Mathematische Grundlagen lll: Statistische Methoden
July 1, 2008

Probabilistic Context-free Grammars: Overview

Matthew Crocker

Computerlinguistik
Universitat des Saarlandes

crocker@coli.uni-sb.de

UNIVERSITAT
DES
SAARLANDES

PCFGs — Overview

Overview

probabilistic parsing

e definition of a PCFG

e properties and assumptions

e computing the probability of a parse

e computing the probability of a sentence

We will follow Manning and Schuetze, 1999.

PCFGs — Overview 3

Parsing versus Classification

So far, we’ve applied machine learning to solving very specialized, and fi-
nite, classification tasks.

Parsing: recovering the syntactic structure of a sentence, usually the basis
for determining the meaning.

Learning: can we use data about how to assign structures to sentences to
automatically build parsers, as we did with classifiers?

Key differences:

e Infinite: most grammars generate an infinite number of syntactic struc-
tures, so there is no finite target class to be learned

e Data Sparseness: many sentence structures, and sentences, are
never seen in training

e Ambiguity: sentences may be generated by more than one possible
structure

PCFGs — Overview

Probabilistic Parsing

Basic problem in computational linguistics: ambiguity

e Lexical: words have different meanings and parts-of-speech
e Structural: different POS lead to different structure
e Structural: some structural ambiguity is independent of POS

Solution: use statistics to help

e Compute the best POS for each word (using n-grams, HMMSs)
e Select the best parse tree for the sentence
e Also can help efficiency, and for language modelling

We want to compute to 7, the most probable parse for a string wy,,:

(1) = argmtaxP(t|w1m,G)

PCFGs — Overview

Probabilistic Context-free Grammars

A PCFG G consists of:

{wl,...,w¥} Terminal vocabulary
{N!,...,N"} Nonterminal vocabulary
N1 Start symbol
{N' = {J} Grammar rules,
where Cj is a sequence of terminals and nonterminals
{P(N* = {/)} Rule probabilities

Other notational conventions:

L Language (generated or accepted by the grammar)

t Parse tree

Ny Nonterminal N j spans positions p through ¢ in string
Wap Sequence of words wy; - - - wy,

®i(p,q) Outside probabilities
Bi(p,q) Inside probabilities

PCFGs — Overview 6

Properties of PCFGs

Intuitively, the main properties are:

e A PCFG is a standard CFG where the grammar rules are annotated
with probabilities;

e the probabilities of all rules with the same lefthand side have to sum to
one;

e the probability of a parse is the product of the probabilities of all rules
applied in the parse;

e the probability of a sentence is the sum of the probabilities of all parse
trees.

More formally, a PCFG has the property:
(2) ZP — /) =

PCFGs — Overview

Given a grammar G, a sentence wy,, has the probability:

@) P(wy,) = ZP(wlm,t) where t is a parse tree of the sentence
4

R

{t:yield(r)=wq,}

PCFGs — Overview 8

Properties of PCFGs

N/ dominates the words wy - - W

This is written as N/ =* wg---wp, or, alternatively as yield(N/) =

Wa Wp = Wgp.

PCFGs — Overview 9

Example for a PCFG

S — NP VP 1.0 NP — NP PP 0.4
PP — P NP 1.0 NP — astronomers 0.1
VP —- VNP 0.7 NP — ears 0.18
VP —- VP PP 0.3 NP — saw 0.04
P — with 1.0 NP — stars 0.18
V — saw 1.0 NP — telescopes 0.1

Computing the parse probability is:
4) P(t,s)=]]P(r(n))
net
Product of all rules r used to expand each node n in the parse tree t of
sentence s.

PCFGs — Overview

10

Example Parse Tree

-

S1.0

T

NP 1 VPo.7

| A

astronomers Vi g NP 4
‘ /\
SaWw NP 13 PP1.0

| T
stars Pio NPg1s

with ears

P(t1)=1.0-0.1-0.7-1.0-0.4-0.18-1.0- 1.0-0.18 = 0.0009072

PCFGs — Overview

11

Example Parse Tree

.
/810\
NPo.1 VPo 3
| /\
astronomers VPy - PP,

A /\
Vio NPpi1g Piro NPgig

saw stars with ears
P(tz) —=1.0-0.1-0.3-0.7-1.0-0.18-1.0-1.0-0.18 = 0.0006804

Overall probability of the sentence:
P(wys) = P(t;) + P(tp) = 0.0015876

PCFGs — Overview 12

Parse & Sentence Probabilities

The parsing model.
(5) P(t|s,G) where, Y,;P(t]s,G) =1
The language model.

6) P(GIG) =Y P(s,)=) P(t)

t t:yield(t)=s
Now, to turn the language model into a parsing model, divide P(t,s) by P(s).
Then the most probably parse 7, for a string wy,,:

. P(t,
7) f= argmtaxP(t|w1m, G) = argmax IE(WMI,I/:;)

= argmtaxP(t,wlm)

PCFGs — Overview 13

Assumptions Underlying PCFGs

Place invariance: the probability of a subtree does not depend on where in
the string the words it dominates are (cf. time invariance in HMMs):

(8) Vk P(NZ(HC) — () is the same

Context-free: the probability of a subtree does not depend on words not
dominated by the subtree:

(9) P(N/, — | anything outside k through) = P(N/, — {)

Ancestor-free: the probability of a subtree does not depend on the nodes in
the derivation outside the subtree:

(10) P(ngl — (| any ancestor nodes outside N]gl) = P(ngl — Q)

PCFGs — Overview 14

Three Fundamental Questions

There are three fundamental question that we have to solve about PCFGs
to be able to use them:

1. What is the probability of a sentence wy,, according to a grammar G:
P(w1n|G)?

2. What is the most probable parse for a sentence: arg max; P(t|wy,,, G)?

3. How can we choose rule probabilities for the grammar G that maximize
the probability of a sentence, argmaxg; P(wq,,|G)?

There are efficient algorithms for this:

1. inside or outside probabilities
2. Viterbi Algorithm
3. Inside-Outside Algorithm

These algorithms are analogous to the ones used for HMMSs; forward and
backward probabilities in HMMs correspond to inside and outside probabil-
ities in PCFGs.

PCFGs — Overview 15

Chomsky Normal Form

We will only consider Grammars in Chomsky Normal Form, i.e., grammars
that have only unary and binary rules of the form:

N’ — N/ Nk
N' — w/
The parameters of a grammar in Chomsky Normal Form are:

P(N/ — N" N®|G) if n nonterminals, an n> matrix of parameters
P(N/ — wK|G) if V terminals, n -V parameters

Forj=1,...,n:
(11) Y. P(N/ = N"N°|G)+ Y P(N’ — w|G) =1
r,S k

Any CFG can be represented as a weakly equivalent CFG in Chomsky Nor-
mal Form.

PCFGs — Overview 16

Learning grammars and probabilities

There are two ways to determine the parameters, or probabilities, of
PCFGs:

1. Try to learning them automatically: find the parameters which are most
likely to generate some training corpus.

2. Find the probabilities somewhere else: e.g. determine the relative fre-
quency of use for each rule (branch) type in a treebank

Automatic learning rarely works well. Need either a good grammar in ad-
vance, otherwise too many grammars are considered. Many local maxima.

Reading grammars and probabilities from treebanks limits the corpora and
languages we can train on. Sparse data.

PCFGs — Overview 17

Problems with PCFGs

1. Not affected by syntactic context: e.g. Pronouns are more likely in sub-
ject position than object position

2. No influence of lexical items: subcategorisation, selectional restric-
tions, etc.

3. No sensitivity to global structural preferences: e.g. high versus low at-
tachment of modifiers (PPs, relative clauses, adverbs, etc.)

Some solutions:

1. Lexicalization: each NT is associated with it's head

2. Parentization: Each NT production is condition on parent and grand-
parent

3. Other trick: subcategorization, traces, punctuation, clustering ...

PCFGs — Overview 18

Lexicalizing a PCFG

S — NP VP 1.0 NP — NP PP 0.4
PP — P NP 1.0 NP — astronomers 0.1
VP —- VNP 0.7 NP — ears 0.18
VP —- VP PP 0.3 NP — saw 0.04
P — with 1.0 NP — stars 0.18
V — saw 1.0 NP — telescopes 0.1

Naive lexicalization of only the VP rules:

VP(saw) — V(saw) NP(astronomers) 0.1 V(saw) — saw 1.0
VP(saw) — V(saw) NP(ears) 0.15 NP — astronomers 0.1
VP(saw) — V(saw) NP(saw) 0.05 NP — ears 0.18
VP(saw) — V(saw) NP(stars) 0.3 NP — saw 0.04
VP(saw) — V(saw) NP(telescopes) 0.1 NP — stars 0.18
VP(saw) — VP(saw) PP(with) 0.3 NP — telescopes 0.1

Now, suppose we had 10 verbs ... we would have 60 VP rules.

PCFGs — Overview 19

Lexicalizing a PCFG

A fully lexicalized grammar requires that for all rules:
N/ — N" N*

we must estimate:

P(N/ — N" N*| j,h(N7),h(N"), h(N*))

However, this requires us to estimate an impossible number of parameters,
for which there will be insufficient training data. Thus, typically, we condition
on just the lexical head:

P(N/ — N" N*|j,h(N7))

In other words, our grammar now has only two VP rules again:

VP(saw) — V(saw) NP 0.7
VP(saw) — VP(saw) PP 0.3

Now, suppose we had 10 verbs ... we would have 20 VP rules.

PCFGs — Overview 20

Evaluation of PCFGs

PARSEVAL

Compare the output of the parser to some “Gold Standard”, usually a Tree-
bank. A constituent is labelled correctly if there is a constituent in the tree-
bank with the same start-point, end-point, and same non-terminal symbol.

correct constituents in candidate parse of s
correct constituents in treebank parse of s

. . . # correct constituents in candidate parse of s
2. labeled precision: # total constituents in candidate parse of s

3. crossed-brackets: how many constituents have crossing brackets, e.g.
((A B) C) instead of (A (B C))

1. labeled recall:

Performance:

1. Standard PCFG: LR=71.7, LP=75.8
2. Lexicalized PCFG: LR=83.4, LP=84.1
3. Charniak (2000): LR=91.1, LP=90.1

(a) ROOT

S
NP VP NP .
T T T | |
NNS NNS VBD VP NN

! | | - |

o Salesy executives » were VBG NP PP yesterday 10
| T T
3 examining DT NNS IN NP
| | | T

4 the 5 figures ¢ with JJ NN
! [
7 great g care 9

{b) ROOT

NP VP .
T —— [
NNS NNS VBD VP
i | — T
o Sales | executives » were VBG NP
I — T —
3 examining NP PP
/\ /\
DT NNS IN NP
i [e T —

4 the 5 figures ¢ with NN NN NN
i | |
7 great g care o yesterday ¢

(c) Brackets in gold standard tree (a.):
S-(0:11), NP-(0:2), VP-(2:9), VP-(3:9), NP-(4:6), PP-(6-9), NP-(7,9), *NP-(9:10)
(d) Brackets in candidate parse (b.):
$-(0:11), NP-(0:2), VP-(2:10), VP-(3:10), NP-(4:10), NP-(4:6), PP-(6-10), NP-(7,10)
(e) Precision: 3/8 =37.5% Crossing Brackets: 0
Recall: 3/8 =37.5% Crossing Accuracy: 100%
Labeled Precision: 3/8 =37.5% Tagging Accuracy: 10/11 = 90.9%
Labeled Recall: 3/8 =37.5%

PCFGs — Overview 21

Discussion of PCFGs

1.

Help deal with increasing ambiguity as we grow the coverage of our
grammars

. This enables us to use more robust grammars, that allows some un-

grammaticalities

PCFGs can be learned ”in the limit”, from positive examples, while
CFGs cannot

PCFGs provide a language model, but typically worse than n-gram
models

. PCFGs are biased: probabilities of smaller trees are greater than larger

trees (independent of corpus frequency), also favours non-terminals
with few expansions
No direct notion of plausibility, but lexicalized PCFGs may implicitly
have this information

