t|s,G) where, ∑t P(t|s,G) = 1(5)

The language model :

P(s|G) = ∑
t

P(s, t) = ∑
t:yield(t)=s

P(t)(6)

Now, to turn the language model into a parsing model, divide P(t,s) by P(s).
Then the most probably parse t̂, for a string w1m:

t̂ = argmax
t

P(t|w1m,G) = argmax
t

P(t,w1m)
P(w1m)

= argmax
t

P(t,w1m)(7)

PCFGs – Overview 13

Assumptions Underlying PCFGs

Place invariance: the probability of a subtree does not depend on where in
the string the words it dominates are (cf. time invariance in HMMs):

∀k P(N j
k(k+c) → ζ) is the same(8)

Context-free: the probability of a subtree does not depend on words not
dominated by the subtree:

P(N j
kl → ζ| anything outside k through l) = P(N j

kl → ζ)(9)

Ancestor-free: the probability of a subtree does not depend on the nodes in
the derivation outside the subtree:

P(N j
kl → ζ| any ancestor nodes outside N j

kl) = P(N j
kl → ζ)(10)

PCFGs – Overview 14

Three Fundamental Questions

There are three fundamental question that we have to solve about PCFGs
to be able to use them:

1. What is the probability of a sentence w1m according to a grammar G:
P(w1m|G)?

2. What is the most probable parse for a sentence: argmaxt P(t|w1m,G)?
3. How can we choose rule probabilities for the grammar G that maximize

the probability of a sentence, argmaxG P(w1m|G)?

There are efficient algorithms for this:

1. inside or outside probabilities
2. Viterbi Algorithm
3. Inside-Outside Algorithm

These algorithms are analogous to the ones used for HMMs; forward and
backward probabilities in HMMs correspond to inside and outside probabil-
ities in PCFGs.

PCFGs – Overview 15

Chomsky Normal Form

We will only consider Grammars in Chomsky Normal Form, i.e., grammars
that have only unary and binary rules of the form:

Ni → N j Nk

Ni → w j

The parameters of a grammar in Chomsky Normal Form are:

P(N j → Nr Ns|G) if n nonterminals, an n3 matrix of parameters
P(N j → wk|G) if V terminals, n ·V parameters

For j = 1, . . . ,n:

∑
r,s

P(N j → Nr Ns|G)+∑
k

P(N j → wk|G) = 1(11)

Any CFG can be represented as a weakly equivalent CFG in Chomsky Nor-
mal Form.

PCFGs – Overview 16

Learning grammars and probabilities

There are two ways to determine the parameters, or probabilities, of
PCFGs:

1. Try to learning them automatically: find the parameters which are most
likely to generate some training corpus.

2. Find the probabilities somewhere else: e.g. determine the relative fre-
quency of use for each rule (branch) type in a treebank

Automatic learning rarely works well. Need either a good grammar in ad-
vance, otherwise too many grammars are considered. Many local maxima.

Reading grammars and probabilities from treebanks limits the corpora and
languages we can train on. Sparse data.

PCFGs – Overview 17

Problems with PCFGs

1. Not affected by syntactic context: e.g. Pronouns are more likely in sub-
ject position than object position

2. No influence of lexical items: subcategorisation, selectional restric-
tions, etc.

3. No sensitivity to global structural preferences: e.g. high versus low at-
tachment of modifiers (PPs, relative clauses, adverbs, etc.)

Some solutions:

1. Lexicalization: each NT is associated with it’s head
2. Parentization: Each NT production is condition on parent and grand-

parent
3. Other trick: subcategorization, traces, punctuation, clustering ...

PCFGs – Overview 18

Lexicalizing a PCFG

S → NP VP 1.0 NP → NP PP 0.4
PP → P NP 1.0 NP → astronomers 0.1
VP → V NP 0.7 NP → ears 0.18
VP → VP PP 0.3 NP → saw 0.04
P → with 1.0 NP → stars 0.18
V → saw 1.0 NP → telescopes 0.1

Naive lexicalization of only the VP rules:

VP(saw) → V(saw) NP(astronomers) 0.1 V(saw) → saw 1.0
VP(saw) → V(saw) NP(ears) 0.15 NP → astronomers 0.1
VP(saw) → V(saw) NP(saw) 0.05 NP → ears 0.18
VP(saw) → V(saw) NP(stars) 0.3 NP → saw 0.04
VP(saw) → V(saw) NP(telescopes) 0.1 NP → stars 0.18
VP(saw) → VP(saw) PP(with) 0.3 NP → telescopes 0.1

Now, suppose we had 10 verbs ... we would have 60 VP rules.

PCFGs – Overview 19

Lexicalizing a PCFG

A fully lexicalized grammar requires that for all rules:

N j → Nr Ns

we must estimate:

P(N j → Nr Ns| j,h(N j),h(Nr),h(Ns))

However, this requires us to estimate an impossible number of parameters,
for which there will be insufficient training data. Thus, typically, we condition
on just the lexical head:

P(N j → Nr Ns| j,h(N j))

In other words, our grammar now has only two VP rules again:

VP(saw) → V(saw) NP 0.7
VP(saw) → VP(saw) PP 0.3

Now, suppose we had 10 verbs ... we would have 20 VP rules.

PCFGs – Overview 20

Evaluation of PCFGs

PARSEVAL

Compare the output of the parser to some “Gold Standard”, usually a Tree-
bank. A constituent is labelled correctly if there is a constituent in the tree-
bank with the same start-point, end-point, and same non-terminal symbol.

1. labeled recall: # correct constituents in candidate parse of s
correct constituents in treebank parse of s

2. labeled precision: # correct constituents in candidate parse of s
total constituents in candidate parse of s

3. crossed-brackets: how many constituents have crossing brackets, e.g.
((A B) C) instead of (A (B C))

Performance:

1. Standard PCFG: LR=71.7, LP=75.8
2. Lexicalized PCFG: LR=83.4, LP=84.1
3. Charniak (2000): LR=91.1, LP=90.1

PCFGs – Overview 21

Discussion of PCFGs

1. Help deal with increasing ambiguity as we grow the coverage of our
grammars

2. This enables us to use more robust grammars, that allows some un-
grammaticalities

3. PCFGs can be learned ”in the limit”, from positive examples, while
CFGs cannot

4. PCFGs provide a language model, but typically worse than n-gram
models

5. PCFGs are biased: probabilities of smaller trees are greater than larger
trees (independent of corpus frequency), also favours non-terminals
with few expansions

6. No direct notion of plausibility, but lexicalized PCFGs may implicitly
have this information

